drm/rockchip: vop: move plane calculate to atomic_check
[firefly-linux-kernel-4.4.55.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41
42 #include "internal.h"
43
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE               max(HZ/5, 1)
48
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
54
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
59
60 #define RATELIMIT_CALC_SHIFT    10
61
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67
68 /* The following parameters are exported via /proc/sys/vm */
69
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110 /*
111  * Flag that makes the machine dump writes/reads and block dirtyings.
112  */
113 int block_dump;
114
115 /*
116  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117  * a full sync is triggered after this time elapses without any disk activity.
118  */
119 int laptop_mode;
120
121 EXPORT_SYMBOL(laptop_mode);
122
123 /* End of sysctl-exported parameters */
124
125 struct wb_domain global_wb_domain;
126
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control {
129 #ifdef CONFIG_CGROUP_WRITEBACK
130         struct wb_domain        *dom;
131         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
132 #endif
133         struct bdi_writeback    *wb;
134         struct fprop_local_percpu *wb_completions;
135
136         unsigned long           avail;          /* dirtyable */
137         unsigned long           dirty;          /* file_dirty + write + nfs */
138         unsigned long           thresh;         /* dirty threshold */
139         unsigned long           bg_thresh;      /* dirty background threshold */
140
141         unsigned long           wb_dirty;       /* per-wb counterparts */
142         unsigned long           wb_thresh;
143         unsigned long           wb_bg_thresh;
144
145         unsigned long           pos_ratio;
146 };
147
148 /*
149  * Length of period for aging writeout fractions of bdis. This is an
150  * arbitrarily chosen number. The longer the period, the slower fractions will
151  * reflect changes in current writeout rate.
152  */
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
154
155 #ifdef CONFIG_CGROUP_WRITEBACK
156
157 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
158                                 .dom = &global_wb_domain,               \
159                                 .wb_completions = &(__wb)->completions
160
161 #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
162
163 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
164                                 .dom = mem_cgroup_wb_domain(__wb),      \
165                                 .wb_completions = &(__wb)->memcg_completions, \
166                                 .gdtc = __gdtc
167
168 static bool mdtc_valid(struct dirty_throttle_control *dtc)
169 {
170         return dtc->dom;
171 }
172
173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
174 {
175         return dtc->dom;
176 }
177
178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
179 {
180         return mdtc->gdtc;
181 }
182
183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
184 {
185         return &wb->memcg_completions;
186 }
187
188 static void wb_min_max_ratio(struct bdi_writeback *wb,
189                              unsigned long *minp, unsigned long *maxp)
190 {
191         unsigned long this_bw = wb->avg_write_bandwidth;
192         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193         unsigned long long min = wb->bdi->min_ratio;
194         unsigned long long max = wb->bdi->max_ratio;
195
196         /*
197          * @wb may already be clean by the time control reaches here and
198          * the total may not include its bw.
199          */
200         if (this_bw < tot_bw) {
201                 if (min) {
202                         min *= this_bw;
203                         do_div(min, tot_bw);
204                 }
205                 if (max < 100) {
206                         max *= this_bw;
207                         do_div(max, tot_bw);
208                 }
209         }
210
211         *minp = min;
212         *maxp = max;
213 }
214
215 #else   /* CONFIG_CGROUP_WRITEBACK */
216
217 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
218                                 .wb_completions = &(__wb)->completions
219 #define GDTC_INIT_NO_WB
220 #define MDTC_INIT(__wb, __gdtc)
221
222 static bool mdtc_valid(struct dirty_throttle_control *dtc)
223 {
224         return false;
225 }
226
227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
228 {
229         return &global_wb_domain;
230 }
231
232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
233 {
234         return NULL;
235 }
236
237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
238 {
239         return NULL;
240 }
241
242 static void wb_min_max_ratio(struct bdi_writeback *wb,
243                              unsigned long *minp, unsigned long *maxp)
244 {
245         *minp = wb->bdi->min_ratio;
246         *maxp = wb->bdi->max_ratio;
247 }
248
249 #endif  /* CONFIG_CGROUP_WRITEBACK */
250
251 /*
252  * In a memory zone, there is a certain amount of pages we consider
253  * available for the page cache, which is essentially the number of
254  * free and reclaimable pages, minus some zone reserves to protect
255  * lowmem and the ability to uphold the zone's watermarks without
256  * requiring writeback.
257  *
258  * This number of dirtyable pages is the base value of which the
259  * user-configurable dirty ratio is the effictive number of pages that
260  * are allowed to be actually dirtied.  Per individual zone, or
261  * globally by using the sum of dirtyable pages over all zones.
262  *
263  * Because the user is allowed to specify the dirty limit globally as
264  * absolute number of bytes, calculating the per-zone dirty limit can
265  * require translating the configured limit into a percentage of
266  * global dirtyable memory first.
267  */
268
269 /**
270  * zone_dirtyable_memory - number of dirtyable pages in a zone
271  * @zone: the zone
272  *
273  * Returns the zone's number of pages potentially available for dirty
274  * page cache.  This is the base value for the per-zone dirty limits.
275  */
276 static unsigned long zone_dirtyable_memory(struct zone *zone)
277 {
278         unsigned long nr_pages;
279
280         nr_pages = zone_page_state(zone, NR_FREE_PAGES);
281         nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
282
283         nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
284         nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
285
286         return nr_pages;
287 }
288
289 static unsigned long highmem_dirtyable_memory(unsigned long total)
290 {
291 #ifdef CONFIG_HIGHMEM
292         int node;
293         unsigned long x = 0;
294
295         for_each_node_state(node, N_HIGH_MEMORY) {
296                 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
297
298                 x += zone_dirtyable_memory(z);
299         }
300         /*
301          * Unreclaimable memory (kernel memory or anonymous memory
302          * without swap) can bring down the dirtyable pages below
303          * the zone's dirty balance reserve and the above calculation
304          * will underflow.  However we still want to add in nodes
305          * which are below threshold (negative values) to get a more
306          * accurate calculation but make sure that the total never
307          * underflows.
308          */
309         if ((long)x < 0)
310                 x = 0;
311
312         /*
313          * Make sure that the number of highmem pages is never larger
314          * than the number of the total dirtyable memory. This can only
315          * occur in very strange VM situations but we want to make sure
316          * that this does not occur.
317          */
318         return min(x, total);
319 #else
320         return 0;
321 #endif
322 }
323
324 /**
325  * global_dirtyable_memory - number of globally dirtyable pages
326  *
327  * Returns the global number of pages potentially available for dirty
328  * page cache.  This is the base value for the global dirty limits.
329  */
330 static unsigned long global_dirtyable_memory(void)
331 {
332         unsigned long x;
333
334         x = global_page_state(NR_FREE_PAGES);
335         x -= min(x, dirty_balance_reserve);
336
337         x += global_page_state(NR_INACTIVE_FILE);
338         x += global_page_state(NR_ACTIVE_FILE);
339
340         if (!vm_highmem_is_dirtyable)
341                 x -= highmem_dirtyable_memory(x);
342
343         return x + 1;   /* Ensure that we never return 0 */
344 }
345
346 /**
347  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
348  * @dtc: dirty_throttle_control of interest
349  *
350  * Calculate @dtc->thresh and ->bg_thresh considering
351  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
352  * must ensure that @dtc->avail is set before calling this function.  The
353  * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
354  * real-time tasks.
355  */
356 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
357 {
358         const unsigned long available_memory = dtc->avail;
359         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
360         unsigned long bytes = vm_dirty_bytes;
361         unsigned long bg_bytes = dirty_background_bytes;
362         /* convert ratios to per-PAGE_SIZE for higher precision */
363         unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
364         unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
365         unsigned long thresh;
366         unsigned long bg_thresh;
367         struct task_struct *tsk;
368
369         /* gdtc is !NULL iff @dtc is for memcg domain */
370         if (gdtc) {
371                 unsigned long global_avail = gdtc->avail;
372
373                 /*
374                  * The byte settings can't be applied directly to memcg
375                  * domains.  Convert them to ratios by scaling against
376                  * globally available memory.  As the ratios are in
377                  * per-PAGE_SIZE, they can be obtained by dividing bytes by
378                  * number of pages.
379                  */
380                 if (bytes)
381                         ratio = min(DIV_ROUND_UP(bytes, global_avail),
382                                     PAGE_SIZE);
383                 if (bg_bytes)
384                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
385                                        PAGE_SIZE);
386                 bytes = bg_bytes = 0;
387         }
388
389         if (bytes)
390                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
391         else
392                 thresh = (ratio * available_memory) / PAGE_SIZE;
393
394         if (bg_bytes)
395                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
396         else
397                 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
398
399         if (bg_thresh >= thresh)
400                 bg_thresh = thresh / 2;
401         tsk = current;
402         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
403                 bg_thresh += bg_thresh / 4;
404                 thresh += thresh / 4;
405         }
406         dtc->thresh = thresh;
407         dtc->bg_thresh = bg_thresh;
408
409         /* we should eventually report the domain in the TP */
410         if (!gdtc)
411                 trace_global_dirty_state(bg_thresh, thresh);
412 }
413
414 /**
415  * global_dirty_limits - background-writeback and dirty-throttling thresholds
416  * @pbackground: out parameter for bg_thresh
417  * @pdirty: out parameter for thresh
418  *
419  * Calculate bg_thresh and thresh for global_wb_domain.  See
420  * domain_dirty_limits() for details.
421  */
422 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
423 {
424         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
425
426         gdtc.avail = global_dirtyable_memory();
427         domain_dirty_limits(&gdtc);
428
429         *pbackground = gdtc.bg_thresh;
430         *pdirty = gdtc.thresh;
431 }
432
433 /**
434  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
435  * @zone: the zone
436  *
437  * Returns the maximum number of dirty pages allowed in a zone, based
438  * on the zone's dirtyable memory.
439  */
440 static unsigned long zone_dirty_limit(struct zone *zone)
441 {
442         unsigned long zone_memory = zone_dirtyable_memory(zone);
443         struct task_struct *tsk = current;
444         unsigned long dirty;
445
446         if (vm_dirty_bytes)
447                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
448                         zone_memory / global_dirtyable_memory();
449         else
450                 dirty = vm_dirty_ratio * zone_memory / 100;
451
452         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
453                 dirty += dirty / 4;
454
455         return dirty;
456 }
457
458 /**
459  * zone_dirty_ok - tells whether a zone is within its dirty limits
460  * @zone: the zone to check
461  *
462  * Returns %true when the dirty pages in @zone are within the zone's
463  * dirty limit, %false if the limit is exceeded.
464  */
465 bool zone_dirty_ok(struct zone *zone)
466 {
467         unsigned long limit = zone_dirty_limit(zone);
468
469         return zone_page_state(zone, NR_FILE_DIRTY) +
470                zone_page_state(zone, NR_UNSTABLE_NFS) +
471                zone_page_state(zone, NR_WRITEBACK) <= limit;
472 }
473
474 int dirty_background_ratio_handler(struct ctl_table *table, int write,
475                 void __user *buffer, size_t *lenp,
476                 loff_t *ppos)
477 {
478         int ret;
479
480         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481         if (ret == 0 && write)
482                 dirty_background_bytes = 0;
483         return ret;
484 }
485
486 int dirty_background_bytes_handler(struct ctl_table *table, int write,
487                 void __user *buffer, size_t *lenp,
488                 loff_t *ppos)
489 {
490         int ret;
491
492         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
493         if (ret == 0 && write)
494                 dirty_background_ratio = 0;
495         return ret;
496 }
497
498 int dirty_ratio_handler(struct ctl_table *table, int write,
499                 void __user *buffer, size_t *lenp,
500                 loff_t *ppos)
501 {
502         int old_ratio = vm_dirty_ratio;
503         int ret;
504
505         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
506         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
507                 writeback_set_ratelimit();
508                 vm_dirty_bytes = 0;
509         }
510         return ret;
511 }
512
513 int dirty_bytes_handler(struct ctl_table *table, int write,
514                 void __user *buffer, size_t *lenp,
515                 loff_t *ppos)
516 {
517         unsigned long old_bytes = vm_dirty_bytes;
518         int ret;
519
520         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
521         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
522                 writeback_set_ratelimit();
523                 vm_dirty_ratio = 0;
524         }
525         return ret;
526 }
527
528 static unsigned long wp_next_time(unsigned long cur_time)
529 {
530         cur_time += VM_COMPLETIONS_PERIOD_LEN;
531         /* 0 has a special meaning... */
532         if (!cur_time)
533                 return 1;
534         return cur_time;
535 }
536
537 static void wb_domain_writeout_inc(struct wb_domain *dom,
538                                    struct fprop_local_percpu *completions,
539                                    unsigned int max_prop_frac)
540 {
541         __fprop_inc_percpu_max(&dom->completions, completions,
542                                max_prop_frac);
543         /* First event after period switching was turned off? */
544         if (!unlikely(dom->period_time)) {
545                 /*
546                  * We can race with other __bdi_writeout_inc calls here but
547                  * it does not cause any harm since the resulting time when
548                  * timer will fire and what is in writeout_period_time will be
549                  * roughly the same.
550                  */
551                 dom->period_time = wp_next_time(jiffies);
552                 mod_timer(&dom->period_timer, dom->period_time);
553         }
554 }
555
556 /*
557  * Increment @wb's writeout completion count and the global writeout
558  * completion count. Called from test_clear_page_writeback().
559  */
560 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
561 {
562         struct wb_domain *cgdom;
563
564         __inc_wb_stat(wb, WB_WRITTEN);
565         wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
566                                wb->bdi->max_prop_frac);
567
568         cgdom = mem_cgroup_wb_domain(wb);
569         if (cgdom)
570                 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
571                                        wb->bdi->max_prop_frac);
572 }
573
574 void wb_writeout_inc(struct bdi_writeback *wb)
575 {
576         unsigned long flags;
577
578         local_irq_save(flags);
579         __wb_writeout_inc(wb);
580         local_irq_restore(flags);
581 }
582 EXPORT_SYMBOL_GPL(wb_writeout_inc);
583
584 /*
585  * On idle system, we can be called long after we scheduled because we use
586  * deferred timers so count with missed periods.
587  */
588 static void writeout_period(unsigned long t)
589 {
590         struct wb_domain *dom = (void *)t;
591         int miss_periods = (jiffies - dom->period_time) /
592                                                  VM_COMPLETIONS_PERIOD_LEN;
593
594         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
595                 dom->period_time = wp_next_time(dom->period_time +
596                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
597                 mod_timer(&dom->period_timer, dom->period_time);
598         } else {
599                 /*
600                  * Aging has zeroed all fractions. Stop wasting CPU on period
601                  * updates.
602                  */
603                 dom->period_time = 0;
604         }
605 }
606
607 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
608 {
609         memset(dom, 0, sizeof(*dom));
610
611         spin_lock_init(&dom->lock);
612
613         init_timer_deferrable(&dom->period_timer);
614         dom->period_timer.function = writeout_period;
615         dom->period_timer.data = (unsigned long)dom;
616
617         dom->dirty_limit_tstamp = jiffies;
618
619         return fprop_global_init(&dom->completions, gfp);
620 }
621
622 #ifdef CONFIG_CGROUP_WRITEBACK
623 void wb_domain_exit(struct wb_domain *dom)
624 {
625         del_timer_sync(&dom->period_timer);
626         fprop_global_destroy(&dom->completions);
627 }
628 #endif
629
630 /*
631  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
632  * registered backing devices, which, for obvious reasons, can not
633  * exceed 100%.
634  */
635 static unsigned int bdi_min_ratio;
636
637 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
638 {
639         int ret = 0;
640
641         spin_lock_bh(&bdi_lock);
642         if (min_ratio > bdi->max_ratio) {
643                 ret = -EINVAL;
644         } else {
645                 min_ratio -= bdi->min_ratio;
646                 if (bdi_min_ratio + min_ratio < 100) {
647                         bdi_min_ratio += min_ratio;
648                         bdi->min_ratio += min_ratio;
649                 } else {
650                         ret = -EINVAL;
651                 }
652         }
653         spin_unlock_bh(&bdi_lock);
654
655         return ret;
656 }
657
658 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
659 {
660         int ret = 0;
661
662         if (max_ratio > 100)
663                 return -EINVAL;
664
665         spin_lock_bh(&bdi_lock);
666         if (bdi->min_ratio > max_ratio) {
667                 ret = -EINVAL;
668         } else {
669                 bdi->max_ratio = max_ratio;
670                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
671         }
672         spin_unlock_bh(&bdi_lock);
673
674         return ret;
675 }
676 EXPORT_SYMBOL(bdi_set_max_ratio);
677
678 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
679                                            unsigned long bg_thresh)
680 {
681         return (thresh + bg_thresh) / 2;
682 }
683
684 static unsigned long hard_dirty_limit(struct wb_domain *dom,
685                                       unsigned long thresh)
686 {
687         return max(thresh, dom->dirty_limit);
688 }
689
690 /*
691  * Memory which can be further allocated to a memcg domain is capped by
692  * system-wide clean memory excluding the amount being used in the domain.
693  */
694 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
695                             unsigned long filepages, unsigned long headroom)
696 {
697         struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
698         unsigned long clean = filepages - min(filepages, mdtc->dirty);
699         unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
700         unsigned long other_clean = global_clean - min(global_clean, clean);
701
702         mdtc->avail = filepages + min(headroom, other_clean);
703 }
704
705 /**
706  * __wb_calc_thresh - @wb's share of dirty throttling threshold
707  * @dtc: dirty_throttle_context of interest
708  *
709  * Returns @wb's dirty limit in pages. The term "dirty" in the context of
710  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
711  *
712  * Note that balance_dirty_pages() will only seriously take it as a hard limit
713  * when sleeping max_pause per page is not enough to keep the dirty pages under
714  * control. For example, when the device is completely stalled due to some error
715  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
716  * In the other normal situations, it acts more gently by throttling the tasks
717  * more (rather than completely block them) when the wb dirty pages go high.
718  *
719  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
720  * - starving fast devices
721  * - piling up dirty pages (that will take long time to sync) on slow devices
722  *
723  * The wb's share of dirty limit will be adapting to its throughput and
724  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
725  */
726 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
727 {
728         struct wb_domain *dom = dtc_dom(dtc);
729         unsigned long thresh = dtc->thresh;
730         u64 wb_thresh;
731         long numerator, denominator;
732         unsigned long wb_min_ratio, wb_max_ratio;
733
734         /*
735          * Calculate this BDI's share of the thresh ratio.
736          */
737         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
738                               &numerator, &denominator);
739
740         wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
741         wb_thresh *= numerator;
742         do_div(wb_thresh, denominator);
743
744         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
745
746         wb_thresh += (thresh * wb_min_ratio) / 100;
747         if (wb_thresh > (thresh * wb_max_ratio) / 100)
748                 wb_thresh = thresh * wb_max_ratio / 100;
749
750         return wb_thresh;
751 }
752
753 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
754 {
755         struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
756                                                .thresh = thresh };
757         return __wb_calc_thresh(&gdtc);
758 }
759
760 /*
761  *                           setpoint - dirty 3
762  *        f(dirty) := 1.0 + (----------------)
763  *                           limit - setpoint
764  *
765  * it's a 3rd order polynomial that subjects to
766  *
767  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
768  * (2) f(setpoint) = 1.0 => the balance point
769  * (3) f(limit)    = 0   => the hard limit
770  * (4) df/dx      <= 0   => negative feedback control
771  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
772  *     => fast response on large errors; small oscillation near setpoint
773  */
774 static long long pos_ratio_polynom(unsigned long setpoint,
775                                           unsigned long dirty,
776                                           unsigned long limit)
777 {
778         long long pos_ratio;
779         long x;
780
781         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
782                       (limit - setpoint) | 1);
783         pos_ratio = x;
784         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
785         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
786         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
787
788         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
789 }
790
791 /*
792  * Dirty position control.
793  *
794  * (o) global/bdi setpoints
795  *
796  * We want the dirty pages be balanced around the global/wb setpoints.
797  * When the number of dirty pages is higher/lower than the setpoint, the
798  * dirty position control ratio (and hence task dirty ratelimit) will be
799  * decreased/increased to bring the dirty pages back to the setpoint.
800  *
801  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
802  *
803  *     if (dirty < setpoint) scale up   pos_ratio
804  *     if (dirty > setpoint) scale down pos_ratio
805  *
806  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
807  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
808  *
809  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
810  *
811  * (o) global control line
812  *
813  *     ^ pos_ratio
814  *     |
815  *     |            |<===== global dirty control scope ======>|
816  * 2.0 .............*
817  *     |            .*
818  *     |            . *
819  *     |            .   *
820  *     |            .     *
821  *     |            .        *
822  *     |            .            *
823  * 1.0 ................................*
824  *     |            .                  .     *
825  *     |            .                  .          *
826  *     |            .                  .              *
827  *     |            .                  .                 *
828  *     |            .                  .                    *
829  *   0 +------------.------------------.----------------------*------------->
830  *           freerun^          setpoint^                 limit^   dirty pages
831  *
832  * (o) wb control line
833  *
834  *     ^ pos_ratio
835  *     |
836  *     |            *
837  *     |              *
838  *     |                *
839  *     |                  *
840  *     |                    * |<=========== span ============>|
841  * 1.0 .......................*
842  *     |                      . *
843  *     |                      .   *
844  *     |                      .     *
845  *     |                      .       *
846  *     |                      .         *
847  *     |                      .           *
848  *     |                      .             *
849  *     |                      .               *
850  *     |                      .                 *
851  *     |                      .                   *
852  *     |                      .                     *
853  * 1/4 ...............................................* * * * * * * * * * * *
854  *     |                      .                         .
855  *     |                      .                           .
856  *     |                      .                             .
857  *   0 +----------------------.-------------------------------.------------->
858  *                wb_setpoint^                    x_intercept^
859  *
860  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
861  * be smoothly throttled down to normal if it starts high in situations like
862  * - start writing to a slow SD card and a fast disk at the same time. The SD
863  *   card's wb_dirty may rush to many times higher than wb_setpoint.
864  * - the wb dirty thresh drops quickly due to change of JBOD workload
865  */
866 static void wb_position_ratio(struct dirty_throttle_control *dtc)
867 {
868         struct bdi_writeback *wb = dtc->wb;
869         unsigned long write_bw = wb->avg_write_bandwidth;
870         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
871         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
872         unsigned long wb_thresh = dtc->wb_thresh;
873         unsigned long x_intercept;
874         unsigned long setpoint;         /* dirty pages' target balance point */
875         unsigned long wb_setpoint;
876         unsigned long span;
877         long long pos_ratio;            /* for scaling up/down the rate limit */
878         long x;
879
880         dtc->pos_ratio = 0;
881
882         if (unlikely(dtc->dirty >= limit))
883                 return;
884
885         /*
886          * global setpoint
887          *
888          * See comment for pos_ratio_polynom().
889          */
890         setpoint = (freerun + limit) / 2;
891         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
892
893         /*
894          * The strictlimit feature is a tool preventing mistrusted filesystems
895          * from growing a large number of dirty pages before throttling. For
896          * such filesystems balance_dirty_pages always checks wb counters
897          * against wb limits. Even if global "nr_dirty" is under "freerun".
898          * This is especially important for fuse which sets bdi->max_ratio to
899          * 1% by default. Without strictlimit feature, fuse writeback may
900          * consume arbitrary amount of RAM because it is accounted in
901          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
902          *
903          * Here, in wb_position_ratio(), we calculate pos_ratio based on
904          * two values: wb_dirty and wb_thresh. Let's consider an example:
905          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
906          * limits are set by default to 10% and 20% (background and throttle).
907          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
908          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
909          * about ~6K pages (as the average of background and throttle wb
910          * limits). The 3rd order polynomial will provide positive feedback if
911          * wb_dirty is under wb_setpoint and vice versa.
912          *
913          * Note, that we cannot use global counters in these calculations
914          * because we want to throttle process writing to a strictlimit wb
915          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
916          * in the example above).
917          */
918         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
919                 long long wb_pos_ratio;
920
921                 if (dtc->wb_dirty < 8) {
922                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
923                                            2 << RATELIMIT_CALC_SHIFT);
924                         return;
925                 }
926
927                 if (dtc->wb_dirty >= wb_thresh)
928                         return;
929
930                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
931                                                     dtc->wb_bg_thresh);
932
933                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
934                         return;
935
936                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
937                                                  wb_thresh);
938
939                 /*
940                  * Typically, for strictlimit case, wb_setpoint << setpoint
941                  * and pos_ratio >> wb_pos_ratio. In the other words global
942                  * state ("dirty") is not limiting factor and we have to
943                  * make decision based on wb counters. But there is an
944                  * important case when global pos_ratio should get precedence:
945                  * global limits are exceeded (e.g. due to activities on other
946                  * wb's) while given strictlimit wb is below limit.
947                  *
948                  * "pos_ratio * wb_pos_ratio" would work for the case above,
949                  * but it would look too non-natural for the case of all
950                  * activity in the system coming from a single strictlimit wb
951                  * with bdi->max_ratio == 100%.
952                  *
953                  * Note that min() below somewhat changes the dynamics of the
954                  * control system. Normally, pos_ratio value can be well over 3
955                  * (when globally we are at freerun and wb is well below wb
956                  * setpoint). Now the maximum pos_ratio in the same situation
957                  * is 2. We might want to tweak this if we observe the control
958                  * system is too slow to adapt.
959                  */
960                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
961                 return;
962         }
963
964         /*
965          * We have computed basic pos_ratio above based on global situation. If
966          * the wb is over/under its share of dirty pages, we want to scale
967          * pos_ratio further down/up. That is done by the following mechanism.
968          */
969
970         /*
971          * wb setpoint
972          *
973          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
974          *
975          *                        x_intercept - wb_dirty
976          *                     := --------------------------
977          *                        x_intercept - wb_setpoint
978          *
979          * The main wb control line is a linear function that subjects to
980          *
981          * (1) f(wb_setpoint) = 1.0
982          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
983          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
984          *
985          * For single wb case, the dirty pages are observed to fluctuate
986          * regularly within range
987          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
988          * for various filesystems, where (2) can yield in a reasonable 12.5%
989          * fluctuation range for pos_ratio.
990          *
991          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
992          * own size, so move the slope over accordingly and choose a slope that
993          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
994          */
995         if (unlikely(wb_thresh > dtc->thresh))
996                 wb_thresh = dtc->thresh;
997         /*
998          * It's very possible that wb_thresh is close to 0 not because the
999          * device is slow, but that it has remained inactive for long time.
1000          * Honour such devices a reasonable good (hopefully IO efficient)
1001          * threshold, so that the occasional writes won't be blocked and active
1002          * writes can rampup the threshold quickly.
1003          */
1004         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1005         /*
1006          * scale global setpoint to wb's:
1007          *      wb_setpoint = setpoint * wb_thresh / thresh
1008          */
1009         x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1010         wb_setpoint = setpoint * (u64)x >> 16;
1011         /*
1012          * Use span=(8*write_bw) in single wb case as indicated by
1013          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1014          *
1015          *        wb_thresh                    thresh - wb_thresh
1016          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1017          *         thresh                           thresh
1018          */
1019         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1020         x_intercept = wb_setpoint + span;
1021
1022         if (dtc->wb_dirty < x_intercept - span / 4) {
1023                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1024                                       (x_intercept - wb_setpoint) | 1);
1025         } else
1026                 pos_ratio /= 4;
1027
1028         /*
1029          * wb reserve area, safeguard against dirty pool underrun and disk idle
1030          * It may push the desired control point of global dirty pages higher
1031          * than setpoint.
1032          */
1033         x_intercept = wb_thresh / 2;
1034         if (dtc->wb_dirty < x_intercept) {
1035                 if (dtc->wb_dirty > x_intercept / 8)
1036                         pos_ratio = div_u64(pos_ratio * x_intercept,
1037                                             dtc->wb_dirty);
1038                 else
1039                         pos_ratio *= 8;
1040         }
1041
1042         dtc->pos_ratio = pos_ratio;
1043 }
1044
1045 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1046                                       unsigned long elapsed,
1047                                       unsigned long written)
1048 {
1049         const unsigned long period = roundup_pow_of_two(3 * HZ);
1050         unsigned long avg = wb->avg_write_bandwidth;
1051         unsigned long old = wb->write_bandwidth;
1052         u64 bw;
1053
1054         /*
1055          * bw = written * HZ / elapsed
1056          *
1057          *                   bw * elapsed + write_bandwidth * (period - elapsed)
1058          * write_bandwidth = ---------------------------------------------------
1059          *                                          period
1060          *
1061          * @written may have decreased due to account_page_redirty().
1062          * Avoid underflowing @bw calculation.
1063          */
1064         bw = written - min(written, wb->written_stamp);
1065         bw *= HZ;
1066         if (unlikely(elapsed > period)) {
1067                 do_div(bw, elapsed);
1068                 avg = bw;
1069                 goto out;
1070         }
1071         bw += (u64)wb->write_bandwidth * (period - elapsed);
1072         bw >>= ilog2(period);
1073
1074         /*
1075          * one more level of smoothing, for filtering out sudden spikes
1076          */
1077         if (avg > old && old >= (unsigned long)bw)
1078                 avg -= (avg - old) >> 3;
1079
1080         if (avg < old && old <= (unsigned long)bw)
1081                 avg += (old - avg) >> 3;
1082
1083 out:
1084         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1085         avg = max(avg, 1LU);
1086         if (wb_has_dirty_io(wb)) {
1087                 long delta = avg - wb->avg_write_bandwidth;
1088                 WARN_ON_ONCE(atomic_long_add_return(delta,
1089                                         &wb->bdi->tot_write_bandwidth) <= 0);
1090         }
1091         wb->write_bandwidth = bw;
1092         wb->avg_write_bandwidth = avg;
1093 }
1094
1095 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1096 {
1097         struct wb_domain *dom = dtc_dom(dtc);
1098         unsigned long thresh = dtc->thresh;
1099         unsigned long limit = dom->dirty_limit;
1100
1101         /*
1102          * Follow up in one step.
1103          */
1104         if (limit < thresh) {
1105                 limit = thresh;
1106                 goto update;
1107         }
1108
1109         /*
1110          * Follow down slowly. Use the higher one as the target, because thresh
1111          * may drop below dirty. This is exactly the reason to introduce
1112          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1113          */
1114         thresh = max(thresh, dtc->dirty);
1115         if (limit > thresh) {
1116                 limit -= (limit - thresh) >> 5;
1117                 goto update;
1118         }
1119         return;
1120 update:
1121         dom->dirty_limit = limit;
1122 }
1123
1124 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1125                                     unsigned long now)
1126 {
1127         struct wb_domain *dom = dtc_dom(dtc);
1128
1129         /*
1130          * check locklessly first to optimize away locking for the most time
1131          */
1132         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1133                 return;
1134
1135         spin_lock(&dom->lock);
1136         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1137                 update_dirty_limit(dtc);
1138                 dom->dirty_limit_tstamp = now;
1139         }
1140         spin_unlock(&dom->lock);
1141 }
1142
1143 /*
1144  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1145  *
1146  * Normal wb tasks will be curbed at or below it in long term.
1147  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1148  */
1149 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1150                                       unsigned long dirtied,
1151                                       unsigned long elapsed)
1152 {
1153         struct bdi_writeback *wb = dtc->wb;
1154         unsigned long dirty = dtc->dirty;
1155         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1156         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1157         unsigned long setpoint = (freerun + limit) / 2;
1158         unsigned long write_bw = wb->avg_write_bandwidth;
1159         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1160         unsigned long dirty_rate;
1161         unsigned long task_ratelimit;
1162         unsigned long balanced_dirty_ratelimit;
1163         unsigned long step;
1164         unsigned long x;
1165
1166         /*
1167          * The dirty rate will match the writeout rate in long term, except
1168          * when dirty pages are truncated by userspace or re-dirtied by FS.
1169          */
1170         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1171
1172         /*
1173          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1174          */
1175         task_ratelimit = (u64)dirty_ratelimit *
1176                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1177         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1178
1179         /*
1180          * A linear estimation of the "balanced" throttle rate. The theory is,
1181          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1182          * dirty_rate will be measured to be (N * task_ratelimit). So the below
1183          * formula will yield the balanced rate limit (write_bw / N).
1184          *
1185          * Note that the expanded form is not a pure rate feedback:
1186          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1187          * but also takes pos_ratio into account:
1188          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1189          *
1190          * (1) is not realistic because pos_ratio also takes part in balancing
1191          * the dirty rate.  Consider the state
1192          *      pos_ratio = 0.5                                              (3)
1193          *      rate = 2 * (write_bw / N)                                    (4)
1194          * If (1) is used, it will stuck in that state! Because each dd will
1195          * be throttled at
1196          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1197          * yielding
1198          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1199          * put (6) into (1) we get
1200          *      rate_(i+1) = rate_(i)                                        (7)
1201          *
1202          * So we end up using (2) to always keep
1203          *      rate_(i+1) ~= (write_bw / N)                                 (8)
1204          * regardless of the value of pos_ratio. As long as (8) is satisfied,
1205          * pos_ratio is able to drive itself to 1.0, which is not only where
1206          * the dirty count meet the setpoint, but also where the slope of
1207          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1208          */
1209         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1210                                            dirty_rate | 1);
1211         /*
1212          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1213          */
1214         if (unlikely(balanced_dirty_ratelimit > write_bw))
1215                 balanced_dirty_ratelimit = write_bw;
1216
1217         /*
1218          * We could safely do this and return immediately:
1219          *
1220          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1221          *
1222          * However to get a more stable dirty_ratelimit, the below elaborated
1223          * code makes use of task_ratelimit to filter out singular points and
1224          * limit the step size.
1225          *
1226          * The below code essentially only uses the relative value of
1227          *
1228          *      task_ratelimit - dirty_ratelimit
1229          *      = (pos_ratio - 1) * dirty_ratelimit
1230          *
1231          * which reflects the direction and size of dirty position error.
1232          */
1233
1234         /*
1235          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1236          * task_ratelimit is on the same side of dirty_ratelimit, too.
1237          * For example, when
1238          * - dirty_ratelimit > balanced_dirty_ratelimit
1239          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1240          * lowering dirty_ratelimit will help meet both the position and rate
1241          * control targets. Otherwise, don't update dirty_ratelimit if it will
1242          * only help meet the rate target. After all, what the users ultimately
1243          * feel and care are stable dirty rate and small position error.
1244          *
1245          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1246          * and filter out the singular points of balanced_dirty_ratelimit. Which
1247          * keeps jumping around randomly and can even leap far away at times
1248          * due to the small 200ms estimation period of dirty_rate (we want to
1249          * keep that period small to reduce time lags).
1250          */
1251         step = 0;
1252
1253         /*
1254          * For strictlimit case, calculations above were based on wb counters
1255          * and limits (starting from pos_ratio = wb_position_ratio() and up to
1256          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1257          * Hence, to calculate "step" properly, we have to use wb_dirty as
1258          * "dirty" and wb_setpoint as "setpoint".
1259          *
1260          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1261          * it's possible that wb_thresh is close to zero due to inactivity
1262          * of backing device.
1263          */
1264         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1265                 dirty = dtc->wb_dirty;
1266                 if (dtc->wb_dirty < 8)
1267                         setpoint = dtc->wb_dirty + 1;
1268                 else
1269                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1270         }
1271
1272         if (dirty < setpoint) {
1273                 x = min3(wb->balanced_dirty_ratelimit,
1274                          balanced_dirty_ratelimit, task_ratelimit);
1275                 if (dirty_ratelimit < x)
1276                         step = x - dirty_ratelimit;
1277         } else {
1278                 x = max3(wb->balanced_dirty_ratelimit,
1279                          balanced_dirty_ratelimit, task_ratelimit);
1280                 if (dirty_ratelimit > x)
1281                         step = dirty_ratelimit - x;
1282         }
1283
1284         /*
1285          * Don't pursue 100% rate matching. It's impossible since the balanced
1286          * rate itself is constantly fluctuating. So decrease the track speed
1287          * when it gets close to the target. Helps eliminate pointless tremors.
1288          */
1289         step >>= dirty_ratelimit / (2 * step + 1);
1290         /*
1291          * Limit the tracking speed to avoid overshooting.
1292          */
1293         step = (step + 7) / 8;
1294
1295         if (dirty_ratelimit < balanced_dirty_ratelimit)
1296                 dirty_ratelimit += step;
1297         else
1298                 dirty_ratelimit -= step;
1299
1300         wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1301         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1302
1303         trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1304 }
1305
1306 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1307                                   struct dirty_throttle_control *mdtc,
1308                                   unsigned long start_time,
1309                                   bool update_ratelimit)
1310 {
1311         struct bdi_writeback *wb = gdtc->wb;
1312         unsigned long now = jiffies;
1313         unsigned long elapsed = now - wb->bw_time_stamp;
1314         unsigned long dirtied;
1315         unsigned long written;
1316
1317         lockdep_assert_held(&wb->list_lock);
1318
1319         /*
1320          * rate-limit, only update once every 200ms.
1321          */
1322         if (elapsed < BANDWIDTH_INTERVAL)
1323                 return;
1324
1325         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1326         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1327
1328         /*
1329          * Skip quiet periods when disk bandwidth is under-utilized.
1330          * (at least 1s idle time between two flusher runs)
1331          */
1332         if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1333                 goto snapshot;
1334
1335         if (update_ratelimit) {
1336                 domain_update_bandwidth(gdtc, now);
1337                 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1338
1339                 /*
1340                  * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1341                  * compiler has no way to figure that out.  Help it.
1342                  */
1343                 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1344                         domain_update_bandwidth(mdtc, now);
1345                         wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1346                 }
1347         }
1348         wb_update_write_bandwidth(wb, elapsed, written);
1349
1350 snapshot:
1351         wb->dirtied_stamp = dirtied;
1352         wb->written_stamp = written;
1353         wb->bw_time_stamp = now;
1354 }
1355
1356 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1357 {
1358         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1359
1360         __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1361 }
1362
1363 /*
1364  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1365  * will look to see if it needs to start dirty throttling.
1366  *
1367  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1368  * global_page_state() too often. So scale it near-sqrt to the safety margin
1369  * (the number of pages we may dirty without exceeding the dirty limits).
1370  */
1371 static unsigned long dirty_poll_interval(unsigned long dirty,
1372                                          unsigned long thresh)
1373 {
1374         if (thresh > dirty)
1375                 return 1UL << (ilog2(thresh - dirty) >> 1);
1376
1377         return 1;
1378 }
1379
1380 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1381                                   unsigned long wb_dirty)
1382 {
1383         unsigned long bw = wb->avg_write_bandwidth;
1384         unsigned long t;
1385
1386         /*
1387          * Limit pause time for small memory systems. If sleeping for too long
1388          * time, a small pool of dirty/writeback pages may go empty and disk go
1389          * idle.
1390          *
1391          * 8 serves as the safety ratio.
1392          */
1393         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1394         t++;
1395
1396         return min_t(unsigned long, t, MAX_PAUSE);
1397 }
1398
1399 static long wb_min_pause(struct bdi_writeback *wb,
1400                          long max_pause,
1401                          unsigned long task_ratelimit,
1402                          unsigned long dirty_ratelimit,
1403                          int *nr_dirtied_pause)
1404 {
1405         long hi = ilog2(wb->avg_write_bandwidth);
1406         long lo = ilog2(wb->dirty_ratelimit);
1407         long t;         /* target pause */
1408         long pause;     /* estimated next pause */
1409         int pages;      /* target nr_dirtied_pause */
1410
1411         /* target for 10ms pause on 1-dd case */
1412         t = max(1, HZ / 100);
1413
1414         /*
1415          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1416          * overheads.
1417          *
1418          * (N * 10ms) on 2^N concurrent tasks.
1419          */
1420         if (hi > lo)
1421                 t += (hi - lo) * (10 * HZ) / 1024;
1422
1423         /*
1424          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1425          * on the much more stable dirty_ratelimit. However the next pause time
1426          * will be computed based on task_ratelimit and the two rate limits may
1427          * depart considerably at some time. Especially if task_ratelimit goes
1428          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1429          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1430          * result task_ratelimit won't be executed faithfully, which could
1431          * eventually bring down dirty_ratelimit.
1432          *
1433          * We apply two rules to fix it up:
1434          * 1) try to estimate the next pause time and if necessary, use a lower
1435          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1436          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1437          * 2) limit the target pause time to max_pause/2, so that the normal
1438          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1439          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1440          */
1441         t = min(t, 1 + max_pause / 2);
1442         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1443
1444         /*
1445          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1446          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1447          * When the 16 consecutive reads are often interrupted by some dirty
1448          * throttling pause during the async writes, cfq will go into idles
1449          * (deadline is fine). So push nr_dirtied_pause as high as possible
1450          * until reaches DIRTY_POLL_THRESH=32 pages.
1451          */
1452         if (pages < DIRTY_POLL_THRESH) {
1453                 t = max_pause;
1454                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1455                 if (pages > DIRTY_POLL_THRESH) {
1456                         pages = DIRTY_POLL_THRESH;
1457                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1458                 }
1459         }
1460
1461         pause = HZ * pages / (task_ratelimit + 1);
1462         if (pause > max_pause) {
1463                 t = max_pause;
1464                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1465         }
1466
1467         *nr_dirtied_pause = pages;
1468         /*
1469          * The minimal pause time will normally be half the target pause time.
1470          */
1471         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1472 }
1473
1474 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1475 {
1476         struct bdi_writeback *wb = dtc->wb;
1477         unsigned long wb_reclaimable;
1478
1479         /*
1480          * wb_thresh is not treated as some limiting factor as
1481          * dirty_thresh, due to reasons
1482          * - in JBOD setup, wb_thresh can fluctuate a lot
1483          * - in a system with HDD and USB key, the USB key may somehow
1484          *   go into state (wb_dirty >> wb_thresh) either because
1485          *   wb_dirty starts high, or because wb_thresh drops low.
1486          *   In this case we don't want to hard throttle the USB key
1487          *   dirtiers for 100 seconds until wb_dirty drops under
1488          *   wb_thresh. Instead the auxiliary wb control line in
1489          *   wb_position_ratio() will let the dirtier task progress
1490          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1491          */
1492         dtc->wb_thresh = __wb_calc_thresh(dtc);
1493         dtc->wb_bg_thresh = dtc->thresh ?
1494                 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1495
1496         /*
1497          * In order to avoid the stacked BDI deadlock we need
1498          * to ensure we accurately count the 'dirty' pages when
1499          * the threshold is low.
1500          *
1501          * Otherwise it would be possible to get thresh+n pages
1502          * reported dirty, even though there are thresh-m pages
1503          * actually dirty; with m+n sitting in the percpu
1504          * deltas.
1505          */
1506         if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1507                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1508                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1509         } else {
1510                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1511                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1512         }
1513 }
1514
1515 /*
1516  * balance_dirty_pages() must be called by processes which are generating dirty
1517  * data.  It looks at the number of dirty pages in the machine and will force
1518  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1519  * If we're over `background_thresh' then the writeback threads are woken to
1520  * perform some writeout.
1521  */
1522 static void balance_dirty_pages(struct address_space *mapping,
1523                                 struct bdi_writeback *wb,
1524                                 unsigned long pages_dirtied)
1525 {
1526         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1527         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1528         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1529         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1530                                                      &mdtc_stor : NULL;
1531         struct dirty_throttle_control *sdtc;
1532         unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1533         long period;
1534         long pause;
1535         long max_pause;
1536         long min_pause;
1537         int nr_dirtied_pause;
1538         bool dirty_exceeded = false;
1539         unsigned long task_ratelimit;
1540         unsigned long dirty_ratelimit;
1541         struct backing_dev_info *bdi = wb->bdi;
1542         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1543         unsigned long start_time = jiffies;
1544
1545         for (;;) {
1546                 unsigned long now = jiffies;
1547                 unsigned long dirty, thresh, bg_thresh;
1548                 unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1549                 unsigned long m_thresh = 0;
1550                 unsigned long m_bg_thresh = 0;
1551
1552                 /*
1553                  * Unstable writes are a feature of certain networked
1554                  * filesystems (i.e. NFS) in which data may have been
1555                  * written to the server's write cache, but has not yet
1556                  * been flushed to permanent storage.
1557                  */
1558                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1559                                         global_page_state(NR_UNSTABLE_NFS);
1560                 gdtc->avail = global_dirtyable_memory();
1561                 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1562
1563                 domain_dirty_limits(gdtc);
1564
1565                 if (unlikely(strictlimit)) {
1566                         wb_dirty_limits(gdtc);
1567
1568                         dirty = gdtc->wb_dirty;
1569                         thresh = gdtc->wb_thresh;
1570                         bg_thresh = gdtc->wb_bg_thresh;
1571                 } else {
1572                         dirty = gdtc->dirty;
1573                         thresh = gdtc->thresh;
1574                         bg_thresh = gdtc->bg_thresh;
1575                 }
1576
1577                 if (mdtc) {
1578                         unsigned long filepages, headroom, writeback;
1579
1580                         /*
1581                          * If @wb belongs to !root memcg, repeat the same
1582                          * basic calculations for the memcg domain.
1583                          */
1584                         mem_cgroup_wb_stats(wb, &filepages, &headroom,
1585                                             &mdtc->dirty, &writeback);
1586                         mdtc->dirty += writeback;
1587                         mdtc_calc_avail(mdtc, filepages, headroom);
1588
1589                         domain_dirty_limits(mdtc);
1590
1591                         if (unlikely(strictlimit)) {
1592                                 wb_dirty_limits(mdtc);
1593                                 m_dirty = mdtc->wb_dirty;
1594                                 m_thresh = mdtc->wb_thresh;
1595                                 m_bg_thresh = mdtc->wb_bg_thresh;
1596                         } else {
1597                                 m_dirty = mdtc->dirty;
1598                                 m_thresh = mdtc->thresh;
1599                                 m_bg_thresh = mdtc->bg_thresh;
1600                         }
1601                 }
1602
1603                 /*
1604                  * Throttle it only when the background writeback cannot
1605                  * catch-up. This avoids (excessively) small writeouts
1606                  * when the wb limits are ramping up in case of !strictlimit.
1607                  *
1608                  * In strictlimit case make decision based on the wb counters
1609                  * and limits. Small writeouts when the wb limits are ramping
1610                  * up are the price we consciously pay for strictlimit-ing.
1611                  *
1612                  * If memcg domain is in effect, @dirty should be under
1613                  * both global and memcg freerun ceilings.
1614                  */
1615                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1616                     (!mdtc ||
1617                      m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1618                         unsigned long intv = dirty_poll_interval(dirty, thresh);
1619                         unsigned long m_intv = ULONG_MAX;
1620
1621                         current->dirty_paused_when = now;
1622                         current->nr_dirtied = 0;
1623                         if (mdtc)
1624                                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1625                         current->nr_dirtied_pause = min(intv, m_intv);
1626                         break;
1627                 }
1628
1629                 if (unlikely(!writeback_in_progress(wb)))
1630                         wb_start_background_writeback(wb);
1631
1632                 /*
1633                  * Calculate global domain's pos_ratio and select the
1634                  * global dtc by default.
1635                  */
1636                 if (!strictlimit)
1637                         wb_dirty_limits(gdtc);
1638
1639                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1640                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
1641
1642                 wb_position_ratio(gdtc);
1643                 sdtc = gdtc;
1644
1645                 if (mdtc) {
1646                         /*
1647                          * If memcg domain is in effect, calculate its
1648                          * pos_ratio.  @wb should satisfy constraints from
1649                          * both global and memcg domains.  Choose the one
1650                          * w/ lower pos_ratio.
1651                          */
1652                         if (!strictlimit)
1653                                 wb_dirty_limits(mdtc);
1654
1655                         dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1656                                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1657
1658                         wb_position_ratio(mdtc);
1659                         if (mdtc->pos_ratio < gdtc->pos_ratio)
1660                                 sdtc = mdtc;
1661                 }
1662
1663                 if (dirty_exceeded && !wb->dirty_exceeded)
1664                         wb->dirty_exceeded = 1;
1665
1666                 if (time_is_before_jiffies(wb->bw_time_stamp +
1667                                            BANDWIDTH_INTERVAL)) {
1668                         spin_lock(&wb->list_lock);
1669                         __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1670                         spin_unlock(&wb->list_lock);
1671                 }
1672
1673                 /* throttle according to the chosen dtc */
1674                 dirty_ratelimit = wb->dirty_ratelimit;
1675                 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1676                                                         RATELIMIT_CALC_SHIFT;
1677                 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1678                 min_pause = wb_min_pause(wb, max_pause,
1679                                          task_ratelimit, dirty_ratelimit,
1680                                          &nr_dirtied_pause);
1681
1682                 if (unlikely(task_ratelimit == 0)) {
1683                         period = max_pause;
1684                         pause = max_pause;
1685                         goto pause;
1686                 }
1687                 period = HZ * pages_dirtied / task_ratelimit;
1688                 pause = period;
1689                 if (current->dirty_paused_when)
1690                         pause -= now - current->dirty_paused_when;
1691                 /*
1692                  * For less than 1s think time (ext3/4 may block the dirtier
1693                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1694                  * however at much less frequency), try to compensate it in
1695                  * future periods by updating the virtual time; otherwise just
1696                  * do a reset, as it may be a light dirtier.
1697                  */
1698                 if (pause < min_pause) {
1699                         trace_balance_dirty_pages(wb,
1700                                                   sdtc->thresh,
1701                                                   sdtc->bg_thresh,
1702                                                   sdtc->dirty,
1703                                                   sdtc->wb_thresh,
1704                                                   sdtc->wb_dirty,
1705                                                   dirty_ratelimit,
1706                                                   task_ratelimit,
1707                                                   pages_dirtied,
1708                                                   period,
1709                                                   min(pause, 0L),
1710                                                   start_time);
1711                         if (pause < -HZ) {
1712                                 current->dirty_paused_when = now;
1713                                 current->nr_dirtied = 0;
1714                         } else if (period) {
1715                                 current->dirty_paused_when += period;
1716                                 current->nr_dirtied = 0;
1717                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1718                                 current->nr_dirtied_pause += pages_dirtied;
1719                         break;
1720                 }
1721                 if (unlikely(pause > max_pause)) {
1722                         /* for occasional dropped task_ratelimit */
1723                         now += min(pause - max_pause, max_pause);
1724                         pause = max_pause;
1725                 }
1726
1727 pause:
1728                 trace_balance_dirty_pages(wb,
1729                                           sdtc->thresh,
1730                                           sdtc->bg_thresh,
1731                                           sdtc->dirty,
1732                                           sdtc->wb_thresh,
1733                                           sdtc->wb_dirty,
1734                                           dirty_ratelimit,
1735                                           task_ratelimit,
1736                                           pages_dirtied,
1737                                           period,
1738                                           pause,
1739                                           start_time);
1740                 __set_current_state(TASK_KILLABLE);
1741                 io_schedule_timeout(pause);
1742
1743                 current->dirty_paused_when = now + pause;
1744                 current->nr_dirtied = 0;
1745                 current->nr_dirtied_pause = nr_dirtied_pause;
1746
1747                 /*
1748                  * This is typically equal to (dirty < thresh) and can also
1749                  * keep "1000+ dd on a slow USB stick" under control.
1750                  */
1751                 if (task_ratelimit)
1752                         break;
1753
1754                 /*
1755                  * In the case of an unresponding NFS server and the NFS dirty
1756                  * pages exceeds dirty_thresh, give the other good wb's a pipe
1757                  * to go through, so that tasks on them still remain responsive.
1758                  *
1759                  * In theory 1 page is enough to keep the comsumer-producer
1760                  * pipe going: the flusher cleans 1 page => the task dirties 1
1761                  * more page. However wb_dirty has accounting errors.  So use
1762                  * the larger and more IO friendly wb_stat_error.
1763                  */
1764                 if (sdtc->wb_dirty <= wb_stat_error(wb))
1765                         break;
1766
1767                 if (fatal_signal_pending(current))
1768                         break;
1769         }
1770
1771         if (!dirty_exceeded && wb->dirty_exceeded)
1772                 wb->dirty_exceeded = 0;
1773
1774         if (writeback_in_progress(wb))
1775                 return;
1776
1777         /*
1778          * In laptop mode, we wait until hitting the higher threshold before
1779          * starting background writeout, and then write out all the way down
1780          * to the lower threshold.  So slow writers cause minimal disk activity.
1781          *
1782          * In normal mode, we start background writeout at the lower
1783          * background_thresh, to keep the amount of dirty memory low.
1784          */
1785         if (laptop_mode)
1786                 return;
1787
1788         if (nr_reclaimable > gdtc->bg_thresh)
1789                 wb_start_background_writeback(wb);
1790 }
1791
1792 static DEFINE_PER_CPU(int, bdp_ratelimits);
1793
1794 /*
1795  * Normal tasks are throttled by
1796  *      loop {
1797  *              dirty tsk->nr_dirtied_pause pages;
1798  *              take a snap in balance_dirty_pages();
1799  *      }
1800  * However there is a worst case. If every task exit immediately when dirtied
1801  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1802  * called to throttle the page dirties. The solution is to save the not yet
1803  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1804  * randomly into the running tasks. This works well for the above worst case,
1805  * as the new task will pick up and accumulate the old task's leaked dirty
1806  * count and eventually get throttled.
1807  */
1808 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1809
1810 /**
1811  * balance_dirty_pages_ratelimited - balance dirty memory state
1812  * @mapping: address_space which was dirtied
1813  *
1814  * Processes which are dirtying memory should call in here once for each page
1815  * which was newly dirtied.  The function will periodically check the system's
1816  * dirty state and will initiate writeback if needed.
1817  *
1818  * On really big machines, get_writeback_state is expensive, so try to avoid
1819  * calling it too often (ratelimiting).  But once we're over the dirty memory
1820  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1821  * from overshooting the limit by (ratelimit_pages) each.
1822  */
1823 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1824 {
1825         struct inode *inode = mapping->host;
1826         struct backing_dev_info *bdi = inode_to_bdi(inode);
1827         struct bdi_writeback *wb = NULL;
1828         int ratelimit;
1829         int *p;
1830
1831         if (!bdi_cap_account_dirty(bdi))
1832                 return;
1833
1834         if (inode_cgwb_enabled(inode))
1835                 wb = wb_get_create_current(bdi, GFP_KERNEL);
1836         if (!wb)
1837                 wb = &bdi->wb;
1838
1839         ratelimit = current->nr_dirtied_pause;
1840         if (wb->dirty_exceeded)
1841                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1842
1843         preempt_disable();
1844         /*
1845          * This prevents one CPU to accumulate too many dirtied pages without
1846          * calling into balance_dirty_pages(), which can happen when there are
1847          * 1000+ tasks, all of them start dirtying pages at exactly the same
1848          * time, hence all honoured too large initial task->nr_dirtied_pause.
1849          */
1850         p =  this_cpu_ptr(&bdp_ratelimits);
1851         if (unlikely(current->nr_dirtied >= ratelimit))
1852                 *p = 0;
1853         else if (unlikely(*p >= ratelimit_pages)) {
1854                 *p = 0;
1855                 ratelimit = 0;
1856         }
1857         /*
1858          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1859          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1860          * the dirty throttling and livelock other long-run dirtiers.
1861          */
1862         p = this_cpu_ptr(&dirty_throttle_leaks);
1863         if (*p > 0 && current->nr_dirtied < ratelimit) {
1864                 unsigned long nr_pages_dirtied;
1865                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1866                 *p -= nr_pages_dirtied;
1867                 current->nr_dirtied += nr_pages_dirtied;
1868         }
1869         preempt_enable();
1870
1871         if (unlikely(current->nr_dirtied >= ratelimit))
1872                 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1873
1874         wb_put(wb);
1875 }
1876 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1877
1878 /**
1879  * wb_over_bg_thresh - does @wb need to be written back?
1880  * @wb: bdi_writeback of interest
1881  *
1882  * Determines whether background writeback should keep writing @wb or it's
1883  * clean enough.  Returns %true if writeback should continue.
1884  */
1885 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1886 {
1887         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1888         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1889         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1890         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1891                                                      &mdtc_stor : NULL;
1892
1893         /*
1894          * Similar to balance_dirty_pages() but ignores pages being written
1895          * as we're trying to decide whether to put more under writeback.
1896          */
1897         gdtc->avail = global_dirtyable_memory();
1898         gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1899                       global_page_state(NR_UNSTABLE_NFS);
1900         domain_dirty_limits(gdtc);
1901
1902         if (gdtc->dirty > gdtc->bg_thresh)
1903                 return true;
1904
1905         if (wb_stat(wb, WB_RECLAIMABLE) >
1906             wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1907                 return true;
1908
1909         if (mdtc) {
1910                 unsigned long filepages, headroom, writeback;
1911
1912                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1913                                     &writeback);
1914                 mdtc_calc_avail(mdtc, filepages, headroom);
1915                 domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
1916
1917                 if (mdtc->dirty > mdtc->bg_thresh)
1918                         return true;
1919
1920                 if (wb_stat(wb, WB_RECLAIMABLE) >
1921                     wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1922                         return true;
1923         }
1924
1925         return false;
1926 }
1927
1928 void throttle_vm_writeout(gfp_t gfp_mask)
1929 {
1930         unsigned long background_thresh;
1931         unsigned long dirty_thresh;
1932
1933         for ( ; ; ) {
1934                 global_dirty_limits(&background_thresh, &dirty_thresh);
1935                 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1936
1937                 /*
1938                  * Boost the allowable dirty threshold a bit for page
1939                  * allocators so they don't get DoS'ed by heavy writers
1940                  */
1941                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1942
1943                 if (global_page_state(NR_UNSTABLE_NFS) +
1944                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
1945                                 break;
1946                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1947
1948                 /*
1949                  * The caller might hold locks which can prevent IO completion
1950                  * or progress in the filesystem.  So we cannot just sit here
1951                  * waiting for IO to complete.
1952                  */
1953                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1954                         break;
1955         }
1956 }
1957
1958 /*
1959  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1960  */
1961 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1962         void __user *buffer, size_t *length, loff_t *ppos)
1963 {
1964         proc_dointvec(table, write, buffer, length, ppos);
1965         return 0;
1966 }
1967
1968 #ifdef CONFIG_BLOCK
1969 void laptop_mode_timer_fn(unsigned long data)
1970 {
1971         struct request_queue *q = (struct request_queue *)data;
1972         int nr_pages = global_page_state(NR_FILE_DIRTY) +
1973                 global_page_state(NR_UNSTABLE_NFS);
1974         struct bdi_writeback *wb;
1975
1976         /*
1977          * We want to write everything out, not just down to the dirty
1978          * threshold
1979          */
1980         if (!bdi_has_dirty_io(&q->backing_dev_info))
1981                 return;
1982
1983         rcu_read_lock();
1984         list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1985                 if (wb_has_dirty_io(wb))
1986                         wb_start_writeback(wb, nr_pages, true,
1987                                            WB_REASON_LAPTOP_TIMER);
1988         rcu_read_unlock();
1989 }
1990
1991 /*
1992  * We've spun up the disk and we're in laptop mode: schedule writeback
1993  * of all dirty data a few seconds from now.  If the flush is already scheduled
1994  * then push it back - the user is still using the disk.
1995  */
1996 void laptop_io_completion(struct backing_dev_info *info)
1997 {
1998         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1999 }
2000
2001 /*
2002  * We're in laptop mode and we've just synced. The sync's writes will have
2003  * caused another writeback to be scheduled by laptop_io_completion.
2004  * Nothing needs to be written back anymore, so we unschedule the writeback.
2005  */
2006 void laptop_sync_completion(void)
2007 {
2008         struct backing_dev_info *bdi;
2009
2010         rcu_read_lock();
2011
2012         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2013                 del_timer(&bdi->laptop_mode_wb_timer);
2014
2015         rcu_read_unlock();
2016 }
2017 #endif
2018
2019 /*
2020  * If ratelimit_pages is too high then we can get into dirty-data overload
2021  * if a large number of processes all perform writes at the same time.
2022  * If it is too low then SMP machines will call the (expensive)
2023  * get_writeback_state too often.
2024  *
2025  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2026  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2027  * thresholds.
2028  */
2029
2030 void writeback_set_ratelimit(void)
2031 {
2032         struct wb_domain *dom = &global_wb_domain;
2033         unsigned long background_thresh;
2034         unsigned long dirty_thresh;
2035
2036         global_dirty_limits(&background_thresh, &dirty_thresh);
2037         dom->dirty_limit = dirty_thresh;
2038         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2039         if (ratelimit_pages < 16)
2040                 ratelimit_pages = 16;
2041 }
2042
2043 static int
2044 ratelimit_handler(struct notifier_block *self, unsigned long action,
2045                   void *hcpu)
2046 {
2047
2048         switch (action & ~CPU_TASKS_FROZEN) {
2049         case CPU_ONLINE:
2050         case CPU_DEAD:
2051                 writeback_set_ratelimit();
2052                 return NOTIFY_OK;
2053         default:
2054                 return NOTIFY_DONE;
2055         }
2056 }
2057
2058 static struct notifier_block ratelimit_nb = {
2059         .notifier_call  = ratelimit_handler,
2060         .next           = NULL,
2061 };
2062
2063 /*
2064  * Called early on to tune the page writeback dirty limits.
2065  *
2066  * We used to scale dirty pages according to how total memory
2067  * related to pages that could be allocated for buffers (by
2068  * comparing nr_free_buffer_pages() to vm_total_pages.
2069  *
2070  * However, that was when we used "dirty_ratio" to scale with
2071  * all memory, and we don't do that any more. "dirty_ratio"
2072  * is now applied to total non-HIGHPAGE memory (by subtracting
2073  * totalhigh_pages from vm_total_pages), and as such we can't
2074  * get into the old insane situation any more where we had
2075  * large amounts of dirty pages compared to a small amount of
2076  * non-HIGHMEM memory.
2077  *
2078  * But we might still want to scale the dirty_ratio by how
2079  * much memory the box has..
2080  */
2081 void __init page_writeback_init(void)
2082 {
2083         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2084
2085         writeback_set_ratelimit();
2086         register_cpu_notifier(&ratelimit_nb);
2087 }
2088
2089 /**
2090  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2091  * @mapping: address space structure to write
2092  * @start: starting page index
2093  * @end: ending page index (inclusive)
2094  *
2095  * This function scans the page range from @start to @end (inclusive) and tags
2096  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2097  * that write_cache_pages (or whoever calls this function) will then use
2098  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2099  * used to avoid livelocking of writeback by a process steadily creating new
2100  * dirty pages in the file (thus it is important for this function to be quick
2101  * so that it can tag pages faster than a dirtying process can create them).
2102  */
2103 /*
2104  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2105  */
2106 void tag_pages_for_writeback(struct address_space *mapping,
2107                              pgoff_t start, pgoff_t end)
2108 {
2109 #define WRITEBACK_TAG_BATCH 4096
2110         unsigned long tagged;
2111
2112         do {
2113                 spin_lock_irq(&mapping->tree_lock);
2114                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2115                                 &start, end, WRITEBACK_TAG_BATCH,
2116                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2117                 spin_unlock_irq(&mapping->tree_lock);
2118                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2119                 cond_resched();
2120                 /* We check 'start' to handle wrapping when end == ~0UL */
2121         } while (tagged >= WRITEBACK_TAG_BATCH && start);
2122 }
2123 EXPORT_SYMBOL(tag_pages_for_writeback);
2124
2125 /**
2126  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2127  * @mapping: address space structure to write
2128  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2129  * @writepage: function called for each page
2130  * @data: data passed to writepage function
2131  *
2132  * If a page is already under I/O, write_cache_pages() skips it, even
2133  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2134  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2135  * and msync() need to guarantee that all the data which was dirty at the time
2136  * the call was made get new I/O started against them.  If wbc->sync_mode is
2137  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2138  * existing IO to complete.
2139  *
2140  * To avoid livelocks (when other process dirties new pages), we first tag
2141  * pages which should be written back with TOWRITE tag and only then start
2142  * writing them. For data-integrity sync we have to be careful so that we do
2143  * not miss some pages (e.g., because some other process has cleared TOWRITE
2144  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2145  * by the process clearing the DIRTY tag (and submitting the page for IO).
2146  */
2147 int write_cache_pages(struct address_space *mapping,
2148                       struct writeback_control *wbc, writepage_t writepage,
2149                       void *data)
2150 {
2151         int ret = 0;
2152         int done = 0;
2153         struct pagevec pvec;
2154         int nr_pages;
2155         pgoff_t uninitialized_var(writeback_index);
2156         pgoff_t index;
2157         pgoff_t end;            /* Inclusive */
2158         pgoff_t done_index;
2159         int cycled;
2160         int range_whole = 0;
2161         int tag;
2162
2163         pagevec_init(&pvec, 0);
2164         if (wbc->range_cyclic) {
2165                 writeback_index = mapping->writeback_index; /* prev offset */
2166                 index = writeback_index;
2167                 if (index == 0)
2168                         cycled = 1;
2169                 else
2170                         cycled = 0;
2171                 end = -1;
2172         } else {
2173                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2174                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2175                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2176                         range_whole = 1;
2177                 cycled = 1; /* ignore range_cyclic tests */
2178         }
2179         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2180                 tag = PAGECACHE_TAG_TOWRITE;
2181         else
2182                 tag = PAGECACHE_TAG_DIRTY;
2183 retry:
2184         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2185                 tag_pages_for_writeback(mapping, index, end);
2186         done_index = index;
2187         while (!done && (index <= end)) {
2188                 int i;
2189
2190                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2191                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2192                 if (nr_pages == 0)
2193                         break;
2194
2195                 for (i = 0; i < nr_pages; i++) {
2196                         struct page *page = pvec.pages[i];
2197
2198                         /*
2199                          * At this point, the page may be truncated or
2200                          * invalidated (changing page->mapping to NULL), or
2201                          * even swizzled back from swapper_space to tmpfs file
2202                          * mapping. However, page->index will not change
2203                          * because we have a reference on the page.
2204                          */
2205                         if (page->index > end) {
2206                                 /*
2207                                  * can't be range_cyclic (1st pass) because
2208                                  * end == -1 in that case.
2209                                  */
2210                                 done = 1;
2211                                 break;
2212                         }
2213
2214                         done_index = page->index;
2215
2216                         lock_page(page);
2217
2218                         /*
2219                          * Page truncated or invalidated. We can freely skip it
2220                          * then, even for data integrity operations: the page
2221                          * has disappeared concurrently, so there could be no
2222                          * real expectation of this data interity operation
2223                          * even if there is now a new, dirty page at the same
2224                          * pagecache address.
2225                          */
2226                         if (unlikely(page->mapping != mapping)) {
2227 continue_unlock:
2228                                 unlock_page(page);
2229                                 continue;
2230                         }
2231
2232                         if (!PageDirty(page)) {
2233                                 /* someone wrote it for us */
2234                                 goto continue_unlock;
2235                         }
2236
2237                         if (PageWriteback(page)) {
2238                                 if (wbc->sync_mode != WB_SYNC_NONE)
2239                                         wait_on_page_writeback(page);
2240                                 else
2241                                         goto continue_unlock;
2242                         }
2243
2244                         BUG_ON(PageWriteback(page));
2245                         if (!clear_page_dirty_for_io(page))
2246                                 goto continue_unlock;
2247
2248                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2249                         ret = (*writepage)(page, wbc, data);
2250                         if (unlikely(ret)) {
2251                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2252                                         unlock_page(page);
2253                                         ret = 0;
2254                                 } else {
2255                                         /*
2256                                          * done_index is set past this page,
2257                                          * so media errors will not choke
2258                                          * background writeout for the entire
2259                                          * file. This has consequences for
2260                                          * range_cyclic semantics (ie. it may
2261                                          * not be suitable for data integrity
2262                                          * writeout).
2263                                          */
2264                                         done_index = page->index + 1;
2265                                         done = 1;
2266                                         break;
2267                                 }
2268                         }
2269
2270                         /*
2271                          * We stop writing back only if we are not doing
2272                          * integrity sync. In case of integrity sync we have to
2273                          * keep going until we have written all the pages
2274                          * we tagged for writeback prior to entering this loop.
2275                          */
2276                         if (--wbc->nr_to_write <= 0 &&
2277                             wbc->sync_mode == WB_SYNC_NONE) {
2278                                 done = 1;
2279                                 break;
2280                         }
2281                 }
2282                 pagevec_release(&pvec);
2283                 cond_resched();
2284         }
2285         if (!cycled && !done) {
2286                 /*
2287                  * range_cyclic:
2288                  * We hit the last page and there is more work to be done: wrap
2289                  * back to the start of the file
2290                  */
2291                 cycled = 1;
2292                 index = 0;
2293                 end = writeback_index - 1;
2294                 goto retry;
2295         }
2296         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2297                 mapping->writeback_index = done_index;
2298
2299         return ret;
2300 }
2301 EXPORT_SYMBOL(write_cache_pages);
2302
2303 /*
2304  * Function used by generic_writepages to call the real writepage
2305  * function and set the mapping flags on error
2306  */
2307 static int __writepage(struct page *page, struct writeback_control *wbc,
2308                        void *data)
2309 {
2310         struct address_space *mapping = data;
2311         int ret = mapping->a_ops->writepage(page, wbc);
2312         mapping_set_error(mapping, ret);
2313         return ret;
2314 }
2315
2316 /**
2317  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2318  * @mapping: address space structure to write
2319  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2320  *
2321  * This is a library function, which implements the writepages()
2322  * address_space_operation.
2323  */
2324 int generic_writepages(struct address_space *mapping,
2325                        struct writeback_control *wbc)
2326 {
2327         struct blk_plug plug;
2328         int ret;
2329
2330         /* deal with chardevs and other special file */
2331         if (!mapping->a_ops->writepage)
2332                 return 0;
2333
2334         blk_start_plug(&plug);
2335         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2336         blk_finish_plug(&plug);
2337         return ret;
2338 }
2339
2340 EXPORT_SYMBOL(generic_writepages);
2341
2342 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2343 {
2344         int ret;
2345
2346         if (wbc->nr_to_write <= 0)
2347                 return 0;
2348         if (mapping->a_ops->writepages)
2349                 ret = mapping->a_ops->writepages(mapping, wbc);
2350         else
2351                 ret = generic_writepages(mapping, wbc);
2352         return ret;
2353 }
2354
2355 /**
2356  * write_one_page - write out a single page and optionally wait on I/O
2357  * @page: the page to write
2358  * @wait: if true, wait on writeout
2359  *
2360  * The page must be locked by the caller and will be unlocked upon return.
2361  *
2362  * write_one_page() returns a negative error code if I/O failed.
2363  */
2364 int write_one_page(struct page *page, int wait)
2365 {
2366         struct address_space *mapping = page->mapping;
2367         int ret = 0;
2368         struct writeback_control wbc = {
2369                 .sync_mode = WB_SYNC_ALL,
2370                 .nr_to_write = 1,
2371         };
2372
2373         BUG_ON(!PageLocked(page));
2374
2375         if (wait)
2376                 wait_on_page_writeback(page);
2377
2378         if (clear_page_dirty_for_io(page)) {
2379                 page_cache_get(page);
2380                 ret = mapping->a_ops->writepage(page, &wbc);
2381                 if (ret == 0 && wait) {
2382                         wait_on_page_writeback(page);
2383                         if (PageError(page))
2384                                 ret = -EIO;
2385                 }
2386                 page_cache_release(page);
2387         } else {
2388                 unlock_page(page);
2389         }
2390         return ret;
2391 }
2392 EXPORT_SYMBOL(write_one_page);
2393
2394 /*
2395  * For address_spaces which do not use buffers nor write back.
2396  */
2397 int __set_page_dirty_no_writeback(struct page *page)
2398 {
2399         if (!PageDirty(page))
2400                 return !TestSetPageDirty(page);
2401         return 0;
2402 }
2403
2404 /*
2405  * Helper function for set_page_dirty family.
2406  *
2407  * Caller must hold mem_cgroup_begin_page_stat().
2408  *
2409  * NOTE: This relies on being atomic wrt interrupts.
2410  */
2411 void account_page_dirtied(struct page *page, struct address_space *mapping,
2412                           struct mem_cgroup *memcg)
2413 {
2414         struct inode *inode = mapping->host;
2415
2416         trace_writeback_dirty_page(page, mapping);
2417
2418         if (mapping_cap_account_dirty(mapping)) {
2419                 struct bdi_writeback *wb;
2420
2421                 inode_attach_wb(inode, page);
2422                 wb = inode_to_wb(inode);
2423
2424                 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2425                 __inc_zone_page_state(page, NR_FILE_DIRTY);
2426                 __inc_zone_page_state(page, NR_DIRTIED);
2427                 __inc_wb_stat(wb, WB_RECLAIMABLE);
2428                 __inc_wb_stat(wb, WB_DIRTIED);
2429                 task_io_account_write(PAGE_CACHE_SIZE);
2430                 current->nr_dirtied++;
2431                 this_cpu_inc(bdp_ratelimits);
2432         }
2433 }
2434 EXPORT_SYMBOL(account_page_dirtied);
2435
2436 /*
2437  * Helper function for deaccounting dirty page without writeback.
2438  *
2439  * Caller must hold mem_cgroup_begin_page_stat().
2440  */
2441 void account_page_cleaned(struct page *page, struct address_space *mapping,
2442                           struct mem_cgroup *memcg, struct bdi_writeback *wb)
2443 {
2444         if (mapping_cap_account_dirty(mapping)) {
2445                 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2446                 dec_zone_page_state(page, NR_FILE_DIRTY);
2447                 dec_wb_stat(wb, WB_RECLAIMABLE);
2448                 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2449         }
2450 }
2451
2452 /*
2453  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2454  * its radix tree.
2455  *
2456  * This is also used when a single buffer is being dirtied: we want to set the
2457  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2458  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2459  *
2460  * The caller must ensure this doesn't race with truncation.  Most will simply
2461  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2462  * the pte lock held, which also locks out truncation.
2463  */
2464 int __set_page_dirty_nobuffers(struct page *page)
2465 {
2466         struct mem_cgroup *memcg;
2467
2468         memcg = mem_cgroup_begin_page_stat(page);
2469         if (!TestSetPageDirty(page)) {
2470                 struct address_space *mapping = page_mapping(page);
2471                 unsigned long flags;
2472
2473                 if (!mapping) {
2474                         mem_cgroup_end_page_stat(memcg);
2475                         return 1;
2476                 }
2477
2478                 spin_lock_irqsave(&mapping->tree_lock, flags);
2479                 BUG_ON(page_mapping(page) != mapping);
2480                 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2481                 account_page_dirtied(page, mapping, memcg);
2482                 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2483                                    PAGECACHE_TAG_DIRTY);
2484                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2485                 mem_cgroup_end_page_stat(memcg);
2486
2487                 if (mapping->host) {
2488                         /* !PageAnon && !swapper_space */
2489                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2490                 }
2491                 return 1;
2492         }
2493         mem_cgroup_end_page_stat(memcg);
2494         return 0;
2495 }
2496 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2497
2498 /*
2499  * Call this whenever redirtying a page, to de-account the dirty counters
2500  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2501  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2502  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2503  * control.
2504  */
2505 void account_page_redirty(struct page *page)
2506 {
2507         struct address_space *mapping = page->mapping;
2508
2509         if (mapping && mapping_cap_account_dirty(mapping)) {
2510                 struct inode *inode = mapping->host;
2511                 struct bdi_writeback *wb;
2512                 bool locked;
2513
2514                 wb = unlocked_inode_to_wb_begin(inode, &locked);
2515                 current->nr_dirtied--;
2516                 dec_zone_page_state(page, NR_DIRTIED);
2517                 dec_wb_stat(wb, WB_DIRTIED);
2518                 unlocked_inode_to_wb_end(inode, locked);
2519         }
2520 }
2521 EXPORT_SYMBOL(account_page_redirty);
2522
2523 /*
2524  * When a writepage implementation decides that it doesn't want to write this
2525  * page for some reason, it should redirty the locked page via
2526  * redirty_page_for_writepage() and it should then unlock the page and return 0
2527  */
2528 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2529 {
2530         int ret;
2531
2532         wbc->pages_skipped++;
2533         ret = __set_page_dirty_nobuffers(page);
2534         account_page_redirty(page);
2535         return ret;
2536 }
2537 EXPORT_SYMBOL(redirty_page_for_writepage);
2538
2539 /*
2540  * Dirty a page.
2541  *
2542  * For pages with a mapping this should be done under the page lock
2543  * for the benefit of asynchronous memory errors who prefer a consistent
2544  * dirty state. This rule can be broken in some special cases,
2545  * but should be better not to.
2546  *
2547  * If the mapping doesn't provide a set_page_dirty a_op, then
2548  * just fall through and assume that it wants buffer_heads.
2549  */
2550 int set_page_dirty(struct page *page)
2551 {
2552         struct address_space *mapping = page_mapping(page);
2553
2554         if (likely(mapping)) {
2555                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2556                 /*
2557                  * readahead/lru_deactivate_page could remain
2558                  * PG_readahead/PG_reclaim due to race with end_page_writeback
2559                  * About readahead, if the page is written, the flags would be
2560                  * reset. So no problem.
2561                  * About lru_deactivate_page, if the page is redirty, the flag
2562                  * will be reset. So no problem. but if the page is used by readahead
2563                  * it will confuse readahead and make it restart the size rampup
2564                  * process. But it's a trivial problem.
2565                  */
2566                 if (PageReclaim(page))
2567                         ClearPageReclaim(page);
2568 #ifdef CONFIG_BLOCK
2569                 if (!spd)
2570                         spd = __set_page_dirty_buffers;
2571 #endif
2572                 return (*spd)(page);
2573         }
2574         if (!PageDirty(page)) {
2575                 if (!TestSetPageDirty(page))
2576                         return 1;
2577         }
2578         return 0;
2579 }
2580 EXPORT_SYMBOL(set_page_dirty);
2581
2582 /*
2583  * set_page_dirty() is racy if the caller has no reference against
2584  * page->mapping->host, and if the page is unlocked.  This is because another
2585  * CPU could truncate the page off the mapping and then free the mapping.
2586  *
2587  * Usually, the page _is_ locked, or the caller is a user-space process which
2588  * holds a reference on the inode by having an open file.
2589  *
2590  * In other cases, the page should be locked before running set_page_dirty().
2591  */
2592 int set_page_dirty_lock(struct page *page)
2593 {
2594         int ret;
2595
2596         lock_page(page);
2597         ret = set_page_dirty(page);
2598         unlock_page(page);
2599         return ret;
2600 }
2601 EXPORT_SYMBOL(set_page_dirty_lock);
2602
2603 /*
2604  * This cancels just the dirty bit on the kernel page itself, it does NOT
2605  * actually remove dirty bits on any mmap's that may be around. It also
2606  * leaves the page tagged dirty, so any sync activity will still find it on
2607  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2608  * look at the dirty bits in the VM.
2609  *
2610  * Doing this should *normally* only ever be done when a page is truncated,
2611  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2612  * this when it notices that somebody has cleaned out all the buffers on a
2613  * page without actually doing it through the VM. Can you say "ext3 is
2614  * horribly ugly"? Thought you could.
2615  */
2616 void cancel_dirty_page(struct page *page)
2617 {
2618         struct address_space *mapping = page_mapping(page);
2619
2620         if (mapping_cap_account_dirty(mapping)) {
2621                 struct inode *inode = mapping->host;
2622                 struct bdi_writeback *wb;
2623                 struct mem_cgroup *memcg;
2624                 bool locked;
2625
2626                 memcg = mem_cgroup_begin_page_stat(page);
2627                 wb = unlocked_inode_to_wb_begin(inode, &locked);
2628
2629                 if (TestClearPageDirty(page))
2630                         account_page_cleaned(page, mapping, memcg, wb);
2631
2632                 unlocked_inode_to_wb_end(inode, locked);
2633                 mem_cgroup_end_page_stat(memcg);
2634         } else {
2635                 ClearPageDirty(page);
2636         }
2637 }
2638 EXPORT_SYMBOL(cancel_dirty_page);
2639
2640 /*
2641  * Clear a page's dirty flag, while caring for dirty memory accounting.
2642  * Returns true if the page was previously dirty.
2643  *
2644  * This is for preparing to put the page under writeout.  We leave the page
2645  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2646  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2647  * implementation will run either set_page_writeback() or set_page_dirty(),
2648  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2649  * back into sync.
2650  *
2651  * This incoherency between the page's dirty flag and radix-tree tag is
2652  * unfortunate, but it only exists while the page is locked.
2653  */
2654 int clear_page_dirty_for_io(struct page *page)
2655 {
2656         struct address_space *mapping = page_mapping(page);
2657         int ret = 0;
2658
2659         BUG_ON(!PageLocked(page));
2660
2661         if (mapping && mapping_cap_account_dirty(mapping)) {
2662                 struct inode *inode = mapping->host;
2663                 struct bdi_writeback *wb;
2664                 struct mem_cgroup *memcg;
2665                 bool locked;
2666
2667                 /*
2668                  * Yes, Virginia, this is indeed insane.
2669                  *
2670                  * We use this sequence to make sure that
2671                  *  (a) we account for dirty stats properly
2672                  *  (b) we tell the low-level filesystem to
2673                  *      mark the whole page dirty if it was
2674                  *      dirty in a pagetable. Only to then
2675                  *  (c) clean the page again and return 1 to
2676                  *      cause the writeback.
2677                  *
2678                  * This way we avoid all nasty races with the
2679                  * dirty bit in multiple places and clearing
2680                  * them concurrently from different threads.
2681                  *
2682                  * Note! Normally the "set_page_dirty(page)"
2683                  * has no effect on the actual dirty bit - since
2684                  * that will already usually be set. But we
2685                  * need the side effects, and it can help us
2686                  * avoid races.
2687                  *
2688                  * We basically use the page "master dirty bit"
2689                  * as a serialization point for all the different
2690                  * threads doing their things.
2691                  */
2692                 if (page_mkclean(page))
2693                         set_page_dirty(page);
2694                 /*
2695                  * We carefully synchronise fault handlers against
2696                  * installing a dirty pte and marking the page dirty
2697                  * at this point.  We do this by having them hold the
2698                  * page lock while dirtying the page, and pages are
2699                  * always locked coming in here, so we get the desired
2700                  * exclusion.
2701                  */
2702                 memcg = mem_cgroup_begin_page_stat(page);
2703                 wb = unlocked_inode_to_wb_begin(inode, &locked);
2704                 if (TestClearPageDirty(page)) {
2705                         mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2706                         dec_zone_page_state(page, NR_FILE_DIRTY);
2707                         dec_wb_stat(wb, WB_RECLAIMABLE);
2708                         ret = 1;
2709                 }
2710                 unlocked_inode_to_wb_end(inode, locked);
2711                 mem_cgroup_end_page_stat(memcg);
2712                 return ret;
2713         }
2714         return TestClearPageDirty(page);
2715 }
2716 EXPORT_SYMBOL(clear_page_dirty_for_io);
2717
2718 int test_clear_page_writeback(struct page *page)
2719 {
2720         struct address_space *mapping = page_mapping(page);
2721         struct mem_cgroup *memcg;
2722         int ret;
2723
2724         memcg = mem_cgroup_begin_page_stat(page);
2725         if (mapping) {
2726                 struct inode *inode = mapping->host;
2727                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2728                 unsigned long flags;
2729
2730                 spin_lock_irqsave(&mapping->tree_lock, flags);
2731                 ret = TestClearPageWriteback(page);
2732                 if (ret) {
2733                         radix_tree_tag_clear(&mapping->page_tree,
2734                                                 page_index(page),
2735                                                 PAGECACHE_TAG_WRITEBACK);
2736                         if (bdi_cap_account_writeback(bdi)) {
2737                                 struct bdi_writeback *wb = inode_to_wb(inode);
2738
2739                                 __dec_wb_stat(wb, WB_WRITEBACK);
2740                                 __wb_writeout_inc(wb);
2741                         }
2742                 }
2743                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2744         } else {
2745                 ret = TestClearPageWriteback(page);
2746         }
2747         if (ret) {
2748                 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2749                 dec_zone_page_state(page, NR_WRITEBACK);
2750                 inc_zone_page_state(page, NR_WRITTEN);
2751         }
2752         mem_cgroup_end_page_stat(memcg);
2753         return ret;
2754 }
2755
2756 int __test_set_page_writeback(struct page *page, bool keep_write)
2757 {
2758         struct address_space *mapping = page_mapping(page);
2759         struct mem_cgroup *memcg;
2760         int ret;
2761
2762         memcg = mem_cgroup_begin_page_stat(page);
2763         if (mapping) {
2764                 struct inode *inode = mapping->host;
2765                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2766                 unsigned long flags;
2767
2768                 spin_lock_irqsave(&mapping->tree_lock, flags);
2769                 ret = TestSetPageWriteback(page);
2770                 if (!ret) {
2771                         radix_tree_tag_set(&mapping->page_tree,
2772                                                 page_index(page),
2773                                                 PAGECACHE_TAG_WRITEBACK);
2774                         if (bdi_cap_account_writeback(bdi))
2775                                 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2776                 }
2777                 if (!PageDirty(page))
2778                         radix_tree_tag_clear(&mapping->page_tree,
2779                                                 page_index(page),
2780                                                 PAGECACHE_TAG_DIRTY);
2781                 if (!keep_write)
2782                         radix_tree_tag_clear(&mapping->page_tree,
2783                                                 page_index(page),
2784                                                 PAGECACHE_TAG_TOWRITE);
2785                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2786         } else {
2787                 ret = TestSetPageWriteback(page);
2788         }
2789         if (!ret) {
2790                 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2791                 inc_zone_page_state(page, NR_WRITEBACK);
2792         }
2793         mem_cgroup_end_page_stat(memcg);
2794         return ret;
2795
2796 }
2797 EXPORT_SYMBOL(__test_set_page_writeback);
2798
2799 /*
2800  * Return true if any of the pages in the mapping are marked with the
2801  * passed tag.
2802  */
2803 int mapping_tagged(struct address_space *mapping, int tag)
2804 {
2805         return radix_tree_tagged(&mapping->page_tree, tag);
2806 }
2807 EXPORT_SYMBOL(mapping_tagged);
2808
2809 /**
2810  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2811  * @page:       The page to wait on.
2812  *
2813  * This function determines if the given page is related to a backing device
2814  * that requires page contents to be held stable during writeback.  If so, then
2815  * it will wait for any pending writeback to complete.
2816  */
2817 void wait_for_stable_page(struct page *page)
2818 {
2819         if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2820                 wait_on_page_writeback(page);
2821 }
2822 EXPORT_SYMBOL_GPL(wait_for_stable_page);