Merge remote-tracking branch 'lsk/v3.10/topic/arm64-misc' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
69
70 #include "internal.h"
71
72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74 #endif
75
76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr;
79 struct page *mem_map;
80
81 EXPORT_SYMBOL(max_mapnr);
82 EXPORT_SYMBOL(mem_map);
83 #endif
84
85 unsigned long num_physpages;
86 /*
87  * A number of key systems in x86 including ioremap() rely on the assumption
88  * that high_memory defines the upper bound on direct map memory, then end
89  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
90  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
91  * and ZONE_HIGHMEM.
92  */
93 void * high_memory;
94
95 EXPORT_SYMBOL(num_physpages);
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106                                         1;
107 #else
108                                         2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113         randomize_va_space = 0;
114         return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 /*
122  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
123  */
124 static int __init init_zero_pfn(void)
125 {
126         zero_pfn = page_to_pfn(ZERO_PAGE(0));
127         return 0;
128 }
129 core_initcall(init_zero_pfn);
130
131
132 #if defined(SPLIT_RSS_COUNTING)
133
134 void sync_mm_rss(struct mm_struct *mm)
135 {
136         int i;
137
138         for (i = 0; i < NR_MM_COUNTERS; i++) {
139                 if (current->rss_stat.count[i]) {
140                         add_mm_counter(mm, i, current->rss_stat.count[i]);
141                         current->rss_stat.count[i] = 0;
142                 }
143         }
144         current->rss_stat.events = 0;
145 }
146
147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
148 {
149         struct task_struct *task = current;
150
151         if (likely(task->mm == mm))
152                 task->rss_stat.count[member] += val;
153         else
154                 add_mm_counter(mm, member, val);
155 }
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
158
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH  (64)
161 static void check_sync_rss_stat(struct task_struct *task)
162 {
163         if (unlikely(task != current))
164                 return;
165         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
166                 sync_mm_rss(task->mm);
167 }
168 #else /* SPLIT_RSS_COUNTING */
169
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
172
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 }
176
177 #endif /* SPLIT_RSS_COUNTING */
178
179 #ifdef HAVE_GENERIC_MMU_GATHER
180
181 static int tlb_next_batch(struct mmu_gather *tlb)
182 {
183         struct mmu_gather_batch *batch;
184
185         batch = tlb->active;
186         if (batch->next) {
187                 tlb->active = batch->next;
188                 return 1;
189         }
190
191         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192                 return 0;
193
194         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195         if (!batch)
196                 return 0;
197
198         tlb->batch_count++;
199         batch->next = NULL;
200         batch->nr   = 0;
201         batch->max  = MAX_GATHER_BATCH;
202
203         tlb->active->next = batch;
204         tlb->active = batch;
205
206         return 1;
207 }
208
209 /* tlb_gather_mmu
210  *      Called to initialize an (on-stack) mmu_gather structure for page-table
211  *      tear-down from @mm. The @fullmm argument is used when @mm is without
212  *      users and we're going to destroy the full address space (exit/execve).
213  */
214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
215 {
216         tlb->mm = mm;
217
218         /* Is it from 0 to ~0? */
219         tlb->fullmm     = !(start | (end+1));
220         tlb->need_flush_all = 0;
221         tlb->start      = start;
222         tlb->end        = end;
223         tlb->need_flush = 0;
224         tlb->local.next = NULL;
225         tlb->local.nr   = 0;
226         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
227         tlb->active     = &tlb->local;
228         tlb->batch_count = 0;
229
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231         tlb->batch = NULL;
232 #endif
233 }
234
235 void tlb_flush_mmu(struct mmu_gather *tlb)
236 {
237         struct mmu_gather_batch *batch;
238
239         if (!tlb->need_flush)
240                 return;
241         tlb->need_flush = 0;
242         tlb_flush(tlb);
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244         tlb_table_flush(tlb);
245 #endif
246
247         for (batch = &tlb->local; batch; batch = batch->next) {
248                 free_pages_and_swap_cache(batch->pages, batch->nr);
249                 batch->nr = 0;
250         }
251         tlb->active = &tlb->local;
252 }
253
254 /* tlb_finish_mmu
255  *      Called at the end of the shootdown operation to free up any resources
256  *      that were required.
257  */
258 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
259 {
260         struct mmu_gather_batch *batch, *next;
261
262         tlb_flush_mmu(tlb);
263
264         /* keep the page table cache within bounds */
265         check_pgt_cache();
266
267         for (batch = tlb->local.next; batch; batch = next) {
268                 next = batch->next;
269                 free_pages((unsigned long)batch, 0);
270         }
271         tlb->local.next = NULL;
272 }
273
274 /* __tlb_remove_page
275  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
276  *      handling the additional races in SMP caused by other CPUs caching valid
277  *      mappings in their TLBs. Returns the number of free page slots left.
278  *      When out of page slots we must call tlb_flush_mmu().
279  */
280 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
281 {
282         struct mmu_gather_batch *batch;
283
284         VM_BUG_ON(!tlb->need_flush);
285
286         batch = tlb->active;
287         batch->pages[batch->nr++] = page;
288         if (batch->nr == batch->max) {
289                 if (!tlb_next_batch(tlb))
290                         return 0;
291                 batch = tlb->active;
292         }
293         VM_BUG_ON(batch->nr > batch->max);
294
295         return batch->max - batch->nr;
296 }
297
298 #endif /* HAVE_GENERIC_MMU_GATHER */
299
300 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
301
302 /*
303  * See the comment near struct mmu_table_batch.
304  */
305
306 static void tlb_remove_table_smp_sync(void *arg)
307 {
308         /* Simply deliver the interrupt */
309 }
310
311 static void tlb_remove_table_one(void *table)
312 {
313         /*
314          * This isn't an RCU grace period and hence the page-tables cannot be
315          * assumed to be actually RCU-freed.
316          *
317          * It is however sufficient for software page-table walkers that rely on
318          * IRQ disabling. See the comment near struct mmu_table_batch.
319          */
320         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
321         __tlb_remove_table(table);
322 }
323
324 static void tlb_remove_table_rcu(struct rcu_head *head)
325 {
326         struct mmu_table_batch *batch;
327         int i;
328
329         batch = container_of(head, struct mmu_table_batch, rcu);
330
331         for (i = 0; i < batch->nr; i++)
332                 __tlb_remove_table(batch->tables[i]);
333
334         free_page((unsigned long)batch);
335 }
336
337 void tlb_table_flush(struct mmu_gather *tlb)
338 {
339         struct mmu_table_batch **batch = &tlb->batch;
340
341         if (*batch) {
342                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
343                 *batch = NULL;
344         }
345 }
346
347 void tlb_remove_table(struct mmu_gather *tlb, void *table)
348 {
349         struct mmu_table_batch **batch = &tlb->batch;
350
351         tlb->need_flush = 1;
352
353         /*
354          * When there's less then two users of this mm there cannot be a
355          * concurrent page-table walk.
356          */
357         if (atomic_read(&tlb->mm->mm_users) < 2) {
358                 __tlb_remove_table(table);
359                 return;
360         }
361
362         if (*batch == NULL) {
363                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
364                 if (*batch == NULL) {
365                         tlb_remove_table_one(table);
366                         return;
367                 }
368                 (*batch)->nr = 0;
369         }
370         (*batch)->tables[(*batch)->nr++] = table;
371         if ((*batch)->nr == MAX_TABLE_BATCH)
372                 tlb_table_flush(tlb);
373 }
374
375 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
376
377 /*
378  * If a p?d_bad entry is found while walking page tables, report
379  * the error, before resetting entry to p?d_none.  Usually (but
380  * very seldom) called out from the p?d_none_or_clear_bad macros.
381  */
382
383 void pgd_clear_bad(pgd_t *pgd)
384 {
385         pgd_ERROR(*pgd);
386         pgd_clear(pgd);
387 }
388
389 void pud_clear_bad(pud_t *pud)
390 {
391         pud_ERROR(*pud);
392         pud_clear(pud);
393 }
394
395 void pmd_clear_bad(pmd_t *pmd)
396 {
397         pmd_ERROR(*pmd);
398         pmd_clear(pmd);
399 }
400
401 /*
402  * Note: this doesn't free the actual pages themselves. That
403  * has been handled earlier when unmapping all the memory regions.
404  */
405 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
406                            unsigned long addr)
407 {
408         pgtable_t token = pmd_pgtable(*pmd);
409         pmd_clear(pmd);
410         pte_free_tlb(tlb, token, addr);
411         tlb->mm->nr_ptes--;
412 }
413
414 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
415                                 unsigned long addr, unsigned long end,
416                                 unsigned long floor, unsigned long ceiling)
417 {
418         pmd_t *pmd;
419         unsigned long next;
420         unsigned long start;
421
422         start = addr;
423         pmd = pmd_offset(pud, addr);
424         do {
425                 next = pmd_addr_end(addr, end);
426                 if (pmd_none_or_clear_bad(pmd))
427                         continue;
428                 free_pte_range(tlb, pmd, addr);
429         } while (pmd++, addr = next, addr != end);
430
431         start &= PUD_MASK;
432         if (start < floor)
433                 return;
434         if (ceiling) {
435                 ceiling &= PUD_MASK;
436                 if (!ceiling)
437                         return;
438         }
439         if (end - 1 > ceiling - 1)
440                 return;
441
442         pmd = pmd_offset(pud, start);
443         pud_clear(pud);
444         pmd_free_tlb(tlb, pmd, start);
445 }
446
447 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
448                                 unsigned long addr, unsigned long end,
449                                 unsigned long floor, unsigned long ceiling)
450 {
451         pud_t *pud;
452         unsigned long next;
453         unsigned long start;
454
455         start = addr;
456         pud = pud_offset(pgd, addr);
457         do {
458                 next = pud_addr_end(addr, end);
459                 if (pud_none_or_clear_bad(pud))
460                         continue;
461                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
462         } while (pud++, addr = next, addr != end);
463
464         start &= PGDIR_MASK;
465         if (start < floor)
466                 return;
467         if (ceiling) {
468                 ceiling &= PGDIR_MASK;
469                 if (!ceiling)
470                         return;
471         }
472         if (end - 1 > ceiling - 1)
473                 return;
474
475         pud = pud_offset(pgd, start);
476         pgd_clear(pgd);
477         pud_free_tlb(tlb, pud, start);
478 }
479
480 /*
481  * This function frees user-level page tables of a process.
482  *
483  * Must be called with pagetable lock held.
484  */
485 void free_pgd_range(struct mmu_gather *tlb,
486                         unsigned long addr, unsigned long end,
487                         unsigned long floor, unsigned long ceiling)
488 {
489         pgd_t *pgd;
490         unsigned long next;
491
492         /*
493          * The next few lines have given us lots of grief...
494          *
495          * Why are we testing PMD* at this top level?  Because often
496          * there will be no work to do at all, and we'd prefer not to
497          * go all the way down to the bottom just to discover that.
498          *
499          * Why all these "- 1"s?  Because 0 represents both the bottom
500          * of the address space and the top of it (using -1 for the
501          * top wouldn't help much: the masks would do the wrong thing).
502          * The rule is that addr 0 and floor 0 refer to the bottom of
503          * the address space, but end 0 and ceiling 0 refer to the top
504          * Comparisons need to use "end - 1" and "ceiling - 1" (though
505          * that end 0 case should be mythical).
506          *
507          * Wherever addr is brought up or ceiling brought down, we must
508          * be careful to reject "the opposite 0" before it confuses the
509          * subsequent tests.  But what about where end is brought down
510          * by PMD_SIZE below? no, end can't go down to 0 there.
511          *
512          * Whereas we round start (addr) and ceiling down, by different
513          * masks at different levels, in order to test whether a table
514          * now has no other vmas using it, so can be freed, we don't
515          * bother to round floor or end up - the tests don't need that.
516          */
517
518         addr &= PMD_MASK;
519         if (addr < floor) {
520                 addr += PMD_SIZE;
521                 if (!addr)
522                         return;
523         }
524         if (ceiling) {
525                 ceiling &= PMD_MASK;
526                 if (!ceiling)
527                         return;
528         }
529         if (end - 1 > ceiling - 1)
530                 end -= PMD_SIZE;
531         if (addr > end - 1)
532                 return;
533
534         pgd = pgd_offset(tlb->mm, addr);
535         do {
536                 next = pgd_addr_end(addr, end);
537                 if (pgd_none_or_clear_bad(pgd))
538                         continue;
539                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
540         } while (pgd++, addr = next, addr != end);
541 }
542
543 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
544                 unsigned long floor, unsigned long ceiling)
545 {
546         while (vma) {
547                 struct vm_area_struct *next = vma->vm_next;
548                 unsigned long addr = vma->vm_start;
549
550                 /*
551                  * Hide vma from rmap and truncate_pagecache before freeing
552                  * pgtables
553                  */
554                 unlink_anon_vmas(vma);
555                 unlink_file_vma(vma);
556
557                 if (is_vm_hugetlb_page(vma)) {
558                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
559                                 floor, next? next->vm_start: ceiling);
560                 } else {
561                         /*
562                          * Optimization: gather nearby vmas into one call down
563                          */
564                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
565                                && !is_vm_hugetlb_page(next)) {
566                                 vma = next;
567                                 next = vma->vm_next;
568                                 unlink_anon_vmas(vma);
569                                 unlink_file_vma(vma);
570                         }
571                         free_pgd_range(tlb, addr, vma->vm_end,
572                                 floor, next? next->vm_start: ceiling);
573                 }
574                 vma = next;
575         }
576 }
577
578 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
579                 pmd_t *pmd, unsigned long address)
580 {
581         pgtable_t new = pte_alloc_one(mm, address);
582         int wait_split_huge_page;
583         if (!new)
584                 return -ENOMEM;
585
586         /*
587          * Ensure all pte setup (eg. pte page lock and page clearing) are
588          * visible before the pte is made visible to other CPUs by being
589          * put into page tables.
590          *
591          * The other side of the story is the pointer chasing in the page
592          * table walking code (when walking the page table without locking;
593          * ie. most of the time). Fortunately, these data accesses consist
594          * of a chain of data-dependent loads, meaning most CPUs (alpha
595          * being the notable exception) will already guarantee loads are
596          * seen in-order. See the alpha page table accessors for the
597          * smp_read_barrier_depends() barriers in page table walking code.
598          */
599         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
600
601         spin_lock(&mm->page_table_lock);
602         wait_split_huge_page = 0;
603         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
604                 mm->nr_ptes++;
605                 pmd_populate(mm, pmd, new);
606                 new = NULL;
607         } else if (unlikely(pmd_trans_splitting(*pmd)))
608                 wait_split_huge_page = 1;
609         spin_unlock(&mm->page_table_lock);
610         if (new)
611                 pte_free(mm, new);
612         if (wait_split_huge_page)
613                 wait_split_huge_page(vma->anon_vma, pmd);
614         return 0;
615 }
616
617 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
618 {
619         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
620         if (!new)
621                 return -ENOMEM;
622
623         smp_wmb(); /* See comment in __pte_alloc */
624
625         spin_lock(&init_mm.page_table_lock);
626         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
627                 pmd_populate_kernel(&init_mm, pmd, new);
628                 new = NULL;
629         } else
630                 VM_BUG_ON(pmd_trans_splitting(*pmd));
631         spin_unlock(&init_mm.page_table_lock);
632         if (new)
633                 pte_free_kernel(&init_mm, new);
634         return 0;
635 }
636
637 static inline void init_rss_vec(int *rss)
638 {
639         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
640 }
641
642 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
643 {
644         int i;
645
646         if (current->mm == mm)
647                 sync_mm_rss(mm);
648         for (i = 0; i < NR_MM_COUNTERS; i++)
649                 if (rss[i])
650                         add_mm_counter(mm, i, rss[i]);
651 }
652
653 /*
654  * This function is called to print an error when a bad pte
655  * is found. For example, we might have a PFN-mapped pte in
656  * a region that doesn't allow it.
657  *
658  * The calling function must still handle the error.
659  */
660 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
661                           pte_t pte, struct page *page)
662 {
663         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
664         pud_t *pud = pud_offset(pgd, addr);
665         pmd_t *pmd = pmd_offset(pud, addr);
666         struct address_space *mapping;
667         pgoff_t index;
668         static unsigned long resume;
669         static unsigned long nr_shown;
670         static unsigned long nr_unshown;
671
672         /*
673          * Allow a burst of 60 reports, then keep quiet for that minute;
674          * or allow a steady drip of one report per second.
675          */
676         if (nr_shown == 60) {
677                 if (time_before(jiffies, resume)) {
678                         nr_unshown++;
679                         return;
680                 }
681                 if (nr_unshown) {
682                         printk(KERN_ALERT
683                                 "BUG: Bad page map: %lu messages suppressed\n",
684                                 nr_unshown);
685                         nr_unshown = 0;
686                 }
687                 nr_shown = 0;
688         }
689         if (nr_shown++ == 0)
690                 resume = jiffies + 60 * HZ;
691
692         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
693         index = linear_page_index(vma, addr);
694
695         printk(KERN_ALERT
696                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
697                 current->comm,
698                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
699         if (page)
700                 dump_page(page);
701         printk(KERN_ALERT
702                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
703                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
704         /*
705          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
706          */
707         if (vma->vm_ops)
708                 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
709                        vma->vm_ops->fault);
710         if (vma->vm_file && vma->vm_file->f_op)
711                 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
712                        vma->vm_file->f_op->mmap);
713         dump_stack();
714         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
715 }
716
717 static inline bool is_cow_mapping(vm_flags_t flags)
718 {
719         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
720 }
721
722 /*
723  * vm_normal_page -- This function gets the "struct page" associated with a pte.
724  *
725  * "Special" mappings do not wish to be associated with a "struct page" (either
726  * it doesn't exist, or it exists but they don't want to touch it). In this
727  * case, NULL is returned here. "Normal" mappings do have a struct page.
728  *
729  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
730  * pte bit, in which case this function is trivial. Secondly, an architecture
731  * may not have a spare pte bit, which requires a more complicated scheme,
732  * described below.
733  *
734  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
735  * special mapping (even if there are underlying and valid "struct pages").
736  * COWed pages of a VM_PFNMAP are always normal.
737  *
738  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
739  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
740  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
741  * mapping will always honor the rule
742  *
743  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
744  *
745  * And for normal mappings this is false.
746  *
747  * This restricts such mappings to be a linear translation from virtual address
748  * to pfn. To get around this restriction, we allow arbitrary mappings so long
749  * as the vma is not a COW mapping; in that case, we know that all ptes are
750  * special (because none can have been COWed).
751  *
752  *
753  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
754  *
755  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
756  * page" backing, however the difference is that _all_ pages with a struct
757  * page (that is, those where pfn_valid is true) are refcounted and considered
758  * normal pages by the VM. The disadvantage is that pages are refcounted
759  * (which can be slower and simply not an option for some PFNMAP users). The
760  * advantage is that we don't have to follow the strict linearity rule of
761  * PFNMAP mappings in order to support COWable mappings.
762  *
763  */
764 #ifdef __HAVE_ARCH_PTE_SPECIAL
765 # define HAVE_PTE_SPECIAL 1
766 #else
767 # define HAVE_PTE_SPECIAL 0
768 #endif
769 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
770                                 pte_t pte)
771 {
772         unsigned long pfn = pte_pfn(pte);
773
774         if (HAVE_PTE_SPECIAL) {
775                 if (likely(!pte_special(pte)))
776                         goto check_pfn;
777                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
778                         return NULL;
779                 if (!is_zero_pfn(pfn))
780                         print_bad_pte(vma, addr, pte, NULL);
781                 return NULL;
782         }
783
784         /* !HAVE_PTE_SPECIAL case follows: */
785
786         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
787                 if (vma->vm_flags & VM_MIXEDMAP) {
788                         if (!pfn_valid(pfn))
789                                 return NULL;
790                         goto out;
791                 } else {
792                         unsigned long off;
793                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
794                         if (pfn == vma->vm_pgoff + off)
795                                 return NULL;
796                         if (!is_cow_mapping(vma->vm_flags))
797                                 return NULL;
798                 }
799         }
800
801         if (is_zero_pfn(pfn))
802                 return NULL;
803 check_pfn:
804         if (unlikely(pfn > highest_memmap_pfn)) {
805                 print_bad_pte(vma, addr, pte, NULL);
806                 return NULL;
807         }
808
809         /*
810          * NOTE! We still have PageReserved() pages in the page tables.
811          * eg. VDSO mappings can cause them to exist.
812          */
813 out:
814         return pfn_to_page(pfn);
815 }
816
817 /*
818  * copy one vm_area from one task to the other. Assumes the page tables
819  * already present in the new task to be cleared in the whole range
820  * covered by this vma.
821  */
822
823 static inline unsigned long
824 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
825                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
826                 unsigned long addr, int *rss)
827 {
828         unsigned long vm_flags = vma->vm_flags;
829         pte_t pte = *src_pte;
830         struct page *page;
831
832         /* pte contains position in swap or file, so copy. */
833         if (unlikely(!pte_present(pte))) {
834                 if (!pte_file(pte)) {
835                         swp_entry_t entry = pte_to_swp_entry(pte);
836
837                         if (swap_duplicate(entry) < 0)
838                                 return entry.val;
839
840                         /* make sure dst_mm is on swapoff's mmlist. */
841                         if (unlikely(list_empty(&dst_mm->mmlist))) {
842                                 spin_lock(&mmlist_lock);
843                                 if (list_empty(&dst_mm->mmlist))
844                                         list_add(&dst_mm->mmlist,
845                                                  &src_mm->mmlist);
846                                 spin_unlock(&mmlist_lock);
847                         }
848                         if (likely(!non_swap_entry(entry)))
849                                 rss[MM_SWAPENTS]++;
850                         else if (is_migration_entry(entry)) {
851                                 page = migration_entry_to_page(entry);
852
853                                 if (PageAnon(page))
854                                         rss[MM_ANONPAGES]++;
855                                 else
856                                         rss[MM_FILEPAGES]++;
857
858                                 if (is_write_migration_entry(entry) &&
859                                     is_cow_mapping(vm_flags)) {
860                                         /*
861                                          * COW mappings require pages in both
862                                          * parent and child to be set to read.
863                                          */
864                                         make_migration_entry_read(&entry);
865                                         pte = swp_entry_to_pte(entry);
866                                         set_pte_at(src_mm, addr, src_pte, pte);
867                                 }
868                         }
869                 }
870                 goto out_set_pte;
871         }
872
873         /*
874          * If it's a COW mapping, write protect it both
875          * in the parent and the child
876          */
877         if (is_cow_mapping(vm_flags)) {
878                 ptep_set_wrprotect(src_mm, addr, src_pte);
879                 pte = pte_wrprotect(pte);
880         }
881
882         /*
883          * If it's a shared mapping, mark it clean in
884          * the child
885          */
886         if (vm_flags & VM_SHARED)
887                 pte = pte_mkclean(pte);
888         pte = pte_mkold(pte);
889
890         page = vm_normal_page(vma, addr, pte);
891         if (page) {
892                 get_page(page);
893                 page_dup_rmap(page);
894                 if (PageAnon(page))
895                         rss[MM_ANONPAGES]++;
896                 else
897                         rss[MM_FILEPAGES]++;
898         }
899
900 out_set_pte:
901         set_pte_at(dst_mm, addr, dst_pte, pte);
902         return 0;
903 }
904
905 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
906                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
907                    unsigned long addr, unsigned long end)
908 {
909         pte_t *orig_src_pte, *orig_dst_pte;
910         pte_t *src_pte, *dst_pte;
911         spinlock_t *src_ptl, *dst_ptl;
912         int progress = 0;
913         int rss[NR_MM_COUNTERS];
914         swp_entry_t entry = (swp_entry_t){0};
915
916 again:
917         init_rss_vec(rss);
918
919         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
920         if (!dst_pte)
921                 return -ENOMEM;
922         src_pte = pte_offset_map(src_pmd, addr);
923         src_ptl = pte_lockptr(src_mm, src_pmd);
924         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
925         orig_src_pte = src_pte;
926         orig_dst_pte = dst_pte;
927         arch_enter_lazy_mmu_mode();
928
929         do {
930                 /*
931                  * We are holding two locks at this point - either of them
932                  * could generate latencies in another task on another CPU.
933                  */
934                 if (progress >= 32) {
935                         progress = 0;
936                         if (need_resched() ||
937                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
938                                 break;
939                 }
940                 if (pte_none(*src_pte)) {
941                         progress++;
942                         continue;
943                 }
944                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
945                                                         vma, addr, rss);
946                 if (entry.val)
947                         break;
948                 progress += 8;
949         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
950
951         arch_leave_lazy_mmu_mode();
952         spin_unlock(src_ptl);
953         pte_unmap(orig_src_pte);
954         add_mm_rss_vec(dst_mm, rss);
955         pte_unmap_unlock(orig_dst_pte, dst_ptl);
956         cond_resched();
957
958         if (entry.val) {
959                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
960                         return -ENOMEM;
961                 progress = 0;
962         }
963         if (addr != end)
964                 goto again;
965         return 0;
966 }
967
968 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
969                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
970                 unsigned long addr, unsigned long end)
971 {
972         pmd_t *src_pmd, *dst_pmd;
973         unsigned long next;
974
975         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
976         if (!dst_pmd)
977                 return -ENOMEM;
978         src_pmd = pmd_offset(src_pud, addr);
979         do {
980                 next = pmd_addr_end(addr, end);
981                 if (pmd_trans_huge(*src_pmd)) {
982                         int err;
983                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
984                         err = copy_huge_pmd(dst_mm, src_mm,
985                                             dst_pmd, src_pmd, addr, vma);
986                         if (err == -ENOMEM)
987                                 return -ENOMEM;
988                         if (!err)
989                                 continue;
990                         /* fall through */
991                 }
992                 if (pmd_none_or_clear_bad(src_pmd))
993                         continue;
994                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
995                                                 vma, addr, next))
996                         return -ENOMEM;
997         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
998         return 0;
999 }
1000
1001 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1002                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1003                 unsigned long addr, unsigned long end)
1004 {
1005         pud_t *src_pud, *dst_pud;
1006         unsigned long next;
1007
1008         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1009         if (!dst_pud)
1010                 return -ENOMEM;
1011         src_pud = pud_offset(src_pgd, addr);
1012         do {
1013                 next = pud_addr_end(addr, end);
1014                 if (pud_none_or_clear_bad(src_pud))
1015                         continue;
1016                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1017                                                 vma, addr, next))
1018                         return -ENOMEM;
1019         } while (dst_pud++, src_pud++, addr = next, addr != end);
1020         return 0;
1021 }
1022
1023 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1024                 struct vm_area_struct *vma)
1025 {
1026         pgd_t *src_pgd, *dst_pgd;
1027         unsigned long next;
1028         unsigned long addr = vma->vm_start;
1029         unsigned long end = vma->vm_end;
1030         unsigned long mmun_start;       /* For mmu_notifiers */
1031         unsigned long mmun_end;         /* For mmu_notifiers */
1032         bool is_cow;
1033         int ret;
1034
1035         /*
1036          * Don't copy ptes where a page fault will fill them correctly.
1037          * Fork becomes much lighter when there are big shared or private
1038          * readonly mappings. The tradeoff is that copy_page_range is more
1039          * efficient than faulting.
1040          */
1041         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1042                                VM_PFNMAP | VM_MIXEDMAP))) {
1043                 if (!vma->anon_vma)
1044                         return 0;
1045         }
1046
1047         if (is_vm_hugetlb_page(vma))
1048                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1049
1050         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1051                 /*
1052                  * We do not free on error cases below as remove_vma
1053                  * gets called on error from higher level routine
1054                  */
1055                 ret = track_pfn_copy(vma);
1056                 if (ret)
1057                         return ret;
1058         }
1059
1060         /*
1061          * We need to invalidate the secondary MMU mappings only when
1062          * there could be a permission downgrade on the ptes of the
1063          * parent mm. And a permission downgrade will only happen if
1064          * is_cow_mapping() returns true.
1065          */
1066         is_cow = is_cow_mapping(vma->vm_flags);
1067         mmun_start = addr;
1068         mmun_end   = end;
1069         if (is_cow)
1070                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1071                                                     mmun_end);
1072
1073         ret = 0;
1074         dst_pgd = pgd_offset(dst_mm, addr);
1075         src_pgd = pgd_offset(src_mm, addr);
1076         do {
1077                 next = pgd_addr_end(addr, end);
1078                 if (pgd_none_or_clear_bad(src_pgd))
1079                         continue;
1080                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1081                                             vma, addr, next))) {
1082                         ret = -ENOMEM;
1083                         break;
1084                 }
1085         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1086
1087         if (is_cow)
1088                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1089         return ret;
1090 }
1091
1092 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1093                                 struct vm_area_struct *vma, pmd_t *pmd,
1094                                 unsigned long addr, unsigned long end,
1095                                 struct zap_details *details)
1096 {
1097         struct mm_struct *mm = tlb->mm;
1098         int force_flush = 0;
1099         int rss[NR_MM_COUNTERS];
1100         spinlock_t *ptl;
1101         pte_t *start_pte;
1102         pte_t *pte;
1103
1104 again:
1105         init_rss_vec(rss);
1106         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1107         pte = start_pte;
1108         arch_enter_lazy_mmu_mode();
1109         do {
1110                 pte_t ptent = *pte;
1111                 if (pte_none(ptent)) {
1112                         continue;
1113                 }
1114
1115                 if (pte_present(ptent)) {
1116                         struct page *page;
1117
1118                         page = vm_normal_page(vma, addr, ptent);
1119                         if (unlikely(details) && page) {
1120                                 /*
1121                                  * unmap_shared_mapping_pages() wants to
1122                                  * invalidate cache without truncating:
1123                                  * unmap shared but keep private pages.
1124                                  */
1125                                 if (details->check_mapping &&
1126                                     details->check_mapping != page->mapping)
1127                                         continue;
1128                                 /*
1129                                  * Each page->index must be checked when
1130                                  * invalidating or truncating nonlinear.
1131                                  */
1132                                 if (details->nonlinear_vma &&
1133                                     (page->index < details->first_index ||
1134                                      page->index > details->last_index))
1135                                         continue;
1136                         }
1137                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1138                                                         tlb->fullmm);
1139                         tlb_remove_tlb_entry(tlb, pte, addr);
1140                         if (unlikely(!page))
1141                                 continue;
1142                         if (unlikely(details) && details->nonlinear_vma
1143                             && linear_page_index(details->nonlinear_vma,
1144                                                 addr) != page->index)
1145                                 set_pte_at(mm, addr, pte,
1146                                            pgoff_to_pte(page->index));
1147                         if (PageAnon(page))
1148                                 rss[MM_ANONPAGES]--;
1149                         else {
1150                                 if (pte_dirty(ptent))
1151                                         set_page_dirty(page);
1152                                 if (pte_young(ptent) &&
1153                                     likely(!VM_SequentialReadHint(vma)))
1154                                         mark_page_accessed(page);
1155                                 rss[MM_FILEPAGES]--;
1156                         }
1157                         page_remove_rmap(page);
1158                         if (unlikely(page_mapcount(page) < 0))
1159                                 print_bad_pte(vma, addr, ptent, page);
1160                         force_flush = !__tlb_remove_page(tlb, page);
1161                         if (force_flush)
1162                                 break;
1163                         continue;
1164                 }
1165                 /*
1166                  * If details->check_mapping, we leave swap entries;
1167                  * if details->nonlinear_vma, we leave file entries.
1168                  */
1169                 if (unlikely(details))
1170                         continue;
1171                 if (pte_file(ptent)) {
1172                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1173                                 print_bad_pte(vma, addr, ptent, NULL);
1174                 } else {
1175                         swp_entry_t entry = pte_to_swp_entry(ptent);
1176
1177                         if (!non_swap_entry(entry))
1178                                 rss[MM_SWAPENTS]--;
1179                         else if (is_migration_entry(entry)) {
1180                                 struct page *page;
1181
1182                                 page = migration_entry_to_page(entry);
1183
1184                                 if (PageAnon(page))
1185                                         rss[MM_ANONPAGES]--;
1186                                 else
1187                                         rss[MM_FILEPAGES]--;
1188                         }
1189                         if (unlikely(!free_swap_and_cache(entry)))
1190                                 print_bad_pte(vma, addr, ptent, NULL);
1191                 }
1192                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1193         } while (pte++, addr += PAGE_SIZE, addr != end);
1194
1195         add_mm_rss_vec(mm, rss);
1196         arch_leave_lazy_mmu_mode();
1197         pte_unmap_unlock(start_pte, ptl);
1198
1199         /*
1200          * mmu_gather ran out of room to batch pages, we break out of
1201          * the PTE lock to avoid doing the potential expensive TLB invalidate
1202          * and page-free while holding it.
1203          */
1204         if (force_flush) {
1205                 unsigned long old_end;
1206
1207                 force_flush = 0;
1208
1209                 /*
1210                  * Flush the TLB just for the previous segment,
1211                  * then update the range to be the remaining
1212                  * TLB range.
1213                  */
1214                 old_end = tlb->end;
1215                 tlb->end = addr;
1216
1217                 tlb_flush_mmu(tlb);
1218
1219                 tlb->start = addr;
1220                 tlb->end = old_end;
1221
1222                 if (addr != end)
1223                         goto again;
1224         }
1225
1226         return addr;
1227 }
1228
1229 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1230                                 struct vm_area_struct *vma, pud_t *pud,
1231                                 unsigned long addr, unsigned long end,
1232                                 struct zap_details *details)
1233 {
1234         pmd_t *pmd;
1235         unsigned long next;
1236
1237         pmd = pmd_offset(pud, addr);
1238         do {
1239                 next = pmd_addr_end(addr, end);
1240                 if (pmd_trans_huge(*pmd)) {
1241                         if (next - addr != HPAGE_PMD_SIZE) {
1242 #ifdef CONFIG_DEBUG_VM
1243                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1244                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1245                                                 __func__, addr, end,
1246                                                 vma->vm_start,
1247                                                 vma->vm_end);
1248                                         BUG();
1249                                 }
1250 #endif
1251                                 split_huge_page_pmd(vma, addr, pmd);
1252                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1253                                 goto next;
1254                         /* fall through */
1255                 }
1256                 /*
1257                  * Here there can be other concurrent MADV_DONTNEED or
1258                  * trans huge page faults running, and if the pmd is
1259                  * none or trans huge it can change under us. This is
1260                  * because MADV_DONTNEED holds the mmap_sem in read
1261                  * mode.
1262                  */
1263                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1264                         goto next;
1265                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1266 next:
1267                 cond_resched();
1268         } while (pmd++, addr = next, addr != end);
1269
1270         return addr;
1271 }
1272
1273 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1274                                 struct vm_area_struct *vma, pgd_t *pgd,
1275                                 unsigned long addr, unsigned long end,
1276                                 struct zap_details *details)
1277 {
1278         pud_t *pud;
1279         unsigned long next;
1280
1281         pud = pud_offset(pgd, addr);
1282         do {
1283                 next = pud_addr_end(addr, end);
1284                 if (pud_none_or_clear_bad(pud))
1285                         continue;
1286                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1287         } while (pud++, addr = next, addr != end);
1288
1289         return addr;
1290 }
1291
1292 static void unmap_page_range(struct mmu_gather *tlb,
1293                              struct vm_area_struct *vma,
1294                              unsigned long addr, unsigned long end,
1295                              struct zap_details *details)
1296 {
1297         pgd_t *pgd;
1298         unsigned long next;
1299
1300         if (details && !details->check_mapping && !details->nonlinear_vma)
1301                 details = NULL;
1302
1303         BUG_ON(addr >= end);
1304         mem_cgroup_uncharge_start();
1305         tlb_start_vma(tlb, vma);
1306         pgd = pgd_offset(vma->vm_mm, addr);
1307         do {
1308                 next = pgd_addr_end(addr, end);
1309                 if (pgd_none_or_clear_bad(pgd))
1310                         continue;
1311                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1312         } while (pgd++, addr = next, addr != end);
1313         tlb_end_vma(tlb, vma);
1314         mem_cgroup_uncharge_end();
1315 }
1316
1317
1318 static void unmap_single_vma(struct mmu_gather *tlb,
1319                 struct vm_area_struct *vma, unsigned long start_addr,
1320                 unsigned long end_addr,
1321                 struct zap_details *details)
1322 {
1323         unsigned long start = max(vma->vm_start, start_addr);
1324         unsigned long end;
1325
1326         if (start >= vma->vm_end)
1327                 return;
1328         end = min(vma->vm_end, end_addr);
1329         if (end <= vma->vm_start)
1330                 return;
1331
1332         if (vma->vm_file)
1333                 uprobe_munmap(vma, start, end);
1334
1335         if (unlikely(vma->vm_flags & VM_PFNMAP))
1336                 untrack_pfn(vma, 0, 0);
1337
1338         if (start != end) {
1339                 if (unlikely(is_vm_hugetlb_page(vma))) {
1340                         /*
1341                          * It is undesirable to test vma->vm_file as it
1342                          * should be non-null for valid hugetlb area.
1343                          * However, vm_file will be NULL in the error
1344                          * cleanup path of do_mmap_pgoff. When
1345                          * hugetlbfs ->mmap method fails,
1346                          * do_mmap_pgoff() nullifies vma->vm_file
1347                          * before calling this function to clean up.
1348                          * Since no pte has actually been setup, it is
1349                          * safe to do nothing in this case.
1350                          */
1351                         if (vma->vm_file) {
1352                                 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1353                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1354                                 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1355                         }
1356                 } else
1357                         unmap_page_range(tlb, vma, start, end, details);
1358         }
1359 }
1360
1361 /**
1362  * unmap_vmas - unmap a range of memory covered by a list of vma's
1363  * @tlb: address of the caller's struct mmu_gather
1364  * @vma: the starting vma
1365  * @start_addr: virtual address at which to start unmapping
1366  * @end_addr: virtual address at which to end unmapping
1367  *
1368  * Unmap all pages in the vma list.
1369  *
1370  * Only addresses between `start' and `end' will be unmapped.
1371  *
1372  * The VMA list must be sorted in ascending virtual address order.
1373  *
1374  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1375  * range after unmap_vmas() returns.  So the only responsibility here is to
1376  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1377  * drops the lock and schedules.
1378  */
1379 void unmap_vmas(struct mmu_gather *tlb,
1380                 struct vm_area_struct *vma, unsigned long start_addr,
1381                 unsigned long end_addr)
1382 {
1383         struct mm_struct *mm = vma->vm_mm;
1384
1385         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1386         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1387                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1388         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1389 }
1390
1391 /**
1392  * zap_page_range - remove user pages in a given range
1393  * @vma: vm_area_struct holding the applicable pages
1394  * @start: starting address of pages to zap
1395  * @size: number of bytes to zap
1396  * @details: details of nonlinear truncation or shared cache invalidation
1397  *
1398  * Caller must protect the VMA list
1399  */
1400 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1401                 unsigned long size, struct zap_details *details)
1402 {
1403         struct mm_struct *mm = vma->vm_mm;
1404         struct mmu_gather tlb;
1405         unsigned long end = start + size;
1406
1407         lru_add_drain();
1408         tlb_gather_mmu(&tlb, mm, start, end);
1409         update_hiwater_rss(mm);
1410         mmu_notifier_invalidate_range_start(mm, start, end);
1411         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1412                 unmap_single_vma(&tlb, vma, start, end, details);
1413         mmu_notifier_invalidate_range_end(mm, start, end);
1414         tlb_finish_mmu(&tlb, start, end);
1415 }
1416
1417 /**
1418  * zap_page_range_single - remove user pages in a given range
1419  * @vma: vm_area_struct holding the applicable pages
1420  * @address: starting address of pages to zap
1421  * @size: number of bytes to zap
1422  * @details: details of nonlinear truncation or shared cache invalidation
1423  *
1424  * The range must fit into one VMA.
1425  */
1426 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1427                 unsigned long size, struct zap_details *details)
1428 {
1429         struct mm_struct *mm = vma->vm_mm;
1430         struct mmu_gather tlb;
1431         unsigned long end = address + size;
1432
1433         lru_add_drain();
1434         tlb_gather_mmu(&tlb, mm, address, end);
1435         update_hiwater_rss(mm);
1436         mmu_notifier_invalidate_range_start(mm, address, end);
1437         unmap_single_vma(&tlb, vma, address, end, details);
1438         mmu_notifier_invalidate_range_end(mm, address, end);
1439         tlb_finish_mmu(&tlb, address, end);
1440 }
1441
1442 /**
1443  * zap_vma_ptes - remove ptes mapping the vma
1444  * @vma: vm_area_struct holding ptes to be zapped
1445  * @address: starting address of pages to zap
1446  * @size: number of bytes to zap
1447  *
1448  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1449  *
1450  * The entire address range must be fully contained within the vma.
1451  *
1452  * Returns 0 if successful.
1453  */
1454 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1455                 unsigned long size)
1456 {
1457         if (address < vma->vm_start || address + size > vma->vm_end ||
1458                         !(vma->vm_flags & VM_PFNMAP))
1459                 return -1;
1460         zap_page_range_single(vma, address, size, NULL);
1461         return 0;
1462 }
1463 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1464
1465 /**
1466  * follow_page_mask - look up a page descriptor from a user-virtual address
1467  * @vma: vm_area_struct mapping @address
1468  * @address: virtual address to look up
1469  * @flags: flags modifying lookup behaviour
1470  * @page_mask: on output, *page_mask is set according to the size of the page
1471  *
1472  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1473  *
1474  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1475  * an error pointer if there is a mapping to something not represented
1476  * by a page descriptor (see also vm_normal_page()).
1477  */
1478 struct page *follow_page_mask(struct vm_area_struct *vma,
1479                               unsigned long address, unsigned int flags,
1480                               unsigned int *page_mask)
1481 {
1482         pgd_t *pgd;
1483         pud_t *pud;
1484         pmd_t *pmd;
1485         pte_t *ptep, pte;
1486         spinlock_t *ptl;
1487         struct page *page;
1488         struct mm_struct *mm = vma->vm_mm;
1489
1490         *page_mask = 0;
1491
1492         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1493         if (!IS_ERR(page)) {
1494                 BUG_ON(flags & FOLL_GET);
1495                 goto out;
1496         }
1497
1498         page = NULL;
1499         pgd = pgd_offset(mm, address);
1500         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1501                 goto no_page_table;
1502
1503         pud = pud_offset(pgd, address);
1504         if (pud_none(*pud))
1505                 goto no_page_table;
1506         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1507                 BUG_ON(flags & FOLL_GET);
1508                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1509                 goto out;
1510         }
1511         if (unlikely(pud_bad(*pud)))
1512                 goto no_page_table;
1513
1514         pmd = pmd_offset(pud, address);
1515         if (pmd_none(*pmd))
1516                 goto no_page_table;
1517         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1518                 BUG_ON(flags & FOLL_GET);
1519                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1520                 goto out;
1521         }
1522         if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1523                 goto no_page_table;
1524         if (pmd_trans_huge(*pmd)) {
1525                 if (flags & FOLL_SPLIT) {
1526                         split_huge_page_pmd(vma, address, pmd);
1527                         goto split_fallthrough;
1528                 }
1529                 spin_lock(&mm->page_table_lock);
1530                 if (likely(pmd_trans_huge(*pmd))) {
1531                         if (unlikely(pmd_trans_splitting(*pmd))) {
1532                                 spin_unlock(&mm->page_table_lock);
1533                                 wait_split_huge_page(vma->anon_vma, pmd);
1534                         } else {
1535                                 page = follow_trans_huge_pmd(vma, address,
1536                                                              pmd, flags);
1537                                 spin_unlock(&mm->page_table_lock);
1538                                 *page_mask = HPAGE_PMD_NR - 1;
1539                                 goto out;
1540                         }
1541                 } else
1542                         spin_unlock(&mm->page_table_lock);
1543                 /* fall through */
1544         }
1545 split_fallthrough:
1546         if (unlikely(pmd_bad(*pmd)))
1547                 goto no_page_table;
1548
1549         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1550
1551         pte = *ptep;
1552         if (!pte_present(pte)) {
1553                 swp_entry_t entry;
1554                 /*
1555                  * KSM's break_ksm() relies upon recognizing a ksm page
1556                  * even while it is being migrated, so for that case we
1557                  * need migration_entry_wait().
1558                  */
1559                 if (likely(!(flags & FOLL_MIGRATION)))
1560                         goto no_page;
1561                 if (pte_none(pte) || pte_file(pte))
1562                         goto no_page;
1563                 entry = pte_to_swp_entry(pte);
1564                 if (!is_migration_entry(entry))
1565                         goto no_page;
1566                 pte_unmap_unlock(ptep, ptl);
1567                 migration_entry_wait(mm, pmd, address);
1568                 goto split_fallthrough;
1569         }
1570         if ((flags & FOLL_NUMA) && pte_numa(pte))
1571                 goto no_page;
1572         if ((flags & FOLL_WRITE) && !pte_write(pte))
1573                 goto unlock;
1574
1575         page = vm_normal_page(vma, address, pte);
1576         if (unlikely(!page)) {
1577                 if ((flags & FOLL_DUMP) ||
1578                     !is_zero_pfn(pte_pfn(pte)))
1579                         goto bad_page;
1580                 page = pte_page(pte);
1581         }
1582
1583         if (flags & FOLL_GET)
1584                 get_page_foll(page);
1585         if (flags & FOLL_TOUCH) {
1586                 if ((flags & FOLL_WRITE) &&
1587                     !pte_dirty(pte) && !PageDirty(page))
1588                         set_page_dirty(page);
1589                 /*
1590                  * pte_mkyoung() would be more correct here, but atomic care
1591                  * is needed to avoid losing the dirty bit: it is easier to use
1592                  * mark_page_accessed().
1593                  */
1594                 mark_page_accessed(page);
1595         }
1596         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1597                 /*
1598                  * The preliminary mapping check is mainly to avoid the
1599                  * pointless overhead of lock_page on the ZERO_PAGE
1600                  * which might bounce very badly if there is contention.
1601                  *
1602                  * If the page is already locked, we don't need to
1603                  * handle it now - vmscan will handle it later if and
1604                  * when it attempts to reclaim the page.
1605                  */
1606                 if (page->mapping && trylock_page(page)) {
1607                         lru_add_drain();  /* push cached pages to LRU */
1608                         /*
1609                          * Because we lock page here, and migration is
1610                          * blocked by the pte's page reference, and we
1611                          * know the page is still mapped, we don't even
1612                          * need to check for file-cache page truncation.
1613                          */
1614                         mlock_vma_page(page);
1615                         unlock_page(page);
1616                 }
1617         }
1618 unlock:
1619         pte_unmap_unlock(ptep, ptl);
1620 out:
1621         return page;
1622
1623 bad_page:
1624         pte_unmap_unlock(ptep, ptl);
1625         return ERR_PTR(-EFAULT);
1626
1627 no_page:
1628         pte_unmap_unlock(ptep, ptl);
1629         if (!pte_none(pte))
1630                 return page;
1631
1632 no_page_table:
1633         /*
1634          * When core dumping an enormous anonymous area that nobody
1635          * has touched so far, we don't want to allocate unnecessary pages or
1636          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1637          * then get_dump_page() will return NULL to leave a hole in the dump.
1638          * But we can only make this optimization where a hole would surely
1639          * be zero-filled if handle_mm_fault() actually did handle it.
1640          */
1641         if ((flags & FOLL_DUMP) &&
1642             (!vma->vm_ops || !vma->vm_ops->fault))
1643                 return ERR_PTR(-EFAULT);
1644         return page;
1645 }
1646
1647 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1648 {
1649         return stack_guard_page_start(vma, addr) ||
1650                stack_guard_page_end(vma, addr+PAGE_SIZE);
1651 }
1652
1653 /**
1654  * __get_user_pages() - pin user pages in memory
1655  * @tsk:        task_struct of target task
1656  * @mm:         mm_struct of target mm
1657  * @start:      starting user address
1658  * @nr_pages:   number of pages from start to pin
1659  * @gup_flags:  flags modifying pin behaviour
1660  * @pages:      array that receives pointers to the pages pinned.
1661  *              Should be at least nr_pages long. Or NULL, if caller
1662  *              only intends to ensure the pages are faulted in.
1663  * @vmas:       array of pointers to vmas corresponding to each page.
1664  *              Or NULL if the caller does not require them.
1665  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1666  *
1667  * Returns number of pages pinned. This may be fewer than the number
1668  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1669  * were pinned, returns -errno. Each page returned must be released
1670  * with a put_page() call when it is finished with. vmas will only
1671  * remain valid while mmap_sem is held.
1672  *
1673  * Must be called with mmap_sem held for read or write.
1674  *
1675  * __get_user_pages walks a process's page tables and takes a reference to
1676  * each struct page that each user address corresponds to at a given
1677  * instant. That is, it takes the page that would be accessed if a user
1678  * thread accesses the given user virtual address at that instant.
1679  *
1680  * This does not guarantee that the page exists in the user mappings when
1681  * __get_user_pages returns, and there may even be a completely different
1682  * page there in some cases (eg. if mmapped pagecache has been invalidated
1683  * and subsequently re faulted). However it does guarantee that the page
1684  * won't be freed completely. And mostly callers simply care that the page
1685  * contains data that was valid *at some point in time*. Typically, an IO
1686  * or similar operation cannot guarantee anything stronger anyway because
1687  * locks can't be held over the syscall boundary.
1688  *
1689  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1690  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1691  * appropriate) must be called after the page is finished with, and
1692  * before put_page is called.
1693  *
1694  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1695  * or mmap_sem contention, and if waiting is needed to pin all pages,
1696  * *@nonblocking will be set to 0.
1697  *
1698  * In most cases, get_user_pages or get_user_pages_fast should be used
1699  * instead of __get_user_pages. __get_user_pages should be used only if
1700  * you need some special @gup_flags.
1701  */
1702 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1703                 unsigned long start, unsigned long nr_pages,
1704                 unsigned int gup_flags, struct page **pages,
1705                 struct vm_area_struct **vmas, int *nonblocking)
1706 {
1707         long i;
1708         unsigned long vm_flags;
1709         unsigned int page_mask;
1710
1711         if (!nr_pages)
1712                 return 0;
1713
1714         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1715
1716         /* 
1717          * Require read or write permissions.
1718          * If FOLL_FORCE is set, we only require the "MAY" flags.
1719          */
1720         vm_flags  = (gup_flags & FOLL_WRITE) ?
1721                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1722         vm_flags &= (gup_flags & FOLL_FORCE) ?
1723                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1724
1725         /*
1726          * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1727          * would be called on PROT_NONE ranges. We must never invoke
1728          * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1729          * page faults would unprotect the PROT_NONE ranges if
1730          * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1731          * bitflag. So to avoid that, don't set FOLL_NUMA if
1732          * FOLL_FORCE is set.
1733          */
1734         if (!(gup_flags & FOLL_FORCE))
1735                 gup_flags |= FOLL_NUMA;
1736
1737         i = 0;
1738
1739         do {
1740                 struct vm_area_struct *vma;
1741
1742                 vma = find_extend_vma(mm, start);
1743                 if (!vma && in_gate_area(mm, start)) {
1744                         unsigned long pg = start & PAGE_MASK;
1745                         pgd_t *pgd;
1746                         pud_t *pud;
1747                         pmd_t *pmd;
1748                         pte_t *pte;
1749
1750                         /* user gate pages are read-only */
1751                         if (gup_flags & FOLL_WRITE)
1752                                 return i ? : -EFAULT;
1753                         if (pg > TASK_SIZE)
1754                                 pgd = pgd_offset_k(pg);
1755                         else
1756                                 pgd = pgd_offset_gate(mm, pg);
1757                         BUG_ON(pgd_none(*pgd));
1758                         pud = pud_offset(pgd, pg);
1759                         BUG_ON(pud_none(*pud));
1760                         pmd = pmd_offset(pud, pg);
1761                         if (pmd_none(*pmd))
1762                                 return i ? : -EFAULT;
1763                         VM_BUG_ON(pmd_trans_huge(*pmd));
1764                         pte = pte_offset_map(pmd, pg);
1765                         if (pte_none(*pte)) {
1766                                 pte_unmap(pte);
1767                                 return i ? : -EFAULT;
1768                         }
1769                         vma = get_gate_vma(mm);
1770                         if (pages) {
1771                                 struct page *page;
1772
1773                                 page = vm_normal_page(vma, start, *pte);
1774                                 if (!page) {
1775                                         if (!(gup_flags & FOLL_DUMP) &&
1776                                              is_zero_pfn(pte_pfn(*pte)))
1777                                                 page = pte_page(*pte);
1778                                         else {
1779                                                 pte_unmap(pte);
1780                                                 return i ? : -EFAULT;
1781                                         }
1782                                 }
1783                                 pages[i] = page;
1784                                 get_page(page);
1785                         }
1786                         pte_unmap(pte);
1787                         page_mask = 0;
1788                         goto next_page;
1789                 }
1790
1791                 if (!vma ||
1792                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1793                     !(vm_flags & vma->vm_flags))
1794                         return i ? : -EFAULT;
1795
1796                 if (is_vm_hugetlb_page(vma)) {
1797                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1798                                         &start, &nr_pages, i, gup_flags);
1799                         continue;
1800                 }
1801
1802                 do {
1803                         struct page *page;
1804                         unsigned int foll_flags = gup_flags;
1805                         unsigned int page_increm;
1806
1807                         /*
1808                          * If we have a pending SIGKILL, don't keep faulting
1809                          * pages and potentially allocating memory.
1810                          */
1811                         if (unlikely(fatal_signal_pending(current)))
1812                                 return i ? i : -ERESTARTSYS;
1813
1814                         cond_resched();
1815                         while (!(page = follow_page_mask(vma, start,
1816                                                 foll_flags, &page_mask))) {
1817                                 int ret;
1818                                 unsigned int fault_flags = 0;
1819
1820                                 /* For mlock, just skip the stack guard page. */
1821                                 if (foll_flags & FOLL_MLOCK) {
1822                                         if (stack_guard_page(vma, start))
1823                                                 goto next_page;
1824                                 }
1825                                 if (foll_flags & FOLL_WRITE)
1826                                         fault_flags |= FAULT_FLAG_WRITE;
1827                                 if (nonblocking)
1828                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1829                                 if (foll_flags & FOLL_NOWAIT)
1830                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1831
1832                                 ret = handle_mm_fault(mm, vma, start,
1833                                                         fault_flags);
1834
1835                                 if (ret & VM_FAULT_ERROR) {
1836                                         if (ret & VM_FAULT_OOM)
1837                                                 return i ? i : -ENOMEM;
1838                                         if (ret & (VM_FAULT_HWPOISON |
1839                                                    VM_FAULT_HWPOISON_LARGE)) {
1840                                                 if (i)
1841                                                         return i;
1842                                                 else if (gup_flags & FOLL_HWPOISON)
1843                                                         return -EHWPOISON;
1844                                                 else
1845                                                         return -EFAULT;
1846                                         }
1847                                         if (ret & VM_FAULT_SIGBUS)
1848                                                 return i ? i : -EFAULT;
1849                                         BUG();
1850                                 }
1851
1852                                 if (tsk) {
1853                                         if (ret & VM_FAULT_MAJOR)
1854                                                 tsk->maj_flt++;
1855                                         else
1856                                                 tsk->min_flt++;
1857                                 }
1858
1859                                 if (ret & VM_FAULT_RETRY) {
1860                                         if (nonblocking)
1861                                                 *nonblocking = 0;
1862                                         return i;
1863                                 }
1864
1865                                 /*
1866                                  * The VM_FAULT_WRITE bit tells us that
1867                                  * do_wp_page has broken COW when necessary,
1868                                  * even if maybe_mkwrite decided not to set
1869                                  * pte_write. We can thus safely do subsequent
1870                                  * page lookups as if they were reads. But only
1871                                  * do so when looping for pte_write is futile:
1872                                  * in some cases userspace may also be wanting
1873                                  * to write to the gotten user page, which a
1874                                  * read fault here might prevent (a readonly
1875                                  * page might get reCOWed by userspace write).
1876                                  */
1877                                 if ((ret & VM_FAULT_WRITE) &&
1878                                     !(vma->vm_flags & VM_WRITE))
1879                                         foll_flags &= ~FOLL_WRITE;
1880
1881                                 cond_resched();
1882                         }
1883                         if (IS_ERR(page))
1884                                 return i ? i : PTR_ERR(page);
1885                         if (pages) {
1886                                 pages[i] = page;
1887
1888                                 flush_anon_page(vma, page, start);
1889                                 flush_dcache_page(page);
1890                                 page_mask = 0;
1891                         }
1892 next_page:
1893                         if (vmas) {
1894                                 vmas[i] = vma;
1895                                 page_mask = 0;
1896                         }
1897                         page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1898                         if (page_increm > nr_pages)
1899                                 page_increm = nr_pages;
1900                         i += page_increm;
1901                         start += page_increm * PAGE_SIZE;
1902                         nr_pages -= page_increm;
1903                 } while (nr_pages && start < vma->vm_end);
1904         } while (nr_pages);
1905         return i;
1906 }
1907 EXPORT_SYMBOL(__get_user_pages);
1908
1909 /*
1910  * fixup_user_fault() - manually resolve a user page fault
1911  * @tsk:        the task_struct to use for page fault accounting, or
1912  *              NULL if faults are not to be recorded.
1913  * @mm:         mm_struct of target mm
1914  * @address:    user address
1915  * @fault_flags:flags to pass down to handle_mm_fault()
1916  *
1917  * This is meant to be called in the specific scenario where for locking reasons
1918  * we try to access user memory in atomic context (within a pagefault_disable()
1919  * section), this returns -EFAULT, and we want to resolve the user fault before
1920  * trying again.
1921  *
1922  * Typically this is meant to be used by the futex code.
1923  *
1924  * The main difference with get_user_pages() is that this function will
1925  * unconditionally call handle_mm_fault() which will in turn perform all the
1926  * necessary SW fixup of the dirty and young bits in the PTE, while
1927  * handle_mm_fault() only guarantees to update these in the struct page.
1928  *
1929  * This is important for some architectures where those bits also gate the
1930  * access permission to the page because they are maintained in software.  On
1931  * such architectures, gup() will not be enough to make a subsequent access
1932  * succeed.
1933  *
1934  * This should be called with the mm_sem held for read.
1935  */
1936 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1937                      unsigned long address, unsigned int fault_flags)
1938 {
1939         struct vm_area_struct *vma;
1940         vm_flags_t vm_flags;
1941         int ret;
1942
1943         vma = find_extend_vma(mm, address);
1944         if (!vma || address < vma->vm_start)
1945                 return -EFAULT;
1946
1947         vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
1948         if (!(vm_flags & vma->vm_flags))
1949                 return -EFAULT;
1950
1951         ret = handle_mm_fault(mm, vma, address, fault_flags);
1952         if (ret & VM_FAULT_ERROR) {
1953                 if (ret & VM_FAULT_OOM)
1954                         return -ENOMEM;
1955                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1956                         return -EHWPOISON;
1957                 if (ret & VM_FAULT_SIGBUS)
1958                         return -EFAULT;
1959                 BUG();
1960         }
1961         if (tsk) {
1962                 if (ret & VM_FAULT_MAJOR)
1963                         tsk->maj_flt++;
1964                 else
1965                         tsk->min_flt++;
1966         }
1967         return 0;
1968 }
1969
1970 /*
1971  * get_user_pages() - pin user pages in memory
1972  * @tsk:        the task_struct to use for page fault accounting, or
1973  *              NULL if faults are not to be recorded.
1974  * @mm:         mm_struct of target mm
1975  * @start:      starting user address
1976  * @nr_pages:   number of pages from start to pin
1977  * @write:      whether pages will be written to by the caller
1978  * @force:      whether to force write access even if user mapping is
1979  *              readonly. This will result in the page being COWed even
1980  *              in MAP_SHARED mappings. You do not want this.
1981  * @pages:      array that receives pointers to the pages pinned.
1982  *              Should be at least nr_pages long. Or NULL, if caller
1983  *              only intends to ensure the pages are faulted in.
1984  * @vmas:       array of pointers to vmas corresponding to each page.
1985  *              Or NULL if the caller does not require them.
1986  *
1987  * Returns number of pages pinned. This may be fewer than the number
1988  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1989  * were pinned, returns -errno. Each page returned must be released
1990  * with a put_page() call when it is finished with. vmas will only
1991  * remain valid while mmap_sem is held.
1992  *
1993  * Must be called with mmap_sem held for read or write.
1994  *
1995  * get_user_pages walks a process's page tables and takes a reference to
1996  * each struct page that each user address corresponds to at a given
1997  * instant. That is, it takes the page that would be accessed if a user
1998  * thread accesses the given user virtual address at that instant.
1999  *
2000  * This does not guarantee that the page exists in the user mappings when
2001  * get_user_pages returns, and there may even be a completely different
2002  * page there in some cases (eg. if mmapped pagecache has been invalidated
2003  * and subsequently re faulted). However it does guarantee that the page
2004  * won't be freed completely. And mostly callers simply care that the page
2005  * contains data that was valid *at some point in time*. Typically, an IO
2006  * or similar operation cannot guarantee anything stronger anyway because
2007  * locks can't be held over the syscall boundary.
2008  *
2009  * If write=0, the page must not be written to. If the page is written to,
2010  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2011  * after the page is finished with, and before put_page is called.
2012  *
2013  * get_user_pages is typically used for fewer-copy IO operations, to get a
2014  * handle on the memory by some means other than accesses via the user virtual
2015  * addresses. The pages may be submitted for DMA to devices or accessed via
2016  * their kernel linear mapping (via the kmap APIs). Care should be taken to
2017  * use the correct cache flushing APIs.
2018  *
2019  * See also get_user_pages_fast, for performance critical applications.
2020  */
2021 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2022                 unsigned long start, unsigned long nr_pages, int write,
2023                 int force, struct page **pages, struct vm_area_struct **vmas)
2024 {
2025         int flags = FOLL_TOUCH;
2026
2027         if (pages)
2028                 flags |= FOLL_GET;
2029         if (write)
2030                 flags |= FOLL_WRITE;
2031         if (force)
2032                 flags |= FOLL_FORCE;
2033
2034         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2035                                 NULL);
2036 }
2037 EXPORT_SYMBOL(get_user_pages);
2038
2039 /**
2040  * get_dump_page() - pin user page in memory while writing it to core dump
2041  * @addr: user address
2042  *
2043  * Returns struct page pointer of user page pinned for dump,
2044  * to be freed afterwards by page_cache_release() or put_page().
2045  *
2046  * Returns NULL on any kind of failure - a hole must then be inserted into
2047  * the corefile, to preserve alignment with its headers; and also returns
2048  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2049  * allowing a hole to be left in the corefile to save diskspace.
2050  *
2051  * Called without mmap_sem, but after all other threads have been killed.
2052  */
2053 #ifdef CONFIG_ELF_CORE
2054 struct page *get_dump_page(unsigned long addr)
2055 {
2056         struct vm_area_struct *vma;
2057         struct page *page;
2058
2059         if (__get_user_pages(current, current->mm, addr, 1,
2060                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2061                              NULL) < 1)
2062                 return NULL;
2063         flush_cache_page(vma, addr, page_to_pfn(page));
2064         return page;
2065 }
2066 #endif /* CONFIG_ELF_CORE */
2067
2068 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2069                         spinlock_t **ptl)
2070 {
2071         pgd_t * pgd = pgd_offset(mm, addr);
2072         pud_t * pud = pud_alloc(mm, pgd, addr);
2073         if (pud) {
2074                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2075                 if (pmd) {
2076                         VM_BUG_ON(pmd_trans_huge(*pmd));
2077                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
2078                 }
2079         }
2080         return NULL;
2081 }
2082
2083 /*
2084  * This is the old fallback for page remapping.
2085  *
2086  * For historical reasons, it only allows reserved pages. Only
2087  * old drivers should use this, and they needed to mark their
2088  * pages reserved for the old functions anyway.
2089  */
2090 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2091                         struct page *page, pgprot_t prot)
2092 {
2093         struct mm_struct *mm = vma->vm_mm;
2094         int retval;
2095         pte_t *pte;
2096         spinlock_t *ptl;
2097
2098         retval = -EINVAL;
2099         if (PageAnon(page))
2100                 goto out;
2101         retval = -ENOMEM;
2102         flush_dcache_page(page);
2103         pte = get_locked_pte(mm, addr, &ptl);
2104         if (!pte)
2105                 goto out;
2106         retval = -EBUSY;
2107         if (!pte_none(*pte))
2108                 goto out_unlock;
2109
2110         /* Ok, finally just insert the thing.. */
2111         get_page(page);
2112         inc_mm_counter_fast(mm, MM_FILEPAGES);
2113         page_add_file_rmap(page);
2114         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2115
2116         retval = 0;
2117         pte_unmap_unlock(pte, ptl);
2118         return retval;
2119 out_unlock:
2120         pte_unmap_unlock(pte, ptl);
2121 out:
2122         return retval;
2123 }
2124
2125 /**
2126  * vm_insert_page - insert single page into user vma
2127  * @vma: user vma to map to
2128  * @addr: target user address of this page
2129  * @page: source kernel page
2130  *
2131  * This allows drivers to insert individual pages they've allocated
2132  * into a user vma.
2133  *
2134  * The page has to be a nice clean _individual_ kernel allocation.
2135  * If you allocate a compound page, you need to have marked it as
2136  * such (__GFP_COMP), or manually just split the page up yourself
2137  * (see split_page()).
2138  *
2139  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2140  * took an arbitrary page protection parameter. This doesn't allow
2141  * that. Your vma protection will have to be set up correctly, which
2142  * means that if you want a shared writable mapping, you'd better
2143  * ask for a shared writable mapping!
2144  *
2145  * The page does not need to be reserved.
2146  *
2147  * Usually this function is called from f_op->mmap() handler
2148  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2149  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2150  * function from other places, for example from page-fault handler.
2151  */
2152 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2153                         struct page *page)
2154 {
2155         if (addr < vma->vm_start || addr >= vma->vm_end)
2156                 return -EFAULT;
2157         if (!page_count(page))
2158                 return -EINVAL;
2159         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2160                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2161                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2162                 vma->vm_flags |= VM_MIXEDMAP;
2163         }
2164         return insert_page(vma, addr, page, vma->vm_page_prot);
2165 }
2166 EXPORT_SYMBOL(vm_insert_page);
2167
2168 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2169                         unsigned long pfn, pgprot_t prot)
2170 {
2171         struct mm_struct *mm = vma->vm_mm;
2172         int retval;
2173         pte_t *pte, entry;
2174         spinlock_t *ptl;
2175
2176         retval = -ENOMEM;
2177         pte = get_locked_pte(mm, addr, &ptl);
2178         if (!pte)
2179                 goto out;
2180         retval = -EBUSY;
2181         if (!pte_none(*pte))
2182                 goto out_unlock;
2183
2184         /* Ok, finally just insert the thing.. */
2185         entry = pte_mkspecial(pfn_pte(pfn, prot));
2186         set_pte_at(mm, addr, pte, entry);
2187         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2188
2189         retval = 0;
2190 out_unlock:
2191         pte_unmap_unlock(pte, ptl);
2192 out:
2193         return retval;
2194 }
2195
2196 /**
2197  * vm_insert_pfn - insert single pfn into user vma
2198  * @vma: user vma to map to
2199  * @addr: target user address of this page
2200  * @pfn: source kernel pfn
2201  *
2202  * Similar to vm_insert_page, this allows drivers to insert individual pages
2203  * they've allocated into a user vma. Same comments apply.
2204  *
2205  * This function should only be called from a vm_ops->fault handler, and
2206  * in that case the handler should return NULL.
2207  *
2208  * vma cannot be a COW mapping.
2209  *
2210  * As this is called only for pages that do not currently exist, we
2211  * do not need to flush old virtual caches or the TLB.
2212  */
2213 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2214                         unsigned long pfn)
2215 {
2216         int ret;
2217         pgprot_t pgprot = vma->vm_page_prot;
2218         /*
2219          * Technically, architectures with pte_special can avoid all these
2220          * restrictions (same for remap_pfn_range).  However we would like
2221          * consistency in testing and feature parity among all, so we should
2222          * try to keep these invariants in place for everybody.
2223          */
2224         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2225         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2226                                                 (VM_PFNMAP|VM_MIXEDMAP));
2227         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2228         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2229
2230         if (addr < vma->vm_start || addr >= vma->vm_end)
2231                 return -EFAULT;
2232         if (track_pfn_insert(vma, &pgprot, pfn))
2233                 return -EINVAL;
2234
2235         ret = insert_pfn(vma, addr, pfn, pgprot);
2236
2237         return ret;
2238 }
2239 EXPORT_SYMBOL(vm_insert_pfn);
2240
2241 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2242                         unsigned long pfn)
2243 {
2244         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2245
2246         if (addr < vma->vm_start || addr >= vma->vm_end)
2247                 return -EFAULT;
2248
2249         /*
2250          * If we don't have pte special, then we have to use the pfn_valid()
2251          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2252          * refcount the page if pfn_valid is true (hence insert_page rather
2253          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2254          * without pte special, it would there be refcounted as a normal page.
2255          */
2256         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2257                 struct page *page;
2258
2259                 page = pfn_to_page(pfn);
2260                 return insert_page(vma, addr, page, vma->vm_page_prot);
2261         }
2262         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2263 }
2264 EXPORT_SYMBOL(vm_insert_mixed);
2265
2266 /*
2267  * maps a range of physical memory into the requested pages. the old
2268  * mappings are removed. any references to nonexistent pages results
2269  * in null mappings (currently treated as "copy-on-access")
2270  */
2271 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2272                         unsigned long addr, unsigned long end,
2273                         unsigned long pfn, pgprot_t prot)
2274 {
2275         pte_t *pte;
2276         spinlock_t *ptl;
2277
2278         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2279         if (!pte)
2280                 return -ENOMEM;
2281         arch_enter_lazy_mmu_mode();
2282         do {
2283                 BUG_ON(!pte_none(*pte));
2284                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2285                 pfn++;
2286         } while (pte++, addr += PAGE_SIZE, addr != end);
2287         arch_leave_lazy_mmu_mode();
2288         pte_unmap_unlock(pte - 1, ptl);
2289         return 0;
2290 }
2291
2292 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2293                         unsigned long addr, unsigned long end,
2294                         unsigned long pfn, pgprot_t prot)
2295 {
2296         pmd_t *pmd;
2297         unsigned long next;
2298
2299         pfn -= addr >> PAGE_SHIFT;
2300         pmd = pmd_alloc(mm, pud, addr);
2301         if (!pmd)
2302                 return -ENOMEM;
2303         VM_BUG_ON(pmd_trans_huge(*pmd));
2304         do {
2305                 next = pmd_addr_end(addr, end);
2306                 if (remap_pte_range(mm, pmd, addr, next,
2307                                 pfn + (addr >> PAGE_SHIFT), prot))
2308                         return -ENOMEM;
2309         } while (pmd++, addr = next, addr != end);
2310         return 0;
2311 }
2312
2313 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2314                         unsigned long addr, unsigned long end,
2315                         unsigned long pfn, pgprot_t prot)
2316 {
2317         pud_t *pud;
2318         unsigned long next;
2319
2320         pfn -= addr >> PAGE_SHIFT;
2321         pud = pud_alloc(mm, pgd, addr);
2322         if (!pud)
2323                 return -ENOMEM;
2324         do {
2325                 next = pud_addr_end(addr, end);
2326                 if (remap_pmd_range(mm, pud, addr, next,
2327                                 pfn + (addr >> PAGE_SHIFT), prot))
2328                         return -ENOMEM;
2329         } while (pud++, addr = next, addr != end);
2330         return 0;
2331 }
2332
2333 /**
2334  * remap_pfn_range - remap kernel memory to userspace
2335  * @vma: user vma to map to
2336  * @addr: target user address to start at
2337  * @pfn: physical address of kernel memory
2338  * @size: size of map area
2339  * @prot: page protection flags for this mapping
2340  *
2341  *  Note: this is only safe if the mm semaphore is held when called.
2342  */
2343 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2344                     unsigned long pfn, unsigned long size, pgprot_t prot)
2345 {
2346         pgd_t *pgd;
2347         unsigned long next;
2348         unsigned long end = addr + PAGE_ALIGN(size);
2349         struct mm_struct *mm = vma->vm_mm;
2350         int err;
2351
2352         /*
2353          * Physically remapped pages are special. Tell the
2354          * rest of the world about it:
2355          *   VM_IO tells people not to look at these pages
2356          *      (accesses can have side effects).
2357          *   VM_PFNMAP tells the core MM that the base pages are just
2358          *      raw PFN mappings, and do not have a "struct page" associated
2359          *      with them.
2360          *   VM_DONTEXPAND
2361          *      Disable vma merging and expanding with mremap().
2362          *   VM_DONTDUMP
2363          *      Omit vma from core dump, even when VM_IO turned off.
2364          *
2365          * There's a horrible special case to handle copy-on-write
2366          * behaviour that some programs depend on. We mark the "original"
2367          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2368          * See vm_normal_page() for details.
2369          */
2370         if (is_cow_mapping(vma->vm_flags)) {
2371                 if (addr != vma->vm_start || end != vma->vm_end)
2372                         return -EINVAL;
2373                 vma->vm_pgoff = pfn;
2374         }
2375
2376         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2377         if (err)
2378                 return -EINVAL;
2379
2380         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2381
2382         BUG_ON(addr >= end);
2383         pfn -= addr >> PAGE_SHIFT;
2384         pgd = pgd_offset(mm, addr);
2385         flush_cache_range(vma, addr, end);
2386         do {
2387                 next = pgd_addr_end(addr, end);
2388                 err = remap_pud_range(mm, pgd, addr, next,
2389                                 pfn + (addr >> PAGE_SHIFT), prot);
2390                 if (err)
2391                         break;
2392         } while (pgd++, addr = next, addr != end);
2393
2394         if (err)
2395                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2396
2397         return err;
2398 }
2399 EXPORT_SYMBOL(remap_pfn_range);
2400
2401 /**
2402  * vm_iomap_memory - remap memory to userspace
2403  * @vma: user vma to map to
2404  * @start: start of area
2405  * @len: size of area
2406  *
2407  * This is a simplified io_remap_pfn_range() for common driver use. The
2408  * driver just needs to give us the physical memory range to be mapped,
2409  * we'll figure out the rest from the vma information.
2410  *
2411  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2412  * whatever write-combining details or similar.
2413  */
2414 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2415 {
2416         unsigned long vm_len, pfn, pages;
2417
2418         /* Check that the physical memory area passed in looks valid */
2419         if (start + len < start)
2420                 return -EINVAL;
2421         /*
2422          * You *really* shouldn't map things that aren't page-aligned,
2423          * but we've historically allowed it because IO memory might
2424          * just have smaller alignment.
2425          */
2426         len += start & ~PAGE_MASK;
2427         pfn = start >> PAGE_SHIFT;
2428         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2429         if (pfn + pages < pfn)
2430                 return -EINVAL;
2431
2432         /* We start the mapping 'vm_pgoff' pages into the area */
2433         if (vma->vm_pgoff > pages)
2434                 return -EINVAL;
2435         pfn += vma->vm_pgoff;
2436         pages -= vma->vm_pgoff;
2437
2438         /* Can we fit all of the mapping? */
2439         vm_len = vma->vm_end - vma->vm_start;
2440         if (vm_len >> PAGE_SHIFT > pages)
2441                 return -EINVAL;
2442
2443         /* Ok, let it rip */
2444         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2445 }
2446 EXPORT_SYMBOL(vm_iomap_memory);
2447
2448 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2449                                      unsigned long addr, unsigned long end,
2450                                      pte_fn_t fn, void *data)
2451 {
2452         pte_t *pte;
2453         int err;
2454         pgtable_t token;
2455         spinlock_t *uninitialized_var(ptl);
2456
2457         pte = (mm == &init_mm) ?
2458                 pte_alloc_kernel(pmd, addr) :
2459                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2460         if (!pte)
2461                 return -ENOMEM;
2462
2463         BUG_ON(pmd_huge(*pmd));
2464
2465         arch_enter_lazy_mmu_mode();
2466
2467         token = pmd_pgtable(*pmd);
2468
2469         do {
2470                 err = fn(pte++, token, addr, data);
2471                 if (err)
2472                         break;
2473         } while (addr += PAGE_SIZE, addr != end);
2474
2475         arch_leave_lazy_mmu_mode();
2476
2477         if (mm != &init_mm)
2478                 pte_unmap_unlock(pte-1, ptl);
2479         return err;
2480 }
2481
2482 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2483                                      unsigned long addr, unsigned long end,
2484                                      pte_fn_t fn, void *data)
2485 {
2486         pmd_t *pmd;
2487         unsigned long next;
2488         int err;
2489
2490         BUG_ON(pud_huge(*pud));
2491
2492         pmd = pmd_alloc(mm, pud, addr);
2493         if (!pmd)
2494                 return -ENOMEM;
2495         do {
2496                 next = pmd_addr_end(addr, end);
2497                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2498                 if (err)
2499                         break;
2500         } while (pmd++, addr = next, addr != end);
2501         return err;
2502 }
2503
2504 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2505                                      unsigned long addr, unsigned long end,
2506                                      pte_fn_t fn, void *data)
2507 {
2508         pud_t *pud;
2509         unsigned long next;
2510         int err;
2511
2512         pud = pud_alloc(mm, pgd, addr);
2513         if (!pud)
2514                 return -ENOMEM;
2515         do {
2516                 next = pud_addr_end(addr, end);
2517                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2518                 if (err)
2519                         break;
2520         } while (pud++, addr = next, addr != end);
2521         return err;
2522 }
2523
2524 /*
2525  * Scan a region of virtual memory, filling in page tables as necessary
2526  * and calling a provided function on each leaf page table.
2527  */
2528 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2529                         unsigned long size, pte_fn_t fn, void *data)
2530 {
2531         pgd_t *pgd;
2532         unsigned long next;
2533         unsigned long end = addr + size;
2534         int err;
2535
2536         BUG_ON(addr >= end);
2537         pgd = pgd_offset(mm, addr);
2538         do {
2539                 next = pgd_addr_end(addr, end);
2540                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2541                 if (err)
2542                         break;
2543         } while (pgd++, addr = next, addr != end);
2544
2545         return err;
2546 }
2547 EXPORT_SYMBOL_GPL(apply_to_page_range);
2548
2549 /*
2550  * handle_pte_fault chooses page fault handler according to an entry
2551  * which was read non-atomically.  Before making any commitment, on
2552  * those architectures or configurations (e.g. i386 with PAE) which
2553  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2554  * must check under lock before unmapping the pte and proceeding
2555  * (but do_wp_page is only called after already making such a check;
2556  * and do_anonymous_page can safely check later on).
2557  */
2558 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2559                                 pte_t *page_table, pte_t orig_pte)
2560 {
2561         int same = 1;
2562 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2563         if (sizeof(pte_t) > sizeof(unsigned long)) {
2564                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2565                 spin_lock(ptl);
2566                 same = pte_same(*page_table, orig_pte);
2567                 spin_unlock(ptl);
2568         }
2569 #endif
2570         pte_unmap(page_table);
2571         return same;
2572 }
2573
2574 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2575 {
2576         /*
2577          * If the source page was a PFN mapping, we don't have
2578          * a "struct page" for it. We do a best-effort copy by
2579          * just copying from the original user address. If that
2580          * fails, we just zero-fill it. Live with it.
2581          */
2582         if (unlikely(!src)) {
2583                 void *kaddr = kmap_atomic(dst);
2584                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2585
2586                 /*
2587                  * This really shouldn't fail, because the page is there
2588                  * in the page tables. But it might just be unreadable,
2589                  * in which case we just give up and fill the result with
2590                  * zeroes.
2591                  */
2592                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2593                         clear_page(kaddr);
2594                 kunmap_atomic(kaddr);
2595                 flush_dcache_page(dst);
2596         } else
2597                 copy_user_highpage(dst, src, va, vma);
2598 }
2599
2600 /*
2601  * This routine handles present pages, when users try to write
2602  * to a shared page. It is done by copying the page to a new address
2603  * and decrementing the shared-page counter for the old page.
2604  *
2605  * Note that this routine assumes that the protection checks have been
2606  * done by the caller (the low-level page fault routine in most cases).
2607  * Thus we can safely just mark it writable once we've done any necessary
2608  * COW.
2609  *
2610  * We also mark the page dirty at this point even though the page will
2611  * change only once the write actually happens. This avoids a few races,
2612  * and potentially makes it more efficient.
2613  *
2614  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2615  * but allow concurrent faults), with pte both mapped and locked.
2616  * We return with mmap_sem still held, but pte unmapped and unlocked.
2617  */
2618 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2619                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2620                 spinlock_t *ptl, pte_t orig_pte)
2621         __releases(ptl)
2622 {
2623         struct page *old_page, *new_page = NULL;
2624         pte_t entry;
2625         int ret = 0;
2626         int page_mkwrite = 0;
2627         struct page *dirty_page = NULL;
2628         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2629         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2630
2631         old_page = vm_normal_page(vma, address, orig_pte);
2632         if (!old_page) {
2633                 /*
2634                  * VM_MIXEDMAP !pfn_valid() case
2635                  *
2636                  * We should not cow pages in a shared writeable mapping.
2637                  * Just mark the pages writable as we can't do any dirty
2638                  * accounting on raw pfn maps.
2639                  */
2640                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2641                                      (VM_WRITE|VM_SHARED))
2642                         goto reuse;
2643                 goto gotten;
2644         }
2645
2646         /*
2647          * Take out anonymous pages first, anonymous shared vmas are
2648          * not dirty accountable.
2649          */
2650         if (PageAnon(old_page) && !PageKsm(old_page)) {
2651                 if (!trylock_page(old_page)) {
2652                         page_cache_get(old_page);
2653                         pte_unmap_unlock(page_table, ptl);
2654                         lock_page(old_page);
2655                         page_table = pte_offset_map_lock(mm, pmd, address,
2656                                                          &ptl);
2657                         if (!pte_same(*page_table, orig_pte)) {
2658                                 unlock_page(old_page);
2659                                 goto unlock;
2660                         }
2661                         page_cache_release(old_page);
2662                 }
2663                 if (reuse_swap_page(old_page)) {
2664                         /*
2665                          * The page is all ours.  Move it to our anon_vma so
2666                          * the rmap code will not search our parent or siblings.
2667                          * Protected against the rmap code by the page lock.
2668                          */
2669                         page_move_anon_rmap(old_page, vma, address);
2670                         unlock_page(old_page);
2671                         goto reuse;
2672                 }
2673                 unlock_page(old_page);
2674         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2675                                         (VM_WRITE|VM_SHARED))) {
2676                 /*
2677                  * Only catch write-faults on shared writable pages,
2678                  * read-only shared pages can get COWed by
2679                  * get_user_pages(.write=1, .force=1).
2680                  */
2681                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2682                         struct vm_fault vmf;
2683                         int tmp;
2684
2685                         vmf.virtual_address = (void __user *)(address &
2686                                                                 PAGE_MASK);
2687                         vmf.pgoff = old_page->index;
2688                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2689                         vmf.page = old_page;
2690
2691                         /*
2692                          * Notify the address space that the page is about to
2693                          * become writable so that it can prohibit this or wait
2694                          * for the page to get into an appropriate state.
2695                          *
2696                          * We do this without the lock held, so that it can
2697                          * sleep if it needs to.
2698                          */
2699                         page_cache_get(old_page);
2700                         pte_unmap_unlock(page_table, ptl);
2701
2702                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2703                         if (unlikely(tmp &
2704                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2705                                 ret = tmp;
2706                                 goto unwritable_page;
2707                         }
2708                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2709                                 lock_page(old_page);
2710                                 if (!old_page->mapping) {
2711                                         ret = 0; /* retry the fault */
2712                                         unlock_page(old_page);
2713                                         goto unwritable_page;
2714                                 }
2715                         } else
2716                                 VM_BUG_ON(!PageLocked(old_page));
2717
2718                         /*
2719                          * Since we dropped the lock we need to revalidate
2720                          * the PTE as someone else may have changed it.  If
2721                          * they did, we just return, as we can count on the
2722                          * MMU to tell us if they didn't also make it writable.
2723                          */
2724                         page_table = pte_offset_map_lock(mm, pmd, address,
2725                                                          &ptl);
2726                         if (!pte_same(*page_table, orig_pte)) {
2727                                 unlock_page(old_page);
2728                                 goto unlock;
2729                         }
2730
2731                         page_mkwrite = 1;
2732                 }
2733                 dirty_page = old_page;
2734                 get_page(dirty_page);
2735
2736 reuse:
2737                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2738                 entry = pte_mkyoung(orig_pte);
2739                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2740                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2741                         update_mmu_cache(vma, address, page_table);
2742                 pte_unmap_unlock(page_table, ptl);
2743                 ret |= VM_FAULT_WRITE;
2744
2745                 if (!dirty_page)
2746                         return ret;
2747
2748                 /*
2749                  * Yes, Virginia, this is actually required to prevent a race
2750                  * with clear_page_dirty_for_io() from clearing the page dirty
2751                  * bit after it clear all dirty ptes, but before a racing
2752                  * do_wp_page installs a dirty pte.
2753                  *
2754                  * __do_fault is protected similarly.
2755                  */
2756                 if (!page_mkwrite) {
2757                         wait_on_page_locked(dirty_page);
2758                         set_page_dirty_balance(dirty_page, page_mkwrite);
2759                         /* file_update_time outside page_lock */
2760                         if (vma->vm_file)
2761                                 file_update_time(vma->vm_file);
2762                 }
2763                 put_page(dirty_page);
2764                 if (page_mkwrite) {
2765                         struct address_space *mapping = dirty_page->mapping;
2766
2767                         set_page_dirty(dirty_page);
2768                         unlock_page(dirty_page);
2769                         page_cache_release(dirty_page);
2770                         if (mapping)    {
2771                                 /*
2772                                  * Some device drivers do not set page.mapping
2773                                  * but still dirty their pages
2774                                  */
2775                                 balance_dirty_pages_ratelimited(mapping);
2776                         }
2777                 }
2778
2779                 return ret;
2780         }
2781
2782         /*
2783          * Ok, we need to copy. Oh, well..
2784          */
2785         page_cache_get(old_page);
2786 gotten:
2787         pte_unmap_unlock(page_table, ptl);
2788
2789         if (unlikely(anon_vma_prepare(vma)))
2790                 goto oom;
2791
2792         if (is_zero_pfn(pte_pfn(orig_pte))) {
2793                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2794                 if (!new_page)
2795                         goto oom;
2796         } else {
2797                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2798                 if (!new_page)
2799                         goto oom;
2800                 cow_user_page(new_page, old_page, address, vma);
2801         }
2802         __SetPageUptodate(new_page);
2803
2804         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2805                 goto oom_free_new;
2806
2807         mmun_start  = address & PAGE_MASK;
2808         mmun_end    = mmun_start + PAGE_SIZE;
2809         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2810
2811         /*
2812          * Re-check the pte - we dropped the lock
2813          */
2814         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2815         if (likely(pte_same(*page_table, orig_pte))) {
2816                 if (old_page) {
2817                         if (!PageAnon(old_page)) {
2818                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2819                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2820                         }
2821                 } else
2822                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2823                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2824                 entry = mk_pte(new_page, vma->vm_page_prot);
2825                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2826                 /*
2827                  * Clear the pte entry and flush it first, before updating the
2828                  * pte with the new entry. This will avoid a race condition
2829                  * seen in the presence of one thread doing SMC and another
2830                  * thread doing COW.
2831                  */
2832                 ptep_clear_flush(vma, address, page_table);
2833                 page_add_new_anon_rmap(new_page, vma, address);
2834                 /*
2835                  * We call the notify macro here because, when using secondary
2836                  * mmu page tables (such as kvm shadow page tables), we want the
2837                  * new page to be mapped directly into the secondary page table.
2838                  */
2839                 set_pte_at_notify(mm, address, page_table, entry);
2840                 update_mmu_cache(vma, address, page_table);
2841                 if (old_page) {
2842                         /*
2843                          * Only after switching the pte to the new page may
2844                          * we remove the mapcount here. Otherwise another
2845                          * process may come and find the rmap count decremented
2846                          * before the pte is switched to the new page, and
2847                          * "reuse" the old page writing into it while our pte
2848                          * here still points into it and can be read by other
2849                          * threads.
2850                          *
2851                          * The critical issue is to order this
2852                          * page_remove_rmap with the ptp_clear_flush above.
2853                          * Those stores are ordered by (if nothing else,)
2854                          * the barrier present in the atomic_add_negative
2855                          * in page_remove_rmap.
2856                          *
2857                          * Then the TLB flush in ptep_clear_flush ensures that
2858                          * no process can access the old page before the
2859                          * decremented mapcount is visible. And the old page
2860                          * cannot be reused until after the decremented
2861                          * mapcount is visible. So transitively, TLBs to
2862                          * old page will be flushed before it can be reused.
2863                          */
2864                         page_remove_rmap(old_page);
2865                 }
2866
2867                 /* Free the old page.. */
2868                 new_page = old_page;
2869                 ret |= VM_FAULT_WRITE;
2870         } else
2871                 mem_cgroup_uncharge_page(new_page);
2872
2873         if (new_page)
2874                 page_cache_release(new_page);
2875 unlock:
2876         pte_unmap_unlock(page_table, ptl);
2877         if (mmun_end > mmun_start)
2878                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2879         if (old_page) {
2880                 /*
2881                  * Don't let another task, with possibly unlocked vma,
2882                  * keep the mlocked page.
2883                  */
2884                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2885                         lock_page(old_page);    /* LRU manipulation */
2886                         munlock_vma_page(old_page);
2887                         unlock_page(old_page);
2888                 }
2889                 page_cache_release(old_page);
2890         }
2891         return ret;
2892 oom_free_new:
2893         page_cache_release(new_page);
2894 oom:
2895         if (old_page)
2896                 page_cache_release(old_page);
2897         return VM_FAULT_OOM;
2898
2899 unwritable_page:
2900         page_cache_release(old_page);
2901         return ret;
2902 }
2903
2904 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2905                 unsigned long start_addr, unsigned long end_addr,
2906                 struct zap_details *details)
2907 {
2908         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2909 }
2910
2911 static inline void unmap_mapping_range_tree(struct rb_root *root,
2912                                             struct zap_details *details)
2913 {
2914         struct vm_area_struct *vma;
2915         pgoff_t vba, vea, zba, zea;
2916
2917         vma_interval_tree_foreach(vma, root,
2918                         details->first_index, details->last_index) {
2919
2920                 vba = vma->vm_pgoff;
2921                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2922                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2923                 zba = details->first_index;
2924                 if (zba < vba)
2925                         zba = vba;
2926                 zea = details->last_index;
2927                 if (zea > vea)
2928                         zea = vea;
2929
2930                 unmap_mapping_range_vma(vma,
2931                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2932                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2933                                 details);
2934         }
2935 }
2936
2937 static inline void unmap_mapping_range_list(struct list_head *head,
2938                                             struct zap_details *details)
2939 {
2940         struct vm_area_struct *vma;
2941
2942         /*
2943          * In nonlinear VMAs there is no correspondence between virtual address
2944          * offset and file offset.  So we must perform an exhaustive search
2945          * across *all* the pages in each nonlinear VMA, not just the pages
2946          * whose virtual address lies outside the file truncation point.
2947          */
2948         list_for_each_entry(vma, head, shared.nonlinear) {
2949                 details->nonlinear_vma = vma;
2950                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2951         }
2952 }
2953
2954 /**
2955  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2956  * @mapping: the address space containing mmaps to be unmapped.
2957  * @holebegin: byte in first page to unmap, relative to the start of
2958  * the underlying file.  This will be rounded down to a PAGE_SIZE
2959  * boundary.  Note that this is different from truncate_pagecache(), which
2960  * must keep the partial page.  In contrast, we must get rid of
2961  * partial pages.
2962  * @holelen: size of prospective hole in bytes.  This will be rounded
2963  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2964  * end of the file.
2965  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2966  * but 0 when invalidating pagecache, don't throw away private data.
2967  */
2968 void unmap_mapping_range(struct address_space *mapping,
2969                 loff_t const holebegin, loff_t const holelen, int even_cows)
2970 {
2971         struct zap_details details;
2972         pgoff_t hba = holebegin >> PAGE_SHIFT;
2973         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2974
2975         /* Check for overflow. */
2976         if (sizeof(holelen) > sizeof(hlen)) {
2977                 long long holeend =
2978                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2979                 if (holeend & ~(long long)ULONG_MAX)
2980                         hlen = ULONG_MAX - hba + 1;
2981         }
2982
2983         details.check_mapping = even_cows? NULL: mapping;
2984         details.nonlinear_vma = NULL;
2985         details.first_index = hba;
2986         details.last_index = hba + hlen - 1;
2987         if (details.last_index < details.first_index)
2988                 details.last_index = ULONG_MAX;
2989
2990
2991         mutex_lock(&mapping->i_mmap_mutex);
2992         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2993                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2994         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2995                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2996         mutex_unlock(&mapping->i_mmap_mutex);
2997 }
2998 EXPORT_SYMBOL(unmap_mapping_range);
2999
3000 /*
3001  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3002  * but allow concurrent faults), and pte mapped but not yet locked.
3003  * We return with mmap_sem still held, but pte unmapped and unlocked.
3004  */
3005 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3006                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3007                 unsigned int flags, pte_t orig_pte)
3008 {
3009         spinlock_t *ptl;
3010         struct page *page, *swapcache;
3011         swp_entry_t entry;
3012         pte_t pte;
3013         int locked;
3014         struct mem_cgroup *ptr;
3015         int exclusive = 0;
3016         int ret = 0;
3017
3018         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3019                 goto out;
3020
3021         entry = pte_to_swp_entry(orig_pte);
3022         if (unlikely(non_swap_entry(entry))) {
3023                 if (is_migration_entry(entry)) {
3024                         migration_entry_wait(mm, pmd, address);
3025                 } else if (is_hwpoison_entry(entry)) {
3026                         ret = VM_FAULT_HWPOISON;
3027                 } else {
3028                         print_bad_pte(vma, address, orig_pte, NULL);
3029                         ret = VM_FAULT_SIGBUS;
3030                 }
3031                 goto out;
3032         }
3033         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3034         page = lookup_swap_cache(entry);
3035         if (!page) {
3036                 page = swapin_readahead(entry,
3037                                         GFP_HIGHUSER_MOVABLE, vma, address);
3038                 if (!page) {
3039                         /*
3040                          * Back out if somebody else faulted in this pte
3041                          * while we released the pte lock.
3042                          */
3043                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3044                         if (likely(pte_same(*page_table, orig_pte)))
3045                                 ret = VM_FAULT_OOM;
3046                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3047                         goto unlock;
3048                 }
3049
3050                 /* Had to read the page from swap area: Major fault */
3051                 ret = VM_FAULT_MAJOR;
3052                 count_vm_event(PGMAJFAULT);
3053                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3054         } else if (PageHWPoison(page)) {
3055                 /*
3056                  * hwpoisoned dirty swapcache pages are kept for killing
3057                  * owner processes (which may be unknown at hwpoison time)
3058                  */
3059                 ret = VM_FAULT_HWPOISON;
3060                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3061                 swapcache = page;
3062                 goto out_release;
3063         }
3064
3065         swapcache = page;
3066         locked = lock_page_or_retry(page, mm, flags);
3067
3068         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3069         if (!locked) {
3070                 ret |= VM_FAULT_RETRY;
3071                 goto out_release;
3072         }
3073
3074         /*
3075          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3076          * release the swapcache from under us.  The page pin, and pte_same
3077          * test below, are not enough to exclude that.  Even if it is still
3078          * swapcache, we need to check that the page's swap has not changed.
3079          */
3080         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3081                 goto out_page;
3082
3083         page = ksm_might_need_to_copy(page, vma, address);
3084         if (unlikely(!page)) {
3085                 ret = VM_FAULT_OOM;
3086                 page = swapcache;
3087                 goto out_page;
3088         }
3089
3090         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3091                 ret = VM_FAULT_OOM;
3092                 goto out_page;
3093         }
3094
3095         /*
3096          * Back out if somebody else already faulted in this pte.
3097          */
3098         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3099         if (unlikely(!pte_same(*page_table, orig_pte)))
3100                 goto out_nomap;
3101
3102         if (unlikely(!PageUptodate(page))) {
3103                 ret = VM_FAULT_SIGBUS;
3104                 goto out_nomap;
3105         }
3106
3107         /*
3108          * The page isn't present yet, go ahead with the fault.
3109          *
3110          * Be careful about the sequence of operations here.
3111          * To get its accounting right, reuse_swap_page() must be called
3112          * while the page is counted on swap but not yet in mapcount i.e.
3113          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3114          * must be called after the swap_free(), or it will never succeed.
3115          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3116          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3117          * in page->private. In this case, a record in swap_cgroup  is silently
3118          * discarded at swap_free().
3119          */
3120
3121         inc_mm_counter_fast(mm, MM_ANONPAGES);
3122         dec_mm_counter_fast(mm, MM_SWAPENTS);
3123         pte = mk_pte(page, vma->vm_page_prot);
3124         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3125                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3126                 flags &= ~FAULT_FLAG_WRITE;
3127                 ret |= VM_FAULT_WRITE;
3128                 exclusive = 1;
3129         }
3130         flush_icache_page(vma, page);
3131         set_pte_at(mm, address, page_table, pte);
3132         if (page == swapcache)
3133                 do_page_add_anon_rmap(page, vma, address, exclusive);
3134         else /* ksm created a completely new copy */
3135                 page_add_new_anon_rmap(page, vma, address);
3136         /* It's better to call commit-charge after rmap is established */
3137         mem_cgroup_commit_charge_swapin(page, ptr);
3138
3139         swap_free(entry);
3140         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3141                 try_to_free_swap(page);
3142         unlock_page(page);
3143         if (page != swapcache) {
3144                 /*
3145                  * Hold the lock to avoid the swap entry to be reused
3146                  * until we take the PT lock for the pte_same() check
3147                  * (to avoid false positives from pte_same). For
3148                  * further safety release the lock after the swap_free
3149                  * so that the swap count won't change under a
3150                  * parallel locked swapcache.
3151                  */
3152                 unlock_page(swapcache);
3153                 page_cache_release(swapcache);
3154         }
3155
3156         if (flags & FAULT_FLAG_WRITE) {
3157                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3158                 if (ret & VM_FAULT_ERROR)
3159                         ret &= VM_FAULT_ERROR;
3160                 goto out;
3161         }
3162
3163         /* No need to invalidate - it was non-present before */
3164         update_mmu_cache(vma, address, page_table);
3165 unlock:
3166         pte_unmap_unlock(page_table, ptl);
3167 out:
3168         return ret;
3169 out_nomap:
3170         mem_cgroup_cancel_charge_swapin(ptr);
3171         pte_unmap_unlock(page_table, ptl);
3172 out_page:
3173         unlock_page(page);
3174 out_release:
3175         page_cache_release(page);
3176         if (page != swapcache) {
3177                 unlock_page(swapcache);
3178                 page_cache_release(swapcache);
3179         }
3180         return ret;
3181 }
3182
3183 /*
3184  * This is like a special single-page "expand_{down|up}wards()",
3185  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3186  * doesn't hit another vma.
3187  */
3188 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3189 {
3190         address &= PAGE_MASK;
3191         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3192                 struct vm_area_struct *prev = vma->vm_prev;
3193
3194                 /*
3195                  * Is there a mapping abutting this one below?
3196                  *
3197                  * That's only ok if it's the same stack mapping
3198                  * that has gotten split..
3199                  */
3200                 if (prev && prev->vm_end == address)
3201                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3202
3203                 expand_downwards(vma, address - PAGE_SIZE);
3204         }
3205         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3206                 struct vm_area_struct *next = vma->vm_next;
3207
3208                 /* As VM_GROWSDOWN but s/below/above/ */
3209                 if (next && next->vm_start == address + PAGE_SIZE)
3210                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3211
3212                 expand_upwards(vma, address + PAGE_SIZE);
3213         }
3214         return 0;
3215 }
3216
3217 /*
3218  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3219  * but allow concurrent faults), and pte mapped but not yet locked.
3220  * We return with mmap_sem still held, but pte unmapped and unlocked.
3221  */
3222 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3223                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3224                 unsigned int flags)
3225 {
3226         struct page *page;
3227         spinlock_t *ptl;
3228         pte_t entry;
3229
3230         pte_unmap(page_table);
3231
3232         /* Check if we need to add a guard page to the stack */
3233         if (check_stack_guard_page(vma, address) < 0)
3234                 return VM_FAULT_SIGBUS;
3235
3236         /* Use the zero-page for reads */
3237         if (!(flags & FAULT_FLAG_WRITE)) {
3238                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3239                                                 vma->vm_page_prot));
3240                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3241                 if (!pte_none(*page_table))
3242                         goto unlock;
3243                 goto setpte;
3244         }
3245
3246         /* Allocate our own private page. */
3247         if (unlikely(anon_vma_prepare(vma)))
3248                 goto oom;
3249         page = alloc_zeroed_user_highpage_movable(vma, address);
3250         if (!page)
3251                 goto oom;
3252         /*
3253          * The memory barrier inside __SetPageUptodate makes sure that
3254          * preceeding stores to the page contents become visible before
3255          * the set_pte_at() write.
3256          */
3257         __SetPageUptodate(page);
3258
3259         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3260                 goto oom_free_page;
3261
3262         entry = mk_pte(page, vma->vm_page_prot);
3263         if (vma->vm_flags & VM_WRITE)
3264                 entry = pte_mkwrite(pte_mkdirty(entry));
3265
3266         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3267         if (!pte_none(*page_table))
3268                 goto release;
3269
3270         inc_mm_counter_fast(mm, MM_ANONPAGES);
3271         page_add_new_anon_rmap(page, vma, address);
3272 setpte:
3273         set_pte_at(mm, address, page_table, entry);
3274
3275         /* No need to invalidate - it was non-present before */
3276         update_mmu_cache(vma, address, page_table);
3277 unlock:
3278         pte_unmap_unlock(page_table, ptl);
3279         return 0;
3280 release:
3281         mem_cgroup_uncharge_page(page);
3282         page_cache_release(page);
3283         goto unlock;
3284 oom_free_page:
3285         page_cache_release(page);
3286 oom:
3287         return VM_FAULT_OOM;
3288 }
3289
3290 /*
3291  * __do_fault() tries to create a new page mapping. It aggressively
3292  * tries to share with existing pages, but makes a separate copy if
3293  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3294  * the next page fault.
3295  *
3296  * As this is called only for pages that do not currently exist, we
3297  * do not need to flush old virtual caches or the TLB.
3298  *
3299  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3300  * but allow concurrent faults), and pte neither mapped nor locked.
3301  * We return with mmap_sem still held, but pte unmapped and unlocked.
3302  */
3303 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3304                 unsigned long address, pmd_t *pmd,
3305                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3306 {
3307         pte_t *page_table;
3308         spinlock_t *ptl;
3309         struct page *page;
3310         struct page *cow_page;
3311         pte_t entry;
3312         int anon = 0;
3313         struct page *dirty_page = NULL;
3314         struct vm_fault vmf;
3315         int ret;
3316         int page_mkwrite = 0;
3317
3318         /*
3319          * If we do COW later, allocate page befor taking lock_page()
3320          * on the file cache page. This will reduce lock holding time.
3321          */
3322         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3323
3324                 if (unlikely(anon_vma_prepare(vma)))
3325                         return VM_FAULT_OOM;
3326
3327                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3328                 if (!cow_page)
3329                         return VM_FAULT_OOM;
3330
3331                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3332                         page_cache_release(cow_page);
3333                         return VM_FAULT_OOM;
3334                 }
3335         } else
3336                 cow_page = NULL;
3337
3338         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3339         vmf.pgoff = pgoff;
3340         vmf.flags = flags;
3341         vmf.page = NULL;
3342
3343         ret = vma->vm_ops->fault(vma, &vmf);
3344         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3345                             VM_FAULT_RETRY)))
3346                 goto uncharge_out;
3347
3348         if (unlikely(PageHWPoison(vmf.page))) {
3349                 if (ret & VM_FAULT_LOCKED)
3350                         unlock_page(vmf.page);
3351                 ret = VM_FAULT_HWPOISON;
3352                 goto uncharge_out;
3353         }
3354
3355         /*
3356          * For consistency in subsequent calls, make the faulted page always
3357          * locked.
3358          */
3359         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3360                 lock_page(vmf.page);
3361         else
3362                 VM_BUG_ON(!PageLocked(vmf.page));
3363
3364         /*
3365          * Should we do an early C-O-W break?
3366          */
3367         page = vmf.page;
3368         if (flags & FAULT_FLAG_WRITE) {
3369                 if (!(vma->vm_flags & VM_SHARED)) {
3370                         page = cow_page;
3371                         anon = 1;
3372                         copy_user_highpage(page, vmf.page, address, vma);
3373                         __SetPageUptodate(page);
3374                 } else {
3375                         /*
3376                          * If the page will be shareable, see if the backing
3377                          * address space wants to know that the page is about
3378                          * to become writable
3379                          */
3380                         if (vma->vm_ops->page_mkwrite) {
3381                                 int tmp;
3382
3383                                 unlock_page(page);
3384                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3385                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3386                                 if (unlikely(tmp &
3387                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3388                                         ret = tmp;
3389                                         goto unwritable_page;
3390                                 }
3391                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3392                                         lock_page(page);
3393                                         if (!page->mapping) {
3394                                                 ret = 0; /* retry the fault */
3395                                                 unlock_page(page);
3396                                                 goto unwritable_page;
3397                                         }
3398                                 } else
3399                                         VM_BUG_ON(!PageLocked(page));
3400                                 page_mkwrite = 1;
3401                         }
3402                 }
3403
3404         }
3405
3406         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3407
3408         /*
3409          * This silly early PAGE_DIRTY setting removes a race
3410          * due to the bad i386 page protection. But it's valid
3411          * for other architectures too.
3412          *
3413          * Note that if FAULT_FLAG_WRITE is set, we either now have
3414          * an exclusive copy of the page, or this is a shared mapping,
3415          * so we can make it writable and dirty to avoid having to
3416          * handle that later.
3417          */
3418         /* Only go through if we didn't race with anybody else... */
3419         if (likely(pte_same(*page_table, orig_pte))) {
3420                 flush_icache_page(vma, page);
3421                 entry = mk_pte(page, vma->vm_page_prot);
3422                 if (flags & FAULT_FLAG_WRITE)
3423                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3424                 if (anon) {
3425                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3426                         page_add_new_anon_rmap(page, vma, address);
3427                 } else {
3428                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3429                         page_add_file_rmap(page);
3430                         if (flags & FAULT_FLAG_WRITE) {
3431                                 dirty_page = page;
3432                                 get_page(dirty_page);
3433                         }
3434                 }
3435                 set_pte_at(mm, address, page_table, entry);
3436
3437                 /* no need to invalidate: a not-present page won't be cached */
3438                 update_mmu_cache(vma, address, page_table);
3439         } else {
3440                 if (cow_page)
3441                         mem_cgroup_uncharge_page(cow_page);
3442                 if (anon)
3443                         page_cache_release(page);
3444                 else
3445                         anon = 1; /* no anon but release faulted_page */
3446         }
3447
3448         pte_unmap_unlock(page_table, ptl);
3449
3450         if (dirty_page) {
3451                 struct address_space *mapping = page->mapping;
3452                 int dirtied = 0;
3453
3454                 if (set_page_dirty(dirty_page))
3455                         dirtied = 1;
3456                 unlock_page(dirty_page);
3457                 put_page(dirty_page);
3458                 if ((dirtied || page_mkwrite) && mapping) {
3459                         /*
3460                          * Some device drivers do not set page.mapping but still
3461                          * dirty their pages
3462                          */
3463                         balance_dirty_pages_ratelimited(mapping);
3464                 }
3465
3466                 /* file_update_time outside page_lock */
3467                 if (vma->vm_file && !page_mkwrite)
3468                         file_update_time(vma->vm_file);
3469         } else {
3470                 unlock_page(vmf.page);
3471                 if (anon)
3472                         page_cache_release(vmf.page);
3473         }
3474
3475         return ret;
3476
3477 unwritable_page:
3478         page_cache_release(page);
3479         return ret;
3480 uncharge_out:
3481         /* fs's fault handler get error */
3482         if (cow_page) {
3483                 mem_cgroup_uncharge_page(cow_page);
3484                 page_cache_release(cow_page);
3485         }
3486         return ret;
3487 }
3488
3489 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3490                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3491                 unsigned int flags, pte_t orig_pte)
3492 {
3493         pgoff_t pgoff = (((address & PAGE_MASK)
3494                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3495
3496         pte_unmap(page_table);
3497         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3498 }
3499
3500 /*
3501  * Fault of a previously existing named mapping. Repopulate the pte
3502  * from the encoded file_pte if possible. This enables swappable
3503  * nonlinear vmas.
3504  *
3505  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3506  * but allow concurrent faults), and pte mapped but not yet locked.
3507  * We return with mmap_sem still held, but pte unmapped and unlocked.
3508  */
3509 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3510                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3511                 unsigned int flags, pte_t orig_pte)
3512 {
3513         pgoff_t pgoff;
3514
3515         flags |= FAULT_FLAG_NONLINEAR;
3516
3517         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3518                 return 0;
3519
3520         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3521                 /*
3522                  * Page table corrupted: show pte and kill process.
3523                  */
3524                 print_bad_pte(vma, address, orig_pte, NULL);
3525                 return VM_FAULT_SIGBUS;
3526         }
3527
3528         pgoff = pte_to_pgoff(orig_pte);
3529         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3530 }
3531
3532 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3533                                 unsigned long addr, int page_nid)
3534 {
3535         get_page(page);
3536
3537         count_vm_numa_event(NUMA_HINT_FAULTS);
3538         if (page_nid == numa_node_id())
3539                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3540
3541         return mpol_misplaced(page, vma, addr);
3542 }
3543
3544 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3545                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3546 {
3547         struct page *page = NULL;
3548         spinlock_t *ptl;
3549         int page_nid = -1;
3550         int target_nid;
3551         bool migrated = false;
3552
3553         /*
3554         * The "pte" at this point cannot be used safely without
3555         * validation through pte_unmap_same(). It's of NUMA type but
3556         * the pfn may be screwed if the read is non atomic.
3557         *
3558         * ptep_modify_prot_start is not called as this is clearing
3559         * the _PAGE_NUMA bit and it is not really expected that there
3560         * would be concurrent hardware modifications to the PTE.
3561         */
3562         ptl = pte_lockptr(mm, pmd);
3563         spin_lock(ptl);
3564         if (unlikely(!pte_same(*ptep, pte))) {
3565                 pte_unmap_unlock(ptep, ptl);
3566                 goto out;
3567         }
3568
3569         pte = pte_mknonnuma(pte);
3570         set_pte_at(mm, addr, ptep, pte);
3571         update_mmu_cache(vma, addr, ptep);
3572
3573         page = vm_normal_page(vma, addr, pte);
3574         if (!page) {
3575                 pte_unmap_unlock(ptep, ptl);
3576                 return 0;
3577         }
3578
3579         page_nid = page_to_nid(page);
3580         target_nid = numa_migrate_prep(page, vma, addr, page_nid);
3581         pte_unmap_unlock(ptep, ptl);
3582         if (target_nid == -1) {
3583                 put_page(page);
3584                 goto out;
3585         }
3586
3587         /* Migrate to the requested node */
3588         migrated = migrate_misplaced_page(page, target_nid);
3589         if (migrated)
3590                 page_nid = target_nid;
3591
3592 out:
3593         if (page_nid != -1)
3594                 task_numa_fault(page_nid, 1, migrated);
3595         return 0;
3596 }
3597
3598 /* NUMA hinting page fault entry point for regular pmds */
3599 #ifdef CONFIG_NUMA_BALANCING
3600 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3601                      unsigned long addr, pmd_t *pmdp)
3602 {
3603         pmd_t pmd;
3604         pte_t *pte, *orig_pte;
3605         unsigned long _addr = addr & PMD_MASK;
3606         unsigned long offset;
3607         spinlock_t *ptl;
3608         bool numa = false;
3609
3610         spin_lock(&mm->page_table_lock);
3611         pmd = *pmdp;
3612         if (pmd_numa(pmd)) {
3613                 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3614                 numa = true;
3615         }
3616         spin_unlock(&mm->page_table_lock);
3617
3618         if (!numa)
3619                 return 0;
3620
3621         /* we're in a page fault so some vma must be in the range */
3622         BUG_ON(!vma);
3623         BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3624         offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3625         VM_BUG_ON(offset >= PMD_SIZE);
3626         orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3627         pte += offset >> PAGE_SHIFT;
3628         for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3629                 pte_t pteval = *pte;
3630                 struct page *page;
3631                 int page_nid = -1;
3632                 int target_nid;
3633                 bool migrated = false;
3634
3635                 if (!pte_present(pteval))
3636                         continue;
3637                 if (!pte_numa(pteval))
3638                         continue;
3639                 if (addr >= vma->vm_end) {
3640                         vma = find_vma(mm, addr);
3641                         /* there's a pte present so there must be a vma */
3642                         BUG_ON(!vma);
3643                         BUG_ON(addr < vma->vm_start);
3644                 }
3645                 if (pte_numa(pteval)) {
3646                         pteval = pte_mknonnuma(pteval);
3647                         set_pte_at(mm, addr, pte, pteval);
3648                 }
3649                 page = vm_normal_page(vma, addr, pteval);
3650                 if (unlikely(!page))
3651                         continue;
3652                 /* only check non-shared pages */
3653                 if (unlikely(page_mapcount(page) != 1))
3654                         continue;
3655
3656                 page_nid = page_to_nid(page);
3657                 target_nid = numa_migrate_prep(page, vma, addr, page_nid);
3658                 pte_unmap_unlock(pte, ptl);
3659                 if (target_nid != -1) {
3660                         migrated = migrate_misplaced_page(page, target_nid);
3661                         if (migrated)
3662                                 page_nid = target_nid;
3663                 } else {
3664                         put_page(page);
3665                 }
3666
3667                 if (page_nid != -1)
3668                         task_numa_fault(page_nid, 1, migrated);
3669
3670                 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3671         }
3672         pte_unmap_unlock(orig_pte, ptl);
3673
3674         return 0;
3675 }
3676 #else
3677 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3678                      unsigned long addr, pmd_t *pmdp)
3679 {
3680         BUG();
3681         return 0;
3682 }
3683 #endif /* CONFIG_NUMA_BALANCING */
3684
3685 /*
3686  * These routines also need to handle stuff like marking pages dirty
3687  * and/or accessed for architectures that don't do it in hardware (most
3688  * RISC architectures).  The early dirtying is also good on the i386.
3689  *
3690  * There is also a hook called "update_mmu_cache()" that architectures
3691  * with external mmu caches can use to update those (ie the Sparc or
3692  * PowerPC hashed page tables that act as extended TLBs).
3693  *
3694  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3695  * but allow concurrent faults), and pte mapped but not yet locked.
3696  * We return with mmap_sem still held, but pte unmapped and unlocked.
3697  */
3698 int handle_pte_fault(struct mm_struct *mm,
3699                      struct vm_area_struct *vma, unsigned long address,
3700                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3701 {
3702         pte_t entry;
3703         spinlock_t *ptl;
3704
3705         entry = *pte;
3706         if (!pte_present(entry)) {
3707                 if (pte_none(entry)) {
3708                         if (vma->vm_ops) {
3709                                 if (likely(vma->vm_ops->fault))
3710                                         return do_linear_fault(mm, vma, address,
3711                                                 pte, pmd, flags, entry);
3712                         }
3713                         return do_anonymous_page(mm, vma, address,
3714                                                  pte, pmd, flags);
3715                 }
3716                 if (pte_file(entry))
3717                         return do_nonlinear_fault(mm, vma, address,
3718                                         pte, pmd, flags, entry);
3719                 return do_swap_page(mm, vma, address,
3720                                         pte, pmd, flags, entry);
3721         }
3722
3723         if (pte_numa(entry))
3724                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3725
3726         ptl = pte_lockptr(mm, pmd);
3727         spin_lock(ptl);
3728         if (unlikely(!pte_same(*pte, entry)))
3729                 goto unlock;
3730         if (flags & FAULT_FLAG_WRITE) {
3731                 if (!pte_write(entry))
3732                         return do_wp_page(mm, vma, address,
3733                                         pte, pmd, ptl, entry);
3734                 entry = pte_mkdirty(entry);
3735         }
3736         entry = pte_mkyoung(entry);
3737         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3738                 update_mmu_cache(vma, address, pte);
3739         } else {
3740                 /*
3741                  * This is needed only for protection faults but the arch code
3742                  * is not yet telling us if this is a protection fault or not.
3743                  * This still avoids useless tlb flushes for .text page faults
3744                  * with threads.
3745                  */
3746                 if (flags & FAULT_FLAG_WRITE)
3747                         flush_tlb_fix_spurious_fault(vma, address);
3748         }
3749 unlock:
3750         pte_unmap_unlock(pte, ptl);
3751         return 0;
3752 }
3753
3754 /*
3755  * By the time we get here, we already hold the mm semaphore
3756  */
3757 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3758                 unsigned long address, unsigned int flags)
3759 {
3760         pgd_t *pgd;
3761         pud_t *pud;
3762         pmd_t *pmd;
3763         pte_t *pte;
3764
3765         __set_current_state(TASK_RUNNING);
3766
3767         count_vm_event(PGFAULT);
3768         mem_cgroup_count_vm_event(mm, PGFAULT);
3769
3770         /* do counter updates before entering really critical section. */
3771         check_sync_rss_stat(current);
3772
3773         if (unlikely(is_vm_hugetlb_page(vma)))
3774                 return hugetlb_fault(mm, vma, address, flags);
3775
3776 retry:
3777         pgd = pgd_offset(mm, address);
3778         pud = pud_alloc(mm, pgd, address);
3779         if (!pud)
3780                 return VM_FAULT_OOM;
3781         pmd = pmd_alloc(mm, pud, address);
3782         if (!pmd)
3783                 return VM_FAULT_OOM;
3784         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3785                 if (!vma->vm_ops)
3786                         return do_huge_pmd_anonymous_page(mm, vma, address,
3787                                                           pmd, flags);
3788         } else {
3789                 pmd_t orig_pmd = *pmd;
3790                 int ret;
3791
3792                 barrier();
3793                 if (pmd_trans_huge(orig_pmd)) {
3794                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3795
3796                         /*
3797                          * If the pmd is splitting, return and retry the
3798                          * the fault.  Alternative: wait until the split
3799                          * is done, and goto retry.
3800                          */
3801                         if (pmd_trans_splitting(orig_pmd))
3802                                 return 0;
3803
3804                         if (pmd_numa(orig_pmd))
3805                                 return do_huge_pmd_numa_page(mm, vma, address,
3806                                                              orig_pmd, pmd);
3807
3808                         if (dirty && !pmd_write(orig_pmd)) {
3809                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3810                                                           orig_pmd);
3811                                 /*
3812                                  * If COW results in an oom, the huge pmd will
3813                                  * have been split, so retry the fault on the
3814                                  * pte for a smaller charge.
3815                                  */
3816                                 if (unlikely(ret & VM_FAULT_OOM))
3817                                         goto retry;
3818                                 return ret;
3819                         } else {
3820                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3821                                                       orig_pmd, dirty);
3822                         }
3823
3824                         return 0;
3825                 }
3826         }
3827
3828         if (pmd_numa(*pmd))
3829                 return do_pmd_numa_page(mm, vma, address, pmd);
3830
3831         /*
3832          * Use __pte_alloc instead of pte_alloc_map, because we can't
3833          * run pte_offset_map on the pmd, if an huge pmd could
3834          * materialize from under us from a different thread.
3835          */
3836         if (unlikely(pmd_none(*pmd)) &&
3837             unlikely(__pte_alloc(mm, vma, pmd, address)))
3838                 return VM_FAULT_OOM;
3839         /* if an huge pmd materialized from under us just retry later */
3840         if (unlikely(pmd_trans_huge(*pmd)))
3841                 return 0;
3842         /*
3843          * A regular pmd is established and it can't morph into a huge pmd
3844          * from under us anymore at this point because we hold the mmap_sem
3845          * read mode and khugepaged takes it in write mode. So now it's
3846          * safe to run pte_offset_map().
3847          */
3848         pte = pte_offset_map(pmd, address);
3849
3850         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3851 }
3852
3853 #ifndef __PAGETABLE_PUD_FOLDED
3854 /*
3855  * Allocate page upper directory.
3856  * We've already handled the fast-path in-line.
3857  */
3858 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3859 {
3860         pud_t *new = pud_alloc_one(mm, address);
3861         if (!new)
3862                 return -ENOMEM;
3863
3864         smp_wmb(); /* See comment in __pte_alloc */
3865
3866         spin_lock(&mm->page_table_lock);
3867         if (pgd_present(*pgd))          /* Another has populated it */
3868                 pud_free(mm, new);
3869         else
3870                 pgd_populate(mm, pgd, new);
3871         spin_unlock(&mm->page_table_lock);
3872         return 0;
3873 }
3874 #endif /* __PAGETABLE_PUD_FOLDED */
3875
3876 #ifndef __PAGETABLE_PMD_FOLDED
3877 /*
3878  * Allocate page middle directory.
3879  * We've already handled the fast-path in-line.
3880  */
3881 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3882 {
3883         pmd_t *new = pmd_alloc_one(mm, address);
3884         if (!new)
3885                 return -ENOMEM;
3886
3887         smp_wmb(); /* See comment in __pte_alloc */
3888
3889         spin_lock(&mm->page_table_lock);
3890 #ifndef __ARCH_HAS_4LEVEL_HACK
3891         if (pud_present(*pud))          /* Another has populated it */
3892                 pmd_free(mm, new);
3893         else
3894                 pud_populate(mm, pud, new);
3895 #else
3896         if (pgd_present(*pud))          /* Another has populated it */
3897                 pmd_free(mm, new);
3898         else
3899                 pgd_populate(mm, pud, new);
3900 #endif /* __ARCH_HAS_4LEVEL_HACK */
3901         spin_unlock(&mm->page_table_lock);
3902         return 0;
3903 }
3904 #endif /* __PAGETABLE_PMD_FOLDED */
3905
3906 #if !defined(__HAVE_ARCH_GATE_AREA)
3907
3908 #if defined(AT_SYSINFO_EHDR)
3909 static struct vm_area_struct gate_vma;
3910
3911 static int __init gate_vma_init(void)
3912 {
3913         gate_vma.vm_mm = NULL;
3914         gate_vma.vm_start = FIXADDR_USER_START;
3915         gate_vma.vm_end = FIXADDR_USER_END;
3916         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3917         gate_vma.vm_page_prot = __P101;
3918
3919         return 0;
3920 }
3921 __initcall(gate_vma_init);
3922 #endif
3923
3924 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3925 {
3926 #ifdef AT_SYSINFO_EHDR
3927         return &gate_vma;
3928 #else
3929         return NULL;
3930 #endif
3931 }
3932
3933 int in_gate_area_no_mm(unsigned long addr)
3934 {
3935 #ifdef AT_SYSINFO_EHDR
3936         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3937                 return 1;
3938 #endif
3939         return 0;
3940 }
3941
3942 #endif  /* __HAVE_ARCH_GATE_AREA */
3943
3944 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3945                 pte_t **ptepp, spinlock_t **ptlp)
3946 {
3947         pgd_t *pgd;
3948         pud_t *pud;
3949         pmd_t *pmd;
3950         pte_t *ptep;
3951
3952         pgd = pgd_offset(mm, address);
3953         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3954                 goto out;
3955
3956         pud = pud_offset(pgd, address);
3957         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3958                 goto out;
3959
3960         pmd = pmd_offset(pud, address);
3961         VM_BUG_ON(pmd_trans_huge(*pmd));
3962         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3963                 goto out;
3964
3965         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3966         if (pmd_huge(*pmd))
3967                 goto out;
3968
3969         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3970         if (!ptep)
3971                 goto out;
3972         if (!pte_present(*ptep))
3973                 goto unlock;
3974         *ptepp = ptep;
3975         return 0;
3976 unlock:
3977         pte_unmap_unlock(ptep, *ptlp);
3978 out:
3979         return -EINVAL;
3980 }
3981
3982 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3983                              pte_t **ptepp, spinlock_t **ptlp)
3984 {
3985         int res;
3986
3987         /* (void) is needed to make gcc happy */
3988         (void) __cond_lock(*ptlp,
3989                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3990         return res;
3991 }
3992
3993 /**
3994  * follow_pfn - look up PFN at a user virtual address
3995  * @vma: memory mapping
3996  * @address: user virtual address
3997  * @pfn: location to store found PFN
3998  *
3999  * Only IO mappings and raw PFN mappings are allowed.
4000  *
4001  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4002  */
4003 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4004         unsigned long *pfn)
4005 {
4006         int ret = -EINVAL;
4007         spinlock_t *ptl;
4008         pte_t *ptep;
4009
4010         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4011                 return ret;
4012
4013         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4014         if (ret)
4015                 return ret;
4016         *pfn = pte_pfn(*ptep);
4017         pte_unmap_unlock(ptep, ptl);
4018         return 0;
4019 }
4020 EXPORT_SYMBOL(follow_pfn);
4021
4022 #ifdef CONFIG_HAVE_IOREMAP_PROT
4023 int follow_phys(struct vm_area_struct *vma,
4024                 unsigned long address, unsigned int flags,
4025                 unsigned long *prot, resource_size_t *phys)
4026 {
4027         int ret = -EINVAL;
4028         pte_t *ptep, pte;
4029         spinlock_t *ptl;
4030
4031         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4032                 goto out;
4033
4034         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4035                 goto out;
4036         pte = *ptep;
4037
4038         if ((flags & FOLL_WRITE) && !pte_write(pte))
4039                 goto unlock;
4040
4041         *prot = pgprot_val(pte_pgprot(pte));
4042         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4043
4044         ret = 0;
4045 unlock:
4046         pte_unmap_unlock(ptep, ptl);
4047 out:
4048         return ret;
4049 }
4050
4051 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4052                         void *buf, int len, int write)
4053 {
4054         resource_size_t phys_addr;
4055         unsigned long prot = 0;
4056         void __iomem *maddr;
4057         int offset = addr & (PAGE_SIZE-1);
4058
4059         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4060                 return -EINVAL;
4061
4062         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4063         if (write)
4064                 memcpy_toio(maddr + offset, buf, len);
4065         else
4066                 memcpy_fromio(buf, maddr + offset, len);
4067         iounmap(maddr);
4068
4069         return len;
4070 }
4071 EXPORT_SYMBOL_GPL(generic_access_phys);
4072 #endif
4073
4074 /*
4075  * Access another process' address space as given in mm.  If non-NULL, use the
4076  * given task for page fault accounting.
4077  */
4078 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4079                 unsigned long addr, void *buf, int len, int write)
4080 {
4081         struct vm_area_struct *vma;
4082         void *old_buf = buf;
4083
4084         down_read(&mm->mmap_sem);
4085         /* ignore errors, just check how much was successfully transferred */
4086         while (len) {
4087                 int bytes, ret, offset;
4088                 void *maddr;
4089                 struct page *page = NULL;
4090
4091                 ret = get_user_pages(tsk, mm, addr, 1,
4092                                 write, 1, &page, &vma);
4093                 if (ret <= 0) {
4094                         /*
4095                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4096                          * we can access using slightly different code.
4097                          */
4098 #ifdef CONFIG_HAVE_IOREMAP_PROT
4099                         vma = find_vma(mm, addr);
4100                         if (!vma || vma->vm_start > addr)
4101                                 break;
4102                         if (vma->vm_ops && vma->vm_ops->access)
4103                                 ret = vma->vm_ops->access(vma, addr, buf,
4104                                                           len, write);
4105                         if (ret <= 0)
4106 #endif
4107                                 break;
4108                         bytes = ret;
4109                 } else {
4110                         bytes = len;
4111                         offset = addr & (PAGE_SIZE-1);
4112                         if (bytes > PAGE_SIZE-offset)
4113                                 bytes = PAGE_SIZE-offset;
4114
4115                         maddr = kmap(page);
4116                         if (write) {
4117                                 copy_to_user_page(vma, page, addr,
4118                                                   maddr + offset, buf, bytes);
4119                                 set_page_dirty_lock(page);
4120                         } else {
4121                                 copy_from_user_page(vma, page, addr,
4122                                                     buf, maddr + offset, bytes);
4123                         }
4124                         kunmap(page);
4125                         page_cache_release(page);
4126                 }
4127                 len -= bytes;
4128                 buf += bytes;
4129                 addr += bytes;
4130         }
4131         up_read(&mm->mmap_sem);
4132
4133         return buf - old_buf;
4134 }
4135
4136 /**
4137  * access_remote_vm - access another process' address space
4138  * @mm:         the mm_struct of the target address space
4139  * @addr:       start address to access
4140  * @buf:        source or destination buffer
4141  * @len:        number of bytes to transfer
4142  * @write:      whether the access is a write
4143  *
4144  * The caller must hold a reference on @mm.
4145  */
4146 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4147                 void *buf, int len, int write)
4148 {
4149         return __access_remote_vm(NULL, mm, addr, buf, len, write);
4150 }
4151
4152 /*
4153  * Access another process' address space.
4154  * Source/target buffer must be kernel space,
4155  * Do not walk the page table directly, use get_user_pages
4156  */
4157 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4158                 void *buf, int len, int write)
4159 {
4160         struct mm_struct *mm;
4161         int ret;
4162
4163         mm = get_task_mm(tsk);
4164         if (!mm)
4165                 return 0;
4166
4167         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4168         mmput(mm);
4169
4170         return ret;
4171 }
4172
4173 /*
4174  * Print the name of a VMA.
4175  */
4176 void print_vma_addr(char *prefix, unsigned long ip)
4177 {
4178         struct mm_struct *mm = current->mm;
4179         struct vm_area_struct *vma;
4180
4181         /*
4182          * Do not print if we are in atomic
4183          * contexts (in exception stacks, etc.):
4184          */
4185         if (preempt_count())
4186                 return;
4187
4188         down_read(&mm->mmap_sem);
4189         vma = find_vma(mm, ip);
4190         if (vma && vma->vm_file) {
4191                 struct file *f = vma->vm_file;
4192                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4193                 if (buf) {
4194                         char *p;
4195
4196                         p = d_path(&f->f_path, buf, PAGE_SIZE);
4197                         if (IS_ERR(p))
4198                                 p = "?";
4199                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4200                                         vma->vm_start,
4201                                         vma->vm_end - vma->vm_start);
4202                         free_page((unsigned long)buf);
4203                 }
4204         }
4205         up_read(&mm->mmap_sem);
4206 }
4207
4208 #ifdef CONFIG_PROVE_LOCKING
4209 void might_fault(void)
4210 {
4211         /*
4212          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4213          * holding the mmap_sem, this is safe because kernel memory doesn't
4214          * get paged out, therefore we'll never actually fault, and the
4215          * below annotations will generate false positives.
4216          */
4217         if (segment_eq(get_fs(), KERNEL_DS))
4218                 return;
4219
4220         might_sleep();
4221         /*
4222          * it would be nicer only to annotate paths which are not under
4223          * pagefault_disable, however that requires a larger audit and
4224          * providing helpers like get_user_atomic.
4225          */
4226         if (!in_atomic() && current->mm)
4227                 might_lock_read(&current->mm->mmap_sem);
4228 }
4229 EXPORT_SYMBOL(might_fault);
4230 #endif
4231
4232 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4233 static void clear_gigantic_page(struct page *page,
4234                                 unsigned long addr,
4235                                 unsigned int pages_per_huge_page)
4236 {
4237         int i;
4238         struct page *p = page;
4239
4240         might_sleep();
4241         for (i = 0; i < pages_per_huge_page;
4242              i++, p = mem_map_next(p, page, i)) {
4243                 cond_resched();
4244                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4245         }
4246 }
4247 void clear_huge_page(struct page *page,
4248                      unsigned long addr, unsigned int pages_per_huge_page)
4249 {
4250         int i;
4251
4252         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4253                 clear_gigantic_page(page, addr, pages_per_huge_page);
4254                 return;
4255         }
4256
4257         might_sleep();
4258         for (i = 0; i < pages_per_huge_page; i++) {
4259                 cond_resched();
4260                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4261         }
4262 }
4263
4264 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4265                                     unsigned long addr,
4266                                     struct vm_area_struct *vma,
4267                                     unsigned int pages_per_huge_page)
4268 {
4269         int i;
4270         struct page *dst_base = dst;
4271         struct page *src_base = src;
4272
4273         for (i = 0; i < pages_per_huge_page; ) {
4274                 cond_resched();
4275                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4276
4277                 i++;
4278                 dst = mem_map_next(dst, dst_base, i);
4279                 src = mem_map_next(src, src_base, i);
4280         }
4281 }
4282
4283 void copy_user_huge_page(struct page *dst, struct page *src,
4284                          unsigned long addr, struct vm_area_struct *vma,
4285                          unsigned int pages_per_huge_page)
4286 {
4287         int i;
4288
4289         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4290                 copy_user_gigantic_page(dst, src, addr, vma,
4291                                         pages_per_huge_page);
4292                 return;
4293         }
4294
4295         might_sleep();
4296         for (i = 0; i < pages_per_huge_page; i++) {
4297                 cond_resched();
4298                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4299         }
4300 }
4301 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */