Merge branch 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[firefly-linux-kernel-4.4.55.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22
23 #include "trace.h"
24
25 /*
26  * The ring buffer header is special. We must manually up keep it.
27  */
28 int ring_buffer_print_entry_header(struct trace_seq *s)
29 {
30         int ret;
31
32         ret = trace_seq_printf(s, "# compressed entry header\n");
33         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
34         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
35         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
36         ret = trace_seq_printf(s, "\n");
37         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
38                                RINGBUF_TYPE_PADDING);
39         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
40                                RINGBUF_TYPE_TIME_EXTEND);
41         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
42                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
43
44         return ret;
45 }
46
47 /*
48  * The ring buffer is made up of a list of pages. A separate list of pages is
49  * allocated for each CPU. A writer may only write to a buffer that is
50  * associated with the CPU it is currently executing on.  A reader may read
51  * from any per cpu buffer.
52  *
53  * The reader is special. For each per cpu buffer, the reader has its own
54  * reader page. When a reader has read the entire reader page, this reader
55  * page is swapped with another page in the ring buffer.
56  *
57  * Now, as long as the writer is off the reader page, the reader can do what
58  * ever it wants with that page. The writer will never write to that page
59  * again (as long as it is out of the ring buffer).
60  *
61  * Here's some silly ASCII art.
62  *
63  *   +------+
64  *   |reader|          RING BUFFER
65  *   |page  |
66  *   +------+        +---+   +---+   +---+
67  *                   |   |-->|   |-->|   |
68  *                   +---+   +---+   +---+
69  *                     ^               |
70  *                     |               |
71  *                     +---------------+
72  *
73  *
74  *   +------+
75  *   |reader|          RING BUFFER
76  *   |page  |------------------v
77  *   +------+        +---+   +---+   +---+
78  *                   |   |-->|   |-->|   |
79  *                   +---+   +---+   +---+
80  *                     ^               |
81  *                     |               |
82  *                     +---------------+
83  *
84  *
85  *   +------+
86  *   |reader|          RING BUFFER
87  *   |page  |------------------v
88  *   +------+        +---+   +---+   +---+
89  *      ^            |   |-->|   |-->|   |
90  *      |            +---+   +---+   +---+
91  *      |                              |
92  *      |                              |
93  *      +------------------------------+
94  *
95  *
96  *   +------+
97  *   |buffer|          RING BUFFER
98  *   |page  |------------------v
99  *   +------+        +---+   +---+   +---+
100  *      ^            |   |   |   |-->|   |
101  *      |   New      +---+   +---+   +---+
102  *      |  Reader------^               |
103  *      |   page                       |
104  *      +------------------------------+
105  *
106  *
107  * After we make this swap, the reader can hand this page off to the splice
108  * code and be done with it. It can even allocate a new page if it needs to
109  * and swap that into the ring buffer.
110  *
111  * We will be using cmpxchg soon to make all this lockless.
112  *
113  */
114
115 /*
116  * A fast way to enable or disable all ring buffers is to
117  * call tracing_on or tracing_off. Turning off the ring buffers
118  * prevents all ring buffers from being recorded to.
119  * Turning this switch on, makes it OK to write to the
120  * ring buffer, if the ring buffer is enabled itself.
121  *
122  * There's three layers that must be on in order to write
123  * to the ring buffer.
124  *
125  * 1) This global flag must be set.
126  * 2) The ring buffer must be enabled for recording.
127  * 3) The per cpu buffer must be enabled for recording.
128  *
129  * In case of an anomaly, this global flag has a bit set that
130  * will permantly disable all ring buffers.
131  */
132
133 /*
134  * Global flag to disable all recording to ring buffers
135  *  This has two bits: ON, DISABLED
136  *
137  *  ON   DISABLED
138  * ---- ----------
139  *   0      0        : ring buffers are off
140  *   1      0        : ring buffers are on
141  *   X      1        : ring buffers are permanently disabled
142  */
143
144 enum {
145         RB_BUFFERS_ON_BIT       = 0,
146         RB_BUFFERS_DISABLED_BIT = 1,
147 };
148
149 enum {
150         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
151         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
152 };
153
154 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
155
156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
157
158 /**
159  * tracing_on - enable all tracing buffers
160  *
161  * This function enables all tracing buffers that may have been
162  * disabled with tracing_off.
163  */
164 void tracing_on(void)
165 {
166         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
167 }
168 EXPORT_SYMBOL_GPL(tracing_on);
169
170 /**
171  * tracing_off - turn off all tracing buffers
172  *
173  * This function stops all tracing buffers from recording data.
174  * It does not disable any overhead the tracers themselves may
175  * be causing. This function simply causes all recording to
176  * the ring buffers to fail.
177  */
178 void tracing_off(void)
179 {
180         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
181 }
182 EXPORT_SYMBOL_GPL(tracing_off);
183
184 /**
185  * tracing_off_permanent - permanently disable ring buffers
186  *
187  * This function, once called, will disable all ring buffers
188  * permanently.
189  */
190 void tracing_off_permanent(void)
191 {
192         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
193 }
194
195 /**
196  * tracing_is_on - show state of ring buffers enabled
197  */
198 int tracing_is_on(void)
199 {
200         return ring_buffer_flags == RB_BUFFERS_ON;
201 }
202 EXPORT_SYMBOL_GPL(tracing_is_on);
203
204 #include "trace.h"
205
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT            4U
208 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
210
211 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
212 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
213
214 enum {
215         RB_LEN_TIME_EXTEND = 8,
216         RB_LEN_TIME_STAMP = 16,
217 };
218
219 static inline int rb_null_event(struct ring_buffer_event *event)
220 {
221         return event->type_len == RINGBUF_TYPE_PADDING
222                         && event->time_delta == 0;
223 }
224
225 static inline int rb_discarded_event(struct ring_buffer_event *event)
226 {
227         return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
228 }
229
230 static void rb_event_set_padding(struct ring_buffer_event *event)
231 {
232         event->type_len = RINGBUF_TYPE_PADDING;
233         event->time_delta = 0;
234 }
235
236 static unsigned
237 rb_event_data_length(struct ring_buffer_event *event)
238 {
239         unsigned length;
240
241         if (event->type_len)
242                 length = event->type_len * RB_ALIGNMENT;
243         else
244                 length = event->array[0];
245         return length + RB_EVNT_HDR_SIZE;
246 }
247
248 /* inline for ring buffer fast paths */
249 static unsigned
250 rb_event_length(struct ring_buffer_event *event)
251 {
252         switch (event->type_len) {
253         case RINGBUF_TYPE_PADDING:
254                 if (rb_null_event(event))
255                         /* undefined */
256                         return -1;
257                 return  event->array[0] + RB_EVNT_HDR_SIZE;
258
259         case RINGBUF_TYPE_TIME_EXTEND:
260                 return RB_LEN_TIME_EXTEND;
261
262         case RINGBUF_TYPE_TIME_STAMP:
263                 return RB_LEN_TIME_STAMP;
264
265         case RINGBUF_TYPE_DATA:
266                 return rb_event_data_length(event);
267         default:
268                 BUG();
269         }
270         /* not hit */
271         return 0;
272 }
273
274 /**
275  * ring_buffer_event_length - return the length of the event
276  * @event: the event to get the length of
277  */
278 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
279 {
280         unsigned length = rb_event_length(event);
281         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
282                 return length;
283         length -= RB_EVNT_HDR_SIZE;
284         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
285                 length -= sizeof(event->array[0]);
286         return length;
287 }
288 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
289
290 /* inline for ring buffer fast paths */
291 static void *
292 rb_event_data(struct ring_buffer_event *event)
293 {
294         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
295         /* If length is in len field, then array[0] has the data */
296         if (event->type_len)
297                 return (void *)&event->array[0];
298         /* Otherwise length is in array[0] and array[1] has the data */
299         return (void *)&event->array[1];
300 }
301
302 /**
303  * ring_buffer_event_data - return the data of the event
304  * @event: the event to get the data from
305  */
306 void *ring_buffer_event_data(struct ring_buffer_event *event)
307 {
308         return rb_event_data(event);
309 }
310 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
311
312 #define for_each_buffer_cpu(buffer, cpu)                \
313         for_each_cpu(cpu, buffer->cpumask)
314
315 #define TS_SHIFT        27
316 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
317 #define TS_DELTA_TEST   (~TS_MASK)
318
319 struct buffer_data_page {
320         u64              time_stamp;    /* page time stamp */
321         local_t          commit;        /* write committed index */
322         unsigned char    data[];        /* data of buffer page */
323 };
324
325 struct buffer_page {
326         struct list_head list;          /* list of buffer pages */
327         local_t          write;         /* index for next write */
328         unsigned         read;          /* index for next read */
329         local_t          entries;       /* entries on this page */
330         struct buffer_data_page *page;  /* Actual data page */
331 };
332
333 static void rb_init_page(struct buffer_data_page *bpage)
334 {
335         local_set(&bpage->commit, 0);
336 }
337
338 /**
339  * ring_buffer_page_len - the size of data on the page.
340  * @page: The page to read
341  *
342  * Returns the amount of data on the page, including buffer page header.
343  */
344 size_t ring_buffer_page_len(void *page)
345 {
346         return local_read(&((struct buffer_data_page *)page)->commit)
347                 + BUF_PAGE_HDR_SIZE;
348 }
349
350 /*
351  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
352  * this issue out.
353  */
354 static void free_buffer_page(struct buffer_page *bpage)
355 {
356         free_page((unsigned long)bpage->page);
357         kfree(bpage);
358 }
359
360 /*
361  * We need to fit the time_stamp delta into 27 bits.
362  */
363 static inline int test_time_stamp(u64 delta)
364 {
365         if (delta & TS_DELTA_TEST)
366                 return 1;
367         return 0;
368 }
369
370 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
371
372 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
373 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
374
375 /* Max number of timestamps that can fit on a page */
376 #define RB_TIMESTAMPS_PER_PAGE  (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
377
378 int ring_buffer_print_page_header(struct trace_seq *s)
379 {
380         struct buffer_data_page field;
381         int ret;
382
383         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
384                                "offset:0;\tsize:%u;\n",
385                                (unsigned int)sizeof(field.time_stamp));
386
387         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
388                                "offset:%u;\tsize:%u;\n",
389                                (unsigned int)offsetof(typeof(field), commit),
390                                (unsigned int)sizeof(field.commit));
391
392         ret = trace_seq_printf(s, "\tfield: char data;\t"
393                                "offset:%u;\tsize:%u;\n",
394                                (unsigned int)offsetof(typeof(field), data),
395                                (unsigned int)BUF_PAGE_SIZE);
396
397         return ret;
398 }
399
400 /*
401  * head_page == tail_page && head == tail then buffer is empty.
402  */
403 struct ring_buffer_per_cpu {
404         int                             cpu;
405         struct ring_buffer              *buffer;
406         spinlock_t                      reader_lock; /* serialize readers */
407         raw_spinlock_t                  lock;
408         struct lock_class_key           lock_key;
409         struct list_head                pages;
410         struct buffer_page              *head_page;     /* read from head */
411         struct buffer_page              *tail_page;     /* write to tail */
412         struct buffer_page              *commit_page;   /* committed pages */
413         struct buffer_page              *reader_page;
414         unsigned long                   nmi_dropped;
415         unsigned long                   commit_overrun;
416         unsigned long                   overrun;
417         unsigned long                   read;
418         local_t                         entries;
419         local_t                         committing;
420         local_t                         commits;
421         u64                             write_stamp;
422         u64                             read_stamp;
423         atomic_t                        record_disabled;
424 };
425
426 struct ring_buffer {
427         unsigned                        pages;
428         unsigned                        flags;
429         int                             cpus;
430         atomic_t                        record_disabled;
431         cpumask_var_t                   cpumask;
432
433         struct lock_class_key           *reader_lock_key;
434
435         struct mutex                    mutex;
436
437         struct ring_buffer_per_cpu      **buffers;
438
439 #ifdef CONFIG_HOTPLUG_CPU
440         struct notifier_block           cpu_notify;
441 #endif
442         u64                             (*clock)(void);
443 };
444
445 struct ring_buffer_iter {
446         struct ring_buffer_per_cpu      *cpu_buffer;
447         unsigned long                   head;
448         struct buffer_page              *head_page;
449         u64                             read_stamp;
450 };
451
452 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
453 #define RB_WARN_ON(buffer, cond)                                \
454         ({                                                      \
455                 int _____ret = unlikely(cond);                  \
456                 if (_____ret) {                                 \
457                         atomic_inc(&buffer->record_disabled);   \
458                         WARN_ON(1);                             \
459                 }                                               \
460                 _____ret;                                       \
461         })
462
463 /* Up this if you want to test the TIME_EXTENTS and normalization */
464 #define DEBUG_SHIFT 0
465
466 static inline u64 rb_time_stamp(struct ring_buffer *buffer, int cpu)
467 {
468         /* shift to debug/test normalization and TIME_EXTENTS */
469         return buffer->clock() << DEBUG_SHIFT;
470 }
471
472 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
473 {
474         u64 time;
475
476         preempt_disable_notrace();
477         time = rb_time_stamp(buffer, cpu);
478         preempt_enable_no_resched_notrace();
479
480         return time;
481 }
482 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
483
484 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
485                                       int cpu, u64 *ts)
486 {
487         /* Just stupid testing the normalize function and deltas */
488         *ts >>= DEBUG_SHIFT;
489 }
490 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
491
492 /**
493  * check_pages - integrity check of buffer pages
494  * @cpu_buffer: CPU buffer with pages to test
495  *
496  * As a safety measure we check to make sure the data pages have not
497  * been corrupted.
498  */
499 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
500 {
501         struct list_head *head = &cpu_buffer->pages;
502         struct buffer_page *bpage, *tmp;
503
504         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
505                 return -1;
506         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
507                 return -1;
508
509         list_for_each_entry_safe(bpage, tmp, head, list) {
510                 if (RB_WARN_ON(cpu_buffer,
511                                bpage->list.next->prev != &bpage->list))
512                         return -1;
513                 if (RB_WARN_ON(cpu_buffer,
514                                bpage->list.prev->next != &bpage->list))
515                         return -1;
516         }
517
518         return 0;
519 }
520
521 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
522                              unsigned nr_pages)
523 {
524         struct list_head *head = &cpu_buffer->pages;
525         struct buffer_page *bpage, *tmp;
526         unsigned long addr;
527         LIST_HEAD(pages);
528         unsigned i;
529
530         for (i = 0; i < nr_pages; i++) {
531                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
532                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
533                 if (!bpage)
534                         goto free_pages;
535                 list_add(&bpage->list, &pages);
536
537                 addr = __get_free_page(GFP_KERNEL);
538                 if (!addr)
539                         goto free_pages;
540                 bpage->page = (void *)addr;
541                 rb_init_page(bpage->page);
542         }
543
544         list_splice(&pages, head);
545
546         rb_check_pages(cpu_buffer);
547
548         return 0;
549
550  free_pages:
551         list_for_each_entry_safe(bpage, tmp, &pages, list) {
552                 list_del_init(&bpage->list);
553                 free_buffer_page(bpage);
554         }
555         return -ENOMEM;
556 }
557
558 static struct ring_buffer_per_cpu *
559 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
560 {
561         struct ring_buffer_per_cpu *cpu_buffer;
562         struct buffer_page *bpage;
563         unsigned long addr;
564         int ret;
565
566         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
567                                   GFP_KERNEL, cpu_to_node(cpu));
568         if (!cpu_buffer)
569                 return NULL;
570
571         cpu_buffer->cpu = cpu;
572         cpu_buffer->buffer = buffer;
573         spin_lock_init(&cpu_buffer->reader_lock);
574         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
575         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
576         INIT_LIST_HEAD(&cpu_buffer->pages);
577
578         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
579                             GFP_KERNEL, cpu_to_node(cpu));
580         if (!bpage)
581                 goto fail_free_buffer;
582
583         cpu_buffer->reader_page = bpage;
584         addr = __get_free_page(GFP_KERNEL);
585         if (!addr)
586                 goto fail_free_reader;
587         bpage->page = (void *)addr;
588         rb_init_page(bpage->page);
589
590         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
591
592         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
593         if (ret < 0)
594                 goto fail_free_reader;
595
596         cpu_buffer->head_page
597                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
598         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
599
600         return cpu_buffer;
601
602  fail_free_reader:
603         free_buffer_page(cpu_buffer->reader_page);
604
605  fail_free_buffer:
606         kfree(cpu_buffer);
607         return NULL;
608 }
609
610 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
611 {
612         struct list_head *head = &cpu_buffer->pages;
613         struct buffer_page *bpage, *tmp;
614
615         free_buffer_page(cpu_buffer->reader_page);
616
617         list_for_each_entry_safe(bpage, tmp, head, list) {
618                 list_del_init(&bpage->list);
619                 free_buffer_page(bpage);
620         }
621         kfree(cpu_buffer);
622 }
623
624 #ifdef CONFIG_HOTPLUG_CPU
625 static int rb_cpu_notify(struct notifier_block *self,
626                          unsigned long action, void *hcpu);
627 #endif
628
629 /**
630  * ring_buffer_alloc - allocate a new ring_buffer
631  * @size: the size in bytes per cpu that is needed.
632  * @flags: attributes to set for the ring buffer.
633  *
634  * Currently the only flag that is available is the RB_FL_OVERWRITE
635  * flag. This flag means that the buffer will overwrite old data
636  * when the buffer wraps. If this flag is not set, the buffer will
637  * drop data when the tail hits the head.
638  */
639 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
640                                         struct lock_class_key *key)
641 {
642         struct ring_buffer *buffer;
643         int bsize;
644         int cpu;
645
646         /* keep it in its own cache line */
647         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
648                          GFP_KERNEL);
649         if (!buffer)
650                 return NULL;
651
652         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
653                 goto fail_free_buffer;
654
655         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
656         buffer->flags = flags;
657         buffer->clock = trace_clock_local;
658         buffer->reader_lock_key = key;
659
660         /* need at least two pages */
661         if (buffer->pages < 2)
662                 buffer->pages = 2;
663
664         /*
665          * In case of non-hotplug cpu, if the ring-buffer is allocated
666          * in early initcall, it will not be notified of secondary cpus.
667          * In that off case, we need to allocate for all possible cpus.
668          */
669 #ifdef CONFIG_HOTPLUG_CPU
670         get_online_cpus();
671         cpumask_copy(buffer->cpumask, cpu_online_mask);
672 #else
673         cpumask_copy(buffer->cpumask, cpu_possible_mask);
674 #endif
675         buffer->cpus = nr_cpu_ids;
676
677         bsize = sizeof(void *) * nr_cpu_ids;
678         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
679                                   GFP_KERNEL);
680         if (!buffer->buffers)
681                 goto fail_free_cpumask;
682
683         for_each_buffer_cpu(buffer, cpu) {
684                 buffer->buffers[cpu] =
685                         rb_allocate_cpu_buffer(buffer, cpu);
686                 if (!buffer->buffers[cpu])
687                         goto fail_free_buffers;
688         }
689
690 #ifdef CONFIG_HOTPLUG_CPU
691         buffer->cpu_notify.notifier_call = rb_cpu_notify;
692         buffer->cpu_notify.priority = 0;
693         register_cpu_notifier(&buffer->cpu_notify);
694 #endif
695
696         put_online_cpus();
697         mutex_init(&buffer->mutex);
698
699         return buffer;
700
701  fail_free_buffers:
702         for_each_buffer_cpu(buffer, cpu) {
703                 if (buffer->buffers[cpu])
704                         rb_free_cpu_buffer(buffer->buffers[cpu]);
705         }
706         kfree(buffer->buffers);
707
708  fail_free_cpumask:
709         free_cpumask_var(buffer->cpumask);
710         put_online_cpus();
711
712  fail_free_buffer:
713         kfree(buffer);
714         return NULL;
715 }
716 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
717
718 /**
719  * ring_buffer_free - free a ring buffer.
720  * @buffer: the buffer to free.
721  */
722 void
723 ring_buffer_free(struct ring_buffer *buffer)
724 {
725         int cpu;
726
727         get_online_cpus();
728
729 #ifdef CONFIG_HOTPLUG_CPU
730         unregister_cpu_notifier(&buffer->cpu_notify);
731 #endif
732
733         for_each_buffer_cpu(buffer, cpu)
734                 rb_free_cpu_buffer(buffer->buffers[cpu]);
735
736         put_online_cpus();
737
738         free_cpumask_var(buffer->cpumask);
739
740         kfree(buffer);
741 }
742 EXPORT_SYMBOL_GPL(ring_buffer_free);
743
744 void ring_buffer_set_clock(struct ring_buffer *buffer,
745                            u64 (*clock)(void))
746 {
747         buffer->clock = clock;
748 }
749
750 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
751
752 static void
753 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
754 {
755         struct buffer_page *bpage;
756         struct list_head *p;
757         unsigned i;
758
759         atomic_inc(&cpu_buffer->record_disabled);
760         synchronize_sched();
761
762         for (i = 0; i < nr_pages; i++) {
763                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
764                         return;
765                 p = cpu_buffer->pages.next;
766                 bpage = list_entry(p, struct buffer_page, list);
767                 list_del_init(&bpage->list);
768                 free_buffer_page(bpage);
769         }
770         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
771                 return;
772
773         rb_reset_cpu(cpu_buffer);
774
775         rb_check_pages(cpu_buffer);
776
777         atomic_dec(&cpu_buffer->record_disabled);
778
779 }
780
781 static void
782 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
783                 struct list_head *pages, unsigned nr_pages)
784 {
785         struct buffer_page *bpage;
786         struct list_head *p;
787         unsigned i;
788
789         atomic_inc(&cpu_buffer->record_disabled);
790         synchronize_sched();
791
792         for (i = 0; i < nr_pages; i++) {
793                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
794                         return;
795                 p = pages->next;
796                 bpage = list_entry(p, struct buffer_page, list);
797                 list_del_init(&bpage->list);
798                 list_add_tail(&bpage->list, &cpu_buffer->pages);
799         }
800         rb_reset_cpu(cpu_buffer);
801
802         rb_check_pages(cpu_buffer);
803
804         atomic_dec(&cpu_buffer->record_disabled);
805 }
806
807 /**
808  * ring_buffer_resize - resize the ring buffer
809  * @buffer: the buffer to resize.
810  * @size: the new size.
811  *
812  * The tracer is responsible for making sure that the buffer is
813  * not being used while changing the size.
814  * Note: We may be able to change the above requirement by using
815  *  RCU synchronizations.
816  *
817  * Minimum size is 2 * BUF_PAGE_SIZE.
818  *
819  * Returns -1 on failure.
820  */
821 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
822 {
823         struct ring_buffer_per_cpu *cpu_buffer;
824         unsigned nr_pages, rm_pages, new_pages;
825         struct buffer_page *bpage, *tmp;
826         unsigned long buffer_size;
827         unsigned long addr;
828         LIST_HEAD(pages);
829         int i, cpu;
830
831         /*
832          * Always succeed at resizing a non-existent buffer:
833          */
834         if (!buffer)
835                 return size;
836
837         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
838         size *= BUF_PAGE_SIZE;
839         buffer_size = buffer->pages * BUF_PAGE_SIZE;
840
841         /* we need a minimum of two pages */
842         if (size < BUF_PAGE_SIZE * 2)
843                 size = BUF_PAGE_SIZE * 2;
844
845         if (size == buffer_size)
846                 return size;
847
848         mutex_lock(&buffer->mutex);
849         get_online_cpus();
850
851         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
852
853         if (size < buffer_size) {
854
855                 /* easy case, just free pages */
856                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
857                         goto out_fail;
858
859                 rm_pages = buffer->pages - nr_pages;
860
861                 for_each_buffer_cpu(buffer, cpu) {
862                         cpu_buffer = buffer->buffers[cpu];
863                         rb_remove_pages(cpu_buffer, rm_pages);
864                 }
865                 goto out;
866         }
867
868         /*
869          * This is a bit more difficult. We only want to add pages
870          * when we can allocate enough for all CPUs. We do this
871          * by allocating all the pages and storing them on a local
872          * link list. If we succeed in our allocation, then we
873          * add these pages to the cpu_buffers. Otherwise we just free
874          * them all and return -ENOMEM;
875          */
876         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
877                 goto out_fail;
878
879         new_pages = nr_pages - buffer->pages;
880
881         for_each_buffer_cpu(buffer, cpu) {
882                 for (i = 0; i < new_pages; i++) {
883                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
884                                                   cache_line_size()),
885                                             GFP_KERNEL, cpu_to_node(cpu));
886                         if (!bpage)
887                                 goto free_pages;
888                         list_add(&bpage->list, &pages);
889                         addr = __get_free_page(GFP_KERNEL);
890                         if (!addr)
891                                 goto free_pages;
892                         bpage->page = (void *)addr;
893                         rb_init_page(bpage->page);
894                 }
895         }
896
897         for_each_buffer_cpu(buffer, cpu) {
898                 cpu_buffer = buffer->buffers[cpu];
899                 rb_insert_pages(cpu_buffer, &pages, new_pages);
900         }
901
902         if (RB_WARN_ON(buffer, !list_empty(&pages)))
903                 goto out_fail;
904
905  out:
906         buffer->pages = nr_pages;
907         put_online_cpus();
908         mutex_unlock(&buffer->mutex);
909
910         return size;
911
912  free_pages:
913         list_for_each_entry_safe(bpage, tmp, &pages, list) {
914                 list_del_init(&bpage->list);
915                 free_buffer_page(bpage);
916         }
917         put_online_cpus();
918         mutex_unlock(&buffer->mutex);
919         return -ENOMEM;
920
921         /*
922          * Something went totally wrong, and we are too paranoid
923          * to even clean up the mess.
924          */
925  out_fail:
926         put_online_cpus();
927         mutex_unlock(&buffer->mutex);
928         return -1;
929 }
930 EXPORT_SYMBOL_GPL(ring_buffer_resize);
931
932 static inline void *
933 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
934 {
935         return bpage->data + index;
936 }
937
938 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
939 {
940         return bpage->page->data + index;
941 }
942
943 static inline struct ring_buffer_event *
944 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
945 {
946         return __rb_page_index(cpu_buffer->reader_page,
947                                cpu_buffer->reader_page->read);
948 }
949
950 static inline struct ring_buffer_event *
951 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
952 {
953         return __rb_page_index(cpu_buffer->head_page,
954                                cpu_buffer->head_page->read);
955 }
956
957 static inline struct ring_buffer_event *
958 rb_iter_head_event(struct ring_buffer_iter *iter)
959 {
960         return __rb_page_index(iter->head_page, iter->head);
961 }
962
963 static inline unsigned rb_page_write(struct buffer_page *bpage)
964 {
965         return local_read(&bpage->write);
966 }
967
968 static inline unsigned rb_page_commit(struct buffer_page *bpage)
969 {
970         return local_read(&bpage->page->commit);
971 }
972
973 /* Size is determined by what has been commited */
974 static inline unsigned rb_page_size(struct buffer_page *bpage)
975 {
976         return rb_page_commit(bpage);
977 }
978
979 static inline unsigned
980 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
981 {
982         return rb_page_commit(cpu_buffer->commit_page);
983 }
984
985 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
986 {
987         return rb_page_commit(cpu_buffer->head_page);
988 }
989
990 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
991                                struct buffer_page **bpage)
992 {
993         struct list_head *p = (*bpage)->list.next;
994
995         if (p == &cpu_buffer->pages)
996                 p = p->next;
997
998         *bpage = list_entry(p, struct buffer_page, list);
999 }
1000
1001 static inline unsigned
1002 rb_event_index(struct ring_buffer_event *event)
1003 {
1004         unsigned long addr = (unsigned long)event;
1005
1006         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1007 }
1008
1009 static inline int
1010 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1011                    struct ring_buffer_event *event)
1012 {
1013         unsigned long addr = (unsigned long)event;
1014         unsigned long index;
1015
1016         index = rb_event_index(event);
1017         addr &= PAGE_MASK;
1018
1019         return cpu_buffer->commit_page->page == (void *)addr &&
1020                 rb_commit_index(cpu_buffer) == index;
1021 }
1022
1023 static void
1024 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1025 {
1026         /*
1027          * We only race with interrupts and NMIs on this CPU.
1028          * If we own the commit event, then we can commit
1029          * all others that interrupted us, since the interruptions
1030          * are in stack format (they finish before they come
1031          * back to us). This allows us to do a simple loop to
1032          * assign the commit to the tail.
1033          */
1034  again:
1035         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1036                 cpu_buffer->commit_page->page->commit =
1037                         cpu_buffer->commit_page->write;
1038                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1039                 cpu_buffer->write_stamp =
1040                         cpu_buffer->commit_page->page->time_stamp;
1041                 /* add barrier to keep gcc from optimizing too much */
1042                 barrier();
1043         }
1044         while (rb_commit_index(cpu_buffer) !=
1045                rb_page_write(cpu_buffer->commit_page)) {
1046                 cpu_buffer->commit_page->page->commit =
1047                         cpu_buffer->commit_page->write;
1048                 barrier();
1049         }
1050
1051         /* again, keep gcc from optimizing */
1052         barrier();
1053
1054         /*
1055          * If an interrupt came in just after the first while loop
1056          * and pushed the tail page forward, we will be left with
1057          * a dangling commit that will never go forward.
1058          */
1059         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1060                 goto again;
1061 }
1062
1063 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1064 {
1065         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1066         cpu_buffer->reader_page->read = 0;
1067 }
1068
1069 static void rb_inc_iter(struct ring_buffer_iter *iter)
1070 {
1071         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1072
1073         /*
1074          * The iterator could be on the reader page (it starts there).
1075          * But the head could have moved, since the reader was
1076          * found. Check for this case and assign the iterator
1077          * to the head page instead of next.
1078          */
1079         if (iter->head_page == cpu_buffer->reader_page)
1080                 iter->head_page = cpu_buffer->head_page;
1081         else
1082                 rb_inc_page(cpu_buffer, &iter->head_page);
1083
1084         iter->read_stamp = iter->head_page->page->time_stamp;
1085         iter->head = 0;
1086 }
1087
1088 /**
1089  * ring_buffer_update_event - update event type and data
1090  * @event: the even to update
1091  * @type: the type of event
1092  * @length: the size of the event field in the ring buffer
1093  *
1094  * Update the type and data fields of the event. The length
1095  * is the actual size that is written to the ring buffer,
1096  * and with this, we can determine what to place into the
1097  * data field.
1098  */
1099 static void
1100 rb_update_event(struct ring_buffer_event *event,
1101                          unsigned type, unsigned length)
1102 {
1103         event->type_len = type;
1104
1105         switch (type) {
1106
1107         case RINGBUF_TYPE_PADDING:
1108         case RINGBUF_TYPE_TIME_EXTEND:
1109         case RINGBUF_TYPE_TIME_STAMP:
1110                 break;
1111
1112         case 0:
1113                 length -= RB_EVNT_HDR_SIZE;
1114                 if (length > RB_MAX_SMALL_DATA)
1115                         event->array[0] = length;
1116                 else
1117                         event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1118                 break;
1119         default:
1120                 BUG();
1121         }
1122 }
1123
1124 static unsigned rb_calculate_event_length(unsigned length)
1125 {
1126         struct ring_buffer_event event; /* Used only for sizeof array */
1127
1128         /* zero length can cause confusions */
1129         if (!length)
1130                 length = 1;
1131
1132         if (length > RB_MAX_SMALL_DATA)
1133                 length += sizeof(event.array[0]);
1134
1135         length += RB_EVNT_HDR_SIZE;
1136         length = ALIGN(length, RB_ALIGNMENT);
1137
1138         return length;
1139 }
1140
1141 static inline void
1142 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1143               struct buffer_page *tail_page,
1144               unsigned long tail, unsigned long length)
1145 {
1146         struct ring_buffer_event *event;
1147
1148         /*
1149          * Only the event that crossed the page boundary
1150          * must fill the old tail_page with padding.
1151          */
1152         if (tail >= BUF_PAGE_SIZE) {
1153                 local_sub(length, &tail_page->write);
1154                 return;
1155         }
1156
1157         event = __rb_page_index(tail_page, tail);
1158         kmemcheck_annotate_bitfield(event, bitfield);
1159
1160         /*
1161          * If this event is bigger than the minimum size, then
1162          * we need to be careful that we don't subtract the
1163          * write counter enough to allow another writer to slip
1164          * in on this page.
1165          * We put in a discarded commit instead, to make sure
1166          * that this space is not used again.
1167          *
1168          * If we are less than the minimum size, we don't need to
1169          * worry about it.
1170          */
1171         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1172                 /* No room for any events */
1173
1174                 /* Mark the rest of the page with padding */
1175                 rb_event_set_padding(event);
1176
1177                 /* Set the write back to the previous setting */
1178                 local_sub(length, &tail_page->write);
1179                 return;
1180         }
1181
1182         /* Put in a discarded event */
1183         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1184         event->type_len = RINGBUF_TYPE_PADDING;
1185         /* time delta must be non zero */
1186         event->time_delta = 1;
1187         /* Account for this as an entry */
1188         local_inc(&tail_page->entries);
1189         local_inc(&cpu_buffer->entries);
1190
1191         /* Set write to end of buffer */
1192         length = (tail + length) - BUF_PAGE_SIZE;
1193         local_sub(length, &tail_page->write);
1194 }
1195
1196 static struct ring_buffer_event *
1197 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1198              unsigned long length, unsigned long tail,
1199              struct buffer_page *commit_page,
1200              struct buffer_page *tail_page, u64 *ts)
1201 {
1202         struct buffer_page *next_page, *head_page, *reader_page;
1203         struct ring_buffer *buffer = cpu_buffer->buffer;
1204         bool lock_taken = false;
1205         unsigned long flags;
1206
1207         next_page = tail_page;
1208
1209         local_irq_save(flags);
1210         /*
1211          * Since the write to the buffer is still not
1212          * fully lockless, we must be careful with NMIs.
1213          * The locks in the writers are taken when a write
1214          * crosses to a new page. The locks protect against
1215          * races with the readers (this will soon be fixed
1216          * with a lockless solution).
1217          *
1218          * Because we can not protect against NMIs, and we
1219          * want to keep traces reentrant, we need to manage
1220          * what happens when we are in an NMI.
1221          *
1222          * NMIs can happen after we take the lock.
1223          * If we are in an NMI, only take the lock
1224          * if it is not already taken. Otherwise
1225          * simply fail.
1226          */
1227         if (unlikely(in_nmi())) {
1228                 if (!__raw_spin_trylock(&cpu_buffer->lock)) {
1229                         cpu_buffer->nmi_dropped++;
1230                         goto out_reset;
1231                 }
1232         } else
1233                 __raw_spin_lock(&cpu_buffer->lock);
1234
1235         lock_taken = true;
1236
1237         rb_inc_page(cpu_buffer, &next_page);
1238
1239         head_page = cpu_buffer->head_page;
1240         reader_page = cpu_buffer->reader_page;
1241
1242         /* we grabbed the lock before incrementing */
1243         if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1244                 goto out_reset;
1245
1246         /*
1247          * If for some reason, we had an interrupt storm that made
1248          * it all the way around the buffer, bail, and warn
1249          * about it.
1250          */
1251         if (unlikely(next_page == commit_page)) {
1252                 cpu_buffer->commit_overrun++;
1253                 goto out_reset;
1254         }
1255
1256         if (next_page == head_page) {
1257                 if (!(buffer->flags & RB_FL_OVERWRITE))
1258                         goto out_reset;
1259
1260                 /* tail_page has not moved yet? */
1261                 if (tail_page == cpu_buffer->tail_page) {
1262                         /* count overflows */
1263                         cpu_buffer->overrun +=
1264                                 local_read(&head_page->entries);
1265
1266                         rb_inc_page(cpu_buffer, &head_page);
1267                         cpu_buffer->head_page = head_page;
1268                         cpu_buffer->head_page->read = 0;
1269                 }
1270         }
1271
1272         /*
1273          * If the tail page is still the same as what we think
1274          * it is, then it is up to us to update the tail
1275          * pointer.
1276          */
1277         if (tail_page == cpu_buffer->tail_page) {
1278                 local_set(&next_page->write, 0);
1279                 local_set(&next_page->entries, 0);
1280                 local_set(&next_page->page->commit, 0);
1281                 cpu_buffer->tail_page = next_page;
1282
1283                 /* reread the time stamp */
1284                 *ts = rb_time_stamp(buffer, cpu_buffer->cpu);
1285                 cpu_buffer->tail_page->page->time_stamp = *ts;
1286         }
1287
1288         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1289
1290         __raw_spin_unlock(&cpu_buffer->lock);
1291         local_irq_restore(flags);
1292
1293         /* fail and let the caller try again */
1294         return ERR_PTR(-EAGAIN);
1295
1296  out_reset:
1297         /* reset write */
1298         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1299
1300         if (likely(lock_taken))
1301                 __raw_spin_unlock(&cpu_buffer->lock);
1302         local_irq_restore(flags);
1303         return NULL;
1304 }
1305
1306 static struct ring_buffer_event *
1307 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1308                   unsigned type, unsigned long length, u64 *ts)
1309 {
1310         struct buffer_page *tail_page, *commit_page;
1311         struct ring_buffer_event *event;
1312         unsigned long tail, write;
1313
1314         commit_page = cpu_buffer->commit_page;
1315         /* we just need to protect against interrupts */
1316         barrier();
1317         tail_page = cpu_buffer->tail_page;
1318         write = local_add_return(length, &tail_page->write);
1319         tail = write - length;
1320
1321         /* See if we shot pass the end of this buffer page */
1322         if (write > BUF_PAGE_SIZE)
1323                 return rb_move_tail(cpu_buffer, length, tail,
1324                                     commit_page, tail_page, ts);
1325
1326         /* We reserved something on the buffer */
1327
1328         event = __rb_page_index(tail_page, tail);
1329         kmemcheck_annotate_bitfield(event, bitfield);
1330         rb_update_event(event, type, length);
1331
1332         /* The passed in type is zero for DATA */
1333         if (likely(!type))
1334                 local_inc(&tail_page->entries);
1335
1336         /*
1337          * If this is the first commit on the page, then update
1338          * its timestamp.
1339          */
1340         if (!tail)
1341                 tail_page->page->time_stamp = *ts;
1342
1343         return event;
1344 }
1345
1346 static inline int
1347 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1348                   struct ring_buffer_event *event)
1349 {
1350         unsigned long new_index, old_index;
1351         struct buffer_page *bpage;
1352         unsigned long index;
1353         unsigned long addr;
1354
1355         new_index = rb_event_index(event);
1356         old_index = new_index + rb_event_length(event);
1357         addr = (unsigned long)event;
1358         addr &= PAGE_MASK;
1359
1360         bpage = cpu_buffer->tail_page;
1361
1362         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1363                 /*
1364                  * This is on the tail page. It is possible that
1365                  * a write could come in and move the tail page
1366                  * and write to the next page. That is fine
1367                  * because we just shorten what is on this page.
1368                  */
1369                 index = local_cmpxchg(&bpage->write, old_index, new_index);
1370                 if (index == old_index)
1371                         return 1;
1372         }
1373
1374         /* could not discard */
1375         return 0;
1376 }
1377
1378 static int
1379 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1380                   u64 *ts, u64 *delta)
1381 {
1382         struct ring_buffer_event *event;
1383         static int once;
1384         int ret;
1385
1386         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1387                 printk(KERN_WARNING "Delta way too big! %llu"
1388                        " ts=%llu write stamp = %llu\n",
1389                        (unsigned long long)*delta,
1390                        (unsigned long long)*ts,
1391                        (unsigned long long)cpu_buffer->write_stamp);
1392                 WARN_ON(1);
1393         }
1394
1395         /*
1396          * The delta is too big, we to add a
1397          * new timestamp.
1398          */
1399         event = __rb_reserve_next(cpu_buffer,
1400                                   RINGBUF_TYPE_TIME_EXTEND,
1401                                   RB_LEN_TIME_EXTEND,
1402                                   ts);
1403         if (!event)
1404                 return -EBUSY;
1405
1406         if (PTR_ERR(event) == -EAGAIN)
1407                 return -EAGAIN;
1408
1409         /* Only a commited time event can update the write stamp */
1410         if (rb_event_is_commit(cpu_buffer, event)) {
1411                 /*
1412                  * If this is the first on the page, then it was
1413                  * updated with the page itself. Try to discard it
1414                  * and if we can't just make it zero.
1415                  */
1416                 if (rb_event_index(event)) {
1417                         event->time_delta = *delta & TS_MASK;
1418                         event->array[0] = *delta >> TS_SHIFT;
1419                 } else {
1420                         /* try to discard, since we do not need this */
1421                         if (!rb_try_to_discard(cpu_buffer, event)) {
1422                                 /* nope, just zero it */
1423                                 event->time_delta = 0;
1424                                 event->array[0] = 0;
1425                         }
1426                 }
1427                 cpu_buffer->write_stamp = *ts;
1428                 /* let the caller know this was the commit */
1429                 ret = 1;
1430         } else {
1431                 /* Try to discard the event */
1432                 if (!rb_try_to_discard(cpu_buffer, event)) {
1433                         /* Darn, this is just wasted space */
1434                         event->time_delta = 0;
1435                         event->array[0] = 0;
1436                 }
1437                 ret = 0;
1438         }
1439
1440         *delta = 0;
1441
1442         return ret;
1443 }
1444
1445 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
1446 {
1447         local_inc(&cpu_buffer->committing);
1448         local_inc(&cpu_buffer->commits);
1449 }
1450
1451 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
1452 {
1453         unsigned long commits;
1454
1455         if (RB_WARN_ON(cpu_buffer,
1456                        !local_read(&cpu_buffer->committing)))
1457                 return;
1458
1459  again:
1460         commits = local_read(&cpu_buffer->commits);
1461         /* synchronize with interrupts */
1462         barrier();
1463         if (local_read(&cpu_buffer->committing) == 1)
1464                 rb_set_commit_to_write(cpu_buffer);
1465
1466         local_dec(&cpu_buffer->committing);
1467
1468         /* synchronize with interrupts */
1469         barrier();
1470
1471         /*
1472          * Need to account for interrupts coming in between the
1473          * updating of the commit page and the clearing of the
1474          * committing counter.
1475          */
1476         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
1477             !local_read(&cpu_buffer->committing)) {
1478                 local_inc(&cpu_buffer->committing);
1479                 goto again;
1480         }
1481 }
1482
1483 static struct ring_buffer_event *
1484 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1485                       unsigned long length)
1486 {
1487         struct ring_buffer_event *event;
1488         u64 ts, delta = 0;
1489         int commit = 0;
1490         int nr_loops = 0;
1491
1492         rb_start_commit(cpu_buffer);
1493
1494         length = rb_calculate_event_length(length);
1495  again:
1496         /*
1497          * We allow for interrupts to reenter here and do a trace.
1498          * If one does, it will cause this original code to loop
1499          * back here. Even with heavy interrupts happening, this
1500          * should only happen a few times in a row. If this happens
1501          * 1000 times in a row, there must be either an interrupt
1502          * storm or we have something buggy.
1503          * Bail!
1504          */
1505         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1506                 goto out_fail;
1507
1508         ts = rb_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
1509
1510         /*
1511          * Only the first commit can update the timestamp.
1512          * Yes there is a race here. If an interrupt comes in
1513          * just after the conditional and it traces too, then it
1514          * will also check the deltas. More than one timestamp may
1515          * also be made. But only the entry that did the actual
1516          * commit will be something other than zero.
1517          */
1518         if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
1519                    rb_page_write(cpu_buffer->tail_page) ==
1520                    rb_commit_index(cpu_buffer))) {
1521                 u64 diff;
1522
1523                 diff = ts - cpu_buffer->write_stamp;
1524
1525                 /* make sure this diff is calculated here */
1526                 barrier();
1527
1528                 /* Did the write stamp get updated already? */
1529                 if (unlikely(ts < cpu_buffer->write_stamp))
1530                         goto get_event;
1531
1532                 delta = diff;
1533                 if (unlikely(test_time_stamp(delta))) {
1534
1535                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1536                         if (commit == -EBUSY)
1537                                 goto out_fail;
1538
1539                         if (commit == -EAGAIN)
1540                                 goto again;
1541
1542                         RB_WARN_ON(cpu_buffer, commit < 0);
1543                 }
1544         }
1545
1546  get_event:
1547         event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
1548         if (unlikely(PTR_ERR(event) == -EAGAIN))
1549                 goto again;
1550
1551         if (!event)
1552                 goto out_fail;
1553
1554         if (!rb_event_is_commit(cpu_buffer, event))
1555                 delta = 0;
1556
1557         event->time_delta = delta;
1558
1559         return event;
1560
1561  out_fail:
1562         rb_end_commit(cpu_buffer);
1563         return NULL;
1564 }
1565
1566 #define TRACE_RECURSIVE_DEPTH 16
1567
1568 static int trace_recursive_lock(void)
1569 {
1570         current->trace_recursion++;
1571
1572         if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
1573                 return 0;
1574
1575         /* Disable all tracing before we do anything else */
1576         tracing_off_permanent();
1577
1578         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
1579                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1580                     current->trace_recursion,
1581                     hardirq_count() >> HARDIRQ_SHIFT,
1582                     softirq_count() >> SOFTIRQ_SHIFT,
1583                     in_nmi());
1584
1585         WARN_ON_ONCE(1);
1586         return -1;
1587 }
1588
1589 static void trace_recursive_unlock(void)
1590 {
1591         WARN_ON_ONCE(!current->trace_recursion);
1592
1593         current->trace_recursion--;
1594 }
1595
1596 static DEFINE_PER_CPU(int, rb_need_resched);
1597
1598 /**
1599  * ring_buffer_lock_reserve - reserve a part of the buffer
1600  * @buffer: the ring buffer to reserve from
1601  * @length: the length of the data to reserve (excluding event header)
1602  *
1603  * Returns a reseverd event on the ring buffer to copy directly to.
1604  * The user of this interface will need to get the body to write into
1605  * and can use the ring_buffer_event_data() interface.
1606  *
1607  * The length is the length of the data needed, not the event length
1608  * which also includes the event header.
1609  *
1610  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1611  * If NULL is returned, then nothing has been allocated or locked.
1612  */
1613 struct ring_buffer_event *
1614 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1615 {
1616         struct ring_buffer_per_cpu *cpu_buffer;
1617         struct ring_buffer_event *event;
1618         int cpu, resched;
1619
1620         if (ring_buffer_flags != RB_BUFFERS_ON)
1621                 return NULL;
1622
1623         if (atomic_read(&buffer->record_disabled))
1624                 return NULL;
1625
1626         /* If we are tracing schedule, we don't want to recurse */
1627         resched = ftrace_preempt_disable();
1628
1629         if (trace_recursive_lock())
1630                 goto out_nocheck;
1631
1632         cpu = raw_smp_processor_id();
1633
1634         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1635                 goto out;
1636
1637         cpu_buffer = buffer->buffers[cpu];
1638
1639         if (atomic_read(&cpu_buffer->record_disabled))
1640                 goto out;
1641
1642         if (length > BUF_MAX_DATA_SIZE)
1643                 goto out;
1644
1645         event = rb_reserve_next_event(cpu_buffer, length);
1646         if (!event)
1647                 goto out;
1648
1649         /*
1650          * Need to store resched state on this cpu.
1651          * Only the first needs to.
1652          */
1653
1654         if (preempt_count() == 1)
1655                 per_cpu(rb_need_resched, cpu) = resched;
1656
1657         return event;
1658
1659  out:
1660         trace_recursive_unlock();
1661
1662  out_nocheck:
1663         ftrace_preempt_enable(resched);
1664         return NULL;
1665 }
1666 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1667
1668 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1669                       struct ring_buffer_event *event)
1670 {
1671         local_inc(&cpu_buffer->entries);
1672
1673         /*
1674          * The event first in the commit queue updates the
1675          * time stamp.
1676          */
1677         if (rb_event_is_commit(cpu_buffer, event))
1678                 cpu_buffer->write_stamp += event->time_delta;
1679
1680         rb_end_commit(cpu_buffer);
1681 }
1682
1683 /**
1684  * ring_buffer_unlock_commit - commit a reserved
1685  * @buffer: The buffer to commit to
1686  * @event: The event pointer to commit.
1687  *
1688  * This commits the data to the ring buffer, and releases any locks held.
1689  *
1690  * Must be paired with ring_buffer_lock_reserve.
1691  */
1692 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1693                               struct ring_buffer_event *event)
1694 {
1695         struct ring_buffer_per_cpu *cpu_buffer;
1696         int cpu = raw_smp_processor_id();
1697
1698         cpu_buffer = buffer->buffers[cpu];
1699
1700         rb_commit(cpu_buffer, event);
1701
1702         trace_recursive_unlock();
1703
1704         /*
1705          * Only the last preempt count needs to restore preemption.
1706          */
1707         if (preempt_count() == 1)
1708                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1709         else
1710                 preempt_enable_no_resched_notrace();
1711
1712         return 0;
1713 }
1714 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1715
1716 static inline void rb_event_discard(struct ring_buffer_event *event)
1717 {
1718         /* array[0] holds the actual length for the discarded event */
1719         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
1720         event->type_len = RINGBUF_TYPE_PADDING;
1721         /* time delta must be non zero */
1722         if (!event->time_delta)
1723                 event->time_delta = 1;
1724 }
1725
1726 /**
1727  * ring_buffer_event_discard - discard any event in the ring buffer
1728  * @event: the event to discard
1729  *
1730  * Sometimes a event that is in the ring buffer needs to be ignored.
1731  * This function lets the user discard an event in the ring buffer
1732  * and then that event will not be read later.
1733  *
1734  * Note, it is up to the user to be careful with this, and protect
1735  * against races. If the user discards an event that has been consumed
1736  * it is possible that it could corrupt the ring buffer.
1737  */
1738 void ring_buffer_event_discard(struct ring_buffer_event *event)
1739 {
1740         rb_event_discard(event);
1741 }
1742 EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1743
1744 /**
1745  * ring_buffer_commit_discard - discard an event that has not been committed
1746  * @buffer: the ring buffer
1747  * @event: non committed event to discard
1748  *
1749  * This is similar to ring_buffer_event_discard but must only be
1750  * performed on an event that has not been committed yet. The difference
1751  * is that this will also try to free the event from the ring buffer
1752  * if another event has not been added behind it.
1753  *
1754  * If another event has been added behind it, it will set the event
1755  * up as discarded, and perform the commit.
1756  *
1757  * If this function is called, do not call ring_buffer_unlock_commit on
1758  * the event.
1759  */
1760 void ring_buffer_discard_commit(struct ring_buffer *buffer,
1761                                 struct ring_buffer_event *event)
1762 {
1763         struct ring_buffer_per_cpu *cpu_buffer;
1764         int cpu;
1765
1766         /* The event is discarded regardless */
1767         rb_event_discard(event);
1768
1769         cpu = smp_processor_id();
1770         cpu_buffer = buffer->buffers[cpu];
1771
1772         /*
1773          * This must only be called if the event has not been
1774          * committed yet. Thus we can assume that preemption
1775          * is still disabled.
1776          */
1777         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
1778
1779         if (!rb_try_to_discard(cpu_buffer, event))
1780                 goto out;
1781
1782         /*
1783          * The commit is still visible by the reader, so we
1784          * must increment entries.
1785          */
1786         local_inc(&cpu_buffer->entries);
1787  out:
1788         rb_end_commit(cpu_buffer);
1789
1790         trace_recursive_unlock();
1791
1792         /*
1793          * Only the last preempt count needs to restore preemption.
1794          */
1795         if (preempt_count() == 1)
1796                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1797         else
1798                 preempt_enable_no_resched_notrace();
1799
1800 }
1801 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1802
1803 /**
1804  * ring_buffer_write - write data to the buffer without reserving
1805  * @buffer: The ring buffer to write to.
1806  * @length: The length of the data being written (excluding the event header)
1807  * @data: The data to write to the buffer.
1808  *
1809  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1810  * one function. If you already have the data to write to the buffer, it
1811  * may be easier to simply call this function.
1812  *
1813  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1814  * and not the length of the event which would hold the header.
1815  */
1816 int ring_buffer_write(struct ring_buffer *buffer,
1817                         unsigned long length,
1818                         void *data)
1819 {
1820         struct ring_buffer_per_cpu *cpu_buffer;
1821         struct ring_buffer_event *event;
1822         void *body;
1823         int ret = -EBUSY;
1824         int cpu, resched;
1825
1826         if (ring_buffer_flags != RB_BUFFERS_ON)
1827                 return -EBUSY;
1828
1829         if (atomic_read(&buffer->record_disabled))
1830                 return -EBUSY;
1831
1832         resched = ftrace_preempt_disable();
1833
1834         cpu = raw_smp_processor_id();
1835
1836         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1837                 goto out;
1838
1839         cpu_buffer = buffer->buffers[cpu];
1840
1841         if (atomic_read(&cpu_buffer->record_disabled))
1842                 goto out;
1843
1844         if (length > BUF_MAX_DATA_SIZE)
1845                 goto out;
1846
1847         event = rb_reserve_next_event(cpu_buffer, length);
1848         if (!event)
1849                 goto out;
1850
1851         body = rb_event_data(event);
1852
1853         memcpy(body, data, length);
1854
1855         rb_commit(cpu_buffer, event);
1856
1857         ret = 0;
1858  out:
1859         ftrace_preempt_enable(resched);
1860
1861         return ret;
1862 }
1863 EXPORT_SYMBOL_GPL(ring_buffer_write);
1864
1865 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1866 {
1867         struct buffer_page *reader = cpu_buffer->reader_page;
1868         struct buffer_page *head = cpu_buffer->head_page;
1869         struct buffer_page *commit = cpu_buffer->commit_page;
1870
1871         return reader->read == rb_page_commit(reader) &&
1872                 (commit == reader ||
1873                  (commit == head &&
1874                   head->read == rb_page_commit(commit)));
1875 }
1876
1877 /**
1878  * ring_buffer_record_disable - stop all writes into the buffer
1879  * @buffer: The ring buffer to stop writes to.
1880  *
1881  * This prevents all writes to the buffer. Any attempt to write
1882  * to the buffer after this will fail and return NULL.
1883  *
1884  * The caller should call synchronize_sched() after this.
1885  */
1886 void ring_buffer_record_disable(struct ring_buffer *buffer)
1887 {
1888         atomic_inc(&buffer->record_disabled);
1889 }
1890 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1891
1892 /**
1893  * ring_buffer_record_enable - enable writes to the buffer
1894  * @buffer: The ring buffer to enable writes
1895  *
1896  * Note, multiple disables will need the same number of enables
1897  * to truely enable the writing (much like preempt_disable).
1898  */
1899 void ring_buffer_record_enable(struct ring_buffer *buffer)
1900 {
1901         atomic_dec(&buffer->record_disabled);
1902 }
1903 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1904
1905 /**
1906  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1907  * @buffer: The ring buffer to stop writes to.
1908  * @cpu: The CPU buffer to stop
1909  *
1910  * This prevents all writes to the buffer. Any attempt to write
1911  * to the buffer after this will fail and return NULL.
1912  *
1913  * The caller should call synchronize_sched() after this.
1914  */
1915 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1916 {
1917         struct ring_buffer_per_cpu *cpu_buffer;
1918
1919         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1920                 return;
1921
1922         cpu_buffer = buffer->buffers[cpu];
1923         atomic_inc(&cpu_buffer->record_disabled);
1924 }
1925 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1926
1927 /**
1928  * ring_buffer_record_enable_cpu - enable writes to the buffer
1929  * @buffer: The ring buffer to enable writes
1930  * @cpu: The CPU to enable.
1931  *
1932  * Note, multiple disables will need the same number of enables
1933  * to truely enable the writing (much like preempt_disable).
1934  */
1935 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1936 {
1937         struct ring_buffer_per_cpu *cpu_buffer;
1938
1939         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1940                 return;
1941
1942         cpu_buffer = buffer->buffers[cpu];
1943         atomic_dec(&cpu_buffer->record_disabled);
1944 }
1945 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1946
1947 /**
1948  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1949  * @buffer: The ring buffer
1950  * @cpu: The per CPU buffer to get the entries from.
1951  */
1952 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1953 {
1954         struct ring_buffer_per_cpu *cpu_buffer;
1955         unsigned long ret;
1956
1957         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1958                 return 0;
1959
1960         cpu_buffer = buffer->buffers[cpu];
1961         ret = (local_read(&cpu_buffer->entries) - cpu_buffer->overrun)
1962                 - cpu_buffer->read;
1963
1964         return ret;
1965 }
1966 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1967
1968 /**
1969  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1970  * @buffer: The ring buffer
1971  * @cpu: The per CPU buffer to get the number of overruns from
1972  */
1973 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1974 {
1975         struct ring_buffer_per_cpu *cpu_buffer;
1976         unsigned long ret;
1977
1978         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1979                 return 0;
1980
1981         cpu_buffer = buffer->buffers[cpu];
1982         ret = cpu_buffer->overrun;
1983
1984         return ret;
1985 }
1986 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1987
1988 /**
1989  * ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped
1990  * @buffer: The ring buffer
1991  * @cpu: The per CPU buffer to get the number of overruns from
1992  */
1993 unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer *buffer, int cpu)
1994 {
1995         struct ring_buffer_per_cpu *cpu_buffer;
1996         unsigned long ret;
1997
1998         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1999                 return 0;
2000
2001         cpu_buffer = buffer->buffers[cpu];
2002         ret = cpu_buffer->nmi_dropped;
2003
2004         return ret;
2005 }
2006 EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu);
2007
2008 /**
2009  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2010  * @buffer: The ring buffer
2011  * @cpu: The per CPU buffer to get the number of overruns from
2012  */
2013 unsigned long
2014 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2015 {
2016         struct ring_buffer_per_cpu *cpu_buffer;
2017         unsigned long ret;
2018
2019         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2020                 return 0;
2021
2022         cpu_buffer = buffer->buffers[cpu];
2023         ret = cpu_buffer->commit_overrun;
2024
2025         return ret;
2026 }
2027 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2028
2029 /**
2030  * ring_buffer_entries - get the number of entries in a buffer
2031  * @buffer: The ring buffer
2032  *
2033  * Returns the total number of entries in the ring buffer
2034  * (all CPU entries)
2035  */
2036 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2037 {
2038         struct ring_buffer_per_cpu *cpu_buffer;
2039         unsigned long entries = 0;
2040         int cpu;
2041
2042         /* if you care about this being correct, lock the buffer */
2043         for_each_buffer_cpu(buffer, cpu) {
2044                 cpu_buffer = buffer->buffers[cpu];
2045                 entries += (local_read(&cpu_buffer->entries) -
2046                             cpu_buffer->overrun) - cpu_buffer->read;
2047         }
2048
2049         return entries;
2050 }
2051 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2052
2053 /**
2054  * ring_buffer_overrun_cpu - get the number of overruns in buffer
2055  * @buffer: The ring buffer
2056  *
2057  * Returns the total number of overruns in the ring buffer
2058  * (all CPU entries)
2059  */
2060 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2061 {
2062         struct ring_buffer_per_cpu *cpu_buffer;
2063         unsigned long overruns = 0;
2064         int cpu;
2065
2066         /* if you care about this being correct, lock the buffer */
2067         for_each_buffer_cpu(buffer, cpu) {
2068                 cpu_buffer = buffer->buffers[cpu];
2069                 overruns += cpu_buffer->overrun;
2070         }
2071
2072         return overruns;
2073 }
2074 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2075
2076 static void rb_iter_reset(struct ring_buffer_iter *iter)
2077 {
2078         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2079
2080         /* Iterator usage is expected to have record disabled */
2081         if (list_empty(&cpu_buffer->reader_page->list)) {
2082                 iter->head_page = cpu_buffer->head_page;
2083                 iter->head = cpu_buffer->head_page->read;
2084         } else {
2085                 iter->head_page = cpu_buffer->reader_page;
2086                 iter->head = cpu_buffer->reader_page->read;
2087         }
2088         if (iter->head)
2089                 iter->read_stamp = cpu_buffer->read_stamp;
2090         else
2091                 iter->read_stamp = iter->head_page->page->time_stamp;
2092 }
2093
2094 /**
2095  * ring_buffer_iter_reset - reset an iterator
2096  * @iter: The iterator to reset
2097  *
2098  * Resets the iterator, so that it will start from the beginning
2099  * again.
2100  */
2101 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2102 {
2103         struct ring_buffer_per_cpu *cpu_buffer;
2104         unsigned long flags;
2105
2106         if (!iter)
2107                 return;
2108
2109         cpu_buffer = iter->cpu_buffer;
2110
2111         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2112         rb_iter_reset(iter);
2113         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2114 }
2115 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2116
2117 /**
2118  * ring_buffer_iter_empty - check if an iterator has no more to read
2119  * @iter: The iterator to check
2120  */
2121 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2122 {
2123         struct ring_buffer_per_cpu *cpu_buffer;
2124
2125         cpu_buffer = iter->cpu_buffer;
2126
2127         return iter->head_page == cpu_buffer->commit_page &&
2128                 iter->head == rb_commit_index(cpu_buffer);
2129 }
2130 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2131
2132 static void
2133 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2134                      struct ring_buffer_event *event)
2135 {
2136         u64 delta;
2137
2138         switch (event->type_len) {
2139         case RINGBUF_TYPE_PADDING:
2140                 return;
2141
2142         case RINGBUF_TYPE_TIME_EXTEND:
2143                 delta = event->array[0];
2144                 delta <<= TS_SHIFT;
2145                 delta += event->time_delta;
2146                 cpu_buffer->read_stamp += delta;
2147                 return;
2148
2149         case RINGBUF_TYPE_TIME_STAMP:
2150                 /* FIXME: not implemented */
2151                 return;
2152
2153         case RINGBUF_TYPE_DATA:
2154                 cpu_buffer->read_stamp += event->time_delta;
2155                 return;
2156
2157         default:
2158                 BUG();
2159         }
2160         return;
2161 }
2162
2163 static void
2164 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2165                           struct ring_buffer_event *event)
2166 {
2167         u64 delta;
2168
2169         switch (event->type_len) {
2170         case RINGBUF_TYPE_PADDING:
2171                 return;
2172
2173         case RINGBUF_TYPE_TIME_EXTEND:
2174                 delta = event->array[0];
2175                 delta <<= TS_SHIFT;
2176                 delta += event->time_delta;
2177                 iter->read_stamp += delta;
2178                 return;
2179
2180         case RINGBUF_TYPE_TIME_STAMP:
2181                 /* FIXME: not implemented */
2182                 return;
2183
2184         case RINGBUF_TYPE_DATA:
2185                 iter->read_stamp += event->time_delta;
2186                 return;
2187
2188         default:
2189                 BUG();
2190         }
2191         return;
2192 }
2193
2194 static struct buffer_page *
2195 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2196 {
2197         struct buffer_page *reader = NULL;
2198         unsigned long flags;
2199         int nr_loops = 0;
2200
2201         local_irq_save(flags);
2202         __raw_spin_lock(&cpu_buffer->lock);
2203
2204  again:
2205         /*
2206          * This should normally only loop twice. But because the
2207          * start of the reader inserts an empty page, it causes
2208          * a case where we will loop three times. There should be no
2209          * reason to loop four times (that I know of).
2210          */
2211         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2212                 reader = NULL;
2213                 goto out;
2214         }
2215
2216         reader = cpu_buffer->reader_page;
2217
2218         /* If there's more to read, return this page */
2219         if (cpu_buffer->reader_page->read < rb_page_size(reader))
2220                 goto out;
2221
2222         /* Never should we have an index greater than the size */
2223         if (RB_WARN_ON(cpu_buffer,
2224                        cpu_buffer->reader_page->read > rb_page_size(reader)))
2225                 goto out;
2226
2227         /* check if we caught up to the tail */
2228         reader = NULL;
2229         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2230                 goto out;
2231
2232         /*
2233          * Splice the empty reader page into the list around the head.
2234          * Reset the reader page to size zero.
2235          */
2236
2237         reader = cpu_buffer->head_page;
2238         cpu_buffer->reader_page->list.next = reader->list.next;
2239         cpu_buffer->reader_page->list.prev = reader->list.prev;
2240
2241         local_set(&cpu_buffer->reader_page->write, 0);
2242         local_set(&cpu_buffer->reader_page->entries, 0);
2243         local_set(&cpu_buffer->reader_page->page->commit, 0);
2244
2245         /* Make the reader page now replace the head */
2246         reader->list.prev->next = &cpu_buffer->reader_page->list;
2247         reader->list.next->prev = &cpu_buffer->reader_page->list;
2248
2249         /*
2250          * If the tail is on the reader, then we must set the head
2251          * to the inserted page, otherwise we set it one before.
2252          */
2253         cpu_buffer->head_page = cpu_buffer->reader_page;
2254
2255         if (cpu_buffer->commit_page != reader)
2256                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2257
2258         /* Finally update the reader page to the new head */
2259         cpu_buffer->reader_page = reader;
2260         rb_reset_reader_page(cpu_buffer);
2261
2262         goto again;
2263
2264  out:
2265         __raw_spin_unlock(&cpu_buffer->lock);
2266         local_irq_restore(flags);
2267
2268         return reader;
2269 }
2270
2271 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2272 {
2273         struct ring_buffer_event *event;
2274         struct buffer_page *reader;
2275         unsigned length;
2276
2277         reader = rb_get_reader_page(cpu_buffer);
2278
2279         /* This function should not be called when buffer is empty */
2280         if (RB_WARN_ON(cpu_buffer, !reader))
2281                 return;
2282
2283         event = rb_reader_event(cpu_buffer);
2284
2285         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2286                         || rb_discarded_event(event))
2287                 cpu_buffer->read++;
2288
2289         rb_update_read_stamp(cpu_buffer, event);
2290
2291         length = rb_event_length(event);
2292         cpu_buffer->reader_page->read += length;
2293 }
2294
2295 static void rb_advance_iter(struct ring_buffer_iter *iter)
2296 {
2297         struct ring_buffer *buffer;
2298         struct ring_buffer_per_cpu *cpu_buffer;
2299         struct ring_buffer_event *event;
2300         unsigned length;
2301
2302         cpu_buffer = iter->cpu_buffer;
2303         buffer = cpu_buffer->buffer;
2304
2305         /*
2306          * Check if we are at the end of the buffer.
2307          */
2308         if (iter->head >= rb_page_size(iter->head_page)) {
2309                 /* discarded commits can make the page empty */
2310                 if (iter->head_page == cpu_buffer->commit_page)
2311                         return;
2312                 rb_inc_iter(iter);
2313                 return;
2314         }
2315
2316         event = rb_iter_head_event(iter);
2317
2318         length = rb_event_length(event);
2319
2320         /*
2321          * This should not be called to advance the header if we are
2322          * at the tail of the buffer.
2323          */
2324         if (RB_WARN_ON(cpu_buffer,
2325                        (iter->head_page == cpu_buffer->commit_page) &&
2326                        (iter->head + length > rb_commit_index(cpu_buffer))))
2327                 return;
2328
2329         rb_update_iter_read_stamp(iter, event);
2330
2331         iter->head += length;
2332
2333         /* check for end of page padding */
2334         if ((iter->head >= rb_page_size(iter->head_page)) &&
2335             (iter->head_page != cpu_buffer->commit_page))
2336                 rb_advance_iter(iter);
2337 }
2338
2339 static struct ring_buffer_event *
2340 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2341 {
2342         struct ring_buffer_per_cpu *cpu_buffer;
2343         struct ring_buffer_event *event;
2344         struct buffer_page *reader;
2345         int nr_loops = 0;
2346
2347         cpu_buffer = buffer->buffers[cpu];
2348
2349  again:
2350         /*
2351          * We repeat when a timestamp is encountered. It is possible
2352          * to get multiple timestamps from an interrupt entering just
2353          * as one timestamp is about to be written, or from discarded
2354          * commits. The most that we can have is the number on a single page.
2355          */
2356         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
2357                 return NULL;
2358
2359         reader = rb_get_reader_page(cpu_buffer);
2360         if (!reader)
2361                 return NULL;
2362
2363         event = rb_reader_event(cpu_buffer);
2364
2365         switch (event->type_len) {
2366         case RINGBUF_TYPE_PADDING:
2367                 if (rb_null_event(event))
2368                         RB_WARN_ON(cpu_buffer, 1);
2369                 /*
2370                  * Because the writer could be discarding every
2371                  * event it creates (which would probably be bad)
2372                  * if we were to go back to "again" then we may never
2373                  * catch up, and will trigger the warn on, or lock
2374                  * the box. Return the padding, and we will release
2375                  * the current locks, and try again.
2376                  */
2377                 rb_advance_reader(cpu_buffer);
2378                 return event;
2379
2380         case RINGBUF_TYPE_TIME_EXTEND:
2381                 /* Internal data, OK to advance */
2382                 rb_advance_reader(cpu_buffer);
2383                 goto again;
2384
2385         case RINGBUF_TYPE_TIME_STAMP:
2386                 /* FIXME: not implemented */
2387                 rb_advance_reader(cpu_buffer);
2388                 goto again;
2389
2390         case RINGBUF_TYPE_DATA:
2391                 if (ts) {
2392                         *ts = cpu_buffer->read_stamp + event->time_delta;
2393                         ring_buffer_normalize_time_stamp(buffer,
2394                                                          cpu_buffer->cpu, ts);
2395                 }
2396                 return event;
2397
2398         default:
2399                 BUG();
2400         }
2401
2402         return NULL;
2403 }
2404 EXPORT_SYMBOL_GPL(ring_buffer_peek);
2405
2406 static struct ring_buffer_event *
2407 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2408 {
2409         struct ring_buffer *buffer;
2410         struct ring_buffer_per_cpu *cpu_buffer;
2411         struct ring_buffer_event *event;
2412         int nr_loops = 0;
2413
2414         if (ring_buffer_iter_empty(iter))
2415                 return NULL;
2416
2417         cpu_buffer = iter->cpu_buffer;
2418         buffer = cpu_buffer->buffer;
2419
2420  again:
2421         /*
2422          * We repeat when a timestamp is encountered.
2423          * We can get multiple timestamps by nested interrupts or also
2424          * if filtering is on (discarding commits). Since discarding
2425          * commits can be frequent we can get a lot of timestamps.
2426          * But we limit them by not adding timestamps if they begin
2427          * at the start of a page.
2428          */
2429         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
2430                 return NULL;
2431
2432         if (rb_per_cpu_empty(cpu_buffer))
2433                 return NULL;
2434
2435         event = rb_iter_head_event(iter);
2436
2437         switch (event->type_len) {
2438         case RINGBUF_TYPE_PADDING:
2439                 if (rb_null_event(event)) {
2440                         rb_inc_iter(iter);
2441                         goto again;
2442                 }
2443                 rb_advance_iter(iter);
2444                 return event;
2445
2446         case RINGBUF_TYPE_TIME_EXTEND:
2447                 /* Internal data, OK to advance */
2448                 rb_advance_iter(iter);
2449                 goto again;
2450
2451         case RINGBUF_TYPE_TIME_STAMP:
2452                 /* FIXME: not implemented */
2453                 rb_advance_iter(iter);
2454                 goto again;
2455
2456         case RINGBUF_TYPE_DATA:
2457                 if (ts) {
2458                         *ts = iter->read_stamp + event->time_delta;
2459                         ring_buffer_normalize_time_stamp(buffer,
2460                                                          cpu_buffer->cpu, ts);
2461                 }
2462                 return event;
2463
2464         default:
2465                 BUG();
2466         }
2467
2468         return NULL;
2469 }
2470 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2471
2472 static inline int rb_ok_to_lock(void)
2473 {
2474         /*
2475          * If an NMI die dumps out the content of the ring buffer
2476          * do not grab locks. We also permanently disable the ring
2477          * buffer too. A one time deal is all you get from reading
2478          * the ring buffer from an NMI.
2479          */
2480         if (likely(!in_nmi() && !oops_in_progress))
2481                 return 1;
2482
2483         tracing_off_permanent();
2484         return 0;
2485 }
2486
2487 /**
2488  * ring_buffer_peek - peek at the next event to be read
2489  * @buffer: The ring buffer to read
2490  * @cpu: The cpu to peak at
2491  * @ts: The timestamp counter of this event.
2492  *
2493  * This will return the event that will be read next, but does
2494  * not consume the data.
2495  */
2496 struct ring_buffer_event *
2497 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2498 {
2499         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2500         struct ring_buffer_event *event;
2501         unsigned long flags;
2502         int dolock;
2503
2504         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2505                 return NULL;
2506
2507         dolock = rb_ok_to_lock();
2508  again:
2509         local_irq_save(flags);
2510         if (dolock)
2511                 spin_lock(&cpu_buffer->reader_lock);
2512         event = rb_buffer_peek(buffer, cpu, ts);
2513         if (dolock)
2514                 spin_unlock(&cpu_buffer->reader_lock);
2515         local_irq_restore(flags);
2516
2517         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2518                 cpu_relax();
2519                 goto again;
2520         }
2521
2522         return event;
2523 }
2524
2525 /**
2526  * ring_buffer_iter_peek - peek at the next event to be read
2527  * @iter: The ring buffer iterator
2528  * @ts: The timestamp counter of this event.
2529  *
2530  * This will return the event that will be read next, but does
2531  * not increment the iterator.
2532  */
2533 struct ring_buffer_event *
2534 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2535 {
2536         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2537         struct ring_buffer_event *event;
2538         unsigned long flags;
2539
2540  again:
2541         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2542         event = rb_iter_peek(iter, ts);
2543         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2544
2545         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2546                 cpu_relax();
2547                 goto again;
2548         }
2549
2550         return event;
2551 }
2552
2553 /**
2554  * ring_buffer_consume - return an event and consume it
2555  * @buffer: The ring buffer to get the next event from
2556  *
2557  * Returns the next event in the ring buffer, and that event is consumed.
2558  * Meaning, that sequential reads will keep returning a different event,
2559  * and eventually empty the ring buffer if the producer is slower.
2560  */
2561 struct ring_buffer_event *
2562 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2563 {
2564         struct ring_buffer_per_cpu *cpu_buffer;
2565         struct ring_buffer_event *event = NULL;
2566         unsigned long flags;
2567         int dolock;
2568
2569         dolock = rb_ok_to_lock();
2570
2571  again:
2572         /* might be called in atomic */
2573         preempt_disable();
2574
2575         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2576                 goto out;
2577
2578         cpu_buffer = buffer->buffers[cpu];
2579         local_irq_save(flags);
2580         if (dolock)
2581                 spin_lock(&cpu_buffer->reader_lock);
2582
2583         event = rb_buffer_peek(buffer, cpu, ts);
2584         if (!event)
2585                 goto out_unlock;
2586
2587         rb_advance_reader(cpu_buffer);
2588
2589  out_unlock:
2590         if (dolock)
2591                 spin_unlock(&cpu_buffer->reader_lock);
2592         local_irq_restore(flags);
2593
2594  out:
2595         preempt_enable();
2596
2597         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2598                 cpu_relax();
2599                 goto again;
2600         }
2601
2602         return event;
2603 }
2604 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2605
2606 /**
2607  * ring_buffer_read_start - start a non consuming read of the buffer
2608  * @buffer: The ring buffer to read from
2609  * @cpu: The cpu buffer to iterate over
2610  *
2611  * This starts up an iteration through the buffer. It also disables
2612  * the recording to the buffer until the reading is finished.
2613  * This prevents the reading from being corrupted. This is not
2614  * a consuming read, so a producer is not expected.
2615  *
2616  * Must be paired with ring_buffer_finish.
2617  */
2618 struct ring_buffer_iter *
2619 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2620 {
2621         struct ring_buffer_per_cpu *cpu_buffer;
2622         struct ring_buffer_iter *iter;
2623         unsigned long flags;
2624
2625         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2626                 return NULL;
2627
2628         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2629         if (!iter)
2630                 return NULL;
2631
2632         cpu_buffer = buffer->buffers[cpu];
2633
2634         iter->cpu_buffer = cpu_buffer;
2635
2636         atomic_inc(&cpu_buffer->record_disabled);
2637         synchronize_sched();
2638
2639         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2640         __raw_spin_lock(&cpu_buffer->lock);
2641         rb_iter_reset(iter);
2642         __raw_spin_unlock(&cpu_buffer->lock);
2643         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2644
2645         return iter;
2646 }
2647 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2648
2649 /**
2650  * ring_buffer_finish - finish reading the iterator of the buffer
2651  * @iter: The iterator retrieved by ring_buffer_start
2652  *
2653  * This re-enables the recording to the buffer, and frees the
2654  * iterator.
2655  */
2656 void
2657 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2658 {
2659         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2660
2661         atomic_dec(&cpu_buffer->record_disabled);
2662         kfree(iter);
2663 }
2664 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2665
2666 /**
2667  * ring_buffer_read - read the next item in the ring buffer by the iterator
2668  * @iter: The ring buffer iterator
2669  * @ts: The time stamp of the event read.
2670  *
2671  * This reads the next event in the ring buffer and increments the iterator.
2672  */
2673 struct ring_buffer_event *
2674 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2675 {
2676         struct ring_buffer_event *event;
2677         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2678         unsigned long flags;
2679
2680  again:
2681         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2682         event = rb_iter_peek(iter, ts);
2683         if (!event)
2684                 goto out;
2685
2686         rb_advance_iter(iter);
2687  out:
2688         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2689
2690         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2691                 cpu_relax();
2692                 goto again;
2693         }
2694
2695         return event;
2696 }
2697 EXPORT_SYMBOL_GPL(ring_buffer_read);
2698
2699 /**
2700  * ring_buffer_size - return the size of the ring buffer (in bytes)
2701  * @buffer: The ring buffer.
2702  */
2703 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2704 {
2705         return BUF_PAGE_SIZE * buffer->pages;
2706 }
2707 EXPORT_SYMBOL_GPL(ring_buffer_size);
2708
2709 static void
2710 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2711 {
2712         cpu_buffer->head_page
2713                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2714         local_set(&cpu_buffer->head_page->write, 0);
2715         local_set(&cpu_buffer->head_page->entries, 0);
2716         local_set(&cpu_buffer->head_page->page->commit, 0);
2717
2718         cpu_buffer->head_page->read = 0;
2719
2720         cpu_buffer->tail_page = cpu_buffer->head_page;
2721         cpu_buffer->commit_page = cpu_buffer->head_page;
2722
2723         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2724         local_set(&cpu_buffer->reader_page->write, 0);
2725         local_set(&cpu_buffer->reader_page->entries, 0);
2726         local_set(&cpu_buffer->reader_page->page->commit, 0);
2727         cpu_buffer->reader_page->read = 0;
2728
2729         cpu_buffer->nmi_dropped = 0;
2730         cpu_buffer->commit_overrun = 0;
2731         cpu_buffer->overrun = 0;
2732         cpu_buffer->read = 0;
2733         local_set(&cpu_buffer->entries, 0);
2734         local_set(&cpu_buffer->committing, 0);
2735         local_set(&cpu_buffer->commits, 0);
2736
2737         cpu_buffer->write_stamp = 0;
2738         cpu_buffer->read_stamp = 0;
2739 }
2740
2741 /**
2742  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2743  * @buffer: The ring buffer to reset a per cpu buffer of
2744  * @cpu: The CPU buffer to be reset
2745  */
2746 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2747 {
2748         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2749         unsigned long flags;
2750
2751         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2752                 return;
2753
2754         atomic_inc(&cpu_buffer->record_disabled);
2755
2756         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2757
2758         __raw_spin_lock(&cpu_buffer->lock);
2759
2760         rb_reset_cpu(cpu_buffer);
2761
2762         __raw_spin_unlock(&cpu_buffer->lock);
2763
2764         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2765
2766         atomic_dec(&cpu_buffer->record_disabled);
2767 }
2768 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2769
2770 /**
2771  * ring_buffer_reset - reset a ring buffer
2772  * @buffer: The ring buffer to reset all cpu buffers
2773  */
2774 void ring_buffer_reset(struct ring_buffer *buffer)
2775 {
2776         int cpu;
2777
2778         for_each_buffer_cpu(buffer, cpu)
2779                 ring_buffer_reset_cpu(buffer, cpu);
2780 }
2781 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2782
2783 /**
2784  * rind_buffer_empty - is the ring buffer empty?
2785  * @buffer: The ring buffer to test
2786  */
2787 int ring_buffer_empty(struct ring_buffer *buffer)
2788 {
2789         struct ring_buffer_per_cpu *cpu_buffer;
2790         unsigned long flags;
2791         int dolock;
2792         int cpu;
2793         int ret;
2794
2795         dolock = rb_ok_to_lock();
2796
2797         /* yes this is racy, but if you don't like the race, lock the buffer */
2798         for_each_buffer_cpu(buffer, cpu) {
2799                 cpu_buffer = buffer->buffers[cpu];
2800                 local_irq_save(flags);
2801                 if (dolock)
2802                         spin_lock(&cpu_buffer->reader_lock);
2803                 ret = rb_per_cpu_empty(cpu_buffer);
2804                 if (dolock)
2805                         spin_unlock(&cpu_buffer->reader_lock);
2806                 local_irq_restore(flags);
2807
2808                 if (!ret)
2809                         return 0;
2810         }
2811
2812         return 1;
2813 }
2814 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2815
2816 /**
2817  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2818  * @buffer: The ring buffer
2819  * @cpu: The CPU buffer to test
2820  */
2821 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2822 {
2823         struct ring_buffer_per_cpu *cpu_buffer;
2824         unsigned long flags;
2825         int dolock;
2826         int ret;
2827
2828         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2829                 return 1;
2830
2831         dolock = rb_ok_to_lock();
2832
2833         cpu_buffer = buffer->buffers[cpu];
2834         local_irq_save(flags);
2835         if (dolock)
2836                 spin_lock(&cpu_buffer->reader_lock);
2837         ret = rb_per_cpu_empty(cpu_buffer);
2838         if (dolock)
2839                 spin_unlock(&cpu_buffer->reader_lock);
2840         local_irq_restore(flags);
2841
2842         return ret;
2843 }
2844 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2845
2846 /**
2847  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2848  * @buffer_a: One buffer to swap with
2849  * @buffer_b: The other buffer to swap with
2850  *
2851  * This function is useful for tracers that want to take a "snapshot"
2852  * of a CPU buffer and has another back up buffer lying around.
2853  * it is expected that the tracer handles the cpu buffer not being
2854  * used at the moment.
2855  */
2856 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2857                          struct ring_buffer *buffer_b, int cpu)
2858 {
2859         struct ring_buffer_per_cpu *cpu_buffer_a;
2860         struct ring_buffer_per_cpu *cpu_buffer_b;
2861         int ret = -EINVAL;
2862
2863         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2864             !cpumask_test_cpu(cpu, buffer_b->cpumask))
2865                 goto out;
2866
2867         /* At least make sure the two buffers are somewhat the same */
2868         if (buffer_a->pages != buffer_b->pages)
2869                 goto out;
2870
2871         ret = -EAGAIN;
2872
2873         if (ring_buffer_flags != RB_BUFFERS_ON)
2874                 goto out;
2875
2876         if (atomic_read(&buffer_a->record_disabled))
2877                 goto out;
2878
2879         if (atomic_read(&buffer_b->record_disabled))
2880                 goto out;
2881
2882         cpu_buffer_a = buffer_a->buffers[cpu];
2883         cpu_buffer_b = buffer_b->buffers[cpu];
2884
2885         if (atomic_read(&cpu_buffer_a->record_disabled))
2886                 goto out;
2887
2888         if (atomic_read(&cpu_buffer_b->record_disabled))
2889                 goto out;
2890
2891         /*
2892          * We can't do a synchronize_sched here because this
2893          * function can be called in atomic context.
2894          * Normally this will be called from the same CPU as cpu.
2895          * If not it's up to the caller to protect this.
2896          */
2897         atomic_inc(&cpu_buffer_a->record_disabled);
2898         atomic_inc(&cpu_buffer_b->record_disabled);
2899
2900         buffer_a->buffers[cpu] = cpu_buffer_b;
2901         buffer_b->buffers[cpu] = cpu_buffer_a;
2902
2903         cpu_buffer_b->buffer = buffer_a;
2904         cpu_buffer_a->buffer = buffer_b;
2905
2906         atomic_dec(&cpu_buffer_a->record_disabled);
2907         atomic_dec(&cpu_buffer_b->record_disabled);
2908
2909         ret = 0;
2910 out:
2911         return ret;
2912 }
2913 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2914
2915 /**
2916  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2917  * @buffer: the buffer to allocate for.
2918  *
2919  * This function is used in conjunction with ring_buffer_read_page.
2920  * When reading a full page from the ring buffer, these functions
2921  * can be used to speed up the process. The calling function should
2922  * allocate a few pages first with this function. Then when it
2923  * needs to get pages from the ring buffer, it passes the result
2924  * of this function into ring_buffer_read_page, which will swap
2925  * the page that was allocated, with the read page of the buffer.
2926  *
2927  * Returns:
2928  *  The page allocated, or NULL on error.
2929  */
2930 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2931 {
2932         struct buffer_data_page *bpage;
2933         unsigned long addr;
2934
2935         addr = __get_free_page(GFP_KERNEL);
2936         if (!addr)
2937                 return NULL;
2938
2939         bpage = (void *)addr;
2940
2941         rb_init_page(bpage);
2942
2943         return bpage;
2944 }
2945 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
2946
2947 /**
2948  * ring_buffer_free_read_page - free an allocated read page
2949  * @buffer: the buffer the page was allocate for
2950  * @data: the page to free
2951  *
2952  * Free a page allocated from ring_buffer_alloc_read_page.
2953  */
2954 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2955 {
2956         free_page((unsigned long)data);
2957 }
2958 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
2959
2960 /**
2961  * ring_buffer_read_page - extract a page from the ring buffer
2962  * @buffer: buffer to extract from
2963  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2964  * @len: amount to extract
2965  * @cpu: the cpu of the buffer to extract
2966  * @full: should the extraction only happen when the page is full.
2967  *
2968  * This function will pull out a page from the ring buffer and consume it.
2969  * @data_page must be the address of the variable that was returned
2970  * from ring_buffer_alloc_read_page. This is because the page might be used
2971  * to swap with a page in the ring buffer.
2972  *
2973  * for example:
2974  *      rpage = ring_buffer_alloc_read_page(buffer);
2975  *      if (!rpage)
2976  *              return error;
2977  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2978  *      if (ret >= 0)
2979  *              process_page(rpage, ret);
2980  *
2981  * When @full is set, the function will not return true unless
2982  * the writer is off the reader page.
2983  *
2984  * Note: it is up to the calling functions to handle sleeps and wakeups.
2985  *  The ring buffer can be used anywhere in the kernel and can not
2986  *  blindly call wake_up. The layer that uses the ring buffer must be
2987  *  responsible for that.
2988  *
2989  * Returns:
2990  *  >=0 if data has been transferred, returns the offset of consumed data.
2991  *  <0 if no data has been transferred.
2992  */
2993 int ring_buffer_read_page(struct ring_buffer *buffer,
2994                           void **data_page, size_t len, int cpu, int full)
2995 {
2996         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2997         struct ring_buffer_event *event;
2998         struct buffer_data_page *bpage;
2999         struct buffer_page *reader;
3000         unsigned long flags;
3001         unsigned int commit;
3002         unsigned int read;
3003         u64 save_timestamp;
3004         int ret = -1;
3005
3006         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3007                 goto out;
3008
3009         /*
3010          * If len is not big enough to hold the page header, then
3011          * we can not copy anything.
3012          */
3013         if (len <= BUF_PAGE_HDR_SIZE)
3014                 goto out;
3015
3016         len -= BUF_PAGE_HDR_SIZE;
3017
3018         if (!data_page)
3019                 goto out;
3020
3021         bpage = *data_page;
3022         if (!bpage)
3023                 goto out;
3024
3025         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3026
3027         reader = rb_get_reader_page(cpu_buffer);
3028         if (!reader)
3029                 goto out_unlock;
3030
3031         event = rb_reader_event(cpu_buffer);
3032
3033         read = reader->read;
3034         commit = rb_page_commit(reader);
3035
3036         /*
3037          * If this page has been partially read or
3038          * if len is not big enough to read the rest of the page or
3039          * a writer is still on the page, then
3040          * we must copy the data from the page to the buffer.
3041          * Otherwise, we can simply swap the page with the one passed in.
3042          */
3043         if (read || (len < (commit - read)) ||
3044             cpu_buffer->reader_page == cpu_buffer->commit_page) {
3045                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3046                 unsigned int rpos = read;
3047                 unsigned int pos = 0;
3048                 unsigned int size;
3049
3050                 if (full)
3051                         goto out_unlock;
3052
3053                 if (len > (commit - read))
3054                         len = (commit - read);
3055
3056                 size = rb_event_length(event);
3057
3058                 if (len < size)
3059                         goto out_unlock;
3060
3061                 /* save the current timestamp, since the user will need it */
3062                 save_timestamp = cpu_buffer->read_stamp;
3063
3064                 /* Need to copy one event at a time */
3065                 do {
3066                         memcpy(bpage->data + pos, rpage->data + rpos, size);
3067
3068                         len -= size;
3069
3070                         rb_advance_reader(cpu_buffer);
3071                         rpos = reader->read;
3072                         pos += size;
3073
3074                         event = rb_reader_event(cpu_buffer);
3075                         size = rb_event_length(event);
3076                 } while (len > size);
3077
3078                 /* update bpage */
3079                 local_set(&bpage->commit, pos);
3080                 bpage->time_stamp = save_timestamp;
3081
3082                 /* we copied everything to the beginning */
3083                 read = 0;
3084         } else {
3085                 /* update the entry counter */
3086                 cpu_buffer->read += local_read(&reader->entries);
3087
3088                 /* swap the pages */
3089                 rb_init_page(bpage);
3090                 bpage = reader->page;
3091                 reader->page = *data_page;
3092                 local_set(&reader->write, 0);
3093                 local_set(&reader->entries, 0);
3094                 reader->read = 0;
3095                 *data_page = bpage;
3096         }
3097         ret = read;
3098
3099  out_unlock:
3100         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3101
3102  out:
3103         return ret;
3104 }
3105 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3106
3107 static ssize_t
3108 rb_simple_read(struct file *filp, char __user *ubuf,
3109                size_t cnt, loff_t *ppos)
3110 {
3111         unsigned long *p = filp->private_data;
3112         char buf[64];
3113         int r;
3114
3115         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3116                 r = sprintf(buf, "permanently disabled\n");
3117         else
3118                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3119
3120         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3121 }
3122
3123 static ssize_t
3124 rb_simple_write(struct file *filp, const char __user *ubuf,
3125                 size_t cnt, loff_t *ppos)
3126 {
3127         unsigned long *p = filp->private_data;
3128         char buf[64];
3129         unsigned long val;
3130         int ret;
3131
3132         if (cnt >= sizeof(buf))
3133                 return -EINVAL;
3134
3135         if (copy_from_user(&buf, ubuf, cnt))
3136                 return -EFAULT;
3137
3138         buf[cnt] = 0;
3139
3140         ret = strict_strtoul(buf, 10, &val);
3141         if (ret < 0)
3142                 return ret;
3143
3144         if (val)
3145                 set_bit(RB_BUFFERS_ON_BIT, p);
3146         else
3147                 clear_bit(RB_BUFFERS_ON_BIT, p);
3148
3149         (*ppos)++;
3150
3151         return cnt;
3152 }
3153
3154 static const struct file_operations rb_simple_fops = {
3155         .open           = tracing_open_generic,
3156         .read           = rb_simple_read,
3157         .write          = rb_simple_write,
3158 };
3159
3160
3161 static __init int rb_init_debugfs(void)
3162 {
3163         struct dentry *d_tracer;
3164
3165         d_tracer = tracing_init_dentry();
3166
3167         trace_create_file("tracing_on", 0644, d_tracer,
3168                             &ring_buffer_flags, &rb_simple_fops);
3169
3170         return 0;
3171 }
3172
3173 fs_initcall(rb_init_debugfs);
3174
3175 #ifdef CONFIG_HOTPLUG_CPU
3176 static int rb_cpu_notify(struct notifier_block *self,
3177                          unsigned long action, void *hcpu)
3178 {
3179         struct ring_buffer *buffer =
3180                 container_of(self, struct ring_buffer, cpu_notify);
3181         long cpu = (long)hcpu;
3182
3183         switch (action) {
3184         case CPU_UP_PREPARE:
3185         case CPU_UP_PREPARE_FROZEN:
3186                 if (cpumask_test_cpu(cpu, buffer->cpumask))
3187                         return NOTIFY_OK;
3188
3189                 buffer->buffers[cpu] =
3190                         rb_allocate_cpu_buffer(buffer, cpu);
3191                 if (!buffer->buffers[cpu]) {
3192                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3193                              cpu);
3194                         return NOTIFY_OK;
3195                 }
3196                 smp_wmb();
3197                 cpumask_set_cpu(cpu, buffer->cpumask);
3198                 break;
3199         case CPU_DOWN_PREPARE:
3200         case CPU_DOWN_PREPARE_FROZEN:
3201                 /*
3202                  * Do nothing.
3203                  *  If we were to free the buffer, then the user would
3204                  *  lose any trace that was in the buffer.
3205                  */
3206                 break;
3207         default:
3208                 break;
3209         }
3210         return NOTIFY_OK;
3211 }
3212 #endif