Merge branch linux-linaro-lsk-v3.10-android
[firefly-linux-kernel-4.4.55.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/shm.h>
14 #include <linux/mman.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/syscalls.h>
18 #include <linux/capability.h>
19 #include <linux/init.h>
20 #include <linux/file.h>
21 #include <linux/fs.h>
22 #include <linux/personality.h>
23 #include <linux/security.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_event.h>
32 #include <linux/audit.h>
33 #include <linux/khugepaged.h>
34 #include <linux/uprobes.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/notifier.h>
38 #include <linux/memory.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44
45 #include "internal.h"
46
47 #ifndef arch_mmap_check
48 #define arch_mmap_check(addr, len, flags)       (0)
49 #endif
50
51 #ifndef arch_rebalance_pgtables
52 #define arch_rebalance_pgtables(addr, len)              (addr)
53 #endif
54
55 static void unmap_region(struct mm_struct *mm,
56                 struct vm_area_struct *vma, struct vm_area_struct *prev,
57                 unsigned long start, unsigned long end);
58
59 /* description of effects of mapping type and prot in current implementation.
60  * this is due to the limited x86 page protection hardware.  The expected
61  * behavior is in parens:
62  *
63  * map_type     prot
64  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
65  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
66  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
67  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
68  *              
69  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
70  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
71  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
72  *
73  */
74 pgprot_t protection_map[16] = {
75         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81         return __pgprot(pgprot_val(protection_map[vm_flags &
82                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
91 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
92 /*
93  * Make sure vm_committed_as in one cacheline and not cacheline shared with
94  * other variables. It can be updated by several CPUs frequently.
95  */
96 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
97
98 /*
99  * The global memory commitment made in the system can be a metric
100  * that can be used to drive ballooning decisions when Linux is hosted
101  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
102  * balancing memory across competing virtual machines that are hosted.
103  * Several metrics drive this policy engine including the guest reported
104  * memory commitment.
105  */
106 unsigned long vm_memory_committed(void)
107 {
108         return percpu_counter_read_positive(&vm_committed_as);
109 }
110 EXPORT_SYMBOL_GPL(vm_memory_committed);
111
112 /*
113  * Check that a process has enough memory to allocate a new virtual
114  * mapping. 0 means there is enough memory for the allocation to
115  * succeed and -ENOMEM implies there is not.
116  *
117  * We currently support three overcommit policies, which are set via the
118  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
119  *
120  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
121  * Additional code 2002 Jul 20 by Robert Love.
122  *
123  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
124  *
125  * Note this is a helper function intended to be used by LSMs which
126  * wish to use this logic.
127  */
128 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
129 {
130         unsigned long free, allowed, reserve;
131
132         vm_acct_memory(pages);
133
134         /*
135          * Sometimes we want to use more memory than we have
136          */
137         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
138                 return 0;
139
140         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
141                 free = global_page_state(NR_FREE_PAGES);
142                 free += global_page_state(NR_FILE_PAGES);
143
144                 /*
145                  * shmem pages shouldn't be counted as free in this
146                  * case, they can't be purged, only swapped out, and
147                  * that won't affect the overall amount of available
148                  * memory in the system.
149                  */
150                 free -= global_page_state(NR_SHMEM);
151
152                 free += get_nr_swap_pages();
153
154                 /*
155                  * Any slabs which are created with the
156                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
157                  * which are reclaimable, under pressure.  The dentry
158                  * cache and most inode caches should fall into this
159                  */
160                 free += global_page_state(NR_SLAB_RECLAIMABLE);
161
162                 /*
163                  * Leave reserved pages. The pages are not for anonymous pages.
164                  */
165                 if (free <= totalreserve_pages)
166                         goto error;
167                 else
168                         free -= totalreserve_pages;
169
170                 /*
171                  * Reserve some for root
172                  */
173                 if (!cap_sys_admin)
174                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
175
176                 if (free > pages)
177                         return 0;
178
179                 goto error;
180         }
181
182         allowed = (totalram_pages - hugetlb_total_pages())
183                 * sysctl_overcommit_ratio / 100;
184         /*
185          * Reserve some for root
186          */
187         if (!cap_sys_admin)
188                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
189         allowed += total_swap_pages;
190
191         /*
192          * Don't let a single process grow so big a user can't recover
193          */
194         if (mm) {
195                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
196                 allowed -= min(mm->total_vm / 32, reserve);
197         }
198
199         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
200                 return 0;
201 error:
202         vm_unacct_memory(pages);
203
204         return -ENOMEM;
205 }
206
207 /*
208  * Requires inode->i_mapping->i_mmap_mutex
209  */
210 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
211                 struct file *file, struct address_space *mapping)
212 {
213         if (vma->vm_flags & VM_DENYWRITE)
214                 atomic_inc(&file_inode(file)->i_writecount);
215         if (vma->vm_flags & VM_SHARED)
216                 mapping->i_mmap_writable--;
217
218         flush_dcache_mmap_lock(mapping);
219         if (unlikely(vma->vm_flags & VM_NONLINEAR))
220                 list_del_init(&vma->shared.nonlinear);
221         else
222                 vma_interval_tree_remove(vma, &mapping->i_mmap);
223         flush_dcache_mmap_unlock(mapping);
224 }
225
226 /*
227  * Unlink a file-based vm structure from its interval tree, to hide
228  * vma from rmap and vmtruncate before freeing its page tables.
229  */
230 void unlink_file_vma(struct vm_area_struct *vma)
231 {
232         struct file *file = vma->vm_file;
233
234         if (file) {
235                 struct address_space *mapping = file->f_mapping;
236                 mutex_lock(&mapping->i_mmap_mutex);
237                 __remove_shared_vm_struct(vma, file, mapping);
238                 mutex_unlock(&mapping->i_mmap_mutex);
239         }
240 }
241
242 /*
243  * Close a vm structure and free it, returning the next.
244  */
245 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
246 {
247         struct vm_area_struct *next = vma->vm_next;
248
249         might_sleep();
250         if (vma->vm_ops && vma->vm_ops->close)
251                 vma->vm_ops->close(vma);
252         if (vma->vm_file)
253                 fput(vma->vm_file);
254         mpol_put(vma_policy(vma));
255         kmem_cache_free(vm_area_cachep, vma);
256         return next;
257 }
258
259 static unsigned long do_brk(unsigned long addr, unsigned long len);
260
261 SYSCALL_DEFINE1(brk, unsigned long, brk)
262 {
263         unsigned long rlim, retval;
264         unsigned long newbrk, oldbrk;
265         struct mm_struct *mm = current->mm;
266         unsigned long min_brk;
267         bool populate;
268
269         down_write(&mm->mmap_sem);
270
271 #ifdef CONFIG_COMPAT_BRK
272         /*
273          * CONFIG_COMPAT_BRK can still be overridden by setting
274          * randomize_va_space to 2, which will still cause mm->start_brk
275          * to be arbitrarily shifted
276          */
277         if (current->brk_randomized)
278                 min_brk = mm->start_brk;
279         else
280                 min_brk = mm->end_data;
281 #else
282         min_brk = mm->start_brk;
283 #endif
284         if (brk < min_brk)
285                 goto out;
286
287         /*
288          * Check against rlimit here. If this check is done later after the test
289          * of oldbrk with newbrk then it can escape the test and let the data
290          * segment grow beyond its set limit the in case where the limit is
291          * not page aligned -Ram Gupta
292          */
293         rlim = rlimit(RLIMIT_DATA);
294         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
295                         (mm->end_data - mm->start_data) > rlim)
296                 goto out;
297
298         newbrk = PAGE_ALIGN(brk);
299         oldbrk = PAGE_ALIGN(mm->brk);
300         if (oldbrk == newbrk)
301                 goto set_brk;
302
303         /* Always allow shrinking brk. */
304         if (brk <= mm->brk) {
305                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
306                         goto set_brk;
307                 goto out;
308         }
309
310         /* Check against existing mmap mappings. */
311         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
312                 goto out;
313
314         /* Ok, looks good - let it rip. */
315         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
316                 goto out;
317
318 set_brk:
319         mm->brk = brk;
320         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
321         up_write(&mm->mmap_sem);
322         if (populate)
323                 mm_populate(oldbrk, newbrk - oldbrk);
324         return brk;
325
326 out:
327         retval = mm->brk;
328         up_write(&mm->mmap_sem);
329         return retval;
330 }
331
332 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
333 {
334         unsigned long max, subtree_gap;
335         max = vma->vm_start;
336         if (vma->vm_prev)
337                 max -= vma->vm_prev->vm_end;
338         if (vma->vm_rb.rb_left) {
339                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
340                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
341                 if (subtree_gap > max)
342                         max = subtree_gap;
343         }
344         if (vma->vm_rb.rb_right) {
345                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
346                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
347                 if (subtree_gap > max)
348                         max = subtree_gap;
349         }
350         return max;
351 }
352
353 #ifdef CONFIG_DEBUG_VM_RB
354 static int browse_rb(struct rb_root *root)
355 {
356         int i = 0, j, bug = 0;
357         struct rb_node *nd, *pn = NULL;
358         unsigned long prev = 0, pend = 0;
359
360         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
361                 struct vm_area_struct *vma;
362                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
363                 if (vma->vm_start < prev) {
364                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
365                         bug = 1;
366                 }
367                 if (vma->vm_start < pend) {
368                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
369                         bug = 1;
370                 }
371                 if (vma->vm_start > vma->vm_end) {
372                         printk("vm_end %lx < vm_start %lx\n",
373                                 vma->vm_end, vma->vm_start);
374                         bug = 1;
375                 }
376                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
377                         printk("free gap %lx, correct %lx\n",
378                                vma->rb_subtree_gap,
379                                vma_compute_subtree_gap(vma));
380                         bug = 1;
381                 }
382                 i++;
383                 pn = nd;
384                 prev = vma->vm_start;
385                 pend = vma->vm_end;
386         }
387         j = 0;
388         for (nd = pn; nd; nd = rb_prev(nd))
389                 j++;
390         if (i != j) {
391                 printk("backwards %d, forwards %d\n", j, i);
392                 bug = 1;
393         }
394         return bug ? -1 : i;
395 }
396
397 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
398 {
399         struct rb_node *nd;
400
401         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
402                 struct vm_area_struct *vma;
403                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
404                 BUG_ON(vma != ignore &&
405                        vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
406         }
407 }
408
409 void validate_mm(struct mm_struct *mm)
410 {
411         int bug = 0;
412         int i = 0;
413         unsigned long highest_address = 0;
414         struct vm_area_struct *vma = mm->mmap;
415         while (vma) {
416                 struct anon_vma_chain *avc;
417                 vma_lock_anon_vma(vma);
418                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
419                         anon_vma_interval_tree_verify(avc);
420                 vma_unlock_anon_vma(vma);
421                 highest_address = vma->vm_end;
422                 vma = vma->vm_next;
423                 i++;
424         }
425         if (i != mm->map_count) {
426                 printk("map_count %d vm_next %d\n", mm->map_count, i);
427                 bug = 1;
428         }
429         if (highest_address != mm->highest_vm_end) {
430                 printk("mm->highest_vm_end %lx, found %lx\n",
431                        mm->highest_vm_end, highest_address);
432                 bug = 1;
433         }
434         i = browse_rb(&mm->mm_rb);
435         if (i != mm->map_count) {
436                 printk("map_count %d rb %d\n", mm->map_count, i);
437                 bug = 1;
438         }
439         BUG_ON(bug);
440 }
441 #else
442 #define validate_mm_rb(root, ignore) do { } while (0)
443 #define validate_mm(mm) do { } while (0)
444 #endif
445
446 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
447                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
448
449 /*
450  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
451  * vma->vm_prev->vm_end values changed, without modifying the vma's position
452  * in the rbtree.
453  */
454 static void vma_gap_update(struct vm_area_struct *vma)
455 {
456         /*
457          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
458          * function that does exacltly what we want.
459          */
460         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
461 }
462
463 static inline void vma_rb_insert(struct vm_area_struct *vma,
464                                  struct rb_root *root)
465 {
466         /* All rb_subtree_gap values must be consistent prior to insertion */
467         validate_mm_rb(root, NULL);
468
469         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
470 }
471
472 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
473 {
474         /*
475          * All rb_subtree_gap values must be consistent prior to erase,
476          * with the possible exception of the vma being erased.
477          */
478         validate_mm_rb(root, vma);
479
480         /*
481          * Note rb_erase_augmented is a fairly large inline function,
482          * so make sure we instantiate it only once with our desired
483          * augmented rbtree callbacks.
484          */
485         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
486 }
487
488 /*
489  * vma has some anon_vma assigned, and is already inserted on that
490  * anon_vma's interval trees.
491  *
492  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
493  * vma must be removed from the anon_vma's interval trees using
494  * anon_vma_interval_tree_pre_update_vma().
495  *
496  * After the update, the vma will be reinserted using
497  * anon_vma_interval_tree_post_update_vma().
498  *
499  * The entire update must be protected by exclusive mmap_sem and by
500  * the root anon_vma's mutex.
501  */
502 static inline void
503 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
504 {
505         struct anon_vma_chain *avc;
506
507         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
508                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
509 }
510
511 static inline void
512 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
513 {
514         struct anon_vma_chain *avc;
515
516         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
518 }
519
520 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
521                 unsigned long end, struct vm_area_struct **pprev,
522                 struct rb_node ***rb_link, struct rb_node **rb_parent)
523 {
524         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
525
526         __rb_link = &mm->mm_rb.rb_node;
527         rb_prev = __rb_parent = NULL;
528
529         while (*__rb_link) {
530                 struct vm_area_struct *vma_tmp;
531
532                 __rb_parent = *__rb_link;
533                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
534
535                 if (vma_tmp->vm_end > addr) {
536                         /* Fail if an existing vma overlaps the area */
537                         if (vma_tmp->vm_start < end)
538                                 return -ENOMEM;
539                         __rb_link = &__rb_parent->rb_left;
540                 } else {
541                         rb_prev = __rb_parent;
542                         __rb_link = &__rb_parent->rb_right;
543                 }
544         }
545
546         *pprev = NULL;
547         if (rb_prev)
548                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
549         *rb_link = __rb_link;
550         *rb_parent = __rb_parent;
551         return 0;
552 }
553
554 static unsigned long count_vma_pages_range(struct mm_struct *mm,
555                 unsigned long addr, unsigned long end)
556 {
557         unsigned long nr_pages = 0;
558         struct vm_area_struct *vma;
559
560         /* Find first overlaping mapping */
561         vma = find_vma_intersection(mm, addr, end);
562         if (!vma)
563                 return 0;
564
565         nr_pages = (min(end, vma->vm_end) -
566                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
567
568         /* Iterate over the rest of the overlaps */
569         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
570                 unsigned long overlap_len;
571
572                 if (vma->vm_start > end)
573                         break;
574
575                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
576                 nr_pages += overlap_len >> PAGE_SHIFT;
577         }
578
579         return nr_pages;
580 }
581
582 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
583                 struct rb_node **rb_link, struct rb_node *rb_parent)
584 {
585         /* Update tracking information for the gap following the new vma. */
586         if (vma->vm_next)
587                 vma_gap_update(vma->vm_next);
588         else
589                 mm->highest_vm_end = vma->vm_end;
590
591         /*
592          * vma->vm_prev wasn't known when we followed the rbtree to find the
593          * correct insertion point for that vma. As a result, we could not
594          * update the vma vm_rb parents rb_subtree_gap values on the way down.
595          * So, we first insert the vma with a zero rb_subtree_gap value
596          * (to be consistent with what we did on the way down), and then
597          * immediately update the gap to the correct value. Finally we
598          * rebalance the rbtree after all augmented values have been set.
599          */
600         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
601         vma->rb_subtree_gap = 0;
602         vma_gap_update(vma);
603         vma_rb_insert(vma, &mm->mm_rb);
604 }
605
606 static void __vma_link_file(struct vm_area_struct *vma)
607 {
608         struct file *file;
609
610         file = vma->vm_file;
611         if (file) {
612                 struct address_space *mapping = file->f_mapping;
613
614                 if (vma->vm_flags & VM_DENYWRITE)
615                         atomic_dec(&file_inode(file)->i_writecount);
616                 if (vma->vm_flags & VM_SHARED)
617                         mapping->i_mmap_writable++;
618
619                 flush_dcache_mmap_lock(mapping);
620                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
621                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
622                 else
623                         vma_interval_tree_insert(vma, &mapping->i_mmap);
624                 flush_dcache_mmap_unlock(mapping);
625         }
626 }
627
628 static void
629 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
630         struct vm_area_struct *prev, struct rb_node **rb_link,
631         struct rb_node *rb_parent)
632 {
633         __vma_link_list(mm, vma, prev, rb_parent);
634         __vma_link_rb(mm, vma, rb_link, rb_parent);
635 }
636
637 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638                         struct vm_area_struct *prev, struct rb_node **rb_link,
639                         struct rb_node *rb_parent)
640 {
641         struct address_space *mapping = NULL;
642
643         if (vma->vm_file)
644                 mapping = vma->vm_file->f_mapping;
645
646         if (mapping)
647                 mutex_lock(&mapping->i_mmap_mutex);
648
649         __vma_link(mm, vma, prev, rb_link, rb_parent);
650         __vma_link_file(vma);
651
652         if (mapping)
653                 mutex_unlock(&mapping->i_mmap_mutex);
654
655         mm->map_count++;
656         validate_mm(mm);
657 }
658
659 /*
660  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
661  * mm's list and rbtree.  It has already been inserted into the interval tree.
662  */
663 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
664 {
665         struct vm_area_struct *prev;
666         struct rb_node **rb_link, *rb_parent;
667
668         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
669                            &prev, &rb_link, &rb_parent))
670                 BUG();
671         __vma_link(mm, vma, prev, rb_link, rb_parent);
672         mm->map_count++;
673 }
674
675 static inline void
676 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
677                 struct vm_area_struct *prev)
678 {
679         struct vm_area_struct *next;
680
681         vma_rb_erase(vma, &mm->mm_rb);
682         prev->vm_next = next = vma->vm_next;
683         if (next)
684                 next->vm_prev = prev;
685         if (mm->mmap_cache == vma)
686                 mm->mmap_cache = prev;
687 }
688
689 /*
690  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
691  * is already present in an i_mmap tree without adjusting the tree.
692  * The following helper function should be used when such adjustments
693  * are necessary.  The "insert" vma (if any) is to be inserted
694  * before we drop the necessary locks.
695  */
696 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
697         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
698 {
699         struct mm_struct *mm = vma->vm_mm;
700         struct vm_area_struct *next = vma->vm_next;
701         struct vm_area_struct *importer = NULL;
702         struct address_space *mapping = NULL;
703         struct rb_root *root = NULL;
704         struct anon_vma *anon_vma = NULL;
705         struct file *file = vma->vm_file;
706         bool start_changed = false, end_changed = false;
707         long adjust_next = 0;
708         int remove_next = 0;
709
710         if (next && !insert) {
711                 struct vm_area_struct *exporter = NULL;
712
713                 if (end >= next->vm_end) {
714                         /*
715                          * vma expands, overlapping all the next, and
716                          * perhaps the one after too (mprotect case 6).
717                          */
718 again:                  remove_next = 1 + (end > next->vm_end);
719                         end = next->vm_end;
720                         exporter = next;
721                         importer = vma;
722                 } else if (end > next->vm_start) {
723                         /*
724                          * vma expands, overlapping part of the next:
725                          * mprotect case 5 shifting the boundary up.
726                          */
727                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
728                         exporter = next;
729                         importer = vma;
730                 } else if (end < vma->vm_end) {
731                         /*
732                          * vma shrinks, and !insert tells it's not
733                          * split_vma inserting another: so it must be
734                          * mprotect case 4 shifting the boundary down.
735                          */
736                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
737                         exporter = vma;
738                         importer = next;
739                 }
740
741                 /*
742                  * Easily overlooked: when mprotect shifts the boundary,
743                  * make sure the expanding vma has anon_vma set if the
744                  * shrinking vma had, to cover any anon pages imported.
745                  */
746                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
747                         if (anon_vma_clone(importer, exporter))
748                                 return -ENOMEM;
749                         importer->anon_vma = exporter->anon_vma;
750                 }
751         }
752
753         if (file) {
754                 mapping = file->f_mapping;
755                 if (!(vma->vm_flags & VM_NONLINEAR)) {
756                         root = &mapping->i_mmap;
757                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
758
759                         if (adjust_next)
760                                 uprobe_munmap(next, next->vm_start,
761                                                         next->vm_end);
762                 }
763
764                 mutex_lock(&mapping->i_mmap_mutex);
765                 if (insert) {
766                         /*
767                          * Put into interval tree now, so instantiated pages
768                          * are visible to arm/parisc __flush_dcache_page
769                          * throughout; but we cannot insert into address
770                          * space until vma start or end is updated.
771                          */
772                         __vma_link_file(insert);
773                 }
774         }
775
776         vma_adjust_trans_huge(vma, start, end, adjust_next);
777
778         anon_vma = vma->anon_vma;
779         if (!anon_vma && adjust_next)
780                 anon_vma = next->anon_vma;
781         if (anon_vma) {
782                 VM_BUG_ON(adjust_next && next->anon_vma &&
783                           anon_vma != next->anon_vma);
784                 anon_vma_lock_write(anon_vma);
785                 anon_vma_interval_tree_pre_update_vma(vma);
786                 if (adjust_next)
787                         anon_vma_interval_tree_pre_update_vma(next);
788         }
789
790         if (root) {
791                 flush_dcache_mmap_lock(mapping);
792                 vma_interval_tree_remove(vma, root);
793                 if (adjust_next)
794                         vma_interval_tree_remove(next, root);
795         }
796
797         if (start != vma->vm_start) {
798                 vma->vm_start = start;
799                 start_changed = true;
800         }
801         if (end != vma->vm_end) {
802                 vma->vm_end = end;
803                 end_changed = true;
804         }
805         vma->vm_pgoff = pgoff;
806         if (adjust_next) {
807                 next->vm_start += adjust_next << PAGE_SHIFT;
808                 next->vm_pgoff += adjust_next;
809         }
810
811         if (root) {
812                 if (adjust_next)
813                         vma_interval_tree_insert(next, root);
814                 vma_interval_tree_insert(vma, root);
815                 flush_dcache_mmap_unlock(mapping);
816         }
817
818         if (remove_next) {
819                 /*
820                  * vma_merge has merged next into vma, and needs
821                  * us to remove next before dropping the locks.
822                  */
823                 __vma_unlink(mm, next, vma);
824                 if (file)
825                         __remove_shared_vm_struct(next, file, mapping);
826         } else if (insert) {
827                 /*
828                  * split_vma has split insert from vma, and needs
829                  * us to insert it before dropping the locks
830                  * (it may either follow vma or precede it).
831                  */
832                 __insert_vm_struct(mm, insert);
833         } else {
834                 if (start_changed)
835                         vma_gap_update(vma);
836                 if (end_changed) {
837                         if (!next)
838                                 mm->highest_vm_end = end;
839                         else if (!adjust_next)
840                                 vma_gap_update(next);
841                 }
842         }
843
844         if (anon_vma) {
845                 anon_vma_interval_tree_post_update_vma(vma);
846                 if (adjust_next)
847                         anon_vma_interval_tree_post_update_vma(next);
848                 anon_vma_unlock_write(anon_vma);
849         }
850         if (mapping)
851                 mutex_unlock(&mapping->i_mmap_mutex);
852
853         if (root) {
854                 uprobe_mmap(vma);
855
856                 if (adjust_next)
857                         uprobe_mmap(next);
858         }
859
860         if (remove_next) {
861                 if (file) {
862                         uprobe_munmap(next, next->vm_start, next->vm_end);
863                         fput(file);
864                 }
865                 if (next->anon_vma)
866                         anon_vma_merge(vma, next);
867                 mm->map_count--;
868                 mpol_put(vma_policy(next));
869                 kmem_cache_free(vm_area_cachep, next);
870                 /*
871                  * In mprotect's case 6 (see comments on vma_merge),
872                  * we must remove another next too. It would clutter
873                  * up the code too much to do both in one go.
874                  */
875                 next = vma->vm_next;
876                 if (remove_next == 2)
877                         goto again;
878                 else if (next)
879                         vma_gap_update(next);
880                 else
881                         mm->highest_vm_end = end;
882         }
883         if (insert && file)
884                 uprobe_mmap(insert);
885
886         validate_mm(mm);
887
888         return 0;
889 }
890
891 /*
892  * If the vma has a ->close operation then the driver probably needs to release
893  * per-vma resources, so we don't attempt to merge those.
894  */
895 static inline int is_mergeable_vma(struct vm_area_struct *vma,
896                         struct file *file, unsigned long vm_flags,
897                         const char __user *anon_name)
898 {
899         if (vma->vm_flags ^ vm_flags)
900                 return 0;
901         if (vma->vm_file != file)
902                 return 0;
903         if (vma->vm_ops && vma->vm_ops->close)
904                 return 0;
905         if (vma_get_anon_name(vma) != anon_name)
906                 return 0;
907         return 1;
908 }
909
910 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
911                                         struct anon_vma *anon_vma2,
912                                         struct vm_area_struct *vma)
913 {
914         /*
915          * The list_is_singular() test is to avoid merging VMA cloned from
916          * parents. This can improve scalability caused by anon_vma lock.
917          */
918         if ((!anon_vma1 || !anon_vma2) && (!vma ||
919                 list_is_singular(&vma->anon_vma_chain)))
920                 return 1;
921         return anon_vma1 == anon_vma2;
922 }
923
924 /*
925  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
926  * in front of (at a lower virtual address and file offset than) the vma.
927  *
928  * We cannot merge two vmas if they have differently assigned (non-NULL)
929  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
930  *
931  * We don't check here for the merged mmap wrapping around the end of pagecache
932  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
933  * wrap, nor mmaps which cover the final page at index -1UL.
934  */
935 static int
936 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
937         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff,
938         const char __user *anon_name)
939 {
940         if (is_mergeable_vma(vma, file, vm_flags, anon_name) &&
941             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
942                 if (vma->vm_pgoff == vm_pgoff)
943                         return 1;
944         }
945         return 0;
946 }
947
948 /*
949  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
950  * beyond (at a higher virtual address and file offset than) the vma.
951  *
952  * We cannot merge two vmas if they have differently assigned (non-NULL)
953  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
954  */
955 static int
956 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
957         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff,
958         const char __user *anon_name)
959 {
960         if (is_mergeable_vma(vma, file, vm_flags, anon_name) &&
961             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
962                 pgoff_t vm_pglen;
963                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
964                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
965                         return 1;
966         }
967         return 0;
968 }
969
970 /*
971  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
972  * figure out whether that can be merged with its predecessor or its
973  * successor.  Or both (it neatly fills a hole).
974  *
975  * In most cases - when called for mmap, brk or mremap - [addr,end) is
976  * certain not to be mapped by the time vma_merge is called; but when
977  * called for mprotect, it is certain to be already mapped (either at
978  * an offset within prev, or at the start of next), and the flags of
979  * this area are about to be changed to vm_flags - and the no-change
980  * case has already been eliminated.
981  *
982  * The following mprotect cases have to be considered, where AAAA is
983  * the area passed down from mprotect_fixup, never extending beyond one
984  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
985  *
986  *     AAAA             AAAA                AAAA          AAAA
987  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
988  *    cannot merge    might become    might become    might become
989  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
990  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
991  *    mremap move:                                    PPPPNNNNNNNN 8
992  *        AAAA
993  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
994  *    might become    case 1 below    case 2 below    case 3 below
995  *
996  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
997  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
998  */
999 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1000                         struct vm_area_struct *prev, unsigned long addr,
1001                         unsigned long end, unsigned long vm_flags,
1002                         struct anon_vma *anon_vma, struct file *file,
1003                         pgoff_t pgoff, struct mempolicy *policy,
1004                         const char __user *anon_name)
1005 {
1006         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1007         struct vm_area_struct *area, *next;
1008         int err;
1009
1010         /*
1011          * We later require that vma->vm_flags == vm_flags,
1012          * so this tests vma->vm_flags & VM_SPECIAL, too.
1013          */
1014         if (vm_flags & VM_SPECIAL)
1015                 return NULL;
1016
1017         if (prev)
1018                 next = prev->vm_next;
1019         else
1020                 next = mm->mmap;
1021         area = next;
1022         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1023                 next = next->vm_next;
1024
1025         /*
1026          * Can it merge with the predecessor?
1027          */
1028         if (prev && prev->vm_end == addr &&
1029                         mpol_equal(vma_policy(prev), policy) &&
1030                         can_vma_merge_after(prev, vm_flags, anon_vma,
1031                                                 file, pgoff, anon_name)) {
1032                 /*
1033                  * OK, it can.  Can we now merge in the successor as well?
1034                  */
1035                 if (next && end == next->vm_start &&
1036                                 mpol_equal(policy, vma_policy(next)) &&
1037                                 can_vma_merge_before(next, vm_flags, anon_vma,
1038                                                 file, pgoff+pglen, anon_name) &&
1039                                 is_mergeable_anon_vma(prev->anon_vma,
1040                                                       next->anon_vma, NULL)) {
1041                                                         /* cases 1, 6 */
1042                         err = vma_adjust(prev, prev->vm_start,
1043                                 next->vm_end, prev->vm_pgoff, NULL);
1044                 } else                                  /* cases 2, 5, 7 */
1045                         err = vma_adjust(prev, prev->vm_start,
1046                                 end, prev->vm_pgoff, NULL);
1047                 if (err)
1048                         return NULL;
1049                 khugepaged_enter_vma_merge(prev);
1050                 return prev;
1051         }
1052
1053         /*
1054          * Can this new request be merged in front of next?
1055          */
1056         if (next && end == next->vm_start &&
1057                         mpol_equal(policy, vma_policy(next)) &&
1058                         can_vma_merge_before(next, vm_flags, anon_vma,
1059                                         file, pgoff+pglen, anon_name)) {
1060                 if (prev && addr < prev->vm_end)        /* case 4 */
1061                         err = vma_adjust(prev, prev->vm_start,
1062                                 addr, prev->vm_pgoff, NULL);
1063                 else                                    /* cases 3, 8 */
1064                         err = vma_adjust(area, addr, next->vm_end,
1065                                 next->vm_pgoff - pglen, NULL);
1066                 if (err)
1067                         return NULL;
1068                 khugepaged_enter_vma_merge(area);
1069                 return area;
1070         }
1071
1072         return NULL;
1073 }
1074
1075 /*
1076  * Rough compatbility check to quickly see if it's even worth looking
1077  * at sharing an anon_vma.
1078  *
1079  * They need to have the same vm_file, and the flags can only differ
1080  * in things that mprotect may change.
1081  *
1082  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1083  * we can merge the two vma's. For example, we refuse to merge a vma if
1084  * there is a vm_ops->close() function, because that indicates that the
1085  * driver is doing some kind of reference counting. But that doesn't
1086  * really matter for the anon_vma sharing case.
1087  */
1088 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1089 {
1090         return a->vm_end == b->vm_start &&
1091                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1092                 a->vm_file == b->vm_file &&
1093                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1094                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1095 }
1096
1097 /*
1098  * Do some basic sanity checking to see if we can re-use the anon_vma
1099  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1100  * the same as 'old', the other will be the new one that is trying
1101  * to share the anon_vma.
1102  *
1103  * NOTE! This runs with mm_sem held for reading, so it is possible that
1104  * the anon_vma of 'old' is concurrently in the process of being set up
1105  * by another page fault trying to merge _that_. But that's ok: if it
1106  * is being set up, that automatically means that it will be a singleton
1107  * acceptable for merging, so we can do all of this optimistically. But
1108  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1109  *
1110  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1111  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1112  * is to return an anon_vma that is "complex" due to having gone through
1113  * a fork).
1114  *
1115  * We also make sure that the two vma's are compatible (adjacent,
1116  * and with the same memory policies). That's all stable, even with just
1117  * a read lock on the mm_sem.
1118  */
1119 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1120 {
1121         if (anon_vma_compatible(a, b)) {
1122                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1123
1124                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1125                         return anon_vma;
1126         }
1127         return NULL;
1128 }
1129
1130 /*
1131  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1132  * neighbouring vmas for a suitable anon_vma, before it goes off
1133  * to allocate a new anon_vma.  It checks because a repetitive
1134  * sequence of mprotects and faults may otherwise lead to distinct
1135  * anon_vmas being allocated, preventing vma merge in subsequent
1136  * mprotect.
1137  */
1138 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1139 {
1140         struct anon_vma *anon_vma;
1141         struct vm_area_struct *near;
1142
1143         near = vma->vm_next;
1144         if (!near)
1145                 goto try_prev;
1146
1147         anon_vma = reusable_anon_vma(near, vma, near);
1148         if (anon_vma)
1149                 return anon_vma;
1150 try_prev:
1151         near = vma->vm_prev;
1152         if (!near)
1153                 goto none;
1154
1155         anon_vma = reusable_anon_vma(near, near, vma);
1156         if (anon_vma)
1157                 return anon_vma;
1158 none:
1159         /*
1160          * There's no absolute need to look only at touching neighbours:
1161          * we could search further afield for "compatible" anon_vmas.
1162          * But it would probably just be a waste of time searching,
1163          * or lead to too many vmas hanging off the same anon_vma.
1164          * We're trying to allow mprotect remerging later on,
1165          * not trying to minimize memory used for anon_vmas.
1166          */
1167         return NULL;
1168 }
1169
1170 #ifdef CONFIG_PROC_FS
1171 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1172                                                 struct file *file, long pages)
1173 {
1174         const unsigned long stack_flags
1175                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1176
1177         mm->total_vm += pages;
1178
1179         if (file) {
1180                 mm->shared_vm += pages;
1181                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1182                         mm->exec_vm += pages;
1183         } else if (flags & stack_flags)
1184                 mm->stack_vm += pages;
1185 }
1186 #endif /* CONFIG_PROC_FS */
1187
1188 /*
1189  * If a hint addr is less than mmap_min_addr change hint to be as
1190  * low as possible but still greater than mmap_min_addr
1191  */
1192 static inline unsigned long round_hint_to_min(unsigned long hint)
1193 {
1194         hint &= PAGE_MASK;
1195         if (((void *)hint != NULL) &&
1196             (hint < mmap_min_addr))
1197                 return PAGE_ALIGN(mmap_min_addr);
1198         return hint;
1199 }
1200
1201 /*
1202  * The caller must hold down_write(&current->mm->mmap_sem).
1203  */
1204
1205 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1206                         unsigned long len, unsigned long prot,
1207                         unsigned long flags, unsigned long pgoff,
1208                         unsigned long *populate)
1209 {
1210         struct mm_struct * mm = current->mm;
1211         struct inode *inode;
1212         vm_flags_t vm_flags;
1213
1214         *populate = 0;
1215
1216         /*
1217          * Does the application expect PROT_READ to imply PROT_EXEC?
1218          *
1219          * (the exception is when the underlying filesystem is noexec
1220          *  mounted, in which case we dont add PROT_EXEC.)
1221          */
1222         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1223                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1224                         prot |= PROT_EXEC;
1225
1226         if (!len)
1227                 return -EINVAL;
1228
1229         if (!(flags & MAP_FIXED))
1230                 addr = round_hint_to_min(addr);
1231
1232         /* Careful about overflows.. */
1233         len = PAGE_ALIGN(len);
1234         if (!len)
1235                 return -ENOMEM;
1236
1237         /* offset overflow? */
1238         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1239                return -EOVERFLOW;
1240
1241         /* Too many mappings? */
1242         if (mm->map_count > sysctl_max_map_count)
1243                 return -ENOMEM;
1244
1245         /* Obtain the address to map to. we verify (or select) it and ensure
1246          * that it represents a valid section of the address space.
1247          */
1248         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1249         if (addr & ~PAGE_MASK)
1250                 return addr;
1251
1252         /* Do simple checking here so the lower-level routines won't have
1253          * to. we assume access permissions have been handled by the open
1254          * of the memory object, so we don't do any here.
1255          */
1256         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1257                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1258
1259         if (flags & MAP_LOCKED)
1260                 if (!can_do_mlock())
1261                         return -EPERM;
1262
1263         /* mlock MCL_FUTURE? */
1264         if (vm_flags & VM_LOCKED) {
1265                 unsigned long locked, lock_limit;
1266                 locked = len >> PAGE_SHIFT;
1267                 locked += mm->locked_vm;
1268                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1269                 lock_limit >>= PAGE_SHIFT;
1270                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1271                         return -EAGAIN;
1272         }
1273
1274         inode = file ? file_inode(file) : NULL;
1275
1276         if (file) {
1277                 switch (flags & MAP_TYPE) {
1278                 case MAP_SHARED:
1279                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1280                                 return -EACCES;
1281
1282                         /*
1283                          * Make sure we don't allow writing to an append-only
1284                          * file..
1285                          */
1286                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1287                                 return -EACCES;
1288
1289                         /*
1290                          * Make sure there are no mandatory locks on the file.
1291                          */
1292                         if (locks_verify_locked(inode))
1293                                 return -EAGAIN;
1294
1295                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1296                         if (!(file->f_mode & FMODE_WRITE))
1297                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1298
1299                         /* fall through */
1300                 case MAP_PRIVATE:
1301                         if (!(file->f_mode & FMODE_READ))
1302                                 return -EACCES;
1303                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1304                                 if (vm_flags & VM_EXEC)
1305                                         return -EPERM;
1306                                 vm_flags &= ~VM_MAYEXEC;
1307                         }
1308
1309                         if (!file->f_op || !file->f_op->mmap)
1310                                 return -ENODEV;
1311                         break;
1312
1313                 default:
1314                         return -EINVAL;
1315                 }
1316         } else {
1317                 switch (flags & MAP_TYPE) {
1318                 case MAP_SHARED:
1319                         /*
1320                          * Ignore pgoff.
1321                          */
1322                         pgoff = 0;
1323                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1324                         break;
1325                 case MAP_PRIVATE:
1326                         /*
1327                          * Set pgoff according to addr for anon_vma.
1328                          */
1329                         pgoff = addr >> PAGE_SHIFT;
1330                         break;
1331                 default:
1332                         return -EINVAL;
1333                 }
1334         }
1335
1336         /*
1337          * Set 'VM_NORESERVE' if we should not account for the
1338          * memory use of this mapping.
1339          */
1340         if (flags & MAP_NORESERVE) {
1341                 /* We honor MAP_NORESERVE if allowed to overcommit */
1342                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1343                         vm_flags |= VM_NORESERVE;
1344
1345                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1346                 if (file && is_file_hugepages(file))
1347                         vm_flags |= VM_NORESERVE;
1348         }
1349
1350         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1351         if (!IS_ERR_VALUE(addr) &&
1352             ((vm_flags & VM_LOCKED) ||
1353              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1354                 *populate = len;
1355         return addr;
1356 }
1357
1358 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1359                 unsigned long, prot, unsigned long, flags,
1360                 unsigned long, fd, unsigned long, pgoff)
1361 {
1362         struct file *file = NULL;
1363         unsigned long retval = -EBADF;
1364
1365         if (!(flags & MAP_ANONYMOUS)) {
1366                 audit_mmap_fd(fd, flags);
1367                 if (unlikely(flags & MAP_HUGETLB))
1368                         return -EINVAL;
1369                 file = fget(fd);
1370                 if (!file)
1371                         goto out;
1372                 if (is_file_hugepages(file))
1373                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1374         } else if (flags & MAP_HUGETLB) {
1375                 struct user_struct *user = NULL;
1376                 struct hstate *hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) &
1377                                                    SHM_HUGE_MASK);
1378
1379                 if (!hs)
1380                         return -EINVAL;
1381
1382                 len = ALIGN(len, huge_page_size(hs));
1383                 /*
1384                  * VM_NORESERVE is used because the reservations will be
1385                  * taken when vm_ops->mmap() is called
1386                  * A dummy user value is used because we are not locking
1387                  * memory so no accounting is necessary
1388                  */
1389                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1390                                 VM_NORESERVE,
1391                                 &user, HUGETLB_ANONHUGE_INODE,
1392                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1393                 if (IS_ERR(file))
1394                         return PTR_ERR(file);
1395         }
1396
1397         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1398
1399         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1400         if (file)
1401                 fput(file);
1402 out:
1403         return retval;
1404 }
1405
1406 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1407 struct mmap_arg_struct {
1408         unsigned long addr;
1409         unsigned long len;
1410         unsigned long prot;
1411         unsigned long flags;
1412         unsigned long fd;
1413         unsigned long offset;
1414 };
1415
1416 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1417 {
1418         struct mmap_arg_struct a;
1419
1420         if (copy_from_user(&a, arg, sizeof(a)))
1421                 return -EFAULT;
1422         if (a.offset & ~PAGE_MASK)
1423                 return -EINVAL;
1424
1425         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1426                               a.offset >> PAGE_SHIFT);
1427 }
1428 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1429
1430 /*
1431  * Some shared mappigns will want the pages marked read-only
1432  * to track write events. If so, we'll downgrade vm_page_prot
1433  * to the private version (using protection_map[] without the
1434  * VM_SHARED bit).
1435  */
1436 int vma_wants_writenotify(struct vm_area_struct *vma)
1437 {
1438         vm_flags_t vm_flags = vma->vm_flags;
1439
1440         /* If it was private or non-writable, the write bit is already clear */
1441         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1442                 return 0;
1443
1444         /* The backer wishes to know when pages are first written to? */
1445         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1446                 return 1;
1447
1448         /* The open routine did something to the protections already? */
1449         if (pgprot_val(vma->vm_page_prot) !=
1450             pgprot_val(vm_get_page_prot(vm_flags)))
1451                 return 0;
1452
1453         /* Specialty mapping? */
1454         if (vm_flags & VM_PFNMAP)
1455                 return 0;
1456
1457         /* Can the mapping track the dirty pages? */
1458         return vma->vm_file && vma->vm_file->f_mapping &&
1459                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1460 }
1461
1462 /*
1463  * We account for memory if it's a private writeable mapping,
1464  * not hugepages and VM_NORESERVE wasn't set.
1465  */
1466 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1467 {
1468         /*
1469          * hugetlb has its own accounting separate from the core VM
1470          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1471          */
1472         if (file && is_file_hugepages(file))
1473                 return 0;
1474
1475         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1476 }
1477
1478 unsigned long mmap_region(struct file *file, unsigned long addr,
1479                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1480 {
1481         struct mm_struct *mm = current->mm;
1482         struct vm_area_struct *vma, *prev;
1483         int correct_wcount = 0;
1484         int error;
1485         struct rb_node **rb_link, *rb_parent;
1486         unsigned long charged = 0;
1487         struct inode *inode =  file ? file_inode(file) : NULL;
1488
1489         /* Check against address space limit. */
1490         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1491                 unsigned long nr_pages;
1492
1493                 /*
1494                  * MAP_FIXED may remove pages of mappings that intersects with
1495                  * requested mapping. Account for the pages it would unmap.
1496                  */
1497                 if (!(vm_flags & MAP_FIXED))
1498                         return -ENOMEM;
1499
1500                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1501
1502                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1503                         return -ENOMEM;
1504         }
1505
1506         /* Clear old maps */
1507         error = -ENOMEM;
1508 munmap_back:
1509         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1510                 if (do_munmap(mm, addr, len))
1511                         return -ENOMEM;
1512                 goto munmap_back;
1513         }
1514
1515         /*
1516          * Private writable mapping: check memory availability
1517          */
1518         if (accountable_mapping(file, vm_flags)) {
1519                 charged = len >> PAGE_SHIFT;
1520                 if (security_vm_enough_memory_mm(mm, charged))
1521                         return -ENOMEM;
1522                 vm_flags |= VM_ACCOUNT;
1523         }
1524
1525         /*
1526          * Can we just expand an old mapping?
1527          */
1528         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff,
1529                         NULL, NULL);
1530         if (vma)
1531                 goto out;
1532
1533         /*
1534          * Determine the object being mapped and call the appropriate
1535          * specific mapper. the address has already been validated, but
1536          * not unmapped, but the maps are removed from the list.
1537          */
1538         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1539         if (!vma) {
1540                 error = -ENOMEM;
1541                 goto unacct_error;
1542         }
1543
1544         vma->vm_mm = mm;
1545         vma->vm_start = addr;
1546         vma->vm_end = addr + len;
1547         vma->vm_flags = vm_flags;
1548         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1549         vma->vm_pgoff = pgoff;
1550         INIT_LIST_HEAD(&vma->anon_vma_chain);
1551
1552         error = -EINVAL;        /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1553
1554         if (file) {
1555                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1556                         goto free_vma;
1557                 if (vm_flags & VM_DENYWRITE) {
1558                         error = deny_write_access(file);
1559                         if (error)
1560                                 goto free_vma;
1561                         correct_wcount = 1;
1562                 }
1563                 vma->vm_file = get_file(file);
1564                 error = file->f_op->mmap(file, vma);
1565                 if (error)
1566                         goto unmap_and_free_vma;
1567
1568                 /* Can addr have changed??
1569                  *
1570                  * Answer: Yes, several device drivers can do it in their
1571                  *         f_op->mmap method. -DaveM
1572                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1573                  *      be updated for vma_link()
1574                  */
1575                 WARN_ON_ONCE(addr != vma->vm_start);
1576
1577                 addr = vma->vm_start;
1578                 pgoff = vma->vm_pgoff;
1579                 vm_flags = vma->vm_flags;
1580         } else if (vm_flags & VM_SHARED) {
1581                 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1582                         goto free_vma;
1583                 error = shmem_zero_setup(vma);
1584                 if (error)
1585                         goto free_vma;
1586         }
1587
1588         if (vma_wants_writenotify(vma)) {
1589                 pgprot_t pprot = vma->vm_page_prot;
1590
1591                 /* Can vma->vm_page_prot have changed??
1592                  *
1593                  * Answer: Yes, drivers may have changed it in their
1594                  *         f_op->mmap method.
1595                  *
1596                  * Ensures that vmas marked as uncached stay that way.
1597                  */
1598                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1599                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1600                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1601         }
1602
1603         vma_link(mm, vma, prev, rb_link, rb_parent);
1604         file = vma->vm_file;
1605
1606         /* Once vma denies write, undo our temporary denial count */
1607         if (correct_wcount)
1608                 atomic_inc(&inode->i_writecount);
1609 out:
1610         perf_event_mmap(vma);
1611
1612         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1613         if (vm_flags & VM_LOCKED) {
1614                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1615                                         vma == get_gate_vma(current->mm)))
1616                         mm->locked_vm += (len >> PAGE_SHIFT);
1617                 else
1618                         vma->vm_flags &= ~VM_LOCKED;
1619         }
1620
1621         if (file)
1622                 uprobe_mmap(vma);
1623
1624         return addr;
1625
1626 unmap_and_free_vma:
1627         if (correct_wcount)
1628                 atomic_inc(&inode->i_writecount);
1629         vma->vm_file = NULL;
1630         fput(file);
1631
1632         /* Undo any partial mapping done by a device driver. */
1633         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1634         charged = 0;
1635 free_vma:
1636         kmem_cache_free(vm_area_cachep, vma);
1637 unacct_error:
1638         if (charged)
1639                 vm_unacct_memory(charged);
1640         return error;
1641 }
1642
1643 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1644 {
1645         /*
1646          * We implement the search by looking for an rbtree node that
1647          * immediately follows a suitable gap. That is,
1648          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1649          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1650          * - gap_end - gap_start >= length
1651          */
1652
1653         struct mm_struct *mm = current->mm;
1654         struct vm_area_struct *vma;
1655         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1656
1657         /* Adjust search length to account for worst case alignment overhead */
1658         length = info->length + info->align_mask;
1659         if (length < info->length)
1660                 return -ENOMEM;
1661
1662         /* Adjust search limits by the desired length */
1663         if (info->high_limit < length)
1664                 return -ENOMEM;
1665         high_limit = info->high_limit - length;
1666
1667         if (info->low_limit > high_limit)
1668                 return -ENOMEM;
1669         low_limit = info->low_limit + length;
1670
1671         /* Check if rbtree root looks promising */
1672         if (RB_EMPTY_ROOT(&mm->mm_rb))
1673                 goto check_highest;
1674         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1675         if (vma->rb_subtree_gap < length)
1676                 goto check_highest;
1677
1678         while (true) {
1679                 /* Visit left subtree if it looks promising */
1680                 gap_end = vma->vm_start;
1681                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1682                         struct vm_area_struct *left =
1683                                 rb_entry(vma->vm_rb.rb_left,
1684                                          struct vm_area_struct, vm_rb);
1685                         if (left->rb_subtree_gap >= length) {
1686                                 vma = left;
1687                                 continue;
1688                         }
1689                 }
1690
1691                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1692 check_current:
1693                 /* Check if current node has a suitable gap */
1694                 if (gap_start > high_limit)
1695                         return -ENOMEM;
1696                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1697                         goto found;
1698
1699                 /* Visit right subtree if it looks promising */
1700                 if (vma->vm_rb.rb_right) {
1701                         struct vm_area_struct *right =
1702                                 rb_entry(vma->vm_rb.rb_right,
1703                                          struct vm_area_struct, vm_rb);
1704                         if (right->rb_subtree_gap >= length) {
1705                                 vma = right;
1706                                 continue;
1707                         }
1708                 }
1709
1710                 /* Go back up the rbtree to find next candidate node */
1711                 while (true) {
1712                         struct rb_node *prev = &vma->vm_rb;
1713                         if (!rb_parent(prev))
1714                                 goto check_highest;
1715                         vma = rb_entry(rb_parent(prev),
1716                                        struct vm_area_struct, vm_rb);
1717                         if (prev == vma->vm_rb.rb_left) {
1718                                 gap_start = vma->vm_prev->vm_end;
1719                                 gap_end = vma->vm_start;
1720                                 goto check_current;
1721                         }
1722                 }
1723         }
1724
1725 check_highest:
1726         /* Check highest gap, which does not precede any rbtree node */
1727         gap_start = mm->highest_vm_end;
1728         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1729         if (gap_start > high_limit)
1730                 return -ENOMEM;
1731
1732 found:
1733         /* We found a suitable gap. Clip it with the original low_limit. */
1734         if (gap_start < info->low_limit)
1735                 gap_start = info->low_limit;
1736
1737         /* Adjust gap address to the desired alignment */
1738         gap_start += (info->align_offset - gap_start) & info->align_mask;
1739
1740         VM_BUG_ON(gap_start + info->length > info->high_limit);
1741         VM_BUG_ON(gap_start + info->length > gap_end);
1742         return gap_start;
1743 }
1744
1745 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1746 {
1747         struct mm_struct *mm = current->mm;
1748         struct vm_area_struct *vma;
1749         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1750
1751         /* Adjust search length to account for worst case alignment overhead */
1752         length = info->length + info->align_mask;
1753         if (length < info->length)
1754                 return -ENOMEM;
1755
1756         /*
1757          * Adjust search limits by the desired length.
1758          * See implementation comment at top of unmapped_area().
1759          */
1760         gap_end = info->high_limit;
1761         if (gap_end < length)
1762                 return -ENOMEM;
1763         high_limit = gap_end - length;
1764
1765         if (info->low_limit > high_limit)
1766                 return -ENOMEM;
1767         low_limit = info->low_limit + length;
1768
1769         /* Check highest gap, which does not precede any rbtree node */
1770         gap_start = mm->highest_vm_end;
1771         if (gap_start <= high_limit)
1772                 goto found_highest;
1773
1774         /* Check if rbtree root looks promising */
1775         if (RB_EMPTY_ROOT(&mm->mm_rb))
1776                 return -ENOMEM;
1777         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1778         if (vma->rb_subtree_gap < length)
1779                 return -ENOMEM;
1780
1781         while (true) {
1782                 /* Visit right subtree if it looks promising */
1783                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1784                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1785                         struct vm_area_struct *right =
1786                                 rb_entry(vma->vm_rb.rb_right,
1787                                          struct vm_area_struct, vm_rb);
1788                         if (right->rb_subtree_gap >= length) {
1789                                 vma = right;
1790                                 continue;
1791                         }
1792                 }
1793
1794 check_current:
1795                 /* Check if current node has a suitable gap */
1796                 gap_end = vma->vm_start;
1797                 if (gap_end < low_limit)
1798                         return -ENOMEM;
1799                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1800                         goto found;
1801
1802                 /* Visit left subtree if it looks promising */
1803                 if (vma->vm_rb.rb_left) {
1804                         struct vm_area_struct *left =
1805                                 rb_entry(vma->vm_rb.rb_left,
1806                                          struct vm_area_struct, vm_rb);
1807                         if (left->rb_subtree_gap >= length) {
1808                                 vma = left;
1809                                 continue;
1810                         }
1811                 }
1812
1813                 /* Go back up the rbtree to find next candidate node */
1814                 while (true) {
1815                         struct rb_node *prev = &vma->vm_rb;
1816                         if (!rb_parent(prev))
1817                                 return -ENOMEM;
1818                         vma = rb_entry(rb_parent(prev),
1819                                        struct vm_area_struct, vm_rb);
1820                         if (prev == vma->vm_rb.rb_right) {
1821                                 gap_start = vma->vm_prev ?
1822                                         vma->vm_prev->vm_end : 0;
1823                                 goto check_current;
1824                         }
1825                 }
1826         }
1827
1828 found:
1829         /* We found a suitable gap. Clip it with the original high_limit. */
1830         if (gap_end > info->high_limit)
1831                 gap_end = info->high_limit;
1832
1833 found_highest:
1834         /* Compute highest gap address at the desired alignment */
1835         gap_end -= info->length;
1836         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1837
1838         VM_BUG_ON(gap_end < info->low_limit);
1839         VM_BUG_ON(gap_end < gap_start);
1840         return gap_end;
1841 }
1842
1843 /* Get an address range which is currently unmapped.
1844  * For shmat() with addr=0.
1845  *
1846  * Ugly calling convention alert:
1847  * Return value with the low bits set means error value,
1848  * ie
1849  *      if (ret & ~PAGE_MASK)
1850  *              error = ret;
1851  *
1852  * This function "knows" that -ENOMEM has the bits set.
1853  */
1854 #ifndef HAVE_ARCH_UNMAPPED_AREA
1855 unsigned long
1856 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1857                 unsigned long len, unsigned long pgoff, unsigned long flags)
1858 {
1859         struct mm_struct *mm = current->mm;
1860         struct vm_area_struct *vma;
1861         struct vm_unmapped_area_info info;
1862
1863         if (len > TASK_SIZE - mmap_min_addr)
1864                 return -ENOMEM;
1865
1866         if (flags & MAP_FIXED)
1867                 return addr;
1868
1869         if (addr) {
1870                 addr = PAGE_ALIGN(addr);
1871                 vma = find_vma(mm, addr);
1872                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1873                     (!vma || addr + len <= vma->vm_start))
1874                         return addr;
1875         }
1876
1877         info.flags = 0;
1878         info.length = len;
1879         info.low_limit = TASK_UNMAPPED_BASE;
1880         info.high_limit = TASK_SIZE;
1881         info.align_mask = 0;
1882         return vm_unmapped_area(&info);
1883 }
1884 #endif  
1885
1886 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1887 {
1888         /*
1889          * Is this a new hole at the lowest possible address?
1890          */
1891         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1892                 mm->free_area_cache = addr;
1893 }
1894
1895 /*
1896  * This mmap-allocator allocates new areas top-down from below the
1897  * stack's low limit (the base):
1898  */
1899 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1900 unsigned long
1901 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1902                           const unsigned long len, const unsigned long pgoff,
1903                           const unsigned long flags)
1904 {
1905         struct vm_area_struct *vma;
1906         struct mm_struct *mm = current->mm;
1907         unsigned long addr = addr0;
1908         struct vm_unmapped_area_info info;
1909
1910         /* requested length too big for entire address space */
1911         if (len > TASK_SIZE - mmap_min_addr)
1912                 return -ENOMEM;
1913
1914         if (flags & MAP_FIXED)
1915                 return addr;
1916
1917         /* requesting a specific address */
1918         if (addr) {
1919                 addr = PAGE_ALIGN(addr);
1920                 vma = find_vma(mm, addr);
1921                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1922                                 (!vma || addr + len <= vma->vm_start))
1923                         return addr;
1924         }
1925
1926         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1927         info.length = len;
1928         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1929         info.high_limit = mm->mmap_base;
1930         info.align_mask = 0;
1931         addr = vm_unmapped_area(&info);
1932
1933         /*
1934          * A failed mmap() very likely causes application failure,
1935          * so fall back to the bottom-up function here. This scenario
1936          * can happen with large stack limits and large mmap()
1937          * allocations.
1938          */
1939         if (addr & ~PAGE_MASK) {
1940                 VM_BUG_ON(addr != -ENOMEM);
1941                 info.flags = 0;
1942                 info.low_limit = TASK_UNMAPPED_BASE;
1943                 info.high_limit = TASK_SIZE;
1944                 addr = vm_unmapped_area(&info);
1945         }
1946
1947         return addr;
1948 }
1949 #endif
1950
1951 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1952 {
1953         /*
1954          * Is this a new hole at the highest possible address?
1955          */
1956         if (addr > mm->free_area_cache)
1957                 mm->free_area_cache = addr;
1958
1959         /* dont allow allocations above current base */
1960         if (mm->free_area_cache > mm->mmap_base)
1961                 mm->free_area_cache = mm->mmap_base;
1962 }
1963
1964 unsigned long
1965 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1966                 unsigned long pgoff, unsigned long flags)
1967 {
1968         unsigned long (*get_area)(struct file *, unsigned long,
1969                                   unsigned long, unsigned long, unsigned long);
1970
1971         unsigned long error = arch_mmap_check(addr, len, flags);
1972         if (error)
1973                 return error;
1974
1975         /* Careful about overflows.. */
1976         if (len > TASK_SIZE)
1977                 return -ENOMEM;
1978
1979         get_area = current->mm->get_unmapped_area;
1980         if (file && file->f_op && file->f_op->get_unmapped_area)
1981                 get_area = file->f_op->get_unmapped_area;
1982         addr = get_area(file, addr, len, pgoff, flags);
1983         if (IS_ERR_VALUE(addr))
1984                 return addr;
1985
1986         if (addr > TASK_SIZE - len)
1987                 return -ENOMEM;
1988         if (addr & ~PAGE_MASK)
1989                 return -EINVAL;
1990
1991         addr = arch_rebalance_pgtables(addr, len);
1992         error = security_mmap_addr(addr);
1993         return error ? error : addr;
1994 }
1995
1996 EXPORT_SYMBOL(get_unmapped_area);
1997
1998 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1999 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2000 {
2001         struct vm_area_struct *vma = NULL;
2002
2003         /* Check the cache first. */
2004         /* (Cache hit rate is typically around 35%.) */
2005         vma = ACCESS_ONCE(mm->mmap_cache);
2006         if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
2007                 struct rb_node *rb_node;
2008
2009                 rb_node = mm->mm_rb.rb_node;
2010                 vma = NULL;
2011
2012                 while (rb_node) {
2013                         struct vm_area_struct *vma_tmp;
2014
2015                         vma_tmp = rb_entry(rb_node,
2016                                            struct vm_area_struct, vm_rb);
2017
2018                         if (vma_tmp->vm_end > addr) {
2019                                 vma = vma_tmp;
2020                                 if (vma_tmp->vm_start <= addr)
2021                                         break;
2022                                 rb_node = rb_node->rb_left;
2023                         } else
2024                                 rb_node = rb_node->rb_right;
2025                 }
2026                 if (vma)
2027                         mm->mmap_cache = vma;
2028         }
2029         return vma;
2030 }
2031
2032 EXPORT_SYMBOL(find_vma);
2033
2034 /*
2035  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2036  */
2037 struct vm_area_struct *
2038 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2039                         struct vm_area_struct **pprev)
2040 {
2041         struct vm_area_struct *vma;
2042
2043         vma = find_vma(mm, addr);
2044         if (vma) {
2045                 *pprev = vma->vm_prev;
2046         } else {
2047                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2048                 *pprev = NULL;
2049                 while (rb_node) {
2050                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2051                         rb_node = rb_node->rb_right;
2052                 }
2053         }
2054         return vma;
2055 }
2056
2057 /*
2058  * Verify that the stack growth is acceptable and
2059  * update accounting. This is shared with both the
2060  * grow-up and grow-down cases.
2061  */
2062 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2063 {
2064         struct mm_struct *mm = vma->vm_mm;
2065         struct rlimit *rlim = current->signal->rlim;
2066         unsigned long new_start, actual_size;
2067
2068         /* address space limit tests */
2069         if (!may_expand_vm(mm, grow))
2070                 return -ENOMEM;
2071
2072         /* Stack limit test */
2073         actual_size = size;
2074         if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2075                 actual_size -= PAGE_SIZE;
2076         if (actual_size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2077                 return -ENOMEM;
2078
2079         /* mlock limit tests */
2080         if (vma->vm_flags & VM_LOCKED) {
2081                 unsigned long locked;
2082                 unsigned long limit;
2083                 locked = mm->locked_vm + grow;
2084                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2085                 limit >>= PAGE_SHIFT;
2086                 if (locked > limit && !capable(CAP_IPC_LOCK))
2087                         return -ENOMEM;
2088         }
2089
2090         /* Check to ensure the stack will not grow into a hugetlb-only region */
2091         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2092                         vma->vm_end - size;
2093         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2094                 return -EFAULT;
2095
2096         /*
2097          * Overcommit..  This must be the final test, as it will
2098          * update security statistics.
2099          */
2100         if (security_vm_enough_memory_mm(mm, grow))
2101                 return -ENOMEM;
2102
2103         /* Ok, everything looks good - let it rip */
2104         if (vma->vm_flags & VM_LOCKED)
2105                 mm->locked_vm += grow;
2106         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2107         return 0;
2108 }
2109
2110 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2111 /*
2112  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2113  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2114  */
2115 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2116 {
2117         int error;
2118
2119         if (!(vma->vm_flags & VM_GROWSUP))
2120                 return -EFAULT;
2121
2122         /*
2123          * We must make sure the anon_vma is allocated
2124          * so that the anon_vma locking is not a noop.
2125          */
2126         if (unlikely(anon_vma_prepare(vma)))
2127                 return -ENOMEM;
2128         vma_lock_anon_vma(vma);
2129
2130         /*
2131          * vma->vm_start/vm_end cannot change under us because the caller
2132          * is required to hold the mmap_sem in read mode.  We need the
2133          * anon_vma lock to serialize against concurrent expand_stacks.
2134          * Also guard against wrapping around to address 0.
2135          */
2136         if (address < PAGE_ALIGN(address+4))
2137                 address = PAGE_ALIGN(address+4);
2138         else {
2139                 vma_unlock_anon_vma(vma);
2140                 return -ENOMEM;
2141         }
2142         error = 0;
2143
2144         /* Somebody else might have raced and expanded it already */
2145         if (address > vma->vm_end) {
2146                 unsigned long size, grow;
2147
2148                 size = address - vma->vm_start;
2149                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2150
2151                 error = -ENOMEM;
2152                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2153                         error = acct_stack_growth(vma, size, grow);
2154                         if (!error) {
2155                                 /*
2156                                  * vma_gap_update() doesn't support concurrent
2157                                  * updates, but we only hold a shared mmap_sem
2158                                  * lock here, so we need to protect against
2159                                  * concurrent vma expansions.
2160                                  * vma_lock_anon_vma() doesn't help here, as
2161                                  * we don't guarantee that all growable vmas
2162                                  * in a mm share the same root anon vma.
2163                                  * So, we reuse mm->page_table_lock to guard
2164                                  * against concurrent vma expansions.
2165                                  */
2166                                 spin_lock(&vma->vm_mm->page_table_lock);
2167                                 anon_vma_interval_tree_pre_update_vma(vma);
2168                                 vma->vm_end = address;
2169                                 anon_vma_interval_tree_post_update_vma(vma);
2170                                 if (vma->vm_next)
2171                                         vma_gap_update(vma->vm_next);
2172                                 else
2173                                         vma->vm_mm->highest_vm_end = address;
2174                                 spin_unlock(&vma->vm_mm->page_table_lock);
2175
2176                                 perf_event_mmap(vma);
2177                         }
2178                 }
2179         }
2180         vma_unlock_anon_vma(vma);
2181         khugepaged_enter_vma_merge(vma);
2182         validate_mm(vma->vm_mm);
2183         return error;
2184 }
2185 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2186
2187 /*
2188  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2189  */
2190 int expand_downwards(struct vm_area_struct *vma,
2191                                    unsigned long address)
2192 {
2193         int error;
2194
2195         /*
2196          * We must make sure the anon_vma is allocated
2197          * so that the anon_vma locking is not a noop.
2198          */
2199         if (unlikely(anon_vma_prepare(vma)))
2200                 return -ENOMEM;
2201
2202         address &= PAGE_MASK;
2203         error = security_mmap_addr(address);
2204         if (error)
2205                 return error;
2206
2207         vma_lock_anon_vma(vma);
2208
2209         /*
2210          * vma->vm_start/vm_end cannot change under us because the caller
2211          * is required to hold the mmap_sem in read mode.  We need the
2212          * anon_vma lock to serialize against concurrent expand_stacks.
2213          */
2214
2215         /* Somebody else might have raced and expanded it already */
2216         if (address < vma->vm_start) {
2217                 unsigned long size, grow;
2218
2219                 size = vma->vm_end - address;
2220                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2221
2222                 error = -ENOMEM;
2223                 if (grow <= vma->vm_pgoff) {
2224                         error = acct_stack_growth(vma, size, grow);
2225                         if (!error) {
2226                                 /*
2227                                  * vma_gap_update() doesn't support concurrent
2228                                  * updates, but we only hold a shared mmap_sem
2229                                  * lock here, so we need to protect against
2230                                  * concurrent vma expansions.
2231                                  * vma_lock_anon_vma() doesn't help here, as
2232                                  * we don't guarantee that all growable vmas
2233                                  * in a mm share the same root anon vma.
2234                                  * So, we reuse mm->page_table_lock to guard
2235                                  * against concurrent vma expansions.
2236                                  */
2237                                 spin_lock(&vma->vm_mm->page_table_lock);
2238                                 anon_vma_interval_tree_pre_update_vma(vma);
2239                                 vma->vm_start = address;
2240                                 vma->vm_pgoff -= grow;
2241                                 anon_vma_interval_tree_post_update_vma(vma);
2242                                 vma_gap_update(vma);
2243                                 spin_unlock(&vma->vm_mm->page_table_lock);
2244
2245                                 perf_event_mmap(vma);
2246                         }
2247                 }
2248         }
2249         vma_unlock_anon_vma(vma);
2250         khugepaged_enter_vma_merge(vma);
2251         validate_mm(vma->vm_mm);
2252         return error;
2253 }
2254
2255 /*
2256  * Note how expand_stack() refuses to expand the stack all the way to
2257  * abut the next virtual mapping, *unless* that mapping itself is also
2258  * a stack mapping. We want to leave room for a guard page, after all
2259  * (the guard page itself is not added here, that is done by the
2260  * actual page faulting logic)
2261  *
2262  * This matches the behavior of the guard page logic (see mm/memory.c:
2263  * check_stack_guard_page()), which only allows the guard page to be
2264  * removed under these circumstances.
2265  */
2266 #ifdef CONFIG_STACK_GROWSUP
2267 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2268 {
2269         struct vm_area_struct *next;
2270
2271         address &= PAGE_MASK;
2272         next = vma->vm_next;
2273         if (next && next->vm_start == address + PAGE_SIZE) {
2274                 if (!(next->vm_flags & VM_GROWSUP))
2275                         return -ENOMEM;
2276         }
2277         return expand_upwards(vma, address);
2278 }
2279
2280 struct vm_area_struct *
2281 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2282 {
2283         struct vm_area_struct *vma, *prev;
2284
2285         addr &= PAGE_MASK;
2286         vma = find_vma_prev(mm, addr, &prev);
2287         if (vma && (vma->vm_start <= addr))
2288                 return vma;
2289         if (!prev || expand_stack(prev, addr))
2290                 return NULL;
2291         if (prev->vm_flags & VM_LOCKED)
2292                 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2293         return prev;
2294 }
2295 #else
2296 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2297 {
2298         struct vm_area_struct *prev;
2299
2300         address &= PAGE_MASK;
2301         prev = vma->vm_prev;
2302         if (prev && prev->vm_end == address) {
2303                 if (!(prev->vm_flags & VM_GROWSDOWN))
2304                         return -ENOMEM;
2305         }
2306         return expand_downwards(vma, address);
2307 }
2308
2309 struct vm_area_struct *
2310 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2311 {
2312         struct vm_area_struct * vma;
2313         unsigned long start;
2314
2315         addr &= PAGE_MASK;
2316         vma = find_vma(mm,addr);
2317         if (!vma)
2318                 return NULL;
2319         if (vma->vm_start <= addr)
2320                 return vma;
2321         if (!(vma->vm_flags & VM_GROWSDOWN))
2322                 return NULL;
2323         start = vma->vm_start;
2324         if (expand_stack(vma, addr))
2325                 return NULL;
2326         if (vma->vm_flags & VM_LOCKED)
2327                 __mlock_vma_pages_range(vma, addr, start, NULL);
2328         return vma;
2329 }
2330 #endif
2331
2332 /*
2333  * Ok - we have the memory areas we should free on the vma list,
2334  * so release them, and do the vma updates.
2335  *
2336  * Called with the mm semaphore held.
2337  */
2338 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2339 {
2340         unsigned long nr_accounted = 0;
2341
2342         /* Update high watermark before we lower total_vm */
2343         update_hiwater_vm(mm);
2344         do {
2345                 long nrpages = vma_pages(vma);
2346
2347                 if (vma->vm_flags & VM_ACCOUNT)
2348                         nr_accounted += nrpages;
2349                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2350                 vma = remove_vma(vma);
2351         } while (vma);
2352         vm_unacct_memory(nr_accounted);
2353         validate_mm(mm);
2354 }
2355
2356 /*
2357  * Get rid of page table information in the indicated region.
2358  *
2359  * Called with the mm semaphore held.
2360  */
2361 static void unmap_region(struct mm_struct *mm,
2362                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2363                 unsigned long start, unsigned long end)
2364 {
2365         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2366         struct mmu_gather tlb;
2367
2368         lru_add_drain();
2369         tlb_gather_mmu(&tlb, mm, start, end);
2370         update_hiwater_rss(mm);
2371         unmap_vmas(&tlb, vma, start, end);
2372         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2373                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2374         tlb_finish_mmu(&tlb, start, end);
2375 }
2376
2377 /*
2378  * Create a list of vma's touched by the unmap, removing them from the mm's
2379  * vma list as we go..
2380  */
2381 static void
2382 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2383         struct vm_area_struct *prev, unsigned long end)
2384 {
2385         struct vm_area_struct **insertion_point;
2386         struct vm_area_struct *tail_vma = NULL;
2387         unsigned long addr;
2388
2389         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2390         vma->vm_prev = NULL;
2391         do {
2392                 vma_rb_erase(vma, &mm->mm_rb);
2393                 mm->map_count--;
2394                 tail_vma = vma;
2395                 vma = vma->vm_next;
2396         } while (vma && vma->vm_start < end);
2397         *insertion_point = vma;
2398         if (vma) {
2399                 vma->vm_prev = prev;
2400                 vma_gap_update(vma);
2401         } else
2402                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2403         tail_vma->vm_next = NULL;
2404         if (mm->unmap_area == arch_unmap_area)
2405                 addr = prev ? prev->vm_end : mm->mmap_base;
2406         else
2407                 addr = vma ?  vma->vm_start : mm->mmap_base;
2408         mm->unmap_area(mm, addr);
2409         mm->mmap_cache = NULL;          /* Kill the cache. */
2410 }
2411
2412 /*
2413  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2414  * munmap path where it doesn't make sense to fail.
2415  */
2416 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2417               unsigned long addr, int new_below)
2418 {
2419         struct mempolicy *pol;
2420         struct vm_area_struct *new;
2421         int err = -ENOMEM;
2422
2423         if (is_vm_hugetlb_page(vma) && (addr &
2424                                         ~(huge_page_mask(hstate_vma(vma)))))
2425                 return -EINVAL;
2426
2427         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2428         if (!new)
2429                 goto out_err;
2430
2431         /* most fields are the same, copy all, and then fixup */
2432         *new = *vma;
2433
2434         INIT_LIST_HEAD(&new->anon_vma_chain);
2435
2436         if (new_below)
2437                 new->vm_end = addr;
2438         else {
2439                 new->vm_start = addr;
2440                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2441         }
2442
2443         pol = mpol_dup(vma_policy(vma));
2444         if (IS_ERR(pol)) {
2445                 err = PTR_ERR(pol);
2446                 goto out_free_vma;
2447         }
2448         vma_set_policy(new, pol);
2449
2450         if (anon_vma_clone(new, vma))
2451                 goto out_free_mpol;
2452
2453         if (new->vm_file)
2454                 get_file(new->vm_file);
2455
2456         if (new->vm_ops && new->vm_ops->open)
2457                 new->vm_ops->open(new);
2458
2459         if (new_below)
2460                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2461                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2462         else
2463                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2464
2465         /* Success. */
2466         if (!err)
2467                 return 0;
2468
2469         /* Clean everything up if vma_adjust failed. */
2470         if (new->vm_ops && new->vm_ops->close)
2471                 new->vm_ops->close(new);
2472         if (new->vm_file)
2473                 fput(new->vm_file);
2474         unlink_anon_vmas(new);
2475  out_free_mpol:
2476         mpol_put(pol);
2477  out_free_vma:
2478         kmem_cache_free(vm_area_cachep, new);
2479  out_err:
2480         return err;
2481 }
2482
2483 /*
2484  * Split a vma into two pieces at address 'addr', a new vma is allocated
2485  * either for the first part or the tail.
2486  */
2487 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2488               unsigned long addr, int new_below)
2489 {
2490         if (mm->map_count >= sysctl_max_map_count)
2491                 return -ENOMEM;
2492
2493         return __split_vma(mm, vma, addr, new_below);
2494 }
2495
2496 /* Munmap is split into 2 main parts -- this part which finds
2497  * what needs doing, and the areas themselves, which do the
2498  * work.  This now handles partial unmappings.
2499  * Jeremy Fitzhardinge <jeremy@goop.org>
2500  */
2501 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2502 {
2503         unsigned long end;
2504         struct vm_area_struct *vma, *prev, *last;
2505
2506         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2507                 return -EINVAL;
2508
2509         if ((len = PAGE_ALIGN(len)) == 0)
2510                 return -EINVAL;
2511
2512         /* Find the first overlapping VMA */
2513         vma = find_vma(mm, start);
2514         if (!vma)
2515                 return 0;
2516         prev = vma->vm_prev;
2517         /* we have  start < vma->vm_end  */
2518
2519         /* if it doesn't overlap, we have nothing.. */
2520         end = start + len;
2521         if (vma->vm_start >= end)
2522                 return 0;
2523
2524         /*
2525          * If we need to split any vma, do it now to save pain later.
2526          *
2527          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2528          * unmapped vm_area_struct will remain in use: so lower split_vma
2529          * places tmp vma above, and higher split_vma places tmp vma below.
2530          */
2531         if (start > vma->vm_start) {
2532                 int error;
2533
2534                 /*
2535                  * Make sure that map_count on return from munmap() will
2536                  * not exceed its limit; but let map_count go just above
2537                  * its limit temporarily, to help free resources as expected.
2538                  */
2539                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2540                         return -ENOMEM;
2541
2542                 error = __split_vma(mm, vma, start, 0);
2543                 if (error)
2544                         return error;
2545                 prev = vma;
2546         }
2547
2548         /* Does it split the last one? */
2549         last = find_vma(mm, end);
2550         if (last && end > last->vm_start) {
2551                 int error = __split_vma(mm, last, end, 1);
2552                 if (error)
2553                         return error;
2554         }
2555         vma = prev? prev->vm_next: mm->mmap;
2556
2557         /*
2558          * unlock any mlock()ed ranges before detaching vmas
2559          */
2560         if (mm->locked_vm) {
2561                 struct vm_area_struct *tmp = vma;
2562                 while (tmp && tmp->vm_start < end) {
2563                         if (tmp->vm_flags & VM_LOCKED) {
2564                                 mm->locked_vm -= vma_pages(tmp);
2565                                 munlock_vma_pages_all(tmp);
2566                         }
2567                         tmp = tmp->vm_next;
2568                 }
2569         }
2570
2571         /*
2572          * Remove the vma's, and unmap the actual pages
2573          */
2574         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2575         unmap_region(mm, vma, prev, start, end);
2576
2577 #ifdef CONFIG_ARCH_ROCKCHIP
2578         {
2579                 extern int ion_munmap(void *dmabuf, struct vm_area_struct *vma);
2580                 extern int dma_buf_is_dma_buf(struct file *file);
2581                 if (vma->vm_file && dma_buf_is_dma_buf(vma->vm_file)) {
2582                         ion_munmap(vma->vm_file->private_data, vma);
2583                 }
2584         }
2585 #endif
2586
2587         /* Fix up all other VM information */
2588         remove_vma_list(mm, vma);
2589
2590         return 0;
2591 }
2592
2593 int vm_munmap(unsigned long start, size_t len)
2594 {
2595         int ret;
2596         struct mm_struct *mm = current->mm;
2597
2598         down_write(&mm->mmap_sem);
2599         ret = do_munmap(mm, start, len);
2600         up_write(&mm->mmap_sem);
2601         return ret;
2602 }
2603 EXPORT_SYMBOL(vm_munmap);
2604
2605 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2606 {
2607         profile_munmap(addr);
2608         return vm_munmap(addr, len);
2609 }
2610
2611 static inline void verify_mm_writelocked(struct mm_struct *mm)
2612 {
2613 #ifdef CONFIG_DEBUG_VM
2614         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2615                 WARN_ON(1);
2616                 up_read(&mm->mmap_sem);
2617         }
2618 #endif
2619 }
2620
2621 /*
2622  *  this is really a simplified "do_mmap".  it only handles
2623  *  anonymous maps.  eventually we may be able to do some
2624  *  brk-specific accounting here.
2625  */
2626 static unsigned long do_brk(unsigned long addr, unsigned long len)
2627 {
2628         struct mm_struct * mm = current->mm;
2629         struct vm_area_struct * vma, * prev;
2630         unsigned long flags;
2631         struct rb_node ** rb_link, * rb_parent;
2632         pgoff_t pgoff = addr >> PAGE_SHIFT;
2633         int error;
2634
2635         len = PAGE_ALIGN(len);
2636         if (!len)
2637                 return addr;
2638
2639         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2640
2641         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2642         if (error & ~PAGE_MASK)
2643                 return error;
2644
2645         /*
2646          * mlock MCL_FUTURE?
2647          */
2648         if (mm->def_flags & VM_LOCKED) {
2649                 unsigned long locked, lock_limit;
2650                 locked = len >> PAGE_SHIFT;
2651                 locked += mm->locked_vm;
2652                 lock_limit = rlimit(RLIMIT_MEMLOCK);
2653                 lock_limit >>= PAGE_SHIFT;
2654                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2655                         return -EAGAIN;
2656         }
2657
2658         /*
2659          * mm->mmap_sem is required to protect against another thread
2660          * changing the mappings in case we sleep.
2661          */
2662         verify_mm_writelocked(mm);
2663
2664         /*
2665          * Clear old maps.  this also does some error checking for us
2666          */
2667  munmap_back:
2668         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2669                 if (do_munmap(mm, addr, len))
2670                         return -ENOMEM;
2671                 goto munmap_back;
2672         }
2673
2674         /* Check against address space limits *after* clearing old maps... */
2675         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2676                 return -ENOMEM;
2677
2678         if (mm->map_count > sysctl_max_map_count)
2679                 return -ENOMEM;
2680
2681         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2682                 return -ENOMEM;
2683
2684         /* Can we just expand an old private anonymous mapping? */
2685         vma = vma_merge(mm, prev, addr, addr + len, flags,
2686                                         NULL, NULL, pgoff, NULL, NULL);
2687         if (vma)
2688                 goto out;
2689
2690         /*
2691          * create a vma struct for an anonymous mapping
2692          */
2693         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2694         if (!vma) {
2695                 vm_unacct_memory(len >> PAGE_SHIFT);
2696                 return -ENOMEM;
2697         }
2698
2699         INIT_LIST_HEAD(&vma->anon_vma_chain);
2700         vma->vm_mm = mm;
2701         vma->vm_start = addr;
2702         vma->vm_end = addr + len;
2703         vma->vm_pgoff = pgoff;
2704         vma->vm_flags = flags;
2705         vma->vm_page_prot = vm_get_page_prot(flags);
2706         vma_link(mm, vma, prev, rb_link, rb_parent);
2707 out:
2708         perf_event_mmap(vma);
2709         mm->total_vm += len >> PAGE_SHIFT;
2710         if (flags & VM_LOCKED)
2711                 mm->locked_vm += (len >> PAGE_SHIFT);
2712         return addr;
2713 }
2714
2715 unsigned long vm_brk(unsigned long addr, unsigned long len)
2716 {
2717         struct mm_struct *mm = current->mm;
2718         unsigned long ret;
2719         bool populate;
2720
2721         down_write(&mm->mmap_sem);
2722         ret = do_brk(addr, len);
2723         populate = ((mm->def_flags & VM_LOCKED) != 0);
2724         up_write(&mm->mmap_sem);
2725         if (populate)
2726                 mm_populate(addr, len);
2727         return ret;
2728 }
2729 EXPORT_SYMBOL(vm_brk);
2730
2731 /* Release all mmaps. */
2732 void exit_mmap(struct mm_struct *mm)
2733 {
2734         struct mmu_gather tlb;
2735         struct vm_area_struct *vma;
2736         unsigned long nr_accounted = 0;
2737
2738         /* mm's last user has gone, and its about to be pulled down */
2739         mmu_notifier_release(mm);
2740
2741         if (mm->locked_vm) {
2742                 vma = mm->mmap;
2743                 while (vma) {
2744                         if (vma->vm_flags & VM_LOCKED)
2745                                 munlock_vma_pages_all(vma);
2746                         vma = vma->vm_next;
2747                 }
2748         }
2749
2750         arch_exit_mmap(mm);
2751
2752         vma = mm->mmap;
2753         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2754                 return;
2755
2756         lru_add_drain();
2757         flush_cache_mm(mm);
2758         tlb_gather_mmu(&tlb, mm, 0, -1);
2759         /* update_hiwater_rss(mm) here? but nobody should be looking */
2760         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2761         unmap_vmas(&tlb, vma, 0, -1);
2762
2763         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2764         tlb_finish_mmu(&tlb, 0, -1);
2765
2766         /*
2767          * Walk the list again, actually closing and freeing it,
2768          * with preemption enabled, without holding any MM locks.
2769          */
2770         while (vma) {
2771                 if (vma->vm_flags & VM_ACCOUNT)
2772                         nr_accounted += vma_pages(vma);
2773                 vma = remove_vma(vma);
2774         }
2775         vm_unacct_memory(nr_accounted);
2776
2777         WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2778 }
2779
2780 /* Insert vm structure into process list sorted by address
2781  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2782  * then i_mmap_mutex is taken here.
2783  */
2784 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2785 {
2786         struct vm_area_struct *prev;
2787         struct rb_node **rb_link, *rb_parent;
2788
2789         /*
2790          * The vm_pgoff of a purely anonymous vma should be irrelevant
2791          * until its first write fault, when page's anon_vma and index
2792          * are set.  But now set the vm_pgoff it will almost certainly
2793          * end up with (unless mremap moves it elsewhere before that
2794          * first wfault), so /proc/pid/maps tells a consistent story.
2795          *
2796          * By setting it to reflect the virtual start address of the
2797          * vma, merges and splits can happen in a seamless way, just
2798          * using the existing file pgoff checks and manipulations.
2799          * Similarly in do_mmap_pgoff and in do_brk.
2800          */
2801         if (!vma->vm_file) {
2802                 BUG_ON(vma->anon_vma);
2803                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2804         }
2805         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2806                            &prev, &rb_link, &rb_parent))
2807                 return -ENOMEM;
2808         if ((vma->vm_flags & VM_ACCOUNT) &&
2809              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2810                 return -ENOMEM;
2811
2812         vma_link(mm, vma, prev, rb_link, rb_parent);
2813         return 0;
2814 }
2815
2816 /*
2817  * Copy the vma structure to a new location in the same mm,
2818  * prior to moving page table entries, to effect an mremap move.
2819  */
2820 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2821         unsigned long addr, unsigned long len, pgoff_t pgoff,
2822         bool *need_rmap_locks)
2823 {
2824         struct vm_area_struct *vma = *vmap;
2825         unsigned long vma_start = vma->vm_start;
2826         struct mm_struct *mm = vma->vm_mm;
2827         struct vm_area_struct *new_vma, *prev;
2828         struct rb_node **rb_link, *rb_parent;
2829         struct mempolicy *pol;
2830         bool faulted_in_anon_vma = true;
2831
2832         /*
2833          * If anonymous vma has not yet been faulted, update new pgoff
2834          * to match new location, to increase its chance of merging.
2835          */
2836         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2837                 pgoff = addr >> PAGE_SHIFT;
2838                 faulted_in_anon_vma = false;
2839         }
2840
2841         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2842                 return NULL;    /* should never get here */
2843         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2844                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2845                         vma_get_anon_name(vma));
2846         if (new_vma) {
2847                 /*
2848                  * Source vma may have been merged into new_vma
2849                  */
2850                 if (unlikely(vma_start >= new_vma->vm_start &&
2851                              vma_start < new_vma->vm_end)) {
2852                         /*
2853                          * The only way we can get a vma_merge with
2854                          * self during an mremap is if the vma hasn't
2855                          * been faulted in yet and we were allowed to
2856                          * reset the dst vma->vm_pgoff to the
2857                          * destination address of the mremap to allow
2858                          * the merge to happen. mremap must change the
2859                          * vm_pgoff linearity between src and dst vmas
2860                          * (in turn preventing a vma_merge) to be
2861                          * safe. It is only safe to keep the vm_pgoff
2862                          * linear if there are no pages mapped yet.
2863                          */
2864                         VM_BUG_ON(faulted_in_anon_vma);
2865                         *vmap = vma = new_vma;
2866                 }
2867                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2868         } else {
2869                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2870                 if (new_vma) {
2871                         *new_vma = *vma;
2872                         new_vma->vm_start = addr;
2873                         new_vma->vm_end = addr + len;
2874                         new_vma->vm_pgoff = pgoff;
2875                         pol = mpol_dup(vma_policy(vma));
2876                         if (IS_ERR(pol))
2877                                 goto out_free_vma;
2878                         vma_set_policy(new_vma, pol);
2879                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2880                         if (anon_vma_clone(new_vma, vma))
2881                                 goto out_free_mempol;
2882                         if (new_vma->vm_file)
2883                                 get_file(new_vma->vm_file);
2884                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2885                                 new_vma->vm_ops->open(new_vma);
2886                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2887                         *need_rmap_locks = false;
2888                 }
2889         }
2890         return new_vma;
2891
2892  out_free_mempol:
2893         mpol_put(pol);
2894  out_free_vma:
2895         kmem_cache_free(vm_area_cachep, new_vma);
2896         return NULL;
2897 }
2898
2899 /*
2900  * Return true if the calling process may expand its vm space by the passed
2901  * number of pages
2902  */
2903 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2904 {
2905         unsigned long cur = mm->total_vm;       /* pages */
2906         unsigned long lim;
2907
2908         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2909
2910         if (cur + npages > lim)
2911                 return 0;
2912         return 1;
2913 }
2914
2915
2916 static int special_mapping_fault(struct vm_area_struct *vma,
2917                                 struct vm_fault *vmf)
2918 {
2919         pgoff_t pgoff;
2920         struct page **pages;
2921
2922         /*
2923          * special mappings have no vm_file, and in that case, the mm
2924          * uses vm_pgoff internally. So we have to subtract it from here.
2925          * We are allowed to do this because we are the mm; do not copy
2926          * this code into drivers!
2927          */
2928         pgoff = vmf->pgoff - vma->vm_pgoff;
2929
2930         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2931                 pgoff--;
2932
2933         if (*pages) {
2934                 struct page *page = *pages;
2935                 get_page(page);
2936                 vmf->page = page;
2937                 return 0;
2938         }
2939
2940         return VM_FAULT_SIGBUS;
2941 }
2942
2943 /*
2944  * Having a close hook prevents vma merging regardless of flags.
2945  */
2946 static void special_mapping_close(struct vm_area_struct *vma)
2947 {
2948 }
2949
2950 static const struct vm_operations_struct special_mapping_vmops = {
2951         .close = special_mapping_close,
2952         .fault = special_mapping_fault,
2953 };
2954
2955 /*
2956  * Called with mm->mmap_sem held for writing.
2957  * Insert a new vma covering the given region, with the given flags.
2958  * Its pages are supplied by the given array of struct page *.
2959  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2960  * The region past the last page supplied will always produce SIGBUS.
2961  * The array pointer and the pages it points to are assumed to stay alive
2962  * for as long as this mapping might exist.
2963  */
2964 int install_special_mapping(struct mm_struct *mm,
2965                             unsigned long addr, unsigned long len,
2966                             unsigned long vm_flags, struct page **pages)
2967 {
2968         int ret;
2969         struct vm_area_struct *vma;
2970
2971         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2972         if (unlikely(vma == NULL))
2973                 return -ENOMEM;
2974
2975         INIT_LIST_HEAD(&vma->anon_vma_chain);
2976         vma->vm_mm = mm;
2977         vma->vm_start = addr;
2978         vma->vm_end = addr + len;
2979
2980         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2981         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2982
2983         vma->vm_ops = &special_mapping_vmops;
2984         vma->vm_private_data = pages;
2985
2986         ret = insert_vm_struct(mm, vma);
2987         if (ret)
2988                 goto out;
2989
2990         mm->total_vm += len >> PAGE_SHIFT;
2991
2992         perf_event_mmap(vma);
2993
2994         return 0;
2995
2996 out:
2997         kmem_cache_free(vm_area_cachep, vma);
2998         return ret;
2999 }
3000
3001 static DEFINE_MUTEX(mm_all_locks_mutex);
3002
3003 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3004 {
3005         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3006                 /*
3007                  * The LSB of head.next can't change from under us
3008                  * because we hold the mm_all_locks_mutex.
3009                  */
3010                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3011                 /*
3012                  * We can safely modify head.next after taking the
3013                  * anon_vma->root->rwsem. If some other vma in this mm shares
3014                  * the same anon_vma we won't take it again.
3015                  *
3016                  * No need of atomic instructions here, head.next
3017                  * can't change from under us thanks to the
3018                  * anon_vma->root->rwsem.
3019                  */
3020                 if (__test_and_set_bit(0, (unsigned long *)
3021                                        &anon_vma->root->rb_root.rb_node))
3022                         BUG();
3023         }
3024 }
3025
3026 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3027 {
3028         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3029                 /*
3030                  * AS_MM_ALL_LOCKS can't change from under us because
3031                  * we hold the mm_all_locks_mutex.
3032                  *
3033                  * Operations on ->flags have to be atomic because
3034                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3035                  * mm_all_locks_mutex, there may be other cpus
3036                  * changing other bitflags in parallel to us.
3037                  */
3038                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3039                         BUG();
3040                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3041         }
3042 }
3043
3044 /*
3045  * This operation locks against the VM for all pte/vma/mm related
3046  * operations that could ever happen on a certain mm. This includes
3047  * vmtruncate, try_to_unmap, and all page faults.
3048  *
3049  * The caller must take the mmap_sem in write mode before calling
3050  * mm_take_all_locks(). The caller isn't allowed to release the
3051  * mmap_sem until mm_drop_all_locks() returns.
3052  *
3053  * mmap_sem in write mode is required in order to block all operations
3054  * that could modify pagetables and free pages without need of
3055  * altering the vma layout (for example populate_range() with
3056  * nonlinear vmas). It's also needed in write mode to avoid new
3057  * anon_vmas to be associated with existing vmas.
3058  *
3059  * A single task can't take more than one mm_take_all_locks() in a row
3060  * or it would deadlock.
3061  *
3062  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3063  * mapping->flags avoid to take the same lock twice, if more than one
3064  * vma in this mm is backed by the same anon_vma or address_space.
3065  *
3066  * We can take all the locks in random order because the VM code
3067  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3068  * takes more than one of them in a row. Secondly we're protected
3069  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3070  *
3071  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3072  * that may have to take thousand of locks.
3073  *
3074  * mm_take_all_locks() can fail if it's interrupted by signals.
3075  */
3076 int mm_take_all_locks(struct mm_struct *mm)
3077 {
3078         struct vm_area_struct *vma;
3079         struct anon_vma_chain *avc;
3080
3081         BUG_ON(down_read_trylock(&mm->mmap_sem));
3082
3083         mutex_lock(&mm_all_locks_mutex);
3084
3085         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3086                 if (signal_pending(current))
3087                         goto out_unlock;
3088                 if (vma->vm_file && vma->vm_file->f_mapping)
3089                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3090         }
3091
3092         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3093                 if (signal_pending(current))
3094                         goto out_unlock;
3095                 if (vma->anon_vma)
3096                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3097                                 vm_lock_anon_vma(mm, avc->anon_vma);
3098         }
3099
3100         return 0;
3101
3102 out_unlock:
3103         mm_drop_all_locks(mm);
3104         return -EINTR;
3105 }
3106
3107 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3108 {
3109         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3110                 /*
3111                  * The LSB of head.next can't change to 0 from under
3112                  * us because we hold the mm_all_locks_mutex.
3113                  *
3114                  * We must however clear the bitflag before unlocking
3115                  * the vma so the users using the anon_vma->rb_root will
3116                  * never see our bitflag.
3117                  *
3118                  * No need of atomic instructions here, head.next
3119                  * can't change from under us until we release the
3120                  * anon_vma->root->rwsem.
3121                  */
3122                 if (!__test_and_clear_bit(0, (unsigned long *)
3123                                           &anon_vma->root->rb_root.rb_node))
3124                         BUG();
3125                 anon_vma_unlock_write(anon_vma);
3126         }
3127 }
3128
3129 static void vm_unlock_mapping(struct address_space *mapping)
3130 {
3131         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3132                 /*
3133                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3134                  * because we hold the mm_all_locks_mutex.
3135                  */
3136                 mutex_unlock(&mapping->i_mmap_mutex);
3137                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3138                                         &mapping->flags))
3139                         BUG();
3140         }
3141 }
3142
3143 /*
3144  * The mmap_sem cannot be released by the caller until
3145  * mm_drop_all_locks() returns.
3146  */
3147 void mm_drop_all_locks(struct mm_struct *mm)
3148 {
3149         struct vm_area_struct *vma;
3150         struct anon_vma_chain *avc;
3151
3152         BUG_ON(down_read_trylock(&mm->mmap_sem));
3153         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3154
3155         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3156                 if (vma->anon_vma)
3157                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3158                                 vm_unlock_anon_vma(avc->anon_vma);
3159                 if (vma->vm_file && vma->vm_file->f_mapping)
3160                         vm_unlock_mapping(vma->vm_file->f_mapping);
3161         }
3162
3163         mutex_unlock(&mm_all_locks_mutex);
3164 }
3165
3166 /*
3167  * initialise the VMA slab
3168  */
3169 void __init mmap_init(void)
3170 {
3171         int ret;
3172
3173         ret = percpu_counter_init(&vm_committed_as, 0);
3174         VM_BUG_ON(ret);
3175 }
3176
3177 /*
3178  * Initialise sysctl_user_reserve_kbytes.
3179  *
3180  * This is intended to prevent a user from starting a single memory hogging
3181  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3182  * mode.
3183  *
3184  * The default value is min(3% of free memory, 128MB)
3185  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3186  */
3187 static int init_user_reserve(void)
3188 {
3189         unsigned long free_kbytes;
3190
3191         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3192
3193         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3194         return 0;
3195 }
3196 module_init(init_user_reserve)
3197
3198 /*
3199  * Initialise sysctl_admin_reserve_kbytes.
3200  *
3201  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3202  * to log in and kill a memory hogging process.
3203  *
3204  * Systems with more than 256MB will reserve 8MB, enough to recover
3205  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3206  * only reserve 3% of free pages by default.
3207  */
3208 static int init_admin_reserve(void)
3209 {
3210         unsigned long free_kbytes;
3211
3212         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3213
3214         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3215         return 0;
3216 }
3217 module_init(init_admin_reserve)
3218
3219 /*
3220  * Reinititalise user and admin reserves if memory is added or removed.
3221  *
3222  * The default user reserve max is 128MB, and the default max for the
3223  * admin reserve is 8MB. These are usually, but not always, enough to
3224  * enable recovery from a memory hogging process using login/sshd, a shell,
3225  * and tools like top. It may make sense to increase or even disable the
3226  * reserve depending on the existence of swap or variations in the recovery
3227  * tools. So, the admin may have changed them.
3228  *
3229  * If memory is added and the reserves have been eliminated or increased above
3230  * the default max, then we'll trust the admin.
3231  *
3232  * If memory is removed and there isn't enough free memory, then we
3233  * need to reset the reserves.
3234  *
3235  * Otherwise keep the reserve set by the admin.
3236  */
3237 static int reserve_mem_notifier(struct notifier_block *nb,
3238                              unsigned long action, void *data)
3239 {
3240         unsigned long tmp, free_kbytes;
3241
3242         switch (action) {
3243         case MEM_ONLINE:
3244                 /* Default max is 128MB. Leave alone if modified by operator. */
3245                 tmp = sysctl_user_reserve_kbytes;
3246                 if (0 < tmp && tmp < (1UL << 17))
3247                         init_user_reserve();
3248
3249                 /* Default max is 8MB.  Leave alone if modified by operator. */
3250                 tmp = sysctl_admin_reserve_kbytes;
3251                 if (0 < tmp && tmp < (1UL << 13))
3252                         init_admin_reserve();
3253
3254                 break;
3255         case MEM_OFFLINE:
3256                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3257
3258                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3259                         init_user_reserve();
3260                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3261                                 sysctl_user_reserve_kbytes);
3262                 }
3263
3264                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3265                         init_admin_reserve();
3266                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3267                                 sysctl_admin_reserve_kbytes);
3268                 }
3269                 break;
3270         default:
3271                 break;
3272         }
3273         return NOTIFY_OK;
3274 }
3275
3276 static struct notifier_block reserve_mem_nb = {
3277         .notifier_call = reserve_mem_notifier,
3278 };
3279
3280 static int __meminit init_reserve_notifier(void)
3281 {
3282         if (register_hotmemory_notifier(&reserve_mem_nb))
3283                 printk("Failed registering memory add/remove notifier for admin reserve");
3284
3285         return 0;
3286 }
3287 module_init(init_reserve_notifier)