Merge branch 'linux-linaro-lsk-v4.4' into linux-linaro-lsk-v4.4-android
[firefly-linux-kernel-4.4.55.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP            (1 << 0)
32 #define TK_MIRROR               (1 << 1)
33 #define TK_CLOCK_WAS_SET        (1 << 2)
34
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40         seqcount_t              seq;
41         struct timekeeper       timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:        Sequence counter for protecting updates. The lowest bit
50  *              is the index for the tk_read_base array
51  * @base:       tk_read_base array. Access is indexed by the lowest bit of
52  *              @seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57         seqcount_t              seq;
58         struct tk_read_base     base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71                 tk->xtime_sec++;
72         }
73 }
74
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77         struct timespec64 ts;
78
79         ts.tv_sec = tk->xtime_sec;
80         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81         return ts;
82 }
83
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86         tk->xtime_sec = ts->tv_sec;
87         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92         tk->xtime_sec += ts->tv_sec;
93         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94         tk_normalize_xtime(tk);
95 }
96
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99         struct timespec64 tmp;
100
101         /*
102          * Verify consistency of: offset_real = -wall_to_monotonic
103          * before modifying anything
104          */
105         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106                                         -tk->wall_to_monotonic.tv_nsec);
107         WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108         tk->wall_to_monotonic = wtm;
109         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110         tk->offs_real = timespec64_to_ktime(tmp);
111         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116         tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121
122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123 {
124
125         cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126         const char *name = tk->tkr_mono.clock->name;
127
128         if (offset > max_cycles) {
129                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130                                 offset, name, max_cycles);
131                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132         } else {
133                 if (offset > (max_cycles >> 1)) {
134                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
135                                         offset, name, max_cycles >> 1);
136                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137                 }
138         }
139
140         if (tk->underflow_seen) {
141                 if (jiffies - tk->last_warning > WARNING_FREQ) {
142                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
144                         printk_deferred("         Your kernel is probably still fine.\n");
145                         tk->last_warning = jiffies;
146                 }
147                 tk->underflow_seen = 0;
148         }
149
150         if (tk->overflow_seen) {
151                 if (jiffies - tk->last_warning > WARNING_FREQ) {
152                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
154                         printk_deferred("         Your kernel is probably still fine.\n");
155                         tk->last_warning = jiffies;
156                 }
157                 tk->overflow_seen = 0;
158         }
159 }
160
161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163         struct timekeeper *tk = &tk_core.timekeeper;
164         cycle_t now, last, mask, max, delta;
165         unsigned int seq;
166
167         /*
168          * Since we're called holding a seqlock, the data may shift
169          * under us while we're doing the calculation. This can cause
170          * false positives, since we'd note a problem but throw the
171          * results away. So nest another seqlock here to atomically
172          * grab the points we are checking with.
173          */
174         do {
175                 seq = read_seqcount_begin(&tk_core.seq);
176                 now = tkr->read(tkr->clock);
177                 last = tkr->cycle_last;
178                 mask = tkr->mask;
179                 max = tkr->clock->max_cycles;
180         } while (read_seqcount_retry(&tk_core.seq, seq));
181
182         delta = clocksource_delta(now, last, mask);
183
184         /*
185          * Try to catch underflows by checking if we are seeing small
186          * mask-relative negative values.
187          */
188         if (unlikely((~delta & mask) < (mask >> 3))) {
189                 tk->underflow_seen = 1;
190                 delta = 0;
191         }
192
193         /* Cap delta value to the max_cycles values to avoid mult overflows */
194         if (unlikely(delta > max)) {
195                 tk->overflow_seen = 1;
196                 delta = tkr->clock->max_cycles;
197         }
198
199         return delta;
200 }
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203 {
204 }
205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206 {
207         cycle_t cycle_now, delta;
208
209         /* read clocksource */
210         cycle_now = tkr->read(tkr->clock);
211
212         /* calculate the delta since the last update_wall_time */
213         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215         return delta;
216 }
217 #endif
218
219 /**
220  * tk_setup_internals - Set up internals to use clocksource clock.
221  *
222  * @tk:         The target timekeeper to setup.
223  * @clock:              Pointer to clocksource.
224  *
225  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226  * pair and interval request.
227  *
228  * Unless you're the timekeeping code, you should not be using this!
229  */
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 {
232         cycle_t interval;
233         u64 tmp, ntpinterval;
234         struct clocksource *old_clock;
235
236         old_clock = tk->tkr_mono.clock;
237         tk->tkr_mono.clock = clock;
238         tk->tkr_mono.read = clock->read;
239         tk->tkr_mono.mask = clock->mask;
240         tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
241
242         tk->tkr_raw.clock = clock;
243         tk->tkr_raw.read = clock->read;
244         tk->tkr_raw.mask = clock->mask;
245         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
246
247         /* Do the ns -> cycle conversion first, using original mult */
248         tmp = NTP_INTERVAL_LENGTH;
249         tmp <<= clock->shift;
250         ntpinterval = tmp;
251         tmp += clock->mult/2;
252         do_div(tmp, clock->mult);
253         if (tmp == 0)
254                 tmp = 1;
255
256         interval = (cycle_t) tmp;
257         tk->cycle_interval = interval;
258
259         /* Go back from cycles -> shifted ns */
260         tk->xtime_interval = (u64) interval * clock->mult;
261         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
262         tk->raw_interval =
263                 ((u64) interval * clock->mult) >> clock->shift;
264
265          /* if changing clocks, convert xtime_nsec shift units */
266         if (old_clock) {
267                 int shift_change = clock->shift - old_clock->shift;
268                 if (shift_change < 0)
269                         tk->tkr_mono.xtime_nsec >>= -shift_change;
270                 else
271                         tk->tkr_mono.xtime_nsec <<= shift_change;
272         }
273         tk->tkr_raw.xtime_nsec = 0;
274
275         tk->tkr_mono.shift = clock->shift;
276         tk->tkr_raw.shift = clock->shift;
277
278         tk->ntp_error = 0;
279         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
280         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
281
282         /*
283          * The timekeeper keeps its own mult values for the currently
284          * active clocksource. These value will be adjusted via NTP
285          * to counteract clock drifting.
286          */
287         tk->tkr_mono.mult = clock->mult;
288         tk->tkr_raw.mult = clock->mult;
289         tk->ntp_err_mult = 0;
290 }
291
292 /* Timekeeper helper functions. */
293
294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 static u32 default_arch_gettimeoffset(void) { return 0; }
296 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
297 #else
298 static inline u32 arch_gettimeoffset(void) { return 0; }
299 #endif
300
301 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
302                                           cycle_t delta)
303 {
304         u64 nsec;
305
306         nsec = delta * tkr->mult + tkr->xtime_nsec;
307         nsec >>= tkr->shift;
308
309         /* If arch requires, add in get_arch_timeoffset() */
310         return nsec + arch_gettimeoffset();
311 }
312
313 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
314 {
315         cycle_t delta;
316
317         delta = timekeeping_get_delta(tkr);
318         return timekeeping_delta_to_ns(tkr, delta);
319 }
320
321 static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
322                                             cycle_t cycles)
323 {
324         cycle_t delta;
325
326         /* calculate the delta since the last update_wall_time */
327         delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
328         return timekeeping_delta_to_ns(tkr, delta);
329 }
330
331 /**
332  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
333  * @tkr: Timekeeping readout base from which we take the update
334  *
335  * We want to use this from any context including NMI and tracing /
336  * instrumenting the timekeeping code itself.
337  *
338  * Employ the latch technique; see @raw_write_seqcount_latch.
339  *
340  * So if a NMI hits the update of base[0] then it will use base[1]
341  * which is still consistent. In the worst case this can result is a
342  * slightly wrong timestamp (a few nanoseconds). See
343  * @ktime_get_mono_fast_ns.
344  */
345 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
346 {
347         struct tk_read_base *base = tkf->base;
348
349         /* Force readers off to base[1] */
350         raw_write_seqcount_latch(&tkf->seq);
351
352         /* Update base[0] */
353         memcpy(base, tkr, sizeof(*base));
354
355         /* Force readers back to base[0] */
356         raw_write_seqcount_latch(&tkf->seq);
357
358         /* Update base[1] */
359         memcpy(base + 1, base, sizeof(*base));
360 }
361
362 /**
363  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
364  *
365  * This timestamp is not guaranteed to be monotonic across an update.
366  * The timestamp is calculated by:
367  *
368  *      now = base_mono + clock_delta * slope
369  *
370  * So if the update lowers the slope, readers who are forced to the
371  * not yet updated second array are still using the old steeper slope.
372  *
373  * tmono
374  * ^
375  * |    o  n
376  * |   o n
377  * |  u
378  * | o
379  * |o
380  * |12345678---> reader order
381  *
382  * o = old slope
383  * u = update
384  * n = new slope
385  *
386  * So reader 6 will observe time going backwards versus reader 5.
387  *
388  * While other CPUs are likely to be able observe that, the only way
389  * for a CPU local observation is when an NMI hits in the middle of
390  * the update. Timestamps taken from that NMI context might be ahead
391  * of the following timestamps. Callers need to be aware of that and
392  * deal with it.
393  */
394 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
395 {
396         struct tk_read_base *tkr;
397         unsigned int seq;
398         u64 now;
399
400         do {
401                 seq = raw_read_seqcount_latch(&tkf->seq);
402                 tkr = tkf->base + (seq & 0x01);
403                 now = ktime_to_ns(tkr->base);
404
405                 now += timekeeping_delta_to_ns(tkr,
406                                 clocksource_delta(
407                                         tkr->read(tkr->clock),
408                                         tkr->cycle_last,
409                                         tkr->mask));
410         } while (read_seqcount_retry(&tkf->seq, seq));
411
412         return now;
413 }
414
415 u64 ktime_get_mono_fast_ns(void)
416 {
417         return __ktime_get_fast_ns(&tk_fast_mono);
418 }
419 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
420
421 u64 ktime_get_raw_fast_ns(void)
422 {
423         return __ktime_get_fast_ns(&tk_fast_raw);
424 }
425 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
426
427 /**
428  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
429  *
430  * To keep it NMI safe since we're accessing from tracing, we're not using a
431  * separate timekeeper with updates to monotonic clock and boot offset
432  * protected with seqlocks. This has the following minor side effects:
433  *
434  * (1) Its possible that a timestamp be taken after the boot offset is updated
435  * but before the timekeeper is updated. If this happens, the new boot offset
436  * is added to the old timekeeping making the clock appear to update slightly
437  * earlier:
438  *    CPU 0                                        CPU 1
439  *    timekeeping_inject_sleeptime64()
440  *    __timekeeping_inject_sleeptime(tk, delta);
441  *                                                 timestamp();
442  *    timekeeping_update(tk, TK_CLEAR_NTP...);
443  *
444  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
445  * partially updated.  Since the tk->offs_boot update is a rare event, this
446  * should be a rare occurrence which postprocessing should be able to handle.
447  */
448 u64 notrace ktime_get_boot_fast_ns(void)
449 {
450         struct timekeeper *tk = &tk_core.timekeeper;
451
452         return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
453 }
454 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
455
456 /* Suspend-time cycles value for halted fast timekeeper. */
457 static cycle_t cycles_at_suspend;
458
459 static cycle_t dummy_clock_read(struct clocksource *cs)
460 {
461         return cycles_at_suspend;
462 }
463
464 /**
465  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
466  * @tk: Timekeeper to snapshot.
467  *
468  * It generally is unsafe to access the clocksource after timekeeping has been
469  * suspended, so take a snapshot of the readout base of @tk and use it as the
470  * fast timekeeper's readout base while suspended.  It will return the same
471  * number of cycles every time until timekeeping is resumed at which time the
472  * proper readout base for the fast timekeeper will be restored automatically.
473  */
474 static void halt_fast_timekeeper(struct timekeeper *tk)
475 {
476         static struct tk_read_base tkr_dummy;
477         struct tk_read_base *tkr = &tk->tkr_mono;
478
479         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
480         cycles_at_suspend = tkr->read(tkr->clock);
481         tkr_dummy.read = dummy_clock_read;
482         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
483
484         tkr = &tk->tkr_raw;
485         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
486         tkr_dummy.read = dummy_clock_read;
487         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
488 }
489
490 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
491
492 static inline void update_vsyscall(struct timekeeper *tk)
493 {
494         struct timespec xt, wm;
495
496         xt = timespec64_to_timespec(tk_xtime(tk));
497         wm = timespec64_to_timespec(tk->wall_to_monotonic);
498         update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
499                             tk->tkr_mono.cycle_last);
500 }
501
502 static inline void old_vsyscall_fixup(struct timekeeper *tk)
503 {
504         s64 remainder;
505
506         /*
507         * Store only full nanoseconds into xtime_nsec after rounding
508         * it up and add the remainder to the error difference.
509         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
510         * by truncating the remainder in vsyscalls. However, it causes
511         * additional work to be done in timekeeping_adjust(). Once
512         * the vsyscall implementations are converted to use xtime_nsec
513         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
514         * users are removed, this can be killed.
515         */
516         remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
517         tk->tkr_mono.xtime_nsec -= remainder;
518         tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
519         tk->ntp_error += remainder << tk->ntp_error_shift;
520         tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
521 }
522 #else
523 #define old_vsyscall_fixup(tk)
524 #endif
525
526 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
527
528 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
529 {
530         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
531 }
532
533 /**
534  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
535  */
536 int pvclock_gtod_register_notifier(struct notifier_block *nb)
537 {
538         struct timekeeper *tk = &tk_core.timekeeper;
539         unsigned long flags;
540         int ret;
541
542         raw_spin_lock_irqsave(&timekeeper_lock, flags);
543         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
544         update_pvclock_gtod(tk, true);
545         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
546
547         return ret;
548 }
549 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
550
551 /**
552  * pvclock_gtod_unregister_notifier - unregister a pvclock
553  * timedata update listener
554  */
555 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
556 {
557         unsigned long flags;
558         int ret;
559
560         raw_spin_lock_irqsave(&timekeeper_lock, flags);
561         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
562         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
563
564         return ret;
565 }
566 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
567
568 /*
569  * tk_update_leap_state - helper to update the next_leap_ktime
570  */
571 static inline void tk_update_leap_state(struct timekeeper *tk)
572 {
573         tk->next_leap_ktime = ntp_get_next_leap();
574         if (tk->next_leap_ktime.tv64 != KTIME_MAX)
575                 /* Convert to monotonic time */
576                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
577 }
578
579 /*
580  * Update the ktime_t based scalar nsec members of the timekeeper
581  */
582 static inline void tk_update_ktime_data(struct timekeeper *tk)
583 {
584         u64 seconds;
585         u32 nsec;
586
587         /*
588          * The xtime based monotonic readout is:
589          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
590          * The ktime based monotonic readout is:
591          *      nsec = base_mono + now();
592          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
593          */
594         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
595         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
596         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
597
598         /* Update the monotonic raw base */
599         tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
600
601         /*
602          * The sum of the nanoseconds portions of xtime and
603          * wall_to_monotonic can be greater/equal one second. Take
604          * this into account before updating tk->ktime_sec.
605          */
606         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
607         if (nsec >= NSEC_PER_SEC)
608                 seconds++;
609         tk->ktime_sec = seconds;
610 }
611
612 /* must hold timekeeper_lock */
613 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
614 {
615         if (action & TK_CLEAR_NTP) {
616                 tk->ntp_error = 0;
617                 ntp_clear();
618         }
619
620         tk_update_leap_state(tk);
621         tk_update_ktime_data(tk);
622
623         update_vsyscall(tk);
624         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
625
626         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
627         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
628
629         if (action & TK_CLOCK_WAS_SET)
630                 tk->clock_was_set_seq++;
631         /*
632          * The mirroring of the data to the shadow-timekeeper needs
633          * to happen last here to ensure we don't over-write the
634          * timekeeper structure on the next update with stale data
635          */
636         if (action & TK_MIRROR)
637                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
638                        sizeof(tk_core.timekeeper));
639 }
640
641 /**
642  * timekeeping_forward_now - update clock to the current time
643  *
644  * Forward the current clock to update its state since the last call to
645  * update_wall_time(). This is useful before significant clock changes,
646  * as it avoids having to deal with this time offset explicitly.
647  */
648 static void timekeeping_forward_now(struct timekeeper *tk)
649 {
650         struct clocksource *clock = tk->tkr_mono.clock;
651         cycle_t cycle_now, delta;
652         s64 nsec;
653
654         cycle_now = tk->tkr_mono.read(clock);
655         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
656         tk->tkr_mono.cycle_last = cycle_now;
657         tk->tkr_raw.cycle_last  = cycle_now;
658
659         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
660
661         /* If arch requires, add in get_arch_timeoffset() */
662         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
663
664         tk_normalize_xtime(tk);
665
666         nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
667         timespec64_add_ns(&tk->raw_time, nsec);
668 }
669
670 /**
671  * __getnstimeofday64 - Returns the time of day in a timespec64.
672  * @ts:         pointer to the timespec to be set
673  *
674  * Updates the time of day in the timespec.
675  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
676  */
677 int __getnstimeofday64(struct timespec64 *ts)
678 {
679         struct timekeeper *tk = &tk_core.timekeeper;
680         unsigned long seq;
681         s64 nsecs = 0;
682
683         do {
684                 seq = read_seqcount_begin(&tk_core.seq);
685
686                 ts->tv_sec = tk->xtime_sec;
687                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
688
689         } while (read_seqcount_retry(&tk_core.seq, seq));
690
691         ts->tv_nsec = 0;
692         timespec64_add_ns(ts, nsecs);
693
694         /*
695          * Do not bail out early, in case there were callers still using
696          * the value, even in the face of the WARN_ON.
697          */
698         if (unlikely(timekeeping_suspended))
699                 return -EAGAIN;
700         return 0;
701 }
702 EXPORT_SYMBOL(__getnstimeofday64);
703
704 /**
705  * getnstimeofday64 - Returns the time of day in a timespec64.
706  * @ts:         pointer to the timespec64 to be set
707  *
708  * Returns the time of day in a timespec64 (WARN if suspended).
709  */
710 void getnstimeofday64(struct timespec64 *ts)
711 {
712         WARN_ON(__getnstimeofday64(ts));
713 }
714 EXPORT_SYMBOL(getnstimeofday64);
715
716 ktime_t ktime_get(void)
717 {
718         struct timekeeper *tk = &tk_core.timekeeper;
719         unsigned int seq;
720         ktime_t base;
721         s64 nsecs;
722
723         WARN_ON(timekeeping_suspended);
724
725         do {
726                 seq = read_seqcount_begin(&tk_core.seq);
727                 base = tk->tkr_mono.base;
728                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
729
730         } while (read_seqcount_retry(&tk_core.seq, seq));
731
732         return ktime_add_ns(base, nsecs);
733 }
734 EXPORT_SYMBOL_GPL(ktime_get);
735
736 u32 ktime_get_resolution_ns(void)
737 {
738         struct timekeeper *tk = &tk_core.timekeeper;
739         unsigned int seq;
740         u32 nsecs;
741
742         WARN_ON(timekeeping_suspended);
743
744         do {
745                 seq = read_seqcount_begin(&tk_core.seq);
746                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
747         } while (read_seqcount_retry(&tk_core.seq, seq));
748
749         return nsecs;
750 }
751 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
752
753 static ktime_t *offsets[TK_OFFS_MAX] = {
754         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
755         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
756         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
757 };
758
759 ktime_t ktime_get_with_offset(enum tk_offsets offs)
760 {
761         struct timekeeper *tk = &tk_core.timekeeper;
762         unsigned int seq;
763         ktime_t base, *offset = offsets[offs];
764         s64 nsecs;
765
766         WARN_ON(timekeeping_suspended);
767
768         do {
769                 seq = read_seqcount_begin(&tk_core.seq);
770                 base = ktime_add(tk->tkr_mono.base, *offset);
771                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
772
773         } while (read_seqcount_retry(&tk_core.seq, seq));
774
775         return ktime_add_ns(base, nsecs);
776
777 }
778 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
779
780 /**
781  * ktime_mono_to_any() - convert mononotic time to any other time
782  * @tmono:      time to convert.
783  * @offs:       which offset to use
784  */
785 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
786 {
787         ktime_t *offset = offsets[offs];
788         unsigned long seq;
789         ktime_t tconv;
790
791         do {
792                 seq = read_seqcount_begin(&tk_core.seq);
793                 tconv = ktime_add(tmono, *offset);
794         } while (read_seqcount_retry(&tk_core.seq, seq));
795
796         return tconv;
797 }
798 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
799
800 /**
801  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
802  */
803 ktime_t ktime_get_raw(void)
804 {
805         struct timekeeper *tk = &tk_core.timekeeper;
806         unsigned int seq;
807         ktime_t base;
808         s64 nsecs;
809
810         do {
811                 seq = read_seqcount_begin(&tk_core.seq);
812                 base = tk->tkr_raw.base;
813                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
814
815         } while (read_seqcount_retry(&tk_core.seq, seq));
816
817         return ktime_add_ns(base, nsecs);
818 }
819 EXPORT_SYMBOL_GPL(ktime_get_raw);
820
821 /**
822  * ktime_get_ts64 - get the monotonic clock in timespec64 format
823  * @ts:         pointer to timespec variable
824  *
825  * The function calculates the monotonic clock from the realtime
826  * clock and the wall_to_monotonic offset and stores the result
827  * in normalized timespec64 format in the variable pointed to by @ts.
828  */
829 void ktime_get_ts64(struct timespec64 *ts)
830 {
831         struct timekeeper *tk = &tk_core.timekeeper;
832         struct timespec64 tomono;
833         s64 nsec;
834         unsigned int seq;
835
836         WARN_ON(timekeeping_suspended);
837
838         do {
839                 seq = read_seqcount_begin(&tk_core.seq);
840                 ts->tv_sec = tk->xtime_sec;
841                 nsec = timekeeping_get_ns(&tk->tkr_mono);
842                 tomono = tk->wall_to_monotonic;
843
844         } while (read_seqcount_retry(&tk_core.seq, seq));
845
846         ts->tv_sec += tomono.tv_sec;
847         ts->tv_nsec = 0;
848         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
849 }
850 EXPORT_SYMBOL_GPL(ktime_get_ts64);
851
852 /**
853  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
854  *
855  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
856  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
857  * works on both 32 and 64 bit systems. On 32 bit systems the readout
858  * covers ~136 years of uptime which should be enough to prevent
859  * premature wrap arounds.
860  */
861 time64_t ktime_get_seconds(void)
862 {
863         struct timekeeper *tk = &tk_core.timekeeper;
864
865         WARN_ON(timekeeping_suspended);
866         return tk->ktime_sec;
867 }
868 EXPORT_SYMBOL_GPL(ktime_get_seconds);
869
870 /**
871  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
872  *
873  * Returns the wall clock seconds since 1970. This replaces the
874  * get_seconds() interface which is not y2038 safe on 32bit systems.
875  *
876  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
877  * 32bit systems the access must be protected with the sequence
878  * counter to provide "atomic" access to the 64bit tk->xtime_sec
879  * value.
880  */
881 time64_t ktime_get_real_seconds(void)
882 {
883         struct timekeeper *tk = &tk_core.timekeeper;
884         time64_t seconds;
885         unsigned int seq;
886
887         if (IS_ENABLED(CONFIG_64BIT))
888                 return tk->xtime_sec;
889
890         do {
891                 seq = read_seqcount_begin(&tk_core.seq);
892                 seconds = tk->xtime_sec;
893
894         } while (read_seqcount_retry(&tk_core.seq, seq));
895
896         return seconds;
897 }
898 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
899
900 #ifdef CONFIG_NTP_PPS
901
902 /**
903  * ktime_get_raw_and_real_ts64 - get day and raw monotonic time in timespec format
904  * @ts_raw:     pointer to the timespec to be set to raw monotonic time
905  * @ts_real:    pointer to the timespec to be set to the time of day
906  *
907  * This function reads both the time of day and raw monotonic time at the
908  * same time atomically and stores the resulting timestamps in timespec
909  * format.
910  */
911 void ktime_get_raw_and_real_ts64(struct timespec64 *ts_raw, struct timespec64 *ts_real)
912 {
913         struct timekeeper *tk = &tk_core.timekeeper;
914         unsigned long seq;
915         s64 nsecs_raw, nsecs_real;
916
917         WARN_ON_ONCE(timekeeping_suspended);
918
919         do {
920                 seq = read_seqcount_begin(&tk_core.seq);
921
922                 *ts_raw = tk->raw_time;
923                 ts_real->tv_sec = tk->xtime_sec;
924                 ts_real->tv_nsec = 0;
925
926                 nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
927                 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
928
929         } while (read_seqcount_retry(&tk_core.seq, seq));
930
931         timespec64_add_ns(ts_raw, nsecs_raw);
932         timespec64_add_ns(ts_real, nsecs_real);
933 }
934 EXPORT_SYMBOL(ktime_get_raw_and_real_ts64);
935
936 #endif /* CONFIG_NTP_PPS */
937
938 /**
939  * do_gettimeofday - Returns the time of day in a timeval
940  * @tv:         pointer to the timeval to be set
941  *
942  * NOTE: Users should be converted to using getnstimeofday()
943  */
944 void do_gettimeofday(struct timeval *tv)
945 {
946         struct timespec64 now;
947
948         getnstimeofday64(&now);
949         tv->tv_sec = now.tv_sec;
950         tv->tv_usec = now.tv_nsec/1000;
951 }
952 EXPORT_SYMBOL(do_gettimeofday);
953
954 /**
955  * do_settimeofday64 - Sets the time of day.
956  * @ts:     pointer to the timespec64 variable containing the new time
957  *
958  * Sets the time of day to the new time and update NTP and notify hrtimers
959  */
960 int do_settimeofday64(const struct timespec64 *ts)
961 {
962         struct timekeeper *tk = &tk_core.timekeeper;
963         struct timespec64 ts_delta, xt;
964         unsigned long flags;
965         int ret = 0;
966
967         if (!timespec64_valid_strict(ts))
968                 return -EINVAL;
969
970         raw_spin_lock_irqsave(&timekeeper_lock, flags);
971         write_seqcount_begin(&tk_core.seq);
972
973         timekeeping_forward_now(tk);
974
975         xt = tk_xtime(tk);
976         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
977         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
978
979         if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
980                 ret = -EINVAL;
981                 goto out;
982         }
983
984         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
985
986         tk_set_xtime(tk, ts);
987 out:
988         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
989
990         write_seqcount_end(&tk_core.seq);
991         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
992
993         /* signal hrtimers about time change */
994         clock_was_set();
995
996         return ret;
997 }
998 EXPORT_SYMBOL(do_settimeofday64);
999
1000 /**
1001  * timekeeping_inject_offset - Adds or subtracts from the current time.
1002  * @tv:         pointer to the timespec variable containing the offset
1003  *
1004  * Adds or subtracts an offset value from the current time.
1005  */
1006 int timekeeping_inject_offset(struct timespec *ts)
1007 {
1008         struct timekeeper *tk = &tk_core.timekeeper;
1009         unsigned long flags;
1010         struct timespec64 ts64, tmp;
1011         int ret = 0;
1012
1013         if (!timespec_inject_offset_valid(ts))
1014                 return -EINVAL;
1015
1016         ts64 = timespec_to_timespec64(*ts);
1017
1018         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1019         write_seqcount_begin(&tk_core.seq);
1020
1021         timekeeping_forward_now(tk);
1022
1023         /* Make sure the proposed value is valid */
1024         tmp = timespec64_add(tk_xtime(tk),  ts64);
1025         if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1026             !timespec64_valid_strict(&tmp)) {
1027                 ret = -EINVAL;
1028                 goto error;
1029         }
1030
1031         tk_xtime_add(tk, &ts64);
1032         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1033
1034 error: /* even if we error out, we forwarded the time, so call update */
1035         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1036
1037         write_seqcount_end(&tk_core.seq);
1038         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1039
1040         /* signal hrtimers about time change */
1041         clock_was_set();
1042
1043         return ret;
1044 }
1045 EXPORT_SYMBOL(timekeeping_inject_offset);
1046
1047
1048 /**
1049  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1050  *
1051  */
1052 s32 timekeeping_get_tai_offset(void)
1053 {
1054         struct timekeeper *tk = &tk_core.timekeeper;
1055         unsigned int seq;
1056         s32 ret;
1057
1058         do {
1059                 seq = read_seqcount_begin(&tk_core.seq);
1060                 ret = tk->tai_offset;
1061         } while (read_seqcount_retry(&tk_core.seq, seq));
1062
1063         return ret;
1064 }
1065
1066 /**
1067  * __timekeeping_set_tai_offset - Lock free worker function
1068  *
1069  */
1070 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1071 {
1072         tk->tai_offset = tai_offset;
1073         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1074 }
1075
1076 /**
1077  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1078  *
1079  */
1080 void timekeeping_set_tai_offset(s32 tai_offset)
1081 {
1082         struct timekeeper *tk = &tk_core.timekeeper;
1083         unsigned long flags;
1084
1085         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1086         write_seqcount_begin(&tk_core.seq);
1087         __timekeeping_set_tai_offset(tk, tai_offset);
1088         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1089         write_seqcount_end(&tk_core.seq);
1090         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1091         clock_was_set();
1092 }
1093
1094 /**
1095  * change_clocksource - Swaps clocksources if a new one is available
1096  *
1097  * Accumulates current time interval and initializes new clocksource
1098  */
1099 static int change_clocksource(void *data)
1100 {
1101         struct timekeeper *tk = &tk_core.timekeeper;
1102         struct clocksource *new, *old;
1103         unsigned long flags;
1104
1105         new = (struct clocksource *) data;
1106
1107         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1108         write_seqcount_begin(&tk_core.seq);
1109
1110         timekeeping_forward_now(tk);
1111         /*
1112          * If the cs is in module, get a module reference. Succeeds
1113          * for built-in code (owner == NULL) as well.
1114          */
1115         if (try_module_get(new->owner)) {
1116                 if (!new->enable || new->enable(new) == 0) {
1117                         old = tk->tkr_mono.clock;
1118                         tk_setup_internals(tk, new);
1119                         if (old->disable)
1120                                 old->disable(old);
1121                         module_put(old->owner);
1122                 } else {
1123                         module_put(new->owner);
1124                 }
1125         }
1126         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1127
1128         write_seqcount_end(&tk_core.seq);
1129         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1130
1131         return 0;
1132 }
1133
1134 /**
1135  * timekeeping_notify - Install a new clock source
1136  * @clock:              pointer to the clock source
1137  *
1138  * This function is called from clocksource.c after a new, better clock
1139  * source has been registered. The caller holds the clocksource_mutex.
1140  */
1141 int timekeeping_notify(struct clocksource *clock)
1142 {
1143         struct timekeeper *tk = &tk_core.timekeeper;
1144
1145         if (tk->tkr_mono.clock == clock)
1146                 return 0;
1147         stop_machine(change_clocksource, clock, NULL);
1148         tick_clock_notify();
1149         return tk->tkr_mono.clock == clock ? 0 : -1;
1150 }
1151
1152 /**
1153  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1154  * @ts:         pointer to the timespec64 to be set
1155  *
1156  * Returns the raw monotonic time (completely un-modified by ntp)
1157  */
1158 void getrawmonotonic64(struct timespec64 *ts)
1159 {
1160         struct timekeeper *tk = &tk_core.timekeeper;
1161         struct timespec64 ts64;
1162         unsigned long seq;
1163         s64 nsecs;
1164
1165         do {
1166                 seq = read_seqcount_begin(&tk_core.seq);
1167                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1168                 ts64 = tk->raw_time;
1169
1170         } while (read_seqcount_retry(&tk_core.seq, seq));
1171
1172         timespec64_add_ns(&ts64, nsecs);
1173         *ts = ts64;
1174 }
1175 EXPORT_SYMBOL(getrawmonotonic64);
1176
1177
1178 /**
1179  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1180  */
1181 int timekeeping_valid_for_hres(void)
1182 {
1183         struct timekeeper *tk = &tk_core.timekeeper;
1184         unsigned long seq;
1185         int ret;
1186
1187         do {
1188                 seq = read_seqcount_begin(&tk_core.seq);
1189
1190                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1191
1192         } while (read_seqcount_retry(&tk_core.seq, seq));
1193
1194         return ret;
1195 }
1196
1197 /**
1198  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1199  */
1200 u64 timekeeping_max_deferment(void)
1201 {
1202         struct timekeeper *tk = &tk_core.timekeeper;
1203         unsigned long seq;
1204         u64 ret;
1205
1206         do {
1207                 seq = read_seqcount_begin(&tk_core.seq);
1208
1209                 ret = tk->tkr_mono.clock->max_idle_ns;
1210
1211         } while (read_seqcount_retry(&tk_core.seq, seq));
1212
1213         return ret;
1214 }
1215
1216 /**
1217  * read_persistent_clock -  Return time from the persistent clock.
1218  *
1219  * Weak dummy function for arches that do not yet support it.
1220  * Reads the time from the battery backed persistent clock.
1221  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1222  *
1223  *  XXX - Do be sure to remove it once all arches implement it.
1224  */
1225 void __weak read_persistent_clock(struct timespec *ts)
1226 {
1227         ts->tv_sec = 0;
1228         ts->tv_nsec = 0;
1229 }
1230
1231 void __weak read_persistent_clock64(struct timespec64 *ts64)
1232 {
1233         struct timespec ts;
1234
1235         read_persistent_clock(&ts);
1236         *ts64 = timespec_to_timespec64(ts);
1237 }
1238
1239 /**
1240  * read_boot_clock64 -  Return time of the system start.
1241  *
1242  * Weak dummy function for arches that do not yet support it.
1243  * Function to read the exact time the system has been started.
1244  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1245  *
1246  *  XXX - Do be sure to remove it once all arches implement it.
1247  */
1248 void __weak read_boot_clock64(struct timespec64 *ts)
1249 {
1250         ts->tv_sec = 0;
1251         ts->tv_nsec = 0;
1252 }
1253
1254 /* Flag for if timekeeping_resume() has injected sleeptime */
1255 static bool sleeptime_injected;
1256
1257 /* Flag for if there is a persistent clock on this platform */
1258 static bool persistent_clock_exists;
1259
1260 /*
1261  * timekeeping_init - Initializes the clocksource and common timekeeping values
1262  */
1263 void __init timekeeping_init(void)
1264 {
1265         struct timekeeper *tk = &tk_core.timekeeper;
1266         struct clocksource *clock;
1267         unsigned long flags;
1268         struct timespec64 now, boot, tmp;
1269
1270         read_persistent_clock64(&now);
1271         if (!timespec64_valid_strict(&now)) {
1272                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1273                         "         Check your CMOS/BIOS settings.\n");
1274                 now.tv_sec = 0;
1275                 now.tv_nsec = 0;
1276         } else if (now.tv_sec || now.tv_nsec)
1277                 persistent_clock_exists = true;
1278
1279         read_boot_clock64(&boot);
1280         if (!timespec64_valid_strict(&boot)) {
1281                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1282                         "         Check your CMOS/BIOS settings.\n");
1283                 boot.tv_sec = 0;
1284                 boot.tv_nsec = 0;
1285         }
1286
1287         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1288         write_seqcount_begin(&tk_core.seq);
1289         ntp_init();
1290
1291         clock = clocksource_default_clock();
1292         if (clock->enable)
1293                 clock->enable(clock);
1294         tk_setup_internals(tk, clock);
1295
1296         tk_set_xtime(tk, &now);
1297         tk->raw_time.tv_sec = 0;
1298         tk->raw_time.tv_nsec = 0;
1299         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1300                 boot = tk_xtime(tk);
1301
1302         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1303         tk_set_wall_to_mono(tk, tmp);
1304
1305         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1306
1307         write_seqcount_end(&tk_core.seq);
1308         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1309 }
1310
1311 /* time in seconds when suspend began for persistent clock */
1312 static struct timespec64 timekeeping_suspend_time;
1313
1314 /**
1315  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1316  * @delta: pointer to a timespec delta value
1317  *
1318  * Takes a timespec offset measuring a suspend interval and properly
1319  * adds the sleep offset to the timekeeping variables.
1320  */
1321 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1322                                            struct timespec64 *delta)
1323 {
1324         if (!timespec64_valid_strict(delta)) {
1325                 printk_deferred(KERN_WARNING
1326                                 "__timekeeping_inject_sleeptime: Invalid "
1327                                 "sleep delta value!\n");
1328                 return;
1329         }
1330         tk_xtime_add(tk, delta);
1331         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1332         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1333         tk_debug_account_sleep_time(delta);
1334 }
1335
1336 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1337 /**
1338  * We have three kinds of time sources to use for sleep time
1339  * injection, the preference order is:
1340  * 1) non-stop clocksource
1341  * 2) persistent clock (ie: RTC accessible when irqs are off)
1342  * 3) RTC
1343  *
1344  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1345  * If system has neither 1) nor 2), 3) will be used finally.
1346  *
1347  *
1348  * If timekeeping has injected sleeptime via either 1) or 2),
1349  * 3) becomes needless, so in this case we don't need to call
1350  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1351  * means.
1352  */
1353 bool timekeeping_rtc_skipresume(void)
1354 {
1355         return sleeptime_injected;
1356 }
1357
1358 /**
1359  * 1) can be determined whether to use or not only when doing
1360  * timekeeping_resume() which is invoked after rtc_suspend(),
1361  * so we can't skip rtc_suspend() surely if system has 1).
1362  *
1363  * But if system has 2), 2) will definitely be used, so in this
1364  * case we don't need to call rtc_suspend(), and this is what
1365  * timekeeping_rtc_skipsuspend() means.
1366  */
1367 bool timekeeping_rtc_skipsuspend(void)
1368 {
1369         return persistent_clock_exists;
1370 }
1371
1372 /**
1373  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1374  * @delta: pointer to a timespec64 delta value
1375  *
1376  * This hook is for architectures that cannot support read_persistent_clock64
1377  * because their RTC/persistent clock is only accessible when irqs are enabled.
1378  * and also don't have an effective nonstop clocksource.
1379  *
1380  * This function should only be called by rtc_resume(), and allows
1381  * a suspend offset to be injected into the timekeeping values.
1382  */
1383 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1384 {
1385         struct timekeeper *tk = &tk_core.timekeeper;
1386         unsigned long flags;
1387
1388         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1389         write_seqcount_begin(&tk_core.seq);
1390
1391         timekeeping_forward_now(tk);
1392
1393         __timekeeping_inject_sleeptime(tk, delta);
1394
1395         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1396
1397         write_seqcount_end(&tk_core.seq);
1398         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1399
1400         /* signal hrtimers about time change */
1401         clock_was_set();
1402 }
1403 #endif
1404
1405 /**
1406  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1407  */
1408 void timekeeping_resume(void)
1409 {
1410         struct timekeeper *tk = &tk_core.timekeeper;
1411         struct clocksource *clock = tk->tkr_mono.clock;
1412         unsigned long flags;
1413         struct timespec64 ts_new, ts_delta;
1414         cycle_t cycle_now, cycle_delta;
1415
1416         sleeptime_injected = false;
1417         read_persistent_clock64(&ts_new);
1418
1419         clockevents_resume();
1420         clocksource_resume();
1421
1422         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1423         write_seqcount_begin(&tk_core.seq);
1424
1425         /*
1426          * After system resumes, we need to calculate the suspended time and
1427          * compensate it for the OS time. There are 3 sources that could be
1428          * used: Nonstop clocksource during suspend, persistent clock and rtc
1429          * device.
1430          *
1431          * One specific platform may have 1 or 2 or all of them, and the
1432          * preference will be:
1433          *      suspend-nonstop clocksource -> persistent clock -> rtc
1434          * The less preferred source will only be tried if there is no better
1435          * usable source. The rtc part is handled separately in rtc core code.
1436          */
1437         cycle_now = tk->tkr_mono.read(clock);
1438         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1439                 cycle_now > tk->tkr_mono.cycle_last) {
1440                 u64 num, max = ULLONG_MAX;
1441                 u32 mult = clock->mult;
1442                 u32 shift = clock->shift;
1443                 s64 nsec = 0;
1444
1445                 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1446                                                 tk->tkr_mono.mask);
1447
1448                 /*
1449                  * "cycle_delta * mutl" may cause 64 bits overflow, if the
1450                  * suspended time is too long. In that case we need do the
1451                  * 64 bits math carefully
1452                  */
1453                 do_div(max, mult);
1454                 if (cycle_delta > max) {
1455                         num = div64_u64(cycle_delta, max);
1456                         nsec = (((u64) max * mult) >> shift) * num;
1457                         cycle_delta -= num * max;
1458                 }
1459                 nsec += ((u64) cycle_delta * mult) >> shift;
1460
1461                 ts_delta = ns_to_timespec64(nsec);
1462                 sleeptime_injected = true;
1463         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1464                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1465                 sleeptime_injected = true;
1466         }
1467
1468         if (sleeptime_injected)
1469                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1470
1471         /* Re-base the last cycle value */
1472         tk->tkr_mono.cycle_last = cycle_now;
1473         tk->tkr_raw.cycle_last  = cycle_now;
1474
1475         tk->ntp_error = 0;
1476         timekeeping_suspended = 0;
1477         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1478         write_seqcount_end(&tk_core.seq);
1479         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1480
1481         touch_softlockup_watchdog();
1482
1483         tick_resume();
1484         hrtimers_resume();
1485 }
1486
1487 int timekeeping_suspend(void)
1488 {
1489         struct timekeeper *tk = &tk_core.timekeeper;
1490         unsigned long flags;
1491         struct timespec64               delta, delta_delta;
1492         static struct timespec64        old_delta;
1493
1494         read_persistent_clock64(&timekeeping_suspend_time);
1495
1496         /*
1497          * On some systems the persistent_clock can not be detected at
1498          * timekeeping_init by its return value, so if we see a valid
1499          * value returned, update the persistent_clock_exists flag.
1500          */
1501         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1502                 persistent_clock_exists = true;
1503
1504         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1505         write_seqcount_begin(&tk_core.seq);
1506         timekeeping_forward_now(tk);
1507         timekeeping_suspended = 1;
1508
1509         if (persistent_clock_exists) {
1510                 /*
1511                  * To avoid drift caused by repeated suspend/resumes,
1512                  * which each can add ~1 second drift error,
1513                  * try to compensate so the difference in system time
1514                  * and persistent_clock time stays close to constant.
1515                  */
1516                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1517                 delta_delta = timespec64_sub(delta, old_delta);
1518                 if (abs(delta_delta.tv_sec) >= 2) {
1519                         /*
1520                          * if delta_delta is too large, assume time correction
1521                          * has occurred and set old_delta to the current delta.
1522                          */
1523                         old_delta = delta;
1524                 } else {
1525                         /* Otherwise try to adjust old_system to compensate */
1526                         timekeeping_suspend_time =
1527                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1528                 }
1529         }
1530
1531         timekeeping_update(tk, TK_MIRROR);
1532         halt_fast_timekeeper(tk);
1533         write_seqcount_end(&tk_core.seq);
1534         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1535
1536         tick_suspend();
1537         clocksource_suspend();
1538         clockevents_suspend();
1539
1540         return 0;
1541 }
1542
1543 /* sysfs resume/suspend bits for timekeeping */
1544 static struct syscore_ops timekeeping_syscore_ops = {
1545         .resume         = timekeeping_resume,
1546         .suspend        = timekeeping_suspend,
1547 };
1548
1549 static int __init timekeeping_init_ops(void)
1550 {
1551         register_syscore_ops(&timekeeping_syscore_ops);
1552         return 0;
1553 }
1554 device_initcall(timekeeping_init_ops);
1555
1556 /*
1557  * Apply a multiplier adjustment to the timekeeper
1558  */
1559 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1560                                                          s64 offset,
1561                                                          bool negative,
1562                                                          int adj_scale)
1563 {
1564         s64 interval = tk->cycle_interval;
1565         s32 mult_adj = 1;
1566
1567         if (negative) {
1568                 mult_adj = -mult_adj;
1569                 interval = -interval;
1570                 offset  = -offset;
1571         }
1572         mult_adj <<= adj_scale;
1573         interval <<= adj_scale;
1574         offset <<= adj_scale;
1575
1576         /*
1577          * So the following can be confusing.
1578          *
1579          * To keep things simple, lets assume mult_adj == 1 for now.
1580          *
1581          * When mult_adj != 1, remember that the interval and offset values
1582          * have been appropriately scaled so the math is the same.
1583          *
1584          * The basic idea here is that we're increasing the multiplier
1585          * by one, this causes the xtime_interval to be incremented by
1586          * one cycle_interval. This is because:
1587          *      xtime_interval = cycle_interval * mult
1588          * So if mult is being incremented by one:
1589          *      xtime_interval = cycle_interval * (mult + 1)
1590          * Its the same as:
1591          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1592          * Which can be shortened to:
1593          *      xtime_interval += cycle_interval
1594          *
1595          * So offset stores the non-accumulated cycles. Thus the current
1596          * time (in shifted nanoseconds) is:
1597          *      now = (offset * adj) + xtime_nsec
1598          * Now, even though we're adjusting the clock frequency, we have
1599          * to keep time consistent. In other words, we can't jump back
1600          * in time, and we also want to avoid jumping forward in time.
1601          *
1602          * So given the same offset value, we need the time to be the same
1603          * both before and after the freq adjustment.
1604          *      now = (offset * adj_1) + xtime_nsec_1
1605          *      now = (offset * adj_2) + xtime_nsec_2
1606          * So:
1607          *      (offset * adj_1) + xtime_nsec_1 =
1608          *              (offset * adj_2) + xtime_nsec_2
1609          * And we know:
1610          *      adj_2 = adj_1 + 1
1611          * So:
1612          *      (offset * adj_1) + xtime_nsec_1 =
1613          *              (offset * (adj_1+1)) + xtime_nsec_2
1614          *      (offset * adj_1) + xtime_nsec_1 =
1615          *              (offset * adj_1) + offset + xtime_nsec_2
1616          * Canceling the sides:
1617          *      xtime_nsec_1 = offset + xtime_nsec_2
1618          * Which gives us:
1619          *      xtime_nsec_2 = xtime_nsec_1 - offset
1620          * Which simplfies to:
1621          *      xtime_nsec -= offset
1622          *
1623          * XXX - TODO: Doc ntp_error calculation.
1624          */
1625         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1626                 /* NTP adjustment caused clocksource mult overflow */
1627                 WARN_ON_ONCE(1);
1628                 return;
1629         }
1630
1631         tk->tkr_mono.mult += mult_adj;
1632         tk->xtime_interval += interval;
1633         tk->tkr_mono.xtime_nsec -= offset;
1634         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1635 }
1636
1637 /*
1638  * Calculate the multiplier adjustment needed to match the frequency
1639  * specified by NTP
1640  */
1641 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1642                                                         s64 offset)
1643 {
1644         s64 interval = tk->cycle_interval;
1645         s64 xinterval = tk->xtime_interval;
1646         s64 tick_error;
1647         bool negative;
1648         u32 adj;
1649
1650         /* Remove any current error adj from freq calculation */
1651         if (tk->ntp_err_mult)
1652                 xinterval -= tk->cycle_interval;
1653
1654         tk->ntp_tick = ntp_tick_length();
1655
1656         /* Calculate current error per tick */
1657         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1658         tick_error -= (xinterval + tk->xtime_remainder);
1659
1660         /* Don't worry about correcting it if its small */
1661         if (likely((tick_error >= 0) && (tick_error <= interval)))
1662                 return;
1663
1664         /* preserve the direction of correction */
1665         negative = (tick_error < 0);
1666
1667         /* Sort out the magnitude of the correction */
1668         tick_error = abs(tick_error);
1669         for (adj = 0; tick_error > interval; adj++)
1670                 tick_error >>= 1;
1671
1672         /* scale the corrections */
1673         timekeeping_apply_adjustment(tk, offset, negative, adj);
1674 }
1675
1676 /*
1677  * Adjust the timekeeper's multiplier to the correct frequency
1678  * and also to reduce the accumulated error value.
1679  */
1680 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1681 {
1682         /* Correct for the current frequency error */
1683         timekeeping_freqadjust(tk, offset);
1684
1685         /* Next make a small adjustment to fix any cumulative error */
1686         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1687                 tk->ntp_err_mult = 1;
1688                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1689         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1690                 /* Undo any existing error adjustment */
1691                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1692                 tk->ntp_err_mult = 0;
1693         }
1694
1695         if (unlikely(tk->tkr_mono.clock->maxadj &&
1696                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1697                         > tk->tkr_mono.clock->maxadj))) {
1698                 printk_once(KERN_WARNING
1699                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1700                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1701                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1702         }
1703
1704         /*
1705          * It may be possible that when we entered this function, xtime_nsec
1706          * was very small.  Further, if we're slightly speeding the clocksource
1707          * in the code above, its possible the required corrective factor to
1708          * xtime_nsec could cause it to underflow.
1709          *
1710          * Now, since we already accumulated the second, cannot simply roll
1711          * the accumulated second back, since the NTP subsystem has been
1712          * notified via second_overflow. So instead we push xtime_nsec forward
1713          * by the amount we underflowed, and add that amount into the error.
1714          *
1715          * We'll correct this error next time through this function, when
1716          * xtime_nsec is not as small.
1717          */
1718         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1719                 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1720                 tk->tkr_mono.xtime_nsec = 0;
1721                 tk->ntp_error += neg << tk->ntp_error_shift;
1722         }
1723 }
1724
1725 /**
1726  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1727  *
1728  * Helper function that accumulates the nsecs greater than a second
1729  * from the xtime_nsec field to the xtime_secs field.
1730  * It also calls into the NTP code to handle leapsecond processing.
1731  *
1732  */
1733 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1734 {
1735         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1736         unsigned int clock_set = 0;
1737
1738         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1739                 int leap;
1740
1741                 tk->tkr_mono.xtime_nsec -= nsecps;
1742                 tk->xtime_sec++;
1743
1744                 /* Figure out if its a leap sec and apply if needed */
1745                 leap = second_overflow(tk->xtime_sec);
1746                 if (unlikely(leap)) {
1747                         struct timespec64 ts;
1748
1749                         tk->xtime_sec += leap;
1750
1751                         ts.tv_sec = leap;
1752                         ts.tv_nsec = 0;
1753                         tk_set_wall_to_mono(tk,
1754                                 timespec64_sub(tk->wall_to_monotonic, ts));
1755
1756                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1757
1758                         clock_set = TK_CLOCK_WAS_SET;
1759                 }
1760         }
1761         return clock_set;
1762 }
1763
1764 /**
1765  * logarithmic_accumulation - shifted accumulation of cycles
1766  *
1767  * This functions accumulates a shifted interval of cycles into
1768  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1769  * loop.
1770  *
1771  * Returns the unconsumed cycles.
1772  */
1773 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1774                                                 u32 shift,
1775                                                 unsigned int *clock_set)
1776 {
1777         cycle_t interval = tk->cycle_interval << shift;
1778         u64 raw_nsecs;
1779
1780         /* If the offset is smaller than a shifted interval, do nothing */
1781         if (offset < interval)
1782                 return offset;
1783
1784         /* Accumulate one shifted interval */
1785         offset -= interval;
1786         tk->tkr_mono.cycle_last += interval;
1787         tk->tkr_raw.cycle_last  += interval;
1788
1789         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1790         *clock_set |= accumulate_nsecs_to_secs(tk);
1791
1792         /* Accumulate raw time */
1793         raw_nsecs = (u64)tk->raw_interval << shift;
1794         raw_nsecs += tk->raw_time.tv_nsec;
1795         if (raw_nsecs >= NSEC_PER_SEC) {
1796                 u64 raw_secs = raw_nsecs;
1797                 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1798                 tk->raw_time.tv_sec += raw_secs;
1799         }
1800         tk->raw_time.tv_nsec = raw_nsecs;
1801
1802         /* Accumulate error between NTP and clock interval */
1803         tk->ntp_error += tk->ntp_tick << shift;
1804         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1805                                                 (tk->ntp_error_shift + shift);
1806
1807         return offset;
1808 }
1809
1810 /**
1811  * update_wall_time - Uses the current clocksource to increment the wall time
1812  *
1813  */
1814 void update_wall_time(void)
1815 {
1816         struct timekeeper *real_tk = &tk_core.timekeeper;
1817         struct timekeeper *tk = &shadow_timekeeper;
1818         cycle_t offset;
1819         int shift = 0, maxshift;
1820         unsigned int clock_set = 0;
1821         unsigned long flags;
1822
1823         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1824
1825         /* Make sure we're fully resumed: */
1826         if (unlikely(timekeeping_suspended))
1827                 goto out;
1828
1829 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1830         offset = real_tk->cycle_interval;
1831 #else
1832         offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1833                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1834 #endif
1835
1836         /* Check if there's really nothing to do */
1837         if (offset < real_tk->cycle_interval)
1838                 goto out;
1839
1840         /* Do some additional sanity checking */
1841         timekeeping_check_update(real_tk, offset);
1842
1843         /*
1844          * With NO_HZ we may have to accumulate many cycle_intervals
1845          * (think "ticks") worth of time at once. To do this efficiently,
1846          * we calculate the largest doubling multiple of cycle_intervals
1847          * that is smaller than the offset.  We then accumulate that
1848          * chunk in one go, and then try to consume the next smaller
1849          * doubled multiple.
1850          */
1851         shift = ilog2(offset) - ilog2(tk->cycle_interval);
1852         shift = max(0, shift);
1853         /* Bound shift to one less than what overflows tick_length */
1854         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1855         shift = min(shift, maxshift);
1856         while (offset >= tk->cycle_interval) {
1857                 offset = logarithmic_accumulation(tk, offset, shift,
1858                                                         &clock_set);
1859                 if (offset < tk->cycle_interval<<shift)
1860                         shift--;
1861         }
1862
1863         /* correct the clock when NTP error is too big */
1864         timekeeping_adjust(tk, offset);
1865
1866         /*
1867          * XXX This can be killed once everyone converts
1868          * to the new update_vsyscall.
1869          */
1870         old_vsyscall_fixup(tk);
1871
1872         /*
1873          * Finally, make sure that after the rounding
1874          * xtime_nsec isn't larger than NSEC_PER_SEC
1875          */
1876         clock_set |= accumulate_nsecs_to_secs(tk);
1877
1878         write_seqcount_begin(&tk_core.seq);
1879         /*
1880          * Update the real timekeeper.
1881          *
1882          * We could avoid this memcpy by switching pointers, but that
1883          * requires changes to all other timekeeper usage sites as
1884          * well, i.e. move the timekeeper pointer getter into the
1885          * spinlocked/seqcount protected sections. And we trade this
1886          * memcpy under the tk_core.seq against one before we start
1887          * updating.
1888          */
1889         timekeeping_update(tk, clock_set);
1890         memcpy(real_tk, tk, sizeof(*tk));
1891         /* The memcpy must come last. Do not put anything here! */
1892         write_seqcount_end(&tk_core.seq);
1893 out:
1894         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1895         if (clock_set)
1896                 /* Have to call _delayed version, since in irq context*/
1897                 clock_was_set_delayed();
1898 }
1899
1900 /**
1901  * getboottime64 - Return the real time of system boot.
1902  * @ts:         pointer to the timespec64 to be set
1903  *
1904  * Returns the wall-time of boot in a timespec64.
1905  *
1906  * This is based on the wall_to_monotonic offset and the total suspend
1907  * time. Calls to settimeofday will affect the value returned (which
1908  * basically means that however wrong your real time clock is at boot time,
1909  * you get the right time here).
1910  */
1911 void getboottime64(struct timespec64 *ts)
1912 {
1913         struct timekeeper *tk = &tk_core.timekeeper;
1914         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1915
1916         *ts = ktime_to_timespec64(t);
1917 }
1918 EXPORT_SYMBOL_GPL(getboottime64);
1919
1920 unsigned long get_seconds(void)
1921 {
1922         struct timekeeper *tk = &tk_core.timekeeper;
1923
1924         return tk->xtime_sec;
1925 }
1926 EXPORT_SYMBOL(get_seconds);
1927
1928 struct timespec __current_kernel_time(void)
1929 {
1930         struct timekeeper *tk = &tk_core.timekeeper;
1931
1932         return timespec64_to_timespec(tk_xtime(tk));
1933 }
1934
1935 struct timespec64 current_kernel_time64(void)
1936 {
1937         struct timekeeper *tk = &tk_core.timekeeper;
1938         struct timespec64 now;
1939         unsigned long seq;
1940
1941         do {
1942                 seq = read_seqcount_begin(&tk_core.seq);
1943
1944                 now = tk_xtime(tk);
1945         } while (read_seqcount_retry(&tk_core.seq, seq));
1946
1947         return now;
1948 }
1949 EXPORT_SYMBOL(current_kernel_time64);
1950
1951 struct timespec64 get_monotonic_coarse64(void)
1952 {
1953         struct timekeeper *tk = &tk_core.timekeeper;
1954         struct timespec64 now, mono;
1955         unsigned long seq;
1956
1957         do {
1958                 seq = read_seqcount_begin(&tk_core.seq);
1959
1960                 now = tk_xtime(tk);
1961                 mono = tk->wall_to_monotonic;
1962         } while (read_seqcount_retry(&tk_core.seq, seq));
1963
1964         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1965                                 now.tv_nsec + mono.tv_nsec);
1966
1967         return now;
1968 }
1969
1970 /*
1971  * Must hold jiffies_lock
1972  */
1973 void do_timer(unsigned long ticks)
1974 {
1975         jiffies_64 += ticks;
1976         calc_global_load(ticks);
1977 }
1978
1979 /**
1980  * ktime_get_update_offsets_now - hrtimer helper
1981  * @cwsseq:     pointer to check and store the clock was set sequence number
1982  * @offs_real:  pointer to storage for monotonic -> realtime offset
1983  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1984  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1985  *
1986  * Returns current monotonic time and updates the offsets if the
1987  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
1988  * different.
1989  *
1990  * Called from hrtimer_interrupt() or retrigger_next_event()
1991  */
1992 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
1993                                      ktime_t *offs_boot, ktime_t *offs_tai)
1994 {
1995         struct timekeeper *tk = &tk_core.timekeeper;
1996         unsigned int seq;
1997         ktime_t base;
1998         u64 nsecs;
1999
2000         do {
2001                 seq = read_seqcount_begin(&tk_core.seq);
2002
2003                 base = tk->tkr_mono.base;
2004                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2005                 base = ktime_add_ns(base, nsecs);
2006
2007                 if (*cwsseq != tk->clock_was_set_seq) {
2008                         *cwsseq = tk->clock_was_set_seq;
2009                         *offs_real = tk->offs_real;
2010                         *offs_boot = tk->offs_boot;
2011                         *offs_tai = tk->offs_tai;
2012                 }
2013
2014                 /* Handle leapsecond insertion adjustments */
2015                 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2016                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2017
2018         } while (read_seqcount_retry(&tk_core.seq, seq));
2019
2020         return base;
2021 }
2022
2023 /**
2024  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2025  */
2026 int do_adjtimex(struct timex *txc)
2027 {
2028         struct timekeeper *tk = &tk_core.timekeeper;
2029         unsigned long flags;
2030         struct timespec64 ts;
2031         s32 orig_tai, tai;
2032         int ret;
2033
2034         /* Validate the data before disabling interrupts */
2035         ret = ntp_validate_timex(txc);
2036         if (ret)
2037                 return ret;
2038
2039         if (txc->modes & ADJ_SETOFFSET) {
2040                 struct timespec delta;
2041                 delta.tv_sec  = txc->time.tv_sec;
2042                 delta.tv_nsec = txc->time.tv_usec;
2043                 if (!(txc->modes & ADJ_NANO))
2044                         delta.tv_nsec *= 1000;
2045                 ret = timekeeping_inject_offset(&delta);
2046                 if (ret)
2047                         return ret;
2048         }
2049
2050         getnstimeofday64(&ts);
2051
2052         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2053         write_seqcount_begin(&tk_core.seq);
2054
2055         orig_tai = tai = tk->tai_offset;
2056         ret = __do_adjtimex(txc, &ts, &tai);
2057
2058         if (tai != orig_tai) {
2059                 __timekeeping_set_tai_offset(tk, tai);
2060                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2061         }
2062         tk_update_leap_state(tk);
2063
2064         write_seqcount_end(&tk_core.seq);
2065         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2066
2067         if (tai != orig_tai)
2068                 clock_was_set();
2069
2070         ntp_notify_cmos_timer();
2071
2072         return ret;
2073 }
2074
2075 #ifdef CONFIG_NTP_PPS
2076 /**
2077  * hardpps() - Accessor function to NTP __hardpps function
2078  */
2079 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2080 {
2081         unsigned long flags;
2082
2083         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2084         write_seqcount_begin(&tk_core.seq);
2085
2086         __hardpps(phase_ts, raw_ts);
2087
2088         write_seqcount_end(&tk_core.seq);
2089         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2090 }
2091 EXPORT_SYMBOL(hardpps);
2092 #endif
2093
2094 /**
2095  * xtime_update() - advances the timekeeping infrastructure
2096  * @ticks:      number of ticks, that have elapsed since the last call.
2097  *
2098  * Must be called with interrupts disabled.
2099  */
2100 void xtime_update(unsigned long ticks)
2101 {
2102         write_seqlock(&jiffies_lock);
2103         do_timer(ticks);
2104         write_sequnlock(&jiffies_lock);
2105         update_wall_time();
2106 }