ARM64: dts: rockchip: configure EAS data for rk3368
[firefly-linux-kernel-4.4.55.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41
42 #include "internal.h"
43
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE               max(HZ/5, 1)
48
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
54
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
59
60 #define RATELIMIT_CALC_SHIFT    10
61
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67
68 /* The following parameters are exported via /proc/sys/vm */
69
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110 /*
111  * Flag that makes the machine dump writes/reads and block dirtyings.
112  */
113 int block_dump;
114
115 /*
116  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117  * a full sync is triggered after this time elapses without any disk activity.
118  */
119 int laptop_mode;
120
121 EXPORT_SYMBOL(laptop_mode);
122
123 /* End of sysctl-exported parameters */
124
125 struct wb_domain global_wb_domain;
126
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control {
129 #ifdef CONFIG_CGROUP_WRITEBACK
130         struct wb_domain        *dom;
131         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
132 #endif
133         struct bdi_writeback    *wb;
134         struct fprop_local_percpu *wb_completions;
135
136         unsigned long           avail;          /* dirtyable */
137         unsigned long           dirty;          /* file_dirty + write + nfs */
138         unsigned long           thresh;         /* dirty threshold */
139         unsigned long           bg_thresh;      /* dirty background threshold */
140
141         unsigned long           wb_dirty;       /* per-wb counterparts */
142         unsigned long           wb_thresh;
143         unsigned long           wb_bg_thresh;
144
145         unsigned long           pos_ratio;
146 };
147
148 /*
149  * Length of period for aging writeout fractions of bdis. This is an
150  * arbitrarily chosen number. The longer the period, the slower fractions will
151  * reflect changes in current writeout rate.
152  */
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
154
155 #ifdef CONFIG_CGROUP_WRITEBACK
156
157 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
158                                 .dom = &global_wb_domain,               \
159                                 .wb_completions = &(__wb)->completions
160
161 #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
162
163 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
164                                 .dom = mem_cgroup_wb_domain(__wb),      \
165                                 .wb_completions = &(__wb)->memcg_completions, \
166                                 .gdtc = __gdtc
167
168 static bool mdtc_valid(struct dirty_throttle_control *dtc)
169 {
170         return dtc->dom;
171 }
172
173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
174 {
175         return dtc->dom;
176 }
177
178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
179 {
180         return mdtc->gdtc;
181 }
182
183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
184 {
185         return &wb->memcg_completions;
186 }
187
188 static void wb_min_max_ratio(struct bdi_writeback *wb,
189                              unsigned long *minp, unsigned long *maxp)
190 {
191         unsigned long this_bw = wb->avg_write_bandwidth;
192         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193         unsigned long long min = wb->bdi->min_ratio;
194         unsigned long long max = wb->bdi->max_ratio;
195
196         /*
197          * @wb may already be clean by the time control reaches here and
198          * the total may not include its bw.
199          */
200         if (this_bw < tot_bw) {
201                 if (min) {
202                         min *= this_bw;
203                         do_div(min, tot_bw);
204                 }
205                 if (max < 100) {
206                         max *= this_bw;
207                         do_div(max, tot_bw);
208                 }
209         }
210
211         *minp = min;
212         *maxp = max;
213 }
214
215 #else   /* CONFIG_CGROUP_WRITEBACK */
216
217 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
218                                 .wb_completions = &(__wb)->completions
219 #define GDTC_INIT_NO_WB
220 #define MDTC_INIT(__wb, __gdtc)
221
222 static bool mdtc_valid(struct dirty_throttle_control *dtc)
223 {
224         return false;
225 }
226
227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
228 {
229         return &global_wb_domain;
230 }
231
232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
233 {
234         return NULL;
235 }
236
237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
238 {
239         return NULL;
240 }
241
242 static void wb_min_max_ratio(struct bdi_writeback *wb,
243                              unsigned long *minp, unsigned long *maxp)
244 {
245         *minp = wb->bdi->min_ratio;
246         *maxp = wb->bdi->max_ratio;
247 }
248
249 #endif  /* CONFIG_CGROUP_WRITEBACK */
250
251 /*
252  * In a memory zone, there is a certain amount of pages we consider
253  * available for the page cache, which is essentially the number of
254  * free and reclaimable pages, minus some zone reserves to protect
255  * lowmem and the ability to uphold the zone's watermarks without
256  * requiring writeback.
257  *
258  * This number of dirtyable pages is the base value of which the
259  * user-configurable dirty ratio is the effictive number of pages that
260  * are allowed to be actually dirtied.  Per individual zone, or
261  * globally by using the sum of dirtyable pages over all zones.
262  *
263  * Because the user is allowed to specify the dirty limit globally as
264  * absolute number of bytes, calculating the per-zone dirty limit can
265  * require translating the configured limit into a percentage of
266  * global dirtyable memory first.
267  */
268
269 /**
270  * zone_dirtyable_memory - number of dirtyable pages in a zone
271  * @zone: the zone
272  *
273  * Returns the zone's number of pages potentially available for dirty
274  * page cache.  This is the base value for the per-zone dirty limits.
275  */
276 static unsigned long zone_dirtyable_memory(struct zone *zone)
277 {
278         unsigned long nr_pages;
279
280         nr_pages = zone_page_state(zone, NR_FREE_PAGES);
281         /*
282          * Pages reserved for the kernel should not be considered
283          * dirtyable, to prevent a situation where reclaim has to
284          * clean pages in order to balance the zones.
285          */
286         nr_pages -= min(nr_pages, zone->totalreserve_pages);
287
288         nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
289         nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
290
291         return nr_pages;
292 }
293
294 static unsigned long highmem_dirtyable_memory(unsigned long total)
295 {
296 #ifdef CONFIG_HIGHMEM
297         int node;
298         unsigned long x = 0;
299
300         for_each_node_state(node, N_HIGH_MEMORY) {
301                 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
302
303                 x += zone_dirtyable_memory(z);
304         }
305         /*
306          * Unreclaimable memory (kernel memory or anonymous memory
307          * without swap) can bring down the dirtyable pages below
308          * the zone's dirty balance reserve and the above calculation
309          * will underflow.  However we still want to add in nodes
310          * which are below threshold (negative values) to get a more
311          * accurate calculation but make sure that the total never
312          * underflows.
313          */
314         if ((long)x < 0)
315                 x = 0;
316
317         /*
318          * Make sure that the number of highmem pages is never larger
319          * than the number of the total dirtyable memory. This can only
320          * occur in very strange VM situations but we want to make sure
321          * that this does not occur.
322          */
323         return min(x, total);
324 #else
325         return 0;
326 #endif
327 }
328
329 /**
330  * global_dirtyable_memory - number of globally dirtyable pages
331  *
332  * Returns the global number of pages potentially available for dirty
333  * page cache.  This is the base value for the global dirty limits.
334  */
335 static unsigned long global_dirtyable_memory(void)
336 {
337         unsigned long x;
338
339         x = global_page_state(NR_FREE_PAGES);
340         /*
341          * Pages reserved for the kernel should not be considered
342          * dirtyable, to prevent a situation where reclaim has to
343          * clean pages in order to balance the zones.
344          */
345         x -= min(x, totalreserve_pages);
346
347         x += global_page_state(NR_INACTIVE_FILE);
348         x += global_page_state(NR_ACTIVE_FILE);
349
350         if (!vm_highmem_is_dirtyable)
351                 x -= highmem_dirtyable_memory(x);
352
353         return x + 1;   /* Ensure that we never return 0 */
354 }
355
356 /**
357  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
358  * @dtc: dirty_throttle_control of interest
359  *
360  * Calculate @dtc->thresh and ->bg_thresh considering
361  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
362  * must ensure that @dtc->avail is set before calling this function.  The
363  * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
364  * real-time tasks.
365  */
366 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
367 {
368         const unsigned long available_memory = dtc->avail;
369         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
370         unsigned long bytes = vm_dirty_bytes;
371         unsigned long bg_bytes = dirty_background_bytes;
372         /* convert ratios to per-PAGE_SIZE for higher precision */
373         unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
374         unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
375         unsigned long thresh;
376         unsigned long bg_thresh;
377         struct task_struct *tsk;
378
379         /* gdtc is !NULL iff @dtc is for memcg domain */
380         if (gdtc) {
381                 unsigned long global_avail = gdtc->avail;
382
383                 /*
384                  * The byte settings can't be applied directly to memcg
385                  * domains.  Convert them to ratios by scaling against
386                  * globally available memory.  As the ratios are in
387                  * per-PAGE_SIZE, they can be obtained by dividing bytes by
388                  * number of pages.
389                  */
390                 if (bytes)
391                         ratio = min(DIV_ROUND_UP(bytes, global_avail),
392                                     PAGE_SIZE);
393                 if (bg_bytes)
394                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
395                                        PAGE_SIZE);
396                 bytes = bg_bytes = 0;
397         }
398
399         if (bytes)
400                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
401         else
402                 thresh = (ratio * available_memory) / PAGE_SIZE;
403
404         if (bg_bytes)
405                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
406         else
407                 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
408
409         if (bg_thresh >= thresh)
410                 bg_thresh = thresh / 2;
411         tsk = current;
412         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
413                 bg_thresh += bg_thresh / 4;
414                 thresh += thresh / 4;
415         }
416         dtc->thresh = thresh;
417         dtc->bg_thresh = bg_thresh;
418
419         /* we should eventually report the domain in the TP */
420         if (!gdtc)
421                 trace_global_dirty_state(bg_thresh, thresh);
422 }
423
424 /**
425  * global_dirty_limits - background-writeback and dirty-throttling thresholds
426  * @pbackground: out parameter for bg_thresh
427  * @pdirty: out parameter for thresh
428  *
429  * Calculate bg_thresh and thresh for global_wb_domain.  See
430  * domain_dirty_limits() for details.
431  */
432 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
433 {
434         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
435
436         gdtc.avail = global_dirtyable_memory();
437         domain_dirty_limits(&gdtc);
438
439         *pbackground = gdtc.bg_thresh;
440         *pdirty = gdtc.thresh;
441 }
442
443 /**
444  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
445  * @zone: the zone
446  *
447  * Returns the maximum number of dirty pages allowed in a zone, based
448  * on the zone's dirtyable memory.
449  */
450 static unsigned long zone_dirty_limit(struct zone *zone)
451 {
452         unsigned long zone_memory = zone_dirtyable_memory(zone);
453         struct task_struct *tsk = current;
454         unsigned long dirty;
455
456         if (vm_dirty_bytes)
457                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
458                         zone_memory / global_dirtyable_memory();
459         else
460                 dirty = vm_dirty_ratio * zone_memory / 100;
461
462         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
463                 dirty += dirty / 4;
464
465         return dirty;
466 }
467
468 /**
469  * zone_dirty_ok - tells whether a zone is within its dirty limits
470  * @zone: the zone to check
471  *
472  * Returns %true when the dirty pages in @zone are within the zone's
473  * dirty limit, %false if the limit is exceeded.
474  */
475 bool zone_dirty_ok(struct zone *zone)
476 {
477         unsigned long limit = zone_dirty_limit(zone);
478
479         return zone_page_state(zone, NR_FILE_DIRTY) +
480                zone_page_state(zone, NR_UNSTABLE_NFS) +
481                zone_page_state(zone, NR_WRITEBACK) <= limit;
482 }
483
484 int dirty_background_ratio_handler(struct ctl_table *table, int write,
485                 void __user *buffer, size_t *lenp,
486                 loff_t *ppos)
487 {
488         int ret;
489
490         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
491         if (ret == 0 && write)
492                 dirty_background_bytes = 0;
493         return ret;
494 }
495
496 int dirty_background_bytes_handler(struct ctl_table *table, int write,
497                 void __user *buffer, size_t *lenp,
498                 loff_t *ppos)
499 {
500         int ret;
501
502         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
503         if (ret == 0 && write)
504                 dirty_background_ratio = 0;
505         return ret;
506 }
507
508 int dirty_ratio_handler(struct ctl_table *table, int write,
509                 void __user *buffer, size_t *lenp,
510                 loff_t *ppos)
511 {
512         int old_ratio = vm_dirty_ratio;
513         int ret;
514
515         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
516         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
517                 writeback_set_ratelimit();
518                 vm_dirty_bytes = 0;
519         }
520         return ret;
521 }
522
523 int dirty_bytes_handler(struct ctl_table *table, int write,
524                 void __user *buffer, size_t *lenp,
525                 loff_t *ppos)
526 {
527         unsigned long old_bytes = vm_dirty_bytes;
528         int ret;
529
530         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
531         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
532                 writeback_set_ratelimit();
533                 vm_dirty_ratio = 0;
534         }
535         return ret;
536 }
537
538 static unsigned long wp_next_time(unsigned long cur_time)
539 {
540         cur_time += VM_COMPLETIONS_PERIOD_LEN;
541         /* 0 has a special meaning... */
542         if (!cur_time)
543                 return 1;
544         return cur_time;
545 }
546
547 static void wb_domain_writeout_inc(struct wb_domain *dom,
548                                    struct fprop_local_percpu *completions,
549                                    unsigned int max_prop_frac)
550 {
551         __fprop_inc_percpu_max(&dom->completions, completions,
552                                max_prop_frac);
553         /* First event after period switching was turned off? */
554         if (!unlikely(dom->period_time)) {
555                 /*
556                  * We can race with other __bdi_writeout_inc calls here but
557                  * it does not cause any harm since the resulting time when
558                  * timer will fire and what is in writeout_period_time will be
559                  * roughly the same.
560                  */
561                 dom->period_time = wp_next_time(jiffies);
562                 mod_timer(&dom->period_timer, dom->period_time);
563         }
564 }
565
566 /*
567  * Increment @wb's writeout completion count and the global writeout
568  * completion count. Called from test_clear_page_writeback().
569  */
570 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
571 {
572         struct wb_domain *cgdom;
573
574         __inc_wb_stat(wb, WB_WRITTEN);
575         wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
576                                wb->bdi->max_prop_frac);
577
578         cgdom = mem_cgroup_wb_domain(wb);
579         if (cgdom)
580                 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
581                                        wb->bdi->max_prop_frac);
582 }
583
584 void wb_writeout_inc(struct bdi_writeback *wb)
585 {
586         unsigned long flags;
587
588         local_irq_save(flags);
589         __wb_writeout_inc(wb);
590         local_irq_restore(flags);
591 }
592 EXPORT_SYMBOL_GPL(wb_writeout_inc);
593
594 /*
595  * On idle system, we can be called long after we scheduled because we use
596  * deferred timers so count with missed periods.
597  */
598 static void writeout_period(unsigned long t)
599 {
600         struct wb_domain *dom = (void *)t;
601         int miss_periods = (jiffies - dom->period_time) /
602                                                  VM_COMPLETIONS_PERIOD_LEN;
603
604         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
605                 dom->period_time = wp_next_time(dom->period_time +
606                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
607                 mod_timer(&dom->period_timer, dom->period_time);
608         } else {
609                 /*
610                  * Aging has zeroed all fractions. Stop wasting CPU on period
611                  * updates.
612                  */
613                 dom->period_time = 0;
614         }
615 }
616
617 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
618 {
619         memset(dom, 0, sizeof(*dom));
620
621         spin_lock_init(&dom->lock);
622
623         init_timer_deferrable(&dom->period_timer);
624         dom->period_timer.function = writeout_period;
625         dom->period_timer.data = (unsigned long)dom;
626
627         dom->dirty_limit_tstamp = jiffies;
628
629         return fprop_global_init(&dom->completions, gfp);
630 }
631
632 #ifdef CONFIG_CGROUP_WRITEBACK
633 void wb_domain_exit(struct wb_domain *dom)
634 {
635         del_timer_sync(&dom->period_timer);
636         fprop_global_destroy(&dom->completions);
637 }
638 #endif
639
640 /*
641  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
642  * registered backing devices, which, for obvious reasons, can not
643  * exceed 100%.
644  */
645 static unsigned int bdi_min_ratio;
646
647 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
648 {
649         int ret = 0;
650
651         spin_lock_bh(&bdi_lock);
652         if (min_ratio > bdi->max_ratio) {
653                 ret = -EINVAL;
654         } else {
655                 min_ratio -= bdi->min_ratio;
656                 if (bdi_min_ratio + min_ratio < 100) {
657                         bdi_min_ratio += min_ratio;
658                         bdi->min_ratio += min_ratio;
659                 } else {
660                         ret = -EINVAL;
661                 }
662         }
663         spin_unlock_bh(&bdi_lock);
664
665         return ret;
666 }
667
668 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
669 {
670         int ret = 0;
671
672         if (max_ratio > 100)
673                 return -EINVAL;
674
675         spin_lock_bh(&bdi_lock);
676         if (bdi->min_ratio > max_ratio) {
677                 ret = -EINVAL;
678         } else {
679                 bdi->max_ratio = max_ratio;
680                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
681         }
682         spin_unlock_bh(&bdi_lock);
683
684         return ret;
685 }
686 EXPORT_SYMBOL(bdi_set_max_ratio);
687
688 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
689                                            unsigned long bg_thresh)
690 {
691         return (thresh + bg_thresh) / 2;
692 }
693
694 static unsigned long hard_dirty_limit(struct wb_domain *dom,
695                                       unsigned long thresh)
696 {
697         return max(thresh, dom->dirty_limit);
698 }
699
700 /*
701  * Memory which can be further allocated to a memcg domain is capped by
702  * system-wide clean memory excluding the amount being used in the domain.
703  */
704 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
705                             unsigned long filepages, unsigned long headroom)
706 {
707         struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
708         unsigned long clean = filepages - min(filepages, mdtc->dirty);
709         unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
710         unsigned long other_clean = global_clean - min(global_clean, clean);
711
712         mdtc->avail = filepages + min(headroom, other_clean);
713 }
714
715 /**
716  * __wb_calc_thresh - @wb's share of dirty throttling threshold
717  * @dtc: dirty_throttle_context of interest
718  *
719  * Returns @wb's dirty limit in pages. The term "dirty" in the context of
720  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
721  *
722  * Note that balance_dirty_pages() will only seriously take it as a hard limit
723  * when sleeping max_pause per page is not enough to keep the dirty pages under
724  * control. For example, when the device is completely stalled due to some error
725  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
726  * In the other normal situations, it acts more gently by throttling the tasks
727  * more (rather than completely block them) when the wb dirty pages go high.
728  *
729  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
730  * - starving fast devices
731  * - piling up dirty pages (that will take long time to sync) on slow devices
732  *
733  * The wb's share of dirty limit will be adapting to its throughput and
734  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
735  */
736 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
737 {
738         struct wb_domain *dom = dtc_dom(dtc);
739         unsigned long thresh = dtc->thresh;
740         u64 wb_thresh;
741         long numerator, denominator;
742         unsigned long wb_min_ratio, wb_max_ratio;
743
744         /*
745          * Calculate this BDI's share of the thresh ratio.
746          */
747         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
748                               &numerator, &denominator);
749
750         wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
751         wb_thresh *= numerator;
752         do_div(wb_thresh, denominator);
753
754         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
755
756         wb_thresh += (thresh * wb_min_ratio) / 100;
757         if (wb_thresh > (thresh * wb_max_ratio) / 100)
758                 wb_thresh = thresh * wb_max_ratio / 100;
759
760         return wb_thresh;
761 }
762
763 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
764 {
765         struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
766                                                .thresh = thresh };
767         return __wb_calc_thresh(&gdtc);
768 }
769
770 /*
771  *                           setpoint - dirty 3
772  *        f(dirty) := 1.0 + (----------------)
773  *                           limit - setpoint
774  *
775  * it's a 3rd order polynomial that subjects to
776  *
777  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
778  * (2) f(setpoint) = 1.0 => the balance point
779  * (3) f(limit)    = 0   => the hard limit
780  * (4) df/dx      <= 0   => negative feedback control
781  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
782  *     => fast response on large errors; small oscillation near setpoint
783  */
784 static long long pos_ratio_polynom(unsigned long setpoint,
785                                           unsigned long dirty,
786                                           unsigned long limit)
787 {
788         long long pos_ratio;
789         long x;
790
791         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
792                       (limit - setpoint) | 1);
793         pos_ratio = x;
794         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
795         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
796         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
797
798         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
799 }
800
801 /*
802  * Dirty position control.
803  *
804  * (o) global/bdi setpoints
805  *
806  * We want the dirty pages be balanced around the global/wb setpoints.
807  * When the number of dirty pages is higher/lower than the setpoint, the
808  * dirty position control ratio (and hence task dirty ratelimit) will be
809  * decreased/increased to bring the dirty pages back to the setpoint.
810  *
811  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
812  *
813  *     if (dirty < setpoint) scale up   pos_ratio
814  *     if (dirty > setpoint) scale down pos_ratio
815  *
816  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
817  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
818  *
819  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
820  *
821  * (o) global control line
822  *
823  *     ^ pos_ratio
824  *     |
825  *     |            |<===== global dirty control scope ======>|
826  * 2.0 .............*
827  *     |            .*
828  *     |            . *
829  *     |            .   *
830  *     |            .     *
831  *     |            .        *
832  *     |            .            *
833  * 1.0 ................................*
834  *     |            .                  .     *
835  *     |            .                  .          *
836  *     |            .                  .              *
837  *     |            .                  .                 *
838  *     |            .                  .                    *
839  *   0 +------------.------------------.----------------------*------------->
840  *           freerun^          setpoint^                 limit^   dirty pages
841  *
842  * (o) wb control line
843  *
844  *     ^ pos_ratio
845  *     |
846  *     |            *
847  *     |              *
848  *     |                *
849  *     |                  *
850  *     |                    * |<=========== span ============>|
851  * 1.0 .......................*
852  *     |                      . *
853  *     |                      .   *
854  *     |                      .     *
855  *     |                      .       *
856  *     |                      .         *
857  *     |                      .           *
858  *     |                      .             *
859  *     |                      .               *
860  *     |                      .                 *
861  *     |                      .                   *
862  *     |                      .                     *
863  * 1/4 ...............................................* * * * * * * * * * * *
864  *     |                      .                         .
865  *     |                      .                           .
866  *     |                      .                             .
867  *   0 +----------------------.-------------------------------.------------->
868  *                wb_setpoint^                    x_intercept^
869  *
870  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
871  * be smoothly throttled down to normal if it starts high in situations like
872  * - start writing to a slow SD card and a fast disk at the same time. The SD
873  *   card's wb_dirty may rush to many times higher than wb_setpoint.
874  * - the wb dirty thresh drops quickly due to change of JBOD workload
875  */
876 static void wb_position_ratio(struct dirty_throttle_control *dtc)
877 {
878         struct bdi_writeback *wb = dtc->wb;
879         unsigned long write_bw = wb->avg_write_bandwidth;
880         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
881         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
882         unsigned long wb_thresh = dtc->wb_thresh;
883         unsigned long x_intercept;
884         unsigned long setpoint;         /* dirty pages' target balance point */
885         unsigned long wb_setpoint;
886         unsigned long span;
887         long long pos_ratio;            /* for scaling up/down the rate limit */
888         long x;
889
890         dtc->pos_ratio = 0;
891
892         if (unlikely(dtc->dirty >= limit))
893                 return;
894
895         /*
896          * global setpoint
897          *
898          * See comment for pos_ratio_polynom().
899          */
900         setpoint = (freerun + limit) / 2;
901         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
902
903         /*
904          * The strictlimit feature is a tool preventing mistrusted filesystems
905          * from growing a large number of dirty pages before throttling. For
906          * such filesystems balance_dirty_pages always checks wb counters
907          * against wb limits. Even if global "nr_dirty" is under "freerun".
908          * This is especially important for fuse which sets bdi->max_ratio to
909          * 1% by default. Without strictlimit feature, fuse writeback may
910          * consume arbitrary amount of RAM because it is accounted in
911          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
912          *
913          * Here, in wb_position_ratio(), we calculate pos_ratio based on
914          * two values: wb_dirty and wb_thresh. Let's consider an example:
915          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
916          * limits are set by default to 10% and 20% (background and throttle).
917          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
918          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
919          * about ~6K pages (as the average of background and throttle wb
920          * limits). The 3rd order polynomial will provide positive feedback if
921          * wb_dirty is under wb_setpoint and vice versa.
922          *
923          * Note, that we cannot use global counters in these calculations
924          * because we want to throttle process writing to a strictlimit wb
925          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
926          * in the example above).
927          */
928         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
929                 long long wb_pos_ratio;
930
931                 if (dtc->wb_dirty < 8) {
932                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
933                                            2 << RATELIMIT_CALC_SHIFT);
934                         return;
935                 }
936
937                 if (dtc->wb_dirty >= wb_thresh)
938                         return;
939
940                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
941                                                     dtc->wb_bg_thresh);
942
943                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
944                         return;
945
946                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
947                                                  wb_thresh);
948
949                 /*
950                  * Typically, for strictlimit case, wb_setpoint << setpoint
951                  * and pos_ratio >> wb_pos_ratio. In the other words global
952                  * state ("dirty") is not limiting factor and we have to
953                  * make decision based on wb counters. But there is an
954                  * important case when global pos_ratio should get precedence:
955                  * global limits are exceeded (e.g. due to activities on other
956                  * wb's) while given strictlimit wb is below limit.
957                  *
958                  * "pos_ratio * wb_pos_ratio" would work for the case above,
959                  * but it would look too non-natural for the case of all
960                  * activity in the system coming from a single strictlimit wb
961                  * with bdi->max_ratio == 100%.
962                  *
963                  * Note that min() below somewhat changes the dynamics of the
964                  * control system. Normally, pos_ratio value can be well over 3
965                  * (when globally we are at freerun and wb is well below wb
966                  * setpoint). Now the maximum pos_ratio in the same situation
967                  * is 2. We might want to tweak this if we observe the control
968                  * system is too slow to adapt.
969                  */
970                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
971                 return;
972         }
973
974         /*
975          * We have computed basic pos_ratio above based on global situation. If
976          * the wb is over/under its share of dirty pages, we want to scale
977          * pos_ratio further down/up. That is done by the following mechanism.
978          */
979
980         /*
981          * wb setpoint
982          *
983          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
984          *
985          *                        x_intercept - wb_dirty
986          *                     := --------------------------
987          *                        x_intercept - wb_setpoint
988          *
989          * The main wb control line is a linear function that subjects to
990          *
991          * (1) f(wb_setpoint) = 1.0
992          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
993          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
994          *
995          * For single wb case, the dirty pages are observed to fluctuate
996          * regularly within range
997          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
998          * for various filesystems, where (2) can yield in a reasonable 12.5%
999          * fluctuation range for pos_ratio.
1000          *
1001          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1002          * own size, so move the slope over accordingly and choose a slope that
1003          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1004          */
1005         if (unlikely(wb_thresh > dtc->thresh))
1006                 wb_thresh = dtc->thresh;
1007         /*
1008          * It's very possible that wb_thresh is close to 0 not because the
1009          * device is slow, but that it has remained inactive for long time.
1010          * Honour such devices a reasonable good (hopefully IO efficient)
1011          * threshold, so that the occasional writes won't be blocked and active
1012          * writes can rampup the threshold quickly.
1013          */
1014         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1015         /*
1016          * scale global setpoint to wb's:
1017          *      wb_setpoint = setpoint * wb_thresh / thresh
1018          */
1019         x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1020         wb_setpoint = setpoint * (u64)x >> 16;
1021         /*
1022          * Use span=(8*write_bw) in single wb case as indicated by
1023          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1024          *
1025          *        wb_thresh                    thresh - wb_thresh
1026          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1027          *         thresh                           thresh
1028          */
1029         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1030         x_intercept = wb_setpoint + span;
1031
1032         if (dtc->wb_dirty < x_intercept - span / 4) {
1033                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1034                                       (x_intercept - wb_setpoint) | 1);
1035         } else
1036                 pos_ratio /= 4;
1037
1038         /*
1039          * wb reserve area, safeguard against dirty pool underrun and disk idle
1040          * It may push the desired control point of global dirty pages higher
1041          * than setpoint.
1042          */
1043         x_intercept = wb_thresh / 2;
1044         if (dtc->wb_dirty < x_intercept) {
1045                 if (dtc->wb_dirty > x_intercept / 8)
1046                         pos_ratio = div_u64(pos_ratio * x_intercept,
1047                                             dtc->wb_dirty);
1048                 else
1049                         pos_ratio *= 8;
1050         }
1051
1052         dtc->pos_ratio = pos_ratio;
1053 }
1054
1055 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1056                                       unsigned long elapsed,
1057                                       unsigned long written)
1058 {
1059         const unsigned long period = roundup_pow_of_two(3 * HZ);
1060         unsigned long avg = wb->avg_write_bandwidth;
1061         unsigned long old = wb->write_bandwidth;
1062         u64 bw;
1063
1064         /*
1065          * bw = written * HZ / elapsed
1066          *
1067          *                   bw * elapsed + write_bandwidth * (period - elapsed)
1068          * write_bandwidth = ---------------------------------------------------
1069          *                                          period
1070          *
1071          * @written may have decreased due to account_page_redirty().
1072          * Avoid underflowing @bw calculation.
1073          */
1074         bw = written - min(written, wb->written_stamp);
1075         bw *= HZ;
1076         if (unlikely(elapsed > period)) {
1077                 do_div(bw, elapsed);
1078                 avg = bw;
1079                 goto out;
1080         }
1081         bw += (u64)wb->write_bandwidth * (period - elapsed);
1082         bw >>= ilog2(period);
1083
1084         /*
1085          * one more level of smoothing, for filtering out sudden spikes
1086          */
1087         if (avg > old && old >= (unsigned long)bw)
1088                 avg -= (avg - old) >> 3;
1089
1090         if (avg < old && old <= (unsigned long)bw)
1091                 avg += (old - avg) >> 3;
1092
1093 out:
1094         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1095         avg = max(avg, 1LU);
1096         if (wb_has_dirty_io(wb)) {
1097                 long delta = avg - wb->avg_write_bandwidth;
1098                 WARN_ON_ONCE(atomic_long_add_return(delta,
1099                                         &wb->bdi->tot_write_bandwidth) <= 0);
1100         }
1101         wb->write_bandwidth = bw;
1102         wb->avg_write_bandwidth = avg;
1103 }
1104
1105 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1106 {
1107         struct wb_domain *dom = dtc_dom(dtc);
1108         unsigned long thresh = dtc->thresh;
1109         unsigned long limit = dom->dirty_limit;
1110
1111         /*
1112          * Follow up in one step.
1113          */
1114         if (limit < thresh) {
1115                 limit = thresh;
1116                 goto update;
1117         }
1118
1119         /*
1120          * Follow down slowly. Use the higher one as the target, because thresh
1121          * may drop below dirty. This is exactly the reason to introduce
1122          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1123          */
1124         thresh = max(thresh, dtc->dirty);
1125         if (limit > thresh) {
1126                 limit -= (limit - thresh) >> 5;
1127                 goto update;
1128         }
1129         return;
1130 update:
1131         dom->dirty_limit = limit;
1132 }
1133
1134 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1135                                     unsigned long now)
1136 {
1137         struct wb_domain *dom = dtc_dom(dtc);
1138
1139         /*
1140          * check locklessly first to optimize away locking for the most time
1141          */
1142         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1143                 return;
1144
1145         spin_lock(&dom->lock);
1146         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1147                 update_dirty_limit(dtc);
1148                 dom->dirty_limit_tstamp = now;
1149         }
1150         spin_unlock(&dom->lock);
1151 }
1152
1153 /*
1154  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1155  *
1156  * Normal wb tasks will be curbed at or below it in long term.
1157  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1158  */
1159 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1160                                       unsigned long dirtied,
1161                                       unsigned long elapsed)
1162 {
1163         struct bdi_writeback *wb = dtc->wb;
1164         unsigned long dirty = dtc->dirty;
1165         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1166         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1167         unsigned long setpoint = (freerun + limit) / 2;
1168         unsigned long write_bw = wb->avg_write_bandwidth;
1169         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1170         unsigned long dirty_rate;
1171         unsigned long task_ratelimit;
1172         unsigned long balanced_dirty_ratelimit;
1173         unsigned long step;
1174         unsigned long x;
1175
1176         /*
1177          * The dirty rate will match the writeout rate in long term, except
1178          * when dirty pages are truncated by userspace or re-dirtied by FS.
1179          */
1180         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1181
1182         /*
1183          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1184          */
1185         task_ratelimit = (u64)dirty_ratelimit *
1186                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1187         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1188
1189         /*
1190          * A linear estimation of the "balanced" throttle rate. The theory is,
1191          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1192          * dirty_rate will be measured to be (N * task_ratelimit). So the below
1193          * formula will yield the balanced rate limit (write_bw / N).
1194          *
1195          * Note that the expanded form is not a pure rate feedback:
1196          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1197          * but also takes pos_ratio into account:
1198          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1199          *
1200          * (1) is not realistic because pos_ratio also takes part in balancing
1201          * the dirty rate.  Consider the state
1202          *      pos_ratio = 0.5                                              (3)
1203          *      rate = 2 * (write_bw / N)                                    (4)
1204          * If (1) is used, it will stuck in that state! Because each dd will
1205          * be throttled at
1206          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1207          * yielding
1208          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1209          * put (6) into (1) we get
1210          *      rate_(i+1) = rate_(i)                                        (7)
1211          *
1212          * So we end up using (2) to always keep
1213          *      rate_(i+1) ~= (write_bw / N)                                 (8)
1214          * regardless of the value of pos_ratio. As long as (8) is satisfied,
1215          * pos_ratio is able to drive itself to 1.0, which is not only where
1216          * the dirty count meet the setpoint, but also where the slope of
1217          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1218          */
1219         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1220                                            dirty_rate | 1);
1221         /*
1222          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1223          */
1224         if (unlikely(balanced_dirty_ratelimit > write_bw))
1225                 balanced_dirty_ratelimit = write_bw;
1226
1227         /*
1228          * We could safely do this and return immediately:
1229          *
1230          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1231          *
1232          * However to get a more stable dirty_ratelimit, the below elaborated
1233          * code makes use of task_ratelimit to filter out singular points and
1234          * limit the step size.
1235          *
1236          * The below code essentially only uses the relative value of
1237          *
1238          *      task_ratelimit - dirty_ratelimit
1239          *      = (pos_ratio - 1) * dirty_ratelimit
1240          *
1241          * which reflects the direction and size of dirty position error.
1242          */
1243
1244         /*
1245          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1246          * task_ratelimit is on the same side of dirty_ratelimit, too.
1247          * For example, when
1248          * - dirty_ratelimit > balanced_dirty_ratelimit
1249          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1250          * lowering dirty_ratelimit will help meet both the position and rate
1251          * control targets. Otherwise, don't update dirty_ratelimit if it will
1252          * only help meet the rate target. After all, what the users ultimately
1253          * feel and care are stable dirty rate and small position error.
1254          *
1255          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1256          * and filter out the singular points of balanced_dirty_ratelimit. Which
1257          * keeps jumping around randomly and can even leap far away at times
1258          * due to the small 200ms estimation period of dirty_rate (we want to
1259          * keep that period small to reduce time lags).
1260          */
1261         step = 0;
1262
1263         /*
1264          * For strictlimit case, calculations above were based on wb counters
1265          * and limits (starting from pos_ratio = wb_position_ratio() and up to
1266          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1267          * Hence, to calculate "step" properly, we have to use wb_dirty as
1268          * "dirty" and wb_setpoint as "setpoint".
1269          *
1270          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1271          * it's possible that wb_thresh is close to zero due to inactivity
1272          * of backing device.
1273          */
1274         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1275                 dirty = dtc->wb_dirty;
1276                 if (dtc->wb_dirty < 8)
1277                         setpoint = dtc->wb_dirty + 1;
1278                 else
1279                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1280         }
1281
1282         if (dirty < setpoint) {
1283                 x = min3(wb->balanced_dirty_ratelimit,
1284                          balanced_dirty_ratelimit, task_ratelimit);
1285                 if (dirty_ratelimit < x)
1286                         step = x - dirty_ratelimit;
1287         } else {
1288                 x = max3(wb->balanced_dirty_ratelimit,
1289                          balanced_dirty_ratelimit, task_ratelimit);
1290                 if (dirty_ratelimit > x)
1291                         step = dirty_ratelimit - x;
1292         }
1293
1294         /*
1295          * Don't pursue 100% rate matching. It's impossible since the balanced
1296          * rate itself is constantly fluctuating. So decrease the track speed
1297          * when it gets close to the target. Helps eliminate pointless tremors.
1298          */
1299         step >>= dirty_ratelimit / (2 * step + 1);
1300         /*
1301          * Limit the tracking speed to avoid overshooting.
1302          */
1303         step = (step + 7) / 8;
1304
1305         if (dirty_ratelimit < balanced_dirty_ratelimit)
1306                 dirty_ratelimit += step;
1307         else
1308                 dirty_ratelimit -= step;
1309
1310         wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1311         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1312
1313         trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1314 }
1315
1316 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1317                                   struct dirty_throttle_control *mdtc,
1318                                   unsigned long start_time,
1319                                   bool update_ratelimit)
1320 {
1321         struct bdi_writeback *wb = gdtc->wb;
1322         unsigned long now = jiffies;
1323         unsigned long elapsed = now - wb->bw_time_stamp;
1324         unsigned long dirtied;
1325         unsigned long written;
1326
1327         lockdep_assert_held(&wb->list_lock);
1328
1329         /*
1330          * rate-limit, only update once every 200ms.
1331          */
1332         if (elapsed < BANDWIDTH_INTERVAL)
1333                 return;
1334
1335         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1336         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1337
1338         /*
1339          * Skip quiet periods when disk bandwidth is under-utilized.
1340          * (at least 1s idle time between two flusher runs)
1341          */
1342         if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1343                 goto snapshot;
1344
1345         if (update_ratelimit) {
1346                 domain_update_bandwidth(gdtc, now);
1347                 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1348
1349                 /*
1350                  * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1351                  * compiler has no way to figure that out.  Help it.
1352                  */
1353                 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1354                         domain_update_bandwidth(mdtc, now);
1355                         wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1356                 }
1357         }
1358         wb_update_write_bandwidth(wb, elapsed, written);
1359
1360 snapshot:
1361         wb->dirtied_stamp = dirtied;
1362         wb->written_stamp = written;
1363         wb->bw_time_stamp = now;
1364 }
1365
1366 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1367 {
1368         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1369
1370         __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1371 }
1372
1373 /*
1374  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1375  * will look to see if it needs to start dirty throttling.
1376  *
1377  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1378  * global_page_state() too often. So scale it near-sqrt to the safety margin
1379  * (the number of pages we may dirty without exceeding the dirty limits).
1380  */
1381 static unsigned long dirty_poll_interval(unsigned long dirty,
1382                                          unsigned long thresh)
1383 {
1384         if (thresh > dirty)
1385                 return 1UL << (ilog2(thresh - dirty) >> 1);
1386
1387         return 1;
1388 }
1389
1390 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1391                                   unsigned long wb_dirty)
1392 {
1393         unsigned long bw = wb->avg_write_bandwidth;
1394         unsigned long t;
1395
1396         /*
1397          * Limit pause time for small memory systems. If sleeping for too long
1398          * time, a small pool of dirty/writeback pages may go empty and disk go
1399          * idle.
1400          *
1401          * 8 serves as the safety ratio.
1402          */
1403         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1404         t++;
1405
1406         return min_t(unsigned long, t, MAX_PAUSE);
1407 }
1408
1409 static long wb_min_pause(struct bdi_writeback *wb,
1410                          long max_pause,
1411                          unsigned long task_ratelimit,
1412                          unsigned long dirty_ratelimit,
1413                          int *nr_dirtied_pause)
1414 {
1415         long hi = ilog2(wb->avg_write_bandwidth);
1416         long lo = ilog2(wb->dirty_ratelimit);
1417         long t;         /* target pause */
1418         long pause;     /* estimated next pause */
1419         int pages;      /* target nr_dirtied_pause */
1420
1421         /* target for 10ms pause on 1-dd case */
1422         t = max(1, HZ / 100);
1423
1424         /*
1425          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1426          * overheads.
1427          *
1428          * (N * 10ms) on 2^N concurrent tasks.
1429          */
1430         if (hi > lo)
1431                 t += (hi - lo) * (10 * HZ) / 1024;
1432
1433         /*
1434          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1435          * on the much more stable dirty_ratelimit. However the next pause time
1436          * will be computed based on task_ratelimit and the two rate limits may
1437          * depart considerably at some time. Especially if task_ratelimit goes
1438          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1439          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1440          * result task_ratelimit won't be executed faithfully, which could
1441          * eventually bring down dirty_ratelimit.
1442          *
1443          * We apply two rules to fix it up:
1444          * 1) try to estimate the next pause time and if necessary, use a lower
1445          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1446          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1447          * 2) limit the target pause time to max_pause/2, so that the normal
1448          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1449          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1450          */
1451         t = min(t, 1 + max_pause / 2);
1452         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1453
1454         /*
1455          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1456          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1457          * When the 16 consecutive reads are often interrupted by some dirty
1458          * throttling pause during the async writes, cfq will go into idles
1459          * (deadline is fine). So push nr_dirtied_pause as high as possible
1460          * until reaches DIRTY_POLL_THRESH=32 pages.
1461          */
1462         if (pages < DIRTY_POLL_THRESH) {
1463                 t = max_pause;
1464                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1465                 if (pages > DIRTY_POLL_THRESH) {
1466                         pages = DIRTY_POLL_THRESH;
1467                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1468                 }
1469         }
1470
1471         pause = HZ * pages / (task_ratelimit + 1);
1472         if (pause > max_pause) {
1473                 t = max_pause;
1474                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1475         }
1476
1477         *nr_dirtied_pause = pages;
1478         /*
1479          * The minimal pause time will normally be half the target pause time.
1480          */
1481         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1482 }
1483
1484 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1485 {
1486         struct bdi_writeback *wb = dtc->wb;
1487         unsigned long wb_reclaimable;
1488
1489         /*
1490          * wb_thresh is not treated as some limiting factor as
1491          * dirty_thresh, due to reasons
1492          * - in JBOD setup, wb_thresh can fluctuate a lot
1493          * - in a system with HDD and USB key, the USB key may somehow
1494          *   go into state (wb_dirty >> wb_thresh) either because
1495          *   wb_dirty starts high, or because wb_thresh drops low.
1496          *   In this case we don't want to hard throttle the USB key
1497          *   dirtiers for 100 seconds until wb_dirty drops under
1498          *   wb_thresh. Instead the auxiliary wb control line in
1499          *   wb_position_ratio() will let the dirtier task progress
1500          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1501          */
1502         dtc->wb_thresh = __wb_calc_thresh(dtc);
1503         dtc->wb_bg_thresh = dtc->thresh ?
1504                 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1505
1506         /*
1507          * In order to avoid the stacked BDI deadlock we need
1508          * to ensure we accurately count the 'dirty' pages when
1509          * the threshold is low.
1510          *
1511          * Otherwise it would be possible to get thresh+n pages
1512          * reported dirty, even though there are thresh-m pages
1513          * actually dirty; with m+n sitting in the percpu
1514          * deltas.
1515          */
1516         if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1517                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1518                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1519         } else {
1520                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1521                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1522         }
1523 }
1524
1525 /*
1526  * balance_dirty_pages() must be called by processes which are generating dirty
1527  * data.  It looks at the number of dirty pages in the machine and will force
1528  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1529  * If we're over `background_thresh' then the writeback threads are woken to
1530  * perform some writeout.
1531  */
1532 static void balance_dirty_pages(struct address_space *mapping,
1533                                 struct bdi_writeback *wb,
1534                                 unsigned long pages_dirtied)
1535 {
1536         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1537         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1538         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1539         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1540                                                      &mdtc_stor : NULL;
1541         struct dirty_throttle_control *sdtc;
1542         unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1543         long period;
1544         long pause;
1545         long max_pause;
1546         long min_pause;
1547         int nr_dirtied_pause;
1548         bool dirty_exceeded = false;
1549         unsigned long task_ratelimit;
1550         unsigned long dirty_ratelimit;
1551         struct backing_dev_info *bdi = wb->bdi;
1552         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1553         unsigned long start_time = jiffies;
1554
1555         for (;;) {
1556                 unsigned long now = jiffies;
1557                 unsigned long dirty, thresh, bg_thresh;
1558                 unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1559                 unsigned long m_thresh = 0;
1560                 unsigned long m_bg_thresh = 0;
1561
1562                 /*
1563                  * Unstable writes are a feature of certain networked
1564                  * filesystems (i.e. NFS) in which data may have been
1565                  * written to the server's write cache, but has not yet
1566                  * been flushed to permanent storage.
1567                  */
1568                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1569                                         global_page_state(NR_UNSTABLE_NFS);
1570                 gdtc->avail = global_dirtyable_memory();
1571                 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1572
1573                 domain_dirty_limits(gdtc);
1574
1575                 if (unlikely(strictlimit)) {
1576                         wb_dirty_limits(gdtc);
1577
1578                         dirty = gdtc->wb_dirty;
1579                         thresh = gdtc->wb_thresh;
1580                         bg_thresh = gdtc->wb_bg_thresh;
1581                 } else {
1582                         dirty = gdtc->dirty;
1583                         thresh = gdtc->thresh;
1584                         bg_thresh = gdtc->bg_thresh;
1585                 }
1586
1587                 if (mdtc) {
1588                         unsigned long filepages, headroom, writeback;
1589
1590                         /*
1591                          * If @wb belongs to !root memcg, repeat the same
1592                          * basic calculations for the memcg domain.
1593                          */
1594                         mem_cgroup_wb_stats(wb, &filepages, &headroom,
1595                                             &mdtc->dirty, &writeback);
1596                         mdtc->dirty += writeback;
1597                         mdtc_calc_avail(mdtc, filepages, headroom);
1598
1599                         domain_dirty_limits(mdtc);
1600
1601                         if (unlikely(strictlimit)) {
1602                                 wb_dirty_limits(mdtc);
1603                                 m_dirty = mdtc->wb_dirty;
1604                                 m_thresh = mdtc->wb_thresh;
1605                                 m_bg_thresh = mdtc->wb_bg_thresh;
1606                         } else {
1607                                 m_dirty = mdtc->dirty;
1608                                 m_thresh = mdtc->thresh;
1609                                 m_bg_thresh = mdtc->bg_thresh;
1610                         }
1611                 }
1612
1613                 /*
1614                  * Throttle it only when the background writeback cannot
1615                  * catch-up. This avoids (excessively) small writeouts
1616                  * when the wb limits are ramping up in case of !strictlimit.
1617                  *
1618                  * In strictlimit case make decision based on the wb counters
1619                  * and limits. Small writeouts when the wb limits are ramping
1620                  * up are the price we consciously pay for strictlimit-ing.
1621                  *
1622                  * If memcg domain is in effect, @dirty should be under
1623                  * both global and memcg freerun ceilings.
1624                  */
1625                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1626                     (!mdtc ||
1627                      m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1628                         unsigned long intv = dirty_poll_interval(dirty, thresh);
1629                         unsigned long m_intv = ULONG_MAX;
1630
1631                         current->dirty_paused_when = now;
1632                         current->nr_dirtied = 0;
1633                         if (mdtc)
1634                                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1635                         current->nr_dirtied_pause = min(intv, m_intv);
1636                         break;
1637                 }
1638
1639                 if (unlikely(!writeback_in_progress(wb)))
1640                         wb_start_background_writeback(wb);
1641
1642                 /*
1643                  * Calculate global domain's pos_ratio and select the
1644                  * global dtc by default.
1645                  */
1646                 if (!strictlimit)
1647                         wb_dirty_limits(gdtc);
1648
1649                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1650                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
1651
1652                 wb_position_ratio(gdtc);
1653                 sdtc = gdtc;
1654
1655                 if (mdtc) {
1656                         /*
1657                          * If memcg domain is in effect, calculate its
1658                          * pos_ratio.  @wb should satisfy constraints from
1659                          * both global and memcg domains.  Choose the one
1660                          * w/ lower pos_ratio.
1661                          */
1662                         if (!strictlimit)
1663                                 wb_dirty_limits(mdtc);
1664
1665                         dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1666                                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1667
1668                         wb_position_ratio(mdtc);
1669                         if (mdtc->pos_ratio < gdtc->pos_ratio)
1670                                 sdtc = mdtc;
1671                 }
1672
1673                 if (dirty_exceeded && !wb->dirty_exceeded)
1674                         wb->dirty_exceeded = 1;
1675
1676                 if (time_is_before_jiffies(wb->bw_time_stamp +
1677                                            BANDWIDTH_INTERVAL)) {
1678                         spin_lock(&wb->list_lock);
1679                         __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1680                         spin_unlock(&wb->list_lock);
1681                 }
1682
1683                 /* throttle according to the chosen dtc */
1684                 dirty_ratelimit = wb->dirty_ratelimit;
1685                 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1686                                                         RATELIMIT_CALC_SHIFT;
1687                 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1688                 min_pause = wb_min_pause(wb, max_pause,
1689                                          task_ratelimit, dirty_ratelimit,
1690                                          &nr_dirtied_pause);
1691
1692                 if (unlikely(task_ratelimit == 0)) {
1693                         period = max_pause;
1694                         pause = max_pause;
1695                         goto pause;
1696                 }
1697                 period = HZ * pages_dirtied / task_ratelimit;
1698                 pause = period;
1699                 if (current->dirty_paused_when)
1700                         pause -= now - current->dirty_paused_when;
1701                 /*
1702                  * For less than 1s think time (ext3/4 may block the dirtier
1703                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1704                  * however at much less frequency), try to compensate it in
1705                  * future periods by updating the virtual time; otherwise just
1706                  * do a reset, as it may be a light dirtier.
1707                  */
1708                 if (pause < min_pause) {
1709                         trace_balance_dirty_pages(wb,
1710                                                   sdtc->thresh,
1711                                                   sdtc->bg_thresh,
1712                                                   sdtc->dirty,
1713                                                   sdtc->wb_thresh,
1714                                                   sdtc->wb_dirty,
1715                                                   dirty_ratelimit,
1716                                                   task_ratelimit,
1717                                                   pages_dirtied,
1718                                                   period,
1719                                                   min(pause, 0L),
1720                                                   start_time);
1721                         if (pause < -HZ) {
1722                                 current->dirty_paused_when = now;
1723                                 current->nr_dirtied = 0;
1724                         } else if (period) {
1725                                 current->dirty_paused_when += period;
1726                                 current->nr_dirtied = 0;
1727                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1728                                 current->nr_dirtied_pause += pages_dirtied;
1729                         break;
1730                 }
1731                 if (unlikely(pause > max_pause)) {
1732                         /* for occasional dropped task_ratelimit */
1733                         now += min(pause - max_pause, max_pause);
1734                         pause = max_pause;
1735                 }
1736
1737 pause:
1738                 trace_balance_dirty_pages(wb,
1739                                           sdtc->thresh,
1740                                           sdtc->bg_thresh,
1741                                           sdtc->dirty,
1742                                           sdtc->wb_thresh,
1743                                           sdtc->wb_dirty,
1744                                           dirty_ratelimit,
1745                                           task_ratelimit,
1746                                           pages_dirtied,
1747                                           period,
1748                                           pause,
1749                                           start_time);
1750                 __set_current_state(TASK_KILLABLE);
1751                 io_schedule_timeout(pause);
1752
1753                 current->dirty_paused_when = now + pause;
1754                 current->nr_dirtied = 0;
1755                 current->nr_dirtied_pause = nr_dirtied_pause;
1756
1757                 /*
1758                  * This is typically equal to (dirty < thresh) and can also
1759                  * keep "1000+ dd on a slow USB stick" under control.
1760                  */
1761                 if (task_ratelimit)
1762                         break;
1763
1764                 /*
1765                  * In the case of an unresponding NFS server and the NFS dirty
1766                  * pages exceeds dirty_thresh, give the other good wb's a pipe
1767                  * to go through, so that tasks on them still remain responsive.
1768                  *
1769                  * In theory 1 page is enough to keep the comsumer-producer
1770                  * pipe going: the flusher cleans 1 page => the task dirties 1
1771                  * more page. However wb_dirty has accounting errors.  So use
1772                  * the larger and more IO friendly wb_stat_error.
1773                  */
1774                 if (sdtc->wb_dirty <= wb_stat_error(wb))
1775                         break;
1776
1777                 if (fatal_signal_pending(current))
1778                         break;
1779         }
1780
1781         if (!dirty_exceeded && wb->dirty_exceeded)
1782                 wb->dirty_exceeded = 0;
1783
1784         if (writeback_in_progress(wb))
1785                 return;
1786
1787         /*
1788          * In laptop mode, we wait until hitting the higher threshold before
1789          * starting background writeout, and then write out all the way down
1790          * to the lower threshold.  So slow writers cause minimal disk activity.
1791          *
1792          * In normal mode, we start background writeout at the lower
1793          * background_thresh, to keep the amount of dirty memory low.
1794          */
1795         if (laptop_mode)
1796                 return;
1797
1798         if (nr_reclaimable > gdtc->bg_thresh)
1799                 wb_start_background_writeback(wb);
1800 }
1801
1802 static DEFINE_PER_CPU(int, bdp_ratelimits);
1803
1804 /*
1805  * Normal tasks are throttled by
1806  *      loop {
1807  *              dirty tsk->nr_dirtied_pause pages;
1808  *              take a snap in balance_dirty_pages();
1809  *      }
1810  * However there is a worst case. If every task exit immediately when dirtied
1811  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1812  * called to throttle the page dirties. The solution is to save the not yet
1813  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1814  * randomly into the running tasks. This works well for the above worst case,
1815  * as the new task will pick up and accumulate the old task's leaked dirty
1816  * count and eventually get throttled.
1817  */
1818 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1819
1820 /**
1821  * balance_dirty_pages_ratelimited - balance dirty memory state
1822  * @mapping: address_space which was dirtied
1823  *
1824  * Processes which are dirtying memory should call in here once for each page
1825  * which was newly dirtied.  The function will periodically check the system's
1826  * dirty state and will initiate writeback if needed.
1827  *
1828  * On really big machines, get_writeback_state is expensive, so try to avoid
1829  * calling it too often (ratelimiting).  But once we're over the dirty memory
1830  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1831  * from overshooting the limit by (ratelimit_pages) each.
1832  */
1833 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1834 {
1835         struct inode *inode = mapping->host;
1836         struct backing_dev_info *bdi = inode_to_bdi(inode);
1837         struct bdi_writeback *wb = NULL;
1838         int ratelimit;
1839         int *p;
1840
1841         if (!bdi_cap_account_dirty(bdi))
1842                 return;
1843
1844         if (inode_cgwb_enabled(inode))
1845                 wb = wb_get_create_current(bdi, GFP_KERNEL);
1846         if (!wb)
1847                 wb = &bdi->wb;
1848
1849         ratelimit = current->nr_dirtied_pause;
1850         if (wb->dirty_exceeded)
1851                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1852
1853         preempt_disable();
1854         /*
1855          * This prevents one CPU to accumulate too many dirtied pages without
1856          * calling into balance_dirty_pages(), which can happen when there are
1857          * 1000+ tasks, all of them start dirtying pages at exactly the same
1858          * time, hence all honoured too large initial task->nr_dirtied_pause.
1859          */
1860         p =  this_cpu_ptr(&bdp_ratelimits);
1861         if (unlikely(current->nr_dirtied >= ratelimit))
1862                 *p = 0;
1863         else if (unlikely(*p >= ratelimit_pages)) {
1864                 *p = 0;
1865                 ratelimit = 0;
1866         }
1867         /*
1868          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1869          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1870          * the dirty throttling and livelock other long-run dirtiers.
1871          */
1872         p = this_cpu_ptr(&dirty_throttle_leaks);
1873         if (*p > 0 && current->nr_dirtied < ratelimit) {
1874                 unsigned long nr_pages_dirtied;
1875                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1876                 *p -= nr_pages_dirtied;
1877                 current->nr_dirtied += nr_pages_dirtied;
1878         }
1879         preempt_enable();
1880
1881         if (unlikely(current->nr_dirtied >= ratelimit))
1882                 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1883
1884         wb_put(wb);
1885 }
1886 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1887
1888 /**
1889  * wb_over_bg_thresh - does @wb need to be written back?
1890  * @wb: bdi_writeback of interest
1891  *
1892  * Determines whether background writeback should keep writing @wb or it's
1893  * clean enough.  Returns %true if writeback should continue.
1894  */
1895 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1896 {
1897         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1898         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1899         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1900         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1901                                                      &mdtc_stor : NULL;
1902
1903         /*
1904          * Similar to balance_dirty_pages() but ignores pages being written
1905          * as we're trying to decide whether to put more under writeback.
1906          */
1907         gdtc->avail = global_dirtyable_memory();
1908         gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1909                       global_page_state(NR_UNSTABLE_NFS);
1910         domain_dirty_limits(gdtc);
1911
1912         if (gdtc->dirty > gdtc->bg_thresh)
1913                 return true;
1914
1915         if (wb_stat(wb, WB_RECLAIMABLE) >
1916             wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1917                 return true;
1918
1919         if (mdtc) {
1920                 unsigned long filepages, headroom, writeback;
1921
1922                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1923                                     &writeback);
1924                 mdtc_calc_avail(mdtc, filepages, headroom);
1925                 domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
1926
1927                 if (mdtc->dirty > mdtc->bg_thresh)
1928                         return true;
1929
1930                 if (wb_stat(wb, WB_RECLAIMABLE) >
1931                     wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1932                         return true;
1933         }
1934
1935         return false;
1936 }
1937
1938 void throttle_vm_writeout(gfp_t gfp_mask)
1939 {
1940         unsigned long background_thresh;
1941         unsigned long dirty_thresh;
1942
1943         for ( ; ; ) {
1944                 global_dirty_limits(&background_thresh, &dirty_thresh);
1945                 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1946
1947                 /*
1948                  * Boost the allowable dirty threshold a bit for page
1949                  * allocators so they don't get DoS'ed by heavy writers
1950                  */
1951                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1952
1953                 if (global_page_state(NR_UNSTABLE_NFS) +
1954                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
1955                                 break;
1956                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1957
1958                 /*
1959                  * The caller might hold locks which can prevent IO completion
1960                  * or progress in the filesystem.  So we cannot just sit here
1961                  * waiting for IO to complete.
1962                  */
1963                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1964                         break;
1965         }
1966 }
1967
1968 /*
1969  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1970  */
1971 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1972         void __user *buffer, size_t *length, loff_t *ppos)
1973 {
1974         proc_dointvec(table, write, buffer, length, ppos);
1975         return 0;
1976 }
1977
1978 #ifdef CONFIG_BLOCK
1979 void laptop_mode_timer_fn(unsigned long data)
1980 {
1981         struct request_queue *q = (struct request_queue *)data;
1982         int nr_pages = global_page_state(NR_FILE_DIRTY) +
1983                 global_page_state(NR_UNSTABLE_NFS);
1984         struct bdi_writeback *wb;
1985
1986         /*
1987          * We want to write everything out, not just down to the dirty
1988          * threshold
1989          */
1990         if (!bdi_has_dirty_io(&q->backing_dev_info))
1991                 return;
1992
1993         rcu_read_lock();
1994         list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1995                 if (wb_has_dirty_io(wb))
1996                         wb_start_writeback(wb, nr_pages, true,
1997                                            WB_REASON_LAPTOP_TIMER);
1998         rcu_read_unlock();
1999 }
2000
2001 /*
2002  * We've spun up the disk and we're in laptop mode: schedule writeback
2003  * of all dirty data a few seconds from now.  If the flush is already scheduled
2004  * then push it back - the user is still using the disk.
2005  */
2006 void laptop_io_completion(struct backing_dev_info *info)
2007 {
2008         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2009 }
2010
2011 /*
2012  * We're in laptop mode and we've just synced. The sync's writes will have
2013  * caused another writeback to be scheduled by laptop_io_completion.
2014  * Nothing needs to be written back anymore, so we unschedule the writeback.
2015  */
2016 void laptop_sync_completion(void)
2017 {
2018         struct backing_dev_info *bdi;
2019
2020         rcu_read_lock();
2021
2022         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2023                 del_timer(&bdi->laptop_mode_wb_timer);
2024
2025         rcu_read_unlock();
2026 }
2027 #endif
2028
2029 /*
2030  * If ratelimit_pages is too high then we can get into dirty-data overload
2031  * if a large number of processes all perform writes at the same time.
2032  * If it is too low then SMP machines will call the (expensive)
2033  * get_writeback_state too often.
2034  *
2035  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2036  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2037  * thresholds.
2038  */
2039
2040 void writeback_set_ratelimit(void)
2041 {
2042         struct wb_domain *dom = &global_wb_domain;
2043         unsigned long background_thresh;
2044         unsigned long dirty_thresh;
2045
2046         global_dirty_limits(&background_thresh, &dirty_thresh);
2047         dom->dirty_limit = dirty_thresh;
2048         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2049         if (ratelimit_pages < 16)
2050                 ratelimit_pages = 16;
2051 }
2052
2053 static int
2054 ratelimit_handler(struct notifier_block *self, unsigned long action,
2055                   void *hcpu)
2056 {
2057
2058         switch (action & ~CPU_TASKS_FROZEN) {
2059         case CPU_ONLINE:
2060         case CPU_DEAD:
2061                 writeback_set_ratelimit();
2062                 return NOTIFY_OK;
2063         default:
2064                 return NOTIFY_DONE;
2065         }
2066 }
2067
2068 static struct notifier_block ratelimit_nb = {
2069         .notifier_call  = ratelimit_handler,
2070         .next           = NULL,
2071 };
2072
2073 /*
2074  * Called early on to tune the page writeback dirty limits.
2075  *
2076  * We used to scale dirty pages according to how total memory
2077  * related to pages that could be allocated for buffers (by
2078  * comparing nr_free_buffer_pages() to vm_total_pages.
2079  *
2080  * However, that was when we used "dirty_ratio" to scale with
2081  * all memory, and we don't do that any more. "dirty_ratio"
2082  * is now applied to total non-HIGHPAGE memory (by subtracting
2083  * totalhigh_pages from vm_total_pages), and as such we can't
2084  * get into the old insane situation any more where we had
2085  * large amounts of dirty pages compared to a small amount of
2086  * non-HIGHMEM memory.
2087  *
2088  * But we might still want to scale the dirty_ratio by how
2089  * much memory the box has..
2090  */
2091 void __init page_writeback_init(void)
2092 {
2093         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2094
2095         writeback_set_ratelimit();
2096         register_cpu_notifier(&ratelimit_nb);
2097 }
2098
2099 /**
2100  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2101  * @mapping: address space structure to write
2102  * @start: starting page index
2103  * @end: ending page index (inclusive)
2104  *
2105  * This function scans the page range from @start to @end (inclusive) and tags
2106  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2107  * that write_cache_pages (or whoever calls this function) will then use
2108  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2109  * used to avoid livelocking of writeback by a process steadily creating new
2110  * dirty pages in the file (thus it is important for this function to be quick
2111  * so that it can tag pages faster than a dirtying process can create them).
2112  */
2113 /*
2114  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2115  */
2116 void tag_pages_for_writeback(struct address_space *mapping,
2117                              pgoff_t start, pgoff_t end)
2118 {
2119 #define WRITEBACK_TAG_BATCH 4096
2120         unsigned long tagged;
2121
2122         do {
2123                 spin_lock_irq(&mapping->tree_lock);
2124                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2125                                 &start, end, WRITEBACK_TAG_BATCH,
2126                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2127                 spin_unlock_irq(&mapping->tree_lock);
2128                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2129                 cond_resched();
2130                 /* We check 'start' to handle wrapping when end == ~0UL */
2131         } while (tagged >= WRITEBACK_TAG_BATCH && start);
2132 }
2133 EXPORT_SYMBOL(tag_pages_for_writeback);
2134
2135 /**
2136  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2137  * @mapping: address space structure to write
2138  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2139  * @writepage: function called for each page
2140  * @data: data passed to writepage function
2141  *
2142  * If a page is already under I/O, write_cache_pages() skips it, even
2143  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2144  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2145  * and msync() need to guarantee that all the data which was dirty at the time
2146  * the call was made get new I/O started against them.  If wbc->sync_mode is
2147  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2148  * existing IO to complete.
2149  *
2150  * To avoid livelocks (when other process dirties new pages), we first tag
2151  * pages which should be written back with TOWRITE tag and only then start
2152  * writing them. For data-integrity sync we have to be careful so that we do
2153  * not miss some pages (e.g., because some other process has cleared TOWRITE
2154  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2155  * by the process clearing the DIRTY tag (and submitting the page for IO).
2156  */
2157 int write_cache_pages(struct address_space *mapping,
2158                       struct writeback_control *wbc, writepage_t writepage,
2159                       void *data)
2160 {
2161         int ret = 0;
2162         int done = 0;
2163         struct pagevec pvec;
2164         int nr_pages;
2165         pgoff_t uninitialized_var(writeback_index);
2166         pgoff_t index;
2167         pgoff_t end;            /* Inclusive */
2168         pgoff_t done_index;
2169         int cycled;
2170         int range_whole = 0;
2171         int tag;
2172
2173         pagevec_init(&pvec, 0);
2174         if (wbc->range_cyclic) {
2175                 writeback_index = mapping->writeback_index; /* prev offset */
2176                 index = writeback_index;
2177                 if (index == 0)
2178                         cycled = 1;
2179                 else
2180                         cycled = 0;
2181                 end = -1;
2182         } else {
2183                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2184                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2185                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2186                         range_whole = 1;
2187                 cycled = 1; /* ignore range_cyclic tests */
2188         }
2189         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2190                 tag = PAGECACHE_TAG_TOWRITE;
2191         else
2192                 tag = PAGECACHE_TAG_DIRTY;
2193 retry:
2194         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2195                 tag_pages_for_writeback(mapping, index, end);
2196         done_index = index;
2197         while (!done && (index <= end)) {
2198                 int i;
2199
2200                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2201                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2202                 if (nr_pages == 0)
2203                         break;
2204
2205                 for (i = 0; i < nr_pages; i++) {
2206                         struct page *page = pvec.pages[i];
2207
2208                         /*
2209                          * At this point, the page may be truncated or
2210                          * invalidated (changing page->mapping to NULL), or
2211                          * even swizzled back from swapper_space to tmpfs file
2212                          * mapping. However, page->index will not change
2213                          * because we have a reference on the page.
2214                          */
2215                         if (page->index > end) {
2216                                 /*
2217                                  * can't be range_cyclic (1st pass) because
2218                                  * end == -1 in that case.
2219                                  */
2220                                 done = 1;
2221                                 break;
2222                         }
2223
2224                         done_index = page->index;
2225
2226                         lock_page(page);
2227
2228                         /*
2229                          * Page truncated or invalidated. We can freely skip it
2230                          * then, even for data integrity operations: the page
2231                          * has disappeared concurrently, so there could be no
2232                          * real expectation of this data interity operation
2233                          * even if there is now a new, dirty page at the same
2234                          * pagecache address.
2235                          */
2236                         if (unlikely(page->mapping != mapping)) {
2237 continue_unlock:
2238                                 unlock_page(page);
2239                                 continue;
2240                         }
2241
2242                         if (!PageDirty(page)) {
2243                                 /* someone wrote it for us */
2244                                 goto continue_unlock;
2245                         }
2246
2247                         if (PageWriteback(page)) {
2248                                 if (wbc->sync_mode != WB_SYNC_NONE)
2249                                         wait_on_page_writeback(page);
2250                                 else
2251                                         goto continue_unlock;
2252                         }
2253
2254                         BUG_ON(PageWriteback(page));
2255                         if (!clear_page_dirty_for_io(page))
2256                                 goto continue_unlock;
2257
2258                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2259                         ret = (*writepage)(page, wbc, data);
2260                         if (unlikely(ret)) {
2261                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2262                                         unlock_page(page);
2263                                         ret = 0;
2264                                 } else {
2265                                         /*
2266                                          * done_index is set past this page,
2267                                          * so media errors will not choke
2268                                          * background writeout for the entire
2269                                          * file. This has consequences for
2270                                          * range_cyclic semantics (ie. it may
2271                                          * not be suitable for data integrity
2272                                          * writeout).
2273                                          */
2274                                         done_index = page->index + 1;
2275                                         done = 1;
2276                                         break;
2277                                 }
2278                         }
2279
2280                         /*
2281                          * We stop writing back only if we are not doing
2282                          * integrity sync. In case of integrity sync we have to
2283                          * keep going until we have written all the pages
2284                          * we tagged for writeback prior to entering this loop.
2285                          */
2286                         if (--wbc->nr_to_write <= 0 &&
2287                             wbc->sync_mode == WB_SYNC_NONE) {
2288                                 done = 1;
2289                                 break;
2290                         }
2291                 }
2292                 pagevec_release(&pvec);
2293                 cond_resched();
2294         }
2295         if (!cycled && !done) {
2296                 /*
2297                  * range_cyclic:
2298                  * We hit the last page and there is more work to be done: wrap
2299                  * back to the start of the file
2300                  */
2301                 cycled = 1;
2302                 index = 0;
2303                 end = writeback_index - 1;
2304                 goto retry;
2305         }
2306         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2307                 mapping->writeback_index = done_index;
2308
2309         return ret;
2310 }
2311 EXPORT_SYMBOL(write_cache_pages);
2312
2313 /*
2314  * Function used by generic_writepages to call the real writepage
2315  * function and set the mapping flags on error
2316  */
2317 static int __writepage(struct page *page, struct writeback_control *wbc,
2318                        void *data)
2319 {
2320         struct address_space *mapping = data;
2321         int ret = mapping->a_ops->writepage(page, wbc);
2322         mapping_set_error(mapping, ret);
2323         return ret;
2324 }
2325
2326 /**
2327  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2328  * @mapping: address space structure to write
2329  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2330  *
2331  * This is a library function, which implements the writepages()
2332  * address_space_operation.
2333  */
2334 int generic_writepages(struct address_space *mapping,
2335                        struct writeback_control *wbc)
2336 {
2337         struct blk_plug plug;
2338         int ret;
2339
2340         /* deal with chardevs and other special file */
2341         if (!mapping->a_ops->writepage)
2342                 return 0;
2343
2344         blk_start_plug(&plug);
2345         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2346         blk_finish_plug(&plug);
2347         return ret;
2348 }
2349
2350 EXPORT_SYMBOL(generic_writepages);
2351
2352 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2353 {
2354         int ret;
2355
2356         if (wbc->nr_to_write <= 0)
2357                 return 0;
2358         if (mapping->a_ops->writepages)
2359                 ret = mapping->a_ops->writepages(mapping, wbc);
2360         else
2361                 ret = generic_writepages(mapping, wbc);
2362         return ret;
2363 }
2364
2365 /**
2366  * write_one_page - write out a single page and optionally wait on I/O
2367  * @page: the page to write
2368  * @wait: if true, wait on writeout
2369  *
2370  * The page must be locked by the caller and will be unlocked upon return.
2371  *
2372  * write_one_page() returns a negative error code if I/O failed.
2373  */
2374 int write_one_page(struct page *page, int wait)
2375 {
2376         struct address_space *mapping = page->mapping;
2377         int ret = 0;
2378         struct writeback_control wbc = {
2379                 .sync_mode = WB_SYNC_ALL,
2380                 .nr_to_write = 1,
2381         };
2382
2383         BUG_ON(!PageLocked(page));
2384
2385         if (wait)
2386                 wait_on_page_writeback(page);
2387
2388         if (clear_page_dirty_for_io(page)) {
2389                 page_cache_get(page);
2390                 ret = mapping->a_ops->writepage(page, &wbc);
2391                 if (ret == 0 && wait) {
2392                         wait_on_page_writeback(page);
2393                         if (PageError(page))
2394                                 ret = -EIO;
2395                 }
2396                 page_cache_release(page);
2397         } else {
2398                 unlock_page(page);
2399         }
2400         return ret;
2401 }
2402 EXPORT_SYMBOL(write_one_page);
2403
2404 /*
2405  * For address_spaces which do not use buffers nor write back.
2406  */
2407 int __set_page_dirty_no_writeback(struct page *page)
2408 {
2409         if (!PageDirty(page))
2410                 return !TestSetPageDirty(page);
2411         return 0;
2412 }
2413
2414 /*
2415  * Helper function for set_page_dirty family.
2416  *
2417  * Caller must hold mem_cgroup_begin_page_stat().
2418  *
2419  * NOTE: This relies on being atomic wrt interrupts.
2420  */
2421 void account_page_dirtied(struct page *page, struct address_space *mapping,
2422                           struct mem_cgroup *memcg)
2423 {
2424         struct inode *inode = mapping->host;
2425
2426         trace_writeback_dirty_page(page, mapping);
2427
2428         if (mapping_cap_account_dirty(mapping)) {
2429                 struct bdi_writeback *wb;
2430
2431                 inode_attach_wb(inode, page);
2432                 wb = inode_to_wb(inode);
2433
2434                 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2435                 __inc_zone_page_state(page, NR_FILE_DIRTY);
2436                 __inc_zone_page_state(page, NR_DIRTIED);
2437                 __inc_wb_stat(wb, WB_RECLAIMABLE);
2438                 __inc_wb_stat(wb, WB_DIRTIED);
2439                 task_io_account_write(PAGE_CACHE_SIZE);
2440                 current->nr_dirtied++;
2441                 this_cpu_inc(bdp_ratelimits);
2442         }
2443 }
2444 EXPORT_SYMBOL(account_page_dirtied);
2445
2446 /*
2447  * Helper function for deaccounting dirty page without writeback.
2448  *
2449  * Caller must hold mem_cgroup_begin_page_stat().
2450  */
2451 void account_page_cleaned(struct page *page, struct address_space *mapping,
2452                           struct mem_cgroup *memcg, struct bdi_writeback *wb)
2453 {
2454         if (mapping_cap_account_dirty(mapping)) {
2455                 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2456                 dec_zone_page_state(page, NR_FILE_DIRTY);
2457                 dec_wb_stat(wb, WB_RECLAIMABLE);
2458                 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2459         }
2460 }
2461
2462 /*
2463  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2464  * its radix tree.
2465  *
2466  * This is also used when a single buffer is being dirtied: we want to set the
2467  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2468  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2469  *
2470  * The caller must ensure this doesn't race with truncation.  Most will simply
2471  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2472  * the pte lock held, which also locks out truncation.
2473  */
2474 int __set_page_dirty_nobuffers(struct page *page)
2475 {
2476         struct mem_cgroup *memcg;
2477
2478         memcg = mem_cgroup_begin_page_stat(page);
2479         if (!TestSetPageDirty(page)) {
2480                 struct address_space *mapping = page_mapping(page);
2481                 unsigned long flags;
2482
2483                 if (!mapping) {
2484                         mem_cgroup_end_page_stat(memcg);
2485                         return 1;
2486                 }
2487
2488                 spin_lock_irqsave(&mapping->tree_lock, flags);
2489                 BUG_ON(page_mapping(page) != mapping);
2490                 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2491                 account_page_dirtied(page, mapping, memcg);
2492                 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2493                                    PAGECACHE_TAG_DIRTY);
2494                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2495                 mem_cgroup_end_page_stat(memcg);
2496
2497                 if (mapping->host) {
2498                         /* !PageAnon && !swapper_space */
2499                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2500                 }
2501                 return 1;
2502         }
2503         mem_cgroup_end_page_stat(memcg);
2504         return 0;
2505 }
2506 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2507
2508 /*
2509  * Call this whenever redirtying a page, to de-account the dirty counters
2510  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2511  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2512  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2513  * control.
2514  */
2515 void account_page_redirty(struct page *page)
2516 {
2517         struct address_space *mapping = page->mapping;
2518
2519         if (mapping && mapping_cap_account_dirty(mapping)) {
2520                 struct inode *inode = mapping->host;
2521                 struct bdi_writeback *wb;
2522                 bool locked;
2523
2524                 wb = unlocked_inode_to_wb_begin(inode, &locked);
2525                 current->nr_dirtied--;
2526                 dec_zone_page_state(page, NR_DIRTIED);
2527                 dec_wb_stat(wb, WB_DIRTIED);
2528                 unlocked_inode_to_wb_end(inode, locked);
2529         }
2530 }
2531 EXPORT_SYMBOL(account_page_redirty);
2532
2533 /*
2534  * When a writepage implementation decides that it doesn't want to write this
2535  * page for some reason, it should redirty the locked page via
2536  * redirty_page_for_writepage() and it should then unlock the page and return 0
2537  */
2538 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2539 {
2540         int ret;
2541
2542         wbc->pages_skipped++;
2543         ret = __set_page_dirty_nobuffers(page);
2544         account_page_redirty(page);
2545         return ret;
2546 }
2547 EXPORT_SYMBOL(redirty_page_for_writepage);
2548
2549 /*
2550  * Dirty a page.
2551  *
2552  * For pages with a mapping this should be done under the page lock
2553  * for the benefit of asynchronous memory errors who prefer a consistent
2554  * dirty state. This rule can be broken in some special cases,
2555  * but should be better not to.
2556  *
2557  * If the mapping doesn't provide a set_page_dirty a_op, then
2558  * just fall through and assume that it wants buffer_heads.
2559  */
2560 int set_page_dirty(struct page *page)
2561 {
2562         struct address_space *mapping = page_mapping(page);
2563
2564         if (likely(mapping)) {
2565                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2566                 /*
2567                  * readahead/lru_deactivate_page could remain
2568                  * PG_readahead/PG_reclaim due to race with end_page_writeback
2569                  * About readahead, if the page is written, the flags would be
2570                  * reset. So no problem.
2571                  * About lru_deactivate_page, if the page is redirty, the flag
2572                  * will be reset. So no problem. but if the page is used by readahead
2573                  * it will confuse readahead and make it restart the size rampup
2574                  * process. But it's a trivial problem.
2575                  */
2576                 if (PageReclaim(page))
2577                         ClearPageReclaim(page);
2578 #ifdef CONFIG_BLOCK
2579                 if (!spd)
2580                         spd = __set_page_dirty_buffers;
2581 #endif
2582                 return (*spd)(page);
2583         }
2584         if (!PageDirty(page)) {
2585                 if (!TestSetPageDirty(page))
2586                         return 1;
2587         }
2588         return 0;
2589 }
2590 EXPORT_SYMBOL(set_page_dirty);
2591
2592 /*
2593  * set_page_dirty() is racy if the caller has no reference against
2594  * page->mapping->host, and if the page is unlocked.  This is because another
2595  * CPU could truncate the page off the mapping and then free the mapping.
2596  *
2597  * Usually, the page _is_ locked, or the caller is a user-space process which
2598  * holds a reference on the inode by having an open file.
2599  *
2600  * In other cases, the page should be locked before running set_page_dirty().
2601  */
2602 int set_page_dirty_lock(struct page *page)
2603 {
2604         int ret;
2605
2606         lock_page(page);
2607         ret = set_page_dirty(page);
2608         unlock_page(page);
2609         return ret;
2610 }
2611 EXPORT_SYMBOL(set_page_dirty_lock);
2612
2613 /*
2614  * This cancels just the dirty bit on the kernel page itself, it does NOT
2615  * actually remove dirty bits on any mmap's that may be around. It also
2616  * leaves the page tagged dirty, so any sync activity will still find it on
2617  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2618  * look at the dirty bits in the VM.
2619  *
2620  * Doing this should *normally* only ever be done when a page is truncated,
2621  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2622  * this when it notices that somebody has cleaned out all the buffers on a
2623  * page without actually doing it through the VM. Can you say "ext3 is
2624  * horribly ugly"? Thought you could.
2625  */
2626 void cancel_dirty_page(struct page *page)
2627 {
2628         struct address_space *mapping = page_mapping(page);
2629
2630         if (mapping_cap_account_dirty(mapping)) {
2631                 struct inode *inode = mapping->host;
2632                 struct bdi_writeback *wb;
2633                 struct mem_cgroup *memcg;
2634                 bool locked;
2635
2636                 memcg = mem_cgroup_begin_page_stat(page);
2637                 wb = unlocked_inode_to_wb_begin(inode, &locked);
2638
2639                 if (TestClearPageDirty(page))
2640                         account_page_cleaned(page, mapping, memcg, wb);
2641
2642                 unlocked_inode_to_wb_end(inode, locked);
2643                 mem_cgroup_end_page_stat(memcg);
2644         } else {
2645                 ClearPageDirty(page);
2646         }
2647 }
2648 EXPORT_SYMBOL(cancel_dirty_page);
2649
2650 /*
2651  * Clear a page's dirty flag, while caring for dirty memory accounting.
2652  * Returns true if the page was previously dirty.
2653  *
2654  * This is for preparing to put the page under writeout.  We leave the page
2655  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2656  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2657  * implementation will run either set_page_writeback() or set_page_dirty(),
2658  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2659  * back into sync.
2660  *
2661  * This incoherency between the page's dirty flag and radix-tree tag is
2662  * unfortunate, but it only exists while the page is locked.
2663  */
2664 int clear_page_dirty_for_io(struct page *page)
2665 {
2666         struct address_space *mapping = page_mapping(page);
2667         int ret = 0;
2668
2669         BUG_ON(!PageLocked(page));
2670
2671         if (mapping && mapping_cap_account_dirty(mapping)) {
2672                 struct inode *inode = mapping->host;
2673                 struct bdi_writeback *wb;
2674                 struct mem_cgroup *memcg;
2675                 bool locked;
2676
2677                 /*
2678                  * Yes, Virginia, this is indeed insane.
2679                  *
2680                  * We use this sequence to make sure that
2681                  *  (a) we account for dirty stats properly
2682                  *  (b) we tell the low-level filesystem to
2683                  *      mark the whole page dirty if it was
2684                  *      dirty in a pagetable. Only to then
2685                  *  (c) clean the page again and return 1 to
2686                  *      cause the writeback.
2687                  *
2688                  * This way we avoid all nasty races with the
2689                  * dirty bit in multiple places and clearing
2690                  * them concurrently from different threads.
2691                  *
2692                  * Note! Normally the "set_page_dirty(page)"
2693                  * has no effect on the actual dirty bit - since
2694                  * that will already usually be set. But we
2695                  * need the side effects, and it can help us
2696                  * avoid races.
2697                  *
2698                  * We basically use the page "master dirty bit"
2699                  * as a serialization point for all the different
2700                  * threads doing their things.
2701                  */
2702                 if (page_mkclean(page))
2703                         set_page_dirty(page);
2704                 /*
2705                  * We carefully synchronise fault handlers against
2706                  * installing a dirty pte and marking the page dirty
2707                  * at this point.  We do this by having them hold the
2708                  * page lock while dirtying the page, and pages are
2709                  * always locked coming in here, so we get the desired
2710                  * exclusion.
2711                  */
2712                 memcg = mem_cgroup_begin_page_stat(page);
2713                 wb = unlocked_inode_to_wb_begin(inode, &locked);
2714                 if (TestClearPageDirty(page)) {
2715                         mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2716                         dec_zone_page_state(page, NR_FILE_DIRTY);
2717                         dec_wb_stat(wb, WB_RECLAIMABLE);
2718                         ret = 1;
2719                 }
2720                 unlocked_inode_to_wb_end(inode, locked);
2721                 mem_cgroup_end_page_stat(memcg);
2722                 return ret;
2723         }
2724         return TestClearPageDirty(page);
2725 }
2726 EXPORT_SYMBOL(clear_page_dirty_for_io);
2727
2728 int test_clear_page_writeback(struct page *page)
2729 {
2730         struct address_space *mapping = page_mapping(page);
2731         struct mem_cgroup *memcg;
2732         int ret;
2733
2734         memcg = mem_cgroup_begin_page_stat(page);
2735         if (mapping) {
2736                 struct inode *inode = mapping->host;
2737                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2738                 unsigned long flags;
2739
2740                 spin_lock_irqsave(&mapping->tree_lock, flags);
2741                 ret = TestClearPageWriteback(page);
2742                 if (ret) {
2743                         radix_tree_tag_clear(&mapping->page_tree,
2744                                                 page_index(page),
2745                                                 PAGECACHE_TAG_WRITEBACK);
2746                         if (bdi_cap_account_writeback(bdi)) {
2747                                 struct bdi_writeback *wb = inode_to_wb(inode);
2748
2749                                 __dec_wb_stat(wb, WB_WRITEBACK);
2750                                 __wb_writeout_inc(wb);
2751                         }
2752                 }
2753                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2754         } else {
2755                 ret = TestClearPageWriteback(page);
2756         }
2757         if (ret) {
2758                 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2759                 dec_zone_page_state(page, NR_WRITEBACK);
2760                 inc_zone_page_state(page, NR_WRITTEN);
2761         }
2762         mem_cgroup_end_page_stat(memcg);
2763         return ret;
2764 }
2765
2766 int __test_set_page_writeback(struct page *page, bool keep_write)
2767 {
2768         struct address_space *mapping = page_mapping(page);
2769         struct mem_cgroup *memcg;
2770         int ret;
2771
2772         memcg = mem_cgroup_begin_page_stat(page);
2773         if (mapping) {
2774                 struct inode *inode = mapping->host;
2775                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2776                 unsigned long flags;
2777
2778                 spin_lock_irqsave(&mapping->tree_lock, flags);
2779                 ret = TestSetPageWriteback(page);
2780                 if (!ret) {
2781                         radix_tree_tag_set(&mapping->page_tree,
2782                                                 page_index(page),
2783                                                 PAGECACHE_TAG_WRITEBACK);
2784                         if (bdi_cap_account_writeback(bdi))
2785                                 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2786                 }
2787                 if (!PageDirty(page))
2788                         radix_tree_tag_clear(&mapping->page_tree,
2789                                                 page_index(page),
2790                                                 PAGECACHE_TAG_DIRTY);
2791                 if (!keep_write)
2792                         radix_tree_tag_clear(&mapping->page_tree,
2793                                                 page_index(page),
2794                                                 PAGECACHE_TAG_TOWRITE);
2795                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2796         } else {
2797                 ret = TestSetPageWriteback(page);
2798         }
2799         if (!ret) {
2800                 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2801                 inc_zone_page_state(page, NR_WRITEBACK);
2802         }
2803         mem_cgroup_end_page_stat(memcg);
2804         return ret;
2805
2806 }
2807 EXPORT_SYMBOL(__test_set_page_writeback);
2808
2809 /*
2810  * Return true if any of the pages in the mapping are marked with the
2811  * passed tag.
2812  */
2813 int mapping_tagged(struct address_space *mapping, int tag)
2814 {
2815         return radix_tree_tagged(&mapping->page_tree, tag);
2816 }
2817 EXPORT_SYMBOL(mapping_tagged);
2818
2819 /**
2820  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2821  * @page:       The page to wait on.
2822  *
2823  * This function determines if the given page is related to a backing device
2824  * that requires page contents to be held stable during writeback.  If so, then
2825  * it will wait for any pending writeback to complete.
2826  */
2827 void wait_for_stable_page(struct page *page)
2828 {
2829         if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2830                 wait_on_page_writeback(page);
2831 }
2832 EXPORT_SYMBOL_GPL(wait_for_stable_page);