Page cache miss tracing using ftrace on mm/filemap
[firefly-linux-kernel-4.4.55.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/filemap.h>
40
41 /*
42  * FIXME: remove all knowledge of the buffer layer from the core VM
43  */
44 #include <linux/buffer_head.h> /* for try_to_free_buffers */
45
46 #include <asm/mman.h>
47
48 /*
49  * Shared mappings implemented 30.11.1994. It's not fully working yet,
50  * though.
51  *
52  * Shared mappings now work. 15.8.1995  Bruno.
53  *
54  * finished 'unifying' the page and buffer cache and SMP-threaded the
55  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56  *
57  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58  */
59
60 /*
61  * Lock ordering:
62  *
63  *  ->i_mmap_mutex              (truncate_pagecache)
64  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
65  *      ->swap_lock             (exclusive_swap_page, others)
66  *        ->mapping->tree_lock
67  *
68  *  ->i_mutex
69  *    ->i_mmap_mutex            (truncate->unmap_mapping_range)
70  *
71  *  ->mmap_sem
72  *    ->i_mmap_mutex
73  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
74  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
75  *
76  *  ->mmap_sem
77  *    ->lock_page               (access_process_vm)
78  *
79  *  ->i_mutex                   (generic_file_buffered_write)
80  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
81  *
82  *  bdi->wb.list_lock
83  *    sb_lock                   (fs/fs-writeback.c)
84  *    ->mapping->tree_lock      (__sync_single_inode)
85  *
86  *  ->i_mmap_mutex
87  *    ->anon_vma.lock           (vma_adjust)
88  *
89  *  ->anon_vma.lock
90  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
91  *
92  *  ->page_table_lock or pte_lock
93  *    ->swap_lock               (try_to_unmap_one)
94  *    ->private_lock            (try_to_unmap_one)
95  *    ->tree_lock               (try_to_unmap_one)
96  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
97  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
98  *    ->private_lock            (page_remove_rmap->set_page_dirty)
99  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
100  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
101  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
103  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
104  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
105  *
106  * ->i_mmap_mutex
107  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
108  */
109
110 /*
111  * Delete a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold the mapping's tree_lock.
114  */
115 void __delete_from_page_cache(struct page *page)
116 {
117         struct address_space *mapping = page->mapping;
118
119         trace_mm_filemap_delete_from_page_cache(page);
120         /*
121          * if we're uptodate, flush out into the cleancache, otherwise
122          * invalidate any existing cleancache entries.  We can't leave
123          * stale data around in the cleancache once our page is gone
124          */
125         if (PageUptodate(page) && PageMappedToDisk(page))
126                 cleancache_put_page(page);
127         else
128                 cleancache_invalidate_page(mapping, page);
129
130         radix_tree_delete(&mapping->page_tree, page->index);
131         page->mapping = NULL;
132         /* Leave page->index set: truncation lookup relies upon it */
133         mapping->nrpages--;
134         __dec_zone_page_state(page, NR_FILE_PAGES);
135         if (PageSwapBacked(page))
136                 __dec_zone_page_state(page, NR_SHMEM);
137         BUG_ON(page_mapped(page));
138
139         /*
140          * Some filesystems seem to re-dirty the page even after
141          * the VM has canceled the dirty bit (eg ext3 journaling).
142          *
143          * Fix it up by doing a final dirty accounting check after
144          * having removed the page entirely.
145          */
146         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
147                 dec_zone_page_state(page, NR_FILE_DIRTY);
148                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
149         }
150 }
151
152 /**
153  * delete_from_page_cache - delete page from page cache
154  * @page: the page which the kernel is trying to remove from page cache
155  *
156  * This must be called only on pages that have been verified to be in the page
157  * cache and locked.  It will never put the page into the free list, the caller
158  * has a reference on the page.
159  */
160 void delete_from_page_cache(struct page *page)
161 {
162         struct address_space *mapping = page->mapping;
163         void (*freepage)(struct page *);
164
165         BUG_ON(!PageLocked(page));
166
167         freepage = mapping->a_ops->freepage;
168         spin_lock_irq(&mapping->tree_lock);
169         __delete_from_page_cache(page);
170         spin_unlock_irq(&mapping->tree_lock);
171         mem_cgroup_uncharge_cache_page(page);
172
173         if (freepage)
174                 freepage(page);
175         page_cache_release(page);
176 }
177 EXPORT_SYMBOL(delete_from_page_cache);
178
179 static int sleep_on_page(void *word)
180 {
181         io_schedule();
182         return 0;
183 }
184
185 static int sleep_on_page_killable(void *word)
186 {
187         sleep_on_page(word);
188         return fatal_signal_pending(current) ? -EINTR : 0;
189 }
190
191 static int filemap_check_errors(struct address_space *mapping)
192 {
193         int ret = 0;
194         /* Check for outstanding write errors */
195         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
196                 ret = -ENOSPC;
197         if (test_and_clear_bit(AS_EIO, &mapping->flags))
198                 ret = -EIO;
199         return ret;
200 }
201
202 /**
203  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
204  * @mapping:    address space structure to write
205  * @start:      offset in bytes where the range starts
206  * @end:        offset in bytes where the range ends (inclusive)
207  * @sync_mode:  enable synchronous operation
208  *
209  * Start writeback against all of a mapping's dirty pages that lie
210  * within the byte offsets <start, end> inclusive.
211  *
212  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
213  * opposed to a regular memory cleansing writeback.  The difference between
214  * these two operations is that if a dirty page/buffer is encountered, it must
215  * be waited upon, and not just skipped over.
216  */
217 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218                                 loff_t end, int sync_mode)
219 {
220         int ret;
221         struct writeback_control wbc = {
222                 .sync_mode = sync_mode,
223                 .nr_to_write = LONG_MAX,
224                 .range_start = start,
225                 .range_end = end,
226         };
227
228         if (!mapping_cap_writeback_dirty(mapping))
229                 return 0;
230
231         ret = do_writepages(mapping, &wbc);
232         return ret;
233 }
234
235 static inline int __filemap_fdatawrite(struct address_space *mapping,
236         int sync_mode)
237 {
238         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
239 }
240
241 int filemap_fdatawrite(struct address_space *mapping)
242 {
243         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
244 }
245 EXPORT_SYMBOL(filemap_fdatawrite);
246
247 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
248                                 loff_t end)
249 {
250         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
251 }
252 EXPORT_SYMBOL(filemap_fdatawrite_range);
253
254 /**
255  * filemap_flush - mostly a non-blocking flush
256  * @mapping:    target address_space
257  *
258  * This is a mostly non-blocking flush.  Not suitable for data-integrity
259  * purposes - I/O may not be started against all dirty pages.
260  */
261 int filemap_flush(struct address_space *mapping)
262 {
263         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
264 }
265 EXPORT_SYMBOL(filemap_flush);
266
267 /**
268  * filemap_fdatawait_range - wait for writeback to complete
269  * @mapping:            address space structure to wait for
270  * @start_byte:         offset in bytes where the range starts
271  * @end_byte:           offset in bytes where the range ends (inclusive)
272  *
273  * Walk the list of under-writeback pages of the given address space
274  * in the given range and wait for all of them.
275  */
276 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
277                             loff_t end_byte)
278 {
279         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
280         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
281         struct pagevec pvec;
282         int nr_pages;
283         int ret2, ret = 0;
284
285         if (end_byte < start_byte)
286                 goto out;
287
288         pagevec_init(&pvec, 0);
289         while ((index <= end) &&
290                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
291                         PAGECACHE_TAG_WRITEBACK,
292                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
293                 unsigned i;
294
295                 for (i = 0; i < nr_pages; i++) {
296                         struct page *page = pvec.pages[i];
297
298                         /* until radix tree lookup accepts end_index */
299                         if (page->index > end)
300                                 continue;
301
302                         wait_on_page_writeback(page);
303                         if (TestClearPageError(page))
304                                 ret = -EIO;
305                 }
306                 pagevec_release(&pvec);
307                 cond_resched();
308         }
309 out:
310         ret2 = filemap_check_errors(mapping);
311         if (!ret)
312                 ret = ret2;
313
314         return ret;
315 }
316 EXPORT_SYMBOL(filemap_fdatawait_range);
317
318 /**
319  * filemap_fdatawait - wait for all under-writeback pages to complete
320  * @mapping: address space structure to wait for
321  *
322  * Walk the list of under-writeback pages of the given address space
323  * and wait for all of them.
324  */
325 int filemap_fdatawait(struct address_space *mapping)
326 {
327         loff_t i_size = i_size_read(mapping->host);
328
329         if (i_size == 0)
330                 return 0;
331
332         return filemap_fdatawait_range(mapping, 0, i_size - 1);
333 }
334 EXPORT_SYMBOL(filemap_fdatawait);
335
336 int filemap_write_and_wait(struct address_space *mapping)
337 {
338         int err = 0;
339
340         if (mapping->nrpages) {
341                 err = filemap_fdatawrite(mapping);
342                 /*
343                  * Even if the above returned error, the pages may be
344                  * written partially (e.g. -ENOSPC), so we wait for it.
345                  * But the -EIO is special case, it may indicate the worst
346                  * thing (e.g. bug) happened, so we avoid waiting for it.
347                  */
348                 if (err != -EIO) {
349                         int err2 = filemap_fdatawait(mapping);
350                         if (!err)
351                                 err = err2;
352                 }
353         } else {
354                 err = filemap_check_errors(mapping);
355         }
356         return err;
357 }
358 EXPORT_SYMBOL(filemap_write_and_wait);
359
360 /**
361  * filemap_write_and_wait_range - write out & wait on a file range
362  * @mapping:    the address_space for the pages
363  * @lstart:     offset in bytes where the range starts
364  * @lend:       offset in bytes where the range ends (inclusive)
365  *
366  * Write out and wait upon file offsets lstart->lend, inclusive.
367  *
368  * Note that `lend' is inclusive (describes the last byte to be written) so
369  * that this function can be used to write to the very end-of-file (end = -1).
370  */
371 int filemap_write_and_wait_range(struct address_space *mapping,
372                                  loff_t lstart, loff_t lend)
373 {
374         int err = 0;
375
376         if (mapping->nrpages) {
377                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
378                                                  WB_SYNC_ALL);
379                 /* See comment of filemap_write_and_wait() */
380                 if (err != -EIO) {
381                         int err2 = filemap_fdatawait_range(mapping,
382                                                 lstart, lend);
383                         if (!err)
384                                 err = err2;
385                 }
386         } else {
387                 err = filemap_check_errors(mapping);
388         }
389         return err;
390 }
391 EXPORT_SYMBOL(filemap_write_and_wait_range);
392
393 /**
394  * replace_page_cache_page - replace a pagecache page with a new one
395  * @old:        page to be replaced
396  * @new:        page to replace with
397  * @gfp_mask:   allocation mode
398  *
399  * This function replaces a page in the pagecache with a new one.  On
400  * success it acquires the pagecache reference for the new page and
401  * drops it for the old page.  Both the old and new pages must be
402  * locked.  This function does not add the new page to the LRU, the
403  * caller must do that.
404  *
405  * The remove + add is atomic.  The only way this function can fail is
406  * memory allocation failure.
407  */
408 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
409 {
410         int error;
411
412         VM_BUG_ON(!PageLocked(old));
413         VM_BUG_ON(!PageLocked(new));
414         VM_BUG_ON(new->mapping);
415
416         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
417         if (!error) {
418                 struct address_space *mapping = old->mapping;
419                 void (*freepage)(struct page *);
420
421                 pgoff_t offset = old->index;
422                 freepage = mapping->a_ops->freepage;
423
424                 page_cache_get(new);
425                 new->mapping = mapping;
426                 new->index = offset;
427
428                 spin_lock_irq(&mapping->tree_lock);
429                 __delete_from_page_cache(old);
430                 error = radix_tree_insert(&mapping->page_tree, offset, new);
431                 BUG_ON(error);
432                 mapping->nrpages++;
433                 __inc_zone_page_state(new, NR_FILE_PAGES);
434                 if (PageSwapBacked(new))
435                         __inc_zone_page_state(new, NR_SHMEM);
436                 spin_unlock_irq(&mapping->tree_lock);
437                 /* mem_cgroup codes must not be called under tree_lock */
438                 mem_cgroup_replace_page_cache(old, new);
439                 radix_tree_preload_end();
440                 if (freepage)
441                         freepage(old);
442                 page_cache_release(old);
443         }
444
445         return error;
446 }
447 EXPORT_SYMBOL_GPL(replace_page_cache_page);
448
449 /**
450  * add_to_page_cache_locked - add a locked page to the pagecache
451  * @page:       page to add
452  * @mapping:    the page's address_space
453  * @offset:     page index
454  * @gfp_mask:   page allocation mode
455  *
456  * This function is used to add a page to the pagecache. It must be locked.
457  * This function does not add the page to the LRU.  The caller must do that.
458  */
459 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
460                 pgoff_t offset, gfp_t gfp_mask)
461 {
462         int error;
463
464         VM_BUG_ON(!PageLocked(page));
465         VM_BUG_ON(PageSwapBacked(page));
466
467         error = mem_cgroup_cache_charge(page, current->mm,
468                                         gfp_mask & GFP_RECLAIM_MASK);
469         if (error)
470                 goto out;
471
472         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
473         if (error == 0) {
474                 page_cache_get(page);
475                 page->mapping = mapping;
476                 page->index = offset;
477
478                 spin_lock_irq(&mapping->tree_lock);
479                 error = radix_tree_insert(&mapping->page_tree, offset, page);
480                 if (likely(!error)) {
481                         mapping->nrpages++;
482                         __inc_zone_page_state(page, NR_FILE_PAGES);
483                         spin_unlock_irq(&mapping->tree_lock);
484                         trace_mm_filemap_add_to_page_cache(page);
485                 } else {
486                         page->mapping = NULL;
487                         /* Leave page->index set: truncation relies upon it */
488                         spin_unlock_irq(&mapping->tree_lock);
489                         mem_cgroup_uncharge_cache_page(page);
490                         page_cache_release(page);
491                 }
492                 radix_tree_preload_end();
493         } else
494                 mem_cgroup_uncharge_cache_page(page);
495 out:
496         return error;
497 }
498 EXPORT_SYMBOL(add_to_page_cache_locked);
499
500 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
501                                 pgoff_t offset, gfp_t gfp_mask)
502 {
503         int ret;
504
505         ret = add_to_page_cache(page, mapping, offset, gfp_mask);
506         if (ret == 0)
507                 lru_cache_add_file(page);
508         return ret;
509 }
510 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
511
512 #ifdef CONFIG_NUMA
513 struct page *__page_cache_alloc(gfp_t gfp)
514 {
515         int n;
516         struct page *page;
517
518         if (cpuset_do_page_mem_spread()) {
519                 unsigned int cpuset_mems_cookie;
520                 do {
521                         cpuset_mems_cookie = get_mems_allowed();
522                         n = cpuset_mem_spread_node();
523                         page = alloc_pages_exact_node(n, gfp, 0);
524                 } while (!put_mems_allowed(cpuset_mems_cookie) && !page);
525
526                 return page;
527         }
528         return alloc_pages(gfp, 0);
529 }
530 EXPORT_SYMBOL(__page_cache_alloc);
531 #endif
532
533 /*
534  * In order to wait for pages to become available there must be
535  * waitqueues associated with pages. By using a hash table of
536  * waitqueues where the bucket discipline is to maintain all
537  * waiters on the same queue and wake all when any of the pages
538  * become available, and for the woken contexts to check to be
539  * sure the appropriate page became available, this saves space
540  * at a cost of "thundering herd" phenomena during rare hash
541  * collisions.
542  */
543 static wait_queue_head_t *page_waitqueue(struct page *page)
544 {
545         const struct zone *zone = page_zone(page);
546
547         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
548 }
549
550 static inline void wake_up_page(struct page *page, int bit)
551 {
552         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
553 }
554
555 void wait_on_page_bit(struct page *page, int bit_nr)
556 {
557         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
558
559         if (test_bit(bit_nr, &page->flags))
560                 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
561                                                         TASK_UNINTERRUPTIBLE);
562 }
563 EXPORT_SYMBOL(wait_on_page_bit);
564
565 int wait_on_page_bit_killable(struct page *page, int bit_nr)
566 {
567         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
568
569         if (!test_bit(bit_nr, &page->flags))
570                 return 0;
571
572         return __wait_on_bit(page_waitqueue(page), &wait,
573                              sleep_on_page_killable, TASK_KILLABLE);
574 }
575
576 /**
577  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
578  * @page: Page defining the wait queue of interest
579  * @waiter: Waiter to add to the queue
580  *
581  * Add an arbitrary @waiter to the wait queue for the nominated @page.
582  */
583 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
584 {
585         wait_queue_head_t *q = page_waitqueue(page);
586         unsigned long flags;
587
588         spin_lock_irqsave(&q->lock, flags);
589         __add_wait_queue(q, waiter);
590         spin_unlock_irqrestore(&q->lock, flags);
591 }
592 EXPORT_SYMBOL_GPL(add_page_wait_queue);
593
594 /**
595  * unlock_page - unlock a locked page
596  * @page: the page
597  *
598  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
599  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
600  * mechananism between PageLocked pages and PageWriteback pages is shared.
601  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
602  *
603  * The mb is necessary to enforce ordering between the clear_bit and the read
604  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
605  */
606 void unlock_page(struct page *page)
607 {
608         VM_BUG_ON(!PageLocked(page));
609         clear_bit_unlock(PG_locked, &page->flags);
610         smp_mb__after_clear_bit();
611         wake_up_page(page, PG_locked);
612 }
613 EXPORT_SYMBOL(unlock_page);
614
615 /**
616  * end_page_writeback - end writeback against a page
617  * @page: the page
618  */
619 void end_page_writeback(struct page *page)
620 {
621         if (TestClearPageReclaim(page))
622                 rotate_reclaimable_page(page);
623
624         if (!test_clear_page_writeback(page))
625                 BUG();
626
627         smp_mb__after_clear_bit();
628         wake_up_page(page, PG_writeback);
629 }
630 EXPORT_SYMBOL(end_page_writeback);
631
632 /**
633  * __lock_page - get a lock on the page, assuming we need to sleep to get it
634  * @page: the page to lock
635  */
636 void __lock_page(struct page *page)
637 {
638         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
639
640         __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
641                                                         TASK_UNINTERRUPTIBLE);
642 }
643 EXPORT_SYMBOL(__lock_page);
644
645 int __lock_page_killable(struct page *page)
646 {
647         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
648
649         return __wait_on_bit_lock(page_waitqueue(page), &wait,
650                                         sleep_on_page_killable, TASK_KILLABLE);
651 }
652 EXPORT_SYMBOL_GPL(__lock_page_killable);
653
654 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
655                          unsigned int flags)
656 {
657         if (flags & FAULT_FLAG_ALLOW_RETRY) {
658                 /*
659                  * CAUTION! In this case, mmap_sem is not released
660                  * even though return 0.
661                  */
662                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
663                         return 0;
664
665                 up_read(&mm->mmap_sem);
666                 if (flags & FAULT_FLAG_KILLABLE)
667                         wait_on_page_locked_killable(page);
668                 else
669                         wait_on_page_locked(page);
670                 return 0;
671         } else {
672                 if (flags & FAULT_FLAG_KILLABLE) {
673                         int ret;
674
675                         ret = __lock_page_killable(page);
676                         if (ret) {
677                                 up_read(&mm->mmap_sem);
678                                 return 0;
679                         }
680                 } else
681                         __lock_page(page);
682                 return 1;
683         }
684 }
685
686 /**
687  * page_cache_next_hole - find the next hole (not-present entry)
688  * @mapping: mapping
689  * @index: index
690  * @max_scan: maximum range to search
691  *
692  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
693  * lowest indexed hole.
694  *
695  * Returns: the index of the hole if found, otherwise returns an index
696  * outside of the set specified (in which case 'return - index >=
697  * max_scan' will be true). In rare cases of index wrap-around, 0 will
698  * be returned.
699  *
700  * page_cache_next_hole may be called under rcu_read_lock. However,
701  * like radix_tree_gang_lookup, this will not atomically search a
702  * snapshot of the tree at a single point in time. For example, if a
703  * hole is created at index 5, then subsequently a hole is created at
704  * index 10, page_cache_next_hole covering both indexes may return 10
705  * if called under rcu_read_lock.
706  */
707 pgoff_t page_cache_next_hole(struct address_space *mapping,
708                              pgoff_t index, unsigned long max_scan)
709 {
710         unsigned long i;
711
712         for (i = 0; i < max_scan; i++) {
713                 struct page *page;
714
715                 page = radix_tree_lookup(&mapping->page_tree, index);
716                 if (!page || radix_tree_exceptional_entry(page))
717                         break;
718                 index++;
719                 if (index == 0)
720                         break;
721         }
722
723         return index;
724 }
725 EXPORT_SYMBOL(page_cache_next_hole);
726
727 /**
728  * find_get_page - find and get a page reference
729  * @mapping: the address_space to search
730  * @offset: the page index
731  *
732  * Is there a pagecache struct page at the given (mapping, offset) tuple?
733  * If yes, increment its refcount and return it; if no, return NULL.
734  */
735 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
736 {
737         void **pagep;
738         struct page *page;
739
740         rcu_read_lock();
741 repeat:
742         page = NULL;
743         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
744         if (pagep) {
745                 page = radix_tree_deref_slot(pagep);
746                 if (unlikely(!page))
747                         goto out;
748                 if (radix_tree_exception(page)) {
749                         if (radix_tree_deref_retry(page))
750                                 goto repeat;
751                         /*
752                          * Otherwise, shmem/tmpfs must be storing a swap entry
753                          * here as an exceptional entry: so return it without
754                          * attempting to raise page count.
755                          */
756                         goto out;
757                 }
758                 if (!page_cache_get_speculative(page))
759                         goto repeat;
760
761                 /*
762                  * Has the page moved?
763                  * This is part of the lockless pagecache protocol. See
764                  * include/linux/pagemap.h for details.
765                  */
766                 if (unlikely(page != *pagep)) {
767                         page_cache_release(page);
768                         goto repeat;
769                 }
770         }
771 out:
772         rcu_read_unlock();
773
774         return page;
775 }
776 EXPORT_SYMBOL(find_get_page);
777
778 /**
779  * find_lock_page - locate, pin and lock a pagecache page
780  * @mapping: the address_space to search
781  * @offset: the page index
782  *
783  * Locates the desired pagecache page, locks it, increments its reference
784  * count and returns its address.
785  *
786  * Returns zero if the page was not present. find_lock_page() may sleep.
787  */
788 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
789 {
790         struct page *page;
791
792 repeat:
793         page = find_get_page(mapping, offset);
794         if (page && !radix_tree_exception(page)) {
795                 lock_page(page);
796                 /* Has the page been truncated? */
797                 if (unlikely(page->mapping != mapping)) {
798                         unlock_page(page);
799                         page_cache_release(page);
800                         goto repeat;
801                 }
802                 VM_BUG_ON(page->index != offset);
803         }
804         return page;
805 }
806 EXPORT_SYMBOL(find_lock_page);
807
808 /**
809  * find_or_create_page - locate or add a pagecache page
810  * @mapping: the page's address_space
811  * @index: the page's index into the mapping
812  * @gfp_mask: page allocation mode
813  *
814  * Locates a page in the pagecache.  If the page is not present, a new page
815  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
816  * LRU list.  The returned page is locked and has its reference count
817  * incremented.
818  *
819  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
820  * allocation!
821  *
822  * find_or_create_page() returns the desired page's address, or zero on
823  * memory exhaustion.
824  */
825 struct page *find_or_create_page(struct address_space *mapping,
826                 pgoff_t index, gfp_t gfp_mask)
827 {
828         struct page *page;
829         int err;
830 repeat:
831         page = find_lock_page(mapping, index);
832         if (!page) {
833                 page = __page_cache_alloc(gfp_mask);
834                 if (!page)
835                         return NULL;
836                 /*
837                  * We want a regular kernel memory (not highmem or DMA etc)
838                  * allocation for the radix tree nodes, but we need to honour
839                  * the context-specific requirements the caller has asked for.
840                  * GFP_RECLAIM_MASK collects those requirements.
841                  */
842                 err = add_to_page_cache_lru(page, mapping, index,
843                         (gfp_mask & GFP_RECLAIM_MASK));
844                 if (unlikely(err)) {
845                         page_cache_release(page);
846                         page = NULL;
847                         if (err == -EEXIST)
848                                 goto repeat;
849                 }
850         }
851         return page;
852 }
853 EXPORT_SYMBOL(find_or_create_page);
854
855 /**
856  * find_get_pages - gang pagecache lookup
857  * @mapping:    The address_space to search
858  * @start:      The starting page index
859  * @nr_pages:   The maximum number of pages
860  * @pages:      Where the resulting pages are placed
861  *
862  * find_get_pages() will search for and return a group of up to
863  * @nr_pages pages in the mapping.  The pages are placed at @pages.
864  * find_get_pages() takes a reference against the returned pages.
865  *
866  * The search returns a group of mapping-contiguous pages with ascending
867  * indexes.  There may be holes in the indices due to not-present pages.
868  *
869  * find_get_pages() returns the number of pages which were found.
870  */
871 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
872                             unsigned int nr_pages, struct page **pages)
873 {
874         struct radix_tree_iter iter;
875         void **slot;
876         unsigned ret = 0;
877
878         if (unlikely(!nr_pages))
879                 return 0;
880
881         rcu_read_lock();
882 restart:
883         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
884                 struct page *page;
885 repeat:
886                 page = radix_tree_deref_slot(slot);
887                 if (unlikely(!page))
888                         continue;
889
890                 if (radix_tree_exception(page)) {
891                         if (radix_tree_deref_retry(page)) {
892                                 /*
893                                  * Transient condition which can only trigger
894                                  * when entry at index 0 moves out of or back
895                                  * to root: none yet gotten, safe to restart.
896                                  */
897                                 WARN_ON(iter.index);
898                                 goto restart;
899                         }
900                         /*
901                          * Otherwise, shmem/tmpfs must be storing a swap entry
902                          * here as an exceptional entry: so skip over it -
903                          * we only reach this from invalidate_mapping_pages().
904                          */
905                         continue;
906                 }
907
908                 if (!page_cache_get_speculative(page))
909                         goto repeat;
910
911                 /* Has the page moved? */
912                 if (unlikely(page != *slot)) {
913                         page_cache_release(page);
914                         goto repeat;
915                 }
916
917                 pages[ret] = page;
918                 if (++ret == nr_pages)
919                         break;
920         }
921
922         rcu_read_unlock();
923         return ret;
924 }
925
926 /**
927  * find_get_pages_contig - gang contiguous pagecache lookup
928  * @mapping:    The address_space to search
929  * @index:      The starting page index
930  * @nr_pages:   The maximum number of pages
931  * @pages:      Where the resulting pages are placed
932  *
933  * find_get_pages_contig() works exactly like find_get_pages(), except
934  * that the returned number of pages are guaranteed to be contiguous.
935  *
936  * find_get_pages_contig() returns the number of pages which were found.
937  */
938 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
939                                unsigned int nr_pages, struct page **pages)
940 {
941         struct radix_tree_iter iter;
942         void **slot;
943         unsigned int ret = 0;
944
945         if (unlikely(!nr_pages))
946                 return 0;
947
948         rcu_read_lock();
949 restart:
950         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
951                 struct page *page;
952 repeat:
953                 page = radix_tree_deref_slot(slot);
954                 /* The hole, there no reason to continue */
955                 if (unlikely(!page))
956                         break;
957
958                 if (radix_tree_exception(page)) {
959                         if (radix_tree_deref_retry(page)) {
960                                 /*
961                                  * Transient condition which can only trigger
962                                  * when entry at index 0 moves out of or back
963                                  * to root: none yet gotten, safe to restart.
964                                  */
965                                 goto restart;
966                         }
967                         /*
968                          * Otherwise, shmem/tmpfs must be storing a swap entry
969                          * here as an exceptional entry: so stop looking for
970                          * contiguous pages.
971                          */
972                         break;
973                 }
974
975                 if (!page_cache_get_speculative(page))
976                         goto repeat;
977
978                 /* Has the page moved? */
979                 if (unlikely(page != *slot)) {
980                         page_cache_release(page);
981                         goto repeat;
982                 }
983
984                 /*
985                  * must check mapping and index after taking the ref.
986                  * otherwise we can get both false positives and false
987                  * negatives, which is just confusing to the caller.
988                  */
989                 if (page->mapping == NULL || page->index != iter.index) {
990                         page_cache_release(page);
991                         break;
992                 }
993
994                 pages[ret] = page;
995                 if (++ret == nr_pages)
996                         break;
997         }
998         rcu_read_unlock();
999         return ret;
1000 }
1001 EXPORT_SYMBOL(find_get_pages_contig);
1002
1003 /**
1004  * find_get_pages_tag - find and return pages that match @tag
1005  * @mapping:    the address_space to search
1006  * @index:      the starting page index
1007  * @tag:        the tag index
1008  * @nr_pages:   the maximum number of pages
1009  * @pages:      where the resulting pages are placed
1010  *
1011  * Like find_get_pages, except we only return pages which are tagged with
1012  * @tag.   We update @index to index the next page for the traversal.
1013  */
1014 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1015                         int tag, unsigned int nr_pages, struct page **pages)
1016 {
1017         struct radix_tree_iter iter;
1018         void **slot;
1019         unsigned ret = 0;
1020
1021         if (unlikely(!nr_pages))
1022                 return 0;
1023
1024         rcu_read_lock();
1025 restart:
1026         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1027                                    &iter, *index, tag) {
1028                 struct page *page;
1029 repeat:
1030                 page = radix_tree_deref_slot(slot);
1031                 if (unlikely(!page))
1032                         continue;
1033
1034                 if (radix_tree_exception(page)) {
1035                         if (radix_tree_deref_retry(page)) {
1036                                 /*
1037                                  * Transient condition which can only trigger
1038                                  * when entry at index 0 moves out of or back
1039                                  * to root: none yet gotten, safe to restart.
1040                                  */
1041                                 goto restart;
1042                         }
1043                         /*
1044                          * This function is never used on a shmem/tmpfs
1045                          * mapping, so a swap entry won't be found here.
1046                          */
1047                         BUG();
1048                 }
1049
1050                 if (!page_cache_get_speculative(page))
1051                         goto repeat;
1052
1053                 /* Has the page moved? */
1054                 if (unlikely(page != *slot)) {
1055                         page_cache_release(page);
1056                         goto repeat;
1057                 }
1058
1059                 pages[ret] = page;
1060                 if (++ret == nr_pages)
1061                         break;
1062         }
1063
1064         rcu_read_unlock();
1065
1066         if (ret)
1067                 *index = pages[ret - 1]->index + 1;
1068
1069         return ret;
1070 }
1071 EXPORT_SYMBOL(find_get_pages_tag);
1072
1073 /**
1074  * grab_cache_page_nowait - returns locked page at given index in given cache
1075  * @mapping: target address_space
1076  * @index: the page index
1077  *
1078  * Same as grab_cache_page(), but do not wait if the page is unavailable.
1079  * This is intended for speculative data generators, where the data can
1080  * be regenerated if the page couldn't be grabbed.  This routine should
1081  * be safe to call while holding the lock for another page.
1082  *
1083  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1084  * and deadlock against the caller's locked page.
1085  */
1086 struct page *
1087 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1088 {
1089         struct page *page = find_get_page(mapping, index);
1090
1091         if (page) {
1092                 if (trylock_page(page))
1093                         return page;
1094                 page_cache_release(page);
1095                 return NULL;
1096         }
1097         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1098         if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1099                 page_cache_release(page);
1100                 page = NULL;
1101         }
1102         return page;
1103 }
1104 EXPORT_SYMBOL(grab_cache_page_nowait);
1105
1106 /*
1107  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1108  * a _large_ part of the i/o request. Imagine the worst scenario:
1109  *
1110  *      ---R__________________________________________B__________
1111  *         ^ reading here                             ^ bad block(assume 4k)
1112  *
1113  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1114  * => failing the whole request => read(R) => read(R+1) =>
1115  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1116  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1117  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1118  *
1119  * It is going insane. Fix it by quickly scaling down the readahead size.
1120  */
1121 static void shrink_readahead_size_eio(struct file *filp,
1122                                         struct file_ra_state *ra)
1123 {
1124         ra->ra_pages /= 4;
1125 }
1126
1127 /**
1128  * do_generic_file_read - generic file read routine
1129  * @filp:       the file to read
1130  * @ppos:       current file position
1131  * @desc:       read_descriptor
1132  * @actor:      read method
1133  *
1134  * This is a generic file read routine, and uses the
1135  * mapping->a_ops->readpage() function for the actual low-level stuff.
1136  *
1137  * This is really ugly. But the goto's actually try to clarify some
1138  * of the logic when it comes to error handling etc.
1139  */
1140 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1141                 read_descriptor_t *desc, read_actor_t actor)
1142 {
1143         struct address_space *mapping = filp->f_mapping;
1144         struct inode *inode = mapping->host;
1145         struct file_ra_state *ra = &filp->f_ra;
1146         pgoff_t index;
1147         pgoff_t last_index;
1148         pgoff_t prev_index;
1149         unsigned long offset;      /* offset into pagecache page */
1150         unsigned int prev_offset;
1151         int error;
1152
1153         trace_mm_filemap_do_generic_file_read(filp, *ppos, desc->count, 1);
1154
1155         index = *ppos >> PAGE_CACHE_SHIFT;
1156         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1157         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1158         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1159         offset = *ppos & ~PAGE_CACHE_MASK;
1160
1161         for (;;) {
1162                 struct page *page;
1163                 pgoff_t end_index;
1164                 loff_t isize;
1165                 unsigned long nr, ret;
1166
1167                 cond_resched();
1168 find_page:
1169                 page = find_get_page(mapping, index);
1170                 if (!page) {
1171                         page_cache_sync_readahead(mapping,
1172                                         ra, filp,
1173                                         index, last_index - index);
1174                         page = find_get_page(mapping, index);
1175                         if (unlikely(page == NULL))
1176                                 goto no_cached_page;
1177                 }
1178                 if (PageReadahead(page)) {
1179                         page_cache_async_readahead(mapping,
1180                                         ra, filp, page,
1181                                         index, last_index - index);
1182                 }
1183                 if (!PageUptodate(page)) {
1184                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1185                                         !mapping->a_ops->is_partially_uptodate)
1186                                 goto page_not_up_to_date;
1187                         if (!trylock_page(page))
1188                                 goto page_not_up_to_date;
1189                         /* Did it get truncated before we got the lock? */
1190                         if (!page->mapping)
1191                                 goto page_not_up_to_date_locked;
1192                         if (!mapping->a_ops->is_partially_uptodate(page,
1193                                                                 desc, offset))
1194                                 goto page_not_up_to_date_locked;
1195                         unlock_page(page);
1196                 }
1197 page_ok:
1198                 /*
1199                  * i_size must be checked after we know the page is Uptodate.
1200                  *
1201                  * Checking i_size after the check allows us to calculate
1202                  * the correct value for "nr", which means the zero-filled
1203                  * part of the page is not copied back to userspace (unless
1204                  * another truncate extends the file - this is desired though).
1205                  */
1206
1207                 isize = i_size_read(inode);
1208                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1209                 if (unlikely(!isize || index > end_index)) {
1210                         page_cache_release(page);
1211                         goto out;
1212                 }
1213
1214                 /* nr is the maximum number of bytes to copy from this page */
1215                 nr = PAGE_CACHE_SIZE;
1216                 if (index == end_index) {
1217                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1218                         if (nr <= offset) {
1219                                 page_cache_release(page);
1220                                 goto out;
1221                         }
1222                 }
1223                 nr = nr - offset;
1224
1225                 /* If users can be writing to this page using arbitrary
1226                  * virtual addresses, take care about potential aliasing
1227                  * before reading the page on the kernel side.
1228                  */
1229                 if (mapping_writably_mapped(mapping))
1230                         flush_dcache_page(page);
1231
1232                 /*
1233                  * When a sequential read accesses a page several times,
1234                  * only mark it as accessed the first time.
1235                  */
1236                 if (prev_index != index || offset != prev_offset)
1237                         mark_page_accessed(page);
1238                 prev_index = index;
1239
1240                 /*
1241                  * Ok, we have the page, and it's up-to-date, so
1242                  * now we can copy it to user space...
1243                  *
1244                  * The actor routine returns how many bytes were actually used..
1245                  * NOTE! This may not be the same as how much of a user buffer
1246                  * we filled up (we may be padding etc), so we can only update
1247                  * "pos" here (the actor routine has to update the user buffer
1248                  * pointers and the remaining count).
1249                  */
1250                 ret = actor(desc, page, offset, nr);
1251                 offset += ret;
1252                 index += offset >> PAGE_CACHE_SHIFT;
1253                 offset &= ~PAGE_CACHE_MASK;
1254                 prev_offset = offset;
1255
1256                 page_cache_release(page);
1257                 if (ret == nr && desc->count)
1258                         continue;
1259                 goto out;
1260
1261 page_not_up_to_date:
1262                 /* Get exclusive access to the page ... */
1263                 error = lock_page_killable(page);
1264                 if (unlikely(error))
1265                         goto readpage_error;
1266
1267 page_not_up_to_date_locked:
1268                 /* Did it get truncated before we got the lock? */
1269                 if (!page->mapping) {
1270                         unlock_page(page);
1271                         page_cache_release(page);
1272                         continue;
1273                 }
1274
1275                 /* Did somebody else fill it already? */
1276                 if (PageUptodate(page)) {
1277                         unlock_page(page);
1278                         goto page_ok;
1279                 }
1280
1281 readpage:
1282                 /*
1283                  * A previous I/O error may have been due to temporary
1284                  * failures, eg. multipath errors.
1285                  * PG_error will be set again if readpage fails.
1286                  */
1287                 ClearPageError(page);
1288                 /* Start the actual read. The read will unlock the page. */
1289                 error = mapping->a_ops->readpage(filp, page);
1290
1291                 if (unlikely(error)) {
1292                         if (error == AOP_TRUNCATED_PAGE) {
1293                                 page_cache_release(page);
1294                                 goto find_page;
1295                         }
1296                         goto readpage_error;
1297                 }
1298
1299                 if (!PageUptodate(page)) {
1300                         error = lock_page_killable(page);
1301                         if (unlikely(error))
1302                                 goto readpage_error;
1303                         if (!PageUptodate(page)) {
1304                                 if (page->mapping == NULL) {
1305                                         /*
1306                                          * invalidate_mapping_pages got it
1307                                          */
1308                                         unlock_page(page);
1309                                         page_cache_release(page);
1310                                         goto find_page;
1311                                 }
1312                                 unlock_page(page);
1313                                 shrink_readahead_size_eio(filp, ra);
1314                                 error = -EIO;
1315                                 goto readpage_error;
1316                         }
1317                         unlock_page(page);
1318                 }
1319
1320                 goto page_ok;
1321
1322 readpage_error:
1323                 /* UHHUH! A synchronous read error occurred. Report it */
1324                 desc->error = error;
1325                 page_cache_release(page);
1326                 goto out;
1327
1328 no_cached_page:
1329                 /*
1330                  * Ok, it wasn't cached, so we need to create a new
1331                  * page..
1332                  */
1333                 page = page_cache_alloc_cold(mapping);
1334                 if (!page) {
1335                         desc->error = -ENOMEM;
1336                         goto out;
1337                 }
1338                 error = add_to_page_cache_lru(page, mapping,
1339                                                 index, GFP_KERNEL);
1340                 if (error) {
1341                         page_cache_release(page);
1342                         if (error == -EEXIST)
1343                                 goto find_page;
1344                         desc->error = error;
1345                         goto out;
1346                 }
1347                 goto readpage;
1348         }
1349
1350 out:
1351         ra->prev_pos = prev_index;
1352         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1353         ra->prev_pos |= prev_offset;
1354
1355         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1356         file_accessed(filp);
1357 }
1358
1359 int file_read_actor(read_descriptor_t *desc, struct page *page,
1360                         unsigned long offset, unsigned long size)
1361 {
1362         char *kaddr;
1363         unsigned long left, count = desc->count;
1364
1365         if (size > count)
1366                 size = count;
1367
1368         /*
1369          * Faults on the destination of a read are common, so do it before
1370          * taking the kmap.
1371          */
1372         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1373                 kaddr = kmap_atomic(page);
1374                 left = __copy_to_user_inatomic(desc->arg.buf,
1375                                                 kaddr + offset, size);
1376                 kunmap_atomic(kaddr);
1377                 if (left == 0)
1378                         goto success;
1379         }
1380
1381         /* Do it the slow way */
1382         kaddr = kmap(page);
1383         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1384         kunmap(page);
1385
1386         if (left) {
1387                 size -= left;
1388                 desc->error = -EFAULT;
1389         }
1390 success:
1391         desc->count = count - size;
1392         desc->written += size;
1393         desc->arg.buf += size;
1394         return size;
1395 }
1396
1397 /*
1398  * Performs necessary checks before doing a write
1399  * @iov:        io vector request
1400  * @nr_segs:    number of segments in the iovec
1401  * @count:      number of bytes to write
1402  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1403  *
1404  * Adjust number of segments and amount of bytes to write (nr_segs should be
1405  * properly initialized first). Returns appropriate error code that caller
1406  * should return or zero in case that write should be allowed.
1407  */
1408 int generic_segment_checks(const struct iovec *iov,
1409                         unsigned long *nr_segs, size_t *count, int access_flags)
1410 {
1411         unsigned long   seg;
1412         size_t cnt = 0;
1413         for (seg = 0; seg < *nr_segs; seg++) {
1414                 const struct iovec *iv = &iov[seg];
1415
1416                 /*
1417                  * If any segment has a negative length, or the cumulative
1418                  * length ever wraps negative then return -EINVAL.
1419                  */
1420                 cnt += iv->iov_len;
1421                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1422                         return -EINVAL;
1423                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1424                         continue;
1425                 if (seg == 0)
1426                         return -EFAULT;
1427                 *nr_segs = seg;
1428                 cnt -= iv->iov_len;     /* This segment is no good */
1429                 break;
1430         }
1431         *count = cnt;
1432         return 0;
1433 }
1434 EXPORT_SYMBOL(generic_segment_checks);
1435
1436 /**
1437  * generic_file_aio_read - generic filesystem read routine
1438  * @iocb:       kernel I/O control block
1439  * @iov:        io vector request
1440  * @nr_segs:    number of segments in the iovec
1441  * @pos:        current file position
1442  *
1443  * This is the "read()" routine for all filesystems
1444  * that can use the page cache directly.
1445  */
1446 ssize_t
1447 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1448                 unsigned long nr_segs, loff_t pos)
1449 {
1450         struct file *filp = iocb->ki_filp;
1451         ssize_t retval;
1452         unsigned long seg = 0;
1453         size_t count;
1454         loff_t *ppos = &iocb->ki_pos;
1455
1456         count = 0;
1457         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1458         if (retval)
1459                 return retval;
1460
1461         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1462         if (filp->f_flags & O_DIRECT) {
1463                 loff_t size;
1464                 struct address_space *mapping;
1465                 struct inode *inode;
1466
1467                 mapping = filp->f_mapping;
1468                 inode = mapping->host;
1469                 if (!count)
1470                         goto out; /* skip atime */
1471                 size = i_size_read(inode);
1472                 if (pos < size) {
1473                         retval = filemap_write_and_wait_range(mapping, pos,
1474                                         pos + iov_length(iov, nr_segs) - 1);
1475                         if (!retval) {
1476                                 retval = mapping->a_ops->direct_IO(READ, iocb,
1477                                                         iov, pos, nr_segs);
1478                         }
1479                         if (retval > 0) {
1480                                 *ppos = pos + retval;
1481                                 count -= retval;
1482                         }
1483
1484                         /*
1485                          * Btrfs can have a short DIO read if we encounter
1486                          * compressed extents, so if there was an error, or if
1487                          * we've already read everything we wanted to, or if
1488                          * there was a short read because we hit EOF, go ahead
1489                          * and return.  Otherwise fallthrough to buffered io for
1490                          * the rest of the read.
1491                          */
1492                         if (retval < 0 || !count || *ppos >= size) {
1493                                 file_accessed(filp);
1494                                 goto out;
1495                         }
1496                 }
1497         }
1498
1499         count = retval;
1500         for (seg = 0; seg < nr_segs; seg++) {
1501                 read_descriptor_t desc;
1502                 loff_t offset = 0;
1503
1504                 /*
1505                  * If we did a short DIO read we need to skip the section of the
1506                  * iov that we've already read data into.
1507                  */
1508                 if (count) {
1509                         if (count > iov[seg].iov_len) {
1510                                 count -= iov[seg].iov_len;
1511                                 continue;
1512                         }
1513                         offset = count;
1514                         count = 0;
1515                 }
1516
1517                 desc.written = 0;
1518                 desc.arg.buf = iov[seg].iov_base + offset;
1519                 desc.count = iov[seg].iov_len - offset;
1520                 if (desc.count == 0)
1521                         continue;
1522                 desc.error = 0;
1523                 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1524                 retval += desc.written;
1525                 if (desc.error) {
1526                         retval = retval ?: desc.error;
1527                         break;
1528                 }
1529                 if (desc.count > 0)
1530                         break;
1531         }
1532 out:
1533         return retval;
1534 }
1535 EXPORT_SYMBOL(generic_file_aio_read);
1536
1537 #ifdef CONFIG_MMU
1538 /**
1539  * page_cache_read - adds requested page to the page cache if not already there
1540  * @file:       file to read
1541  * @offset:     page index
1542  *
1543  * This adds the requested page to the page cache if it isn't already there,
1544  * and schedules an I/O to read in its contents from disk.
1545  */
1546 static int page_cache_read(struct file *file, pgoff_t offset)
1547 {
1548         struct address_space *mapping = file->f_mapping;
1549         struct page *page;
1550         int ret;
1551
1552         do {
1553                 page = page_cache_alloc_cold(mapping);
1554                 if (!page)
1555                         return -ENOMEM;
1556
1557                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1558                 if (ret == 0)
1559                         ret = mapping->a_ops->readpage(file, page);
1560                 else if (ret == -EEXIST)
1561                         ret = 0; /* losing race to add is OK */
1562
1563                 page_cache_release(page);
1564
1565         } while (ret == AOP_TRUNCATED_PAGE);
1566
1567         return ret;
1568 }
1569
1570 #define MMAP_LOTSAMISS  (100)
1571
1572 /*
1573  * Synchronous readahead happens when we don't even find
1574  * a page in the page cache at all.
1575  */
1576 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1577                                    struct file_ra_state *ra,
1578                                    struct file *file,
1579                                    pgoff_t offset)
1580 {
1581         unsigned long ra_pages;
1582         struct address_space *mapping = file->f_mapping;
1583
1584         /* If we don't want any read-ahead, don't bother */
1585         if (VM_RandomReadHint(vma))
1586                 return;
1587         if (!ra->ra_pages)
1588                 return;
1589
1590         if (VM_SequentialReadHint(vma)) {
1591                 page_cache_sync_readahead(mapping, ra, file, offset,
1592                                           ra->ra_pages);
1593                 return;
1594         }
1595
1596         /* Avoid banging the cache line if not needed */
1597         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1598                 ra->mmap_miss++;
1599
1600         /*
1601          * Do we miss much more than hit in this file? If so,
1602          * stop bothering with read-ahead. It will only hurt.
1603          */
1604         if (ra->mmap_miss > MMAP_LOTSAMISS)
1605                 return;
1606
1607         /*
1608          * mmap read-around
1609          */
1610         ra_pages = max_sane_readahead(ra->ra_pages);
1611         ra->start = max_t(long, 0, offset - ra_pages / 2);
1612         ra->size = ra_pages;
1613         ra->async_size = ra_pages / 4;
1614         ra_submit(ra, mapping, file);
1615 }
1616
1617 /*
1618  * Asynchronous readahead happens when we find the page and PG_readahead,
1619  * so we want to possibly extend the readahead further..
1620  */
1621 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1622                                     struct file_ra_state *ra,
1623                                     struct file *file,
1624                                     struct page *page,
1625                                     pgoff_t offset)
1626 {
1627         struct address_space *mapping = file->f_mapping;
1628
1629         /* If we don't want any read-ahead, don't bother */
1630         if (VM_RandomReadHint(vma))
1631                 return;
1632         if (ra->mmap_miss > 0)
1633                 ra->mmap_miss--;
1634         if (PageReadahead(page))
1635                 page_cache_async_readahead(mapping, ra, file,
1636                                            page, offset, ra->ra_pages);
1637 }
1638
1639 /**
1640  * filemap_fault - read in file data for page fault handling
1641  * @vma:        vma in which the fault was taken
1642  * @vmf:        struct vm_fault containing details of the fault
1643  *
1644  * filemap_fault() is invoked via the vma operations vector for a
1645  * mapped memory region to read in file data during a page fault.
1646  *
1647  * The goto's are kind of ugly, but this streamlines the normal case of having
1648  * it in the page cache, and handles the special cases reasonably without
1649  * having a lot of duplicated code.
1650  */
1651 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1652 {
1653         int error;
1654         struct file *file = vma->vm_file;
1655         struct address_space *mapping = file->f_mapping;
1656         struct file_ra_state *ra = &file->f_ra;
1657         struct inode *inode = mapping->host;
1658         pgoff_t offset = vmf->pgoff;
1659         struct page *page;
1660         pgoff_t size;
1661         int ret = 0;
1662
1663         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1664         if (offset >= size)
1665                 return VM_FAULT_SIGBUS;
1666
1667         /*
1668          * Do we have something in the page cache already?
1669          */
1670         page = find_get_page(mapping, offset);
1671         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1672                 /*
1673                  * We found the page, so try async readahead before
1674                  * waiting for the lock.
1675                  */
1676                 do_async_mmap_readahead(vma, ra, file, page, offset);
1677         } else if (!page) {
1678                 /* No page in the page cache at all */
1679                 do_sync_mmap_readahead(vma, ra, file, offset);
1680                 count_vm_event(PGMAJFAULT);
1681                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1682                 ret = VM_FAULT_MAJOR;
1683 retry_find:
1684                 page = find_get_page(mapping, offset);
1685                 if (!page)
1686                         goto no_cached_page;
1687         }
1688
1689         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1690                 page_cache_release(page);
1691                 return ret | VM_FAULT_RETRY;
1692         }
1693
1694         /* Did it get truncated? */
1695         if (unlikely(page->mapping != mapping)) {
1696                 unlock_page(page);
1697                 put_page(page);
1698                 goto retry_find;
1699         }
1700         VM_BUG_ON(page->index != offset);
1701
1702         /*
1703          * We have a locked page in the page cache, now we need to check
1704          * that it's up-to-date. If not, it is going to be due to an error.
1705          */
1706         if (unlikely(!PageUptodate(page)))
1707                 goto page_not_uptodate;
1708
1709         /*
1710          * Found the page and have a reference on it.
1711          * We must recheck i_size under page lock.
1712          */
1713         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1714         if (unlikely(offset >= size)) {
1715                 unlock_page(page);
1716                 page_cache_release(page);
1717                 return VM_FAULT_SIGBUS;
1718         }
1719
1720         vmf->page = page;
1721         return ret | VM_FAULT_LOCKED;
1722
1723 no_cached_page:
1724         /*
1725          * We're only likely to ever get here if MADV_RANDOM is in
1726          * effect.
1727          */
1728         error = page_cache_read(file, offset);
1729
1730         /*
1731          * The page we want has now been added to the page cache.
1732          * In the unlikely event that someone removed it in the
1733          * meantime, we'll just come back here and read it again.
1734          */
1735         if (error >= 0)
1736                 goto retry_find;
1737
1738         /*
1739          * An error return from page_cache_read can result if the
1740          * system is low on memory, or a problem occurs while trying
1741          * to schedule I/O.
1742          */
1743         if (error == -ENOMEM)
1744                 return VM_FAULT_OOM;
1745         return VM_FAULT_SIGBUS;
1746
1747 page_not_uptodate:
1748         /*
1749          * Umm, take care of errors if the page isn't up-to-date.
1750          * Try to re-read it _once_. We do this synchronously,
1751          * because there really aren't any performance issues here
1752          * and we need to check for errors.
1753          */
1754         ClearPageError(page);
1755         error = mapping->a_ops->readpage(file, page);
1756         if (!error) {
1757                 wait_on_page_locked(page);
1758                 if (!PageUptodate(page))
1759                         error = -EIO;
1760         }
1761         page_cache_release(page);
1762
1763         if (!error || error == AOP_TRUNCATED_PAGE)
1764                 goto retry_find;
1765
1766         /* Things didn't work out. Return zero to tell the mm layer so. */
1767         shrink_readahead_size_eio(file, ra);
1768         return VM_FAULT_SIGBUS;
1769 }
1770 EXPORT_SYMBOL(filemap_fault);
1771
1772 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1773 {
1774         struct page *page = vmf->page;
1775         struct inode *inode = file_inode(vma->vm_file);
1776         int ret = VM_FAULT_LOCKED;
1777
1778         sb_start_pagefault(inode->i_sb);
1779         file_update_time(vma->vm_file);
1780         lock_page(page);
1781         if (page->mapping != inode->i_mapping) {
1782                 unlock_page(page);
1783                 ret = VM_FAULT_NOPAGE;
1784                 goto out;
1785         }
1786         /*
1787          * We mark the page dirty already here so that when freeze is in
1788          * progress, we are guaranteed that writeback during freezing will
1789          * see the dirty page and writeprotect it again.
1790          */
1791         set_page_dirty(page);
1792         wait_for_stable_page(page);
1793 out:
1794         sb_end_pagefault(inode->i_sb);
1795         return ret;
1796 }
1797 EXPORT_SYMBOL(filemap_page_mkwrite);
1798
1799 const struct vm_operations_struct generic_file_vm_ops = {
1800         .fault          = filemap_fault,
1801         .page_mkwrite   = filemap_page_mkwrite,
1802         .remap_pages    = generic_file_remap_pages,
1803 };
1804
1805 /* This is used for a general mmap of a disk file */
1806
1807 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1808 {
1809         struct address_space *mapping = file->f_mapping;
1810
1811         if (!mapping->a_ops->readpage)
1812                 return -ENOEXEC;
1813         file_accessed(file);
1814         vma->vm_ops = &generic_file_vm_ops;
1815         return 0;
1816 }
1817
1818 /*
1819  * This is for filesystems which do not implement ->writepage.
1820  */
1821 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1822 {
1823         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1824                 return -EINVAL;
1825         return generic_file_mmap(file, vma);
1826 }
1827 #else
1828 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1829 {
1830         return -ENOSYS;
1831 }
1832 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1833 {
1834         return -ENOSYS;
1835 }
1836 #endif /* CONFIG_MMU */
1837
1838 EXPORT_SYMBOL(generic_file_mmap);
1839 EXPORT_SYMBOL(generic_file_readonly_mmap);
1840
1841 static struct page *__read_cache_page(struct address_space *mapping,
1842                                 pgoff_t index,
1843                                 int (*filler)(void *, struct page *),
1844                                 void *data,
1845                                 gfp_t gfp)
1846 {
1847         struct page *page;
1848         int err;
1849 repeat:
1850         page = find_get_page(mapping, index);
1851         if (!page) {
1852                 page = __page_cache_alloc(gfp | __GFP_COLD);
1853                 if (!page)
1854                         return ERR_PTR(-ENOMEM);
1855                 err = add_to_page_cache_lru(page, mapping, index, gfp);
1856                 if (unlikely(err)) {
1857                         page_cache_release(page);
1858                         if (err == -EEXIST)
1859                                 goto repeat;
1860                         /* Presumably ENOMEM for radix tree node */
1861                         return ERR_PTR(err);
1862                 }
1863                 err = filler(data, page);
1864                 if (err < 0) {
1865                         page_cache_release(page);
1866                         page = ERR_PTR(err);
1867                 }
1868         }
1869         return page;
1870 }
1871
1872 static struct page *do_read_cache_page(struct address_space *mapping,
1873                                 pgoff_t index,
1874                                 int (*filler)(void *, struct page *),
1875                                 void *data,
1876                                 gfp_t gfp)
1877
1878 {
1879         struct page *page;
1880         int err;
1881
1882 retry:
1883         page = __read_cache_page(mapping, index, filler, data, gfp);
1884         if (IS_ERR(page))
1885                 return page;
1886         if (PageUptodate(page))
1887                 goto out;
1888
1889         lock_page(page);
1890         if (!page->mapping) {
1891                 unlock_page(page);
1892                 page_cache_release(page);
1893                 goto retry;
1894         }
1895         if (PageUptodate(page)) {
1896                 unlock_page(page);
1897                 goto out;
1898         }
1899         err = filler(data, page);
1900         if (err < 0) {
1901                 page_cache_release(page);
1902                 return ERR_PTR(err);
1903         }
1904 out:
1905         mark_page_accessed(page);
1906         return page;
1907 }
1908
1909 /**
1910  * read_cache_page_async - read into page cache, fill it if needed
1911  * @mapping:    the page's address_space
1912  * @index:      the page index
1913  * @filler:     function to perform the read
1914  * @data:       first arg to filler(data, page) function, often left as NULL
1915  *
1916  * Same as read_cache_page, but don't wait for page to become unlocked
1917  * after submitting it to the filler.
1918  *
1919  * Read into the page cache. If a page already exists, and PageUptodate() is
1920  * not set, try to fill the page but don't wait for it to become unlocked.
1921  *
1922  * If the page does not get brought uptodate, return -EIO.
1923  */
1924 struct page *read_cache_page_async(struct address_space *mapping,
1925                                 pgoff_t index,
1926                                 int (*filler)(void *, struct page *),
1927                                 void *data)
1928 {
1929         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1930 }
1931 EXPORT_SYMBOL(read_cache_page_async);
1932
1933 static struct page *wait_on_page_read(struct page *page)
1934 {
1935         if (!IS_ERR(page)) {
1936                 wait_on_page_locked(page);
1937                 if (!PageUptodate(page)) {
1938                         page_cache_release(page);
1939                         page = ERR_PTR(-EIO);
1940                 }
1941         }
1942         return page;
1943 }
1944
1945 /**
1946  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1947  * @mapping:    the page's address_space
1948  * @index:      the page index
1949  * @gfp:        the page allocator flags to use if allocating
1950  *
1951  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1952  * any new page allocations done using the specified allocation flags.
1953  *
1954  * If the page does not get brought uptodate, return -EIO.
1955  */
1956 struct page *read_cache_page_gfp(struct address_space *mapping,
1957                                 pgoff_t index,
1958                                 gfp_t gfp)
1959 {
1960         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1961
1962         return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1963 }
1964 EXPORT_SYMBOL(read_cache_page_gfp);
1965
1966 /**
1967  * read_cache_page - read into page cache, fill it if needed
1968  * @mapping:    the page's address_space
1969  * @index:      the page index
1970  * @filler:     function to perform the read
1971  * @data:       first arg to filler(data, page) function, often left as NULL
1972  *
1973  * Read into the page cache. If a page already exists, and PageUptodate() is
1974  * not set, try to fill the page then wait for it to become unlocked.
1975  *
1976  * If the page does not get brought uptodate, return -EIO.
1977  */
1978 struct page *read_cache_page(struct address_space *mapping,
1979                                 pgoff_t index,
1980                                 int (*filler)(void *, struct page *),
1981                                 void *data)
1982 {
1983         return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1984 }
1985 EXPORT_SYMBOL(read_cache_page);
1986
1987 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1988                         const struct iovec *iov, size_t base, size_t bytes)
1989 {
1990         size_t copied = 0, left = 0;
1991
1992         while (bytes) {
1993                 char __user *buf = iov->iov_base + base;
1994                 int copy = min(bytes, iov->iov_len - base);
1995
1996                 base = 0;
1997                 left = __copy_from_user_inatomic(vaddr, buf, copy);
1998                 copied += copy;
1999                 bytes -= copy;
2000                 vaddr += copy;
2001                 iov++;
2002
2003                 if (unlikely(left))
2004                         break;
2005         }
2006         return copied - left;
2007 }
2008
2009 /*
2010  * Copy as much as we can into the page and return the number of bytes which
2011  * were successfully copied.  If a fault is encountered then return the number of
2012  * bytes which were copied.
2013  */
2014 size_t iov_iter_copy_from_user_atomic(struct page *page,
2015                 struct iov_iter *i, unsigned long offset, size_t bytes)
2016 {
2017         char *kaddr;
2018         size_t copied;
2019
2020         BUG_ON(!in_atomic());
2021         kaddr = kmap_atomic(page);
2022         if (likely(i->nr_segs == 1)) {
2023                 int left;
2024                 char __user *buf = i->iov->iov_base + i->iov_offset;
2025                 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2026                 copied = bytes - left;
2027         } else {
2028                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2029                                                 i->iov, i->iov_offset, bytes);
2030         }
2031         kunmap_atomic(kaddr);
2032
2033         return copied;
2034 }
2035 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2036
2037 /*
2038  * This has the same sideeffects and return value as
2039  * iov_iter_copy_from_user_atomic().
2040  * The difference is that it attempts to resolve faults.
2041  * Page must not be locked.
2042  */
2043 size_t iov_iter_copy_from_user(struct page *page,
2044                 struct iov_iter *i, unsigned long offset, size_t bytes)
2045 {
2046         char *kaddr;
2047         size_t copied;
2048
2049         kaddr = kmap(page);
2050         if (likely(i->nr_segs == 1)) {
2051                 int left;
2052                 char __user *buf = i->iov->iov_base + i->iov_offset;
2053                 left = __copy_from_user(kaddr + offset, buf, bytes);
2054                 copied = bytes - left;
2055         } else {
2056                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2057                                                 i->iov, i->iov_offset, bytes);
2058         }
2059         kunmap(page);
2060         return copied;
2061 }
2062 EXPORT_SYMBOL(iov_iter_copy_from_user);
2063
2064 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2065 {
2066         BUG_ON(i->count < bytes);
2067
2068         if (likely(i->nr_segs == 1)) {
2069                 i->iov_offset += bytes;
2070                 i->count -= bytes;
2071         } else {
2072                 const struct iovec *iov = i->iov;
2073                 size_t base = i->iov_offset;
2074                 unsigned long nr_segs = i->nr_segs;
2075
2076                 /*
2077                  * The !iov->iov_len check ensures we skip over unlikely
2078                  * zero-length segments (without overruning the iovec).
2079                  */
2080                 while (bytes || unlikely(i->count && !iov->iov_len)) {
2081                         int copy;
2082
2083                         copy = min(bytes, iov->iov_len - base);
2084                         BUG_ON(!i->count || i->count < copy);
2085                         i->count -= copy;
2086                         bytes -= copy;
2087                         base += copy;
2088                         if (iov->iov_len == base) {
2089                                 iov++;
2090                                 nr_segs--;
2091                                 base = 0;
2092                         }
2093                 }
2094                 i->iov = iov;
2095                 i->iov_offset = base;
2096                 i->nr_segs = nr_segs;
2097         }
2098 }
2099 EXPORT_SYMBOL(iov_iter_advance);
2100
2101 /*
2102  * Fault in the first iovec of the given iov_iter, to a maximum length
2103  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2104  * accessed (ie. because it is an invalid address).
2105  *
2106  * writev-intensive code may want this to prefault several iovecs -- that
2107  * would be possible (callers must not rely on the fact that _only_ the
2108  * first iovec will be faulted with the current implementation).
2109  */
2110 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2111 {
2112         char __user *buf = i->iov->iov_base + i->iov_offset;
2113         bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2114         return fault_in_pages_readable(buf, bytes);
2115 }
2116 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2117
2118 /*
2119  * Return the count of just the current iov_iter segment.
2120  */
2121 size_t iov_iter_single_seg_count(const struct iov_iter *i)
2122 {
2123         const struct iovec *iov = i->iov;
2124         if (i->nr_segs == 1)
2125                 return i->count;
2126         else
2127                 return min(i->count, iov->iov_len - i->iov_offset);
2128 }
2129 EXPORT_SYMBOL(iov_iter_single_seg_count);
2130
2131 /*
2132  * Performs necessary checks before doing a write
2133  *
2134  * Can adjust writing position or amount of bytes to write.
2135  * Returns appropriate error code that caller should return or
2136  * zero in case that write should be allowed.
2137  */
2138 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2139 {
2140         struct inode *inode = file->f_mapping->host;
2141         unsigned long limit = rlimit(RLIMIT_FSIZE);
2142
2143         if (unlikely(*pos < 0))
2144                 return -EINVAL;
2145
2146         if (!isblk) {
2147                 /* FIXME: this is for backwards compatibility with 2.4 */
2148                 if (file->f_flags & O_APPEND)
2149                         *pos = i_size_read(inode);
2150
2151                 if (limit != RLIM_INFINITY) {
2152                         if (*pos >= limit) {
2153                                 send_sig(SIGXFSZ, current, 0);
2154                                 return -EFBIG;
2155                         }
2156                         if (*count > limit - (typeof(limit))*pos) {
2157                                 *count = limit - (typeof(limit))*pos;
2158                         }
2159                 }
2160         }
2161
2162         /*
2163          * LFS rule
2164          */
2165         if (unlikely(*pos + *count > MAX_NON_LFS &&
2166                                 !(file->f_flags & O_LARGEFILE))) {
2167                 if (*pos >= MAX_NON_LFS) {
2168                         return -EFBIG;
2169                 }
2170                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2171                         *count = MAX_NON_LFS - (unsigned long)*pos;
2172                 }
2173         }
2174
2175         /*
2176          * Are we about to exceed the fs block limit ?
2177          *
2178          * If we have written data it becomes a short write.  If we have
2179          * exceeded without writing data we send a signal and return EFBIG.
2180          * Linus frestrict idea will clean these up nicely..
2181          */
2182         if (likely(!isblk)) {
2183                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2184                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2185                                 return -EFBIG;
2186                         }
2187                         /* zero-length writes at ->s_maxbytes are OK */
2188                 }
2189
2190                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2191                         *count = inode->i_sb->s_maxbytes - *pos;
2192         } else {
2193 #ifdef CONFIG_BLOCK
2194                 loff_t isize;
2195                 if (bdev_read_only(I_BDEV(inode)))
2196                         return -EPERM;
2197                 isize = i_size_read(inode);
2198                 if (*pos >= isize) {
2199                         if (*count || *pos > isize)
2200                                 return -ENOSPC;
2201                 }
2202
2203                 if (*pos + *count > isize)
2204                         *count = isize - *pos;
2205 #else
2206                 return -EPERM;
2207 #endif
2208         }
2209         return 0;
2210 }
2211 EXPORT_SYMBOL(generic_write_checks);
2212
2213 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2214                                 loff_t pos, unsigned len, unsigned flags,
2215                                 struct page **pagep, void **fsdata)
2216 {
2217         const struct address_space_operations *aops = mapping->a_ops;
2218
2219         return aops->write_begin(file, mapping, pos, len, flags,
2220                                                         pagep, fsdata);
2221 }
2222 EXPORT_SYMBOL(pagecache_write_begin);
2223
2224 int pagecache_write_end(struct file *file, struct address_space *mapping,
2225                                 loff_t pos, unsigned len, unsigned copied,
2226                                 struct page *page, void *fsdata)
2227 {
2228         const struct address_space_operations *aops = mapping->a_ops;
2229
2230         mark_page_accessed(page);
2231         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2232 }
2233 EXPORT_SYMBOL(pagecache_write_end);
2234
2235 ssize_t
2236 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2237                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2238                 size_t count, size_t ocount)
2239 {
2240         struct file     *file = iocb->ki_filp;
2241         struct address_space *mapping = file->f_mapping;
2242         struct inode    *inode = mapping->host;
2243         ssize_t         written;
2244         size_t          write_len;
2245         pgoff_t         end;
2246
2247         if (count != ocount)
2248                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2249
2250         write_len = iov_length(iov, *nr_segs);
2251         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2252
2253         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2254         if (written)
2255                 goto out;
2256
2257         /*
2258          * After a write we want buffered reads to be sure to go to disk to get
2259          * the new data.  We invalidate clean cached page from the region we're
2260          * about to write.  We do this *before* the write so that we can return
2261          * without clobbering -EIOCBQUEUED from ->direct_IO().
2262          */
2263         if (mapping->nrpages) {
2264                 written = invalidate_inode_pages2_range(mapping,
2265                                         pos >> PAGE_CACHE_SHIFT, end);
2266                 /*
2267                  * If a page can not be invalidated, return 0 to fall back
2268                  * to buffered write.
2269                  */
2270                 if (written) {
2271                         if (written == -EBUSY)
2272                                 return 0;
2273                         goto out;
2274                 }
2275         }
2276
2277         written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2278
2279         /*
2280          * Finally, try again to invalidate clean pages which might have been
2281          * cached by non-direct readahead, or faulted in by get_user_pages()
2282          * if the source of the write was an mmap'ed region of the file
2283          * we're writing.  Either one is a pretty crazy thing to do,
2284          * so we don't support it 100%.  If this invalidation
2285          * fails, tough, the write still worked...
2286          */
2287         if (mapping->nrpages) {
2288                 invalidate_inode_pages2_range(mapping,
2289                                               pos >> PAGE_CACHE_SHIFT, end);
2290         }
2291
2292         if (written > 0) {
2293                 pos += written;
2294                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2295                         i_size_write(inode, pos);
2296                         mark_inode_dirty(inode);
2297                 }
2298                 *ppos = pos;
2299         }
2300 out:
2301         return written;
2302 }
2303 EXPORT_SYMBOL(generic_file_direct_write);
2304
2305 /*
2306  * Find or create a page at the given pagecache position. Return the locked
2307  * page. This function is specifically for buffered writes.
2308  */
2309 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2310                                         pgoff_t index, unsigned flags)
2311 {
2312         int status;
2313         gfp_t gfp_mask;
2314         struct page *page;
2315         gfp_t gfp_notmask = 0;
2316
2317         gfp_mask = mapping_gfp_mask(mapping);
2318         if (mapping_cap_account_dirty(mapping))
2319                 gfp_mask |= __GFP_WRITE;
2320         if (flags & AOP_FLAG_NOFS)
2321                 gfp_notmask = __GFP_FS;
2322 repeat:
2323         page = find_lock_page(mapping, index);
2324         if (page)
2325                 goto found;
2326
2327         page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2328         if (!page)
2329                 return NULL;
2330         status = add_to_page_cache_lru(page, mapping, index,
2331                                                 GFP_KERNEL & ~gfp_notmask);
2332         if (unlikely(status)) {
2333                 page_cache_release(page);
2334                 if (status == -EEXIST)
2335                         goto repeat;
2336                 return NULL;
2337         }
2338 found:
2339         wait_for_stable_page(page);
2340         return page;
2341 }
2342 EXPORT_SYMBOL(grab_cache_page_write_begin);
2343
2344 static ssize_t generic_perform_write(struct file *file,
2345                                 struct iov_iter *i, loff_t pos)
2346 {
2347         struct address_space *mapping = file->f_mapping;
2348         const struct address_space_operations *a_ops = mapping->a_ops;
2349         long status = 0;
2350         ssize_t written = 0;
2351         unsigned int flags = 0;
2352
2353         trace_mm_filemap_generic_perform_write(file, pos, iov_iter_count(i), 0);
2354
2355         /*
2356          * Copies from kernel address space cannot fail (NFSD is a big user).
2357          */
2358         if (segment_eq(get_fs(), KERNEL_DS))
2359                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2360
2361         do {
2362                 struct page *page;
2363                 unsigned long offset;   /* Offset into pagecache page */
2364                 unsigned long bytes;    /* Bytes to write to page */
2365                 size_t copied;          /* Bytes copied from user */
2366                 void *fsdata;
2367
2368                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2369                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2370                                                 iov_iter_count(i));
2371
2372 again:
2373                 /*
2374                  * Bring in the user page that we will copy from _first_.
2375                  * Otherwise there's a nasty deadlock on copying from the
2376                  * same page as we're writing to, without it being marked
2377                  * up-to-date.
2378                  *
2379                  * Not only is this an optimisation, but it is also required
2380                  * to check that the address is actually valid, when atomic
2381                  * usercopies are used, below.
2382                  */
2383                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2384                         status = -EFAULT;
2385                         break;
2386                 }
2387
2388                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2389                                                 &page, &fsdata);
2390                 if (unlikely(status))
2391                         break;
2392
2393                 if (mapping_writably_mapped(mapping))
2394                         flush_dcache_page(page);
2395
2396                 pagefault_disable();
2397                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2398                 pagefault_enable();
2399                 flush_dcache_page(page);
2400
2401                 mark_page_accessed(page);
2402                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2403                                                 page, fsdata);
2404                 if (unlikely(status < 0))
2405                         break;
2406                 copied = status;
2407
2408                 cond_resched();
2409
2410                 iov_iter_advance(i, copied);
2411                 if (unlikely(copied == 0)) {
2412                         /*
2413                          * If we were unable to copy any data at all, we must
2414                          * fall back to a single segment length write.
2415                          *
2416                          * If we didn't fallback here, we could livelock
2417                          * because not all segments in the iov can be copied at
2418                          * once without a pagefault.
2419                          */
2420                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2421                                                 iov_iter_single_seg_count(i));
2422                         goto again;
2423                 }
2424                 pos += copied;
2425                 written += copied;
2426
2427                 balance_dirty_pages_ratelimited(mapping);
2428                 if (fatal_signal_pending(current)) {
2429                         status = -EINTR;
2430                         break;
2431                 }
2432         } while (iov_iter_count(i));
2433
2434         return written ? written : status;
2435 }
2436
2437 ssize_t
2438 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2439                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2440                 size_t count, ssize_t written)
2441 {
2442         struct file *file = iocb->ki_filp;
2443         ssize_t status;
2444         struct iov_iter i;
2445
2446         iov_iter_init(&i, iov, nr_segs, count, written);
2447         status = generic_perform_write(file, &i, pos);
2448
2449         if (likely(status >= 0)) {
2450                 written += status;
2451                 *ppos = pos + status;
2452         }
2453
2454         return written ? written : status;
2455 }
2456 EXPORT_SYMBOL(generic_file_buffered_write);
2457
2458 /**
2459  * __generic_file_aio_write - write data to a file
2460  * @iocb:       IO state structure (file, offset, etc.)
2461  * @iov:        vector with data to write
2462  * @nr_segs:    number of segments in the vector
2463  * @ppos:       position where to write
2464  *
2465  * This function does all the work needed for actually writing data to a
2466  * file. It does all basic checks, removes SUID from the file, updates
2467  * modification times and calls proper subroutines depending on whether we
2468  * do direct IO or a standard buffered write.
2469  *
2470  * It expects i_mutex to be grabbed unless we work on a block device or similar
2471  * object which does not need locking at all.
2472  *
2473  * This function does *not* take care of syncing data in case of O_SYNC write.
2474  * A caller has to handle it. This is mainly due to the fact that we want to
2475  * avoid syncing under i_mutex.
2476  */
2477 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2478                                  unsigned long nr_segs, loff_t *ppos)
2479 {
2480         struct file *file = iocb->ki_filp;
2481         struct address_space * mapping = file->f_mapping;
2482         size_t ocount;          /* original count */
2483         size_t count;           /* after file limit checks */
2484         struct inode    *inode = mapping->host;
2485         loff_t          pos;
2486         ssize_t         written;
2487         ssize_t         err;
2488
2489         ocount = 0;
2490         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2491         if (err)
2492                 return err;
2493
2494         count = ocount;
2495         pos = *ppos;
2496
2497         /* We can write back this queue in page reclaim */
2498         current->backing_dev_info = mapping->backing_dev_info;
2499         written = 0;
2500
2501         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2502         if (err)
2503                 goto out;
2504
2505         if (count == 0)
2506                 goto out;
2507
2508         err = file_remove_suid(file);
2509         if (err)
2510                 goto out;
2511
2512         err = file_update_time(file);
2513         if (err)
2514                 goto out;
2515
2516         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2517         if (unlikely(file->f_flags & O_DIRECT)) {
2518                 loff_t endbyte;
2519                 ssize_t written_buffered;
2520
2521                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2522                                                         ppos, count, ocount);
2523                 if (written < 0 || written == count)
2524                         goto out;
2525                 /*
2526                  * direct-io write to a hole: fall through to buffered I/O
2527                  * for completing the rest of the request.
2528                  */
2529                 pos += written;
2530                 count -= written;
2531                 written_buffered = generic_file_buffered_write(iocb, iov,
2532                                                 nr_segs, pos, ppos, count,
2533                                                 written);
2534                 /*
2535                  * If generic_file_buffered_write() retuned a synchronous error
2536                  * then we want to return the number of bytes which were
2537                  * direct-written, or the error code if that was zero.  Note
2538                  * that this differs from normal direct-io semantics, which
2539                  * will return -EFOO even if some bytes were written.
2540                  */
2541                 if (written_buffered < 0) {
2542                         err = written_buffered;
2543                         goto out;
2544                 }
2545
2546                 /*
2547                  * We need to ensure that the page cache pages are written to
2548                  * disk and invalidated to preserve the expected O_DIRECT
2549                  * semantics.
2550                  */
2551                 endbyte = pos + written_buffered - written - 1;
2552                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2553                 if (err == 0) {
2554                         written = written_buffered;
2555                         invalidate_mapping_pages(mapping,
2556                                                  pos >> PAGE_CACHE_SHIFT,
2557                                                  endbyte >> PAGE_CACHE_SHIFT);
2558                 } else {
2559                         /*
2560                          * We don't know how much we wrote, so just return
2561                          * the number of bytes which were direct-written
2562                          */
2563                 }
2564         } else {
2565                 written = generic_file_buffered_write(iocb, iov, nr_segs,
2566                                 pos, ppos, count, written);
2567         }
2568 out:
2569         current->backing_dev_info = NULL;
2570         return written ? written : err;
2571 }
2572 EXPORT_SYMBOL(__generic_file_aio_write);
2573
2574 /**
2575  * generic_file_aio_write - write data to a file
2576  * @iocb:       IO state structure
2577  * @iov:        vector with data to write
2578  * @nr_segs:    number of segments in the vector
2579  * @pos:        position in file where to write
2580  *
2581  * This is a wrapper around __generic_file_aio_write() to be used by most
2582  * filesystems. It takes care of syncing the file in case of O_SYNC file
2583  * and acquires i_mutex as needed.
2584  */
2585 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2586                 unsigned long nr_segs, loff_t pos)
2587 {
2588         struct file *file = iocb->ki_filp;
2589         struct inode *inode = file->f_mapping->host;
2590         ssize_t ret;
2591
2592         BUG_ON(iocb->ki_pos != pos);
2593
2594         mutex_lock(&inode->i_mutex);
2595         ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2596         mutex_unlock(&inode->i_mutex);
2597
2598         if (ret > 0 || ret == -EIOCBQUEUED) {
2599                 ssize_t err;
2600
2601                 err = generic_write_sync(file, pos, ret);
2602                 if (err < 0 && ret > 0)
2603                         ret = err;
2604         }
2605         return ret;
2606 }
2607 EXPORT_SYMBOL(generic_file_aio_write);
2608
2609 /**
2610  * try_to_release_page() - release old fs-specific metadata on a page
2611  *
2612  * @page: the page which the kernel is trying to free
2613  * @gfp_mask: memory allocation flags (and I/O mode)
2614  *
2615  * The address_space is to try to release any data against the page
2616  * (presumably at page->private).  If the release was successful, return `1'.
2617  * Otherwise return zero.
2618  *
2619  * This may also be called if PG_fscache is set on a page, indicating that the
2620  * page is known to the local caching routines.
2621  *
2622  * The @gfp_mask argument specifies whether I/O may be performed to release
2623  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2624  *
2625  */
2626 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2627 {
2628         struct address_space * const mapping = page->mapping;
2629
2630         BUG_ON(!PageLocked(page));
2631         if (PageWriteback(page))
2632                 return 0;
2633
2634         if (mapping && mapping->a_ops->releasepage)
2635                 return mapping->a_ops->releasepage(page, gfp_mask);
2636         return try_to_free_buffers(page);
2637 }
2638
2639 EXPORT_SYMBOL(try_to_release_page);