arm64: dts: rockchip: add allocator type inside vpu & rkvdec for rk3399-android
[firefly-linux-kernel-4.4.55.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78
79 #include <asm/pgtable.h>
80 #include <asm/pgalloc.h>
81 #include <asm/uaccess.h>
82 #include <asm/mmu_context.h>
83 #include <asm/cacheflush.h>
84 #include <asm/tlbflush.h>
85
86 #include <trace/events/sched.h>
87
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/task.h>
90
91 /*
92  * Minimum number of threads to boot the kernel
93  */
94 #define MIN_THREADS 20
95
96 /*
97  * Maximum number of threads
98  */
99 #define MAX_THREADS FUTEX_TID_MASK
100
101 /*
102  * Protected counters by write_lock_irq(&tasklist_lock)
103  */
104 unsigned long total_forks;      /* Handle normal Linux uptimes. */
105 int nr_threads;                 /* The idle threads do not count.. */
106
107 int max_threads;                /* tunable limit on nr_threads */
108
109 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
110
111 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
112
113 #ifdef CONFIG_PROVE_RCU
114 int lockdep_tasklist_lock_is_held(void)
115 {
116         return lockdep_is_held(&tasklist_lock);
117 }
118 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
119 #endif /* #ifdef CONFIG_PROVE_RCU */
120
121 int nr_processes(void)
122 {
123         int cpu;
124         int total = 0;
125
126         for_each_possible_cpu(cpu)
127                 total += per_cpu(process_counts, cpu);
128
129         return total;
130 }
131
132 void __weak arch_release_task_struct(struct task_struct *tsk)
133 {
134 }
135
136 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
137 static struct kmem_cache *task_struct_cachep;
138
139 static inline struct task_struct *alloc_task_struct_node(int node)
140 {
141         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
142 }
143
144 static inline void free_task_struct(struct task_struct *tsk)
145 {
146         kmem_cache_free(task_struct_cachep, tsk);
147 }
148 #endif
149
150 void __weak arch_release_thread_info(struct thread_info *ti)
151 {
152 }
153
154 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
155
156 /*
157  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
158  * kmemcache based allocator.
159  */
160 # if THREAD_SIZE >= PAGE_SIZE
161 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
162                                                   int node)
163 {
164         struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
165                                                   THREAD_SIZE_ORDER);
166
167         return page ? page_address(page) : NULL;
168 }
169
170 static inline void free_thread_info(struct thread_info *ti)
171 {
172         free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
173 }
174 # else
175 static struct kmem_cache *thread_info_cache;
176
177 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
178                                                   int node)
179 {
180         return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
181 }
182
183 static void free_thread_info(struct thread_info *ti)
184 {
185         kmem_cache_free(thread_info_cache, ti);
186 }
187
188 void thread_info_cache_init(void)
189 {
190         thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
191                                               THREAD_SIZE, 0, NULL);
192         BUG_ON(thread_info_cache == NULL);
193 }
194 # endif
195 #endif
196
197 /* SLAB cache for signal_struct structures (tsk->signal) */
198 static struct kmem_cache *signal_cachep;
199
200 /* SLAB cache for sighand_struct structures (tsk->sighand) */
201 struct kmem_cache *sighand_cachep;
202
203 /* SLAB cache for files_struct structures (tsk->files) */
204 struct kmem_cache *files_cachep;
205
206 /* SLAB cache for fs_struct structures (tsk->fs) */
207 struct kmem_cache *fs_cachep;
208
209 /* SLAB cache for vm_area_struct structures */
210 struct kmem_cache *vm_area_cachep;
211
212 /* SLAB cache for mm_struct structures (tsk->mm) */
213 static struct kmem_cache *mm_cachep;
214
215 static void account_kernel_stack(struct thread_info *ti, int account)
216 {
217         struct zone *zone = page_zone(virt_to_page(ti));
218
219         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
220 }
221
222 void free_task(struct task_struct *tsk)
223 {
224         account_kernel_stack(tsk->stack, -1);
225         arch_release_thread_info(tsk->stack);
226         free_thread_info(tsk->stack);
227         rt_mutex_debug_task_free(tsk);
228         ftrace_graph_exit_task(tsk);
229         put_seccomp_filter(tsk);
230         arch_release_task_struct(tsk);
231         free_task_struct(tsk);
232 }
233 EXPORT_SYMBOL(free_task);
234
235 static inline void free_signal_struct(struct signal_struct *sig)
236 {
237         taskstats_tgid_free(sig);
238         sched_autogroup_exit(sig);
239         kmem_cache_free(signal_cachep, sig);
240 }
241
242 static inline void put_signal_struct(struct signal_struct *sig)
243 {
244         if (atomic_dec_and_test(&sig->sigcnt))
245                 free_signal_struct(sig);
246 }
247
248 void __put_task_struct(struct task_struct *tsk)
249 {
250         WARN_ON(!tsk->exit_state);
251         WARN_ON(atomic_read(&tsk->usage));
252         WARN_ON(tsk == current);
253
254         cgroup_free(tsk);
255         task_numa_free(tsk);
256         security_task_free(tsk);
257         exit_creds(tsk);
258         delayacct_tsk_free(tsk);
259         put_signal_struct(tsk->signal);
260
261         if (!profile_handoff_task(tsk))
262                 free_task(tsk);
263 }
264 EXPORT_SYMBOL_GPL(__put_task_struct);
265
266 void __init __weak arch_task_cache_init(void) { }
267
268 /*
269  * set_max_threads
270  */
271 static void set_max_threads(unsigned int max_threads_suggested)
272 {
273         u64 threads;
274
275         /*
276          * The number of threads shall be limited such that the thread
277          * structures may only consume a small part of the available memory.
278          */
279         if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
280                 threads = MAX_THREADS;
281         else
282                 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
283                                     (u64) THREAD_SIZE * 8UL);
284
285         if (threads > max_threads_suggested)
286                 threads = max_threads_suggested;
287
288         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
289 }
290
291 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
292 /* Initialized by the architecture: */
293 int arch_task_struct_size __read_mostly;
294 #endif
295
296 void __init fork_init(void)
297 {
298 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
299 #ifndef ARCH_MIN_TASKALIGN
300 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
301 #endif
302         /* create a slab on which task_structs can be allocated */
303         task_struct_cachep =
304                 kmem_cache_create("task_struct", arch_task_struct_size,
305                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
306 #endif
307
308         /* do the arch specific task caches init */
309         arch_task_cache_init();
310
311         set_max_threads(MAX_THREADS);
312
313         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
314         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
315         init_task.signal->rlim[RLIMIT_SIGPENDING] =
316                 init_task.signal->rlim[RLIMIT_NPROC];
317 }
318
319 int __weak arch_dup_task_struct(struct task_struct *dst,
320                                                struct task_struct *src)
321 {
322         *dst = *src;
323         return 0;
324 }
325
326 void set_task_stack_end_magic(struct task_struct *tsk)
327 {
328         unsigned long *stackend;
329
330         stackend = end_of_stack(tsk);
331         *stackend = STACK_END_MAGIC;    /* for overflow detection */
332 }
333
334 static struct task_struct *dup_task_struct(struct task_struct *orig)
335 {
336         struct task_struct *tsk;
337         struct thread_info *ti;
338         int node = tsk_fork_get_node(orig);
339         int err;
340
341         tsk = alloc_task_struct_node(node);
342         if (!tsk)
343                 return NULL;
344
345         ti = alloc_thread_info_node(tsk, node);
346         if (!ti)
347                 goto free_tsk;
348
349         err = arch_dup_task_struct(tsk, orig);
350         if (err)
351                 goto free_ti;
352
353         tsk->stack = ti;
354 #ifdef CONFIG_SECCOMP
355         /*
356          * We must handle setting up seccomp filters once we're under
357          * the sighand lock in case orig has changed between now and
358          * then. Until then, filter must be NULL to avoid messing up
359          * the usage counts on the error path calling free_task.
360          */
361         tsk->seccomp.filter = NULL;
362 #endif
363
364         setup_thread_stack(tsk, orig);
365         clear_user_return_notifier(tsk);
366         clear_tsk_need_resched(tsk);
367         set_task_stack_end_magic(tsk);
368
369 #ifdef CONFIG_CC_STACKPROTECTOR
370         tsk->stack_canary = get_random_int();
371 #endif
372
373         /*
374          * One for us, one for whoever does the "release_task()" (usually
375          * parent)
376          */
377         atomic_set(&tsk->usage, 2);
378 #ifdef CONFIG_BLK_DEV_IO_TRACE
379         tsk->btrace_seq = 0;
380 #endif
381         tsk->splice_pipe = NULL;
382         tsk->task_frag.page = NULL;
383         tsk->wake_q.next = NULL;
384
385         account_kernel_stack(ti, 1);
386
387         return tsk;
388
389 free_ti:
390         free_thread_info(ti);
391 free_tsk:
392         free_task_struct(tsk);
393         return NULL;
394 }
395
396 #ifdef CONFIG_MMU
397 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
398 {
399         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
400         struct rb_node **rb_link, *rb_parent;
401         int retval;
402         unsigned long charge;
403
404         uprobe_start_dup_mmap();
405         down_write(&oldmm->mmap_sem);
406         flush_cache_dup_mm(oldmm);
407         uprobe_dup_mmap(oldmm, mm);
408         /*
409          * Not linked in yet - no deadlock potential:
410          */
411         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
412
413         /* No ordering required: file already has been exposed. */
414         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
415
416         mm->total_vm = oldmm->total_vm;
417         mm->shared_vm = oldmm->shared_vm;
418         mm->exec_vm = oldmm->exec_vm;
419         mm->stack_vm = oldmm->stack_vm;
420
421         rb_link = &mm->mm_rb.rb_node;
422         rb_parent = NULL;
423         pprev = &mm->mmap;
424         retval = ksm_fork(mm, oldmm);
425         if (retval)
426                 goto out;
427         retval = khugepaged_fork(mm, oldmm);
428         if (retval)
429                 goto out;
430
431         prev = NULL;
432         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
433                 struct file *file;
434
435                 if (mpnt->vm_flags & VM_DONTCOPY) {
436                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
437                                                         -vma_pages(mpnt));
438                         continue;
439                 }
440                 charge = 0;
441                 if (mpnt->vm_flags & VM_ACCOUNT) {
442                         unsigned long len = vma_pages(mpnt);
443
444                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
445                                 goto fail_nomem;
446                         charge = len;
447                 }
448                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
449                 if (!tmp)
450                         goto fail_nomem;
451                 *tmp = *mpnt;
452                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
453                 retval = vma_dup_policy(mpnt, tmp);
454                 if (retval)
455                         goto fail_nomem_policy;
456                 tmp->vm_mm = mm;
457                 if (anon_vma_fork(tmp, mpnt))
458                         goto fail_nomem_anon_vma_fork;
459                 tmp->vm_flags &=
460                         ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
461                 tmp->vm_next = tmp->vm_prev = NULL;
462                 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
463                 file = tmp->vm_file;
464                 if (file) {
465                         struct inode *inode = file_inode(file);
466                         struct address_space *mapping = file->f_mapping;
467
468                         get_file(file);
469                         if (tmp->vm_flags & VM_DENYWRITE)
470                                 atomic_dec(&inode->i_writecount);
471                         i_mmap_lock_write(mapping);
472                         if (tmp->vm_flags & VM_SHARED)
473                                 atomic_inc(&mapping->i_mmap_writable);
474                         flush_dcache_mmap_lock(mapping);
475                         /* insert tmp into the share list, just after mpnt */
476                         vma_interval_tree_insert_after(tmp, mpnt,
477                                         &mapping->i_mmap);
478                         flush_dcache_mmap_unlock(mapping);
479                         i_mmap_unlock_write(mapping);
480                 }
481
482                 /*
483                  * Clear hugetlb-related page reserves for children. This only
484                  * affects MAP_PRIVATE mappings. Faults generated by the child
485                  * are not guaranteed to succeed, even if read-only
486                  */
487                 if (is_vm_hugetlb_page(tmp))
488                         reset_vma_resv_huge_pages(tmp);
489
490                 /*
491                  * Link in the new vma and copy the page table entries.
492                  */
493                 *pprev = tmp;
494                 pprev = &tmp->vm_next;
495                 tmp->vm_prev = prev;
496                 prev = tmp;
497
498                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
499                 rb_link = &tmp->vm_rb.rb_right;
500                 rb_parent = &tmp->vm_rb;
501
502                 mm->map_count++;
503                 retval = copy_page_range(mm, oldmm, mpnt);
504
505                 if (tmp->vm_ops && tmp->vm_ops->open)
506                         tmp->vm_ops->open(tmp);
507
508                 if (retval)
509                         goto out;
510         }
511         /* a new mm has just been created */
512         arch_dup_mmap(oldmm, mm);
513         retval = 0;
514 out:
515         up_write(&mm->mmap_sem);
516         flush_tlb_mm(oldmm);
517         up_write(&oldmm->mmap_sem);
518         uprobe_end_dup_mmap();
519         return retval;
520 fail_nomem_anon_vma_fork:
521         mpol_put(vma_policy(tmp));
522 fail_nomem_policy:
523         kmem_cache_free(vm_area_cachep, tmp);
524 fail_nomem:
525         retval = -ENOMEM;
526         vm_unacct_memory(charge);
527         goto out;
528 }
529
530 static inline int mm_alloc_pgd(struct mm_struct *mm)
531 {
532         mm->pgd = pgd_alloc(mm);
533         if (unlikely(!mm->pgd))
534                 return -ENOMEM;
535         return 0;
536 }
537
538 static inline void mm_free_pgd(struct mm_struct *mm)
539 {
540         pgd_free(mm, mm->pgd);
541 }
542 #else
543 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
544 {
545         down_write(&oldmm->mmap_sem);
546         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
547         up_write(&oldmm->mmap_sem);
548         return 0;
549 }
550 #define mm_alloc_pgd(mm)        (0)
551 #define mm_free_pgd(mm)
552 #endif /* CONFIG_MMU */
553
554 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
555
556 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
557 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
558
559 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
560
561 static int __init coredump_filter_setup(char *s)
562 {
563         default_dump_filter =
564                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
565                 MMF_DUMP_FILTER_MASK;
566         return 1;
567 }
568
569 __setup("coredump_filter=", coredump_filter_setup);
570
571 #include <linux/init_task.h>
572
573 static void mm_init_aio(struct mm_struct *mm)
574 {
575 #ifdef CONFIG_AIO
576         spin_lock_init(&mm->ioctx_lock);
577         mm->ioctx_table = NULL;
578 #endif
579 }
580
581 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
582 {
583 #ifdef CONFIG_MEMCG
584         mm->owner = p;
585 #endif
586 }
587
588 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
589 {
590         mm->mmap = NULL;
591         mm->mm_rb = RB_ROOT;
592         mm->vmacache_seqnum = 0;
593         atomic_set(&mm->mm_users, 1);
594         atomic_set(&mm->mm_count, 1);
595         init_rwsem(&mm->mmap_sem);
596         INIT_LIST_HEAD(&mm->mmlist);
597         mm->core_state = NULL;
598         atomic_long_set(&mm->nr_ptes, 0);
599         mm_nr_pmds_init(mm);
600         mm->map_count = 0;
601         mm->locked_vm = 0;
602         mm->pinned_vm = 0;
603         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
604         spin_lock_init(&mm->page_table_lock);
605         mm_init_cpumask(mm);
606         mm_init_aio(mm);
607         mm_init_owner(mm, p);
608         mmu_notifier_mm_init(mm);
609         clear_tlb_flush_pending(mm);
610 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
611         mm->pmd_huge_pte = NULL;
612 #endif
613
614         if (current->mm) {
615                 mm->flags = current->mm->flags & MMF_INIT_MASK;
616                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
617         } else {
618                 mm->flags = default_dump_filter;
619                 mm->def_flags = 0;
620         }
621
622         if (mm_alloc_pgd(mm))
623                 goto fail_nopgd;
624
625         if (init_new_context(p, mm))
626                 goto fail_nocontext;
627
628         return mm;
629
630 fail_nocontext:
631         mm_free_pgd(mm);
632 fail_nopgd:
633         free_mm(mm);
634         return NULL;
635 }
636
637 static void check_mm(struct mm_struct *mm)
638 {
639         int i;
640
641         for (i = 0; i < NR_MM_COUNTERS; i++) {
642                 long x = atomic_long_read(&mm->rss_stat.count[i]);
643
644                 if (unlikely(x))
645                         printk(KERN_ALERT "BUG: Bad rss-counter state "
646                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
647         }
648
649         if (atomic_long_read(&mm->nr_ptes))
650                 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
651                                 atomic_long_read(&mm->nr_ptes));
652         if (mm_nr_pmds(mm))
653                 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
654                                 mm_nr_pmds(mm));
655
656 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
657         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
658 #endif
659 }
660
661 /*
662  * Allocate and initialize an mm_struct.
663  */
664 struct mm_struct *mm_alloc(void)
665 {
666         struct mm_struct *mm;
667
668         mm = allocate_mm();
669         if (!mm)
670                 return NULL;
671
672         memset(mm, 0, sizeof(*mm));
673         return mm_init(mm, current);
674 }
675
676 /*
677  * Called when the last reference to the mm
678  * is dropped: either by a lazy thread or by
679  * mmput. Free the page directory and the mm.
680  */
681 void __mmdrop(struct mm_struct *mm)
682 {
683         BUG_ON(mm == &init_mm);
684         mm_free_pgd(mm);
685         destroy_context(mm);
686         mmu_notifier_mm_destroy(mm);
687         check_mm(mm);
688         free_mm(mm);
689 }
690 EXPORT_SYMBOL_GPL(__mmdrop);
691
692 /*
693  * Decrement the use count and release all resources for an mm.
694  */
695 void mmput(struct mm_struct *mm)
696 {
697         might_sleep();
698
699         if (atomic_dec_and_test(&mm->mm_users)) {
700                 uprobe_clear_state(mm);
701                 exit_aio(mm);
702                 ksm_exit(mm);
703                 khugepaged_exit(mm); /* must run before exit_mmap */
704                 exit_mmap(mm);
705                 set_mm_exe_file(mm, NULL);
706                 if (!list_empty(&mm->mmlist)) {
707                         spin_lock(&mmlist_lock);
708                         list_del(&mm->mmlist);
709                         spin_unlock(&mmlist_lock);
710                 }
711                 if (mm->binfmt)
712                         module_put(mm->binfmt->module);
713                 mmdrop(mm);
714         }
715 }
716 EXPORT_SYMBOL_GPL(mmput);
717
718 /**
719  * set_mm_exe_file - change a reference to the mm's executable file
720  *
721  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
722  *
723  * Main users are mmput() and sys_execve(). Callers prevent concurrent
724  * invocations: in mmput() nobody alive left, in execve task is single
725  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
726  * mm->exe_file, but does so without using set_mm_exe_file() in order
727  * to do avoid the need for any locks.
728  */
729 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
730 {
731         struct file *old_exe_file;
732
733         /*
734          * It is safe to dereference the exe_file without RCU as
735          * this function is only called if nobody else can access
736          * this mm -- see comment above for justification.
737          */
738         old_exe_file = rcu_dereference_raw(mm->exe_file);
739
740         if (new_exe_file)
741                 get_file(new_exe_file);
742         rcu_assign_pointer(mm->exe_file, new_exe_file);
743         if (old_exe_file)
744                 fput(old_exe_file);
745 }
746
747 /**
748  * get_mm_exe_file - acquire a reference to the mm's executable file
749  *
750  * Returns %NULL if mm has no associated executable file.
751  * User must release file via fput().
752  */
753 struct file *get_mm_exe_file(struct mm_struct *mm)
754 {
755         struct file *exe_file;
756
757         rcu_read_lock();
758         exe_file = rcu_dereference(mm->exe_file);
759         if (exe_file && !get_file_rcu(exe_file))
760                 exe_file = NULL;
761         rcu_read_unlock();
762         return exe_file;
763 }
764 EXPORT_SYMBOL(get_mm_exe_file);
765
766 /**
767  * get_task_exe_file - acquire a reference to the task's executable file
768  *
769  * Returns %NULL if task's mm (if any) has no associated executable file or
770  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
771  * User must release file via fput().
772  */
773 struct file *get_task_exe_file(struct task_struct *task)
774 {
775         struct file *exe_file = NULL;
776         struct mm_struct *mm;
777
778         task_lock(task);
779         mm = task->mm;
780         if (mm) {
781                 if (!(task->flags & PF_KTHREAD))
782                         exe_file = get_mm_exe_file(mm);
783         }
784         task_unlock(task);
785         return exe_file;
786 }
787 EXPORT_SYMBOL(get_task_exe_file);
788
789 /**
790  * get_task_mm - acquire a reference to the task's mm
791  *
792  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
793  * this kernel workthread has transiently adopted a user mm with use_mm,
794  * to do its AIO) is not set and if so returns a reference to it, after
795  * bumping up the use count.  User must release the mm via mmput()
796  * after use.  Typically used by /proc and ptrace.
797  */
798 struct mm_struct *get_task_mm(struct task_struct *task)
799 {
800         struct mm_struct *mm;
801
802         task_lock(task);
803         mm = task->mm;
804         if (mm) {
805                 if (task->flags & PF_KTHREAD)
806                         mm = NULL;
807                 else
808                         atomic_inc(&mm->mm_users);
809         }
810         task_unlock(task);
811         return mm;
812 }
813 EXPORT_SYMBOL_GPL(get_task_mm);
814
815 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
816 {
817         struct mm_struct *mm;
818         int err;
819
820         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
821         if (err)
822                 return ERR_PTR(err);
823
824         mm = get_task_mm(task);
825         if (mm && mm != current->mm &&
826                         !ptrace_may_access(task, mode) &&
827                         !capable(CAP_SYS_RESOURCE)) {
828                 mmput(mm);
829                 mm = ERR_PTR(-EACCES);
830         }
831         mutex_unlock(&task->signal->cred_guard_mutex);
832
833         return mm;
834 }
835
836 static void complete_vfork_done(struct task_struct *tsk)
837 {
838         struct completion *vfork;
839
840         task_lock(tsk);
841         vfork = tsk->vfork_done;
842         if (likely(vfork)) {
843                 tsk->vfork_done = NULL;
844                 complete(vfork);
845         }
846         task_unlock(tsk);
847 }
848
849 static int wait_for_vfork_done(struct task_struct *child,
850                                 struct completion *vfork)
851 {
852         int killed;
853
854         freezer_do_not_count();
855         killed = wait_for_completion_killable(vfork);
856         freezer_count();
857
858         if (killed) {
859                 task_lock(child);
860                 child->vfork_done = NULL;
861                 task_unlock(child);
862         }
863
864         put_task_struct(child);
865         return killed;
866 }
867
868 /* Please note the differences between mmput and mm_release.
869  * mmput is called whenever we stop holding onto a mm_struct,
870  * error success whatever.
871  *
872  * mm_release is called after a mm_struct has been removed
873  * from the current process.
874  *
875  * This difference is important for error handling, when we
876  * only half set up a mm_struct for a new process and need to restore
877  * the old one.  Because we mmput the new mm_struct before
878  * restoring the old one. . .
879  * Eric Biederman 10 January 1998
880  */
881 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
882 {
883         /* Get rid of any futexes when releasing the mm */
884 #ifdef CONFIG_FUTEX
885         if (unlikely(tsk->robust_list)) {
886                 exit_robust_list(tsk);
887                 tsk->robust_list = NULL;
888         }
889 #ifdef CONFIG_COMPAT
890         if (unlikely(tsk->compat_robust_list)) {
891                 compat_exit_robust_list(tsk);
892                 tsk->compat_robust_list = NULL;
893         }
894 #endif
895         if (unlikely(!list_empty(&tsk->pi_state_list)))
896                 exit_pi_state_list(tsk);
897 #endif
898
899         uprobe_free_utask(tsk);
900
901         /* Get rid of any cached register state */
902         deactivate_mm(tsk, mm);
903
904         /*
905          * Signal userspace if we're not exiting with a core dump
906          * because we want to leave the value intact for debugging
907          * purposes.
908          */
909         if (tsk->clear_child_tid) {
910                 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
911                     atomic_read(&mm->mm_users) > 1) {
912                         /*
913                          * We don't check the error code - if userspace has
914                          * not set up a proper pointer then tough luck.
915                          */
916                         put_user(0, tsk->clear_child_tid);
917                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
918                                         1, NULL, NULL, 0);
919                 }
920                 tsk->clear_child_tid = NULL;
921         }
922
923         /*
924          * All done, finally we can wake up parent and return this mm to him.
925          * Also kthread_stop() uses this completion for synchronization.
926          */
927         if (tsk->vfork_done)
928                 complete_vfork_done(tsk);
929 }
930
931 /*
932  * Allocate a new mm structure and copy contents from the
933  * mm structure of the passed in task structure.
934  */
935 static struct mm_struct *dup_mm(struct task_struct *tsk)
936 {
937         struct mm_struct *mm, *oldmm = current->mm;
938         int err;
939
940         mm = allocate_mm();
941         if (!mm)
942                 goto fail_nomem;
943
944         memcpy(mm, oldmm, sizeof(*mm));
945
946         if (!mm_init(mm, tsk))
947                 goto fail_nomem;
948
949         err = dup_mmap(mm, oldmm);
950         if (err)
951                 goto free_pt;
952
953         mm->hiwater_rss = get_mm_rss(mm);
954         mm->hiwater_vm = mm->total_vm;
955
956         if (mm->binfmt && !try_module_get(mm->binfmt->module))
957                 goto free_pt;
958
959         return mm;
960
961 free_pt:
962         /* don't put binfmt in mmput, we haven't got module yet */
963         mm->binfmt = NULL;
964         mmput(mm);
965
966 fail_nomem:
967         return NULL;
968 }
969
970 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
971 {
972         struct mm_struct *mm, *oldmm;
973         int retval;
974
975         tsk->min_flt = tsk->maj_flt = 0;
976         tsk->nvcsw = tsk->nivcsw = 0;
977 #ifdef CONFIG_DETECT_HUNG_TASK
978         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
979 #endif
980
981         tsk->mm = NULL;
982         tsk->active_mm = NULL;
983
984         /*
985          * Are we cloning a kernel thread?
986          *
987          * We need to steal a active VM for that..
988          */
989         oldmm = current->mm;
990         if (!oldmm)
991                 return 0;
992
993         /* initialize the new vmacache entries */
994         vmacache_flush(tsk);
995
996         if (clone_flags & CLONE_VM) {
997                 atomic_inc(&oldmm->mm_users);
998                 mm = oldmm;
999                 goto good_mm;
1000         }
1001
1002         retval = -ENOMEM;
1003         mm = dup_mm(tsk);
1004         if (!mm)
1005                 goto fail_nomem;
1006
1007 good_mm:
1008         tsk->mm = mm;
1009         tsk->active_mm = mm;
1010         return 0;
1011
1012 fail_nomem:
1013         return retval;
1014 }
1015
1016 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1017 {
1018         struct fs_struct *fs = current->fs;
1019         if (clone_flags & CLONE_FS) {
1020                 /* tsk->fs is already what we want */
1021                 spin_lock(&fs->lock);
1022                 if (fs->in_exec) {
1023                         spin_unlock(&fs->lock);
1024                         return -EAGAIN;
1025                 }
1026                 fs->users++;
1027                 spin_unlock(&fs->lock);
1028                 return 0;
1029         }
1030         tsk->fs = copy_fs_struct(fs);
1031         if (!tsk->fs)
1032                 return -ENOMEM;
1033         return 0;
1034 }
1035
1036 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1037 {
1038         struct files_struct *oldf, *newf;
1039         int error = 0;
1040
1041         /*
1042          * A background process may not have any files ...
1043          */
1044         oldf = current->files;
1045         if (!oldf)
1046                 goto out;
1047
1048         if (clone_flags & CLONE_FILES) {
1049                 atomic_inc(&oldf->count);
1050                 goto out;
1051         }
1052
1053         newf = dup_fd(oldf, &error);
1054         if (!newf)
1055                 goto out;
1056
1057         tsk->files = newf;
1058         error = 0;
1059 out:
1060         return error;
1061 }
1062
1063 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1064 {
1065 #ifdef CONFIG_BLOCK
1066         struct io_context *ioc = current->io_context;
1067         struct io_context *new_ioc;
1068
1069         if (!ioc)
1070                 return 0;
1071         /*
1072          * Share io context with parent, if CLONE_IO is set
1073          */
1074         if (clone_flags & CLONE_IO) {
1075                 ioc_task_link(ioc);
1076                 tsk->io_context = ioc;
1077         } else if (ioprio_valid(ioc->ioprio)) {
1078                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1079                 if (unlikely(!new_ioc))
1080                         return -ENOMEM;
1081
1082                 new_ioc->ioprio = ioc->ioprio;
1083                 put_io_context(new_ioc);
1084         }
1085 #endif
1086         return 0;
1087 }
1088
1089 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1090 {
1091         struct sighand_struct *sig;
1092
1093         if (clone_flags & CLONE_SIGHAND) {
1094                 atomic_inc(&current->sighand->count);
1095                 return 0;
1096         }
1097         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1098         rcu_assign_pointer(tsk->sighand, sig);
1099         if (!sig)
1100                 return -ENOMEM;
1101
1102         atomic_set(&sig->count, 1);
1103         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1104         return 0;
1105 }
1106
1107 void __cleanup_sighand(struct sighand_struct *sighand)
1108 {
1109         if (atomic_dec_and_test(&sighand->count)) {
1110                 signalfd_cleanup(sighand);
1111                 /*
1112                  * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1113                  * without an RCU grace period, see __lock_task_sighand().
1114                  */
1115                 kmem_cache_free(sighand_cachep, sighand);
1116         }
1117 }
1118
1119 /*
1120  * Initialize POSIX timer handling for a thread group.
1121  */
1122 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1123 {
1124         unsigned long cpu_limit;
1125
1126         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1127         if (cpu_limit != RLIM_INFINITY) {
1128                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1129                 sig->cputimer.running = true;
1130         }
1131
1132         /* The timer lists. */
1133         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1134         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1135         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1136 }
1137
1138 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1139 {
1140         struct signal_struct *sig;
1141
1142         if (clone_flags & CLONE_THREAD)
1143                 return 0;
1144
1145         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1146         tsk->signal = sig;
1147         if (!sig)
1148                 return -ENOMEM;
1149
1150         sig->nr_threads = 1;
1151         atomic_set(&sig->live, 1);
1152         atomic_set(&sig->sigcnt, 1);
1153
1154         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1155         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1156         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1157
1158         init_waitqueue_head(&sig->wait_chldexit);
1159         sig->curr_target = tsk;
1160         init_sigpending(&sig->shared_pending);
1161         INIT_LIST_HEAD(&sig->posix_timers);
1162         seqlock_init(&sig->stats_lock);
1163         prev_cputime_init(&sig->prev_cputime);
1164
1165         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1166         sig->real_timer.function = it_real_fn;
1167
1168         task_lock(current->group_leader);
1169         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1170         task_unlock(current->group_leader);
1171
1172         posix_cpu_timers_init_group(sig);
1173
1174         tty_audit_fork(sig);
1175         sched_autogroup_fork(sig);
1176
1177         sig->oom_score_adj = current->signal->oom_score_adj;
1178         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1179
1180         sig->has_child_subreaper = current->signal->has_child_subreaper ||
1181                                    current->signal->is_child_subreaper;
1182
1183         mutex_init(&sig->cred_guard_mutex);
1184
1185         return 0;
1186 }
1187
1188 static void copy_seccomp(struct task_struct *p)
1189 {
1190 #ifdef CONFIG_SECCOMP
1191         /*
1192          * Must be called with sighand->lock held, which is common to
1193          * all threads in the group. Holding cred_guard_mutex is not
1194          * needed because this new task is not yet running and cannot
1195          * be racing exec.
1196          */
1197         assert_spin_locked(&current->sighand->siglock);
1198
1199         /* Ref-count the new filter user, and assign it. */
1200         get_seccomp_filter(current);
1201         p->seccomp = current->seccomp;
1202
1203         /*
1204          * Explicitly enable no_new_privs here in case it got set
1205          * between the task_struct being duplicated and holding the
1206          * sighand lock. The seccomp state and nnp must be in sync.
1207          */
1208         if (task_no_new_privs(current))
1209                 task_set_no_new_privs(p);
1210
1211         /*
1212          * If the parent gained a seccomp mode after copying thread
1213          * flags and between before we held the sighand lock, we have
1214          * to manually enable the seccomp thread flag here.
1215          */
1216         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1217                 set_tsk_thread_flag(p, TIF_SECCOMP);
1218 #endif
1219 }
1220
1221 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1222 {
1223         current->clear_child_tid = tidptr;
1224
1225         return task_pid_vnr(current);
1226 }
1227
1228 static void rt_mutex_init_task(struct task_struct *p)
1229 {
1230         raw_spin_lock_init(&p->pi_lock);
1231 #ifdef CONFIG_RT_MUTEXES
1232         p->pi_waiters = RB_ROOT;
1233         p->pi_waiters_leftmost = NULL;
1234         p->pi_blocked_on = NULL;
1235 #endif
1236 }
1237
1238 /*
1239  * Initialize POSIX timer handling for a single task.
1240  */
1241 static void posix_cpu_timers_init(struct task_struct *tsk)
1242 {
1243         tsk->cputime_expires.prof_exp = 0;
1244         tsk->cputime_expires.virt_exp = 0;
1245         tsk->cputime_expires.sched_exp = 0;
1246         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1247         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1248         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1249 }
1250
1251 static inline void
1252 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1253 {
1254          task->pids[type].pid = pid;
1255 }
1256
1257 /*
1258  * This creates a new process as a copy of the old one,
1259  * but does not actually start it yet.
1260  *
1261  * It copies the registers, and all the appropriate
1262  * parts of the process environment (as per the clone
1263  * flags). The actual kick-off is left to the caller.
1264  */
1265 static struct task_struct *copy_process(unsigned long clone_flags,
1266                                         unsigned long stack_start,
1267                                         unsigned long stack_size,
1268                                         int __user *child_tidptr,
1269                                         struct pid *pid,
1270                                         int trace,
1271                                         unsigned long tls)
1272 {
1273         int retval;
1274         struct task_struct *p;
1275         void *cgrp_ss_priv[CGROUP_CANFORK_COUNT] = {};
1276
1277         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1278                 return ERR_PTR(-EINVAL);
1279
1280         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1281                 return ERR_PTR(-EINVAL);
1282
1283         /*
1284          * Thread groups must share signals as well, and detached threads
1285          * can only be started up within the thread group.
1286          */
1287         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1288                 return ERR_PTR(-EINVAL);
1289
1290         /*
1291          * Shared signal handlers imply shared VM. By way of the above,
1292          * thread groups also imply shared VM. Blocking this case allows
1293          * for various simplifications in other code.
1294          */
1295         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1296                 return ERR_PTR(-EINVAL);
1297
1298         /*
1299          * Siblings of global init remain as zombies on exit since they are
1300          * not reaped by their parent (swapper). To solve this and to avoid
1301          * multi-rooted process trees, prevent global and container-inits
1302          * from creating siblings.
1303          */
1304         if ((clone_flags & CLONE_PARENT) &&
1305                                 current->signal->flags & SIGNAL_UNKILLABLE)
1306                 return ERR_PTR(-EINVAL);
1307
1308         /*
1309          * If the new process will be in a different pid or user namespace
1310          * do not allow it to share a thread group with the forking task.
1311          */
1312         if (clone_flags & CLONE_THREAD) {
1313                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1314                     (task_active_pid_ns(current) !=
1315                                 current->nsproxy->pid_ns_for_children))
1316                         return ERR_PTR(-EINVAL);
1317         }
1318
1319         retval = security_task_create(clone_flags);
1320         if (retval)
1321                 goto fork_out;
1322
1323         retval = -ENOMEM;
1324         p = dup_task_struct(current);
1325         if (!p)
1326                 goto fork_out;
1327
1328         ftrace_graph_init_task(p);
1329
1330         rt_mutex_init_task(p);
1331
1332 #ifdef CONFIG_PROVE_LOCKING
1333         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1334         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1335 #endif
1336         retval = -EAGAIN;
1337         if (atomic_read(&p->real_cred->user->processes) >=
1338                         task_rlimit(p, RLIMIT_NPROC)) {
1339                 if (p->real_cred->user != INIT_USER &&
1340                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1341                         goto bad_fork_free;
1342         }
1343         current->flags &= ~PF_NPROC_EXCEEDED;
1344
1345         retval = copy_creds(p, clone_flags);
1346         if (retval < 0)
1347                 goto bad_fork_free;
1348
1349         /*
1350          * If multiple threads are within copy_process(), then this check
1351          * triggers too late. This doesn't hurt, the check is only there
1352          * to stop root fork bombs.
1353          */
1354         retval = -EAGAIN;
1355         if (nr_threads >= max_threads)
1356                 goto bad_fork_cleanup_count;
1357
1358         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1359         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1360         p->flags |= PF_FORKNOEXEC;
1361         INIT_LIST_HEAD(&p->children);
1362         INIT_LIST_HEAD(&p->sibling);
1363         rcu_copy_process(p);
1364         p->vfork_done = NULL;
1365         spin_lock_init(&p->alloc_lock);
1366
1367         init_sigpending(&p->pending);
1368
1369         p->utime = p->stime = p->gtime = 0;
1370         p->utimescaled = p->stimescaled = 0;
1371         prev_cputime_init(&p->prev_cputime);
1372
1373 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1374         seqlock_init(&p->vtime_seqlock);
1375         p->vtime_snap = 0;
1376         p->vtime_snap_whence = VTIME_SLEEPING;
1377 #endif
1378
1379 #if defined(SPLIT_RSS_COUNTING)
1380         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1381 #endif
1382
1383         p->default_timer_slack_ns = current->timer_slack_ns;
1384
1385         task_io_accounting_init(&p->ioac);
1386         acct_clear_integrals(p);
1387
1388         posix_cpu_timers_init(p);
1389
1390         p->start_time = ktime_get_ns();
1391         p->real_start_time = ktime_get_boot_ns();
1392         p->io_context = NULL;
1393         p->audit_context = NULL;
1394         cgroup_fork(p);
1395 #ifdef CONFIG_NUMA
1396         p->mempolicy = mpol_dup(p->mempolicy);
1397         if (IS_ERR(p->mempolicy)) {
1398                 retval = PTR_ERR(p->mempolicy);
1399                 p->mempolicy = NULL;
1400                 goto bad_fork_cleanup_threadgroup_lock;
1401         }
1402 #endif
1403 #ifdef CONFIG_CPUSETS
1404         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1405         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1406         seqcount_init(&p->mems_allowed_seq);
1407 #endif
1408 #ifdef CONFIG_TRACE_IRQFLAGS
1409         p->irq_events = 0;
1410         p->hardirqs_enabled = 0;
1411         p->hardirq_enable_ip = 0;
1412         p->hardirq_enable_event = 0;
1413         p->hardirq_disable_ip = _THIS_IP_;
1414         p->hardirq_disable_event = 0;
1415         p->softirqs_enabled = 1;
1416         p->softirq_enable_ip = _THIS_IP_;
1417         p->softirq_enable_event = 0;
1418         p->softirq_disable_ip = 0;
1419         p->softirq_disable_event = 0;
1420         p->hardirq_context = 0;
1421         p->softirq_context = 0;
1422 #endif
1423
1424         p->pagefault_disabled = 0;
1425
1426 #ifdef CONFIG_LOCKDEP
1427         p->lockdep_depth = 0; /* no locks held yet */
1428         p->curr_chain_key = 0;
1429         p->lockdep_recursion = 0;
1430 #endif
1431
1432 #ifdef CONFIG_DEBUG_MUTEXES
1433         p->blocked_on = NULL; /* not blocked yet */
1434 #endif
1435 #ifdef CONFIG_BCACHE
1436         p->sequential_io        = 0;
1437         p->sequential_io_avg    = 0;
1438 #endif
1439
1440         /* Perform scheduler related setup. Assign this task to a CPU. */
1441         retval = sched_fork(clone_flags, p);
1442         if (retval)
1443                 goto bad_fork_cleanup_policy;
1444
1445         retval = perf_event_init_task(p);
1446         if (retval)
1447                 goto bad_fork_cleanup_policy;
1448         retval = audit_alloc(p);
1449         if (retval)
1450                 goto bad_fork_cleanup_perf;
1451         /* copy all the process information */
1452         shm_init_task(p);
1453         retval = copy_semundo(clone_flags, p);
1454         if (retval)
1455                 goto bad_fork_cleanup_audit;
1456         retval = copy_files(clone_flags, p);
1457         if (retval)
1458                 goto bad_fork_cleanup_semundo;
1459         retval = copy_fs(clone_flags, p);
1460         if (retval)
1461                 goto bad_fork_cleanup_files;
1462         retval = copy_sighand(clone_flags, p);
1463         if (retval)
1464                 goto bad_fork_cleanup_fs;
1465         retval = copy_signal(clone_flags, p);
1466         if (retval)
1467                 goto bad_fork_cleanup_sighand;
1468         retval = copy_mm(clone_flags, p);
1469         if (retval)
1470                 goto bad_fork_cleanup_signal;
1471         retval = copy_namespaces(clone_flags, p);
1472         if (retval)
1473                 goto bad_fork_cleanup_mm;
1474         retval = copy_io(clone_flags, p);
1475         if (retval)
1476                 goto bad_fork_cleanup_namespaces;
1477         retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1478         if (retval)
1479                 goto bad_fork_cleanup_io;
1480
1481         if (pid != &init_struct_pid) {
1482                 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1483                 if (IS_ERR(pid)) {
1484                         retval = PTR_ERR(pid);
1485                         goto bad_fork_cleanup_io;
1486                 }
1487         }
1488
1489         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1490         /*
1491          * Clear TID on mm_release()?
1492          */
1493         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1494 #ifdef CONFIG_BLOCK
1495         p->plug = NULL;
1496 #endif
1497 #ifdef CONFIG_FUTEX
1498         p->robust_list = NULL;
1499 #ifdef CONFIG_COMPAT
1500         p->compat_robust_list = NULL;
1501 #endif
1502         INIT_LIST_HEAD(&p->pi_state_list);
1503         p->pi_state_cache = NULL;
1504 #endif
1505         /*
1506          * sigaltstack should be cleared when sharing the same VM
1507          */
1508         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1509                 p->sas_ss_sp = p->sas_ss_size = 0;
1510
1511         /*
1512          * Syscall tracing and stepping should be turned off in the
1513          * child regardless of CLONE_PTRACE.
1514          */
1515         user_disable_single_step(p);
1516         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1517 #ifdef TIF_SYSCALL_EMU
1518         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1519 #endif
1520         clear_all_latency_tracing(p);
1521
1522         /* ok, now we should be set up.. */
1523         p->pid = pid_nr(pid);
1524         if (clone_flags & CLONE_THREAD) {
1525                 p->exit_signal = -1;
1526                 p->group_leader = current->group_leader;
1527                 p->tgid = current->tgid;
1528         } else {
1529                 if (clone_flags & CLONE_PARENT)
1530                         p->exit_signal = current->group_leader->exit_signal;
1531                 else
1532                         p->exit_signal = (clone_flags & CSIGNAL);
1533                 p->group_leader = p;
1534                 p->tgid = p->pid;
1535         }
1536
1537         p->nr_dirtied = 0;
1538         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1539         p->dirty_paused_when = 0;
1540
1541         p->pdeath_signal = 0;
1542         INIT_LIST_HEAD(&p->thread_group);
1543         p->task_works = NULL;
1544
1545         threadgroup_change_begin(current);
1546         /*
1547          * Ensure that the cgroup subsystem policies allow the new process to be
1548          * forked. It should be noted the the new process's css_set can be changed
1549          * between here and cgroup_post_fork() if an organisation operation is in
1550          * progress.
1551          */
1552         retval = cgroup_can_fork(p, cgrp_ss_priv);
1553         if (retval)
1554                 goto bad_fork_free_pid;
1555
1556         /*
1557          * Make it visible to the rest of the system, but dont wake it up yet.
1558          * Need tasklist lock for parent etc handling!
1559          */
1560         write_lock_irq(&tasklist_lock);
1561
1562         /* CLONE_PARENT re-uses the old parent */
1563         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1564                 p->real_parent = current->real_parent;
1565                 p->parent_exec_id = current->parent_exec_id;
1566         } else {
1567                 p->real_parent = current;
1568                 p->parent_exec_id = current->self_exec_id;
1569         }
1570
1571         spin_lock(&current->sighand->siglock);
1572
1573         /*
1574          * Copy seccomp details explicitly here, in case they were changed
1575          * before holding sighand lock.
1576          */
1577         copy_seccomp(p);
1578
1579         /*
1580          * Process group and session signals need to be delivered to just the
1581          * parent before the fork or both the parent and the child after the
1582          * fork. Restart if a signal comes in before we add the new process to
1583          * it's process group.
1584          * A fatal signal pending means that current will exit, so the new
1585          * thread can't slip out of an OOM kill (or normal SIGKILL).
1586         */
1587         recalc_sigpending();
1588         if (signal_pending(current)) {
1589                 spin_unlock(&current->sighand->siglock);
1590                 write_unlock_irq(&tasklist_lock);
1591                 retval = -ERESTARTNOINTR;
1592                 goto bad_fork_cancel_cgroup;
1593         }
1594
1595         if (likely(p->pid)) {
1596                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1597
1598                 init_task_pid(p, PIDTYPE_PID, pid);
1599                 if (thread_group_leader(p)) {
1600                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1601                         init_task_pid(p, PIDTYPE_SID, task_session(current));
1602
1603                         if (is_child_reaper(pid)) {
1604                                 ns_of_pid(pid)->child_reaper = p;
1605                                 p->signal->flags |= SIGNAL_UNKILLABLE;
1606                         }
1607
1608                         p->signal->leader_pid = pid;
1609                         p->signal->tty = tty_kref_get(current->signal->tty);
1610                         list_add_tail(&p->sibling, &p->real_parent->children);
1611                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1612                         attach_pid(p, PIDTYPE_PGID);
1613                         attach_pid(p, PIDTYPE_SID);
1614                         __this_cpu_inc(process_counts);
1615                 } else {
1616                         current->signal->nr_threads++;
1617                         atomic_inc(&current->signal->live);
1618                         atomic_inc(&current->signal->sigcnt);
1619                         list_add_tail_rcu(&p->thread_group,
1620                                           &p->group_leader->thread_group);
1621                         list_add_tail_rcu(&p->thread_node,
1622                                           &p->signal->thread_head);
1623                 }
1624                 attach_pid(p, PIDTYPE_PID);
1625                 nr_threads++;
1626         }
1627
1628         total_forks++;
1629         spin_unlock(&current->sighand->siglock);
1630         syscall_tracepoint_update(p);
1631         write_unlock_irq(&tasklist_lock);
1632
1633         proc_fork_connector(p);
1634         cgroup_post_fork(p, cgrp_ss_priv);
1635         threadgroup_change_end(current);
1636         perf_event_fork(p);
1637
1638         trace_task_newtask(p, clone_flags);
1639         uprobe_copy_process(p, clone_flags);
1640
1641         return p;
1642
1643 bad_fork_cancel_cgroup:
1644         cgroup_cancel_fork(p, cgrp_ss_priv);
1645 bad_fork_free_pid:
1646         threadgroup_change_end(current);
1647         if (pid != &init_struct_pid)
1648                 free_pid(pid);
1649 bad_fork_cleanup_io:
1650         if (p->io_context)
1651                 exit_io_context(p);
1652 bad_fork_cleanup_namespaces:
1653         exit_task_namespaces(p);
1654 bad_fork_cleanup_mm:
1655         if (p->mm)
1656                 mmput(p->mm);
1657 bad_fork_cleanup_signal:
1658         if (!(clone_flags & CLONE_THREAD))
1659                 free_signal_struct(p->signal);
1660 bad_fork_cleanup_sighand:
1661         __cleanup_sighand(p->sighand);
1662 bad_fork_cleanup_fs:
1663         exit_fs(p); /* blocking */
1664 bad_fork_cleanup_files:
1665         exit_files(p); /* blocking */
1666 bad_fork_cleanup_semundo:
1667         exit_sem(p);
1668 bad_fork_cleanup_audit:
1669         audit_free(p);
1670 bad_fork_cleanup_perf:
1671         perf_event_free_task(p);
1672 bad_fork_cleanup_policy:
1673 #ifdef CONFIG_NUMA
1674         mpol_put(p->mempolicy);
1675 bad_fork_cleanup_threadgroup_lock:
1676 #endif
1677         delayacct_tsk_free(p);
1678 bad_fork_cleanup_count:
1679         atomic_dec(&p->cred->user->processes);
1680         exit_creds(p);
1681 bad_fork_free:
1682         free_task(p);
1683 fork_out:
1684         return ERR_PTR(retval);
1685 }
1686
1687 static inline void init_idle_pids(struct pid_link *links)
1688 {
1689         enum pid_type type;
1690
1691         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1692                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1693                 links[type].pid = &init_struct_pid;
1694         }
1695 }
1696
1697 struct task_struct *fork_idle(int cpu)
1698 {
1699         struct task_struct *task;
1700         task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
1701         if (!IS_ERR(task)) {
1702                 init_idle_pids(task->pids);
1703                 init_idle(task, cpu);
1704         }
1705
1706         return task;
1707 }
1708
1709 /*
1710  *  Ok, this is the main fork-routine.
1711  *
1712  * It copies the process, and if successful kick-starts
1713  * it and waits for it to finish using the VM if required.
1714  */
1715 long _do_fork(unsigned long clone_flags,
1716               unsigned long stack_start,
1717               unsigned long stack_size,
1718               int __user *parent_tidptr,
1719               int __user *child_tidptr,
1720               unsigned long tls)
1721 {
1722         struct task_struct *p;
1723         int trace = 0;
1724         long nr;
1725
1726         /*
1727          * Determine whether and which event to report to ptracer.  When
1728          * called from kernel_thread or CLONE_UNTRACED is explicitly
1729          * requested, no event is reported; otherwise, report if the event
1730          * for the type of forking is enabled.
1731          */
1732         if (!(clone_flags & CLONE_UNTRACED)) {
1733                 if (clone_flags & CLONE_VFORK)
1734                         trace = PTRACE_EVENT_VFORK;
1735                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1736                         trace = PTRACE_EVENT_CLONE;
1737                 else
1738                         trace = PTRACE_EVENT_FORK;
1739
1740                 if (likely(!ptrace_event_enabled(current, trace)))
1741                         trace = 0;
1742         }
1743
1744         p = copy_process(clone_flags, stack_start, stack_size,
1745                          child_tidptr, NULL, trace, tls);
1746         /*
1747          * Do this prior waking up the new thread - the thread pointer
1748          * might get invalid after that point, if the thread exits quickly.
1749          */
1750         if (!IS_ERR(p)) {
1751                 struct completion vfork;
1752                 struct pid *pid;
1753
1754                 trace_sched_process_fork(current, p);
1755
1756                 pid = get_task_pid(p, PIDTYPE_PID);
1757                 nr = pid_vnr(pid);
1758
1759                 if (clone_flags & CLONE_PARENT_SETTID)
1760                         put_user(nr, parent_tidptr);
1761
1762                 if (clone_flags & CLONE_VFORK) {
1763                         p->vfork_done = &vfork;
1764                         init_completion(&vfork);
1765                         get_task_struct(p);
1766                 }
1767
1768                 wake_up_new_task(p);
1769
1770                 /* forking complete and child started to run, tell ptracer */
1771                 if (unlikely(trace))
1772                         ptrace_event_pid(trace, pid);
1773
1774                 if (clone_flags & CLONE_VFORK) {
1775                         if (!wait_for_vfork_done(p, &vfork))
1776                                 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1777                 }
1778
1779                 put_pid(pid);
1780         } else {
1781                 nr = PTR_ERR(p);
1782         }
1783         return nr;
1784 }
1785
1786 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1787 /* For compatibility with architectures that call do_fork directly rather than
1788  * using the syscall entry points below. */
1789 long do_fork(unsigned long clone_flags,
1790               unsigned long stack_start,
1791               unsigned long stack_size,
1792               int __user *parent_tidptr,
1793               int __user *child_tidptr)
1794 {
1795         return _do_fork(clone_flags, stack_start, stack_size,
1796                         parent_tidptr, child_tidptr, 0);
1797 }
1798 #endif
1799
1800 /*
1801  * Create a kernel thread.
1802  */
1803 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1804 {
1805         return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1806                 (unsigned long)arg, NULL, NULL, 0);
1807 }
1808
1809 #ifdef __ARCH_WANT_SYS_FORK
1810 SYSCALL_DEFINE0(fork)
1811 {
1812 #ifdef CONFIG_MMU
1813         return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1814 #else
1815         /* can not support in nommu mode */
1816         return -EINVAL;
1817 #endif
1818 }
1819 #endif
1820
1821 #ifdef __ARCH_WANT_SYS_VFORK
1822 SYSCALL_DEFINE0(vfork)
1823 {
1824         return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1825                         0, NULL, NULL, 0);
1826 }
1827 #endif
1828
1829 #ifdef __ARCH_WANT_SYS_CLONE
1830 #ifdef CONFIG_CLONE_BACKWARDS
1831 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1832                  int __user *, parent_tidptr,
1833                  unsigned long, tls,
1834                  int __user *, child_tidptr)
1835 #elif defined(CONFIG_CLONE_BACKWARDS2)
1836 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1837                  int __user *, parent_tidptr,
1838                  int __user *, child_tidptr,
1839                  unsigned long, tls)
1840 #elif defined(CONFIG_CLONE_BACKWARDS3)
1841 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1842                 int, stack_size,
1843                 int __user *, parent_tidptr,
1844                 int __user *, child_tidptr,
1845                 unsigned long, tls)
1846 #else
1847 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1848                  int __user *, parent_tidptr,
1849                  int __user *, child_tidptr,
1850                  unsigned long, tls)
1851 #endif
1852 {
1853         return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1854 }
1855 #endif
1856
1857 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1858 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1859 #endif
1860
1861 static void sighand_ctor(void *data)
1862 {
1863         struct sighand_struct *sighand = data;
1864
1865         spin_lock_init(&sighand->siglock);
1866         init_waitqueue_head(&sighand->signalfd_wqh);
1867 }
1868
1869 void __init proc_caches_init(void)
1870 {
1871         sighand_cachep = kmem_cache_create("sighand_cache",
1872                         sizeof(struct sighand_struct), 0,
1873                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1874                         SLAB_NOTRACK, sighand_ctor);
1875         signal_cachep = kmem_cache_create("signal_cache",
1876                         sizeof(struct signal_struct), 0,
1877                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1878         files_cachep = kmem_cache_create("files_cache",
1879                         sizeof(struct files_struct), 0,
1880                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1881         fs_cachep = kmem_cache_create("fs_cache",
1882                         sizeof(struct fs_struct), 0,
1883                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1884         /*
1885          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1886          * whole struct cpumask for the OFFSTACK case. We could change
1887          * this to *only* allocate as much of it as required by the
1888          * maximum number of CPU's we can ever have.  The cpumask_allocation
1889          * is at the end of the structure, exactly for that reason.
1890          */
1891         mm_cachep = kmem_cache_create("mm_struct",
1892                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1893                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1894         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1895         mmap_init();
1896         nsproxy_cache_init();
1897 }
1898
1899 /*
1900  * Check constraints on flags passed to the unshare system call.
1901  */
1902 static int check_unshare_flags(unsigned long unshare_flags)
1903 {
1904         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1905                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1906                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1907                                 CLONE_NEWUSER|CLONE_NEWPID))
1908                 return -EINVAL;
1909         /*
1910          * Not implemented, but pretend it works if there is nothing
1911          * to unshare.  Note that unsharing the address space or the
1912          * signal handlers also need to unshare the signal queues (aka
1913          * CLONE_THREAD).
1914          */
1915         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1916                 if (!thread_group_empty(current))
1917                         return -EINVAL;
1918         }
1919         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1920                 if (atomic_read(&current->sighand->count) > 1)
1921                         return -EINVAL;
1922         }
1923         if (unshare_flags & CLONE_VM) {
1924                 if (!current_is_single_threaded())
1925                         return -EINVAL;
1926         }
1927
1928         return 0;
1929 }
1930
1931 /*
1932  * Unshare the filesystem structure if it is being shared
1933  */
1934 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1935 {
1936         struct fs_struct *fs = current->fs;
1937
1938         if (!(unshare_flags & CLONE_FS) || !fs)
1939                 return 0;
1940
1941         /* don't need lock here; in the worst case we'll do useless copy */
1942         if (fs->users == 1)
1943                 return 0;
1944
1945         *new_fsp = copy_fs_struct(fs);
1946         if (!*new_fsp)
1947                 return -ENOMEM;
1948
1949         return 0;
1950 }
1951
1952 /*
1953  * Unshare file descriptor table if it is being shared
1954  */
1955 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1956 {
1957         struct files_struct *fd = current->files;
1958         int error = 0;
1959
1960         if ((unshare_flags & CLONE_FILES) &&
1961             (fd && atomic_read(&fd->count) > 1)) {
1962                 *new_fdp = dup_fd(fd, &error);
1963                 if (!*new_fdp)
1964                         return error;
1965         }
1966
1967         return 0;
1968 }
1969
1970 /*
1971  * unshare allows a process to 'unshare' part of the process
1972  * context which was originally shared using clone.  copy_*
1973  * functions used by do_fork() cannot be used here directly
1974  * because they modify an inactive task_struct that is being
1975  * constructed. Here we are modifying the current, active,
1976  * task_struct.
1977  */
1978 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1979 {
1980         struct fs_struct *fs, *new_fs = NULL;
1981         struct files_struct *fd, *new_fd = NULL;
1982         struct cred *new_cred = NULL;
1983         struct nsproxy *new_nsproxy = NULL;
1984         int do_sysvsem = 0;
1985         int err;
1986
1987         /*
1988          * If unsharing a user namespace must also unshare the thread group
1989          * and unshare the filesystem root and working directories.
1990          */
1991         if (unshare_flags & CLONE_NEWUSER)
1992                 unshare_flags |= CLONE_THREAD | CLONE_FS;
1993         /*
1994          * If unsharing vm, must also unshare signal handlers.
1995          */
1996         if (unshare_flags & CLONE_VM)
1997                 unshare_flags |= CLONE_SIGHAND;
1998         /*
1999          * If unsharing a signal handlers, must also unshare the signal queues.
2000          */
2001         if (unshare_flags & CLONE_SIGHAND)
2002                 unshare_flags |= CLONE_THREAD;
2003         /*
2004          * If unsharing namespace, must also unshare filesystem information.
2005          */
2006         if (unshare_flags & CLONE_NEWNS)
2007                 unshare_flags |= CLONE_FS;
2008
2009         err = check_unshare_flags(unshare_flags);
2010         if (err)
2011                 goto bad_unshare_out;
2012         /*
2013          * CLONE_NEWIPC must also detach from the undolist: after switching
2014          * to a new ipc namespace, the semaphore arrays from the old
2015          * namespace are unreachable.
2016          */
2017         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2018                 do_sysvsem = 1;
2019         err = unshare_fs(unshare_flags, &new_fs);
2020         if (err)
2021                 goto bad_unshare_out;
2022         err = unshare_fd(unshare_flags, &new_fd);
2023         if (err)
2024                 goto bad_unshare_cleanup_fs;
2025         err = unshare_userns(unshare_flags, &new_cred);
2026         if (err)
2027                 goto bad_unshare_cleanup_fd;
2028         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2029                                          new_cred, new_fs);
2030         if (err)
2031                 goto bad_unshare_cleanup_cred;
2032
2033         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2034                 if (do_sysvsem) {
2035                         /*
2036                          * CLONE_SYSVSEM is equivalent to sys_exit().
2037                          */
2038                         exit_sem(current);
2039                 }
2040                 if (unshare_flags & CLONE_NEWIPC) {
2041                         /* Orphan segments in old ns (see sem above). */
2042                         exit_shm(current);
2043                         shm_init_task(current);
2044                 }
2045
2046                 if (new_nsproxy)
2047                         switch_task_namespaces(current, new_nsproxy);
2048
2049                 task_lock(current);
2050
2051                 if (new_fs) {
2052                         fs = current->fs;
2053                         spin_lock(&fs->lock);
2054                         current->fs = new_fs;
2055                         if (--fs->users)
2056                                 new_fs = NULL;
2057                         else
2058                                 new_fs = fs;
2059                         spin_unlock(&fs->lock);
2060                 }
2061
2062                 if (new_fd) {
2063                         fd = current->files;
2064                         current->files = new_fd;
2065                         new_fd = fd;
2066                 }
2067
2068                 task_unlock(current);
2069
2070                 if (new_cred) {
2071                         /* Install the new user namespace */
2072                         commit_creds(new_cred);
2073                         new_cred = NULL;
2074                 }
2075         }
2076
2077 bad_unshare_cleanup_cred:
2078         if (new_cred)
2079                 put_cred(new_cred);
2080 bad_unshare_cleanup_fd:
2081         if (new_fd)
2082                 put_files_struct(new_fd);
2083
2084 bad_unshare_cleanup_fs:
2085         if (new_fs)
2086                 free_fs_struct(new_fs);
2087
2088 bad_unshare_out:
2089         return err;
2090 }
2091
2092 /*
2093  *      Helper to unshare the files of the current task.
2094  *      We don't want to expose copy_files internals to
2095  *      the exec layer of the kernel.
2096  */
2097
2098 int unshare_files(struct files_struct **displaced)
2099 {
2100         struct task_struct *task = current;
2101         struct files_struct *copy = NULL;
2102         int error;
2103
2104         error = unshare_fd(CLONE_FILES, &copy);
2105         if (error || !copy) {
2106                 *displaced = NULL;
2107                 return error;
2108         }
2109         *displaced = task->files;
2110         task_lock(task);
2111         task->files = copy;
2112         task_unlock(task);
2113         return 0;
2114 }
2115
2116 int sysctl_max_threads(struct ctl_table *table, int write,
2117                        void __user *buffer, size_t *lenp, loff_t *ppos)
2118 {
2119         struct ctl_table t;
2120         int ret;
2121         int threads = max_threads;
2122         int min = MIN_THREADS;
2123         int max = MAX_THREADS;
2124
2125         t = *table;
2126         t.data = &threads;
2127         t.extra1 = &min;
2128         t.extra2 = &max;
2129
2130         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2131         if (ret || !write)
2132                 return ret;
2133
2134         set_max_threads(threads);
2135
2136         return 0;
2137 }