Linux 3.10.86
[firefly-linux-kernel-4.4.55.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/mutex.h>
6 #include <linux/spinlock.h>
7 #include <linux/stop_machine.h>
8 #include <linux/tick.h>
9
10 #include "cpupri.h"
11 #include "cpuacct.h"
12
13 extern __read_mostly int scheduler_running;
14
15 /*
16  * Convert user-nice values [ -20 ... 0 ... 19 ]
17  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
18  * and back.
19  */
20 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
21 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
22 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
23
24 /*
25  * 'User priority' is the nice value converted to something we
26  * can work with better when scaling various scheduler parameters,
27  * it's a [ 0 ... 39 ] range.
28  */
29 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
30 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
31 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
32
33 /*
34  * Helpers for converting nanosecond timing to jiffy resolution
35  */
36 #define NS_TO_JIFFIES(TIME)     ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
37
38 /*
39  * Increase resolution of nice-level calculations for 64-bit architectures.
40  * The extra resolution improves shares distribution and load balancing of
41  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
42  * hierarchies, especially on larger systems. This is not a user-visible change
43  * and does not change the user-interface for setting shares/weights.
44  *
45  * We increase resolution only if we have enough bits to allow this increased
46  * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
47  * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
48  * increased costs.
49  */
50 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
51 # define SCHED_LOAD_RESOLUTION  10
52 # define scale_load(w)          ((w) << SCHED_LOAD_RESOLUTION)
53 # define scale_load_down(w)     ((w) >> SCHED_LOAD_RESOLUTION)
54 #else
55 # define SCHED_LOAD_RESOLUTION  0
56 # define scale_load(w)          (w)
57 # define scale_load_down(w)     (w)
58 #endif
59
60 #define SCHED_LOAD_SHIFT        (10 + SCHED_LOAD_RESOLUTION)
61 #define SCHED_LOAD_SCALE        (1L << SCHED_LOAD_SHIFT)
62
63 #define NICE_0_LOAD             SCHED_LOAD_SCALE
64 #define NICE_0_SHIFT            SCHED_LOAD_SHIFT
65
66 /*
67  * These are the 'tuning knobs' of the scheduler:
68  */
69
70 /*
71  * single value that denotes runtime == period, ie unlimited time.
72  */
73 #define RUNTIME_INF     ((u64)~0ULL)
74
75 static inline int rt_policy(int policy)
76 {
77         if (policy == SCHED_FIFO || policy == SCHED_RR)
78                 return 1;
79         return 0;
80 }
81
82 static inline int task_has_rt_policy(struct task_struct *p)
83 {
84         return rt_policy(p->policy);
85 }
86
87 /*
88  * This is the priority-queue data structure of the RT scheduling class:
89  */
90 struct rt_prio_array {
91         DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
92         struct list_head queue[MAX_RT_PRIO];
93 };
94
95 struct rt_bandwidth {
96         /* nests inside the rq lock: */
97         raw_spinlock_t          rt_runtime_lock;
98         ktime_t                 rt_period;
99         u64                     rt_runtime;
100         struct hrtimer          rt_period_timer;
101 };
102
103 extern struct mutex sched_domains_mutex;
104
105 #ifdef CONFIG_CGROUP_SCHED
106
107 #include <linux/cgroup.h>
108
109 struct cfs_rq;
110 struct rt_rq;
111
112 extern struct list_head task_groups;
113
114 struct cfs_bandwidth {
115 #ifdef CONFIG_CFS_BANDWIDTH
116         raw_spinlock_t lock;
117         ktime_t period;
118         u64 quota, runtime;
119         s64 hierarchal_quota;
120         u64 runtime_expires;
121
122         int idle, timer_active;
123         struct hrtimer period_timer, slack_timer;
124         struct list_head throttled_cfs_rq;
125
126         /* statistics */
127         int nr_periods, nr_throttled;
128         u64 throttled_time;
129 #endif
130 };
131
132 /* task group related information */
133 struct task_group {
134         struct cgroup_subsys_state css;
135
136 #ifdef CONFIG_FAIR_GROUP_SCHED
137         /* schedulable entities of this group on each cpu */
138         struct sched_entity **se;
139         /* runqueue "owned" by this group on each cpu */
140         struct cfs_rq **cfs_rq;
141         unsigned long shares;
142
143         atomic_t load_weight;
144         atomic64_t load_avg;
145         atomic_t runnable_avg;
146 #endif
147
148 #ifdef CONFIG_RT_GROUP_SCHED
149         struct sched_rt_entity **rt_se;
150         struct rt_rq **rt_rq;
151
152         struct rt_bandwidth rt_bandwidth;
153 #endif
154
155         struct rcu_head rcu;
156         struct list_head list;
157
158         struct task_group *parent;
159         struct list_head siblings;
160         struct list_head children;
161
162 #ifdef CONFIG_SCHED_AUTOGROUP
163         struct autogroup *autogroup;
164 #endif
165
166         struct cfs_bandwidth cfs_bandwidth;
167 };
168
169 #ifdef CONFIG_FAIR_GROUP_SCHED
170 #define ROOT_TASK_GROUP_LOAD    NICE_0_LOAD
171
172 /*
173  * A weight of 0 or 1 can cause arithmetics problems.
174  * A weight of a cfs_rq is the sum of weights of which entities
175  * are queued on this cfs_rq, so a weight of a entity should not be
176  * too large, so as the shares value of a task group.
177  * (The default weight is 1024 - so there's no practical
178  *  limitation from this.)
179  */
180 #define MIN_SHARES      (1UL <<  1)
181 #define MAX_SHARES      (1UL << 18)
182 #endif
183
184 typedef int (*tg_visitor)(struct task_group *, void *);
185
186 extern int walk_tg_tree_from(struct task_group *from,
187                              tg_visitor down, tg_visitor up, void *data);
188
189 /*
190  * Iterate the full tree, calling @down when first entering a node and @up when
191  * leaving it for the final time.
192  *
193  * Caller must hold rcu_lock or sufficient equivalent.
194  */
195 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
196 {
197         return walk_tg_tree_from(&root_task_group, down, up, data);
198 }
199
200 extern int tg_nop(struct task_group *tg, void *data);
201
202 extern void free_fair_sched_group(struct task_group *tg);
203 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
204 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
205 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
206                         struct sched_entity *se, int cpu,
207                         struct sched_entity *parent);
208 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
209 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
210
211 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
212 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
213 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
214
215 extern void free_rt_sched_group(struct task_group *tg);
216 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
217 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
218                 struct sched_rt_entity *rt_se, int cpu,
219                 struct sched_rt_entity *parent);
220
221 extern struct task_group *sched_create_group(struct task_group *parent);
222 extern void sched_online_group(struct task_group *tg,
223                                struct task_group *parent);
224 extern void sched_destroy_group(struct task_group *tg);
225 extern void sched_offline_group(struct task_group *tg);
226
227 extern void sched_move_task(struct task_struct *tsk);
228
229 #ifdef CONFIG_FAIR_GROUP_SCHED
230 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
231 #endif
232
233 #else /* CONFIG_CGROUP_SCHED */
234
235 struct cfs_bandwidth { };
236
237 #endif  /* CONFIG_CGROUP_SCHED */
238
239 /* CFS-related fields in a runqueue */
240 struct cfs_rq {
241         struct load_weight load;
242         unsigned int nr_running, h_nr_running;
243
244         u64 exec_clock;
245         u64 min_vruntime;
246 #ifndef CONFIG_64BIT
247         u64 min_vruntime_copy;
248 #endif
249
250         struct rb_root tasks_timeline;
251         struct rb_node *rb_leftmost;
252
253         /*
254          * 'curr' points to currently running entity on this cfs_rq.
255          * It is set to NULL otherwise (i.e when none are currently running).
256          */
257         struct sched_entity *curr, *next, *last, *skip;
258
259 #ifdef  CONFIG_SCHED_DEBUG
260         unsigned int nr_spread_over;
261 #endif
262
263 #ifdef CONFIG_SMP
264 /*
265  * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
266  * removed when useful for applications beyond shares distribution (e.g.
267  * load-balance).
268  */
269 #ifdef CONFIG_FAIR_GROUP_SCHED
270         /*
271          * CFS Load tracking
272          * Under CFS, load is tracked on a per-entity basis and aggregated up.
273          * This allows for the description of both thread and group usage (in
274          * the FAIR_GROUP_SCHED case).
275          */
276         u64 runnable_load_avg, blocked_load_avg;
277         atomic64_t decay_counter, removed_load;
278         u64 last_decay;
279 #endif /* CONFIG_FAIR_GROUP_SCHED */
280 /* These always depend on CONFIG_FAIR_GROUP_SCHED */
281 #ifdef CONFIG_FAIR_GROUP_SCHED
282         u32 tg_runnable_contrib;
283         u64 tg_load_contrib;
284 #endif /* CONFIG_FAIR_GROUP_SCHED */
285
286         /*
287          *   h_load = weight * f(tg)
288          *
289          * Where f(tg) is the recursive weight fraction assigned to
290          * this group.
291          */
292         unsigned long h_load;
293 #endif /* CONFIG_SMP */
294
295 #ifdef CONFIG_FAIR_GROUP_SCHED
296         struct rq *rq;  /* cpu runqueue to which this cfs_rq is attached */
297
298         /*
299          * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
300          * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
301          * (like users, containers etc.)
302          *
303          * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
304          * list is used during load balance.
305          */
306         int on_list;
307         struct list_head leaf_cfs_rq_list;
308         struct task_group *tg;  /* group that "owns" this runqueue */
309
310 #ifdef CONFIG_CFS_BANDWIDTH
311         int runtime_enabled;
312         u64 runtime_expires;
313         s64 runtime_remaining;
314
315         u64 throttled_clock, throttled_clock_task;
316         u64 throttled_clock_task_time;
317         int throttled, throttle_count;
318         struct list_head throttled_list;
319 #endif /* CONFIG_CFS_BANDWIDTH */
320 #endif /* CONFIG_FAIR_GROUP_SCHED */
321 };
322
323 static inline int rt_bandwidth_enabled(void)
324 {
325         return sysctl_sched_rt_runtime >= 0;
326 }
327
328 /* Real-Time classes' related field in a runqueue: */
329 struct rt_rq {
330         struct rt_prio_array active;
331         unsigned int rt_nr_running;
332 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
333         struct {
334                 int curr; /* highest queued rt task prio */
335 #ifdef CONFIG_SMP
336                 int next; /* next highest */
337 #endif
338         } highest_prio;
339 #endif
340 #ifdef CONFIG_SMP
341         unsigned long rt_nr_migratory;
342         unsigned long rt_nr_total;
343         int overloaded;
344         struct plist_head pushable_tasks;
345 #endif
346         int rt_throttled;
347         u64 rt_time;
348         u64 rt_runtime;
349         /* Nests inside the rq lock: */
350         raw_spinlock_t rt_runtime_lock;
351
352 #ifdef CONFIG_RT_GROUP_SCHED
353         unsigned long rt_nr_boosted;
354
355         struct rq *rq;
356         struct list_head leaf_rt_rq_list;
357         struct task_group *tg;
358 #endif
359 };
360
361 #ifdef CONFIG_SMP
362
363 /*
364  * We add the notion of a root-domain which will be used to define per-domain
365  * variables. Each exclusive cpuset essentially defines an island domain by
366  * fully partitioning the member cpus from any other cpuset. Whenever a new
367  * exclusive cpuset is created, we also create and attach a new root-domain
368  * object.
369  *
370  */
371 struct root_domain {
372         atomic_t refcount;
373         atomic_t rto_count;
374         struct rcu_head rcu;
375         cpumask_var_t span;
376         cpumask_var_t online;
377
378         /*
379          * The "RT overload" flag: it gets set if a CPU has more than
380          * one runnable RT task.
381          */
382         cpumask_var_t rto_mask;
383         struct cpupri cpupri;
384 };
385
386 extern struct root_domain def_root_domain;
387
388 #endif /* CONFIG_SMP */
389
390 /*
391  * This is the main, per-CPU runqueue data structure.
392  *
393  * Locking rule: those places that want to lock multiple runqueues
394  * (such as the load balancing or the thread migration code), lock
395  * acquire operations must be ordered by ascending &runqueue.
396  */
397 struct rq {
398         /* runqueue lock: */
399         raw_spinlock_t lock;
400
401         /*
402          * nr_running and cpu_load should be in the same cacheline because
403          * remote CPUs use both these fields when doing load calculation.
404          */
405         unsigned int nr_running;
406         #define CPU_LOAD_IDX_MAX 5
407         unsigned long cpu_load[CPU_LOAD_IDX_MAX];
408         unsigned long last_load_update_tick;
409 #ifdef CONFIG_NO_HZ_COMMON
410         u64 nohz_stamp;
411         unsigned long nohz_flags;
412 #endif
413 #ifdef CONFIG_NO_HZ_FULL
414         unsigned long last_sched_tick;
415 #endif
416         int skip_clock_update;
417
418         /* capture load from *all* tasks on this cpu: */
419         struct load_weight load;
420         unsigned long nr_load_updates;
421         u64 nr_switches;
422
423         struct cfs_rq cfs;
424         struct rt_rq rt;
425
426 #ifdef CONFIG_FAIR_GROUP_SCHED
427         /* list of leaf cfs_rq on this cpu: */
428         struct list_head leaf_cfs_rq_list;
429 #ifdef CONFIG_SMP
430         unsigned long h_load_throttle;
431 #endif /* CONFIG_SMP */
432 #endif /* CONFIG_FAIR_GROUP_SCHED */
433
434 #ifdef CONFIG_RT_GROUP_SCHED
435         struct list_head leaf_rt_rq_list;
436 #endif
437
438         /*
439          * This is part of a global counter where only the total sum
440          * over all CPUs matters. A task can increase this counter on
441          * one CPU and if it got migrated afterwards it may decrease
442          * it on another CPU. Always updated under the runqueue lock:
443          */
444         unsigned long nr_uninterruptible;
445
446         struct task_struct *curr, *idle, *stop;
447         unsigned long next_balance;
448         struct mm_struct *prev_mm;
449
450         u64 clock;
451         u64 clock_task;
452
453         atomic_t nr_iowait;
454
455 #ifdef CONFIG_SMP
456         struct root_domain *rd;
457         struct sched_domain *sd;
458
459         unsigned long cpu_power;
460
461         unsigned char idle_balance;
462         /* For active balancing */
463         int post_schedule;
464         int active_balance;
465         int push_cpu;
466         struct cpu_stop_work active_balance_work;
467         /* cpu of this runqueue: */
468         int cpu;
469         int online;
470
471         struct list_head cfs_tasks;
472
473         u64 rt_avg;
474         u64 age_stamp;
475         u64 idle_stamp;
476         u64 avg_idle;
477 #endif
478
479 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
480         u64 prev_irq_time;
481 #endif
482 #ifdef CONFIG_PARAVIRT
483         u64 prev_steal_time;
484 #endif
485 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
486         u64 prev_steal_time_rq;
487 #endif
488
489         /* calc_load related fields */
490         unsigned long calc_load_update;
491         long calc_load_active;
492
493 #ifdef CONFIG_SCHED_HRTICK
494 #ifdef CONFIG_SMP
495         int hrtick_csd_pending;
496         struct call_single_data hrtick_csd;
497 #endif
498         struct hrtimer hrtick_timer;
499 #endif
500
501 #ifdef CONFIG_SCHEDSTATS
502         /* latency stats */
503         struct sched_info rq_sched_info;
504         unsigned long long rq_cpu_time;
505         /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
506
507         /* sys_sched_yield() stats */
508         unsigned int yld_count;
509
510         /* schedule() stats */
511         unsigned int sched_count;
512         unsigned int sched_goidle;
513
514         /* try_to_wake_up() stats */
515         unsigned int ttwu_count;
516         unsigned int ttwu_local;
517 #endif
518
519 #ifdef CONFIG_SMP
520         struct llist_head wake_list;
521 #endif
522
523         struct sched_avg avg;
524 };
525
526 static inline int cpu_of(struct rq *rq)
527 {
528 #ifdef CONFIG_SMP
529         return rq->cpu;
530 #else
531         return 0;
532 #endif
533 }
534
535 DECLARE_PER_CPU(struct rq, runqueues);
536
537 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
538 #define this_rq()               (&__get_cpu_var(runqueues))
539 #define task_rq(p)              cpu_rq(task_cpu(p))
540 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
541 #define raw_rq()                (&__raw_get_cpu_var(runqueues))
542
543 #ifdef CONFIG_SMP
544
545 #define rcu_dereference_check_sched_domain(p) \
546         rcu_dereference_check((p), \
547                               lockdep_is_held(&sched_domains_mutex))
548
549 /*
550  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
551  * See detach_destroy_domains: synchronize_sched for details.
552  *
553  * The domain tree of any CPU may only be accessed from within
554  * preempt-disabled sections.
555  */
556 #define for_each_domain(cpu, __sd) \
557         for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
558                         __sd; __sd = __sd->parent)
559
560 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
561
562 /**
563  * highest_flag_domain - Return highest sched_domain containing flag.
564  * @cpu:        The cpu whose highest level of sched domain is to
565  *              be returned.
566  * @flag:       The flag to check for the highest sched_domain
567  *              for the given cpu.
568  *
569  * Returns the highest sched_domain of a cpu which contains the given flag.
570  */
571 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
572 {
573         struct sched_domain *sd, *hsd = NULL;
574
575         for_each_domain(cpu, sd) {
576                 if (!(sd->flags & flag))
577                         break;
578                 hsd = sd;
579         }
580
581         return hsd;
582 }
583
584 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
585 DECLARE_PER_CPU(int, sd_llc_id);
586
587 struct sched_group_power {
588         atomic_t ref;
589         /*
590          * CPU power of this group, SCHED_LOAD_SCALE being max power for a
591          * single CPU.
592          */
593         unsigned int power, power_orig;
594         unsigned long next_update;
595         /*
596          * Number of busy cpus in this group.
597          */
598         atomic_t nr_busy_cpus;
599
600         unsigned long cpumask[0]; /* iteration mask */
601 };
602
603 struct sched_group {
604         struct sched_group *next;       /* Must be a circular list */
605         atomic_t ref;
606
607         unsigned int group_weight;
608         struct sched_group_power *sgp;
609
610         /*
611          * The CPUs this group covers.
612          *
613          * NOTE: this field is variable length. (Allocated dynamically
614          * by attaching extra space to the end of the structure,
615          * depending on how many CPUs the kernel has booted up with)
616          */
617         unsigned long cpumask[0];
618 };
619
620 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
621 {
622         return to_cpumask(sg->cpumask);
623 }
624
625 /*
626  * cpumask masking which cpus in the group are allowed to iterate up the domain
627  * tree.
628  */
629 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
630 {
631         return to_cpumask(sg->sgp->cpumask);
632 }
633
634 /**
635  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
636  * @group: The group whose first cpu is to be returned.
637  */
638 static inline unsigned int group_first_cpu(struct sched_group *group)
639 {
640         return cpumask_first(sched_group_cpus(group));
641 }
642
643 extern int group_balance_cpu(struct sched_group *sg);
644
645 #endif /* CONFIG_SMP */
646
647 #include "stats.h"
648 #include "auto_group.h"
649
650 #ifdef CONFIG_CGROUP_SCHED
651
652 /*
653  * Return the group to which this tasks belongs.
654  *
655  * We cannot use task_subsys_state() and friends because the cgroup
656  * subsystem changes that value before the cgroup_subsys::attach() method
657  * is called, therefore we cannot pin it and might observe the wrong value.
658  *
659  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
660  * core changes this before calling sched_move_task().
661  *
662  * Instead we use a 'copy' which is updated from sched_move_task() while
663  * holding both task_struct::pi_lock and rq::lock.
664  */
665 static inline struct task_group *task_group(struct task_struct *p)
666 {
667         return p->sched_task_group;
668 }
669
670 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
671 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
672 {
673 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
674         struct task_group *tg = task_group(p);
675 #endif
676
677 #ifdef CONFIG_FAIR_GROUP_SCHED
678         p->se.cfs_rq = tg->cfs_rq[cpu];
679         p->se.parent = tg->se[cpu];
680 #endif
681
682 #ifdef CONFIG_RT_GROUP_SCHED
683         p->rt.rt_rq  = tg->rt_rq[cpu];
684         p->rt.parent = tg->rt_se[cpu];
685 #endif
686 }
687
688 #else /* CONFIG_CGROUP_SCHED */
689
690 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
691 static inline struct task_group *task_group(struct task_struct *p)
692 {
693         return NULL;
694 }
695
696 #endif /* CONFIG_CGROUP_SCHED */
697
698 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
699 {
700         set_task_rq(p, cpu);
701 #ifdef CONFIG_SMP
702         /*
703          * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
704          * successfuly executed on another CPU. We must ensure that updates of
705          * per-task data have been completed by this moment.
706          */
707         smp_wmb();
708         task_thread_info(p)->cpu = cpu;
709 #endif
710 }
711
712 /*
713  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
714  */
715 #ifdef CONFIG_SCHED_DEBUG
716 # include <linux/static_key.h>
717 # define const_debug __read_mostly
718 #else
719 # define const_debug const
720 #endif
721
722 extern const_debug unsigned int sysctl_sched_features;
723
724 #define SCHED_FEAT(name, enabled)       \
725         __SCHED_FEAT_##name ,
726
727 enum {
728 #include "features.h"
729         __SCHED_FEAT_NR,
730 };
731
732 #undef SCHED_FEAT
733
734 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
735 static __always_inline bool static_branch__true(struct static_key *key)
736 {
737         return static_key_true(key); /* Not out of line branch. */
738 }
739
740 static __always_inline bool static_branch__false(struct static_key *key)
741 {
742         return static_key_false(key); /* Out of line branch. */
743 }
744
745 #define SCHED_FEAT(name, enabled)                                       \
746 static __always_inline bool static_branch_##name(struct static_key *key) \
747 {                                                                       \
748         return static_branch__##enabled(key);                           \
749 }
750
751 #include "features.h"
752
753 #undef SCHED_FEAT
754
755 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
756 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
757 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
758 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
759 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
760
761 #ifdef CONFIG_NUMA_BALANCING
762 #define sched_feat_numa(x) sched_feat(x)
763 #ifdef CONFIG_SCHED_DEBUG
764 #define numabalancing_enabled sched_feat_numa(NUMA)
765 #else
766 extern bool numabalancing_enabled;
767 #endif /* CONFIG_SCHED_DEBUG */
768 #else
769 #define sched_feat_numa(x) (0)
770 #define numabalancing_enabled (0)
771 #endif /* CONFIG_NUMA_BALANCING */
772
773 static inline u64 global_rt_period(void)
774 {
775         return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
776 }
777
778 static inline u64 global_rt_runtime(void)
779 {
780         if (sysctl_sched_rt_runtime < 0)
781                 return RUNTIME_INF;
782
783         return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
784 }
785
786
787
788 static inline int task_current(struct rq *rq, struct task_struct *p)
789 {
790         return rq->curr == p;
791 }
792
793 static inline int task_running(struct rq *rq, struct task_struct *p)
794 {
795 #ifdef CONFIG_SMP
796         return p->on_cpu;
797 #else
798         return task_current(rq, p);
799 #endif
800 }
801
802
803 #ifndef prepare_arch_switch
804 # define prepare_arch_switch(next)      do { } while (0)
805 #endif
806 #ifndef finish_arch_switch
807 # define finish_arch_switch(prev)       do { } while (0)
808 #endif
809 #ifndef finish_arch_post_lock_switch
810 # define finish_arch_post_lock_switch() do { } while (0)
811 #endif
812
813 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
814 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
815 {
816 #ifdef CONFIG_SMP
817         /*
818          * We can optimise this out completely for !SMP, because the
819          * SMP rebalancing from interrupt is the only thing that cares
820          * here.
821          */
822         next->on_cpu = 1;
823 #endif
824 }
825
826 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
827 {
828 #ifdef CONFIG_SMP
829         /*
830          * After ->on_cpu is cleared, the task can be moved to a different CPU.
831          * We must ensure this doesn't happen until the switch is completely
832          * finished.
833          */
834         smp_wmb();
835         prev->on_cpu = 0;
836 #endif
837 #ifdef CONFIG_DEBUG_SPINLOCK
838         /* this is a valid case when another task releases the spinlock */
839         rq->lock.owner = current;
840 #endif
841         /*
842          * If we are tracking spinlock dependencies then we have to
843          * fix up the runqueue lock - which gets 'carried over' from
844          * prev into current:
845          */
846         spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
847
848         raw_spin_unlock_irq(&rq->lock);
849 }
850
851 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
852 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
853 {
854 #ifdef CONFIG_SMP
855         /*
856          * We can optimise this out completely for !SMP, because the
857          * SMP rebalancing from interrupt is the only thing that cares
858          * here.
859          */
860         next->on_cpu = 1;
861 #endif
862         raw_spin_unlock(&rq->lock);
863 }
864
865 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
866 {
867 #ifdef CONFIG_SMP
868         /*
869          * After ->on_cpu is cleared, the task can be moved to a different CPU.
870          * We must ensure this doesn't happen until the switch is completely
871          * finished.
872          */
873         smp_wmb();
874         prev->on_cpu = 0;
875 #endif
876         local_irq_enable();
877 }
878 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
879
880 /*
881  * wake flags
882  */
883 #define WF_SYNC         0x01            /* waker goes to sleep after wakeup */
884 #define WF_FORK         0x02            /* child wakeup after fork */
885 #define WF_MIGRATED     0x4             /* internal use, task got migrated */
886
887 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
888 {
889         lw->weight += inc;
890         lw->inv_weight = 0;
891 }
892
893 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
894 {
895         lw->weight -= dec;
896         lw->inv_weight = 0;
897 }
898
899 static inline void update_load_set(struct load_weight *lw, unsigned long w)
900 {
901         lw->weight = w;
902         lw->inv_weight = 0;
903 }
904
905 /*
906  * To aid in avoiding the subversion of "niceness" due to uneven distribution
907  * of tasks with abnormal "nice" values across CPUs the contribution that
908  * each task makes to its run queue's load is weighted according to its
909  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
910  * scaled version of the new time slice allocation that they receive on time
911  * slice expiry etc.
912  */
913
914 #define WEIGHT_IDLEPRIO                3
915 #define WMULT_IDLEPRIO         1431655765
916
917 /*
918  * Nice levels are multiplicative, with a gentle 10% change for every
919  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
920  * nice 1, it will get ~10% less CPU time than another CPU-bound task
921  * that remained on nice 0.
922  *
923  * The "10% effect" is relative and cumulative: from _any_ nice level,
924  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
925  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
926  * If a task goes up by ~10% and another task goes down by ~10% then
927  * the relative distance between them is ~25%.)
928  */
929 static const int prio_to_weight[40] = {
930  /* -20 */     88761,     71755,     56483,     46273,     36291,
931  /* -15 */     29154,     23254,     18705,     14949,     11916,
932  /* -10 */      9548,      7620,      6100,      4904,      3906,
933  /*  -5 */      3121,      2501,      1991,      1586,      1277,
934  /*   0 */      1024,       820,       655,       526,       423,
935  /*   5 */       335,       272,       215,       172,       137,
936  /*  10 */       110,        87,        70,        56,        45,
937  /*  15 */        36,        29,        23,        18,        15,
938 };
939
940 /*
941  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
942  *
943  * In cases where the weight does not change often, we can use the
944  * precalculated inverse to speed up arithmetics by turning divisions
945  * into multiplications:
946  */
947 static const u32 prio_to_wmult[40] = {
948  /* -20 */     48388,     59856,     76040,     92818,    118348,
949  /* -15 */    147320,    184698,    229616,    287308,    360437,
950  /* -10 */    449829,    563644,    704093,    875809,   1099582,
951  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
952  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
953  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
954  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
955  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
956 };
957
958 #define ENQUEUE_WAKEUP          1
959 #define ENQUEUE_HEAD            2
960 #ifdef CONFIG_SMP
961 #define ENQUEUE_WAKING          4       /* sched_class::task_waking was called */
962 #else
963 #define ENQUEUE_WAKING          0
964 #endif
965
966 #define DEQUEUE_SLEEP           1
967
968 struct sched_class {
969         const struct sched_class *next;
970
971         void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
972         void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
973         void (*yield_task) (struct rq *rq);
974         bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
975
976         void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
977
978         struct task_struct * (*pick_next_task) (struct rq *rq);
979         void (*put_prev_task) (struct rq *rq, struct task_struct *p);
980
981 #ifdef CONFIG_SMP
982         int  (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
983         void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
984
985         void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
986         void (*post_schedule) (struct rq *this_rq);
987         void (*task_waking) (struct task_struct *task);
988         void (*task_woken) (struct rq *this_rq, struct task_struct *task);
989
990         void (*set_cpus_allowed)(struct task_struct *p,
991                                  const struct cpumask *newmask);
992
993         void (*rq_online)(struct rq *rq);
994         void (*rq_offline)(struct rq *rq);
995 #endif
996
997         void (*set_curr_task) (struct rq *rq);
998         void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
999         void (*task_fork) (struct task_struct *p);
1000
1001         void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1002         void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1003         void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1004                              int oldprio);
1005
1006         unsigned int (*get_rr_interval) (struct rq *rq,
1007                                          struct task_struct *task);
1008
1009 #ifdef CONFIG_FAIR_GROUP_SCHED
1010         void (*task_move_group) (struct task_struct *p, int on_rq);
1011 #endif
1012 };
1013
1014 #define sched_class_highest (&stop_sched_class)
1015 #define for_each_class(class) \
1016    for (class = sched_class_highest; class; class = class->next)
1017
1018 extern const struct sched_class stop_sched_class;
1019 extern const struct sched_class rt_sched_class;
1020 extern const struct sched_class fair_sched_class;
1021 extern const struct sched_class idle_sched_class;
1022
1023
1024 #ifdef CONFIG_SMP
1025
1026 extern void update_group_power(struct sched_domain *sd, int cpu);
1027
1028 extern void trigger_load_balance(struct rq *rq, int cpu);
1029 extern void idle_balance(int this_cpu, struct rq *this_rq);
1030
1031 /*
1032  * Only depends on SMP, FAIR_GROUP_SCHED may be removed when runnable_avg
1033  * becomes useful in lb
1034  */
1035 #if defined(CONFIG_FAIR_GROUP_SCHED)
1036 extern void idle_enter_fair(struct rq *this_rq);
1037 extern void idle_exit_fair(struct rq *this_rq);
1038 #else
1039 static inline void idle_enter_fair(struct rq *this_rq) {}
1040 static inline void idle_exit_fair(struct rq *this_rq) {}
1041 #endif
1042
1043 #else   /* CONFIG_SMP */
1044
1045 static inline void idle_balance(int cpu, struct rq *rq)
1046 {
1047 }
1048
1049 #endif
1050
1051 extern void sysrq_sched_debug_show(void);
1052 extern void sched_init_granularity(void);
1053 extern void update_max_interval(void);
1054 extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
1055 extern void init_sched_rt_class(void);
1056 extern void init_sched_fair_class(void);
1057
1058 extern void resched_task(struct task_struct *p);
1059 extern void resched_cpu(int cpu);
1060
1061 extern struct rt_bandwidth def_rt_bandwidth;
1062 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1063
1064 extern void update_idle_cpu_load(struct rq *this_rq);
1065
1066 #ifdef CONFIG_PARAVIRT
1067 static inline u64 steal_ticks(u64 steal)
1068 {
1069         if (unlikely(steal > NSEC_PER_SEC))
1070                 return div_u64(steal, TICK_NSEC);
1071
1072         return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1073 }
1074 #endif
1075
1076 static inline void inc_nr_running(struct rq *rq)
1077 {
1078         rq->nr_running++;
1079
1080 #ifdef CONFIG_NO_HZ_FULL
1081         if (rq->nr_running == 2) {
1082                 if (tick_nohz_full_cpu(rq->cpu)) {
1083                         /* Order rq->nr_running write against the IPI */
1084                         smp_wmb();
1085                         smp_send_reschedule(rq->cpu);
1086                 }
1087        }
1088 #endif
1089 }
1090
1091 static inline void dec_nr_running(struct rq *rq)
1092 {
1093         rq->nr_running--;
1094 }
1095
1096 static inline void rq_last_tick_reset(struct rq *rq)
1097 {
1098 #ifdef CONFIG_NO_HZ_FULL
1099         rq->last_sched_tick = jiffies;
1100 #endif
1101 }
1102
1103 extern void update_rq_clock(struct rq *rq);
1104
1105 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1106 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1107
1108 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1109
1110 extern const_debug unsigned int sysctl_sched_time_avg;
1111 extern const_debug unsigned int sysctl_sched_nr_migrate;
1112 extern const_debug unsigned int sysctl_sched_migration_cost;
1113
1114 static inline u64 sched_avg_period(void)
1115 {
1116         return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1117 }
1118
1119 #ifdef CONFIG_SCHED_HRTICK
1120
1121 /*
1122  * Use hrtick when:
1123  *  - enabled by features
1124  *  - hrtimer is actually high res
1125  */
1126 static inline int hrtick_enabled(struct rq *rq)
1127 {
1128         if (!sched_feat(HRTICK))
1129                 return 0;
1130         if (!cpu_active(cpu_of(rq)))
1131                 return 0;
1132         return hrtimer_is_hres_active(&rq->hrtick_timer);
1133 }
1134
1135 void hrtick_start(struct rq *rq, u64 delay);
1136
1137 #else
1138
1139 static inline int hrtick_enabled(struct rq *rq)
1140 {
1141         return 0;
1142 }
1143
1144 #endif /* CONFIG_SCHED_HRTICK */
1145
1146 #ifdef CONFIG_SMP
1147 extern void sched_avg_update(struct rq *rq);
1148 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1149 {
1150         rq->rt_avg += rt_delta;
1151         sched_avg_update(rq);
1152 }
1153 #else
1154 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1155 static inline void sched_avg_update(struct rq *rq) { }
1156 #endif
1157
1158 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1159
1160 #ifdef CONFIG_SMP
1161 #ifdef CONFIG_PREEMPT
1162
1163 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1164
1165 /*
1166  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1167  * way at the expense of forcing extra atomic operations in all
1168  * invocations.  This assures that the double_lock is acquired using the
1169  * same underlying policy as the spinlock_t on this architecture, which
1170  * reduces latency compared to the unfair variant below.  However, it
1171  * also adds more overhead and therefore may reduce throughput.
1172  */
1173 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1174         __releases(this_rq->lock)
1175         __acquires(busiest->lock)
1176         __acquires(this_rq->lock)
1177 {
1178         raw_spin_unlock(&this_rq->lock);
1179         double_rq_lock(this_rq, busiest);
1180
1181         return 1;
1182 }
1183
1184 #else
1185 /*
1186  * Unfair double_lock_balance: Optimizes throughput at the expense of
1187  * latency by eliminating extra atomic operations when the locks are
1188  * already in proper order on entry.  This favors lower cpu-ids and will
1189  * grant the double lock to lower cpus over higher ids under contention,
1190  * regardless of entry order into the function.
1191  */
1192 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1193         __releases(this_rq->lock)
1194         __acquires(busiest->lock)
1195         __acquires(this_rq->lock)
1196 {
1197         int ret = 0;
1198
1199         if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1200                 if (busiest < this_rq) {
1201                         raw_spin_unlock(&this_rq->lock);
1202                         raw_spin_lock(&busiest->lock);
1203                         raw_spin_lock_nested(&this_rq->lock,
1204                                               SINGLE_DEPTH_NESTING);
1205                         ret = 1;
1206                 } else
1207                         raw_spin_lock_nested(&busiest->lock,
1208                                               SINGLE_DEPTH_NESTING);
1209         }
1210         return ret;
1211 }
1212
1213 #endif /* CONFIG_PREEMPT */
1214
1215 /*
1216  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1217  */
1218 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1219 {
1220         if (unlikely(!irqs_disabled())) {
1221                 /* printk() doesn't work good under rq->lock */
1222                 raw_spin_unlock(&this_rq->lock);
1223                 BUG_ON(1);
1224         }
1225
1226         return _double_lock_balance(this_rq, busiest);
1227 }
1228
1229 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1230         __releases(busiest->lock)
1231 {
1232         raw_spin_unlock(&busiest->lock);
1233         lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1234 }
1235
1236 /*
1237  * double_rq_lock - safely lock two runqueues
1238  *
1239  * Note this does not disable interrupts like task_rq_lock,
1240  * you need to do so manually before calling.
1241  */
1242 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1243         __acquires(rq1->lock)
1244         __acquires(rq2->lock)
1245 {
1246         BUG_ON(!irqs_disabled());
1247         if (rq1 == rq2) {
1248                 raw_spin_lock(&rq1->lock);
1249                 __acquire(rq2->lock);   /* Fake it out ;) */
1250         } else {
1251                 if (rq1 < rq2) {
1252                         raw_spin_lock(&rq1->lock);
1253                         raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1254                 } else {
1255                         raw_spin_lock(&rq2->lock);
1256                         raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1257                 }
1258         }
1259 }
1260
1261 /*
1262  * double_rq_unlock - safely unlock two runqueues
1263  *
1264  * Note this does not restore interrupts like task_rq_unlock,
1265  * you need to do so manually after calling.
1266  */
1267 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1268         __releases(rq1->lock)
1269         __releases(rq2->lock)
1270 {
1271         raw_spin_unlock(&rq1->lock);
1272         if (rq1 != rq2)
1273                 raw_spin_unlock(&rq2->lock);
1274         else
1275                 __release(rq2->lock);
1276 }
1277
1278 #else /* CONFIG_SMP */
1279
1280 /*
1281  * double_rq_lock - safely lock two runqueues
1282  *
1283  * Note this does not disable interrupts like task_rq_lock,
1284  * you need to do so manually before calling.
1285  */
1286 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1287         __acquires(rq1->lock)
1288         __acquires(rq2->lock)
1289 {
1290         BUG_ON(!irqs_disabled());
1291         BUG_ON(rq1 != rq2);
1292         raw_spin_lock(&rq1->lock);
1293         __acquire(rq2->lock);   /* Fake it out ;) */
1294 }
1295
1296 /*
1297  * double_rq_unlock - safely unlock two runqueues
1298  *
1299  * Note this does not restore interrupts like task_rq_unlock,
1300  * you need to do so manually after calling.
1301  */
1302 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1303         __releases(rq1->lock)
1304         __releases(rq2->lock)
1305 {
1306         BUG_ON(rq1 != rq2);
1307         raw_spin_unlock(&rq1->lock);
1308         __release(rq2->lock);
1309 }
1310
1311 #endif
1312
1313 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1314 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1315 extern void print_cfs_stats(struct seq_file *m, int cpu);
1316 extern void print_rt_stats(struct seq_file *m, int cpu);
1317
1318 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1319 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1320
1321 extern void cfs_bandwidth_usage_inc(void);
1322 extern void cfs_bandwidth_usage_dec(void);
1323
1324 #ifdef CONFIG_NO_HZ_COMMON
1325 enum rq_nohz_flag_bits {
1326         NOHZ_TICK_STOPPED,
1327         NOHZ_BALANCE_KICK,
1328 };
1329
1330 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1331 #endif
1332
1333 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1334
1335 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1336 DECLARE_PER_CPU(u64, cpu_softirq_time);
1337
1338 #ifndef CONFIG_64BIT
1339 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1340
1341 static inline void irq_time_write_begin(void)
1342 {
1343         __this_cpu_inc(irq_time_seq.sequence);
1344         smp_wmb();
1345 }
1346
1347 static inline void irq_time_write_end(void)
1348 {
1349         smp_wmb();
1350         __this_cpu_inc(irq_time_seq.sequence);
1351 }
1352
1353 static inline u64 irq_time_read(int cpu)
1354 {
1355         u64 irq_time;
1356         unsigned seq;
1357
1358         do {
1359                 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1360                 irq_time = per_cpu(cpu_softirq_time, cpu) +
1361                            per_cpu(cpu_hardirq_time, cpu);
1362         } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1363
1364         return irq_time;
1365 }
1366 #else /* CONFIG_64BIT */
1367 static inline void irq_time_write_begin(void)
1368 {
1369 }
1370
1371 static inline void irq_time_write_end(void)
1372 {
1373 }
1374
1375 static inline u64 irq_time_read(int cpu)
1376 {
1377         return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1378 }
1379 #endif /* CONFIG_64BIT */
1380 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */