mm: memory-hotplug: enable memory hotplug to handle hugepage
[firefly-linux-kernel-4.4.55.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
35
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
38 unsigned long hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43
44 __initdata LIST_HEAD(huge_boot_pages);
45
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
50
51 /*
52  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53  * free_huge_pages, and surplus_huge_pages.
54  */
55 DEFINE_SPINLOCK(hugetlb_lock);
56
57 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
58 {
59         bool free = (spool->count == 0) && (spool->used_hpages == 0);
60
61         spin_unlock(&spool->lock);
62
63         /* If no pages are used, and no other handles to the subpool
64          * remain, free the subpool the subpool remain */
65         if (free)
66                 kfree(spool);
67 }
68
69 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
70 {
71         struct hugepage_subpool *spool;
72
73         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
74         if (!spool)
75                 return NULL;
76
77         spin_lock_init(&spool->lock);
78         spool->count = 1;
79         spool->max_hpages = nr_blocks;
80         spool->used_hpages = 0;
81
82         return spool;
83 }
84
85 void hugepage_put_subpool(struct hugepage_subpool *spool)
86 {
87         spin_lock(&spool->lock);
88         BUG_ON(!spool->count);
89         spool->count--;
90         unlock_or_release_subpool(spool);
91 }
92
93 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
94                                       long delta)
95 {
96         int ret = 0;
97
98         if (!spool)
99                 return 0;
100
101         spin_lock(&spool->lock);
102         if ((spool->used_hpages + delta) <= spool->max_hpages) {
103                 spool->used_hpages += delta;
104         } else {
105                 ret = -ENOMEM;
106         }
107         spin_unlock(&spool->lock);
108
109         return ret;
110 }
111
112 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
113                                        long delta)
114 {
115         if (!spool)
116                 return;
117
118         spin_lock(&spool->lock);
119         spool->used_hpages -= delta;
120         /* If hugetlbfs_put_super couldn't free spool due to
121         * an outstanding quota reference, free it now. */
122         unlock_or_release_subpool(spool);
123 }
124
125 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
126 {
127         return HUGETLBFS_SB(inode->i_sb)->spool;
128 }
129
130 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
131 {
132         return subpool_inode(file_inode(vma->vm_file));
133 }
134
135 /*
136  * Region tracking -- allows tracking of reservations and instantiated pages
137  *                    across the pages in a mapping.
138  *
139  * The region data structures are protected by a combination of the mmap_sem
140  * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
141  * must either hold the mmap_sem for write, or the mmap_sem for read and
142  * the hugetlb_instantiation_mutex:
143  *
144  *      down_write(&mm->mmap_sem);
145  * or
146  *      down_read(&mm->mmap_sem);
147  *      mutex_lock(&hugetlb_instantiation_mutex);
148  */
149 struct file_region {
150         struct list_head link;
151         long from;
152         long to;
153 };
154
155 static long region_add(struct list_head *head, long f, long t)
156 {
157         struct file_region *rg, *nrg, *trg;
158
159         /* Locate the region we are either in or before. */
160         list_for_each_entry(rg, head, link)
161                 if (f <= rg->to)
162                         break;
163
164         /* Round our left edge to the current segment if it encloses us. */
165         if (f > rg->from)
166                 f = rg->from;
167
168         /* Check for and consume any regions we now overlap with. */
169         nrg = rg;
170         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
171                 if (&rg->link == head)
172                         break;
173                 if (rg->from > t)
174                         break;
175
176                 /* If this area reaches higher then extend our area to
177                  * include it completely.  If this is not the first area
178                  * which we intend to reuse, free it. */
179                 if (rg->to > t)
180                         t = rg->to;
181                 if (rg != nrg) {
182                         list_del(&rg->link);
183                         kfree(rg);
184                 }
185         }
186         nrg->from = f;
187         nrg->to = t;
188         return 0;
189 }
190
191 static long region_chg(struct list_head *head, long f, long t)
192 {
193         struct file_region *rg, *nrg;
194         long chg = 0;
195
196         /* Locate the region we are before or in. */
197         list_for_each_entry(rg, head, link)
198                 if (f <= rg->to)
199                         break;
200
201         /* If we are below the current region then a new region is required.
202          * Subtle, allocate a new region at the position but make it zero
203          * size such that we can guarantee to record the reservation. */
204         if (&rg->link == head || t < rg->from) {
205                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
206                 if (!nrg)
207                         return -ENOMEM;
208                 nrg->from = f;
209                 nrg->to   = f;
210                 INIT_LIST_HEAD(&nrg->link);
211                 list_add(&nrg->link, rg->link.prev);
212
213                 return t - f;
214         }
215
216         /* Round our left edge to the current segment if it encloses us. */
217         if (f > rg->from)
218                 f = rg->from;
219         chg = t - f;
220
221         /* Check for and consume any regions we now overlap with. */
222         list_for_each_entry(rg, rg->link.prev, link) {
223                 if (&rg->link == head)
224                         break;
225                 if (rg->from > t)
226                         return chg;
227
228                 /* We overlap with this area, if it extends further than
229                  * us then we must extend ourselves.  Account for its
230                  * existing reservation. */
231                 if (rg->to > t) {
232                         chg += rg->to - t;
233                         t = rg->to;
234                 }
235                 chg -= rg->to - rg->from;
236         }
237         return chg;
238 }
239
240 static long region_truncate(struct list_head *head, long end)
241 {
242         struct file_region *rg, *trg;
243         long chg = 0;
244
245         /* Locate the region we are either in or before. */
246         list_for_each_entry(rg, head, link)
247                 if (end <= rg->to)
248                         break;
249         if (&rg->link == head)
250                 return 0;
251
252         /* If we are in the middle of a region then adjust it. */
253         if (end > rg->from) {
254                 chg = rg->to - end;
255                 rg->to = end;
256                 rg = list_entry(rg->link.next, typeof(*rg), link);
257         }
258
259         /* Drop any remaining regions. */
260         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
261                 if (&rg->link == head)
262                         break;
263                 chg += rg->to - rg->from;
264                 list_del(&rg->link);
265                 kfree(rg);
266         }
267         return chg;
268 }
269
270 static long region_count(struct list_head *head, long f, long t)
271 {
272         struct file_region *rg;
273         long chg = 0;
274
275         /* Locate each segment we overlap with, and count that overlap. */
276         list_for_each_entry(rg, head, link) {
277                 long seg_from;
278                 long seg_to;
279
280                 if (rg->to <= f)
281                         continue;
282                 if (rg->from >= t)
283                         break;
284
285                 seg_from = max(rg->from, f);
286                 seg_to = min(rg->to, t);
287
288                 chg += seg_to - seg_from;
289         }
290
291         return chg;
292 }
293
294 /*
295  * Convert the address within this vma to the page offset within
296  * the mapping, in pagecache page units; huge pages here.
297  */
298 static pgoff_t vma_hugecache_offset(struct hstate *h,
299                         struct vm_area_struct *vma, unsigned long address)
300 {
301         return ((address - vma->vm_start) >> huge_page_shift(h)) +
302                         (vma->vm_pgoff >> huge_page_order(h));
303 }
304
305 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
306                                      unsigned long address)
307 {
308         return vma_hugecache_offset(hstate_vma(vma), vma, address);
309 }
310
311 /*
312  * Return the size of the pages allocated when backing a VMA. In the majority
313  * cases this will be same size as used by the page table entries.
314  */
315 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
316 {
317         struct hstate *hstate;
318
319         if (!is_vm_hugetlb_page(vma))
320                 return PAGE_SIZE;
321
322         hstate = hstate_vma(vma);
323
324         return 1UL << huge_page_shift(hstate);
325 }
326 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
327
328 /*
329  * Return the page size being used by the MMU to back a VMA. In the majority
330  * of cases, the page size used by the kernel matches the MMU size. On
331  * architectures where it differs, an architecture-specific version of this
332  * function is required.
333  */
334 #ifndef vma_mmu_pagesize
335 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
336 {
337         return vma_kernel_pagesize(vma);
338 }
339 #endif
340
341 /*
342  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
343  * bits of the reservation map pointer, which are always clear due to
344  * alignment.
345  */
346 #define HPAGE_RESV_OWNER    (1UL << 0)
347 #define HPAGE_RESV_UNMAPPED (1UL << 1)
348 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
349
350 /*
351  * These helpers are used to track how many pages are reserved for
352  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
353  * is guaranteed to have their future faults succeed.
354  *
355  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
356  * the reserve counters are updated with the hugetlb_lock held. It is safe
357  * to reset the VMA at fork() time as it is not in use yet and there is no
358  * chance of the global counters getting corrupted as a result of the values.
359  *
360  * The private mapping reservation is represented in a subtly different
361  * manner to a shared mapping.  A shared mapping has a region map associated
362  * with the underlying file, this region map represents the backing file
363  * pages which have ever had a reservation assigned which this persists even
364  * after the page is instantiated.  A private mapping has a region map
365  * associated with the original mmap which is attached to all VMAs which
366  * reference it, this region map represents those offsets which have consumed
367  * reservation ie. where pages have been instantiated.
368  */
369 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
370 {
371         return (unsigned long)vma->vm_private_data;
372 }
373
374 static void set_vma_private_data(struct vm_area_struct *vma,
375                                                         unsigned long value)
376 {
377         vma->vm_private_data = (void *)value;
378 }
379
380 struct resv_map {
381         struct kref refs;
382         struct list_head regions;
383 };
384
385 static struct resv_map *resv_map_alloc(void)
386 {
387         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
388         if (!resv_map)
389                 return NULL;
390
391         kref_init(&resv_map->refs);
392         INIT_LIST_HEAD(&resv_map->regions);
393
394         return resv_map;
395 }
396
397 static void resv_map_release(struct kref *ref)
398 {
399         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
400
401         /* Clear out any active regions before we release the map. */
402         region_truncate(&resv_map->regions, 0);
403         kfree(resv_map);
404 }
405
406 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
407 {
408         VM_BUG_ON(!is_vm_hugetlb_page(vma));
409         if (!(vma->vm_flags & VM_MAYSHARE))
410                 return (struct resv_map *)(get_vma_private_data(vma) &
411                                                         ~HPAGE_RESV_MASK);
412         return NULL;
413 }
414
415 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
416 {
417         VM_BUG_ON(!is_vm_hugetlb_page(vma));
418         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
419
420         set_vma_private_data(vma, (get_vma_private_data(vma) &
421                                 HPAGE_RESV_MASK) | (unsigned long)map);
422 }
423
424 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
425 {
426         VM_BUG_ON(!is_vm_hugetlb_page(vma));
427         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
428
429         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
430 }
431
432 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
433 {
434         VM_BUG_ON(!is_vm_hugetlb_page(vma));
435
436         return (get_vma_private_data(vma) & flag) != 0;
437 }
438
439 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
440 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
441 {
442         VM_BUG_ON(!is_vm_hugetlb_page(vma));
443         if (!(vma->vm_flags & VM_MAYSHARE))
444                 vma->vm_private_data = (void *)0;
445 }
446
447 /* Returns true if the VMA has associated reserve pages */
448 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
449 {
450         if (vma->vm_flags & VM_NORESERVE) {
451                 /*
452                  * This address is already reserved by other process(chg == 0),
453                  * so, we should decrement reserved count. Without decrementing,
454                  * reserve count remains after releasing inode, because this
455                  * allocated page will go into page cache and is regarded as
456                  * coming from reserved pool in releasing step.  Currently, we
457                  * don't have any other solution to deal with this situation
458                  * properly, so add work-around here.
459                  */
460                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
461                         return 1;
462                 else
463                         return 0;
464         }
465
466         /* Shared mappings always use reserves */
467         if (vma->vm_flags & VM_MAYSHARE)
468                 return 1;
469
470         /*
471          * Only the process that called mmap() has reserves for
472          * private mappings.
473          */
474         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
475                 return 1;
476
477         return 0;
478 }
479
480 static void copy_gigantic_page(struct page *dst, struct page *src)
481 {
482         int i;
483         struct hstate *h = page_hstate(src);
484         struct page *dst_base = dst;
485         struct page *src_base = src;
486
487         for (i = 0; i < pages_per_huge_page(h); ) {
488                 cond_resched();
489                 copy_highpage(dst, src);
490
491                 i++;
492                 dst = mem_map_next(dst, dst_base, i);
493                 src = mem_map_next(src, src_base, i);
494         }
495 }
496
497 void copy_huge_page(struct page *dst, struct page *src)
498 {
499         int i;
500         struct hstate *h = page_hstate(src);
501
502         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
503                 copy_gigantic_page(dst, src);
504                 return;
505         }
506
507         might_sleep();
508         for (i = 0; i < pages_per_huge_page(h); i++) {
509                 cond_resched();
510                 copy_highpage(dst + i, src + i);
511         }
512 }
513
514 static void enqueue_huge_page(struct hstate *h, struct page *page)
515 {
516         int nid = page_to_nid(page);
517         list_move(&page->lru, &h->hugepage_freelists[nid]);
518         h->free_huge_pages++;
519         h->free_huge_pages_node[nid]++;
520 }
521
522 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
523 {
524         struct page *page;
525
526         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
527                 if (!is_migrate_isolate_page(page))
528                         break;
529         /*
530          * if 'non-isolated free hugepage' not found on the list,
531          * the allocation fails.
532          */
533         if (&h->hugepage_freelists[nid] == &page->lru)
534                 return NULL;
535         list_move(&page->lru, &h->hugepage_activelist);
536         set_page_refcounted(page);
537         h->free_huge_pages--;
538         h->free_huge_pages_node[nid]--;
539         return page;
540 }
541
542 static struct page *dequeue_huge_page_vma(struct hstate *h,
543                                 struct vm_area_struct *vma,
544                                 unsigned long address, int avoid_reserve,
545                                 long chg)
546 {
547         struct page *page = NULL;
548         struct mempolicy *mpol;
549         nodemask_t *nodemask;
550         struct zonelist *zonelist;
551         struct zone *zone;
552         struct zoneref *z;
553         unsigned int cpuset_mems_cookie;
554
555         /*
556          * A child process with MAP_PRIVATE mappings created by their parent
557          * have no page reserves. This check ensures that reservations are
558          * not "stolen". The child may still get SIGKILLed
559          */
560         if (!vma_has_reserves(vma, chg) &&
561                         h->free_huge_pages - h->resv_huge_pages == 0)
562                 goto err;
563
564         /* If reserves cannot be used, ensure enough pages are in the pool */
565         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
566                 goto err;
567
568 retry_cpuset:
569         cpuset_mems_cookie = get_mems_allowed();
570         zonelist = huge_zonelist(vma, address,
571                                         htlb_alloc_mask, &mpol, &nodemask);
572
573         for_each_zone_zonelist_nodemask(zone, z, zonelist,
574                                                 MAX_NR_ZONES - 1, nodemask) {
575                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
576                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
577                         if (page) {
578                                 if (avoid_reserve)
579                                         break;
580                                 if (!vma_has_reserves(vma, chg))
581                                         break;
582
583                                 SetPagePrivate(page);
584                                 h->resv_huge_pages--;
585                                 break;
586                         }
587                 }
588         }
589
590         mpol_cond_put(mpol);
591         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
592                 goto retry_cpuset;
593         return page;
594
595 err:
596         return NULL;
597 }
598
599 static void update_and_free_page(struct hstate *h, struct page *page)
600 {
601         int i;
602
603         VM_BUG_ON(h->order >= MAX_ORDER);
604
605         h->nr_huge_pages--;
606         h->nr_huge_pages_node[page_to_nid(page)]--;
607         for (i = 0; i < pages_per_huge_page(h); i++) {
608                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
609                                 1 << PG_referenced | 1 << PG_dirty |
610                                 1 << PG_active | 1 << PG_reserved |
611                                 1 << PG_private | 1 << PG_writeback);
612         }
613         VM_BUG_ON(hugetlb_cgroup_from_page(page));
614         set_compound_page_dtor(page, NULL);
615         set_page_refcounted(page);
616         arch_release_hugepage(page);
617         __free_pages(page, huge_page_order(h));
618 }
619
620 struct hstate *size_to_hstate(unsigned long size)
621 {
622         struct hstate *h;
623
624         for_each_hstate(h) {
625                 if (huge_page_size(h) == size)
626                         return h;
627         }
628         return NULL;
629 }
630
631 static void free_huge_page(struct page *page)
632 {
633         /*
634          * Can't pass hstate in here because it is called from the
635          * compound page destructor.
636          */
637         struct hstate *h = page_hstate(page);
638         int nid = page_to_nid(page);
639         struct hugepage_subpool *spool =
640                 (struct hugepage_subpool *)page_private(page);
641         bool restore_reserve;
642
643         set_page_private(page, 0);
644         page->mapping = NULL;
645         BUG_ON(page_count(page));
646         BUG_ON(page_mapcount(page));
647         restore_reserve = PagePrivate(page);
648
649         spin_lock(&hugetlb_lock);
650         hugetlb_cgroup_uncharge_page(hstate_index(h),
651                                      pages_per_huge_page(h), page);
652         if (restore_reserve)
653                 h->resv_huge_pages++;
654
655         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
656                 /* remove the page from active list */
657                 list_del(&page->lru);
658                 update_and_free_page(h, page);
659                 h->surplus_huge_pages--;
660                 h->surplus_huge_pages_node[nid]--;
661         } else {
662                 arch_clear_hugepage_flags(page);
663                 enqueue_huge_page(h, page);
664         }
665         spin_unlock(&hugetlb_lock);
666         hugepage_subpool_put_pages(spool, 1);
667 }
668
669 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
670 {
671         INIT_LIST_HEAD(&page->lru);
672         set_compound_page_dtor(page, free_huge_page);
673         spin_lock(&hugetlb_lock);
674         set_hugetlb_cgroup(page, NULL);
675         h->nr_huge_pages++;
676         h->nr_huge_pages_node[nid]++;
677         spin_unlock(&hugetlb_lock);
678         put_page(page); /* free it into the hugepage allocator */
679 }
680
681 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
682 {
683         int i;
684         int nr_pages = 1 << order;
685         struct page *p = page + 1;
686
687         /* we rely on prep_new_huge_page to set the destructor */
688         set_compound_order(page, order);
689         __SetPageHead(page);
690         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
691                 __SetPageTail(p);
692                 set_page_count(p, 0);
693                 p->first_page = page;
694         }
695 }
696
697 /*
698  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
699  * transparent huge pages.  See the PageTransHuge() documentation for more
700  * details.
701  */
702 int PageHuge(struct page *page)
703 {
704         compound_page_dtor *dtor;
705
706         if (!PageCompound(page))
707                 return 0;
708
709         page = compound_head(page);
710         dtor = get_compound_page_dtor(page);
711
712         return dtor == free_huge_page;
713 }
714 EXPORT_SYMBOL_GPL(PageHuge);
715
716 pgoff_t __basepage_index(struct page *page)
717 {
718         struct page *page_head = compound_head(page);
719         pgoff_t index = page_index(page_head);
720         unsigned long compound_idx;
721
722         if (!PageHuge(page_head))
723                 return page_index(page);
724
725         if (compound_order(page_head) >= MAX_ORDER)
726                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
727         else
728                 compound_idx = page - page_head;
729
730         return (index << compound_order(page_head)) + compound_idx;
731 }
732
733 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
734 {
735         struct page *page;
736
737         if (h->order >= MAX_ORDER)
738                 return NULL;
739
740         page = alloc_pages_exact_node(nid,
741                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
742                                                 __GFP_REPEAT|__GFP_NOWARN,
743                 huge_page_order(h));
744         if (page) {
745                 if (arch_prepare_hugepage(page)) {
746                         __free_pages(page, huge_page_order(h));
747                         return NULL;
748                 }
749                 prep_new_huge_page(h, page, nid);
750         }
751
752         return page;
753 }
754
755 /*
756  * common helper functions for hstate_next_node_to_{alloc|free}.
757  * We may have allocated or freed a huge page based on a different
758  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
759  * be outside of *nodes_allowed.  Ensure that we use an allowed
760  * node for alloc or free.
761  */
762 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
763 {
764         nid = next_node(nid, *nodes_allowed);
765         if (nid == MAX_NUMNODES)
766                 nid = first_node(*nodes_allowed);
767         VM_BUG_ON(nid >= MAX_NUMNODES);
768
769         return nid;
770 }
771
772 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
773 {
774         if (!node_isset(nid, *nodes_allowed))
775                 nid = next_node_allowed(nid, nodes_allowed);
776         return nid;
777 }
778
779 /*
780  * returns the previously saved node ["this node"] from which to
781  * allocate a persistent huge page for the pool and advance the
782  * next node from which to allocate, handling wrap at end of node
783  * mask.
784  */
785 static int hstate_next_node_to_alloc(struct hstate *h,
786                                         nodemask_t *nodes_allowed)
787 {
788         int nid;
789
790         VM_BUG_ON(!nodes_allowed);
791
792         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
793         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
794
795         return nid;
796 }
797
798 /*
799  * helper for free_pool_huge_page() - return the previously saved
800  * node ["this node"] from which to free a huge page.  Advance the
801  * next node id whether or not we find a free huge page to free so
802  * that the next attempt to free addresses the next node.
803  */
804 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
805 {
806         int nid;
807
808         VM_BUG_ON(!nodes_allowed);
809
810         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
811         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
812
813         return nid;
814 }
815
816 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
817         for (nr_nodes = nodes_weight(*mask);                            \
818                 nr_nodes > 0 &&                                         \
819                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
820                 nr_nodes--)
821
822 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
823         for (nr_nodes = nodes_weight(*mask);                            \
824                 nr_nodes > 0 &&                                         \
825                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
826                 nr_nodes--)
827
828 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
829 {
830         struct page *page;
831         int nr_nodes, node;
832         int ret = 0;
833
834         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
835                 page = alloc_fresh_huge_page_node(h, node);
836                 if (page) {
837                         ret = 1;
838                         break;
839                 }
840         }
841
842         if (ret)
843                 count_vm_event(HTLB_BUDDY_PGALLOC);
844         else
845                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
846
847         return ret;
848 }
849
850 /*
851  * Free huge page from pool from next node to free.
852  * Attempt to keep persistent huge pages more or less
853  * balanced over allowed nodes.
854  * Called with hugetlb_lock locked.
855  */
856 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
857                                                          bool acct_surplus)
858 {
859         int nr_nodes, node;
860         int ret = 0;
861
862         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
863                 /*
864                  * If we're returning unused surplus pages, only examine
865                  * nodes with surplus pages.
866                  */
867                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
868                     !list_empty(&h->hugepage_freelists[node])) {
869                         struct page *page =
870                                 list_entry(h->hugepage_freelists[node].next,
871                                           struct page, lru);
872                         list_del(&page->lru);
873                         h->free_huge_pages--;
874                         h->free_huge_pages_node[node]--;
875                         if (acct_surplus) {
876                                 h->surplus_huge_pages--;
877                                 h->surplus_huge_pages_node[node]--;
878                         }
879                         update_and_free_page(h, page);
880                         ret = 1;
881                         break;
882                 }
883         }
884
885         return ret;
886 }
887
888 /*
889  * Dissolve a given free hugepage into free buddy pages. This function does
890  * nothing for in-use (including surplus) hugepages.
891  */
892 static void dissolve_free_huge_page(struct page *page)
893 {
894         spin_lock(&hugetlb_lock);
895         if (PageHuge(page) && !page_count(page)) {
896                 struct hstate *h = page_hstate(page);
897                 int nid = page_to_nid(page);
898                 list_del(&page->lru);
899                 h->free_huge_pages--;
900                 h->free_huge_pages_node[nid]--;
901                 update_and_free_page(h, page);
902         }
903         spin_unlock(&hugetlb_lock);
904 }
905
906 /*
907  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
908  * make specified memory blocks removable from the system.
909  * Note that start_pfn should aligned with (minimum) hugepage size.
910  */
911 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
912 {
913         unsigned int order = 8 * sizeof(void *);
914         unsigned long pfn;
915         struct hstate *h;
916
917         /* Set scan step to minimum hugepage size */
918         for_each_hstate(h)
919                 if (order > huge_page_order(h))
920                         order = huge_page_order(h);
921         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
922         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
923                 dissolve_free_huge_page(pfn_to_page(pfn));
924 }
925
926 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
927 {
928         struct page *page;
929         unsigned int r_nid;
930
931         if (h->order >= MAX_ORDER)
932                 return NULL;
933
934         /*
935          * Assume we will successfully allocate the surplus page to
936          * prevent racing processes from causing the surplus to exceed
937          * overcommit
938          *
939          * This however introduces a different race, where a process B
940          * tries to grow the static hugepage pool while alloc_pages() is
941          * called by process A. B will only examine the per-node
942          * counters in determining if surplus huge pages can be
943          * converted to normal huge pages in adjust_pool_surplus(). A
944          * won't be able to increment the per-node counter, until the
945          * lock is dropped by B, but B doesn't drop hugetlb_lock until
946          * no more huge pages can be converted from surplus to normal
947          * state (and doesn't try to convert again). Thus, we have a
948          * case where a surplus huge page exists, the pool is grown, and
949          * the surplus huge page still exists after, even though it
950          * should just have been converted to a normal huge page. This
951          * does not leak memory, though, as the hugepage will be freed
952          * once it is out of use. It also does not allow the counters to
953          * go out of whack in adjust_pool_surplus() as we don't modify
954          * the node values until we've gotten the hugepage and only the
955          * per-node value is checked there.
956          */
957         spin_lock(&hugetlb_lock);
958         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
959                 spin_unlock(&hugetlb_lock);
960                 return NULL;
961         } else {
962                 h->nr_huge_pages++;
963                 h->surplus_huge_pages++;
964         }
965         spin_unlock(&hugetlb_lock);
966
967         if (nid == NUMA_NO_NODE)
968                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
969                                    __GFP_REPEAT|__GFP_NOWARN,
970                                    huge_page_order(h));
971         else
972                 page = alloc_pages_exact_node(nid,
973                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
974                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
975
976         if (page && arch_prepare_hugepage(page)) {
977                 __free_pages(page, huge_page_order(h));
978                 page = NULL;
979         }
980
981         spin_lock(&hugetlb_lock);
982         if (page) {
983                 INIT_LIST_HEAD(&page->lru);
984                 r_nid = page_to_nid(page);
985                 set_compound_page_dtor(page, free_huge_page);
986                 set_hugetlb_cgroup(page, NULL);
987                 /*
988                  * We incremented the global counters already
989                  */
990                 h->nr_huge_pages_node[r_nid]++;
991                 h->surplus_huge_pages_node[r_nid]++;
992                 __count_vm_event(HTLB_BUDDY_PGALLOC);
993         } else {
994                 h->nr_huge_pages--;
995                 h->surplus_huge_pages--;
996                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
997         }
998         spin_unlock(&hugetlb_lock);
999
1000         return page;
1001 }
1002
1003 /*
1004  * This allocation function is useful in the context where vma is irrelevant.
1005  * E.g. soft-offlining uses this function because it only cares physical
1006  * address of error page.
1007  */
1008 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1009 {
1010         struct page *page = NULL;
1011
1012         spin_lock(&hugetlb_lock);
1013         if (h->free_huge_pages - h->resv_huge_pages > 0)
1014                 page = dequeue_huge_page_node(h, nid);
1015         spin_unlock(&hugetlb_lock);
1016
1017         if (!page)
1018                 page = alloc_buddy_huge_page(h, nid);
1019
1020         return page;
1021 }
1022
1023 /*
1024  * Increase the hugetlb pool such that it can accommodate a reservation
1025  * of size 'delta'.
1026  */
1027 static int gather_surplus_pages(struct hstate *h, int delta)
1028 {
1029         struct list_head surplus_list;
1030         struct page *page, *tmp;
1031         int ret, i;
1032         int needed, allocated;
1033         bool alloc_ok = true;
1034
1035         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1036         if (needed <= 0) {
1037                 h->resv_huge_pages += delta;
1038                 return 0;
1039         }
1040
1041         allocated = 0;
1042         INIT_LIST_HEAD(&surplus_list);
1043
1044         ret = -ENOMEM;
1045 retry:
1046         spin_unlock(&hugetlb_lock);
1047         for (i = 0; i < needed; i++) {
1048                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1049                 if (!page) {
1050                         alloc_ok = false;
1051                         break;
1052                 }
1053                 list_add(&page->lru, &surplus_list);
1054         }
1055         allocated += i;
1056
1057         /*
1058          * After retaking hugetlb_lock, we need to recalculate 'needed'
1059          * because either resv_huge_pages or free_huge_pages may have changed.
1060          */
1061         spin_lock(&hugetlb_lock);
1062         needed = (h->resv_huge_pages + delta) -
1063                         (h->free_huge_pages + allocated);
1064         if (needed > 0) {
1065                 if (alloc_ok)
1066                         goto retry;
1067                 /*
1068                  * We were not able to allocate enough pages to
1069                  * satisfy the entire reservation so we free what
1070                  * we've allocated so far.
1071                  */
1072                 goto free;
1073         }
1074         /*
1075          * The surplus_list now contains _at_least_ the number of extra pages
1076          * needed to accommodate the reservation.  Add the appropriate number
1077          * of pages to the hugetlb pool and free the extras back to the buddy
1078          * allocator.  Commit the entire reservation here to prevent another
1079          * process from stealing the pages as they are added to the pool but
1080          * before they are reserved.
1081          */
1082         needed += allocated;
1083         h->resv_huge_pages += delta;
1084         ret = 0;
1085
1086         /* Free the needed pages to the hugetlb pool */
1087         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1088                 if ((--needed) < 0)
1089                         break;
1090                 /*
1091                  * This page is now managed by the hugetlb allocator and has
1092                  * no users -- drop the buddy allocator's reference.
1093                  */
1094                 put_page_testzero(page);
1095                 VM_BUG_ON(page_count(page));
1096                 enqueue_huge_page(h, page);
1097         }
1098 free:
1099         spin_unlock(&hugetlb_lock);
1100
1101         /* Free unnecessary surplus pages to the buddy allocator */
1102         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1103                 put_page(page);
1104         spin_lock(&hugetlb_lock);
1105
1106         return ret;
1107 }
1108
1109 /*
1110  * When releasing a hugetlb pool reservation, any surplus pages that were
1111  * allocated to satisfy the reservation must be explicitly freed if they were
1112  * never used.
1113  * Called with hugetlb_lock held.
1114  */
1115 static void return_unused_surplus_pages(struct hstate *h,
1116                                         unsigned long unused_resv_pages)
1117 {
1118         unsigned long nr_pages;
1119
1120         /* Uncommit the reservation */
1121         h->resv_huge_pages -= unused_resv_pages;
1122
1123         /* Cannot return gigantic pages currently */
1124         if (h->order >= MAX_ORDER)
1125                 return;
1126
1127         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1128
1129         /*
1130          * We want to release as many surplus pages as possible, spread
1131          * evenly across all nodes with memory. Iterate across these nodes
1132          * until we can no longer free unreserved surplus pages. This occurs
1133          * when the nodes with surplus pages have no free pages.
1134          * free_pool_huge_page() will balance the the freed pages across the
1135          * on-line nodes with memory and will handle the hstate accounting.
1136          */
1137         while (nr_pages--) {
1138                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1139                         break;
1140         }
1141 }
1142
1143 /*
1144  * Determine if the huge page at addr within the vma has an associated
1145  * reservation.  Where it does not we will need to logically increase
1146  * reservation and actually increase subpool usage before an allocation
1147  * can occur.  Where any new reservation would be required the
1148  * reservation change is prepared, but not committed.  Once the page
1149  * has been allocated from the subpool and instantiated the change should
1150  * be committed via vma_commit_reservation.  No action is required on
1151  * failure.
1152  */
1153 static long vma_needs_reservation(struct hstate *h,
1154                         struct vm_area_struct *vma, unsigned long addr)
1155 {
1156         struct address_space *mapping = vma->vm_file->f_mapping;
1157         struct inode *inode = mapping->host;
1158
1159         if (vma->vm_flags & VM_MAYSHARE) {
1160                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1161                 return region_chg(&inode->i_mapping->private_list,
1162                                                         idx, idx + 1);
1163
1164         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1165                 return 1;
1166
1167         } else  {
1168                 long err;
1169                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1170                 struct resv_map *resv = vma_resv_map(vma);
1171
1172                 err = region_chg(&resv->regions, idx, idx + 1);
1173                 if (err < 0)
1174                         return err;
1175                 return 0;
1176         }
1177 }
1178 static void vma_commit_reservation(struct hstate *h,
1179                         struct vm_area_struct *vma, unsigned long addr)
1180 {
1181         struct address_space *mapping = vma->vm_file->f_mapping;
1182         struct inode *inode = mapping->host;
1183
1184         if (vma->vm_flags & VM_MAYSHARE) {
1185                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1186                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1187
1188         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1189                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1190                 struct resv_map *resv = vma_resv_map(vma);
1191
1192                 /* Mark this page used in the map. */
1193                 region_add(&resv->regions, idx, idx + 1);
1194         }
1195 }
1196
1197 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1198                                     unsigned long addr, int avoid_reserve)
1199 {
1200         struct hugepage_subpool *spool = subpool_vma(vma);
1201         struct hstate *h = hstate_vma(vma);
1202         struct page *page;
1203         long chg;
1204         int ret, idx;
1205         struct hugetlb_cgroup *h_cg;
1206
1207         idx = hstate_index(h);
1208         /*
1209          * Processes that did not create the mapping will have no
1210          * reserves and will not have accounted against subpool
1211          * limit. Check that the subpool limit can be made before
1212          * satisfying the allocation MAP_NORESERVE mappings may also
1213          * need pages and subpool limit allocated allocated if no reserve
1214          * mapping overlaps.
1215          */
1216         chg = vma_needs_reservation(h, vma, addr);
1217         if (chg < 0)
1218                 return ERR_PTR(-ENOMEM);
1219         if (chg || avoid_reserve)
1220                 if (hugepage_subpool_get_pages(spool, 1))
1221                         return ERR_PTR(-ENOSPC);
1222
1223         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1224         if (ret) {
1225                 if (chg || avoid_reserve)
1226                         hugepage_subpool_put_pages(spool, 1);
1227                 return ERR_PTR(-ENOSPC);
1228         }
1229         spin_lock(&hugetlb_lock);
1230         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1231         if (!page) {
1232                 spin_unlock(&hugetlb_lock);
1233                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1234                 if (!page) {
1235                         hugetlb_cgroup_uncharge_cgroup(idx,
1236                                                        pages_per_huge_page(h),
1237                                                        h_cg);
1238                         if (chg || avoid_reserve)
1239                                 hugepage_subpool_put_pages(spool, 1);
1240                         return ERR_PTR(-ENOSPC);
1241                 }
1242                 spin_lock(&hugetlb_lock);
1243                 list_move(&page->lru, &h->hugepage_activelist);
1244                 /* Fall through */
1245         }
1246         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1247         spin_unlock(&hugetlb_lock);
1248
1249         set_page_private(page, (unsigned long)spool);
1250
1251         vma_commit_reservation(h, vma, addr);
1252         return page;
1253 }
1254
1255 /*
1256  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1257  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1258  * where no ERR_VALUE is expected to be returned.
1259  */
1260 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1261                                 unsigned long addr, int avoid_reserve)
1262 {
1263         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1264         if (IS_ERR(page))
1265                 page = NULL;
1266         return page;
1267 }
1268
1269 int __weak alloc_bootmem_huge_page(struct hstate *h)
1270 {
1271         struct huge_bootmem_page *m;
1272         int nr_nodes, node;
1273
1274         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1275                 void *addr;
1276
1277                 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1278                                 huge_page_size(h), huge_page_size(h), 0);
1279
1280                 if (addr) {
1281                         /*
1282                          * Use the beginning of the huge page to store the
1283                          * huge_bootmem_page struct (until gather_bootmem
1284                          * puts them into the mem_map).
1285                          */
1286                         m = addr;
1287                         goto found;
1288                 }
1289         }
1290         return 0;
1291
1292 found:
1293         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1294         /* Put them into a private list first because mem_map is not up yet */
1295         list_add(&m->list, &huge_boot_pages);
1296         m->hstate = h;
1297         return 1;
1298 }
1299
1300 static void prep_compound_huge_page(struct page *page, int order)
1301 {
1302         if (unlikely(order > (MAX_ORDER - 1)))
1303                 prep_compound_gigantic_page(page, order);
1304         else
1305                 prep_compound_page(page, order);
1306 }
1307
1308 /* Put bootmem huge pages into the standard lists after mem_map is up */
1309 static void __init gather_bootmem_prealloc(void)
1310 {
1311         struct huge_bootmem_page *m;
1312
1313         list_for_each_entry(m, &huge_boot_pages, list) {
1314                 struct hstate *h = m->hstate;
1315                 struct page *page;
1316
1317 #ifdef CONFIG_HIGHMEM
1318                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1319                 free_bootmem_late((unsigned long)m,
1320                                   sizeof(struct huge_bootmem_page));
1321 #else
1322                 page = virt_to_page(m);
1323 #endif
1324                 __ClearPageReserved(page);
1325                 WARN_ON(page_count(page) != 1);
1326                 prep_compound_huge_page(page, h->order);
1327                 prep_new_huge_page(h, page, page_to_nid(page));
1328                 /*
1329                  * If we had gigantic hugepages allocated at boot time, we need
1330                  * to restore the 'stolen' pages to totalram_pages in order to
1331                  * fix confusing memory reports from free(1) and another
1332                  * side-effects, like CommitLimit going negative.
1333                  */
1334                 if (h->order > (MAX_ORDER - 1))
1335                         adjust_managed_page_count(page, 1 << h->order);
1336         }
1337 }
1338
1339 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1340 {
1341         unsigned long i;
1342
1343         for (i = 0; i < h->max_huge_pages; ++i) {
1344                 if (h->order >= MAX_ORDER) {
1345                         if (!alloc_bootmem_huge_page(h))
1346                                 break;
1347                 } else if (!alloc_fresh_huge_page(h,
1348                                          &node_states[N_MEMORY]))
1349                         break;
1350         }
1351         h->max_huge_pages = i;
1352 }
1353
1354 static void __init hugetlb_init_hstates(void)
1355 {
1356         struct hstate *h;
1357
1358         for_each_hstate(h) {
1359                 /* oversize hugepages were init'ed in early boot */
1360                 if (h->order < MAX_ORDER)
1361                         hugetlb_hstate_alloc_pages(h);
1362         }
1363 }
1364
1365 static char * __init memfmt(char *buf, unsigned long n)
1366 {
1367         if (n >= (1UL << 30))
1368                 sprintf(buf, "%lu GB", n >> 30);
1369         else if (n >= (1UL << 20))
1370                 sprintf(buf, "%lu MB", n >> 20);
1371         else
1372                 sprintf(buf, "%lu KB", n >> 10);
1373         return buf;
1374 }
1375
1376 static void __init report_hugepages(void)
1377 {
1378         struct hstate *h;
1379
1380         for_each_hstate(h) {
1381                 char buf[32];
1382                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1383                         memfmt(buf, huge_page_size(h)),
1384                         h->free_huge_pages);
1385         }
1386 }
1387
1388 #ifdef CONFIG_HIGHMEM
1389 static void try_to_free_low(struct hstate *h, unsigned long count,
1390                                                 nodemask_t *nodes_allowed)
1391 {
1392         int i;
1393
1394         if (h->order >= MAX_ORDER)
1395                 return;
1396
1397         for_each_node_mask(i, *nodes_allowed) {
1398                 struct page *page, *next;
1399                 struct list_head *freel = &h->hugepage_freelists[i];
1400                 list_for_each_entry_safe(page, next, freel, lru) {
1401                         if (count >= h->nr_huge_pages)
1402                                 return;
1403                         if (PageHighMem(page))
1404                                 continue;
1405                         list_del(&page->lru);
1406                         update_and_free_page(h, page);
1407                         h->free_huge_pages--;
1408                         h->free_huge_pages_node[page_to_nid(page)]--;
1409                 }
1410         }
1411 }
1412 #else
1413 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1414                                                 nodemask_t *nodes_allowed)
1415 {
1416 }
1417 #endif
1418
1419 /*
1420  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1421  * balanced by operating on them in a round-robin fashion.
1422  * Returns 1 if an adjustment was made.
1423  */
1424 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1425                                 int delta)
1426 {
1427         int nr_nodes, node;
1428
1429         VM_BUG_ON(delta != -1 && delta != 1);
1430
1431         if (delta < 0) {
1432                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1433                         if (h->surplus_huge_pages_node[node])
1434                                 goto found;
1435                 }
1436         } else {
1437                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1438                         if (h->surplus_huge_pages_node[node] <
1439                                         h->nr_huge_pages_node[node])
1440                                 goto found;
1441                 }
1442         }
1443         return 0;
1444
1445 found:
1446         h->surplus_huge_pages += delta;
1447         h->surplus_huge_pages_node[node] += delta;
1448         return 1;
1449 }
1450
1451 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1452 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1453                                                 nodemask_t *nodes_allowed)
1454 {
1455         unsigned long min_count, ret;
1456
1457         if (h->order >= MAX_ORDER)
1458                 return h->max_huge_pages;
1459
1460         /*
1461          * Increase the pool size
1462          * First take pages out of surplus state.  Then make up the
1463          * remaining difference by allocating fresh huge pages.
1464          *
1465          * We might race with alloc_buddy_huge_page() here and be unable
1466          * to convert a surplus huge page to a normal huge page. That is
1467          * not critical, though, it just means the overall size of the
1468          * pool might be one hugepage larger than it needs to be, but
1469          * within all the constraints specified by the sysctls.
1470          */
1471         spin_lock(&hugetlb_lock);
1472         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1473                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1474                         break;
1475         }
1476
1477         while (count > persistent_huge_pages(h)) {
1478                 /*
1479                  * If this allocation races such that we no longer need the
1480                  * page, free_huge_page will handle it by freeing the page
1481                  * and reducing the surplus.
1482                  */
1483                 spin_unlock(&hugetlb_lock);
1484                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1485                 spin_lock(&hugetlb_lock);
1486                 if (!ret)
1487                         goto out;
1488
1489                 /* Bail for signals. Probably ctrl-c from user */
1490                 if (signal_pending(current))
1491                         goto out;
1492         }
1493
1494         /*
1495          * Decrease the pool size
1496          * First return free pages to the buddy allocator (being careful
1497          * to keep enough around to satisfy reservations).  Then place
1498          * pages into surplus state as needed so the pool will shrink
1499          * to the desired size as pages become free.
1500          *
1501          * By placing pages into the surplus state independent of the
1502          * overcommit value, we are allowing the surplus pool size to
1503          * exceed overcommit. There are few sane options here. Since
1504          * alloc_buddy_huge_page() is checking the global counter,
1505          * though, we'll note that we're not allowed to exceed surplus
1506          * and won't grow the pool anywhere else. Not until one of the
1507          * sysctls are changed, or the surplus pages go out of use.
1508          */
1509         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1510         min_count = max(count, min_count);
1511         try_to_free_low(h, min_count, nodes_allowed);
1512         while (min_count < persistent_huge_pages(h)) {
1513                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1514                         break;
1515         }
1516         while (count < persistent_huge_pages(h)) {
1517                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1518                         break;
1519         }
1520 out:
1521         ret = persistent_huge_pages(h);
1522         spin_unlock(&hugetlb_lock);
1523         return ret;
1524 }
1525
1526 #define HSTATE_ATTR_RO(_name) \
1527         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1528
1529 #define HSTATE_ATTR(_name) \
1530         static struct kobj_attribute _name##_attr = \
1531                 __ATTR(_name, 0644, _name##_show, _name##_store)
1532
1533 static struct kobject *hugepages_kobj;
1534 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1535
1536 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1537
1538 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1539 {
1540         int i;
1541
1542         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1543                 if (hstate_kobjs[i] == kobj) {
1544                         if (nidp)
1545                                 *nidp = NUMA_NO_NODE;
1546                         return &hstates[i];
1547                 }
1548
1549         return kobj_to_node_hstate(kobj, nidp);
1550 }
1551
1552 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1553                                         struct kobj_attribute *attr, char *buf)
1554 {
1555         struct hstate *h;
1556         unsigned long nr_huge_pages;
1557         int nid;
1558
1559         h = kobj_to_hstate(kobj, &nid);
1560         if (nid == NUMA_NO_NODE)
1561                 nr_huge_pages = h->nr_huge_pages;
1562         else
1563                 nr_huge_pages = h->nr_huge_pages_node[nid];
1564
1565         return sprintf(buf, "%lu\n", nr_huge_pages);
1566 }
1567
1568 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1569                         struct kobject *kobj, struct kobj_attribute *attr,
1570                         const char *buf, size_t len)
1571 {
1572         int err;
1573         int nid;
1574         unsigned long count;
1575         struct hstate *h;
1576         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1577
1578         err = kstrtoul(buf, 10, &count);
1579         if (err)
1580                 goto out;
1581
1582         h = kobj_to_hstate(kobj, &nid);
1583         if (h->order >= MAX_ORDER) {
1584                 err = -EINVAL;
1585                 goto out;
1586         }
1587
1588         if (nid == NUMA_NO_NODE) {
1589                 /*
1590                  * global hstate attribute
1591                  */
1592                 if (!(obey_mempolicy &&
1593                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1594                         NODEMASK_FREE(nodes_allowed);
1595                         nodes_allowed = &node_states[N_MEMORY];
1596                 }
1597         } else if (nodes_allowed) {
1598                 /*
1599                  * per node hstate attribute: adjust count to global,
1600                  * but restrict alloc/free to the specified node.
1601                  */
1602                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1603                 init_nodemask_of_node(nodes_allowed, nid);
1604         } else
1605                 nodes_allowed = &node_states[N_MEMORY];
1606
1607         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1608
1609         if (nodes_allowed != &node_states[N_MEMORY])
1610                 NODEMASK_FREE(nodes_allowed);
1611
1612         return len;
1613 out:
1614         NODEMASK_FREE(nodes_allowed);
1615         return err;
1616 }
1617
1618 static ssize_t nr_hugepages_show(struct kobject *kobj,
1619                                        struct kobj_attribute *attr, char *buf)
1620 {
1621         return nr_hugepages_show_common(kobj, attr, buf);
1622 }
1623
1624 static ssize_t nr_hugepages_store(struct kobject *kobj,
1625                struct kobj_attribute *attr, const char *buf, size_t len)
1626 {
1627         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1628 }
1629 HSTATE_ATTR(nr_hugepages);
1630
1631 #ifdef CONFIG_NUMA
1632
1633 /*
1634  * hstate attribute for optionally mempolicy-based constraint on persistent
1635  * huge page alloc/free.
1636  */
1637 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1638                                        struct kobj_attribute *attr, char *buf)
1639 {
1640         return nr_hugepages_show_common(kobj, attr, buf);
1641 }
1642
1643 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1644                struct kobj_attribute *attr, const char *buf, size_t len)
1645 {
1646         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1647 }
1648 HSTATE_ATTR(nr_hugepages_mempolicy);
1649 #endif
1650
1651
1652 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1653                                         struct kobj_attribute *attr, char *buf)
1654 {
1655         struct hstate *h = kobj_to_hstate(kobj, NULL);
1656         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1657 }
1658
1659 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1660                 struct kobj_attribute *attr, const char *buf, size_t count)
1661 {
1662         int err;
1663         unsigned long input;
1664         struct hstate *h = kobj_to_hstate(kobj, NULL);
1665
1666         if (h->order >= MAX_ORDER)
1667                 return -EINVAL;
1668
1669         err = kstrtoul(buf, 10, &input);
1670         if (err)
1671                 return err;
1672
1673         spin_lock(&hugetlb_lock);
1674         h->nr_overcommit_huge_pages = input;
1675         spin_unlock(&hugetlb_lock);
1676
1677         return count;
1678 }
1679 HSTATE_ATTR(nr_overcommit_hugepages);
1680
1681 static ssize_t free_hugepages_show(struct kobject *kobj,
1682                                         struct kobj_attribute *attr, char *buf)
1683 {
1684         struct hstate *h;
1685         unsigned long free_huge_pages;
1686         int nid;
1687
1688         h = kobj_to_hstate(kobj, &nid);
1689         if (nid == NUMA_NO_NODE)
1690                 free_huge_pages = h->free_huge_pages;
1691         else
1692                 free_huge_pages = h->free_huge_pages_node[nid];
1693
1694         return sprintf(buf, "%lu\n", free_huge_pages);
1695 }
1696 HSTATE_ATTR_RO(free_hugepages);
1697
1698 static ssize_t resv_hugepages_show(struct kobject *kobj,
1699                                         struct kobj_attribute *attr, char *buf)
1700 {
1701         struct hstate *h = kobj_to_hstate(kobj, NULL);
1702         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1703 }
1704 HSTATE_ATTR_RO(resv_hugepages);
1705
1706 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1707                                         struct kobj_attribute *attr, char *buf)
1708 {
1709         struct hstate *h;
1710         unsigned long surplus_huge_pages;
1711         int nid;
1712
1713         h = kobj_to_hstate(kobj, &nid);
1714         if (nid == NUMA_NO_NODE)
1715                 surplus_huge_pages = h->surplus_huge_pages;
1716         else
1717                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1718
1719         return sprintf(buf, "%lu\n", surplus_huge_pages);
1720 }
1721 HSTATE_ATTR_RO(surplus_hugepages);
1722
1723 static struct attribute *hstate_attrs[] = {
1724         &nr_hugepages_attr.attr,
1725         &nr_overcommit_hugepages_attr.attr,
1726         &free_hugepages_attr.attr,
1727         &resv_hugepages_attr.attr,
1728         &surplus_hugepages_attr.attr,
1729 #ifdef CONFIG_NUMA
1730         &nr_hugepages_mempolicy_attr.attr,
1731 #endif
1732         NULL,
1733 };
1734
1735 static struct attribute_group hstate_attr_group = {
1736         .attrs = hstate_attrs,
1737 };
1738
1739 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1740                                     struct kobject **hstate_kobjs,
1741                                     struct attribute_group *hstate_attr_group)
1742 {
1743         int retval;
1744         int hi = hstate_index(h);
1745
1746         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1747         if (!hstate_kobjs[hi])
1748                 return -ENOMEM;
1749
1750         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1751         if (retval)
1752                 kobject_put(hstate_kobjs[hi]);
1753
1754         return retval;
1755 }
1756
1757 static void __init hugetlb_sysfs_init(void)
1758 {
1759         struct hstate *h;
1760         int err;
1761
1762         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1763         if (!hugepages_kobj)
1764                 return;
1765
1766         for_each_hstate(h) {
1767                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1768                                          hstate_kobjs, &hstate_attr_group);
1769                 if (err)
1770                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1771         }
1772 }
1773
1774 #ifdef CONFIG_NUMA
1775
1776 /*
1777  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1778  * with node devices in node_devices[] using a parallel array.  The array
1779  * index of a node device or _hstate == node id.
1780  * This is here to avoid any static dependency of the node device driver, in
1781  * the base kernel, on the hugetlb module.
1782  */
1783 struct node_hstate {
1784         struct kobject          *hugepages_kobj;
1785         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1786 };
1787 struct node_hstate node_hstates[MAX_NUMNODES];
1788
1789 /*
1790  * A subset of global hstate attributes for node devices
1791  */
1792 static struct attribute *per_node_hstate_attrs[] = {
1793         &nr_hugepages_attr.attr,
1794         &free_hugepages_attr.attr,
1795         &surplus_hugepages_attr.attr,
1796         NULL,
1797 };
1798
1799 static struct attribute_group per_node_hstate_attr_group = {
1800         .attrs = per_node_hstate_attrs,
1801 };
1802
1803 /*
1804  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1805  * Returns node id via non-NULL nidp.
1806  */
1807 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1808 {
1809         int nid;
1810
1811         for (nid = 0; nid < nr_node_ids; nid++) {
1812                 struct node_hstate *nhs = &node_hstates[nid];
1813                 int i;
1814                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1815                         if (nhs->hstate_kobjs[i] == kobj) {
1816                                 if (nidp)
1817                                         *nidp = nid;
1818                                 return &hstates[i];
1819                         }
1820         }
1821
1822         BUG();
1823         return NULL;
1824 }
1825
1826 /*
1827  * Unregister hstate attributes from a single node device.
1828  * No-op if no hstate attributes attached.
1829  */
1830 static void hugetlb_unregister_node(struct node *node)
1831 {
1832         struct hstate *h;
1833         struct node_hstate *nhs = &node_hstates[node->dev.id];
1834
1835         if (!nhs->hugepages_kobj)
1836                 return;         /* no hstate attributes */
1837
1838         for_each_hstate(h) {
1839                 int idx = hstate_index(h);
1840                 if (nhs->hstate_kobjs[idx]) {
1841                         kobject_put(nhs->hstate_kobjs[idx]);
1842                         nhs->hstate_kobjs[idx] = NULL;
1843                 }
1844         }
1845
1846         kobject_put(nhs->hugepages_kobj);
1847         nhs->hugepages_kobj = NULL;
1848 }
1849
1850 /*
1851  * hugetlb module exit:  unregister hstate attributes from node devices
1852  * that have them.
1853  */
1854 static void hugetlb_unregister_all_nodes(void)
1855 {
1856         int nid;
1857
1858         /*
1859          * disable node device registrations.
1860          */
1861         register_hugetlbfs_with_node(NULL, NULL);
1862
1863         /*
1864          * remove hstate attributes from any nodes that have them.
1865          */
1866         for (nid = 0; nid < nr_node_ids; nid++)
1867                 hugetlb_unregister_node(node_devices[nid]);
1868 }
1869
1870 /*
1871  * Register hstate attributes for a single node device.
1872  * No-op if attributes already registered.
1873  */
1874 static void hugetlb_register_node(struct node *node)
1875 {
1876         struct hstate *h;
1877         struct node_hstate *nhs = &node_hstates[node->dev.id];
1878         int err;
1879
1880         if (nhs->hugepages_kobj)
1881                 return;         /* already allocated */
1882
1883         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1884                                                         &node->dev.kobj);
1885         if (!nhs->hugepages_kobj)
1886                 return;
1887
1888         for_each_hstate(h) {
1889                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1890                                                 nhs->hstate_kobjs,
1891                                                 &per_node_hstate_attr_group);
1892                 if (err) {
1893                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1894                                 h->name, node->dev.id);
1895                         hugetlb_unregister_node(node);
1896                         break;
1897                 }
1898         }
1899 }
1900
1901 /*
1902  * hugetlb init time:  register hstate attributes for all registered node
1903  * devices of nodes that have memory.  All on-line nodes should have
1904  * registered their associated device by this time.
1905  */
1906 static void hugetlb_register_all_nodes(void)
1907 {
1908         int nid;
1909
1910         for_each_node_state(nid, N_MEMORY) {
1911                 struct node *node = node_devices[nid];
1912                 if (node->dev.id == nid)
1913                         hugetlb_register_node(node);
1914         }
1915
1916         /*
1917          * Let the node device driver know we're here so it can
1918          * [un]register hstate attributes on node hotplug.
1919          */
1920         register_hugetlbfs_with_node(hugetlb_register_node,
1921                                      hugetlb_unregister_node);
1922 }
1923 #else   /* !CONFIG_NUMA */
1924
1925 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1926 {
1927         BUG();
1928         if (nidp)
1929                 *nidp = -1;
1930         return NULL;
1931 }
1932
1933 static void hugetlb_unregister_all_nodes(void) { }
1934
1935 static void hugetlb_register_all_nodes(void) { }
1936
1937 #endif
1938
1939 static void __exit hugetlb_exit(void)
1940 {
1941         struct hstate *h;
1942
1943         hugetlb_unregister_all_nodes();
1944
1945         for_each_hstate(h) {
1946                 kobject_put(hstate_kobjs[hstate_index(h)]);
1947         }
1948
1949         kobject_put(hugepages_kobj);
1950 }
1951 module_exit(hugetlb_exit);
1952
1953 static int __init hugetlb_init(void)
1954 {
1955         /* Some platform decide whether they support huge pages at boot
1956          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1957          * there is no such support
1958          */
1959         if (HPAGE_SHIFT == 0)
1960                 return 0;
1961
1962         if (!size_to_hstate(default_hstate_size)) {
1963                 default_hstate_size = HPAGE_SIZE;
1964                 if (!size_to_hstate(default_hstate_size))
1965                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1966         }
1967         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1968         if (default_hstate_max_huge_pages)
1969                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1970
1971         hugetlb_init_hstates();
1972         gather_bootmem_prealloc();
1973         report_hugepages();
1974
1975         hugetlb_sysfs_init();
1976         hugetlb_register_all_nodes();
1977         hugetlb_cgroup_file_init();
1978
1979         return 0;
1980 }
1981 module_init(hugetlb_init);
1982
1983 /* Should be called on processing a hugepagesz=... option */
1984 void __init hugetlb_add_hstate(unsigned order)
1985 {
1986         struct hstate *h;
1987         unsigned long i;
1988
1989         if (size_to_hstate(PAGE_SIZE << order)) {
1990                 pr_warning("hugepagesz= specified twice, ignoring\n");
1991                 return;
1992         }
1993         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1994         BUG_ON(order == 0);
1995         h = &hstates[hugetlb_max_hstate++];
1996         h->order = order;
1997         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1998         h->nr_huge_pages = 0;
1999         h->free_huge_pages = 0;
2000         for (i = 0; i < MAX_NUMNODES; ++i)
2001                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2002         INIT_LIST_HEAD(&h->hugepage_activelist);
2003         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2004         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2005         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2006                                         huge_page_size(h)/1024);
2007
2008         parsed_hstate = h;
2009 }
2010
2011 static int __init hugetlb_nrpages_setup(char *s)
2012 {
2013         unsigned long *mhp;
2014         static unsigned long *last_mhp;
2015
2016         /*
2017          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2018          * so this hugepages= parameter goes to the "default hstate".
2019          */
2020         if (!hugetlb_max_hstate)
2021                 mhp = &default_hstate_max_huge_pages;
2022         else
2023                 mhp = &parsed_hstate->max_huge_pages;
2024
2025         if (mhp == last_mhp) {
2026                 pr_warning("hugepages= specified twice without "
2027                            "interleaving hugepagesz=, ignoring\n");
2028                 return 1;
2029         }
2030
2031         if (sscanf(s, "%lu", mhp) <= 0)
2032                 *mhp = 0;
2033
2034         /*
2035          * Global state is always initialized later in hugetlb_init.
2036          * But we need to allocate >= MAX_ORDER hstates here early to still
2037          * use the bootmem allocator.
2038          */
2039         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2040                 hugetlb_hstate_alloc_pages(parsed_hstate);
2041
2042         last_mhp = mhp;
2043
2044         return 1;
2045 }
2046 __setup("hugepages=", hugetlb_nrpages_setup);
2047
2048 static int __init hugetlb_default_setup(char *s)
2049 {
2050         default_hstate_size = memparse(s, &s);
2051         return 1;
2052 }
2053 __setup("default_hugepagesz=", hugetlb_default_setup);
2054
2055 static unsigned int cpuset_mems_nr(unsigned int *array)
2056 {
2057         int node;
2058         unsigned int nr = 0;
2059
2060         for_each_node_mask(node, cpuset_current_mems_allowed)
2061                 nr += array[node];
2062
2063         return nr;
2064 }
2065
2066 #ifdef CONFIG_SYSCTL
2067 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2068                          struct ctl_table *table, int write,
2069                          void __user *buffer, size_t *length, loff_t *ppos)
2070 {
2071         struct hstate *h = &default_hstate;
2072         unsigned long tmp;
2073         int ret;
2074
2075         tmp = h->max_huge_pages;
2076
2077         if (write && h->order >= MAX_ORDER)
2078                 return -EINVAL;
2079
2080         table->data = &tmp;
2081         table->maxlen = sizeof(unsigned long);
2082         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2083         if (ret)
2084                 goto out;
2085
2086         if (write) {
2087                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2088                                                 GFP_KERNEL | __GFP_NORETRY);
2089                 if (!(obey_mempolicy &&
2090                                init_nodemask_of_mempolicy(nodes_allowed))) {
2091                         NODEMASK_FREE(nodes_allowed);
2092                         nodes_allowed = &node_states[N_MEMORY];
2093                 }
2094                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2095
2096                 if (nodes_allowed != &node_states[N_MEMORY])
2097                         NODEMASK_FREE(nodes_allowed);
2098         }
2099 out:
2100         return ret;
2101 }
2102
2103 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2104                           void __user *buffer, size_t *length, loff_t *ppos)
2105 {
2106
2107         return hugetlb_sysctl_handler_common(false, table, write,
2108                                                         buffer, length, ppos);
2109 }
2110
2111 #ifdef CONFIG_NUMA
2112 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2113                           void __user *buffer, size_t *length, loff_t *ppos)
2114 {
2115         return hugetlb_sysctl_handler_common(true, table, write,
2116                                                         buffer, length, ppos);
2117 }
2118 #endif /* CONFIG_NUMA */
2119
2120 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2121                         void __user *buffer,
2122                         size_t *length, loff_t *ppos)
2123 {
2124         proc_dointvec(table, write, buffer, length, ppos);
2125         if (hugepages_treat_as_movable)
2126                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2127         else
2128                 htlb_alloc_mask = GFP_HIGHUSER;
2129         return 0;
2130 }
2131
2132 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2133                         void __user *buffer,
2134                         size_t *length, loff_t *ppos)
2135 {
2136         struct hstate *h = &default_hstate;
2137         unsigned long tmp;
2138         int ret;
2139
2140         tmp = h->nr_overcommit_huge_pages;
2141
2142         if (write && h->order >= MAX_ORDER)
2143                 return -EINVAL;
2144
2145         table->data = &tmp;
2146         table->maxlen = sizeof(unsigned long);
2147         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2148         if (ret)
2149                 goto out;
2150
2151         if (write) {
2152                 spin_lock(&hugetlb_lock);
2153                 h->nr_overcommit_huge_pages = tmp;
2154                 spin_unlock(&hugetlb_lock);
2155         }
2156 out:
2157         return ret;
2158 }
2159
2160 #endif /* CONFIG_SYSCTL */
2161
2162 void hugetlb_report_meminfo(struct seq_file *m)
2163 {
2164         struct hstate *h = &default_hstate;
2165         seq_printf(m,
2166                         "HugePages_Total:   %5lu\n"
2167                         "HugePages_Free:    %5lu\n"
2168                         "HugePages_Rsvd:    %5lu\n"
2169                         "HugePages_Surp:    %5lu\n"
2170                         "Hugepagesize:   %8lu kB\n",
2171                         h->nr_huge_pages,
2172                         h->free_huge_pages,
2173                         h->resv_huge_pages,
2174                         h->surplus_huge_pages,
2175                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2176 }
2177
2178 int hugetlb_report_node_meminfo(int nid, char *buf)
2179 {
2180         struct hstate *h = &default_hstate;
2181         return sprintf(buf,
2182                 "Node %d HugePages_Total: %5u\n"
2183                 "Node %d HugePages_Free:  %5u\n"
2184                 "Node %d HugePages_Surp:  %5u\n",
2185                 nid, h->nr_huge_pages_node[nid],
2186                 nid, h->free_huge_pages_node[nid],
2187                 nid, h->surplus_huge_pages_node[nid]);
2188 }
2189
2190 void hugetlb_show_meminfo(void)
2191 {
2192         struct hstate *h;
2193         int nid;
2194
2195         for_each_node_state(nid, N_MEMORY)
2196                 for_each_hstate(h)
2197                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2198                                 nid,
2199                                 h->nr_huge_pages_node[nid],
2200                                 h->free_huge_pages_node[nid],
2201                                 h->surplus_huge_pages_node[nid],
2202                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2203 }
2204
2205 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2206 unsigned long hugetlb_total_pages(void)
2207 {
2208         struct hstate *h;
2209         unsigned long nr_total_pages = 0;
2210
2211         for_each_hstate(h)
2212                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2213         return nr_total_pages;
2214 }
2215
2216 static int hugetlb_acct_memory(struct hstate *h, long delta)
2217 {
2218         int ret = -ENOMEM;
2219
2220         spin_lock(&hugetlb_lock);
2221         /*
2222          * When cpuset is configured, it breaks the strict hugetlb page
2223          * reservation as the accounting is done on a global variable. Such
2224          * reservation is completely rubbish in the presence of cpuset because
2225          * the reservation is not checked against page availability for the
2226          * current cpuset. Application can still potentially OOM'ed by kernel
2227          * with lack of free htlb page in cpuset that the task is in.
2228          * Attempt to enforce strict accounting with cpuset is almost
2229          * impossible (or too ugly) because cpuset is too fluid that
2230          * task or memory node can be dynamically moved between cpusets.
2231          *
2232          * The change of semantics for shared hugetlb mapping with cpuset is
2233          * undesirable. However, in order to preserve some of the semantics,
2234          * we fall back to check against current free page availability as
2235          * a best attempt and hopefully to minimize the impact of changing
2236          * semantics that cpuset has.
2237          */
2238         if (delta > 0) {
2239                 if (gather_surplus_pages(h, delta) < 0)
2240                         goto out;
2241
2242                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2243                         return_unused_surplus_pages(h, delta);
2244                         goto out;
2245                 }
2246         }
2247
2248         ret = 0;
2249         if (delta < 0)
2250                 return_unused_surplus_pages(h, (unsigned long) -delta);
2251
2252 out:
2253         spin_unlock(&hugetlb_lock);
2254         return ret;
2255 }
2256
2257 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2258 {
2259         struct resv_map *resv = vma_resv_map(vma);
2260
2261         /*
2262          * This new VMA should share its siblings reservation map if present.
2263          * The VMA will only ever have a valid reservation map pointer where
2264          * it is being copied for another still existing VMA.  As that VMA
2265          * has a reference to the reservation map it cannot disappear until
2266          * after this open call completes.  It is therefore safe to take a
2267          * new reference here without additional locking.
2268          */
2269         if (resv)
2270                 kref_get(&resv->refs);
2271 }
2272
2273 static void resv_map_put(struct vm_area_struct *vma)
2274 {
2275         struct resv_map *resv = vma_resv_map(vma);
2276
2277         if (!resv)
2278                 return;
2279         kref_put(&resv->refs, resv_map_release);
2280 }
2281
2282 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2283 {
2284         struct hstate *h = hstate_vma(vma);
2285         struct resv_map *resv = vma_resv_map(vma);
2286         struct hugepage_subpool *spool = subpool_vma(vma);
2287         unsigned long reserve;
2288         unsigned long start;
2289         unsigned long end;
2290
2291         if (resv) {
2292                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2293                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2294
2295                 reserve = (end - start) -
2296                         region_count(&resv->regions, start, end);
2297
2298                 resv_map_put(vma);
2299
2300                 if (reserve) {
2301                         hugetlb_acct_memory(h, -reserve);
2302                         hugepage_subpool_put_pages(spool, reserve);
2303                 }
2304         }
2305 }
2306
2307 /*
2308  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2309  * handle_mm_fault() to try to instantiate regular-sized pages in the
2310  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2311  * this far.
2312  */
2313 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2314 {
2315         BUG();
2316         return 0;
2317 }
2318
2319 const struct vm_operations_struct hugetlb_vm_ops = {
2320         .fault = hugetlb_vm_op_fault,
2321         .open = hugetlb_vm_op_open,
2322         .close = hugetlb_vm_op_close,
2323 };
2324
2325 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2326                                 int writable)
2327 {
2328         pte_t entry;
2329
2330         if (writable) {
2331                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2332                                          vma->vm_page_prot)));
2333         } else {
2334                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2335                                            vma->vm_page_prot));
2336         }
2337         entry = pte_mkyoung(entry);
2338         entry = pte_mkhuge(entry);
2339         entry = arch_make_huge_pte(entry, vma, page, writable);
2340
2341         return entry;
2342 }
2343
2344 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2345                                    unsigned long address, pte_t *ptep)
2346 {
2347         pte_t entry;
2348
2349         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2350         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2351                 update_mmu_cache(vma, address, ptep);
2352 }
2353
2354
2355 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2356                             struct vm_area_struct *vma)
2357 {
2358         pte_t *src_pte, *dst_pte, entry;
2359         struct page *ptepage;
2360         unsigned long addr;
2361         int cow;
2362         struct hstate *h = hstate_vma(vma);
2363         unsigned long sz = huge_page_size(h);
2364
2365         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2366
2367         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2368                 src_pte = huge_pte_offset(src, addr);
2369                 if (!src_pte)
2370                         continue;
2371                 dst_pte = huge_pte_alloc(dst, addr, sz);
2372                 if (!dst_pte)
2373                         goto nomem;
2374
2375                 /* If the pagetables are shared don't copy or take references */
2376                 if (dst_pte == src_pte)
2377                         continue;
2378
2379                 spin_lock(&dst->page_table_lock);
2380                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2381                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2382                         if (cow)
2383                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2384                         entry = huge_ptep_get(src_pte);
2385                         ptepage = pte_page(entry);
2386                         get_page(ptepage);
2387                         page_dup_rmap(ptepage);
2388                         set_huge_pte_at(dst, addr, dst_pte, entry);
2389                 }
2390                 spin_unlock(&src->page_table_lock);
2391                 spin_unlock(&dst->page_table_lock);
2392         }
2393         return 0;
2394
2395 nomem:
2396         return -ENOMEM;
2397 }
2398
2399 static int is_hugetlb_entry_migration(pte_t pte)
2400 {
2401         swp_entry_t swp;
2402
2403         if (huge_pte_none(pte) || pte_present(pte))
2404                 return 0;
2405         swp = pte_to_swp_entry(pte);
2406         if (non_swap_entry(swp) && is_migration_entry(swp))
2407                 return 1;
2408         else
2409                 return 0;
2410 }
2411
2412 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2413 {
2414         swp_entry_t swp;
2415
2416         if (huge_pte_none(pte) || pte_present(pte))
2417                 return 0;
2418         swp = pte_to_swp_entry(pte);
2419         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2420                 return 1;
2421         else
2422                 return 0;
2423 }
2424
2425 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2426                             unsigned long start, unsigned long end,
2427                             struct page *ref_page)
2428 {
2429         int force_flush = 0;
2430         struct mm_struct *mm = vma->vm_mm;
2431         unsigned long address;
2432         pte_t *ptep;
2433         pte_t pte;
2434         struct page *page;
2435         struct hstate *h = hstate_vma(vma);
2436         unsigned long sz = huge_page_size(h);
2437         const unsigned long mmun_start = start; /* For mmu_notifiers */
2438         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2439
2440         WARN_ON(!is_vm_hugetlb_page(vma));
2441         BUG_ON(start & ~huge_page_mask(h));
2442         BUG_ON(end & ~huge_page_mask(h));
2443
2444         tlb_start_vma(tlb, vma);
2445         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2446 again:
2447         spin_lock(&mm->page_table_lock);
2448         for (address = start; address < end; address += sz) {
2449                 ptep = huge_pte_offset(mm, address);
2450                 if (!ptep)
2451                         continue;
2452
2453                 if (huge_pmd_unshare(mm, &address, ptep))
2454                         continue;
2455
2456                 pte = huge_ptep_get(ptep);
2457                 if (huge_pte_none(pte))
2458                         continue;
2459
2460                 /*
2461                  * HWPoisoned hugepage is already unmapped and dropped reference
2462                  */
2463                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2464                         huge_pte_clear(mm, address, ptep);
2465                         continue;
2466                 }
2467
2468                 page = pte_page(pte);
2469                 /*
2470                  * If a reference page is supplied, it is because a specific
2471                  * page is being unmapped, not a range. Ensure the page we
2472                  * are about to unmap is the actual page of interest.
2473                  */
2474                 if (ref_page) {
2475                         if (page != ref_page)
2476                                 continue;
2477
2478                         /*
2479                          * Mark the VMA as having unmapped its page so that
2480                          * future faults in this VMA will fail rather than
2481                          * looking like data was lost
2482                          */
2483                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2484                 }
2485
2486                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2487                 tlb_remove_tlb_entry(tlb, ptep, address);
2488                 if (huge_pte_dirty(pte))
2489                         set_page_dirty(page);
2490
2491                 page_remove_rmap(page);
2492                 force_flush = !__tlb_remove_page(tlb, page);
2493                 if (force_flush)
2494                         break;
2495                 /* Bail out after unmapping reference page if supplied */
2496                 if (ref_page)
2497                         break;
2498         }
2499         spin_unlock(&mm->page_table_lock);
2500         /*
2501          * mmu_gather ran out of room to batch pages, we break out of
2502          * the PTE lock to avoid doing the potential expensive TLB invalidate
2503          * and page-free while holding it.
2504          */
2505         if (force_flush) {
2506                 force_flush = 0;
2507                 tlb_flush_mmu(tlb);
2508                 if (address < end && !ref_page)
2509                         goto again;
2510         }
2511         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2512         tlb_end_vma(tlb, vma);
2513 }
2514
2515 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2516                           struct vm_area_struct *vma, unsigned long start,
2517                           unsigned long end, struct page *ref_page)
2518 {
2519         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2520
2521         /*
2522          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2523          * test will fail on a vma being torn down, and not grab a page table
2524          * on its way out.  We're lucky that the flag has such an appropriate
2525          * name, and can in fact be safely cleared here. We could clear it
2526          * before the __unmap_hugepage_range above, but all that's necessary
2527          * is to clear it before releasing the i_mmap_mutex. This works
2528          * because in the context this is called, the VMA is about to be
2529          * destroyed and the i_mmap_mutex is held.
2530          */
2531         vma->vm_flags &= ~VM_MAYSHARE;
2532 }
2533
2534 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2535                           unsigned long end, struct page *ref_page)
2536 {
2537         struct mm_struct *mm;
2538         struct mmu_gather tlb;
2539
2540         mm = vma->vm_mm;
2541
2542         tlb_gather_mmu(&tlb, mm, start, end);
2543         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2544         tlb_finish_mmu(&tlb, start, end);
2545 }
2546
2547 /*
2548  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2549  * mappping it owns the reserve page for. The intention is to unmap the page
2550  * from other VMAs and let the children be SIGKILLed if they are faulting the
2551  * same region.
2552  */
2553 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2554                                 struct page *page, unsigned long address)
2555 {
2556         struct hstate *h = hstate_vma(vma);
2557         struct vm_area_struct *iter_vma;
2558         struct address_space *mapping;
2559         pgoff_t pgoff;
2560
2561         /*
2562          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2563          * from page cache lookup which is in HPAGE_SIZE units.
2564          */
2565         address = address & huge_page_mask(h);
2566         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2567                         vma->vm_pgoff;
2568         mapping = file_inode(vma->vm_file)->i_mapping;
2569
2570         /*
2571          * Take the mapping lock for the duration of the table walk. As
2572          * this mapping should be shared between all the VMAs,
2573          * __unmap_hugepage_range() is called as the lock is already held
2574          */
2575         mutex_lock(&mapping->i_mmap_mutex);
2576         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2577                 /* Do not unmap the current VMA */
2578                 if (iter_vma == vma)
2579                         continue;
2580
2581                 /*
2582                  * Unmap the page from other VMAs without their own reserves.
2583                  * They get marked to be SIGKILLed if they fault in these
2584                  * areas. This is because a future no-page fault on this VMA
2585                  * could insert a zeroed page instead of the data existing
2586                  * from the time of fork. This would look like data corruption
2587                  */
2588                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2589                         unmap_hugepage_range(iter_vma, address,
2590                                              address + huge_page_size(h), page);
2591         }
2592         mutex_unlock(&mapping->i_mmap_mutex);
2593
2594         return 1;
2595 }
2596
2597 /*
2598  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2599  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2600  * cannot race with other handlers or page migration.
2601  * Keep the pte_same checks anyway to make transition from the mutex easier.
2602  */
2603 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2604                         unsigned long address, pte_t *ptep, pte_t pte,
2605                         struct page *pagecache_page)
2606 {
2607         struct hstate *h = hstate_vma(vma);
2608         struct page *old_page, *new_page;
2609         int outside_reserve = 0;
2610         unsigned long mmun_start;       /* For mmu_notifiers */
2611         unsigned long mmun_end;         /* For mmu_notifiers */
2612
2613         old_page = pte_page(pte);
2614
2615 retry_avoidcopy:
2616         /* If no-one else is actually using this page, avoid the copy
2617          * and just make the page writable */
2618         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2619                 page_move_anon_rmap(old_page, vma, address);
2620                 set_huge_ptep_writable(vma, address, ptep);
2621                 return 0;
2622         }
2623
2624         /*
2625          * If the process that created a MAP_PRIVATE mapping is about to
2626          * perform a COW due to a shared page count, attempt to satisfy
2627          * the allocation without using the existing reserves. The pagecache
2628          * page is used to determine if the reserve at this address was
2629          * consumed or not. If reserves were used, a partial faulted mapping
2630          * at the time of fork() could consume its reserves on COW instead
2631          * of the full address range.
2632          */
2633         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2634                         old_page != pagecache_page)
2635                 outside_reserve = 1;
2636
2637         page_cache_get(old_page);
2638
2639         /* Drop page_table_lock as buddy allocator may be called */
2640         spin_unlock(&mm->page_table_lock);
2641         new_page = alloc_huge_page(vma, address, outside_reserve);
2642
2643         if (IS_ERR(new_page)) {
2644                 long err = PTR_ERR(new_page);
2645                 page_cache_release(old_page);
2646
2647                 /*
2648                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2649                  * it is due to references held by a child and an insufficient
2650                  * huge page pool. To guarantee the original mappers
2651                  * reliability, unmap the page from child processes. The child
2652                  * may get SIGKILLed if it later faults.
2653                  */
2654                 if (outside_reserve) {
2655                         BUG_ON(huge_pte_none(pte));
2656                         if (unmap_ref_private(mm, vma, old_page, address)) {
2657                                 BUG_ON(huge_pte_none(pte));
2658                                 spin_lock(&mm->page_table_lock);
2659                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2660                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2661                                         goto retry_avoidcopy;
2662                                 /*
2663                                  * race occurs while re-acquiring page_table_lock, and
2664                                  * our job is done.
2665                                  */
2666                                 return 0;
2667                         }
2668                         WARN_ON_ONCE(1);
2669                 }
2670
2671                 /* Caller expects lock to be held */
2672                 spin_lock(&mm->page_table_lock);
2673                 if (err == -ENOMEM)
2674                         return VM_FAULT_OOM;
2675                 else
2676                         return VM_FAULT_SIGBUS;
2677         }
2678
2679         /*
2680          * When the original hugepage is shared one, it does not have
2681          * anon_vma prepared.
2682          */
2683         if (unlikely(anon_vma_prepare(vma))) {
2684                 page_cache_release(new_page);
2685                 page_cache_release(old_page);
2686                 /* Caller expects lock to be held */
2687                 spin_lock(&mm->page_table_lock);
2688                 return VM_FAULT_OOM;
2689         }
2690
2691         copy_user_huge_page(new_page, old_page, address, vma,
2692                             pages_per_huge_page(h));
2693         __SetPageUptodate(new_page);
2694
2695         mmun_start = address & huge_page_mask(h);
2696         mmun_end = mmun_start + huge_page_size(h);
2697         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2698         /*
2699          * Retake the page_table_lock to check for racing updates
2700          * before the page tables are altered
2701          */
2702         spin_lock(&mm->page_table_lock);
2703         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2704         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2705                 ClearPagePrivate(new_page);
2706
2707                 /* Break COW */
2708                 huge_ptep_clear_flush(vma, address, ptep);
2709                 set_huge_pte_at(mm, address, ptep,
2710                                 make_huge_pte(vma, new_page, 1));
2711                 page_remove_rmap(old_page);
2712                 hugepage_add_new_anon_rmap(new_page, vma, address);
2713                 /* Make the old page be freed below */
2714                 new_page = old_page;
2715         }
2716         spin_unlock(&mm->page_table_lock);
2717         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2718         page_cache_release(new_page);
2719         page_cache_release(old_page);
2720
2721         /* Caller expects lock to be held */
2722         spin_lock(&mm->page_table_lock);
2723         return 0;
2724 }
2725
2726 /* Return the pagecache page at a given address within a VMA */
2727 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2728                         struct vm_area_struct *vma, unsigned long address)
2729 {
2730         struct address_space *mapping;
2731         pgoff_t idx;
2732
2733         mapping = vma->vm_file->f_mapping;
2734         idx = vma_hugecache_offset(h, vma, address);
2735
2736         return find_lock_page(mapping, idx);
2737 }
2738
2739 /*
2740  * Return whether there is a pagecache page to back given address within VMA.
2741  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2742  */
2743 static bool hugetlbfs_pagecache_present(struct hstate *h,
2744                         struct vm_area_struct *vma, unsigned long address)
2745 {
2746         struct address_space *mapping;
2747         pgoff_t idx;
2748         struct page *page;
2749
2750         mapping = vma->vm_file->f_mapping;
2751         idx = vma_hugecache_offset(h, vma, address);
2752
2753         page = find_get_page(mapping, idx);
2754         if (page)
2755                 put_page(page);
2756         return page != NULL;
2757 }
2758
2759 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2760                         unsigned long address, pte_t *ptep, unsigned int flags)
2761 {
2762         struct hstate *h = hstate_vma(vma);
2763         int ret = VM_FAULT_SIGBUS;
2764         int anon_rmap = 0;
2765         pgoff_t idx;
2766         unsigned long size;
2767         struct page *page;
2768         struct address_space *mapping;
2769         pte_t new_pte;
2770
2771         /*
2772          * Currently, we are forced to kill the process in the event the
2773          * original mapper has unmapped pages from the child due to a failed
2774          * COW. Warn that such a situation has occurred as it may not be obvious
2775          */
2776         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2777                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2778                            current->pid);
2779                 return ret;
2780         }
2781
2782         mapping = vma->vm_file->f_mapping;
2783         idx = vma_hugecache_offset(h, vma, address);
2784
2785         /*
2786          * Use page lock to guard against racing truncation
2787          * before we get page_table_lock.
2788          */
2789 retry:
2790         page = find_lock_page(mapping, idx);
2791         if (!page) {
2792                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2793                 if (idx >= size)
2794                         goto out;
2795                 page = alloc_huge_page(vma, address, 0);
2796                 if (IS_ERR(page)) {
2797                         ret = PTR_ERR(page);
2798                         if (ret == -ENOMEM)
2799                                 ret = VM_FAULT_OOM;
2800                         else
2801                                 ret = VM_FAULT_SIGBUS;
2802                         goto out;
2803                 }
2804                 clear_huge_page(page, address, pages_per_huge_page(h));
2805                 __SetPageUptodate(page);
2806
2807                 if (vma->vm_flags & VM_MAYSHARE) {
2808                         int err;
2809                         struct inode *inode = mapping->host;
2810
2811                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2812                         if (err) {
2813                                 put_page(page);
2814                                 if (err == -EEXIST)
2815                                         goto retry;
2816                                 goto out;
2817                         }
2818                         ClearPagePrivate(page);
2819
2820                         spin_lock(&inode->i_lock);
2821                         inode->i_blocks += blocks_per_huge_page(h);
2822                         spin_unlock(&inode->i_lock);
2823                 } else {
2824                         lock_page(page);
2825                         if (unlikely(anon_vma_prepare(vma))) {
2826                                 ret = VM_FAULT_OOM;
2827                                 goto backout_unlocked;
2828                         }
2829                         anon_rmap = 1;
2830                 }
2831         } else {
2832                 /*
2833                  * If memory error occurs between mmap() and fault, some process
2834                  * don't have hwpoisoned swap entry for errored virtual address.
2835                  * So we need to block hugepage fault by PG_hwpoison bit check.
2836                  */
2837                 if (unlikely(PageHWPoison(page))) {
2838                         ret = VM_FAULT_HWPOISON |
2839                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2840                         goto backout_unlocked;
2841                 }
2842         }
2843
2844         /*
2845          * If we are going to COW a private mapping later, we examine the
2846          * pending reservations for this page now. This will ensure that
2847          * any allocations necessary to record that reservation occur outside
2848          * the spinlock.
2849          */
2850         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2851                 if (vma_needs_reservation(h, vma, address) < 0) {
2852                         ret = VM_FAULT_OOM;
2853                         goto backout_unlocked;
2854                 }
2855
2856         spin_lock(&mm->page_table_lock);
2857         size = i_size_read(mapping->host) >> huge_page_shift(h);
2858         if (idx >= size)
2859                 goto backout;
2860
2861         ret = 0;
2862         if (!huge_pte_none(huge_ptep_get(ptep)))
2863                 goto backout;
2864
2865         if (anon_rmap) {
2866                 ClearPagePrivate(page);
2867                 hugepage_add_new_anon_rmap(page, vma, address);
2868         }
2869         else
2870                 page_dup_rmap(page);
2871         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2872                                 && (vma->vm_flags & VM_SHARED)));
2873         set_huge_pte_at(mm, address, ptep, new_pte);
2874
2875         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2876                 /* Optimization, do the COW without a second fault */
2877                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2878         }
2879
2880         spin_unlock(&mm->page_table_lock);
2881         unlock_page(page);
2882 out:
2883         return ret;
2884
2885 backout:
2886         spin_unlock(&mm->page_table_lock);
2887 backout_unlocked:
2888         unlock_page(page);
2889         put_page(page);
2890         goto out;
2891 }
2892
2893 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2894                         unsigned long address, unsigned int flags)
2895 {
2896         pte_t *ptep;
2897         pte_t entry;
2898         int ret;
2899         struct page *page = NULL;
2900         struct page *pagecache_page = NULL;
2901         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2902         struct hstate *h = hstate_vma(vma);
2903
2904         address &= huge_page_mask(h);
2905
2906         ptep = huge_pte_offset(mm, address);
2907         if (ptep) {
2908                 entry = huge_ptep_get(ptep);
2909                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2910                         migration_entry_wait_huge(mm, ptep);
2911                         return 0;
2912                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2913                         return VM_FAULT_HWPOISON_LARGE |
2914                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2915         }
2916
2917         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2918         if (!ptep)
2919                 return VM_FAULT_OOM;
2920
2921         /*
2922          * Serialize hugepage allocation and instantiation, so that we don't
2923          * get spurious allocation failures if two CPUs race to instantiate
2924          * the same page in the page cache.
2925          */
2926         mutex_lock(&hugetlb_instantiation_mutex);
2927         entry = huge_ptep_get(ptep);
2928         if (huge_pte_none(entry)) {
2929                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2930                 goto out_mutex;
2931         }
2932
2933         ret = 0;
2934
2935         /*
2936          * If we are going to COW the mapping later, we examine the pending
2937          * reservations for this page now. This will ensure that any
2938          * allocations necessary to record that reservation occur outside the
2939          * spinlock. For private mappings, we also lookup the pagecache
2940          * page now as it is used to determine if a reservation has been
2941          * consumed.
2942          */
2943         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2944                 if (vma_needs_reservation(h, vma, address) < 0) {
2945                         ret = VM_FAULT_OOM;
2946                         goto out_mutex;
2947                 }
2948
2949                 if (!(vma->vm_flags & VM_MAYSHARE))
2950                         pagecache_page = hugetlbfs_pagecache_page(h,
2951                                                                 vma, address);
2952         }
2953
2954         /*
2955          * hugetlb_cow() requires page locks of pte_page(entry) and
2956          * pagecache_page, so here we need take the former one
2957          * when page != pagecache_page or !pagecache_page.
2958          * Note that locking order is always pagecache_page -> page,
2959          * so no worry about deadlock.
2960          */
2961         page = pte_page(entry);
2962         get_page(page);
2963         if (page != pagecache_page)
2964                 lock_page(page);
2965
2966         spin_lock(&mm->page_table_lock);
2967         /* Check for a racing update before calling hugetlb_cow */
2968         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2969                 goto out_page_table_lock;
2970
2971
2972         if (flags & FAULT_FLAG_WRITE) {
2973                 if (!huge_pte_write(entry)) {
2974                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2975                                                         pagecache_page);
2976                         goto out_page_table_lock;
2977                 }
2978                 entry = huge_pte_mkdirty(entry);
2979         }
2980         entry = pte_mkyoung(entry);
2981         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2982                                                 flags & FAULT_FLAG_WRITE))
2983                 update_mmu_cache(vma, address, ptep);
2984
2985 out_page_table_lock:
2986         spin_unlock(&mm->page_table_lock);
2987
2988         if (pagecache_page) {
2989                 unlock_page(pagecache_page);
2990                 put_page(pagecache_page);
2991         }
2992         if (page != pagecache_page)
2993                 unlock_page(page);
2994         put_page(page);
2995
2996 out_mutex:
2997         mutex_unlock(&hugetlb_instantiation_mutex);
2998
2999         return ret;
3000 }
3001
3002 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3003                          struct page **pages, struct vm_area_struct **vmas,
3004                          unsigned long *position, unsigned long *nr_pages,
3005                          long i, unsigned int flags)
3006 {
3007         unsigned long pfn_offset;
3008         unsigned long vaddr = *position;
3009         unsigned long remainder = *nr_pages;
3010         struct hstate *h = hstate_vma(vma);
3011
3012         spin_lock(&mm->page_table_lock);
3013         while (vaddr < vma->vm_end && remainder) {
3014                 pte_t *pte;
3015                 int absent;
3016                 struct page *page;
3017
3018                 /*
3019                  * Some archs (sparc64, sh*) have multiple pte_ts to
3020                  * each hugepage.  We have to make sure we get the
3021                  * first, for the page indexing below to work.
3022                  */
3023                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3024                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3025
3026                 /*
3027                  * When coredumping, it suits get_dump_page if we just return
3028                  * an error where there's an empty slot with no huge pagecache
3029                  * to back it.  This way, we avoid allocating a hugepage, and
3030                  * the sparse dumpfile avoids allocating disk blocks, but its
3031                  * huge holes still show up with zeroes where they need to be.
3032                  */
3033                 if (absent && (flags & FOLL_DUMP) &&
3034                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3035                         remainder = 0;
3036                         break;
3037                 }
3038
3039                 /*
3040                  * We need call hugetlb_fault for both hugepages under migration
3041                  * (in which case hugetlb_fault waits for the migration,) and
3042                  * hwpoisoned hugepages (in which case we need to prevent the
3043                  * caller from accessing to them.) In order to do this, we use
3044                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3045                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3046                  * both cases, and because we can't follow correct pages
3047                  * directly from any kind of swap entries.
3048                  */
3049                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3050                     ((flags & FOLL_WRITE) &&
3051                       !huge_pte_write(huge_ptep_get(pte)))) {
3052                         int ret;
3053
3054                         spin_unlock(&mm->page_table_lock);
3055                         ret = hugetlb_fault(mm, vma, vaddr,
3056                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3057                         spin_lock(&mm->page_table_lock);
3058                         if (!(ret & VM_FAULT_ERROR))
3059                                 continue;
3060
3061                         remainder = 0;
3062                         break;
3063                 }
3064
3065                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3066                 page = pte_page(huge_ptep_get(pte));
3067 same_page:
3068                 if (pages) {
3069                         pages[i] = mem_map_offset(page, pfn_offset);
3070                         get_page(pages[i]);
3071                 }
3072
3073                 if (vmas)
3074                         vmas[i] = vma;
3075
3076                 vaddr += PAGE_SIZE;
3077                 ++pfn_offset;
3078                 --remainder;
3079                 ++i;
3080                 if (vaddr < vma->vm_end && remainder &&
3081                                 pfn_offset < pages_per_huge_page(h)) {
3082                         /*
3083                          * We use pfn_offset to avoid touching the pageframes
3084                          * of this compound page.
3085                          */
3086                         goto same_page;
3087                 }
3088         }
3089         spin_unlock(&mm->page_table_lock);
3090         *nr_pages = remainder;
3091         *position = vaddr;
3092
3093         return i ? i : -EFAULT;
3094 }
3095
3096 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3097                 unsigned long address, unsigned long end, pgprot_t newprot)
3098 {
3099         struct mm_struct *mm = vma->vm_mm;
3100         unsigned long start = address;
3101         pte_t *ptep;
3102         pte_t pte;
3103         struct hstate *h = hstate_vma(vma);
3104         unsigned long pages = 0;
3105
3106         BUG_ON(address >= end);
3107         flush_cache_range(vma, address, end);
3108
3109         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3110         spin_lock(&mm->page_table_lock);
3111         for (; address < end; address += huge_page_size(h)) {
3112                 ptep = huge_pte_offset(mm, address);
3113                 if (!ptep)
3114                         continue;
3115                 if (huge_pmd_unshare(mm, &address, ptep)) {
3116                         pages++;
3117                         continue;
3118                 }
3119                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3120                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3121                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3122                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3123                         set_huge_pte_at(mm, address, ptep, pte);
3124                         pages++;
3125                 }
3126         }
3127         spin_unlock(&mm->page_table_lock);
3128         /*
3129          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3130          * may have cleared our pud entry and done put_page on the page table:
3131          * once we release i_mmap_mutex, another task can do the final put_page
3132          * and that page table be reused and filled with junk.
3133          */
3134         flush_tlb_range(vma, start, end);
3135         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3136
3137         return pages << h->order;
3138 }
3139
3140 int hugetlb_reserve_pages(struct inode *inode,
3141                                         long from, long to,
3142                                         struct vm_area_struct *vma,
3143                                         vm_flags_t vm_flags)
3144 {
3145         long ret, chg;
3146         struct hstate *h = hstate_inode(inode);
3147         struct hugepage_subpool *spool = subpool_inode(inode);
3148
3149         /*
3150          * Only apply hugepage reservation if asked. At fault time, an
3151          * attempt will be made for VM_NORESERVE to allocate a page
3152          * without using reserves
3153          */
3154         if (vm_flags & VM_NORESERVE)
3155                 return 0;
3156
3157         /*
3158          * Shared mappings base their reservation on the number of pages that
3159          * are already allocated on behalf of the file. Private mappings need
3160          * to reserve the full area even if read-only as mprotect() may be
3161          * called to make the mapping read-write. Assume !vma is a shm mapping
3162          */
3163         if (!vma || vma->vm_flags & VM_MAYSHARE)
3164                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3165         else {
3166                 struct resv_map *resv_map = resv_map_alloc();
3167                 if (!resv_map)
3168                         return -ENOMEM;
3169
3170                 chg = to - from;
3171
3172                 set_vma_resv_map(vma, resv_map);
3173                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3174         }
3175
3176         if (chg < 0) {
3177                 ret = chg;
3178                 goto out_err;
3179         }
3180
3181         /* There must be enough pages in the subpool for the mapping */
3182         if (hugepage_subpool_get_pages(spool, chg)) {
3183                 ret = -ENOSPC;
3184                 goto out_err;
3185         }
3186
3187         /*
3188          * Check enough hugepages are available for the reservation.
3189          * Hand the pages back to the subpool if there are not
3190          */
3191         ret = hugetlb_acct_memory(h, chg);
3192         if (ret < 0) {
3193                 hugepage_subpool_put_pages(spool, chg);
3194                 goto out_err;
3195         }
3196
3197         /*
3198          * Account for the reservations made. Shared mappings record regions
3199          * that have reservations as they are shared by multiple VMAs.
3200          * When the last VMA disappears, the region map says how much
3201          * the reservation was and the page cache tells how much of
3202          * the reservation was consumed. Private mappings are per-VMA and
3203          * only the consumed reservations are tracked. When the VMA
3204          * disappears, the original reservation is the VMA size and the
3205          * consumed reservations are stored in the map. Hence, nothing
3206          * else has to be done for private mappings here
3207          */
3208         if (!vma || vma->vm_flags & VM_MAYSHARE)
3209                 region_add(&inode->i_mapping->private_list, from, to);
3210         return 0;
3211 out_err:
3212         if (vma)
3213                 resv_map_put(vma);
3214         return ret;
3215 }
3216
3217 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3218 {
3219         struct hstate *h = hstate_inode(inode);
3220         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3221         struct hugepage_subpool *spool = subpool_inode(inode);
3222
3223         spin_lock(&inode->i_lock);
3224         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3225         spin_unlock(&inode->i_lock);
3226
3227         hugepage_subpool_put_pages(spool, (chg - freed));
3228         hugetlb_acct_memory(h, -(chg - freed));
3229 }
3230
3231 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3232 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3233                                 struct vm_area_struct *vma,
3234                                 unsigned long addr, pgoff_t idx)
3235 {
3236         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3237                                 svma->vm_start;
3238         unsigned long sbase = saddr & PUD_MASK;
3239         unsigned long s_end = sbase + PUD_SIZE;
3240
3241         /* Allow segments to share if only one is marked locked */
3242         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3243         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3244
3245         /*
3246          * match the virtual addresses, permission and the alignment of the
3247          * page table page.
3248          */
3249         if (pmd_index(addr) != pmd_index(saddr) ||
3250             vm_flags != svm_flags ||
3251             sbase < svma->vm_start || svma->vm_end < s_end)
3252                 return 0;
3253
3254         return saddr;
3255 }
3256
3257 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3258 {
3259         unsigned long base = addr & PUD_MASK;
3260         unsigned long end = base + PUD_SIZE;
3261
3262         /*
3263          * check on proper vm_flags and page table alignment
3264          */
3265         if (vma->vm_flags & VM_MAYSHARE &&
3266             vma->vm_start <= base && end <= vma->vm_end)
3267                 return 1;
3268         return 0;
3269 }
3270
3271 /*
3272  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3273  * and returns the corresponding pte. While this is not necessary for the
3274  * !shared pmd case because we can allocate the pmd later as well, it makes the
3275  * code much cleaner. pmd allocation is essential for the shared case because
3276  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3277  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3278  * bad pmd for sharing.
3279  */
3280 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3281 {
3282         struct vm_area_struct *vma = find_vma(mm, addr);
3283         struct address_space *mapping = vma->vm_file->f_mapping;
3284         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3285                         vma->vm_pgoff;
3286         struct vm_area_struct *svma;
3287         unsigned long saddr;
3288         pte_t *spte = NULL;
3289         pte_t *pte;
3290
3291         if (!vma_shareable(vma, addr))
3292                 return (pte_t *)pmd_alloc(mm, pud, addr);
3293
3294         mutex_lock(&mapping->i_mmap_mutex);
3295         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3296                 if (svma == vma)
3297                         continue;
3298
3299                 saddr = page_table_shareable(svma, vma, addr, idx);
3300                 if (saddr) {
3301                         spte = huge_pte_offset(svma->vm_mm, saddr);
3302                         if (spte) {
3303                                 get_page(virt_to_page(spte));
3304                                 break;
3305                         }
3306                 }
3307         }
3308
3309         if (!spte)
3310                 goto out;
3311
3312         spin_lock(&mm->page_table_lock);
3313         if (pud_none(*pud))
3314                 pud_populate(mm, pud,
3315                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3316         else
3317                 put_page(virt_to_page(spte));
3318         spin_unlock(&mm->page_table_lock);
3319 out:
3320         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3321         mutex_unlock(&mapping->i_mmap_mutex);
3322         return pte;
3323 }
3324
3325 /*
3326  * unmap huge page backed by shared pte.
3327  *
3328  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3329  * indicated by page_count > 1, unmap is achieved by clearing pud and
3330  * decrementing the ref count. If count == 1, the pte page is not shared.
3331  *
3332  * called with vma->vm_mm->page_table_lock held.
3333  *
3334  * returns: 1 successfully unmapped a shared pte page
3335  *          0 the underlying pte page is not shared, or it is the last user
3336  */
3337 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3338 {
3339         pgd_t *pgd = pgd_offset(mm, *addr);
3340         pud_t *pud = pud_offset(pgd, *addr);
3341
3342         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3343         if (page_count(virt_to_page(ptep)) == 1)
3344                 return 0;
3345
3346         pud_clear(pud);
3347         put_page(virt_to_page(ptep));
3348         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3349         return 1;
3350 }
3351 #define want_pmd_share()        (1)
3352 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3353 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3354 {
3355         return NULL;
3356 }
3357 #define want_pmd_share()        (0)
3358 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3359
3360 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3361 pte_t *huge_pte_alloc(struct mm_struct *mm,
3362                         unsigned long addr, unsigned long sz)
3363 {
3364         pgd_t *pgd;
3365         pud_t *pud;
3366         pte_t *pte = NULL;
3367
3368         pgd = pgd_offset(mm, addr);
3369         pud = pud_alloc(mm, pgd, addr);
3370         if (pud) {
3371                 if (sz == PUD_SIZE) {
3372                         pte = (pte_t *)pud;
3373                 } else {
3374                         BUG_ON(sz != PMD_SIZE);
3375                         if (want_pmd_share() && pud_none(*pud))
3376                                 pte = huge_pmd_share(mm, addr, pud);
3377                         else
3378                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3379                 }
3380         }
3381         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3382
3383         return pte;
3384 }
3385
3386 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3387 {
3388         pgd_t *pgd;
3389         pud_t *pud;
3390         pmd_t *pmd = NULL;
3391
3392         pgd = pgd_offset(mm, addr);
3393         if (pgd_present(*pgd)) {
3394                 pud = pud_offset(pgd, addr);
3395                 if (pud_present(*pud)) {
3396                         if (pud_huge(*pud))
3397                                 return (pte_t *)pud;
3398                         pmd = pmd_offset(pud, addr);
3399                 }
3400         }
3401         return (pte_t *) pmd;
3402 }
3403
3404 struct page *
3405 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3406                 pmd_t *pmd, int write)
3407 {
3408         struct page *page;
3409
3410         page = pte_page(*(pte_t *)pmd);
3411         if (page)
3412                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3413         return page;
3414 }
3415
3416 struct page *
3417 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3418                 pud_t *pud, int write)
3419 {
3420         struct page *page;
3421
3422         page = pte_page(*(pte_t *)pud);
3423         if (page)
3424                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3425         return page;
3426 }
3427
3428 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3429
3430 /* Can be overriden by architectures */
3431 __attribute__((weak)) struct page *
3432 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3433                pud_t *pud, int write)
3434 {
3435         BUG();
3436         return NULL;
3437 }
3438
3439 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3440
3441 #ifdef CONFIG_MEMORY_FAILURE
3442
3443 /* Should be called in hugetlb_lock */
3444 static int is_hugepage_on_freelist(struct page *hpage)
3445 {
3446         struct page *page;
3447         struct page *tmp;
3448         struct hstate *h = page_hstate(hpage);
3449         int nid = page_to_nid(hpage);
3450
3451         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3452                 if (page == hpage)
3453                         return 1;
3454         return 0;
3455 }
3456
3457 /*
3458  * This function is called from memory failure code.
3459  * Assume the caller holds page lock of the head page.
3460  */
3461 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3462 {
3463         struct hstate *h = page_hstate(hpage);
3464         int nid = page_to_nid(hpage);
3465         int ret = -EBUSY;
3466
3467         spin_lock(&hugetlb_lock);
3468         if (is_hugepage_on_freelist(hpage)) {
3469                 /*
3470                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3471                  * but dangling hpage->lru can trigger list-debug warnings
3472                  * (this happens when we call unpoison_memory() on it),
3473                  * so let it point to itself with list_del_init().
3474                  */
3475                 list_del_init(&hpage->lru);
3476                 set_page_refcounted(hpage);
3477                 h->free_huge_pages--;
3478                 h->free_huge_pages_node[nid]--;
3479                 ret = 0;
3480         }
3481         spin_unlock(&hugetlb_lock);
3482         return ret;
3483 }
3484 #endif
3485
3486 bool isolate_huge_page(struct page *page, struct list_head *list)
3487 {
3488         VM_BUG_ON(!PageHead(page));
3489         if (!get_page_unless_zero(page))
3490                 return false;
3491         spin_lock(&hugetlb_lock);
3492         list_move_tail(&page->lru, list);
3493         spin_unlock(&hugetlb_lock);
3494         return true;
3495 }
3496
3497 void putback_active_hugepage(struct page *page)
3498 {
3499         VM_BUG_ON(!PageHead(page));
3500         spin_lock(&hugetlb_lock);
3501         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3502         spin_unlock(&hugetlb_lock);
3503         put_page(page);
3504 }
3505
3506 bool is_hugepage_active(struct page *page)
3507 {
3508         VM_BUG_ON(!PageHuge(page));
3509         /*
3510          * This function can be called for a tail page because the caller,
3511          * scan_movable_pages, scans through a given pfn-range which typically
3512          * covers one memory block. In systems using gigantic hugepage (1GB
3513          * for x86_64,) a hugepage is larger than a memory block, and we don't
3514          * support migrating such large hugepages for now, so return false
3515          * when called for tail pages.
3516          */
3517         if (PageTail(page))
3518                 return false;
3519         /*
3520          * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3521          * so we should return false for them.
3522          */
3523         if (unlikely(PageHWPoison(page)))
3524                 return false;
3525         return page_count(page) > 0;
3526 }