Merge branch 'linux-linaro-lsk-v4.4' into linux-linaro-lsk-v4.4-android
[firefly-linux-kernel-4.4.55.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74         bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76         spin_unlock(&spool->lock);
77
78         /* If no pages are used, and no other handles to the subpool
79          * remain, give up any reservations mased on minimum size and
80          * free the subpool */
81         if (free) {
82                 if (spool->min_hpages != -1)
83                         hugetlb_acct_memory(spool->hstate,
84                                                 -spool->min_hpages);
85                 kfree(spool);
86         }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90                                                 long min_hpages)
91 {
92         struct hugepage_subpool *spool;
93
94         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95         if (!spool)
96                 return NULL;
97
98         spin_lock_init(&spool->lock);
99         spool->count = 1;
100         spool->max_hpages = max_hpages;
101         spool->hstate = h;
102         spool->min_hpages = min_hpages;
103
104         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105                 kfree(spool);
106                 return NULL;
107         }
108         spool->rsv_hpages = min_hpages;
109
110         return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115         spin_lock(&spool->lock);
116         BUG_ON(!spool->count);
117         spool->count--;
118         unlock_or_release_subpool(spool);
119 }
120
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130                                       long delta)
131 {
132         long ret = delta;
133
134         if (!spool)
135                 return ret;
136
137         spin_lock(&spool->lock);
138
139         if (spool->max_hpages != -1) {          /* maximum size accounting */
140                 if ((spool->used_hpages + delta) <= spool->max_hpages)
141                         spool->used_hpages += delta;
142                 else {
143                         ret = -ENOMEM;
144                         goto unlock_ret;
145                 }
146         }
147
148         if (spool->min_hpages != -1) {          /* minimum size accounting */
149                 if (delta > spool->rsv_hpages) {
150                         /*
151                          * Asking for more reserves than those already taken on
152                          * behalf of subpool.  Return difference.
153                          */
154                         ret = delta - spool->rsv_hpages;
155                         spool->rsv_hpages = 0;
156                 } else {
157                         ret = 0;        /* reserves already accounted for */
158                         spool->rsv_hpages -= delta;
159                 }
160         }
161
162 unlock_ret:
163         spin_unlock(&spool->lock);
164         return ret;
165 }
166
167 /*
168  * Subpool accounting for freeing and unreserving pages.
169  * Return the number of global page reservations that must be dropped.
170  * The return value may only be different than the passed value (delta)
171  * in the case where a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174                                        long delta)
175 {
176         long ret = delta;
177
178         if (!spool)
179                 return delta;
180
181         spin_lock(&spool->lock);
182
183         if (spool->max_hpages != -1)            /* maximum size accounting */
184                 spool->used_hpages -= delta;
185
186         if (spool->min_hpages != -1) {          /* minimum size accounting */
187                 if (spool->rsv_hpages + delta <= spool->min_hpages)
188                         ret = 0;
189                 else
190                         ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192                 spool->rsv_hpages += delta;
193                 if (spool->rsv_hpages > spool->min_hpages)
194                         spool->rsv_hpages = spool->min_hpages;
195         }
196
197         /*
198          * If hugetlbfs_put_super couldn't free spool due to an outstanding
199          * quota reference, free it now.
200          */
201         unlock_or_release_subpool(spool);
202
203         return ret;
204 }
205
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207 {
208         return HUGETLBFS_SB(inode->i_sb)->spool;
209 }
210
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212 {
213         return subpool_inode(file_inode(vma->vm_file));
214 }
215
216 /*
217  * Region tracking -- allows tracking of reservations and instantiated pages
218  *                    across the pages in a mapping.
219  *
220  * The region data structures are embedded into a resv_map and protected
221  * by a resv_map's lock.  The set of regions within the resv_map represent
222  * reservations for huge pages, or huge pages that have already been
223  * instantiated within the map.  The from and to elements are huge page
224  * indicies into the associated mapping.  from indicates the starting index
225  * of the region.  to represents the first index past the end of  the region.
226  *
227  * For example, a file region structure with from == 0 and to == 4 represents
228  * four huge pages in a mapping.  It is important to note that the to element
229  * represents the first element past the end of the region. This is used in
230  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231  *
232  * Interval notation of the form [from, to) will be used to indicate that
233  * the endpoint from is inclusive and to is exclusive.
234  */
235 struct file_region {
236         struct list_head link;
237         long from;
238         long to;
239 };
240
241 /*
242  * Add the huge page range represented by [f, t) to the reserve
243  * map.  In the normal case, existing regions will be expanded
244  * to accommodate the specified range.  Sufficient regions should
245  * exist for expansion due to the previous call to region_chg
246  * with the same range.  However, it is possible that region_del
247  * could have been called after region_chg and modifed the map
248  * in such a way that no region exists to be expanded.  In this
249  * case, pull a region descriptor from the cache associated with
250  * the map and use that for the new range.
251  *
252  * Return the number of new huge pages added to the map.  This
253  * number is greater than or equal to zero.
254  */
255 static long region_add(struct resv_map *resv, long f, long t)
256 {
257         struct list_head *head = &resv->regions;
258         struct file_region *rg, *nrg, *trg;
259         long add = 0;
260
261         spin_lock(&resv->lock);
262         /* Locate the region we are either in or before. */
263         list_for_each_entry(rg, head, link)
264                 if (f <= rg->to)
265                         break;
266
267         /*
268          * If no region exists which can be expanded to include the
269          * specified range, the list must have been modified by an
270          * interleving call to region_del().  Pull a region descriptor
271          * from the cache and use it for this range.
272          */
273         if (&rg->link == head || t < rg->from) {
274                 VM_BUG_ON(resv->region_cache_count <= 0);
275
276                 resv->region_cache_count--;
277                 nrg = list_first_entry(&resv->region_cache, struct file_region,
278                                         link);
279                 list_del(&nrg->link);
280
281                 nrg->from = f;
282                 nrg->to = t;
283                 list_add(&nrg->link, rg->link.prev);
284
285                 add += t - f;
286                 goto out_locked;
287         }
288
289         /* Round our left edge to the current segment if it encloses us. */
290         if (f > rg->from)
291                 f = rg->from;
292
293         /* Check for and consume any regions we now overlap with. */
294         nrg = rg;
295         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
296                 if (&rg->link == head)
297                         break;
298                 if (rg->from > t)
299                         break;
300
301                 /* If this area reaches higher then extend our area to
302                  * include it completely.  If this is not the first area
303                  * which we intend to reuse, free it. */
304                 if (rg->to > t)
305                         t = rg->to;
306                 if (rg != nrg) {
307                         /* Decrement return value by the deleted range.
308                          * Another range will span this area so that by
309                          * end of routine add will be >= zero
310                          */
311                         add -= (rg->to - rg->from);
312                         list_del(&rg->link);
313                         kfree(rg);
314                 }
315         }
316
317         add += (nrg->from - f);         /* Added to beginning of region */
318         nrg->from = f;
319         add += t - nrg->to;             /* Added to end of region */
320         nrg->to = t;
321
322 out_locked:
323         resv->adds_in_progress--;
324         spin_unlock(&resv->lock);
325         VM_BUG_ON(add < 0);
326         return add;
327 }
328
329 /*
330  * Examine the existing reserve map and determine how many
331  * huge pages in the specified range [f, t) are NOT currently
332  * represented.  This routine is called before a subsequent
333  * call to region_add that will actually modify the reserve
334  * map to add the specified range [f, t).  region_chg does
335  * not change the number of huge pages represented by the
336  * map.  However, if the existing regions in the map can not
337  * be expanded to represent the new range, a new file_region
338  * structure is added to the map as a placeholder.  This is
339  * so that the subsequent region_add call will have all the
340  * regions it needs and will not fail.
341  *
342  * Upon entry, region_chg will also examine the cache of region descriptors
343  * associated with the map.  If there are not enough descriptors cached, one
344  * will be allocated for the in progress add operation.
345  *
346  * Returns the number of huge pages that need to be added to the existing
347  * reservation map for the range [f, t).  This number is greater or equal to
348  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
349  * is needed and can not be allocated.
350  */
351 static long region_chg(struct resv_map *resv, long f, long t)
352 {
353         struct list_head *head = &resv->regions;
354         struct file_region *rg, *nrg = NULL;
355         long chg = 0;
356
357 retry:
358         spin_lock(&resv->lock);
359 retry_locked:
360         resv->adds_in_progress++;
361
362         /*
363          * Check for sufficient descriptors in the cache to accommodate
364          * the number of in progress add operations.
365          */
366         if (resv->adds_in_progress > resv->region_cache_count) {
367                 struct file_region *trg;
368
369                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
370                 /* Must drop lock to allocate a new descriptor. */
371                 resv->adds_in_progress--;
372                 spin_unlock(&resv->lock);
373
374                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375                 if (!trg) {
376                         kfree(nrg);
377                         return -ENOMEM;
378                 }
379
380                 spin_lock(&resv->lock);
381                 list_add(&trg->link, &resv->region_cache);
382                 resv->region_cache_count++;
383                 goto retry_locked;
384         }
385
386         /* Locate the region we are before or in. */
387         list_for_each_entry(rg, head, link)
388                 if (f <= rg->to)
389                         break;
390
391         /* If we are below the current region then a new region is required.
392          * Subtle, allocate a new region at the position but make it zero
393          * size such that we can guarantee to record the reservation. */
394         if (&rg->link == head || t < rg->from) {
395                 if (!nrg) {
396                         resv->adds_in_progress--;
397                         spin_unlock(&resv->lock);
398                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
399                         if (!nrg)
400                                 return -ENOMEM;
401
402                         nrg->from = f;
403                         nrg->to   = f;
404                         INIT_LIST_HEAD(&nrg->link);
405                         goto retry;
406                 }
407
408                 list_add(&nrg->link, rg->link.prev);
409                 chg = t - f;
410                 goto out_nrg;
411         }
412
413         /* Round our left edge to the current segment if it encloses us. */
414         if (f > rg->from)
415                 f = rg->from;
416         chg = t - f;
417
418         /* Check for and consume any regions we now overlap with. */
419         list_for_each_entry(rg, rg->link.prev, link) {
420                 if (&rg->link == head)
421                         break;
422                 if (rg->from > t)
423                         goto out;
424
425                 /* We overlap with this area, if it extends further than
426                  * us then we must extend ourselves.  Account for its
427                  * existing reservation. */
428                 if (rg->to > t) {
429                         chg += rg->to - t;
430                         t = rg->to;
431                 }
432                 chg -= rg->to - rg->from;
433         }
434
435 out:
436         spin_unlock(&resv->lock);
437         /*  We already know we raced and no longer need the new region */
438         kfree(nrg);
439         return chg;
440 out_nrg:
441         spin_unlock(&resv->lock);
442         return chg;
443 }
444
445 /*
446  * Abort the in progress add operation.  The adds_in_progress field
447  * of the resv_map keeps track of the operations in progress between
448  * calls to region_chg and region_add.  Operations are sometimes
449  * aborted after the call to region_chg.  In such cases, region_abort
450  * is called to decrement the adds_in_progress counter.
451  *
452  * NOTE: The range arguments [f, t) are not needed or used in this
453  * routine.  They are kept to make reading the calling code easier as
454  * arguments will match the associated region_chg call.
455  */
456 static void region_abort(struct resv_map *resv, long f, long t)
457 {
458         spin_lock(&resv->lock);
459         VM_BUG_ON(!resv->region_cache_count);
460         resv->adds_in_progress--;
461         spin_unlock(&resv->lock);
462 }
463
464 /*
465  * Delete the specified range [f, t) from the reserve map.  If the
466  * t parameter is LONG_MAX, this indicates that ALL regions after f
467  * should be deleted.  Locate the regions which intersect [f, t)
468  * and either trim, delete or split the existing regions.
469  *
470  * Returns the number of huge pages deleted from the reserve map.
471  * In the normal case, the return value is zero or more.  In the
472  * case where a region must be split, a new region descriptor must
473  * be allocated.  If the allocation fails, -ENOMEM will be returned.
474  * NOTE: If the parameter t == LONG_MAX, then we will never split
475  * a region and possibly return -ENOMEM.  Callers specifying
476  * t == LONG_MAX do not need to check for -ENOMEM error.
477  */
478 static long region_del(struct resv_map *resv, long f, long t)
479 {
480         struct list_head *head = &resv->regions;
481         struct file_region *rg, *trg;
482         struct file_region *nrg = NULL;
483         long del = 0;
484
485 retry:
486         spin_lock(&resv->lock);
487         list_for_each_entry_safe(rg, trg, head, link) {
488                 /*
489                  * Skip regions before the range to be deleted.  file_region
490                  * ranges are normally of the form [from, to).  However, there
491                  * may be a "placeholder" entry in the map which is of the form
492                  * (from, to) with from == to.  Check for placeholder entries
493                  * at the beginning of the range to be deleted.
494                  */
495                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
496                         continue;
497
498                 if (rg->from >= t)
499                         break;
500
501                 if (f > rg->from && t < rg->to) { /* Must split region */
502                         /*
503                          * Check for an entry in the cache before dropping
504                          * lock and attempting allocation.
505                          */
506                         if (!nrg &&
507                             resv->region_cache_count > resv->adds_in_progress) {
508                                 nrg = list_first_entry(&resv->region_cache,
509                                                         struct file_region,
510                                                         link);
511                                 list_del(&nrg->link);
512                                 resv->region_cache_count--;
513                         }
514
515                         if (!nrg) {
516                                 spin_unlock(&resv->lock);
517                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
518                                 if (!nrg)
519                                         return -ENOMEM;
520                                 goto retry;
521                         }
522
523                         del += t - f;
524
525                         /* New entry for end of split region */
526                         nrg->from = t;
527                         nrg->to = rg->to;
528                         INIT_LIST_HEAD(&nrg->link);
529
530                         /* Original entry is trimmed */
531                         rg->to = f;
532
533                         list_add(&nrg->link, &rg->link);
534                         nrg = NULL;
535                         break;
536                 }
537
538                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
539                         del += rg->to - rg->from;
540                         list_del(&rg->link);
541                         kfree(rg);
542                         continue;
543                 }
544
545                 if (f <= rg->from) {    /* Trim beginning of region */
546                         del += t - rg->from;
547                         rg->from = t;
548                 } else {                /* Trim end of region */
549                         del += rg->to - f;
550                         rg->to = f;
551                 }
552         }
553
554         spin_unlock(&resv->lock);
555         kfree(nrg);
556         return del;
557 }
558
559 /*
560  * A rare out of memory error was encountered which prevented removal of
561  * the reserve map region for a page.  The huge page itself was free'ed
562  * and removed from the page cache.  This routine will adjust the subpool
563  * usage count, and the global reserve count if needed.  By incrementing
564  * these counts, the reserve map entry which could not be deleted will
565  * appear as a "reserved" entry instead of simply dangling with incorrect
566  * counts.
567  */
568 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
569 {
570         struct hugepage_subpool *spool = subpool_inode(inode);
571         long rsv_adjust;
572
573         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
574         if (restore_reserve && rsv_adjust) {
575                 struct hstate *h = hstate_inode(inode);
576
577                 hugetlb_acct_memory(h, 1);
578         }
579 }
580
581 /*
582  * Count and return the number of huge pages in the reserve map
583  * that intersect with the range [f, t).
584  */
585 static long region_count(struct resv_map *resv, long f, long t)
586 {
587         struct list_head *head = &resv->regions;
588         struct file_region *rg;
589         long chg = 0;
590
591         spin_lock(&resv->lock);
592         /* Locate each segment we overlap with, and count that overlap. */
593         list_for_each_entry(rg, head, link) {
594                 long seg_from;
595                 long seg_to;
596
597                 if (rg->to <= f)
598                         continue;
599                 if (rg->from >= t)
600                         break;
601
602                 seg_from = max(rg->from, f);
603                 seg_to = min(rg->to, t);
604
605                 chg += seg_to - seg_from;
606         }
607         spin_unlock(&resv->lock);
608
609         return chg;
610 }
611
612 /*
613  * Convert the address within this vma to the page offset within
614  * the mapping, in pagecache page units; huge pages here.
615  */
616 static pgoff_t vma_hugecache_offset(struct hstate *h,
617                         struct vm_area_struct *vma, unsigned long address)
618 {
619         return ((address - vma->vm_start) >> huge_page_shift(h)) +
620                         (vma->vm_pgoff >> huge_page_order(h));
621 }
622
623 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
624                                      unsigned long address)
625 {
626         return vma_hugecache_offset(hstate_vma(vma), vma, address);
627 }
628
629 /*
630  * Return the size of the pages allocated when backing a VMA. In the majority
631  * cases this will be same size as used by the page table entries.
632  */
633 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
634 {
635         struct hstate *hstate;
636
637         if (!is_vm_hugetlb_page(vma))
638                 return PAGE_SIZE;
639
640         hstate = hstate_vma(vma);
641
642         return 1UL << huge_page_shift(hstate);
643 }
644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
645
646 /*
647  * Return the page size being used by the MMU to back a VMA. In the majority
648  * of cases, the page size used by the kernel matches the MMU size. On
649  * architectures where it differs, an architecture-specific version of this
650  * function is required.
651  */
652 #ifndef vma_mmu_pagesize
653 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
654 {
655         return vma_kernel_pagesize(vma);
656 }
657 #endif
658
659 /*
660  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
661  * bits of the reservation map pointer, which are always clear due to
662  * alignment.
663  */
664 #define HPAGE_RESV_OWNER    (1UL << 0)
665 #define HPAGE_RESV_UNMAPPED (1UL << 1)
666 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
667
668 /*
669  * These helpers are used to track how many pages are reserved for
670  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
671  * is guaranteed to have their future faults succeed.
672  *
673  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
674  * the reserve counters are updated with the hugetlb_lock held. It is safe
675  * to reset the VMA at fork() time as it is not in use yet and there is no
676  * chance of the global counters getting corrupted as a result of the values.
677  *
678  * The private mapping reservation is represented in a subtly different
679  * manner to a shared mapping.  A shared mapping has a region map associated
680  * with the underlying file, this region map represents the backing file
681  * pages which have ever had a reservation assigned which this persists even
682  * after the page is instantiated.  A private mapping has a region map
683  * associated with the original mmap which is attached to all VMAs which
684  * reference it, this region map represents those offsets which have consumed
685  * reservation ie. where pages have been instantiated.
686  */
687 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
688 {
689         return (unsigned long)vma->vm_private_data;
690 }
691
692 static void set_vma_private_data(struct vm_area_struct *vma,
693                                                         unsigned long value)
694 {
695         vma->vm_private_data = (void *)value;
696 }
697
698 struct resv_map *resv_map_alloc(void)
699 {
700         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
701         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
702
703         if (!resv_map || !rg) {
704                 kfree(resv_map);
705                 kfree(rg);
706                 return NULL;
707         }
708
709         kref_init(&resv_map->refs);
710         spin_lock_init(&resv_map->lock);
711         INIT_LIST_HEAD(&resv_map->regions);
712
713         resv_map->adds_in_progress = 0;
714
715         INIT_LIST_HEAD(&resv_map->region_cache);
716         list_add(&rg->link, &resv_map->region_cache);
717         resv_map->region_cache_count = 1;
718
719         return resv_map;
720 }
721
722 void resv_map_release(struct kref *ref)
723 {
724         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
725         struct list_head *head = &resv_map->region_cache;
726         struct file_region *rg, *trg;
727
728         /* Clear out any active regions before we release the map. */
729         region_del(resv_map, 0, LONG_MAX);
730
731         /* ... and any entries left in the cache */
732         list_for_each_entry_safe(rg, trg, head, link) {
733                 list_del(&rg->link);
734                 kfree(rg);
735         }
736
737         VM_BUG_ON(resv_map->adds_in_progress);
738
739         kfree(resv_map);
740 }
741
742 static inline struct resv_map *inode_resv_map(struct inode *inode)
743 {
744         return inode->i_mapping->private_data;
745 }
746
747 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
748 {
749         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
750         if (vma->vm_flags & VM_MAYSHARE) {
751                 struct address_space *mapping = vma->vm_file->f_mapping;
752                 struct inode *inode = mapping->host;
753
754                 return inode_resv_map(inode);
755
756         } else {
757                 return (struct resv_map *)(get_vma_private_data(vma) &
758                                                         ~HPAGE_RESV_MASK);
759         }
760 }
761
762 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
763 {
764         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
765         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
766
767         set_vma_private_data(vma, (get_vma_private_data(vma) &
768                                 HPAGE_RESV_MASK) | (unsigned long)map);
769 }
770
771 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
772 {
773         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
774         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
775
776         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
777 }
778
779 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
780 {
781         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
782
783         return (get_vma_private_data(vma) & flag) != 0;
784 }
785
786 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
787 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
788 {
789         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
790         if (!(vma->vm_flags & VM_MAYSHARE))
791                 vma->vm_private_data = (void *)0;
792 }
793
794 /* Returns true if the VMA has associated reserve pages */
795 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
796 {
797         if (vma->vm_flags & VM_NORESERVE) {
798                 /*
799                  * This address is already reserved by other process(chg == 0),
800                  * so, we should decrement reserved count. Without decrementing,
801                  * reserve count remains after releasing inode, because this
802                  * allocated page will go into page cache and is regarded as
803                  * coming from reserved pool in releasing step.  Currently, we
804                  * don't have any other solution to deal with this situation
805                  * properly, so add work-around here.
806                  */
807                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
808                         return true;
809                 else
810                         return false;
811         }
812
813         /* Shared mappings always use reserves */
814         if (vma->vm_flags & VM_MAYSHARE) {
815                 /*
816                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
817                  * be a region map for all pages.  The only situation where
818                  * there is no region map is if a hole was punched via
819                  * fallocate.  In this case, there really are no reverves to
820                  * use.  This situation is indicated if chg != 0.
821                  */
822                 if (chg)
823                         return false;
824                 else
825                         return true;
826         }
827
828         /*
829          * Only the process that called mmap() has reserves for
830          * private mappings.
831          */
832         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
833                 return true;
834
835         return false;
836 }
837
838 static void enqueue_huge_page(struct hstate *h, struct page *page)
839 {
840         int nid = page_to_nid(page);
841         list_move(&page->lru, &h->hugepage_freelists[nid]);
842         h->free_huge_pages++;
843         h->free_huge_pages_node[nid]++;
844 }
845
846 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
847 {
848         struct page *page;
849
850         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
851                 if (!is_migrate_isolate_page(page))
852                         break;
853         /*
854          * if 'non-isolated free hugepage' not found on the list,
855          * the allocation fails.
856          */
857         if (&h->hugepage_freelists[nid] == &page->lru)
858                 return NULL;
859         list_move(&page->lru, &h->hugepage_activelist);
860         set_page_refcounted(page);
861         h->free_huge_pages--;
862         h->free_huge_pages_node[nid]--;
863         return page;
864 }
865
866 /* Movability of hugepages depends on migration support. */
867 static inline gfp_t htlb_alloc_mask(struct hstate *h)
868 {
869         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
870                 return GFP_HIGHUSER_MOVABLE;
871         else
872                 return GFP_HIGHUSER;
873 }
874
875 static struct page *dequeue_huge_page_vma(struct hstate *h,
876                                 struct vm_area_struct *vma,
877                                 unsigned long address, int avoid_reserve,
878                                 long chg)
879 {
880         struct page *page = NULL;
881         struct mempolicy *mpol;
882         nodemask_t *nodemask;
883         struct zonelist *zonelist;
884         struct zone *zone;
885         struct zoneref *z;
886         unsigned int cpuset_mems_cookie;
887
888         /*
889          * A child process with MAP_PRIVATE mappings created by their parent
890          * have no page reserves. This check ensures that reservations are
891          * not "stolen". The child may still get SIGKILLed
892          */
893         if (!vma_has_reserves(vma, chg) &&
894                         h->free_huge_pages - h->resv_huge_pages == 0)
895                 goto err;
896
897         /* If reserves cannot be used, ensure enough pages are in the pool */
898         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
899                 goto err;
900
901 retry_cpuset:
902         cpuset_mems_cookie = read_mems_allowed_begin();
903         zonelist = huge_zonelist(vma, address,
904                                         htlb_alloc_mask(h), &mpol, &nodemask);
905
906         for_each_zone_zonelist_nodemask(zone, z, zonelist,
907                                                 MAX_NR_ZONES - 1, nodemask) {
908                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
909                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
910                         if (page) {
911                                 if (avoid_reserve)
912                                         break;
913                                 if (!vma_has_reserves(vma, chg))
914                                         break;
915
916                                 SetPagePrivate(page);
917                                 h->resv_huge_pages--;
918                                 break;
919                         }
920                 }
921         }
922
923         mpol_cond_put(mpol);
924         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
925                 goto retry_cpuset;
926         return page;
927
928 err:
929         return NULL;
930 }
931
932 /*
933  * common helper functions for hstate_next_node_to_{alloc|free}.
934  * We may have allocated or freed a huge page based on a different
935  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
936  * be outside of *nodes_allowed.  Ensure that we use an allowed
937  * node for alloc or free.
938  */
939 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
940 {
941         nid = next_node(nid, *nodes_allowed);
942         if (nid == MAX_NUMNODES)
943                 nid = first_node(*nodes_allowed);
944         VM_BUG_ON(nid >= MAX_NUMNODES);
945
946         return nid;
947 }
948
949 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
950 {
951         if (!node_isset(nid, *nodes_allowed))
952                 nid = next_node_allowed(nid, nodes_allowed);
953         return nid;
954 }
955
956 /*
957  * returns the previously saved node ["this node"] from which to
958  * allocate a persistent huge page for the pool and advance the
959  * next node from which to allocate, handling wrap at end of node
960  * mask.
961  */
962 static int hstate_next_node_to_alloc(struct hstate *h,
963                                         nodemask_t *nodes_allowed)
964 {
965         int nid;
966
967         VM_BUG_ON(!nodes_allowed);
968
969         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
970         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
971
972         return nid;
973 }
974
975 /*
976  * helper for free_pool_huge_page() - return the previously saved
977  * node ["this node"] from which to free a huge page.  Advance the
978  * next node id whether or not we find a free huge page to free so
979  * that the next attempt to free addresses the next node.
980  */
981 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
982 {
983         int nid;
984
985         VM_BUG_ON(!nodes_allowed);
986
987         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
988         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
989
990         return nid;
991 }
992
993 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
994         for (nr_nodes = nodes_weight(*mask);                            \
995                 nr_nodes > 0 &&                                         \
996                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
997                 nr_nodes--)
998
999 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1000         for (nr_nodes = nodes_weight(*mask);                            \
1001                 nr_nodes > 0 &&                                         \
1002                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1003                 nr_nodes--)
1004
1005 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
1006 static void destroy_compound_gigantic_page(struct page *page,
1007                                         unsigned int order)
1008 {
1009         int i;
1010         int nr_pages = 1 << order;
1011         struct page *p = page + 1;
1012
1013         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1014                 clear_compound_head(p);
1015                 set_page_refcounted(p);
1016         }
1017
1018         set_compound_order(page, 0);
1019         __ClearPageHead(page);
1020 }
1021
1022 static void free_gigantic_page(struct page *page, unsigned int order)
1023 {
1024         free_contig_range(page_to_pfn(page), 1 << order);
1025 }
1026
1027 static int __alloc_gigantic_page(unsigned long start_pfn,
1028                                 unsigned long nr_pages)
1029 {
1030         unsigned long end_pfn = start_pfn + nr_pages;
1031         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1032 }
1033
1034 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1035                                 unsigned long nr_pages)
1036 {
1037         unsigned long i, end_pfn = start_pfn + nr_pages;
1038         struct page *page;
1039
1040         for (i = start_pfn; i < end_pfn; i++) {
1041                 if (!pfn_valid(i))
1042                         return false;
1043
1044                 page = pfn_to_page(i);
1045
1046                 if (PageReserved(page))
1047                         return false;
1048
1049                 if (page_count(page) > 0)
1050                         return false;
1051
1052                 if (PageHuge(page))
1053                         return false;
1054         }
1055
1056         return true;
1057 }
1058
1059 static bool zone_spans_last_pfn(const struct zone *zone,
1060                         unsigned long start_pfn, unsigned long nr_pages)
1061 {
1062         unsigned long last_pfn = start_pfn + nr_pages - 1;
1063         return zone_spans_pfn(zone, last_pfn);
1064 }
1065
1066 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1067 {
1068         unsigned long nr_pages = 1 << order;
1069         unsigned long ret, pfn, flags;
1070         struct zone *z;
1071
1072         z = NODE_DATA(nid)->node_zones;
1073         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1074                 spin_lock_irqsave(&z->lock, flags);
1075
1076                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1077                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1078                         if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1079                                 /*
1080                                  * We release the zone lock here because
1081                                  * alloc_contig_range() will also lock the zone
1082                                  * at some point. If there's an allocation
1083                                  * spinning on this lock, it may win the race
1084                                  * and cause alloc_contig_range() to fail...
1085                                  */
1086                                 spin_unlock_irqrestore(&z->lock, flags);
1087                                 ret = __alloc_gigantic_page(pfn, nr_pages);
1088                                 if (!ret)
1089                                         return pfn_to_page(pfn);
1090                                 spin_lock_irqsave(&z->lock, flags);
1091                         }
1092                         pfn += nr_pages;
1093                 }
1094
1095                 spin_unlock_irqrestore(&z->lock, flags);
1096         }
1097
1098         return NULL;
1099 }
1100
1101 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1102 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1103
1104 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1105 {
1106         struct page *page;
1107
1108         page = alloc_gigantic_page(nid, huge_page_order(h));
1109         if (page) {
1110                 prep_compound_gigantic_page(page, huge_page_order(h));
1111                 prep_new_huge_page(h, page, nid);
1112         }
1113
1114         return page;
1115 }
1116
1117 static int alloc_fresh_gigantic_page(struct hstate *h,
1118                                 nodemask_t *nodes_allowed)
1119 {
1120         struct page *page = NULL;
1121         int nr_nodes, node;
1122
1123         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1124                 page = alloc_fresh_gigantic_page_node(h, node);
1125                 if (page)
1126                         return 1;
1127         }
1128
1129         return 0;
1130 }
1131
1132 static inline bool gigantic_page_supported(void) { return true; }
1133 #else
1134 static inline bool gigantic_page_supported(void) { return false; }
1135 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1136 static inline void destroy_compound_gigantic_page(struct page *page,
1137                                                 unsigned int order) { }
1138 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1139                                         nodemask_t *nodes_allowed) { return 0; }
1140 #endif
1141
1142 static void update_and_free_page(struct hstate *h, struct page *page)
1143 {
1144         int i;
1145
1146         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1147                 return;
1148
1149         h->nr_huge_pages--;
1150         h->nr_huge_pages_node[page_to_nid(page)]--;
1151         for (i = 0; i < pages_per_huge_page(h); i++) {
1152                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1153                                 1 << PG_referenced | 1 << PG_dirty |
1154                                 1 << PG_active | 1 << PG_private |
1155                                 1 << PG_writeback);
1156         }
1157         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1158         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1159         set_page_refcounted(page);
1160         if (hstate_is_gigantic(h)) {
1161                 destroy_compound_gigantic_page(page, huge_page_order(h));
1162                 free_gigantic_page(page, huge_page_order(h));
1163         } else {
1164                 __free_pages(page, huge_page_order(h));
1165         }
1166 }
1167
1168 struct hstate *size_to_hstate(unsigned long size)
1169 {
1170         struct hstate *h;
1171
1172         for_each_hstate(h) {
1173                 if (huge_page_size(h) == size)
1174                         return h;
1175         }
1176         return NULL;
1177 }
1178
1179 /*
1180  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1181  * to hstate->hugepage_activelist.)
1182  *
1183  * This function can be called for tail pages, but never returns true for them.
1184  */
1185 bool page_huge_active(struct page *page)
1186 {
1187         VM_BUG_ON_PAGE(!PageHuge(page), page);
1188         return PageHead(page) && PagePrivate(&page[1]);
1189 }
1190
1191 /* never called for tail page */
1192 static void set_page_huge_active(struct page *page)
1193 {
1194         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1195         SetPagePrivate(&page[1]);
1196 }
1197
1198 static void clear_page_huge_active(struct page *page)
1199 {
1200         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1201         ClearPagePrivate(&page[1]);
1202 }
1203
1204 void free_huge_page(struct page *page)
1205 {
1206         /*
1207          * Can't pass hstate in here because it is called from the
1208          * compound page destructor.
1209          */
1210         struct hstate *h = page_hstate(page);
1211         int nid = page_to_nid(page);
1212         struct hugepage_subpool *spool =
1213                 (struct hugepage_subpool *)page_private(page);
1214         bool restore_reserve;
1215
1216         set_page_private(page, 0);
1217         page->mapping = NULL;
1218         BUG_ON(page_count(page));
1219         BUG_ON(page_mapcount(page));
1220         restore_reserve = PagePrivate(page);
1221         ClearPagePrivate(page);
1222
1223         /*
1224          * A return code of zero implies that the subpool will be under its
1225          * minimum size if the reservation is not restored after page is free.
1226          * Therefore, force restore_reserve operation.
1227          */
1228         if (hugepage_subpool_put_pages(spool, 1) == 0)
1229                 restore_reserve = true;
1230
1231         spin_lock(&hugetlb_lock);
1232         clear_page_huge_active(page);
1233         hugetlb_cgroup_uncharge_page(hstate_index(h),
1234                                      pages_per_huge_page(h), page);
1235         if (restore_reserve)
1236                 h->resv_huge_pages++;
1237
1238         if (h->surplus_huge_pages_node[nid]) {
1239                 /* remove the page from active list */
1240                 list_del(&page->lru);
1241                 update_and_free_page(h, page);
1242                 h->surplus_huge_pages--;
1243                 h->surplus_huge_pages_node[nid]--;
1244         } else {
1245                 arch_clear_hugepage_flags(page);
1246                 enqueue_huge_page(h, page);
1247         }
1248         spin_unlock(&hugetlb_lock);
1249 }
1250
1251 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1252 {
1253         INIT_LIST_HEAD(&page->lru);
1254         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1255         spin_lock(&hugetlb_lock);
1256         set_hugetlb_cgroup(page, NULL);
1257         h->nr_huge_pages++;
1258         h->nr_huge_pages_node[nid]++;
1259         spin_unlock(&hugetlb_lock);
1260         put_page(page); /* free it into the hugepage allocator */
1261 }
1262
1263 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1264 {
1265         int i;
1266         int nr_pages = 1 << order;
1267         struct page *p = page + 1;
1268
1269         /* we rely on prep_new_huge_page to set the destructor */
1270         set_compound_order(page, order);
1271         __SetPageHead(page);
1272         __ClearPageReserved(page);
1273         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1274                 /*
1275                  * For gigantic hugepages allocated through bootmem at
1276                  * boot, it's safer to be consistent with the not-gigantic
1277                  * hugepages and clear the PG_reserved bit from all tail pages
1278                  * too.  Otherwse drivers using get_user_pages() to access tail
1279                  * pages may get the reference counting wrong if they see
1280                  * PG_reserved set on a tail page (despite the head page not
1281                  * having PG_reserved set).  Enforcing this consistency between
1282                  * head and tail pages allows drivers to optimize away a check
1283                  * on the head page when they need know if put_page() is needed
1284                  * after get_user_pages().
1285                  */
1286                 __ClearPageReserved(p);
1287                 set_page_count(p, 0);
1288                 set_compound_head(p, page);
1289         }
1290 }
1291
1292 /*
1293  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1294  * transparent huge pages.  See the PageTransHuge() documentation for more
1295  * details.
1296  */
1297 int PageHuge(struct page *page)
1298 {
1299         if (!PageCompound(page))
1300                 return 0;
1301
1302         page = compound_head(page);
1303         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1304 }
1305 EXPORT_SYMBOL_GPL(PageHuge);
1306
1307 /*
1308  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1309  * normal or transparent huge pages.
1310  */
1311 int PageHeadHuge(struct page *page_head)
1312 {
1313         if (!PageHead(page_head))
1314                 return 0;
1315
1316         return get_compound_page_dtor(page_head) == free_huge_page;
1317 }
1318
1319 pgoff_t __basepage_index(struct page *page)
1320 {
1321         struct page *page_head = compound_head(page);
1322         pgoff_t index = page_index(page_head);
1323         unsigned long compound_idx;
1324
1325         if (!PageHuge(page_head))
1326                 return page_index(page);
1327
1328         if (compound_order(page_head) >= MAX_ORDER)
1329                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1330         else
1331                 compound_idx = page - page_head;
1332
1333         return (index << compound_order(page_head)) + compound_idx;
1334 }
1335
1336 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1337 {
1338         struct page *page;
1339
1340         page = __alloc_pages_node(nid,
1341                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1342                                                 __GFP_REPEAT|__GFP_NOWARN,
1343                 huge_page_order(h));
1344         if (page) {
1345                 prep_new_huge_page(h, page, nid);
1346         }
1347
1348         return page;
1349 }
1350
1351 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1352 {
1353         struct page *page;
1354         int nr_nodes, node;
1355         int ret = 0;
1356
1357         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1358                 page = alloc_fresh_huge_page_node(h, node);
1359                 if (page) {
1360                         ret = 1;
1361                         break;
1362                 }
1363         }
1364
1365         if (ret)
1366                 count_vm_event(HTLB_BUDDY_PGALLOC);
1367         else
1368                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1369
1370         return ret;
1371 }
1372
1373 /*
1374  * Free huge page from pool from next node to free.
1375  * Attempt to keep persistent huge pages more or less
1376  * balanced over allowed nodes.
1377  * Called with hugetlb_lock locked.
1378  */
1379 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1380                                                          bool acct_surplus)
1381 {
1382         int nr_nodes, node;
1383         int ret = 0;
1384
1385         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1386                 /*
1387                  * If we're returning unused surplus pages, only examine
1388                  * nodes with surplus pages.
1389                  */
1390                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1391                     !list_empty(&h->hugepage_freelists[node])) {
1392                         struct page *page =
1393                                 list_entry(h->hugepage_freelists[node].next,
1394                                           struct page, lru);
1395                         list_del(&page->lru);
1396                         h->free_huge_pages--;
1397                         h->free_huge_pages_node[node]--;
1398                         if (acct_surplus) {
1399                                 h->surplus_huge_pages--;
1400                                 h->surplus_huge_pages_node[node]--;
1401                         }
1402                         update_and_free_page(h, page);
1403                         ret = 1;
1404                         break;
1405                 }
1406         }
1407
1408         return ret;
1409 }
1410
1411 /*
1412  * Dissolve a given free hugepage into free buddy pages. This function does
1413  * nothing for in-use (including surplus) hugepages.
1414  */
1415 static void dissolve_free_huge_page(struct page *page)
1416 {
1417         spin_lock(&hugetlb_lock);
1418         if (PageHuge(page) && !page_count(page)) {
1419                 struct hstate *h = page_hstate(page);
1420                 int nid = page_to_nid(page);
1421                 list_del(&page->lru);
1422                 h->free_huge_pages--;
1423                 h->free_huge_pages_node[nid]--;
1424                 update_and_free_page(h, page);
1425         }
1426         spin_unlock(&hugetlb_lock);
1427 }
1428
1429 /*
1430  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1431  * make specified memory blocks removable from the system.
1432  * Note that start_pfn should aligned with (minimum) hugepage size.
1433  */
1434 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1435 {
1436         unsigned long pfn;
1437
1438         if (!hugepages_supported())
1439                 return;
1440
1441         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1442         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1443                 dissolve_free_huge_page(pfn_to_page(pfn));
1444 }
1445
1446 /*
1447  * There are 3 ways this can get called:
1448  * 1. With vma+addr: we use the VMA's memory policy
1449  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1450  *    page from any node, and let the buddy allocator itself figure
1451  *    it out.
1452  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1453  *    strictly from 'nid'
1454  */
1455 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1456                 struct vm_area_struct *vma, unsigned long addr, int nid)
1457 {
1458         int order = huge_page_order(h);
1459         gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1460         unsigned int cpuset_mems_cookie;
1461
1462         /*
1463          * We need a VMA to get a memory policy.  If we do not
1464          * have one, we use the 'nid' argument.
1465          *
1466          * The mempolicy stuff below has some non-inlined bits
1467          * and calls ->vm_ops.  That makes it hard to optimize at
1468          * compile-time, even when NUMA is off and it does
1469          * nothing.  This helps the compiler optimize it out.
1470          */
1471         if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1472                 /*
1473                  * If a specific node is requested, make sure to
1474                  * get memory from there, but only when a node
1475                  * is explicitly specified.
1476                  */
1477                 if (nid != NUMA_NO_NODE)
1478                         gfp |= __GFP_THISNODE;
1479                 /*
1480                  * Make sure to call something that can handle
1481                  * nid=NUMA_NO_NODE
1482                  */
1483                 return alloc_pages_node(nid, gfp, order);
1484         }
1485
1486         /*
1487          * OK, so we have a VMA.  Fetch the mempolicy and try to
1488          * allocate a huge page with it.  We will only reach this
1489          * when CONFIG_NUMA=y.
1490          */
1491         do {
1492                 struct page *page;
1493                 struct mempolicy *mpol;
1494                 struct zonelist *zl;
1495                 nodemask_t *nodemask;
1496
1497                 cpuset_mems_cookie = read_mems_allowed_begin();
1498                 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1499                 mpol_cond_put(mpol);
1500                 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1501                 if (page)
1502                         return page;
1503         } while (read_mems_allowed_retry(cpuset_mems_cookie));
1504
1505         return NULL;
1506 }
1507
1508 /*
1509  * There are two ways to allocate a huge page:
1510  * 1. When you have a VMA and an address (like a fault)
1511  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1512  *
1513  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1514  * this case which signifies that the allocation should be done with
1515  * respect for the VMA's memory policy.
1516  *
1517  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1518  * implies that memory policies will not be taken in to account.
1519  */
1520 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1521                 struct vm_area_struct *vma, unsigned long addr, int nid)
1522 {
1523         struct page *page;
1524         unsigned int r_nid;
1525
1526         if (hstate_is_gigantic(h))
1527                 return NULL;
1528
1529         /*
1530          * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1531          * This makes sure the caller is picking _one_ of the modes with which
1532          * we can call this function, not both.
1533          */
1534         if (vma || (addr != -1)) {
1535                 VM_WARN_ON_ONCE(addr == -1);
1536                 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1537         }
1538         /*
1539          * Assume we will successfully allocate the surplus page to
1540          * prevent racing processes from causing the surplus to exceed
1541          * overcommit
1542          *
1543          * This however introduces a different race, where a process B
1544          * tries to grow the static hugepage pool while alloc_pages() is
1545          * called by process A. B will only examine the per-node
1546          * counters in determining if surplus huge pages can be
1547          * converted to normal huge pages in adjust_pool_surplus(). A
1548          * won't be able to increment the per-node counter, until the
1549          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1550          * no more huge pages can be converted from surplus to normal
1551          * state (and doesn't try to convert again). Thus, we have a
1552          * case where a surplus huge page exists, the pool is grown, and
1553          * the surplus huge page still exists after, even though it
1554          * should just have been converted to a normal huge page. This
1555          * does not leak memory, though, as the hugepage will be freed
1556          * once it is out of use. It also does not allow the counters to
1557          * go out of whack in adjust_pool_surplus() as we don't modify
1558          * the node values until we've gotten the hugepage and only the
1559          * per-node value is checked there.
1560          */
1561         spin_lock(&hugetlb_lock);
1562         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1563                 spin_unlock(&hugetlb_lock);
1564                 return NULL;
1565         } else {
1566                 h->nr_huge_pages++;
1567                 h->surplus_huge_pages++;
1568         }
1569         spin_unlock(&hugetlb_lock);
1570
1571         page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1572
1573         spin_lock(&hugetlb_lock);
1574         if (page) {
1575                 INIT_LIST_HEAD(&page->lru);
1576                 r_nid = page_to_nid(page);
1577                 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1578                 set_hugetlb_cgroup(page, NULL);
1579                 /*
1580                  * We incremented the global counters already
1581                  */
1582                 h->nr_huge_pages_node[r_nid]++;
1583                 h->surplus_huge_pages_node[r_nid]++;
1584                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1585         } else {
1586                 h->nr_huge_pages--;
1587                 h->surplus_huge_pages--;
1588                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1589         }
1590         spin_unlock(&hugetlb_lock);
1591
1592         return page;
1593 }
1594
1595 /*
1596  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1597  * NUMA_NO_NODE, which means that it may be allocated
1598  * anywhere.
1599  */
1600 static
1601 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1602 {
1603         unsigned long addr = -1;
1604
1605         return __alloc_buddy_huge_page(h, NULL, addr, nid);
1606 }
1607
1608 /*
1609  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1610  */
1611 static
1612 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1613                 struct vm_area_struct *vma, unsigned long addr)
1614 {
1615         return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1616 }
1617
1618 /*
1619  * This allocation function is useful in the context where vma is irrelevant.
1620  * E.g. soft-offlining uses this function because it only cares physical
1621  * address of error page.
1622  */
1623 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1624 {
1625         struct page *page = NULL;
1626
1627         spin_lock(&hugetlb_lock);
1628         if (h->free_huge_pages - h->resv_huge_pages > 0)
1629                 page = dequeue_huge_page_node(h, nid);
1630         spin_unlock(&hugetlb_lock);
1631
1632         if (!page)
1633                 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1634
1635         return page;
1636 }
1637
1638 /*
1639  * Increase the hugetlb pool such that it can accommodate a reservation
1640  * of size 'delta'.
1641  */
1642 static int gather_surplus_pages(struct hstate *h, int delta)
1643 {
1644         struct list_head surplus_list;
1645         struct page *page, *tmp;
1646         int ret, i;
1647         int needed, allocated;
1648         bool alloc_ok = true;
1649
1650         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1651         if (needed <= 0) {
1652                 h->resv_huge_pages += delta;
1653                 return 0;
1654         }
1655
1656         allocated = 0;
1657         INIT_LIST_HEAD(&surplus_list);
1658
1659         ret = -ENOMEM;
1660 retry:
1661         spin_unlock(&hugetlb_lock);
1662         for (i = 0; i < needed; i++) {
1663                 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1664                 if (!page) {
1665                         alloc_ok = false;
1666                         break;
1667                 }
1668                 list_add(&page->lru, &surplus_list);
1669         }
1670         allocated += i;
1671
1672         /*
1673          * After retaking hugetlb_lock, we need to recalculate 'needed'
1674          * because either resv_huge_pages or free_huge_pages may have changed.
1675          */
1676         spin_lock(&hugetlb_lock);
1677         needed = (h->resv_huge_pages + delta) -
1678                         (h->free_huge_pages + allocated);
1679         if (needed > 0) {
1680                 if (alloc_ok)
1681                         goto retry;
1682                 /*
1683                  * We were not able to allocate enough pages to
1684                  * satisfy the entire reservation so we free what
1685                  * we've allocated so far.
1686                  */
1687                 goto free;
1688         }
1689         /*
1690          * The surplus_list now contains _at_least_ the number of extra pages
1691          * needed to accommodate the reservation.  Add the appropriate number
1692          * of pages to the hugetlb pool and free the extras back to the buddy
1693          * allocator.  Commit the entire reservation here to prevent another
1694          * process from stealing the pages as they are added to the pool but
1695          * before they are reserved.
1696          */
1697         needed += allocated;
1698         h->resv_huge_pages += delta;
1699         ret = 0;
1700
1701         /* Free the needed pages to the hugetlb pool */
1702         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1703                 if ((--needed) < 0)
1704                         break;
1705                 /*
1706                  * This page is now managed by the hugetlb allocator and has
1707                  * no users -- drop the buddy allocator's reference.
1708                  */
1709                 put_page_testzero(page);
1710                 VM_BUG_ON_PAGE(page_count(page), page);
1711                 enqueue_huge_page(h, page);
1712         }
1713 free:
1714         spin_unlock(&hugetlb_lock);
1715
1716         /* Free unnecessary surplus pages to the buddy allocator */
1717         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1718                 put_page(page);
1719         spin_lock(&hugetlb_lock);
1720
1721         return ret;
1722 }
1723
1724 /*
1725  * When releasing a hugetlb pool reservation, any surplus pages that were
1726  * allocated to satisfy the reservation must be explicitly freed if they were
1727  * never used.
1728  * Called with hugetlb_lock held.
1729  */
1730 static void return_unused_surplus_pages(struct hstate *h,
1731                                         unsigned long unused_resv_pages)
1732 {
1733         unsigned long nr_pages;
1734
1735         /* Uncommit the reservation */
1736         h->resv_huge_pages -= unused_resv_pages;
1737
1738         /* Cannot return gigantic pages currently */
1739         if (hstate_is_gigantic(h))
1740                 return;
1741
1742         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1743
1744         /*
1745          * We want to release as many surplus pages as possible, spread
1746          * evenly across all nodes with memory. Iterate across these nodes
1747          * until we can no longer free unreserved surplus pages. This occurs
1748          * when the nodes with surplus pages have no free pages.
1749          * free_pool_huge_page() will balance the the freed pages across the
1750          * on-line nodes with memory and will handle the hstate accounting.
1751          */
1752         while (nr_pages--) {
1753                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1754                         break;
1755                 cond_resched_lock(&hugetlb_lock);
1756         }
1757 }
1758
1759
1760 /*
1761  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1762  * are used by the huge page allocation routines to manage reservations.
1763  *
1764  * vma_needs_reservation is called to determine if the huge page at addr
1765  * within the vma has an associated reservation.  If a reservation is
1766  * needed, the value 1 is returned.  The caller is then responsible for
1767  * managing the global reservation and subpool usage counts.  After
1768  * the huge page has been allocated, vma_commit_reservation is called
1769  * to add the page to the reservation map.  If the page allocation fails,
1770  * the reservation must be ended instead of committed.  vma_end_reservation
1771  * is called in such cases.
1772  *
1773  * In the normal case, vma_commit_reservation returns the same value
1774  * as the preceding vma_needs_reservation call.  The only time this
1775  * is not the case is if a reserve map was changed between calls.  It
1776  * is the responsibility of the caller to notice the difference and
1777  * take appropriate action.
1778  */
1779 enum vma_resv_mode {
1780         VMA_NEEDS_RESV,
1781         VMA_COMMIT_RESV,
1782         VMA_END_RESV,
1783 };
1784 static long __vma_reservation_common(struct hstate *h,
1785                                 struct vm_area_struct *vma, unsigned long addr,
1786                                 enum vma_resv_mode mode)
1787 {
1788         struct resv_map *resv;
1789         pgoff_t idx;
1790         long ret;
1791
1792         resv = vma_resv_map(vma);
1793         if (!resv)
1794                 return 1;
1795
1796         idx = vma_hugecache_offset(h, vma, addr);
1797         switch (mode) {
1798         case VMA_NEEDS_RESV:
1799                 ret = region_chg(resv, idx, idx + 1);
1800                 break;
1801         case VMA_COMMIT_RESV:
1802                 ret = region_add(resv, idx, idx + 1);
1803                 break;
1804         case VMA_END_RESV:
1805                 region_abort(resv, idx, idx + 1);
1806                 ret = 0;
1807                 break;
1808         default:
1809                 BUG();
1810         }
1811
1812         if (vma->vm_flags & VM_MAYSHARE)
1813                 return ret;
1814         else
1815                 return ret < 0 ? ret : 0;
1816 }
1817
1818 static long vma_needs_reservation(struct hstate *h,
1819                         struct vm_area_struct *vma, unsigned long addr)
1820 {
1821         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1822 }
1823
1824 static long vma_commit_reservation(struct hstate *h,
1825                         struct vm_area_struct *vma, unsigned long addr)
1826 {
1827         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1828 }
1829
1830 static void vma_end_reservation(struct hstate *h,
1831                         struct vm_area_struct *vma, unsigned long addr)
1832 {
1833         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1834 }
1835
1836 struct page *alloc_huge_page(struct vm_area_struct *vma,
1837                                     unsigned long addr, int avoid_reserve)
1838 {
1839         struct hugepage_subpool *spool = subpool_vma(vma);
1840         struct hstate *h = hstate_vma(vma);
1841         struct page *page;
1842         long map_chg, map_commit;
1843         long gbl_chg;
1844         int ret, idx;
1845         struct hugetlb_cgroup *h_cg;
1846
1847         idx = hstate_index(h);
1848         /*
1849          * Examine the region/reserve map to determine if the process
1850          * has a reservation for the page to be allocated.  A return
1851          * code of zero indicates a reservation exists (no change).
1852          */
1853         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1854         if (map_chg < 0)
1855                 return ERR_PTR(-ENOMEM);
1856
1857         /*
1858          * Processes that did not create the mapping will have no
1859          * reserves as indicated by the region/reserve map. Check
1860          * that the allocation will not exceed the subpool limit.
1861          * Allocations for MAP_NORESERVE mappings also need to be
1862          * checked against any subpool limit.
1863          */
1864         if (map_chg || avoid_reserve) {
1865                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1866                 if (gbl_chg < 0) {
1867                         vma_end_reservation(h, vma, addr);
1868                         return ERR_PTR(-ENOSPC);
1869                 }
1870
1871                 /*
1872                  * Even though there was no reservation in the region/reserve
1873                  * map, there could be reservations associated with the
1874                  * subpool that can be used.  This would be indicated if the
1875                  * return value of hugepage_subpool_get_pages() is zero.
1876                  * However, if avoid_reserve is specified we still avoid even
1877                  * the subpool reservations.
1878                  */
1879                 if (avoid_reserve)
1880                         gbl_chg = 1;
1881         }
1882
1883         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1884         if (ret)
1885                 goto out_subpool_put;
1886
1887         spin_lock(&hugetlb_lock);
1888         /*
1889          * glb_chg is passed to indicate whether or not a page must be taken
1890          * from the global free pool (global change).  gbl_chg == 0 indicates
1891          * a reservation exists for the allocation.
1892          */
1893         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1894         if (!page) {
1895                 spin_unlock(&hugetlb_lock);
1896                 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1897                 if (!page)
1898                         goto out_uncharge_cgroup;
1899                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1900                         SetPagePrivate(page);
1901                         h->resv_huge_pages--;
1902                 }
1903                 spin_lock(&hugetlb_lock);
1904                 list_move(&page->lru, &h->hugepage_activelist);
1905                 /* Fall through */
1906         }
1907         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1908         spin_unlock(&hugetlb_lock);
1909
1910         set_page_private(page, (unsigned long)spool);
1911
1912         map_commit = vma_commit_reservation(h, vma, addr);
1913         if (unlikely(map_chg > map_commit)) {
1914                 /*
1915                  * The page was added to the reservation map between
1916                  * vma_needs_reservation and vma_commit_reservation.
1917                  * This indicates a race with hugetlb_reserve_pages.
1918                  * Adjust for the subpool count incremented above AND
1919                  * in hugetlb_reserve_pages for the same page.  Also,
1920                  * the reservation count added in hugetlb_reserve_pages
1921                  * no longer applies.
1922                  */
1923                 long rsv_adjust;
1924
1925                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1926                 hugetlb_acct_memory(h, -rsv_adjust);
1927         }
1928         return page;
1929
1930 out_uncharge_cgroup:
1931         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1932 out_subpool_put:
1933         if (map_chg || avoid_reserve)
1934                 hugepage_subpool_put_pages(spool, 1);
1935         vma_end_reservation(h, vma, addr);
1936         return ERR_PTR(-ENOSPC);
1937 }
1938
1939 /*
1940  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1941  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1942  * where no ERR_VALUE is expected to be returned.
1943  */
1944 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1945                                 unsigned long addr, int avoid_reserve)
1946 {
1947         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1948         if (IS_ERR(page))
1949                 page = NULL;
1950         return page;
1951 }
1952
1953 int __weak alloc_bootmem_huge_page(struct hstate *h)
1954 {
1955         struct huge_bootmem_page *m;
1956         int nr_nodes, node;
1957
1958         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1959                 void *addr;
1960
1961                 addr = memblock_virt_alloc_try_nid_nopanic(
1962                                 huge_page_size(h), huge_page_size(h),
1963                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1964                 if (addr) {
1965                         /*
1966                          * Use the beginning of the huge page to store the
1967                          * huge_bootmem_page struct (until gather_bootmem
1968                          * puts them into the mem_map).
1969                          */
1970                         m = addr;
1971                         goto found;
1972                 }
1973         }
1974         return 0;
1975
1976 found:
1977         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1978         /* Put them into a private list first because mem_map is not up yet */
1979         list_add(&m->list, &huge_boot_pages);
1980         m->hstate = h;
1981         return 1;
1982 }
1983
1984 static void __init prep_compound_huge_page(struct page *page,
1985                 unsigned int order)
1986 {
1987         if (unlikely(order > (MAX_ORDER - 1)))
1988                 prep_compound_gigantic_page(page, order);
1989         else
1990                 prep_compound_page(page, order);
1991 }
1992
1993 /* Put bootmem huge pages into the standard lists after mem_map is up */
1994 static void __init gather_bootmem_prealloc(void)
1995 {
1996         struct huge_bootmem_page *m;
1997
1998         list_for_each_entry(m, &huge_boot_pages, list) {
1999                 struct hstate *h = m->hstate;
2000                 struct page *page;
2001
2002 #ifdef CONFIG_HIGHMEM
2003                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2004                 memblock_free_late(__pa(m),
2005                                    sizeof(struct huge_bootmem_page));
2006 #else
2007                 page = virt_to_page(m);
2008 #endif
2009                 WARN_ON(page_count(page) != 1);
2010                 prep_compound_huge_page(page, h->order);
2011                 WARN_ON(PageReserved(page));
2012                 prep_new_huge_page(h, page, page_to_nid(page));
2013                 /*
2014                  * If we had gigantic hugepages allocated at boot time, we need
2015                  * to restore the 'stolen' pages to totalram_pages in order to
2016                  * fix confusing memory reports from free(1) and another
2017                  * side-effects, like CommitLimit going negative.
2018                  */
2019                 if (hstate_is_gigantic(h))
2020                         adjust_managed_page_count(page, 1 << h->order);
2021         }
2022 }
2023
2024 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2025 {
2026         unsigned long i;
2027
2028         for (i = 0; i < h->max_huge_pages; ++i) {
2029                 if (hstate_is_gigantic(h)) {
2030                         if (!alloc_bootmem_huge_page(h))
2031                                 break;
2032                 } else if (!alloc_fresh_huge_page(h,
2033                                          &node_states[N_MEMORY]))
2034                         break;
2035         }
2036         h->max_huge_pages = i;
2037 }
2038
2039 static void __init hugetlb_init_hstates(void)
2040 {
2041         struct hstate *h;
2042
2043         for_each_hstate(h) {
2044                 if (minimum_order > huge_page_order(h))
2045                         minimum_order = huge_page_order(h);
2046
2047                 /* oversize hugepages were init'ed in early boot */
2048                 if (!hstate_is_gigantic(h))
2049                         hugetlb_hstate_alloc_pages(h);
2050         }
2051         VM_BUG_ON(minimum_order == UINT_MAX);
2052 }
2053
2054 static char * __init memfmt(char *buf, unsigned long n)
2055 {
2056         if (n >= (1UL << 30))
2057                 sprintf(buf, "%lu GB", n >> 30);
2058         else if (n >= (1UL << 20))
2059                 sprintf(buf, "%lu MB", n >> 20);
2060         else
2061                 sprintf(buf, "%lu KB", n >> 10);
2062         return buf;
2063 }
2064
2065 static void __init report_hugepages(void)
2066 {
2067         struct hstate *h;
2068
2069         for_each_hstate(h) {
2070                 char buf[32];
2071                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2072                         memfmt(buf, huge_page_size(h)),
2073                         h->free_huge_pages);
2074         }
2075 }
2076
2077 #ifdef CONFIG_HIGHMEM
2078 static void try_to_free_low(struct hstate *h, unsigned long count,
2079                                                 nodemask_t *nodes_allowed)
2080 {
2081         int i;
2082
2083         if (hstate_is_gigantic(h))
2084                 return;
2085
2086         for_each_node_mask(i, *nodes_allowed) {
2087                 struct page *page, *next;
2088                 struct list_head *freel = &h->hugepage_freelists[i];
2089                 list_for_each_entry_safe(page, next, freel, lru) {
2090                         if (count >= h->nr_huge_pages)
2091                                 return;
2092                         if (PageHighMem(page))
2093                                 continue;
2094                         list_del(&page->lru);
2095                         update_and_free_page(h, page);
2096                         h->free_huge_pages--;
2097                         h->free_huge_pages_node[page_to_nid(page)]--;
2098                 }
2099         }
2100 }
2101 #else
2102 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2103                                                 nodemask_t *nodes_allowed)
2104 {
2105 }
2106 #endif
2107
2108 /*
2109  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2110  * balanced by operating on them in a round-robin fashion.
2111  * Returns 1 if an adjustment was made.
2112  */
2113 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2114                                 int delta)
2115 {
2116         int nr_nodes, node;
2117
2118         VM_BUG_ON(delta != -1 && delta != 1);
2119
2120         if (delta < 0) {
2121                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2122                         if (h->surplus_huge_pages_node[node])
2123                                 goto found;
2124                 }
2125         } else {
2126                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2127                         if (h->surplus_huge_pages_node[node] <
2128                                         h->nr_huge_pages_node[node])
2129                                 goto found;
2130                 }
2131         }
2132         return 0;
2133
2134 found:
2135         h->surplus_huge_pages += delta;
2136         h->surplus_huge_pages_node[node] += delta;
2137         return 1;
2138 }
2139
2140 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2141 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2142                                                 nodemask_t *nodes_allowed)
2143 {
2144         unsigned long min_count, ret;
2145
2146         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2147                 return h->max_huge_pages;
2148
2149         /*
2150          * Increase the pool size
2151          * First take pages out of surplus state.  Then make up the
2152          * remaining difference by allocating fresh huge pages.
2153          *
2154          * We might race with __alloc_buddy_huge_page() here and be unable
2155          * to convert a surplus huge page to a normal huge page. That is
2156          * not critical, though, it just means the overall size of the
2157          * pool might be one hugepage larger than it needs to be, but
2158          * within all the constraints specified by the sysctls.
2159          */
2160         spin_lock(&hugetlb_lock);
2161         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2162                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2163                         break;
2164         }
2165
2166         while (count > persistent_huge_pages(h)) {
2167                 /*
2168                  * If this allocation races such that we no longer need the
2169                  * page, free_huge_page will handle it by freeing the page
2170                  * and reducing the surplus.
2171                  */
2172                 spin_unlock(&hugetlb_lock);
2173
2174                 /* yield cpu to avoid soft lockup */
2175                 cond_resched();
2176
2177                 if (hstate_is_gigantic(h))
2178                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2179                 else
2180                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2181                 spin_lock(&hugetlb_lock);
2182                 if (!ret)
2183                         goto out;
2184
2185                 /* Bail for signals. Probably ctrl-c from user */
2186                 if (signal_pending(current))
2187                         goto out;
2188         }
2189
2190         /*
2191          * Decrease the pool size
2192          * First return free pages to the buddy allocator (being careful
2193          * to keep enough around to satisfy reservations).  Then place
2194          * pages into surplus state as needed so the pool will shrink
2195          * to the desired size as pages become free.
2196          *
2197          * By placing pages into the surplus state independent of the
2198          * overcommit value, we are allowing the surplus pool size to
2199          * exceed overcommit. There are few sane options here. Since
2200          * __alloc_buddy_huge_page() is checking the global counter,
2201          * though, we'll note that we're not allowed to exceed surplus
2202          * and won't grow the pool anywhere else. Not until one of the
2203          * sysctls are changed, or the surplus pages go out of use.
2204          */
2205         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2206         min_count = max(count, min_count);
2207         try_to_free_low(h, min_count, nodes_allowed);
2208         while (min_count < persistent_huge_pages(h)) {
2209                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2210                         break;
2211                 cond_resched_lock(&hugetlb_lock);
2212         }
2213         while (count < persistent_huge_pages(h)) {
2214                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2215                         break;
2216         }
2217 out:
2218         ret = persistent_huge_pages(h);
2219         spin_unlock(&hugetlb_lock);
2220         return ret;
2221 }
2222
2223 #define HSTATE_ATTR_RO(_name) \
2224         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2225
2226 #define HSTATE_ATTR(_name) \
2227         static struct kobj_attribute _name##_attr = \
2228                 __ATTR(_name, 0644, _name##_show, _name##_store)
2229
2230 static struct kobject *hugepages_kobj;
2231 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2232
2233 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2234
2235 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2236 {
2237         int i;
2238
2239         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2240                 if (hstate_kobjs[i] == kobj) {
2241                         if (nidp)
2242                                 *nidp = NUMA_NO_NODE;
2243                         return &hstates[i];
2244                 }
2245
2246         return kobj_to_node_hstate(kobj, nidp);
2247 }
2248
2249 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2250                                         struct kobj_attribute *attr, char *buf)
2251 {
2252         struct hstate *h;
2253         unsigned long nr_huge_pages;
2254         int nid;
2255
2256         h = kobj_to_hstate(kobj, &nid);
2257         if (nid == NUMA_NO_NODE)
2258                 nr_huge_pages = h->nr_huge_pages;
2259         else
2260                 nr_huge_pages = h->nr_huge_pages_node[nid];
2261
2262         return sprintf(buf, "%lu\n", nr_huge_pages);
2263 }
2264
2265 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2266                                            struct hstate *h, int nid,
2267                                            unsigned long count, size_t len)
2268 {
2269         int err;
2270         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2271
2272         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2273                 err = -EINVAL;
2274                 goto out;
2275         }
2276
2277         if (nid == NUMA_NO_NODE) {
2278                 /*
2279                  * global hstate attribute
2280                  */
2281                 if (!(obey_mempolicy &&
2282                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2283                         NODEMASK_FREE(nodes_allowed);
2284                         nodes_allowed = &node_states[N_MEMORY];
2285                 }
2286         } else if (nodes_allowed) {
2287                 /*
2288                  * per node hstate attribute: adjust count to global,
2289                  * but restrict alloc/free to the specified node.
2290                  */
2291                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2292                 init_nodemask_of_node(nodes_allowed, nid);
2293         } else
2294                 nodes_allowed = &node_states[N_MEMORY];
2295
2296         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2297
2298         if (nodes_allowed != &node_states[N_MEMORY])
2299                 NODEMASK_FREE(nodes_allowed);
2300
2301         return len;
2302 out:
2303         NODEMASK_FREE(nodes_allowed);
2304         return err;
2305 }
2306
2307 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2308                                          struct kobject *kobj, const char *buf,
2309                                          size_t len)
2310 {
2311         struct hstate *h;
2312         unsigned long count;
2313         int nid;
2314         int err;
2315
2316         err = kstrtoul(buf, 10, &count);
2317         if (err)
2318                 return err;
2319
2320         h = kobj_to_hstate(kobj, &nid);
2321         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2322 }
2323
2324 static ssize_t nr_hugepages_show(struct kobject *kobj,
2325                                        struct kobj_attribute *attr, char *buf)
2326 {
2327         return nr_hugepages_show_common(kobj, attr, buf);
2328 }
2329
2330 static ssize_t nr_hugepages_store(struct kobject *kobj,
2331                struct kobj_attribute *attr, const char *buf, size_t len)
2332 {
2333         return nr_hugepages_store_common(false, kobj, buf, len);
2334 }
2335 HSTATE_ATTR(nr_hugepages);
2336
2337 #ifdef CONFIG_NUMA
2338
2339 /*
2340  * hstate attribute for optionally mempolicy-based constraint on persistent
2341  * huge page alloc/free.
2342  */
2343 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2344                                        struct kobj_attribute *attr, char *buf)
2345 {
2346         return nr_hugepages_show_common(kobj, attr, buf);
2347 }
2348
2349 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2350                struct kobj_attribute *attr, const char *buf, size_t len)
2351 {
2352         return nr_hugepages_store_common(true, kobj, buf, len);
2353 }
2354 HSTATE_ATTR(nr_hugepages_mempolicy);
2355 #endif
2356
2357
2358 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2359                                         struct kobj_attribute *attr, char *buf)
2360 {
2361         struct hstate *h = kobj_to_hstate(kobj, NULL);
2362         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2363 }
2364
2365 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2366                 struct kobj_attribute *attr, const char *buf, size_t count)
2367 {
2368         int err;
2369         unsigned long input;
2370         struct hstate *h = kobj_to_hstate(kobj, NULL);
2371
2372         if (hstate_is_gigantic(h))
2373                 return -EINVAL;
2374
2375         err = kstrtoul(buf, 10, &input);
2376         if (err)
2377                 return err;
2378
2379         spin_lock(&hugetlb_lock);
2380         h->nr_overcommit_huge_pages = input;
2381         spin_unlock(&hugetlb_lock);
2382
2383         return count;
2384 }
2385 HSTATE_ATTR(nr_overcommit_hugepages);
2386
2387 static ssize_t free_hugepages_show(struct kobject *kobj,
2388                                         struct kobj_attribute *attr, char *buf)
2389 {
2390         struct hstate *h;
2391         unsigned long free_huge_pages;
2392         int nid;
2393
2394         h = kobj_to_hstate(kobj, &nid);
2395         if (nid == NUMA_NO_NODE)
2396                 free_huge_pages = h->free_huge_pages;
2397         else
2398                 free_huge_pages = h->free_huge_pages_node[nid];
2399
2400         return sprintf(buf, "%lu\n", free_huge_pages);
2401 }
2402 HSTATE_ATTR_RO(free_hugepages);
2403
2404 static ssize_t resv_hugepages_show(struct kobject *kobj,
2405                                         struct kobj_attribute *attr, char *buf)
2406 {
2407         struct hstate *h = kobj_to_hstate(kobj, NULL);
2408         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2409 }
2410 HSTATE_ATTR_RO(resv_hugepages);
2411
2412 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2413                                         struct kobj_attribute *attr, char *buf)
2414 {
2415         struct hstate *h;
2416         unsigned long surplus_huge_pages;
2417         int nid;
2418
2419         h = kobj_to_hstate(kobj, &nid);
2420         if (nid == NUMA_NO_NODE)
2421                 surplus_huge_pages = h->surplus_huge_pages;
2422         else
2423                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2424
2425         return sprintf(buf, "%lu\n", surplus_huge_pages);
2426 }
2427 HSTATE_ATTR_RO(surplus_hugepages);
2428
2429 static struct attribute *hstate_attrs[] = {
2430         &nr_hugepages_attr.attr,
2431         &nr_overcommit_hugepages_attr.attr,
2432         &free_hugepages_attr.attr,
2433         &resv_hugepages_attr.attr,
2434         &surplus_hugepages_attr.attr,
2435 #ifdef CONFIG_NUMA
2436         &nr_hugepages_mempolicy_attr.attr,
2437 #endif
2438         NULL,
2439 };
2440
2441 static struct attribute_group hstate_attr_group = {
2442         .attrs = hstate_attrs,
2443 };
2444
2445 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2446                                     struct kobject **hstate_kobjs,
2447                                     struct attribute_group *hstate_attr_group)
2448 {
2449         int retval;
2450         int hi = hstate_index(h);
2451
2452         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2453         if (!hstate_kobjs[hi])
2454                 return -ENOMEM;
2455
2456         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2457         if (retval)
2458                 kobject_put(hstate_kobjs[hi]);
2459
2460         return retval;
2461 }
2462
2463 static void __init hugetlb_sysfs_init(void)
2464 {
2465         struct hstate *h;
2466         int err;
2467
2468         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2469         if (!hugepages_kobj)
2470                 return;
2471
2472         for_each_hstate(h) {
2473                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2474                                          hstate_kobjs, &hstate_attr_group);
2475                 if (err)
2476                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2477         }
2478 }
2479
2480 #ifdef CONFIG_NUMA
2481
2482 /*
2483  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2484  * with node devices in node_devices[] using a parallel array.  The array
2485  * index of a node device or _hstate == node id.
2486  * This is here to avoid any static dependency of the node device driver, in
2487  * the base kernel, on the hugetlb module.
2488  */
2489 struct node_hstate {
2490         struct kobject          *hugepages_kobj;
2491         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2492 };
2493 static struct node_hstate node_hstates[MAX_NUMNODES];
2494
2495 /*
2496  * A subset of global hstate attributes for node devices
2497  */
2498 static struct attribute *per_node_hstate_attrs[] = {
2499         &nr_hugepages_attr.attr,
2500         &free_hugepages_attr.attr,
2501         &surplus_hugepages_attr.attr,
2502         NULL,
2503 };
2504
2505 static struct attribute_group per_node_hstate_attr_group = {
2506         .attrs = per_node_hstate_attrs,
2507 };
2508
2509 /*
2510  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2511  * Returns node id via non-NULL nidp.
2512  */
2513 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2514 {
2515         int nid;
2516
2517         for (nid = 0; nid < nr_node_ids; nid++) {
2518                 struct node_hstate *nhs = &node_hstates[nid];
2519                 int i;
2520                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2521                         if (nhs->hstate_kobjs[i] == kobj) {
2522                                 if (nidp)
2523                                         *nidp = nid;
2524                                 return &hstates[i];
2525                         }
2526         }
2527
2528         BUG();
2529         return NULL;
2530 }
2531
2532 /*
2533  * Unregister hstate attributes from a single node device.
2534  * No-op if no hstate attributes attached.
2535  */
2536 static void hugetlb_unregister_node(struct node *node)
2537 {
2538         struct hstate *h;
2539         struct node_hstate *nhs = &node_hstates[node->dev.id];
2540
2541         if (!nhs->hugepages_kobj)
2542                 return;         /* no hstate attributes */
2543
2544         for_each_hstate(h) {
2545                 int idx = hstate_index(h);
2546                 if (nhs->hstate_kobjs[idx]) {
2547                         kobject_put(nhs->hstate_kobjs[idx]);
2548                         nhs->hstate_kobjs[idx] = NULL;
2549                 }
2550         }
2551
2552         kobject_put(nhs->hugepages_kobj);
2553         nhs->hugepages_kobj = NULL;
2554 }
2555
2556 /*
2557  * hugetlb module exit:  unregister hstate attributes from node devices
2558  * that have them.
2559  */
2560 static void hugetlb_unregister_all_nodes(void)
2561 {
2562         int nid;
2563
2564         /*
2565          * disable node device registrations.
2566          */
2567         register_hugetlbfs_with_node(NULL, NULL);
2568
2569         /*
2570          * remove hstate attributes from any nodes that have them.
2571          */
2572         for (nid = 0; nid < nr_node_ids; nid++)
2573                 hugetlb_unregister_node(node_devices[nid]);
2574 }
2575
2576 /*
2577  * Register hstate attributes for a single node device.
2578  * No-op if attributes already registered.
2579  */
2580 static void hugetlb_register_node(struct node *node)
2581 {
2582         struct hstate *h;
2583         struct node_hstate *nhs = &node_hstates[node->dev.id];
2584         int err;
2585
2586         if (nhs->hugepages_kobj)
2587                 return;         /* already allocated */
2588
2589         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2590                                                         &node->dev.kobj);
2591         if (!nhs->hugepages_kobj)
2592                 return;
2593
2594         for_each_hstate(h) {
2595                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2596                                                 nhs->hstate_kobjs,
2597                                                 &per_node_hstate_attr_group);
2598                 if (err) {
2599                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2600                                 h->name, node->dev.id);
2601                         hugetlb_unregister_node(node);
2602                         break;
2603                 }
2604         }
2605 }
2606
2607 /*
2608  * hugetlb init time:  register hstate attributes for all registered node
2609  * devices of nodes that have memory.  All on-line nodes should have
2610  * registered their associated device by this time.
2611  */
2612 static void __init hugetlb_register_all_nodes(void)
2613 {
2614         int nid;
2615
2616         for_each_node_state(nid, N_MEMORY) {
2617                 struct node *node = node_devices[nid];
2618                 if (node->dev.id == nid)
2619                         hugetlb_register_node(node);
2620         }
2621
2622         /*
2623          * Let the node device driver know we're here so it can
2624          * [un]register hstate attributes on node hotplug.
2625          */
2626         register_hugetlbfs_with_node(hugetlb_register_node,
2627                                      hugetlb_unregister_node);
2628 }
2629 #else   /* !CONFIG_NUMA */
2630
2631 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2632 {
2633         BUG();
2634         if (nidp)
2635                 *nidp = -1;
2636         return NULL;
2637 }
2638
2639 static void hugetlb_unregister_all_nodes(void) { }
2640
2641 static void hugetlb_register_all_nodes(void) { }
2642
2643 #endif
2644
2645 static void __exit hugetlb_exit(void)
2646 {
2647         struct hstate *h;
2648
2649         hugetlb_unregister_all_nodes();
2650
2651         for_each_hstate(h) {
2652                 kobject_put(hstate_kobjs[hstate_index(h)]);
2653         }
2654
2655         kobject_put(hugepages_kobj);
2656         kfree(hugetlb_fault_mutex_table);
2657 }
2658 module_exit(hugetlb_exit);
2659
2660 static int __init hugetlb_init(void)
2661 {
2662         int i;
2663
2664         if (!hugepages_supported())
2665                 return 0;
2666
2667         if (!size_to_hstate(default_hstate_size)) {
2668                 default_hstate_size = HPAGE_SIZE;
2669                 if (!size_to_hstate(default_hstate_size))
2670                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2671         }
2672         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2673         if (default_hstate_max_huge_pages)
2674                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2675
2676         hugetlb_init_hstates();
2677         gather_bootmem_prealloc();
2678         report_hugepages();
2679
2680         hugetlb_sysfs_init();
2681         hugetlb_register_all_nodes();
2682         hugetlb_cgroup_file_init();
2683
2684 #ifdef CONFIG_SMP
2685         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2686 #else
2687         num_fault_mutexes = 1;
2688 #endif
2689         hugetlb_fault_mutex_table =
2690                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2691         BUG_ON(!hugetlb_fault_mutex_table);
2692
2693         for (i = 0; i < num_fault_mutexes; i++)
2694                 mutex_init(&hugetlb_fault_mutex_table[i]);
2695         return 0;
2696 }
2697 module_init(hugetlb_init);
2698
2699 /* Should be called on processing a hugepagesz=... option */
2700 void __init hugetlb_add_hstate(unsigned int order)
2701 {
2702         struct hstate *h;
2703         unsigned long i;
2704
2705         if (size_to_hstate(PAGE_SIZE << order)) {
2706                 pr_warning("hugepagesz= specified twice, ignoring\n");
2707                 return;
2708         }
2709         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2710         BUG_ON(order == 0);
2711         h = &hstates[hugetlb_max_hstate++];
2712         h->order = order;
2713         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2714         h->nr_huge_pages = 0;
2715         h->free_huge_pages = 0;
2716         for (i = 0; i < MAX_NUMNODES; ++i)
2717                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2718         INIT_LIST_HEAD(&h->hugepage_activelist);
2719         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2720         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2721         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2722                                         huge_page_size(h)/1024);
2723
2724         parsed_hstate = h;
2725 }
2726
2727 static int __init hugetlb_nrpages_setup(char *s)
2728 {
2729         unsigned long *mhp;
2730         static unsigned long *last_mhp;
2731
2732         /*
2733          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2734          * so this hugepages= parameter goes to the "default hstate".
2735          */
2736         if (!hugetlb_max_hstate)
2737                 mhp = &default_hstate_max_huge_pages;
2738         else
2739                 mhp = &parsed_hstate->max_huge_pages;
2740
2741         if (mhp == last_mhp) {
2742                 pr_warning("hugepages= specified twice without "
2743                            "interleaving hugepagesz=, ignoring\n");
2744                 return 1;
2745         }
2746
2747         if (sscanf(s, "%lu", mhp) <= 0)
2748                 *mhp = 0;
2749
2750         /*
2751          * Global state is always initialized later in hugetlb_init.
2752          * But we need to allocate >= MAX_ORDER hstates here early to still
2753          * use the bootmem allocator.
2754          */
2755         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2756                 hugetlb_hstate_alloc_pages(parsed_hstate);
2757
2758         last_mhp = mhp;
2759
2760         return 1;
2761 }
2762 __setup("hugepages=", hugetlb_nrpages_setup);
2763
2764 static int __init hugetlb_default_setup(char *s)
2765 {
2766         default_hstate_size = memparse(s, &s);
2767         return 1;
2768 }
2769 __setup("default_hugepagesz=", hugetlb_default_setup);
2770
2771 static unsigned int cpuset_mems_nr(unsigned int *array)
2772 {
2773         int node;
2774         unsigned int nr = 0;
2775
2776         for_each_node_mask(node, cpuset_current_mems_allowed)
2777                 nr += array[node];
2778
2779         return nr;
2780 }
2781
2782 #ifdef CONFIG_SYSCTL
2783 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2784                          struct ctl_table *table, int write,
2785                          void __user *buffer, size_t *length, loff_t *ppos)
2786 {
2787         struct hstate *h = &default_hstate;
2788         unsigned long tmp = h->max_huge_pages;
2789         int ret;
2790
2791         if (!hugepages_supported())
2792                 return -ENOTSUPP;
2793
2794         table->data = &tmp;
2795         table->maxlen = sizeof(unsigned long);
2796         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2797         if (ret)
2798                 goto out;
2799
2800         if (write)
2801                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2802                                                   NUMA_NO_NODE, tmp, *length);
2803 out:
2804         return ret;
2805 }
2806
2807 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2808                           void __user *buffer, size_t *length, loff_t *ppos)
2809 {
2810
2811         return hugetlb_sysctl_handler_common(false, table, write,
2812                                                         buffer, length, ppos);
2813 }
2814
2815 #ifdef CONFIG_NUMA
2816 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2817                           void __user *buffer, size_t *length, loff_t *ppos)
2818 {
2819         return hugetlb_sysctl_handler_common(true, table, write,
2820                                                         buffer, length, ppos);
2821 }
2822 #endif /* CONFIG_NUMA */
2823
2824 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2825                         void __user *buffer,
2826                         size_t *length, loff_t *ppos)
2827 {
2828         struct hstate *h = &default_hstate;
2829         unsigned long tmp;
2830         int ret;
2831
2832         if (!hugepages_supported())
2833                 return -ENOTSUPP;
2834
2835         tmp = h->nr_overcommit_huge_pages;
2836
2837         if (write && hstate_is_gigantic(h))
2838                 return -EINVAL;
2839
2840         table->data = &tmp;
2841         table->maxlen = sizeof(unsigned long);
2842         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2843         if (ret)
2844                 goto out;
2845
2846         if (write) {
2847                 spin_lock(&hugetlb_lock);
2848                 h->nr_overcommit_huge_pages = tmp;
2849                 spin_unlock(&hugetlb_lock);
2850         }
2851 out:
2852         return ret;
2853 }
2854
2855 #endif /* CONFIG_SYSCTL */
2856
2857 void hugetlb_report_meminfo(struct seq_file *m)
2858 {
2859         struct hstate *h = &default_hstate;
2860         if (!hugepages_supported())
2861                 return;
2862         seq_printf(m,
2863                         "HugePages_Total:   %5lu\n"
2864                         "HugePages_Free:    %5lu\n"
2865                         "HugePages_Rsvd:    %5lu\n"
2866                         "HugePages_Surp:    %5lu\n"
2867                         "Hugepagesize:   %8lu kB\n",
2868                         h->nr_huge_pages,
2869                         h->free_huge_pages,
2870                         h->resv_huge_pages,
2871                         h->surplus_huge_pages,
2872                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2873 }
2874
2875 int hugetlb_report_node_meminfo(int nid, char *buf)
2876 {
2877         struct hstate *h = &default_hstate;
2878         if (!hugepages_supported())
2879                 return 0;
2880         return sprintf(buf,
2881                 "Node %d HugePages_Total: %5u\n"
2882                 "Node %d HugePages_Free:  %5u\n"
2883                 "Node %d HugePages_Surp:  %5u\n",
2884                 nid, h->nr_huge_pages_node[nid],
2885                 nid, h->free_huge_pages_node[nid],
2886                 nid, h->surplus_huge_pages_node[nid]);
2887 }
2888
2889 void hugetlb_show_meminfo(void)
2890 {
2891         struct hstate *h;
2892         int nid;
2893
2894         if (!hugepages_supported())
2895                 return;
2896
2897         for_each_node_state(nid, N_MEMORY)
2898                 for_each_hstate(h)
2899                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2900                                 nid,
2901                                 h->nr_huge_pages_node[nid],
2902                                 h->free_huge_pages_node[nid],
2903                                 h->surplus_huge_pages_node[nid],
2904                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2905 }
2906
2907 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2908 {
2909         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2910                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2911 }
2912
2913 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2914 unsigned long hugetlb_total_pages(void)
2915 {
2916         struct hstate *h;
2917         unsigned long nr_total_pages = 0;
2918
2919         for_each_hstate(h)
2920                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2921         return nr_total_pages;
2922 }
2923
2924 static int hugetlb_acct_memory(struct hstate *h, long delta)
2925 {
2926         int ret = -ENOMEM;
2927
2928         spin_lock(&hugetlb_lock);
2929         /*
2930          * When cpuset is configured, it breaks the strict hugetlb page
2931          * reservation as the accounting is done on a global variable. Such
2932          * reservation is completely rubbish in the presence of cpuset because
2933          * the reservation is not checked against page availability for the
2934          * current cpuset. Application can still potentially OOM'ed by kernel
2935          * with lack of free htlb page in cpuset that the task is in.
2936          * Attempt to enforce strict accounting with cpuset is almost
2937          * impossible (or too ugly) because cpuset is too fluid that
2938          * task or memory node can be dynamically moved between cpusets.
2939          *
2940          * The change of semantics for shared hugetlb mapping with cpuset is
2941          * undesirable. However, in order to preserve some of the semantics,
2942          * we fall back to check against current free page availability as
2943          * a best attempt and hopefully to minimize the impact of changing
2944          * semantics that cpuset has.
2945          */
2946         if (delta > 0) {
2947                 if (gather_surplus_pages(h, delta) < 0)
2948                         goto out;
2949
2950                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2951                         return_unused_surplus_pages(h, delta);
2952                         goto out;
2953                 }
2954         }
2955
2956         ret = 0;
2957         if (delta < 0)
2958                 return_unused_surplus_pages(h, (unsigned long) -delta);
2959
2960 out:
2961         spin_unlock(&hugetlb_lock);
2962         return ret;
2963 }
2964
2965 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2966 {
2967         struct resv_map *resv = vma_resv_map(vma);
2968
2969         /*
2970          * This new VMA should share its siblings reservation map if present.
2971          * The VMA will only ever have a valid reservation map pointer where
2972          * it is being copied for another still existing VMA.  As that VMA
2973          * has a reference to the reservation map it cannot disappear until
2974          * after this open call completes.  It is therefore safe to take a
2975          * new reference here without additional locking.
2976          */
2977         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2978                 kref_get(&resv->refs);
2979 }
2980
2981 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2982 {
2983         struct hstate *h = hstate_vma(vma);
2984         struct resv_map *resv = vma_resv_map(vma);
2985         struct hugepage_subpool *spool = subpool_vma(vma);
2986         unsigned long reserve, start, end;
2987         long gbl_reserve;
2988
2989         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2990                 return;
2991
2992         start = vma_hugecache_offset(h, vma, vma->vm_start);
2993         end = vma_hugecache_offset(h, vma, vma->vm_end);
2994
2995         reserve = (end - start) - region_count(resv, start, end);
2996
2997         kref_put(&resv->refs, resv_map_release);
2998
2999         if (reserve) {
3000                 /*
3001                  * Decrement reserve counts.  The global reserve count may be
3002                  * adjusted if the subpool has a minimum size.
3003                  */
3004                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3005                 hugetlb_acct_memory(h, -gbl_reserve);
3006         }
3007 }
3008
3009 /*
3010  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3011  * handle_mm_fault() to try to instantiate regular-sized pages in the
3012  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3013  * this far.
3014  */
3015 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3016 {
3017         BUG();
3018         return 0;
3019 }
3020
3021 const struct vm_operations_struct hugetlb_vm_ops = {
3022         .fault = hugetlb_vm_op_fault,
3023         .open = hugetlb_vm_op_open,
3024         .close = hugetlb_vm_op_close,
3025 };
3026
3027 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3028                                 int writable)
3029 {
3030         pte_t entry;
3031
3032         if (writable) {
3033                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3034                                          vma->vm_page_prot)));
3035         } else {
3036                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3037                                            vma->vm_page_prot));
3038         }
3039         entry = pte_mkyoung(entry);
3040         entry = pte_mkhuge(entry);
3041         entry = arch_make_huge_pte(entry, vma, page, writable);
3042
3043         return entry;
3044 }
3045
3046 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3047                                    unsigned long address, pte_t *ptep)
3048 {
3049         pte_t entry;
3050
3051         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3052         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3053                 update_mmu_cache(vma, address, ptep);
3054 }
3055
3056 static int is_hugetlb_entry_migration(pte_t pte)
3057 {
3058         swp_entry_t swp;
3059
3060         if (huge_pte_none(pte) || pte_present(pte))
3061                 return 0;
3062         swp = pte_to_swp_entry(pte);
3063         if (non_swap_entry(swp) && is_migration_entry(swp))
3064                 return 1;
3065         else
3066                 return 0;
3067 }
3068
3069 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3070 {
3071         swp_entry_t swp;
3072
3073         if (huge_pte_none(pte) || pte_present(pte))
3074                 return 0;
3075         swp = pte_to_swp_entry(pte);
3076         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3077                 return 1;
3078         else
3079                 return 0;
3080 }
3081
3082 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3083                             struct vm_area_struct *vma)
3084 {
3085         pte_t *src_pte, *dst_pte, entry;
3086         struct page *ptepage;
3087         unsigned long addr;
3088         int cow;
3089         struct hstate *h = hstate_vma(vma);
3090         unsigned long sz = huge_page_size(h);
3091         unsigned long mmun_start;       /* For mmu_notifiers */
3092         unsigned long mmun_end;         /* For mmu_notifiers */
3093         int ret = 0;
3094
3095         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3096
3097         mmun_start = vma->vm_start;
3098         mmun_end = vma->vm_end;
3099         if (cow)
3100                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3101
3102         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3103                 spinlock_t *src_ptl, *dst_ptl;
3104                 src_pte = huge_pte_offset(src, addr);
3105                 if (!src_pte)
3106                         continue;
3107                 dst_pte = huge_pte_alloc(dst, addr, sz);
3108                 if (!dst_pte) {
3109                         ret = -ENOMEM;
3110                         break;
3111                 }
3112
3113                 /* If the pagetables are shared don't copy or take references */
3114                 if (dst_pte == src_pte)
3115                         continue;
3116
3117                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3118                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3119                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3120                 entry = huge_ptep_get(src_pte);
3121                 if (huge_pte_none(entry)) { /* skip none entry */
3122                         ;
3123                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3124                                     is_hugetlb_entry_hwpoisoned(entry))) {
3125                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3126
3127                         if (is_write_migration_entry(swp_entry) && cow) {
3128                                 /*
3129                                  * COW mappings require pages in both
3130                                  * parent and child to be set to read.
3131                                  */
3132                                 make_migration_entry_read(&swp_entry);
3133                                 entry = swp_entry_to_pte(swp_entry);
3134                                 set_huge_pte_at(src, addr, src_pte, entry);
3135                         }
3136                         set_huge_pte_at(dst, addr, dst_pte, entry);
3137                 } else {
3138                         if (cow) {
3139                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3140                                 mmu_notifier_invalidate_range(src, mmun_start,
3141                                                                    mmun_end);
3142                         }
3143                         entry = huge_ptep_get(src_pte);
3144                         ptepage = pte_page(entry);
3145                         get_page(ptepage);
3146                         page_dup_rmap(ptepage);
3147                         set_huge_pte_at(dst, addr, dst_pte, entry);
3148                         hugetlb_count_add(pages_per_huge_page(h), dst);
3149                 }
3150                 spin_unlock(src_ptl);
3151                 spin_unlock(dst_ptl);
3152         }
3153
3154         if (cow)
3155                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3156
3157         return ret;
3158 }
3159
3160 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3161                             unsigned long start, unsigned long end,
3162                             struct page *ref_page)
3163 {
3164         int force_flush = 0;
3165         struct mm_struct *mm = vma->vm_mm;
3166         unsigned long address;
3167         pte_t *ptep;
3168         pte_t pte;
3169         spinlock_t *ptl;
3170         struct page *page;
3171         struct hstate *h = hstate_vma(vma);
3172         unsigned long sz = huge_page_size(h);
3173         const unsigned long mmun_start = start; /* For mmu_notifiers */
3174         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3175
3176         WARN_ON(!is_vm_hugetlb_page(vma));
3177         BUG_ON(start & ~huge_page_mask(h));
3178         BUG_ON(end & ~huge_page_mask(h));
3179
3180         tlb_start_vma(tlb, vma);
3181         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3182         address = start;
3183 again:
3184         for (; address < end; address += sz) {
3185                 ptep = huge_pte_offset(mm, address);
3186                 if (!ptep)
3187                         continue;
3188
3189                 ptl = huge_pte_lock(h, mm, ptep);
3190                 if (huge_pmd_unshare(mm, &address, ptep))
3191                         goto unlock;
3192
3193                 pte = huge_ptep_get(ptep);
3194                 if (huge_pte_none(pte))
3195                         goto unlock;
3196
3197                 /*
3198                  * Migrating hugepage or HWPoisoned hugepage is already
3199                  * unmapped and its refcount is dropped, so just clear pte here.
3200                  */
3201                 if (unlikely(!pte_present(pte))) {
3202                         huge_pte_clear(mm, address, ptep);
3203                         goto unlock;
3204                 }
3205
3206                 page = pte_page(pte);
3207                 /*
3208                  * If a reference page is supplied, it is because a specific
3209                  * page is being unmapped, not a range. Ensure the page we
3210                  * are about to unmap is the actual page of interest.
3211                  */
3212                 if (ref_page) {
3213                         if (page != ref_page)
3214                                 goto unlock;
3215
3216                         /*
3217                          * Mark the VMA as having unmapped its page so that
3218                          * future faults in this VMA will fail rather than
3219                          * looking like data was lost
3220                          */
3221                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3222                 }
3223
3224                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3225                 tlb_remove_tlb_entry(tlb, ptep, address);
3226                 if (huge_pte_dirty(pte))
3227                         set_page_dirty(page);
3228
3229                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3230                 page_remove_rmap(page);
3231                 force_flush = !__tlb_remove_page(tlb, page);
3232                 if (force_flush) {
3233                         address += sz;
3234                         spin_unlock(ptl);
3235                         break;
3236                 }
3237                 /* Bail out after unmapping reference page if supplied */
3238                 if (ref_page) {
3239                         spin_unlock(ptl);
3240                         break;
3241                 }
3242 unlock:
3243                 spin_unlock(ptl);
3244         }
3245         /*
3246          * mmu_gather ran out of room to batch pages, we break out of
3247          * the PTE lock to avoid doing the potential expensive TLB invalidate
3248          * and page-free while holding it.
3249          */
3250         if (force_flush) {
3251                 force_flush = 0;
3252                 tlb_flush_mmu(tlb);
3253                 if (address < end && !ref_page)
3254                         goto again;
3255         }
3256         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3257         tlb_end_vma(tlb, vma);
3258 }
3259
3260 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3261                           struct vm_area_struct *vma, unsigned long start,
3262                           unsigned long end, struct page *ref_page)
3263 {
3264         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3265
3266         /*
3267          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3268          * test will fail on a vma being torn down, and not grab a page table
3269          * on its way out.  We're lucky that the flag has such an appropriate
3270          * name, and can in fact be safely cleared here. We could clear it
3271          * before the __unmap_hugepage_range above, but all that's necessary
3272          * is to clear it before releasing the i_mmap_rwsem. This works
3273          * because in the context this is called, the VMA is about to be
3274          * destroyed and the i_mmap_rwsem is held.
3275          */
3276         vma->vm_flags &= ~VM_MAYSHARE;
3277 }
3278
3279 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3280                           unsigned long end, struct page *ref_page)
3281 {
3282         struct mm_struct *mm;
3283         struct mmu_gather tlb;
3284
3285         mm = vma->vm_mm;
3286
3287         tlb_gather_mmu(&tlb, mm, start, end);
3288         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3289         tlb_finish_mmu(&tlb, start, end);
3290 }
3291
3292 /*
3293  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3294  * mappping it owns the reserve page for. The intention is to unmap the page
3295  * from other VMAs and let the children be SIGKILLed if they are faulting the
3296  * same region.
3297  */
3298 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3299                               struct page *page, unsigned long address)
3300 {
3301         struct hstate *h = hstate_vma(vma);
3302         struct vm_area_struct *iter_vma;
3303         struct address_space *mapping;
3304         pgoff_t pgoff;
3305
3306         /*
3307          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3308          * from page cache lookup which is in HPAGE_SIZE units.
3309          */
3310         address = address & huge_page_mask(h);
3311         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3312                         vma->vm_pgoff;
3313         mapping = file_inode(vma->vm_file)->i_mapping;
3314
3315         /*
3316          * Take the mapping lock for the duration of the table walk. As
3317          * this mapping should be shared between all the VMAs,
3318          * __unmap_hugepage_range() is called as the lock is already held
3319          */
3320         i_mmap_lock_write(mapping);
3321         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3322                 /* Do not unmap the current VMA */
3323                 if (iter_vma == vma)
3324                         continue;
3325
3326                 /*
3327                  * Shared VMAs have their own reserves and do not affect
3328                  * MAP_PRIVATE accounting but it is possible that a shared
3329                  * VMA is using the same page so check and skip such VMAs.
3330                  */
3331                 if (iter_vma->vm_flags & VM_MAYSHARE)
3332                         continue;
3333
3334                 /*
3335                  * Unmap the page from other VMAs without their own reserves.
3336                  * They get marked to be SIGKILLed if they fault in these
3337                  * areas. This is because a future no-page fault on this VMA
3338                  * could insert a zeroed page instead of the data existing
3339                  * from the time of fork. This would look like data corruption
3340                  */
3341                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3342                         unmap_hugepage_range(iter_vma, address,
3343                                              address + huge_page_size(h), page);
3344         }
3345         i_mmap_unlock_write(mapping);
3346 }
3347
3348 /*
3349  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3350  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3351  * cannot race with other handlers or page migration.
3352  * Keep the pte_same checks anyway to make transition from the mutex easier.
3353  */
3354 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3355                         unsigned long address, pte_t *ptep, pte_t pte,
3356                         struct page *pagecache_page, spinlock_t *ptl)
3357 {
3358         struct hstate *h = hstate_vma(vma);
3359         struct page *old_page, *new_page;
3360         int ret = 0, outside_reserve = 0;
3361         unsigned long mmun_start;       /* For mmu_notifiers */
3362         unsigned long mmun_end;         /* For mmu_notifiers */
3363
3364         old_page = pte_page(pte);
3365
3366 retry_avoidcopy:
3367         /* If no-one else is actually using this page, avoid the copy
3368          * and just make the page writable */
3369         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3370                 page_move_anon_rmap(old_page, vma, address);
3371                 set_huge_ptep_writable(vma, address, ptep);
3372                 return 0;
3373         }
3374
3375         /*
3376          * If the process that created a MAP_PRIVATE mapping is about to
3377          * perform a COW due to a shared page count, attempt to satisfy
3378          * the allocation without using the existing reserves. The pagecache
3379          * page is used to determine if the reserve at this address was
3380          * consumed or not. If reserves were used, a partial faulted mapping
3381          * at the time of fork() could consume its reserves on COW instead
3382          * of the full address range.
3383          */
3384         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3385                         old_page != pagecache_page)
3386                 outside_reserve = 1;
3387
3388         page_cache_get(old_page);
3389
3390         /*
3391          * Drop page table lock as buddy allocator may be called. It will
3392          * be acquired again before returning to the caller, as expected.
3393          */
3394         spin_unlock(ptl);
3395         new_page = alloc_huge_page(vma, address, outside_reserve);
3396
3397         if (IS_ERR(new_page)) {
3398                 /*
3399                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3400                  * it is due to references held by a child and an insufficient
3401                  * huge page pool. To guarantee the original mappers
3402                  * reliability, unmap the page from child processes. The child
3403                  * may get SIGKILLed if it later faults.
3404                  */
3405                 if (outside_reserve) {
3406                         page_cache_release(old_page);
3407                         BUG_ON(huge_pte_none(pte));
3408                         unmap_ref_private(mm, vma, old_page, address);
3409                         BUG_ON(huge_pte_none(pte));
3410                         spin_lock(ptl);
3411                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3412                         if (likely(ptep &&
3413                                    pte_same(huge_ptep_get(ptep), pte)))
3414                                 goto retry_avoidcopy;
3415                         /*
3416                          * race occurs while re-acquiring page table
3417                          * lock, and our job is done.
3418                          */
3419                         return 0;
3420                 }
3421
3422                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3423                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3424                 goto out_release_old;
3425         }
3426
3427         /*
3428          * When the original hugepage is shared one, it does not have
3429          * anon_vma prepared.
3430          */
3431         if (unlikely(anon_vma_prepare(vma))) {
3432                 ret = VM_FAULT_OOM;
3433                 goto out_release_all;
3434         }
3435
3436         copy_user_huge_page(new_page, old_page, address, vma,
3437                             pages_per_huge_page(h));
3438         __SetPageUptodate(new_page);
3439         set_page_huge_active(new_page);
3440
3441         mmun_start = address & huge_page_mask(h);
3442         mmun_end = mmun_start + huge_page_size(h);
3443         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3444
3445         /*
3446          * Retake the page table lock to check for racing updates
3447          * before the page tables are altered
3448          */
3449         spin_lock(ptl);
3450         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3451         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3452                 ClearPagePrivate(new_page);
3453
3454                 /* Break COW */
3455                 huge_ptep_clear_flush(vma, address, ptep);
3456                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3457                 set_huge_pte_at(mm, address, ptep,
3458                                 make_huge_pte(vma, new_page, 1));
3459                 page_remove_rmap(old_page);
3460                 hugepage_add_new_anon_rmap(new_page, vma, address);
3461                 /* Make the old page be freed below */
3462                 new_page = old_page;
3463         }
3464         spin_unlock(ptl);
3465         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3466 out_release_all:
3467         page_cache_release(new_page);
3468 out_release_old:
3469         page_cache_release(old_page);
3470
3471         spin_lock(ptl); /* Caller expects lock to be held */
3472         return ret;
3473 }
3474
3475 /* Return the pagecache page at a given address within a VMA */
3476 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3477                         struct vm_area_struct *vma, unsigned long address)
3478 {
3479         struct address_space *mapping;
3480         pgoff_t idx;
3481
3482         mapping = vma->vm_file->f_mapping;
3483         idx = vma_hugecache_offset(h, vma, address);
3484
3485         return find_lock_page(mapping, idx);
3486 }
3487
3488 /*
3489  * Return whether there is a pagecache page to back given address within VMA.
3490  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3491  */
3492 static bool hugetlbfs_pagecache_present(struct hstate *h,
3493                         struct vm_area_struct *vma, unsigned long address)
3494 {
3495         struct address_space *mapping;
3496         pgoff_t idx;
3497         struct page *page;
3498
3499         mapping = vma->vm_file->f_mapping;
3500         idx = vma_hugecache_offset(h, vma, address);
3501
3502         page = find_get_page(mapping, idx);
3503         if (page)
3504                 put_page(page);
3505         return page != NULL;
3506 }
3507
3508 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3509                            pgoff_t idx)
3510 {
3511         struct inode *inode = mapping->host;
3512         struct hstate *h = hstate_inode(inode);
3513         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3514
3515         if (err)
3516                 return err;
3517         ClearPagePrivate(page);
3518
3519         spin_lock(&inode->i_lock);
3520         inode->i_blocks += blocks_per_huge_page(h);
3521         spin_unlock(&inode->i_lock);
3522         return 0;
3523 }
3524
3525 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3526                            struct address_space *mapping, pgoff_t idx,
3527                            unsigned long address, pte_t *ptep, unsigned int flags)
3528 {
3529         struct hstate *h = hstate_vma(vma);
3530         int ret = VM_FAULT_SIGBUS;
3531         int anon_rmap = 0;
3532         unsigned long size;
3533         struct page *page;
3534         pte_t new_pte;
3535         spinlock_t *ptl;
3536
3537         /*
3538          * Currently, we are forced to kill the process in the event the
3539          * original mapper has unmapped pages from the child due to a failed
3540          * COW. Warn that such a situation has occurred as it may not be obvious
3541          */
3542         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3543                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3544                            current->pid);
3545                 return ret;
3546         }
3547
3548         /*
3549          * Use page lock to guard against racing truncation
3550          * before we get page_table_lock.
3551          */
3552 retry:
3553         page = find_lock_page(mapping, idx);
3554         if (!page) {
3555                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3556                 if (idx >= size)
3557                         goto out;
3558                 page = alloc_huge_page(vma, address, 0);
3559                 if (IS_ERR(page)) {
3560                         ret = PTR_ERR(page);
3561                         if (ret == -ENOMEM)
3562                                 ret = VM_FAULT_OOM;
3563                         else
3564                                 ret = VM_FAULT_SIGBUS;
3565                         goto out;
3566                 }
3567                 clear_huge_page(page, address, pages_per_huge_page(h));
3568                 __SetPageUptodate(page);
3569                 set_page_huge_active(page);
3570
3571                 if (vma->vm_flags & VM_MAYSHARE) {
3572                         int err = huge_add_to_page_cache(page, mapping, idx);
3573                         if (err) {
3574                                 put_page(page);
3575                                 if (err == -EEXIST)
3576                                         goto retry;
3577                                 goto out;
3578                         }
3579                 } else {
3580                         lock_page(page);
3581                         if (unlikely(anon_vma_prepare(vma))) {
3582                                 ret = VM_FAULT_OOM;
3583                                 goto backout_unlocked;
3584                         }
3585                         anon_rmap = 1;
3586                 }
3587         } else {
3588                 /*
3589                  * If memory error occurs between mmap() and fault, some process
3590                  * don't have hwpoisoned swap entry for errored virtual address.
3591                  * So we need to block hugepage fault by PG_hwpoison bit check.
3592                  */
3593                 if (unlikely(PageHWPoison(page))) {
3594                         ret = VM_FAULT_HWPOISON |
3595                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3596                         goto backout_unlocked;
3597                 }
3598         }
3599
3600         /*
3601          * If we are going to COW a private mapping later, we examine the
3602          * pending reservations for this page now. This will ensure that
3603          * any allocations necessary to record that reservation occur outside
3604          * the spinlock.
3605          */
3606         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3607                 if (vma_needs_reservation(h, vma, address) < 0) {
3608                         ret = VM_FAULT_OOM;
3609                         goto backout_unlocked;
3610                 }
3611                 /* Just decrements count, does not deallocate */
3612                 vma_end_reservation(h, vma, address);
3613         }
3614
3615         ptl = huge_pte_lockptr(h, mm, ptep);
3616         spin_lock(ptl);
3617         size = i_size_read(mapping->host) >> huge_page_shift(h);
3618         if (idx >= size)
3619                 goto backout;
3620
3621         ret = 0;
3622         if (!huge_pte_none(huge_ptep_get(ptep)))
3623                 goto backout;
3624
3625         if (anon_rmap) {
3626                 ClearPagePrivate(page);
3627                 hugepage_add_new_anon_rmap(page, vma, address);
3628         } else
3629                 page_dup_rmap(page);
3630         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3631                                 && (vma->vm_flags & VM_SHARED)));
3632         set_huge_pte_at(mm, address, ptep, new_pte);
3633
3634         hugetlb_count_add(pages_per_huge_page(h), mm);
3635         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3636                 /* Optimization, do the COW without a second fault */
3637                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3638         }
3639
3640         spin_unlock(ptl);
3641         unlock_page(page);
3642 out:
3643         return ret;
3644
3645 backout:
3646         spin_unlock(ptl);
3647 backout_unlocked:
3648         unlock_page(page);
3649         put_page(page);
3650         goto out;
3651 }
3652
3653 #ifdef CONFIG_SMP
3654 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3655                             struct vm_area_struct *vma,
3656                             struct address_space *mapping,
3657                             pgoff_t idx, unsigned long address)
3658 {
3659         unsigned long key[2];
3660         u32 hash;
3661
3662         if (vma->vm_flags & VM_SHARED) {
3663                 key[0] = (unsigned long) mapping;
3664                 key[1] = idx;
3665         } else {
3666                 key[0] = (unsigned long) mm;
3667                 key[1] = address >> huge_page_shift(h);
3668         }
3669
3670         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3671
3672         return hash & (num_fault_mutexes - 1);
3673 }
3674 #else
3675 /*
3676  * For uniprocesor systems we always use a single mutex, so just
3677  * return 0 and avoid the hashing overhead.
3678  */
3679 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3680                             struct vm_area_struct *vma,
3681                             struct address_space *mapping,
3682                             pgoff_t idx, unsigned long address)
3683 {
3684         return 0;
3685 }
3686 #endif
3687
3688 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3689                         unsigned long address, unsigned int flags)
3690 {
3691         pte_t *ptep, entry;
3692         spinlock_t *ptl;
3693         int ret;
3694         u32 hash;
3695         pgoff_t idx;
3696         struct page *page = NULL;
3697         struct page *pagecache_page = NULL;
3698         struct hstate *h = hstate_vma(vma);
3699         struct address_space *mapping;
3700         int need_wait_lock = 0;
3701
3702         address &= huge_page_mask(h);
3703
3704         ptep = huge_pte_offset(mm, address);
3705         if (ptep) {
3706                 entry = huge_ptep_get(ptep);
3707                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3708                         migration_entry_wait_huge(vma, mm, ptep);
3709                         return 0;
3710                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3711                         return VM_FAULT_HWPOISON_LARGE |
3712                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3713         } else {
3714                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3715                 if (!ptep)
3716                         return VM_FAULT_OOM;
3717         }
3718
3719         mapping = vma->vm_file->f_mapping;
3720         idx = vma_hugecache_offset(h, vma, address);
3721
3722         /*
3723          * Serialize hugepage allocation and instantiation, so that we don't
3724          * get spurious allocation failures if two CPUs race to instantiate
3725          * the same page in the page cache.
3726          */
3727         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3728         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3729
3730         entry = huge_ptep_get(ptep);
3731         if (huge_pte_none(entry)) {
3732                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3733                 goto out_mutex;
3734         }
3735
3736         ret = 0;
3737
3738         /*
3739          * entry could be a migration/hwpoison entry at this point, so this
3740          * check prevents the kernel from going below assuming that we have
3741          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3742          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3743          * handle it.
3744          */
3745         if (!pte_present(entry))
3746                 goto out_mutex;
3747
3748         /*
3749          * If we are going to COW the mapping later, we examine the pending
3750          * reservations for this page now. This will ensure that any
3751          * allocations necessary to record that reservation occur outside the
3752          * spinlock. For private mappings, we also lookup the pagecache
3753          * page now as it is used to determine if a reservation has been
3754          * consumed.
3755          */
3756         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3757                 if (vma_needs_reservation(h, vma, address) < 0) {
3758                         ret = VM_FAULT_OOM;
3759                         goto out_mutex;
3760                 }
3761                 /* Just decrements count, does not deallocate */
3762                 vma_end_reservation(h, vma, address);
3763
3764                 if (!(vma->vm_flags & VM_MAYSHARE))
3765                         pagecache_page = hugetlbfs_pagecache_page(h,
3766                                                                 vma, address);
3767         }
3768
3769         ptl = huge_pte_lock(h, mm, ptep);
3770
3771         /* Check for a racing update before calling hugetlb_cow */
3772         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3773                 goto out_ptl;
3774
3775         /*
3776          * hugetlb_cow() requires page locks of pte_page(entry) and
3777          * pagecache_page, so here we need take the former one
3778          * when page != pagecache_page or !pagecache_page.
3779          */
3780         page = pte_page(entry);
3781         if (page != pagecache_page)
3782                 if (!trylock_page(page)) {
3783                         need_wait_lock = 1;
3784                         goto out_ptl;
3785                 }
3786
3787         get_page(page);
3788
3789         if (flags & FAULT_FLAG_WRITE) {
3790                 if (!huge_pte_write(entry)) {
3791                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3792                                         pagecache_page, ptl);
3793                         goto out_put_page;
3794                 }
3795                 entry = huge_pte_mkdirty(entry);
3796         }
3797         entry = pte_mkyoung(entry);
3798         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3799                                                 flags & FAULT_FLAG_WRITE))
3800                 update_mmu_cache(vma, address, ptep);
3801 out_put_page:
3802         if (page != pagecache_page)
3803                 unlock_page(page);
3804         put_page(page);
3805 out_ptl:
3806         spin_unlock(ptl);
3807
3808         if (pagecache_page) {
3809                 unlock_page(pagecache_page);
3810                 put_page(pagecache_page);
3811         }
3812 out_mutex:
3813         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3814         /*
3815          * Generally it's safe to hold refcount during waiting page lock. But
3816          * here we just wait to defer the next page fault to avoid busy loop and
3817          * the page is not used after unlocked before returning from the current
3818          * page fault. So we are safe from accessing freed page, even if we wait
3819          * here without taking refcount.
3820          */
3821         if (need_wait_lock)
3822                 wait_on_page_locked(page);
3823         return ret;
3824 }
3825
3826 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3827                          struct page **pages, struct vm_area_struct **vmas,
3828                          unsigned long *position, unsigned long *nr_pages,
3829                          long i, unsigned int flags)
3830 {
3831         unsigned long pfn_offset;
3832         unsigned long vaddr = *position;
3833         unsigned long remainder = *nr_pages;
3834         struct hstate *h = hstate_vma(vma);
3835
3836         while (vaddr < vma->vm_end && remainder) {
3837                 pte_t *pte;
3838                 spinlock_t *ptl = NULL;
3839                 int absent;
3840                 struct page *page;
3841
3842                 /*
3843                  * If we have a pending SIGKILL, don't keep faulting pages and
3844                  * potentially allocating memory.
3845                  */
3846                 if (unlikely(fatal_signal_pending(current))) {
3847                         remainder = 0;
3848                         break;
3849                 }
3850
3851                 /*
3852                  * Some archs (sparc64, sh*) have multiple pte_ts to
3853                  * each hugepage.  We have to make sure we get the
3854                  * first, for the page indexing below to work.
3855                  *
3856                  * Note that page table lock is not held when pte is null.
3857                  */
3858                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3859                 if (pte)
3860                         ptl = huge_pte_lock(h, mm, pte);
3861                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3862
3863                 /*
3864                  * When coredumping, it suits get_dump_page if we just return
3865                  * an error where there's an empty slot with no huge pagecache
3866                  * to back it.  This way, we avoid allocating a hugepage, and
3867                  * the sparse dumpfile avoids allocating disk blocks, but its
3868                  * huge holes still show up with zeroes where they need to be.
3869                  */
3870                 if (absent && (flags & FOLL_DUMP) &&
3871                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3872                         if (pte)
3873                                 spin_unlock(ptl);
3874                         remainder = 0;
3875                         break;
3876                 }
3877
3878                 /*
3879                  * We need call hugetlb_fault for both hugepages under migration
3880                  * (in which case hugetlb_fault waits for the migration,) and
3881                  * hwpoisoned hugepages (in which case we need to prevent the
3882                  * caller from accessing to them.) In order to do this, we use
3883                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3884                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3885                  * both cases, and because we can't follow correct pages
3886                  * directly from any kind of swap entries.
3887                  */
3888                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3889                     ((flags & FOLL_WRITE) &&
3890                       !huge_pte_write(huge_ptep_get(pte)))) {
3891                         int ret;
3892
3893                         if (pte)
3894                                 spin_unlock(ptl);
3895                         ret = hugetlb_fault(mm, vma, vaddr,
3896                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3897                         if (!(ret & VM_FAULT_ERROR))
3898                                 continue;
3899
3900                         remainder = 0;
3901                         break;
3902                 }
3903
3904                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3905                 page = pte_page(huge_ptep_get(pte));
3906 same_page:
3907                 if (pages) {
3908                         pages[i] = mem_map_offset(page, pfn_offset);
3909                         get_page_foll(pages[i]);
3910                 }
3911
3912                 if (vmas)
3913                         vmas[i] = vma;
3914
3915                 vaddr += PAGE_SIZE;
3916                 ++pfn_offset;
3917                 --remainder;
3918                 ++i;
3919                 if (vaddr < vma->vm_end && remainder &&
3920                                 pfn_offset < pages_per_huge_page(h)) {
3921                         /*
3922                          * We use pfn_offset to avoid touching the pageframes
3923                          * of this compound page.
3924                          */
3925                         goto same_page;
3926                 }
3927                 spin_unlock(ptl);
3928         }
3929         *nr_pages = remainder;
3930         *position = vaddr;
3931
3932         return i ? i : -EFAULT;
3933 }
3934
3935 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3936                 unsigned long address, unsigned long end, pgprot_t newprot)
3937 {
3938         struct mm_struct *mm = vma->vm_mm;
3939         unsigned long start = address;
3940         pte_t *ptep;
3941         pte_t pte;
3942         struct hstate *h = hstate_vma(vma);
3943         unsigned long pages = 0;
3944
3945         BUG_ON(address >= end);
3946         flush_cache_range(vma, address, end);
3947
3948         mmu_notifier_invalidate_range_start(mm, start, end);
3949         i_mmap_lock_write(vma->vm_file->f_mapping);
3950         for (; address < end; address += huge_page_size(h)) {
3951                 spinlock_t *ptl;
3952                 ptep = huge_pte_offset(mm, address);
3953                 if (!ptep)
3954                         continue;
3955                 ptl = huge_pte_lock(h, mm, ptep);
3956                 if (huge_pmd_unshare(mm, &address, ptep)) {
3957                         pages++;
3958                         spin_unlock(ptl);
3959                         continue;
3960                 }
3961                 pte = huge_ptep_get(ptep);
3962                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3963                         spin_unlock(ptl);
3964                         continue;
3965                 }
3966                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3967                         swp_entry_t entry = pte_to_swp_entry(pte);
3968
3969                         if (is_write_migration_entry(entry)) {
3970                                 pte_t newpte;
3971
3972                                 make_migration_entry_read(&entry);
3973                                 newpte = swp_entry_to_pte(entry);
3974                                 set_huge_pte_at(mm, address, ptep, newpte);
3975                                 pages++;
3976                         }
3977                         spin_unlock(ptl);
3978                         continue;
3979                 }
3980                 if (!huge_pte_none(pte)) {
3981                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3982                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3983                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3984                         set_huge_pte_at(mm, address, ptep, pte);
3985                         pages++;
3986                 }
3987                 spin_unlock(ptl);
3988         }
3989         /*
3990          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3991          * may have cleared our pud entry and done put_page on the page table:
3992          * once we release i_mmap_rwsem, another task can do the final put_page
3993          * and that page table be reused and filled with junk.
3994          */
3995         flush_tlb_range(vma, start, end);
3996         mmu_notifier_invalidate_range(mm, start, end);
3997         i_mmap_unlock_write(vma->vm_file->f_mapping);
3998         mmu_notifier_invalidate_range_end(mm, start, end);
3999
4000         return pages << h->order;
4001 }
4002
4003 int hugetlb_reserve_pages(struct inode *inode,
4004                                         long from, long to,
4005                                         struct vm_area_struct *vma,
4006                                         vm_flags_t vm_flags)
4007 {
4008         long ret, chg;
4009         struct hstate *h = hstate_inode(inode);
4010         struct hugepage_subpool *spool = subpool_inode(inode);
4011         struct resv_map *resv_map;
4012         long gbl_reserve;
4013
4014         /*
4015          * Only apply hugepage reservation if asked. At fault time, an
4016          * attempt will be made for VM_NORESERVE to allocate a page
4017          * without using reserves
4018          */
4019         if (vm_flags & VM_NORESERVE)
4020                 return 0;
4021
4022         /*
4023          * Shared mappings base their reservation on the number of pages that
4024          * are already allocated on behalf of the file. Private mappings need
4025          * to reserve the full area even if read-only as mprotect() may be
4026          * called to make the mapping read-write. Assume !vma is a shm mapping
4027          */
4028         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4029                 resv_map = inode_resv_map(inode);
4030
4031                 chg = region_chg(resv_map, from, to);
4032
4033         } else {
4034                 resv_map = resv_map_alloc();
4035                 if (!resv_map)
4036                         return -ENOMEM;
4037
4038                 chg = to - from;
4039
4040                 set_vma_resv_map(vma, resv_map);
4041                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4042         }
4043
4044         if (chg < 0) {
4045                 ret = chg;
4046                 goto out_err;
4047         }
4048
4049         /*
4050          * There must be enough pages in the subpool for the mapping. If
4051          * the subpool has a minimum size, there may be some global
4052          * reservations already in place (gbl_reserve).
4053          */
4054         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4055         if (gbl_reserve < 0) {
4056                 ret = -ENOSPC;
4057                 goto out_err;
4058         }
4059
4060         /*
4061          * Check enough hugepages are available for the reservation.
4062          * Hand the pages back to the subpool if there are not
4063          */
4064         ret = hugetlb_acct_memory(h, gbl_reserve);
4065         if (ret < 0) {
4066                 /* put back original number of pages, chg */
4067                 (void)hugepage_subpool_put_pages(spool, chg);
4068                 goto out_err;
4069         }
4070
4071         /*
4072          * Account for the reservations made. Shared mappings record regions
4073          * that have reservations as they are shared by multiple VMAs.
4074          * When the last VMA disappears, the region map says how much
4075          * the reservation was and the page cache tells how much of
4076          * the reservation was consumed. Private mappings are per-VMA and
4077          * only the consumed reservations are tracked. When the VMA
4078          * disappears, the original reservation is the VMA size and the
4079          * consumed reservations are stored in the map. Hence, nothing
4080          * else has to be done for private mappings here
4081          */
4082         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4083                 long add = region_add(resv_map, from, to);
4084
4085                 if (unlikely(chg > add)) {
4086                         /*
4087                          * pages in this range were added to the reserve
4088                          * map between region_chg and region_add.  This
4089                          * indicates a race with alloc_huge_page.  Adjust
4090                          * the subpool and reserve counts modified above
4091                          * based on the difference.
4092                          */
4093                         long rsv_adjust;
4094
4095                         rsv_adjust = hugepage_subpool_put_pages(spool,
4096                                                                 chg - add);
4097                         hugetlb_acct_memory(h, -rsv_adjust);
4098                 }
4099         }
4100         return 0;
4101 out_err:
4102         if (!vma || vma->vm_flags & VM_MAYSHARE)
4103                 region_abort(resv_map, from, to);
4104         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4105                 kref_put(&resv_map->refs, resv_map_release);
4106         return ret;
4107 }
4108
4109 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4110                                                                 long freed)
4111 {
4112         struct hstate *h = hstate_inode(inode);
4113         struct resv_map *resv_map = inode_resv_map(inode);
4114         long chg = 0;
4115         struct hugepage_subpool *spool = subpool_inode(inode);
4116         long gbl_reserve;
4117
4118         if (resv_map) {
4119                 chg = region_del(resv_map, start, end);
4120                 /*
4121                  * region_del() can fail in the rare case where a region
4122                  * must be split and another region descriptor can not be
4123                  * allocated.  If end == LONG_MAX, it will not fail.
4124                  */
4125                 if (chg < 0)
4126                         return chg;
4127         }
4128
4129         spin_lock(&inode->i_lock);
4130         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4131         spin_unlock(&inode->i_lock);
4132
4133         /*
4134          * If the subpool has a minimum size, the number of global
4135          * reservations to be released may be adjusted.
4136          */
4137         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4138         hugetlb_acct_memory(h, -gbl_reserve);
4139
4140         return 0;
4141 }
4142
4143 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4144 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4145                                 struct vm_area_struct *vma,
4146                                 unsigned long addr, pgoff_t idx)
4147 {
4148         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4149                                 svma->vm_start;
4150         unsigned long sbase = saddr & PUD_MASK;
4151         unsigned long s_end = sbase + PUD_SIZE;
4152
4153         /* Allow segments to share if only one is marked locked */
4154         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4155         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4156
4157         /*
4158          * match the virtual addresses, permission and the alignment of the
4159          * page table page.
4160          */
4161         if (pmd_index(addr) != pmd_index(saddr) ||
4162             vm_flags != svm_flags ||
4163             sbase < svma->vm_start || svma->vm_end < s_end)
4164                 return 0;
4165
4166         return saddr;
4167 }
4168
4169 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4170 {
4171         unsigned long base = addr & PUD_MASK;
4172         unsigned long end = base + PUD_SIZE;
4173
4174         /*
4175          * check on proper vm_flags and page table alignment
4176          */
4177         if (vma->vm_flags & VM_MAYSHARE &&
4178             vma->vm_start <= base && end <= vma->vm_end)
4179                 return true;
4180         return false;
4181 }
4182
4183 /*
4184  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4185  * and returns the corresponding pte. While this is not necessary for the
4186  * !shared pmd case because we can allocate the pmd later as well, it makes the
4187  * code much cleaner. pmd allocation is essential for the shared case because
4188  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4189  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4190  * bad pmd for sharing.
4191  */
4192 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4193 {
4194         struct vm_area_struct *vma = find_vma(mm, addr);
4195         struct address_space *mapping = vma->vm_file->f_mapping;
4196         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4197                         vma->vm_pgoff;
4198         struct vm_area_struct *svma;
4199         unsigned long saddr;
4200         pte_t *spte = NULL;
4201         pte_t *pte;
4202         spinlock_t *ptl;
4203
4204         if (!vma_shareable(vma, addr))
4205                 return (pte_t *)pmd_alloc(mm, pud, addr);
4206
4207         i_mmap_lock_write(mapping);
4208         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4209                 if (svma == vma)
4210                         continue;
4211
4212                 saddr = page_table_shareable(svma, vma, addr, idx);
4213                 if (saddr) {
4214                         spte = huge_pte_offset(svma->vm_mm, saddr);
4215                         if (spte) {
4216                                 get_page(virt_to_page(spte));
4217                                 break;
4218                         }
4219                 }
4220         }
4221
4222         if (!spte)
4223                 goto out;
4224
4225         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4226         spin_lock(ptl);
4227         if (pud_none(*pud)) {
4228                 pud_populate(mm, pud,
4229                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4230                 mm_inc_nr_pmds(mm);
4231         } else {
4232                 put_page(virt_to_page(spte));
4233         }
4234         spin_unlock(ptl);
4235 out:
4236         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4237         i_mmap_unlock_write(mapping);
4238         return pte;
4239 }
4240
4241 /*
4242  * unmap huge page backed by shared pte.
4243  *
4244  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4245  * indicated by page_count > 1, unmap is achieved by clearing pud and
4246  * decrementing the ref count. If count == 1, the pte page is not shared.
4247  *
4248  * called with page table lock held.
4249  *
4250  * returns: 1 successfully unmapped a shared pte page
4251  *          0 the underlying pte page is not shared, or it is the last user
4252  */
4253 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4254 {
4255         pgd_t *pgd = pgd_offset(mm, *addr);
4256         pud_t *pud = pud_offset(pgd, *addr);
4257
4258         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4259         if (page_count(virt_to_page(ptep)) == 1)
4260                 return 0;
4261
4262         pud_clear(pud);
4263         put_page(virt_to_page(ptep));
4264         mm_dec_nr_pmds(mm);
4265         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4266         return 1;
4267 }
4268 #define want_pmd_share()        (1)
4269 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4270 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4271 {
4272         return NULL;
4273 }
4274
4275 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4276 {
4277         return 0;
4278 }
4279 #define want_pmd_share()        (0)
4280 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4281
4282 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4283 pte_t *huge_pte_alloc(struct mm_struct *mm,
4284                         unsigned long addr, unsigned long sz)
4285 {
4286         pgd_t *pgd;
4287         pud_t *pud;
4288         pte_t *pte = NULL;
4289
4290         pgd = pgd_offset(mm, addr);
4291         pud = pud_alloc(mm, pgd, addr);
4292         if (pud) {
4293                 if (sz == PUD_SIZE) {
4294                         pte = (pte_t *)pud;
4295                 } else {
4296                         BUG_ON(sz != PMD_SIZE);
4297                         if (want_pmd_share() && pud_none(*pud))
4298                                 pte = huge_pmd_share(mm, addr, pud);
4299                         else
4300                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4301                 }
4302         }
4303         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4304
4305         return pte;
4306 }
4307
4308 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4309 {
4310         pgd_t *pgd;
4311         pud_t *pud;
4312         pmd_t *pmd = NULL;
4313
4314         pgd = pgd_offset(mm, addr);
4315         if (pgd_present(*pgd)) {
4316                 pud = pud_offset(pgd, addr);
4317                 if (pud_present(*pud)) {
4318                         if (pud_huge(*pud))
4319                                 return (pte_t *)pud;
4320                         pmd = pmd_offset(pud, addr);
4321                 }
4322         }
4323         return (pte_t *) pmd;
4324 }
4325
4326 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4327
4328 /*
4329  * These functions are overwritable if your architecture needs its own
4330  * behavior.
4331  */
4332 struct page * __weak
4333 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4334                               int write)
4335 {
4336         return ERR_PTR(-EINVAL);
4337 }
4338
4339 struct page * __weak
4340 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4341                 pmd_t *pmd, int flags)
4342 {
4343         struct page *page = NULL;
4344         spinlock_t *ptl;
4345 retry:
4346         ptl = pmd_lockptr(mm, pmd);
4347         spin_lock(ptl);
4348         /*
4349          * make sure that the address range covered by this pmd is not
4350          * unmapped from other threads.
4351          */
4352         if (!pmd_huge(*pmd))
4353                 goto out;
4354         if (pmd_present(*pmd)) {
4355                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4356                 if (flags & FOLL_GET)
4357                         get_page(page);
4358         } else {
4359                 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4360                         spin_unlock(ptl);
4361                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4362                         goto retry;
4363                 }
4364                 /*
4365                  * hwpoisoned entry is treated as no_page_table in
4366                  * follow_page_mask().
4367                  */
4368         }
4369 out:
4370         spin_unlock(ptl);
4371         return page;
4372 }
4373
4374 struct page * __weak
4375 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4376                 pud_t *pud, int flags)
4377 {
4378         if (flags & FOLL_GET)
4379                 return NULL;
4380
4381         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4382 }
4383
4384 #ifdef CONFIG_MEMORY_FAILURE
4385
4386 /*
4387  * This function is called from memory failure code.
4388  * Assume the caller holds page lock of the head page.
4389  */
4390 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4391 {
4392         struct hstate *h = page_hstate(hpage);
4393         int nid = page_to_nid(hpage);
4394         int ret = -EBUSY;
4395
4396         spin_lock(&hugetlb_lock);
4397         /*
4398          * Just checking !page_huge_active is not enough, because that could be
4399          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4400          */
4401         if (!page_huge_active(hpage) && !page_count(hpage)) {
4402                 /*
4403                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4404                  * but dangling hpage->lru can trigger list-debug warnings
4405                  * (this happens when we call unpoison_memory() on it),
4406                  * so let it point to itself with list_del_init().
4407                  */
4408                 list_del_init(&hpage->lru);
4409                 set_page_refcounted(hpage);
4410                 h->free_huge_pages--;
4411                 h->free_huge_pages_node[nid]--;
4412                 ret = 0;
4413         }
4414         spin_unlock(&hugetlb_lock);
4415         return ret;
4416 }
4417 #endif
4418
4419 bool isolate_huge_page(struct page *page, struct list_head *list)
4420 {
4421         bool ret = true;
4422
4423         VM_BUG_ON_PAGE(!PageHead(page), page);
4424         spin_lock(&hugetlb_lock);
4425         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4426                 ret = false;
4427                 goto unlock;
4428         }
4429         clear_page_huge_active(page);
4430         list_move_tail(&page->lru, list);
4431 unlock:
4432         spin_unlock(&hugetlb_lock);
4433         return ret;
4434 }
4435
4436 void putback_active_hugepage(struct page *page)
4437 {
4438         VM_BUG_ON_PAGE(!PageHead(page), page);
4439         spin_lock(&hugetlb_lock);
4440         set_page_huge_active(page);
4441         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4442         spin_unlock(&hugetlb_lock);
4443         put_page(page);
4444 }