Merge tag 'isci-for-3.5' into misc
[firefly-linux-kernel-4.4.55.git] / kernel / time / tick-broadcast.c
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21
22 #include "tick-internal.h"
23
24 /*
25  * Broadcast support for broken x86 hardware, where the local apic
26  * timer stops in C3 state.
27  */
28
29 static struct tick_device tick_broadcast_device;
30 /* FIXME: Use cpumask_var_t. */
31 static DECLARE_BITMAP(tick_broadcast_mask, NR_CPUS);
32 static DECLARE_BITMAP(tmpmask, NR_CPUS);
33 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
34 static int tick_broadcast_force;
35
36 #ifdef CONFIG_TICK_ONESHOT
37 static void tick_broadcast_clear_oneshot(int cpu);
38 #else
39 static inline void tick_broadcast_clear_oneshot(int cpu) { }
40 #endif
41
42 /*
43  * Debugging: see timer_list.c
44  */
45 struct tick_device *tick_get_broadcast_device(void)
46 {
47         return &tick_broadcast_device;
48 }
49
50 struct cpumask *tick_get_broadcast_mask(void)
51 {
52         return to_cpumask(tick_broadcast_mask);
53 }
54
55 /*
56  * Start the device in periodic mode
57  */
58 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
59 {
60         if (bc)
61                 tick_setup_periodic(bc, 1);
62 }
63
64 /*
65  * Check, if the device can be utilized as broadcast device:
66  */
67 int tick_check_broadcast_device(struct clock_event_device *dev)
68 {
69         if ((tick_broadcast_device.evtdev &&
70              tick_broadcast_device.evtdev->rating >= dev->rating) ||
71              (dev->features & CLOCK_EVT_FEAT_C3STOP))
72                 return 0;
73
74         clockevents_exchange_device(tick_broadcast_device.evtdev, dev);
75         tick_broadcast_device.evtdev = dev;
76         if (!cpumask_empty(tick_get_broadcast_mask()))
77                 tick_broadcast_start_periodic(dev);
78         return 1;
79 }
80
81 /*
82  * Check, if the device is the broadcast device
83  */
84 int tick_is_broadcast_device(struct clock_event_device *dev)
85 {
86         return (dev && tick_broadcast_device.evtdev == dev);
87 }
88
89 /*
90  * Check, if the device is disfunctional and a place holder, which
91  * needs to be handled by the broadcast device.
92  */
93 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
94 {
95         unsigned long flags;
96         int ret = 0;
97
98         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
99
100         /*
101          * Devices might be registered with both periodic and oneshot
102          * mode disabled. This signals, that the device needs to be
103          * operated from the broadcast device and is a placeholder for
104          * the cpu local device.
105          */
106         if (!tick_device_is_functional(dev)) {
107                 dev->event_handler = tick_handle_periodic;
108                 cpumask_set_cpu(cpu, tick_get_broadcast_mask());
109                 tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
110                 ret = 1;
111         } else {
112                 /*
113                  * When the new device is not affected by the stop
114                  * feature and the cpu is marked in the broadcast mask
115                  * then clear the broadcast bit.
116                  */
117                 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
118                         int cpu = smp_processor_id();
119
120                         cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
121                         tick_broadcast_clear_oneshot(cpu);
122                 }
123         }
124         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
125         return ret;
126 }
127
128 /*
129  * Broadcast the event to the cpus, which are set in the mask (mangled).
130  */
131 static void tick_do_broadcast(struct cpumask *mask)
132 {
133         int cpu = smp_processor_id();
134         struct tick_device *td;
135
136         /*
137          * Check, if the current cpu is in the mask
138          */
139         if (cpumask_test_cpu(cpu, mask)) {
140                 cpumask_clear_cpu(cpu, mask);
141                 td = &per_cpu(tick_cpu_device, cpu);
142                 td->evtdev->event_handler(td->evtdev);
143         }
144
145         if (!cpumask_empty(mask)) {
146                 /*
147                  * It might be necessary to actually check whether the devices
148                  * have different broadcast functions. For now, just use the
149                  * one of the first device. This works as long as we have this
150                  * misfeature only on x86 (lapic)
151                  */
152                 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
153                 td->evtdev->broadcast(mask);
154         }
155 }
156
157 /*
158  * Periodic broadcast:
159  * - invoke the broadcast handlers
160  */
161 static void tick_do_periodic_broadcast(void)
162 {
163         raw_spin_lock(&tick_broadcast_lock);
164
165         cpumask_and(to_cpumask(tmpmask),
166                     cpu_online_mask, tick_get_broadcast_mask());
167         tick_do_broadcast(to_cpumask(tmpmask));
168
169         raw_spin_unlock(&tick_broadcast_lock);
170 }
171
172 /*
173  * Event handler for periodic broadcast ticks
174  */
175 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
176 {
177         ktime_t next;
178
179         tick_do_periodic_broadcast();
180
181         /*
182          * The device is in periodic mode. No reprogramming necessary:
183          */
184         if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
185                 return;
186
187         /*
188          * Setup the next period for devices, which do not have
189          * periodic mode. We read dev->next_event first and add to it
190          * when the event already expired. clockevents_program_event()
191          * sets dev->next_event only when the event is really
192          * programmed to the device.
193          */
194         for (next = dev->next_event; ;) {
195                 next = ktime_add(next, tick_period);
196
197                 if (!clockevents_program_event(dev, next, false))
198                         return;
199                 tick_do_periodic_broadcast();
200         }
201 }
202
203 /*
204  * Powerstate information: The system enters/leaves a state, where
205  * affected devices might stop
206  */
207 static void tick_do_broadcast_on_off(unsigned long *reason)
208 {
209         struct clock_event_device *bc, *dev;
210         struct tick_device *td;
211         unsigned long flags;
212         int cpu, bc_stopped;
213
214         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
215
216         cpu = smp_processor_id();
217         td = &per_cpu(tick_cpu_device, cpu);
218         dev = td->evtdev;
219         bc = tick_broadcast_device.evtdev;
220
221         /*
222          * Is the device not affected by the powerstate ?
223          */
224         if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
225                 goto out;
226
227         if (!tick_device_is_functional(dev))
228                 goto out;
229
230         bc_stopped = cpumask_empty(tick_get_broadcast_mask());
231
232         switch (*reason) {
233         case CLOCK_EVT_NOTIFY_BROADCAST_ON:
234         case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
235                 if (!cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
236                         cpumask_set_cpu(cpu, tick_get_broadcast_mask());
237                         if (tick_broadcast_device.mode ==
238                             TICKDEV_MODE_PERIODIC)
239                                 clockevents_shutdown(dev);
240                 }
241                 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
242                         tick_broadcast_force = 1;
243                 break;
244         case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
245                 if (!tick_broadcast_force &&
246                     cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
247                         cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
248                         if (tick_broadcast_device.mode ==
249                             TICKDEV_MODE_PERIODIC)
250                                 tick_setup_periodic(dev, 0);
251                 }
252                 break;
253         }
254
255         if (cpumask_empty(tick_get_broadcast_mask())) {
256                 if (!bc_stopped)
257                         clockevents_shutdown(bc);
258         } else if (bc_stopped) {
259                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
260                         tick_broadcast_start_periodic(bc);
261                 else
262                         tick_broadcast_setup_oneshot(bc);
263         }
264 out:
265         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
266 }
267
268 /*
269  * Powerstate information: The system enters/leaves a state, where
270  * affected devices might stop.
271  */
272 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
273 {
274         if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
275                 printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
276                        "offline CPU #%d\n", *oncpu);
277         else
278                 tick_do_broadcast_on_off(&reason);
279 }
280
281 /*
282  * Set the periodic handler depending on broadcast on/off
283  */
284 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
285 {
286         if (!broadcast)
287                 dev->event_handler = tick_handle_periodic;
288         else
289                 dev->event_handler = tick_handle_periodic_broadcast;
290 }
291
292 /*
293  * Remove a CPU from broadcasting
294  */
295 void tick_shutdown_broadcast(unsigned int *cpup)
296 {
297         struct clock_event_device *bc;
298         unsigned long flags;
299         unsigned int cpu = *cpup;
300
301         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
302
303         bc = tick_broadcast_device.evtdev;
304         cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
305
306         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
307                 if (bc && cpumask_empty(tick_get_broadcast_mask()))
308                         clockevents_shutdown(bc);
309         }
310
311         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
312 }
313
314 void tick_suspend_broadcast(void)
315 {
316         struct clock_event_device *bc;
317         unsigned long flags;
318
319         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
320
321         bc = tick_broadcast_device.evtdev;
322         if (bc)
323                 clockevents_shutdown(bc);
324
325         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
326 }
327
328 int tick_resume_broadcast(void)
329 {
330         struct clock_event_device *bc;
331         unsigned long flags;
332         int broadcast = 0;
333
334         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
335
336         bc = tick_broadcast_device.evtdev;
337
338         if (bc) {
339                 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
340
341                 switch (tick_broadcast_device.mode) {
342                 case TICKDEV_MODE_PERIODIC:
343                         if (!cpumask_empty(tick_get_broadcast_mask()))
344                                 tick_broadcast_start_periodic(bc);
345                         broadcast = cpumask_test_cpu(smp_processor_id(),
346                                                      tick_get_broadcast_mask());
347                         break;
348                 case TICKDEV_MODE_ONESHOT:
349                         if (!cpumask_empty(tick_get_broadcast_mask()))
350                                 broadcast = tick_resume_broadcast_oneshot(bc);
351                         break;
352                 }
353         }
354         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
355
356         return broadcast;
357 }
358
359
360 #ifdef CONFIG_TICK_ONESHOT
361
362 /* FIXME: use cpumask_var_t. */
363 static DECLARE_BITMAP(tick_broadcast_oneshot_mask, NR_CPUS);
364
365 /*
366  * Exposed for debugging: see timer_list.c
367  */
368 struct cpumask *tick_get_broadcast_oneshot_mask(void)
369 {
370         return to_cpumask(tick_broadcast_oneshot_mask);
371 }
372
373 static int tick_broadcast_set_event(ktime_t expires, int force)
374 {
375         struct clock_event_device *bc = tick_broadcast_device.evtdev;
376
377         if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
378                 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
379
380         return clockevents_program_event(bc, expires, force);
381 }
382
383 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
384 {
385         clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
386         return 0;
387 }
388
389 /*
390  * Called from irq_enter() when idle was interrupted to reenable the
391  * per cpu device.
392  */
393 void tick_check_oneshot_broadcast(int cpu)
394 {
395         if (cpumask_test_cpu(cpu, to_cpumask(tick_broadcast_oneshot_mask))) {
396                 struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
397
398                 clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
399         }
400 }
401
402 /*
403  * Handle oneshot mode broadcasting
404  */
405 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
406 {
407         struct tick_device *td;
408         ktime_t now, next_event;
409         int cpu;
410
411         raw_spin_lock(&tick_broadcast_lock);
412 again:
413         dev->next_event.tv64 = KTIME_MAX;
414         next_event.tv64 = KTIME_MAX;
415         cpumask_clear(to_cpumask(tmpmask));
416         now = ktime_get();
417         /* Find all expired events */
418         for_each_cpu(cpu, tick_get_broadcast_oneshot_mask()) {
419                 td = &per_cpu(tick_cpu_device, cpu);
420                 if (td->evtdev->next_event.tv64 <= now.tv64)
421                         cpumask_set_cpu(cpu, to_cpumask(tmpmask));
422                 else if (td->evtdev->next_event.tv64 < next_event.tv64)
423                         next_event.tv64 = td->evtdev->next_event.tv64;
424         }
425
426         /*
427          * Wakeup the cpus which have an expired event.
428          */
429         tick_do_broadcast(to_cpumask(tmpmask));
430
431         /*
432          * Two reasons for reprogram:
433          *
434          * - The global event did not expire any CPU local
435          * events. This happens in dyntick mode, as the maximum PIT
436          * delta is quite small.
437          *
438          * - There are pending events on sleeping CPUs which were not
439          * in the event mask
440          */
441         if (next_event.tv64 != KTIME_MAX) {
442                 /*
443                  * Rearm the broadcast device. If event expired,
444                  * repeat the above
445                  */
446                 if (tick_broadcast_set_event(next_event, 0))
447                         goto again;
448         }
449         raw_spin_unlock(&tick_broadcast_lock);
450 }
451
452 /*
453  * Powerstate information: The system enters/leaves a state, where
454  * affected devices might stop
455  */
456 void tick_broadcast_oneshot_control(unsigned long reason)
457 {
458         struct clock_event_device *bc, *dev;
459         struct tick_device *td;
460         unsigned long flags;
461         int cpu;
462
463         /*
464          * Periodic mode does not care about the enter/exit of power
465          * states
466          */
467         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
468                 return;
469
470         /*
471          * We are called with preemtion disabled from the depth of the
472          * idle code, so we can't be moved away.
473          */
474         cpu = smp_processor_id();
475         td = &per_cpu(tick_cpu_device, cpu);
476         dev = td->evtdev;
477
478         if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
479                 return;
480
481         bc = tick_broadcast_device.evtdev;
482
483         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
484         if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
485                 if (!cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
486                         cpumask_set_cpu(cpu, tick_get_broadcast_oneshot_mask());
487                         clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
488                         if (dev->next_event.tv64 < bc->next_event.tv64)
489                                 tick_broadcast_set_event(dev->next_event, 1);
490                 }
491         } else {
492                 if (cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
493                         cpumask_clear_cpu(cpu,
494                                           tick_get_broadcast_oneshot_mask());
495                         clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
496                         if (dev->next_event.tv64 != KTIME_MAX)
497                                 tick_program_event(dev->next_event, 1);
498                 }
499         }
500         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
501 }
502
503 /*
504  * Reset the one shot broadcast for a cpu
505  *
506  * Called with tick_broadcast_lock held
507  */
508 static void tick_broadcast_clear_oneshot(int cpu)
509 {
510         cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
511 }
512
513 static void tick_broadcast_init_next_event(struct cpumask *mask,
514                                            ktime_t expires)
515 {
516         struct tick_device *td;
517         int cpu;
518
519         for_each_cpu(cpu, mask) {
520                 td = &per_cpu(tick_cpu_device, cpu);
521                 if (td->evtdev)
522                         td->evtdev->next_event = expires;
523         }
524 }
525
526 /**
527  * tick_broadcast_setup_oneshot - setup the broadcast device
528  */
529 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
530 {
531         int cpu = smp_processor_id();
532
533         /* Set it up only once ! */
534         if (bc->event_handler != tick_handle_oneshot_broadcast) {
535                 int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
536
537                 bc->event_handler = tick_handle_oneshot_broadcast;
538
539                 /* Take the do_timer update */
540                 tick_do_timer_cpu = cpu;
541
542                 /*
543                  * We must be careful here. There might be other CPUs
544                  * waiting for periodic broadcast. We need to set the
545                  * oneshot_mask bits for those and program the
546                  * broadcast device to fire.
547                  */
548                 cpumask_copy(to_cpumask(tmpmask), tick_get_broadcast_mask());
549                 cpumask_clear_cpu(cpu, to_cpumask(tmpmask));
550                 cpumask_or(tick_get_broadcast_oneshot_mask(),
551                            tick_get_broadcast_oneshot_mask(),
552                            to_cpumask(tmpmask));
553
554                 if (was_periodic && !cpumask_empty(to_cpumask(tmpmask))) {
555                         clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
556                         tick_broadcast_init_next_event(to_cpumask(tmpmask),
557                                                        tick_next_period);
558                         tick_broadcast_set_event(tick_next_period, 1);
559                 } else
560                         bc->next_event.tv64 = KTIME_MAX;
561         } else {
562                 /*
563                  * The first cpu which switches to oneshot mode sets
564                  * the bit for all other cpus which are in the general
565                  * (periodic) broadcast mask. So the bit is set and
566                  * would prevent the first broadcast enter after this
567                  * to program the bc device.
568                  */
569                 tick_broadcast_clear_oneshot(cpu);
570         }
571 }
572
573 /*
574  * Select oneshot operating mode for the broadcast device
575  */
576 void tick_broadcast_switch_to_oneshot(void)
577 {
578         struct clock_event_device *bc;
579         unsigned long flags;
580
581         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
582
583         tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
584         bc = tick_broadcast_device.evtdev;
585         if (bc)
586                 tick_broadcast_setup_oneshot(bc);
587
588         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
589 }
590
591
592 /*
593  * Remove a dead CPU from broadcasting
594  */
595 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
596 {
597         unsigned long flags;
598         unsigned int cpu = *cpup;
599
600         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
601
602         /*
603          * Clear the broadcast mask flag for the dead cpu, but do not
604          * stop the broadcast device!
605          */
606         cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
607
608         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
609 }
610
611 /*
612  * Check, whether the broadcast device is in one shot mode
613  */
614 int tick_broadcast_oneshot_active(void)
615 {
616         return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
617 }
618
619 /*
620  * Check whether the broadcast device supports oneshot.
621  */
622 bool tick_broadcast_oneshot_available(void)
623 {
624         struct clock_event_device *bc = tick_broadcast_device.evtdev;
625
626         return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
627 }
628
629 #endif