arm64: dts: rockchip: Add rk3399 box dts for drm
[firefly-linux-kernel-4.4.55.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17
18 #include <asm/elf.h>
19 #include <asm/uaccess.h>
20 #include <asm/tlbflush.h>
21 #include "internal.h"
22
23 void task_mem(struct seq_file *m, struct mm_struct *mm)
24 {
25         unsigned long data, text, lib, swap, ptes, pmds;
26         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
27
28         /*
29          * Note: to minimize their overhead, mm maintains hiwater_vm and
30          * hiwater_rss only when about to *lower* total_vm or rss.  Any
31          * collector of these hiwater stats must therefore get total_vm
32          * and rss too, which will usually be the higher.  Barriers? not
33          * worth the effort, such snapshots can always be inconsistent.
34          */
35         hiwater_vm = total_vm = mm->total_vm;
36         if (hiwater_vm < mm->hiwater_vm)
37                 hiwater_vm = mm->hiwater_vm;
38         hiwater_rss = total_rss = get_mm_rss(mm);
39         if (hiwater_rss < mm->hiwater_rss)
40                 hiwater_rss = mm->hiwater_rss;
41
42         data = mm->total_vm - mm->shared_vm - mm->stack_vm;
43         text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
44         lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
45         swap = get_mm_counter(mm, MM_SWAPENTS);
46         ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
47         pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
48         seq_printf(m,
49                 "VmPeak:\t%8lu kB\n"
50                 "VmSize:\t%8lu kB\n"
51                 "VmLck:\t%8lu kB\n"
52                 "VmPin:\t%8lu kB\n"
53                 "VmHWM:\t%8lu kB\n"
54                 "VmRSS:\t%8lu kB\n"
55                 "VmData:\t%8lu kB\n"
56                 "VmStk:\t%8lu kB\n"
57                 "VmExe:\t%8lu kB\n"
58                 "VmLib:\t%8lu kB\n"
59                 "VmPTE:\t%8lu kB\n"
60                 "VmPMD:\t%8lu kB\n"
61                 "VmSwap:\t%8lu kB\n",
62                 hiwater_vm << (PAGE_SHIFT-10),
63                 total_vm << (PAGE_SHIFT-10),
64                 mm->locked_vm << (PAGE_SHIFT-10),
65                 mm->pinned_vm << (PAGE_SHIFT-10),
66                 hiwater_rss << (PAGE_SHIFT-10),
67                 total_rss << (PAGE_SHIFT-10),
68                 data << (PAGE_SHIFT-10),
69                 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
70                 ptes >> 10,
71                 pmds >> 10,
72                 swap << (PAGE_SHIFT-10));
73         hugetlb_report_usage(m, mm);
74 }
75
76 unsigned long task_vsize(struct mm_struct *mm)
77 {
78         return PAGE_SIZE * mm->total_vm;
79 }
80
81 unsigned long task_statm(struct mm_struct *mm,
82                          unsigned long *shared, unsigned long *text,
83                          unsigned long *data, unsigned long *resident)
84 {
85         *shared = get_mm_counter(mm, MM_FILEPAGES);
86         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
87                                                                 >> PAGE_SHIFT;
88         *data = mm->total_vm - mm->shared_vm;
89         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
90         return mm->total_vm;
91 }
92
93 #ifdef CONFIG_NUMA
94 /*
95  * Save get_task_policy() for show_numa_map().
96  */
97 static void hold_task_mempolicy(struct proc_maps_private *priv)
98 {
99         struct task_struct *task = priv->task;
100
101         task_lock(task);
102         priv->task_mempolicy = get_task_policy(task);
103         mpol_get(priv->task_mempolicy);
104         task_unlock(task);
105 }
106 static void release_task_mempolicy(struct proc_maps_private *priv)
107 {
108         mpol_put(priv->task_mempolicy);
109 }
110 #else
111 static void hold_task_mempolicy(struct proc_maps_private *priv)
112 {
113 }
114 static void release_task_mempolicy(struct proc_maps_private *priv)
115 {
116 }
117 #endif
118
119 static void seq_print_vma_name(struct seq_file *m, struct vm_area_struct *vma)
120 {
121         const char __user *name = vma_get_anon_name(vma);
122         struct mm_struct *mm = vma->vm_mm;
123
124         unsigned long page_start_vaddr;
125         unsigned long page_offset;
126         unsigned long num_pages;
127         unsigned long max_len = NAME_MAX;
128         int i;
129
130         page_start_vaddr = (unsigned long)name & PAGE_MASK;
131         page_offset = (unsigned long)name - page_start_vaddr;
132         num_pages = DIV_ROUND_UP(page_offset + max_len, PAGE_SIZE);
133
134         seq_puts(m, "[anon:");
135
136         for (i = 0; i < num_pages; i++) {
137                 int len;
138                 int write_len;
139                 const char *kaddr;
140                 long pages_pinned;
141                 struct page *page;
142
143                 pages_pinned = get_user_pages(current, mm, page_start_vaddr,
144                                 1, 0, 0, &page, NULL);
145                 if (pages_pinned < 1) {
146                         seq_puts(m, "<fault>]");
147                         return;
148                 }
149
150                 kaddr = (const char *)kmap(page);
151                 len = min(max_len, PAGE_SIZE - page_offset);
152                 write_len = strnlen(kaddr + page_offset, len);
153                 seq_write(m, kaddr + page_offset, write_len);
154                 kunmap(page);
155                 put_page(page);
156
157                 /* if strnlen hit a null terminator then we're done */
158                 if (write_len != len)
159                         break;
160
161                 max_len -= len;
162                 page_offset = 0;
163                 page_start_vaddr += PAGE_SIZE;
164         }
165
166         seq_putc(m, ']');
167 }
168
169 static void vma_stop(struct proc_maps_private *priv)
170 {
171         struct mm_struct *mm = priv->mm;
172
173         release_task_mempolicy(priv);
174         up_read(&mm->mmap_sem);
175         mmput(mm);
176 }
177
178 static struct vm_area_struct *
179 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
180 {
181         if (vma == priv->tail_vma)
182                 return NULL;
183         return vma->vm_next ?: priv->tail_vma;
184 }
185
186 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
187 {
188         if (m->count < m->size) /* vma is copied successfully */
189                 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
190 }
191
192 static void *m_start(struct seq_file *m, loff_t *ppos)
193 {
194         struct proc_maps_private *priv = m->private;
195         unsigned long last_addr = m->version;
196         struct mm_struct *mm;
197         struct vm_area_struct *vma;
198         unsigned int pos = *ppos;
199
200         /* See m_cache_vma(). Zero at the start or after lseek. */
201         if (last_addr == -1UL)
202                 return NULL;
203
204         priv->task = get_proc_task(priv->inode);
205         if (!priv->task)
206                 return ERR_PTR(-ESRCH);
207
208         mm = priv->mm;
209         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
210                 return NULL;
211
212         down_read(&mm->mmap_sem);
213         hold_task_mempolicy(priv);
214         priv->tail_vma = get_gate_vma(mm);
215
216         if (last_addr) {
217                 vma = find_vma(mm, last_addr);
218                 if (vma && (vma = m_next_vma(priv, vma)))
219                         return vma;
220         }
221
222         m->version = 0;
223         if (pos < mm->map_count) {
224                 for (vma = mm->mmap; pos; pos--) {
225                         m->version = vma->vm_start;
226                         vma = vma->vm_next;
227                 }
228                 return vma;
229         }
230
231         /* we do not bother to update m->version in this case */
232         if (pos == mm->map_count && priv->tail_vma)
233                 return priv->tail_vma;
234
235         vma_stop(priv);
236         return NULL;
237 }
238
239 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
240 {
241         struct proc_maps_private *priv = m->private;
242         struct vm_area_struct *next;
243
244         (*pos)++;
245         next = m_next_vma(priv, v);
246         if (!next)
247                 vma_stop(priv);
248         return next;
249 }
250
251 static void m_stop(struct seq_file *m, void *v)
252 {
253         struct proc_maps_private *priv = m->private;
254
255         if (!IS_ERR_OR_NULL(v))
256                 vma_stop(priv);
257         if (priv->task) {
258                 put_task_struct(priv->task);
259                 priv->task = NULL;
260         }
261 }
262
263 static int proc_maps_open(struct inode *inode, struct file *file,
264                         const struct seq_operations *ops, int psize)
265 {
266         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
267
268         if (!priv)
269                 return -ENOMEM;
270
271         priv->inode = inode;
272         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
273         if (IS_ERR(priv->mm)) {
274                 int err = PTR_ERR(priv->mm);
275
276                 seq_release_private(inode, file);
277                 return err;
278         }
279
280         return 0;
281 }
282
283 static int proc_map_release(struct inode *inode, struct file *file)
284 {
285         struct seq_file *seq = file->private_data;
286         struct proc_maps_private *priv = seq->private;
287
288         if (priv->mm)
289                 mmdrop(priv->mm);
290
291         return seq_release_private(inode, file);
292 }
293
294 static int do_maps_open(struct inode *inode, struct file *file,
295                         const struct seq_operations *ops)
296 {
297         return proc_maps_open(inode, file, ops,
298                                 sizeof(struct proc_maps_private));
299 }
300
301 /*
302  * Indicate if the VMA is a stack for the given task; for
303  * /proc/PID/maps that is the stack of the main task.
304  */
305 static int is_stack(struct proc_maps_private *priv,
306                     struct vm_area_struct *vma, int is_pid)
307 {
308         int stack = 0;
309
310         if (is_pid) {
311                 stack = vma->vm_start <= vma->vm_mm->start_stack &&
312                         vma->vm_end >= vma->vm_mm->start_stack;
313         } else {
314                 struct inode *inode = priv->inode;
315                 struct task_struct *task;
316
317                 rcu_read_lock();
318                 task = pid_task(proc_pid(inode), PIDTYPE_PID);
319                 if (task)
320                         stack = vma_is_stack_for_task(vma, task);
321                 rcu_read_unlock();
322         }
323         return stack;
324 }
325
326 static void
327 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
328 {
329         struct mm_struct *mm = vma->vm_mm;
330         struct file *file = vma->vm_file;
331         struct proc_maps_private *priv = m->private;
332         vm_flags_t flags = vma->vm_flags;
333         unsigned long ino = 0;
334         unsigned long long pgoff = 0;
335         unsigned long start, end;
336         dev_t dev = 0;
337         const char *name = NULL;
338
339         if (file) {
340                 struct inode *inode = file_inode(vma->vm_file);
341                 dev = inode->i_sb->s_dev;
342                 ino = inode->i_ino;
343                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
344         }
345
346         /* We don't show the stack guard page in /proc/maps */
347         start = vma->vm_start;
348         if (stack_guard_page_start(vma, start))
349                 start += PAGE_SIZE;
350         end = vma->vm_end;
351         if (stack_guard_page_end(vma, end))
352                 end -= PAGE_SIZE;
353
354         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
355         seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
356                         start,
357                         end,
358                         flags & VM_READ ? 'r' : '-',
359                         flags & VM_WRITE ? 'w' : '-',
360                         flags & VM_EXEC ? 'x' : '-',
361                         flags & VM_MAYSHARE ? 's' : 'p',
362                         pgoff,
363                         MAJOR(dev), MINOR(dev), ino);
364
365         /*
366          * Print the dentry name for named mappings, and a
367          * special [heap] marker for the heap:
368          */
369         if (file) {
370                 seq_pad(m, ' ');
371                 seq_file_path(m, file, "\n");
372                 goto done;
373         }
374
375         if (vma->vm_ops && vma->vm_ops->name) {
376                 name = vma->vm_ops->name(vma);
377                 if (name)
378                         goto done;
379         }
380
381         name = arch_vma_name(vma);
382         if (!name) {
383                 if (!mm) {
384                         name = "[vdso]";
385                         goto done;
386                 }
387
388                 if (vma->vm_start <= mm->brk &&
389                     vma->vm_end >= mm->start_brk) {
390                         name = "[heap]";
391                         goto done;
392                 }
393
394                 if (is_stack(priv, vma, is_pid)) {
395                         name = "[stack]";
396                         goto done;
397                 }
398                 if (vma_get_anon_name(vma)) {
399                         seq_pad(m, ' ');
400                         seq_print_vma_name(m, vma);
401                 }
402         }
403
404 done:
405         if (name) {
406                 seq_pad(m, ' ');
407                 seq_puts(m, name);
408         }
409         seq_putc(m, '\n');
410 }
411
412 static int show_map(struct seq_file *m, void *v, int is_pid)
413 {
414         show_map_vma(m, v, is_pid);
415         m_cache_vma(m, v);
416         return 0;
417 }
418
419 static int show_pid_map(struct seq_file *m, void *v)
420 {
421         return show_map(m, v, 1);
422 }
423
424 static int show_tid_map(struct seq_file *m, void *v)
425 {
426         return show_map(m, v, 0);
427 }
428
429 static const struct seq_operations proc_pid_maps_op = {
430         .start  = m_start,
431         .next   = m_next,
432         .stop   = m_stop,
433         .show   = show_pid_map
434 };
435
436 static const struct seq_operations proc_tid_maps_op = {
437         .start  = m_start,
438         .next   = m_next,
439         .stop   = m_stop,
440         .show   = show_tid_map
441 };
442
443 static int pid_maps_open(struct inode *inode, struct file *file)
444 {
445         return do_maps_open(inode, file, &proc_pid_maps_op);
446 }
447
448 static int tid_maps_open(struct inode *inode, struct file *file)
449 {
450         return do_maps_open(inode, file, &proc_tid_maps_op);
451 }
452
453 const struct file_operations proc_pid_maps_operations = {
454         .open           = pid_maps_open,
455         .read           = seq_read,
456         .llseek         = seq_lseek,
457         .release        = proc_map_release,
458 };
459
460 const struct file_operations proc_tid_maps_operations = {
461         .open           = tid_maps_open,
462         .read           = seq_read,
463         .llseek         = seq_lseek,
464         .release        = proc_map_release,
465 };
466
467 /*
468  * Proportional Set Size(PSS): my share of RSS.
469  *
470  * PSS of a process is the count of pages it has in memory, where each
471  * page is divided by the number of processes sharing it.  So if a
472  * process has 1000 pages all to itself, and 1000 shared with one other
473  * process, its PSS will be 1500.
474  *
475  * To keep (accumulated) division errors low, we adopt a 64bit
476  * fixed-point pss counter to minimize division errors. So (pss >>
477  * PSS_SHIFT) would be the real byte count.
478  *
479  * A shift of 12 before division means (assuming 4K page size):
480  *      - 1M 3-user-pages add up to 8KB errors;
481  *      - supports mapcount up to 2^24, or 16M;
482  *      - supports PSS up to 2^52 bytes, or 4PB.
483  */
484 #define PSS_SHIFT 12
485
486 #ifdef CONFIG_PROC_PAGE_MONITOR
487 struct mem_size_stats {
488         unsigned long resident;
489         unsigned long shared_clean;
490         unsigned long shared_dirty;
491         unsigned long private_clean;
492         unsigned long private_dirty;
493         unsigned long referenced;
494         unsigned long anonymous;
495         unsigned long anonymous_thp;
496         unsigned long swap;
497         unsigned long shared_hugetlb;
498         unsigned long private_hugetlb;
499         u64 pss;
500         u64 swap_pss;
501 };
502
503 static void smaps_account(struct mem_size_stats *mss, struct page *page,
504                 unsigned long size, bool young, bool dirty)
505 {
506         int mapcount;
507
508         if (PageAnon(page))
509                 mss->anonymous += size;
510
511         mss->resident += size;
512         /* Accumulate the size in pages that have been accessed. */
513         if (young || page_is_young(page) || PageReferenced(page))
514                 mss->referenced += size;
515         mapcount = page_mapcount(page);
516         if (mapcount >= 2) {
517                 u64 pss_delta;
518
519                 if (dirty || PageDirty(page))
520                         mss->shared_dirty += size;
521                 else
522                         mss->shared_clean += size;
523                 pss_delta = (u64)size << PSS_SHIFT;
524                 do_div(pss_delta, mapcount);
525                 mss->pss += pss_delta;
526         } else {
527                 if (dirty || PageDirty(page))
528                         mss->private_dirty += size;
529                 else
530                         mss->private_clean += size;
531                 mss->pss += (u64)size << PSS_SHIFT;
532         }
533 }
534
535 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
536                 struct mm_walk *walk)
537 {
538         struct mem_size_stats *mss = walk->private;
539         struct vm_area_struct *vma = walk->vma;
540         struct page *page = NULL;
541
542         if (pte_present(*pte)) {
543                 page = vm_normal_page(vma, addr, *pte);
544         } else if (is_swap_pte(*pte)) {
545                 swp_entry_t swpent = pte_to_swp_entry(*pte);
546
547                 if (!non_swap_entry(swpent)) {
548                         int mapcount;
549
550                         mss->swap += PAGE_SIZE;
551                         mapcount = swp_swapcount(swpent);
552                         if (mapcount >= 2) {
553                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
554
555                                 do_div(pss_delta, mapcount);
556                                 mss->swap_pss += pss_delta;
557                         } else {
558                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
559                         }
560                 } else if (is_migration_entry(swpent))
561                         page = migration_entry_to_page(swpent);
562         }
563
564         if (!page)
565                 return;
566         smaps_account(mss, page, PAGE_SIZE, pte_young(*pte), pte_dirty(*pte));
567 }
568
569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
570 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
571                 struct mm_walk *walk)
572 {
573         struct mem_size_stats *mss = walk->private;
574         struct vm_area_struct *vma = walk->vma;
575         struct page *page;
576
577         /* FOLL_DUMP will return -EFAULT on huge zero page */
578         page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
579         if (IS_ERR_OR_NULL(page))
580                 return;
581         mss->anonymous_thp += HPAGE_PMD_SIZE;
582         smaps_account(mss, page, HPAGE_PMD_SIZE,
583                         pmd_young(*pmd), pmd_dirty(*pmd));
584 }
585 #else
586 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
587                 struct mm_walk *walk)
588 {
589 }
590 #endif
591
592 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
593                            struct mm_walk *walk)
594 {
595         struct vm_area_struct *vma = walk->vma;
596         pte_t *pte;
597         spinlock_t *ptl;
598
599         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
600                 smaps_pmd_entry(pmd, addr, walk);
601                 spin_unlock(ptl);
602                 return 0;
603         }
604
605         if (pmd_trans_unstable(pmd))
606                 return 0;
607         /*
608          * The mmap_sem held all the way back in m_start() is what
609          * keeps khugepaged out of here and from collapsing things
610          * in here.
611          */
612         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
613         for (; addr != end; pte++, addr += PAGE_SIZE)
614                 smaps_pte_entry(pte, addr, walk);
615         pte_unmap_unlock(pte - 1, ptl);
616         cond_resched();
617         return 0;
618 }
619
620 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
621 {
622         /*
623          * Don't forget to update Documentation/ on changes.
624          */
625         static const char mnemonics[BITS_PER_LONG][2] = {
626                 /*
627                  * In case if we meet a flag we don't know about.
628                  */
629                 [0 ... (BITS_PER_LONG-1)] = "??",
630
631                 [ilog2(VM_READ)]        = "rd",
632                 [ilog2(VM_WRITE)]       = "wr",
633                 [ilog2(VM_EXEC)]        = "ex",
634                 [ilog2(VM_SHARED)]      = "sh",
635                 [ilog2(VM_MAYREAD)]     = "mr",
636                 [ilog2(VM_MAYWRITE)]    = "mw",
637                 [ilog2(VM_MAYEXEC)]     = "me",
638                 [ilog2(VM_MAYSHARE)]    = "ms",
639                 [ilog2(VM_GROWSDOWN)]   = "gd",
640                 [ilog2(VM_PFNMAP)]      = "pf",
641                 [ilog2(VM_DENYWRITE)]   = "dw",
642 #ifdef CONFIG_X86_INTEL_MPX
643                 [ilog2(VM_MPX)]         = "mp",
644 #endif
645                 [ilog2(VM_LOCKED)]      = "lo",
646                 [ilog2(VM_IO)]          = "io",
647                 [ilog2(VM_SEQ_READ)]    = "sr",
648                 [ilog2(VM_RAND_READ)]   = "rr",
649                 [ilog2(VM_DONTCOPY)]    = "dc",
650                 [ilog2(VM_DONTEXPAND)]  = "de",
651                 [ilog2(VM_ACCOUNT)]     = "ac",
652                 [ilog2(VM_NORESERVE)]   = "nr",
653                 [ilog2(VM_HUGETLB)]     = "ht",
654                 [ilog2(VM_ARCH_1)]      = "ar",
655                 [ilog2(VM_DONTDUMP)]    = "dd",
656 #ifdef CONFIG_MEM_SOFT_DIRTY
657                 [ilog2(VM_SOFTDIRTY)]   = "sd",
658 #endif
659                 [ilog2(VM_MIXEDMAP)]    = "mm",
660                 [ilog2(VM_HUGEPAGE)]    = "hg",
661                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
662                 [ilog2(VM_MERGEABLE)]   = "mg",
663                 [ilog2(VM_UFFD_MISSING)]= "um",
664                 [ilog2(VM_UFFD_WP)]     = "uw",
665         };
666         size_t i;
667
668         seq_puts(m, "VmFlags: ");
669         for (i = 0; i < BITS_PER_LONG; i++) {
670                 if (vma->vm_flags & (1UL << i)) {
671                         seq_printf(m, "%c%c ",
672                                    mnemonics[i][0], mnemonics[i][1]);
673                 }
674         }
675         seq_putc(m, '\n');
676 }
677
678 #ifdef CONFIG_HUGETLB_PAGE
679 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
680                                  unsigned long addr, unsigned long end,
681                                  struct mm_walk *walk)
682 {
683         struct mem_size_stats *mss = walk->private;
684         struct vm_area_struct *vma = walk->vma;
685         struct page *page = NULL;
686
687         if (pte_present(*pte)) {
688                 page = vm_normal_page(vma, addr, *pte);
689         } else if (is_swap_pte(*pte)) {
690                 swp_entry_t swpent = pte_to_swp_entry(*pte);
691
692                 if (is_migration_entry(swpent))
693                         page = migration_entry_to_page(swpent);
694         }
695         if (page) {
696                 int mapcount = page_mapcount(page);
697
698                 if (mapcount >= 2)
699                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
700                 else
701                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
702         }
703         return 0;
704 }
705 #endif /* HUGETLB_PAGE */
706
707 static int show_smap(struct seq_file *m, void *v, int is_pid)
708 {
709         struct vm_area_struct *vma = v;
710         struct mem_size_stats mss;
711         struct mm_walk smaps_walk = {
712                 .pmd_entry = smaps_pte_range,
713 #ifdef CONFIG_HUGETLB_PAGE
714                 .hugetlb_entry = smaps_hugetlb_range,
715 #endif
716                 .mm = vma->vm_mm,
717                 .private = &mss,
718         };
719
720         memset(&mss, 0, sizeof mss);
721         /* mmap_sem is held in m_start */
722         walk_page_vma(vma, &smaps_walk);
723
724         show_map_vma(m, vma, is_pid);
725
726         if (vma_get_anon_name(vma)) {
727                 seq_puts(m, "Name:           ");
728                 seq_print_vma_name(m, vma);
729                 seq_putc(m, '\n');
730         }
731
732         seq_printf(m,
733                    "Size:           %8lu kB\n"
734                    "Rss:            %8lu kB\n"
735                    "Pss:            %8lu kB\n"
736                    "Shared_Clean:   %8lu kB\n"
737                    "Shared_Dirty:   %8lu kB\n"
738                    "Private_Clean:  %8lu kB\n"
739                    "Private_Dirty:  %8lu kB\n"
740                    "Referenced:     %8lu kB\n"
741                    "Anonymous:      %8lu kB\n"
742                    "AnonHugePages:  %8lu kB\n"
743                    "Shared_Hugetlb: %8lu kB\n"
744                    "Private_Hugetlb: %7lu kB\n"
745                    "Swap:           %8lu kB\n"
746                    "SwapPss:        %8lu kB\n"
747                    "KernelPageSize: %8lu kB\n"
748                    "MMUPageSize:    %8lu kB\n"
749                    "Locked:         %8lu kB\n",
750                    (vma->vm_end - vma->vm_start) >> 10,
751                    mss.resident >> 10,
752                    (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
753                    mss.shared_clean  >> 10,
754                    mss.shared_dirty  >> 10,
755                    mss.private_clean >> 10,
756                    mss.private_dirty >> 10,
757                    mss.referenced >> 10,
758                    mss.anonymous >> 10,
759                    mss.anonymous_thp >> 10,
760                    mss.shared_hugetlb >> 10,
761                    mss.private_hugetlb >> 10,
762                    mss.swap >> 10,
763                    (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
764                    vma_kernel_pagesize(vma) >> 10,
765                    vma_mmu_pagesize(vma) >> 10,
766                    (vma->vm_flags & VM_LOCKED) ?
767                         (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
768
769         show_smap_vma_flags(m, vma);
770         m_cache_vma(m, vma);
771         return 0;
772 }
773
774 static int show_pid_smap(struct seq_file *m, void *v)
775 {
776         return show_smap(m, v, 1);
777 }
778
779 static int show_tid_smap(struct seq_file *m, void *v)
780 {
781         return show_smap(m, v, 0);
782 }
783
784 static const struct seq_operations proc_pid_smaps_op = {
785         .start  = m_start,
786         .next   = m_next,
787         .stop   = m_stop,
788         .show   = show_pid_smap
789 };
790
791 static const struct seq_operations proc_tid_smaps_op = {
792         .start  = m_start,
793         .next   = m_next,
794         .stop   = m_stop,
795         .show   = show_tid_smap
796 };
797
798 static int pid_smaps_open(struct inode *inode, struct file *file)
799 {
800         return do_maps_open(inode, file, &proc_pid_smaps_op);
801 }
802
803 static int tid_smaps_open(struct inode *inode, struct file *file)
804 {
805         return do_maps_open(inode, file, &proc_tid_smaps_op);
806 }
807
808 const struct file_operations proc_pid_smaps_operations = {
809         .open           = pid_smaps_open,
810         .read           = seq_read,
811         .llseek         = seq_lseek,
812         .release        = proc_map_release,
813 };
814
815 const struct file_operations proc_tid_smaps_operations = {
816         .open           = tid_smaps_open,
817         .read           = seq_read,
818         .llseek         = seq_lseek,
819         .release        = proc_map_release,
820 };
821
822 enum clear_refs_types {
823         CLEAR_REFS_ALL = 1,
824         CLEAR_REFS_ANON,
825         CLEAR_REFS_MAPPED,
826         CLEAR_REFS_SOFT_DIRTY,
827         CLEAR_REFS_MM_HIWATER_RSS,
828         CLEAR_REFS_LAST,
829 };
830
831 struct clear_refs_private {
832         enum clear_refs_types type;
833 };
834
835 #ifdef CONFIG_MEM_SOFT_DIRTY
836 static inline void clear_soft_dirty(struct vm_area_struct *vma,
837                 unsigned long addr, pte_t *pte)
838 {
839         /*
840          * The soft-dirty tracker uses #PF-s to catch writes
841          * to pages, so write-protect the pte as well. See the
842          * Documentation/vm/soft-dirty.txt for full description
843          * of how soft-dirty works.
844          */
845         pte_t ptent = *pte;
846
847         if (pte_present(ptent)) {
848                 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
849                 ptent = pte_wrprotect(ptent);
850                 ptent = pte_clear_soft_dirty(ptent);
851                 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
852         } else if (is_swap_pte(ptent)) {
853                 ptent = pte_swp_clear_soft_dirty(ptent);
854                 set_pte_at(vma->vm_mm, addr, pte, ptent);
855         }
856 }
857 #else
858 static inline void clear_soft_dirty(struct vm_area_struct *vma,
859                 unsigned long addr, pte_t *pte)
860 {
861 }
862 #endif
863
864 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
865 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
866                 unsigned long addr, pmd_t *pmdp)
867 {
868         pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
869
870         pmd = pmd_wrprotect(pmd);
871         pmd = pmd_clear_soft_dirty(pmd);
872
873         if (vma->vm_flags & VM_SOFTDIRTY)
874                 vma->vm_flags &= ~VM_SOFTDIRTY;
875
876         set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
877 }
878 #else
879 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
880                 unsigned long addr, pmd_t *pmdp)
881 {
882 }
883 #endif
884
885 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
886                                 unsigned long end, struct mm_walk *walk)
887 {
888         struct clear_refs_private *cp = walk->private;
889         struct vm_area_struct *vma = walk->vma;
890         pte_t *pte, ptent;
891         spinlock_t *ptl;
892         struct page *page;
893
894         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
895                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
896                         clear_soft_dirty_pmd(vma, addr, pmd);
897                         goto out;
898                 }
899
900                 page = pmd_page(*pmd);
901
902                 /* Clear accessed and referenced bits. */
903                 pmdp_test_and_clear_young(vma, addr, pmd);
904                 test_and_clear_page_young(page);
905                 ClearPageReferenced(page);
906 out:
907                 spin_unlock(ptl);
908                 return 0;
909         }
910
911         if (pmd_trans_unstable(pmd))
912                 return 0;
913
914         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
915         for (; addr != end; pte++, addr += PAGE_SIZE) {
916                 ptent = *pte;
917
918                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
919                         clear_soft_dirty(vma, addr, pte);
920                         continue;
921                 }
922
923                 if (!pte_present(ptent))
924                         continue;
925
926                 page = vm_normal_page(vma, addr, ptent);
927                 if (!page)
928                         continue;
929
930                 /* Clear accessed and referenced bits. */
931                 ptep_test_and_clear_young(vma, addr, pte);
932                 test_and_clear_page_young(page);
933                 ClearPageReferenced(page);
934         }
935         pte_unmap_unlock(pte - 1, ptl);
936         cond_resched();
937         return 0;
938 }
939
940 static int clear_refs_test_walk(unsigned long start, unsigned long end,
941                                 struct mm_walk *walk)
942 {
943         struct clear_refs_private *cp = walk->private;
944         struct vm_area_struct *vma = walk->vma;
945
946         if (vma->vm_flags & VM_PFNMAP)
947                 return 1;
948
949         /*
950          * Writing 1 to /proc/pid/clear_refs affects all pages.
951          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
952          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
953          * Writing 4 to /proc/pid/clear_refs affects all pages.
954          */
955         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
956                 return 1;
957         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
958                 return 1;
959         return 0;
960 }
961
962 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
963                                 size_t count, loff_t *ppos)
964 {
965         struct task_struct *task;
966         char buffer[PROC_NUMBUF];
967         struct mm_struct *mm;
968         struct vm_area_struct *vma;
969         enum clear_refs_types type;
970         int itype;
971         int rv;
972
973         memset(buffer, 0, sizeof(buffer));
974         if (count > sizeof(buffer) - 1)
975                 count = sizeof(buffer) - 1;
976         if (copy_from_user(buffer, buf, count))
977                 return -EFAULT;
978         rv = kstrtoint(strstrip(buffer), 10, &itype);
979         if (rv < 0)
980                 return rv;
981         type = (enum clear_refs_types)itype;
982         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
983                 return -EINVAL;
984
985         task = get_proc_task(file_inode(file));
986         if (!task)
987                 return -ESRCH;
988         mm = get_task_mm(task);
989         if (mm) {
990                 struct clear_refs_private cp = {
991                         .type = type,
992                 };
993                 struct mm_walk clear_refs_walk = {
994                         .pmd_entry = clear_refs_pte_range,
995                         .test_walk = clear_refs_test_walk,
996                         .mm = mm,
997                         .private = &cp,
998                 };
999
1000                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1001                         /*
1002                          * Writing 5 to /proc/pid/clear_refs resets the peak
1003                          * resident set size to this mm's current rss value.
1004                          */
1005                         down_write(&mm->mmap_sem);
1006                         reset_mm_hiwater_rss(mm);
1007                         up_write(&mm->mmap_sem);
1008                         goto out_mm;
1009                 }
1010
1011                 down_read(&mm->mmap_sem);
1012                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1013                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1014                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1015                                         continue;
1016                                 up_read(&mm->mmap_sem);
1017                                 down_write(&mm->mmap_sem);
1018                                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1019                                         vma->vm_flags &= ~VM_SOFTDIRTY;
1020                                         vma_set_page_prot(vma);
1021                                 }
1022                                 downgrade_write(&mm->mmap_sem);
1023                                 break;
1024                         }
1025                         mmu_notifier_invalidate_range_start(mm, 0, -1);
1026                 }
1027                 walk_page_range(0, ~0UL, &clear_refs_walk);
1028                 if (type == CLEAR_REFS_SOFT_DIRTY)
1029                         mmu_notifier_invalidate_range_end(mm, 0, -1);
1030                 flush_tlb_mm(mm);
1031                 up_read(&mm->mmap_sem);
1032 out_mm:
1033                 mmput(mm);
1034         }
1035         put_task_struct(task);
1036
1037         return count;
1038 }
1039
1040 const struct file_operations proc_clear_refs_operations = {
1041         .write          = clear_refs_write,
1042         .llseek         = noop_llseek,
1043 };
1044
1045 typedef struct {
1046         u64 pme;
1047 } pagemap_entry_t;
1048
1049 struct pagemapread {
1050         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1051         pagemap_entry_t *buffer;
1052         bool show_pfn;
1053 };
1054
1055 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1056 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1057
1058 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1059 #define PM_PFRAME_BITS          55
1060 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1061 #define PM_SOFT_DIRTY           BIT_ULL(55)
1062 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1063 #define PM_FILE                 BIT_ULL(61)
1064 #define PM_SWAP                 BIT_ULL(62)
1065 #define PM_PRESENT              BIT_ULL(63)
1066
1067 #define PM_END_OF_BUFFER    1
1068
1069 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1070 {
1071         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1072 }
1073
1074 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1075                           struct pagemapread *pm)
1076 {
1077         pm->buffer[pm->pos++] = *pme;
1078         if (pm->pos >= pm->len)
1079                 return PM_END_OF_BUFFER;
1080         return 0;
1081 }
1082
1083 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1084                                 struct mm_walk *walk)
1085 {
1086         struct pagemapread *pm = walk->private;
1087         unsigned long addr = start;
1088         int err = 0;
1089
1090         while (addr < end) {
1091                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1092                 pagemap_entry_t pme = make_pme(0, 0);
1093                 /* End of address space hole, which we mark as non-present. */
1094                 unsigned long hole_end;
1095
1096                 if (vma)
1097                         hole_end = min(end, vma->vm_start);
1098                 else
1099                         hole_end = end;
1100
1101                 for (; addr < hole_end; addr += PAGE_SIZE) {
1102                         err = add_to_pagemap(addr, &pme, pm);
1103                         if (err)
1104                                 goto out;
1105                 }
1106
1107                 if (!vma)
1108                         break;
1109
1110                 /* Addresses in the VMA. */
1111                 if (vma->vm_flags & VM_SOFTDIRTY)
1112                         pme = make_pme(0, PM_SOFT_DIRTY);
1113                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1114                         err = add_to_pagemap(addr, &pme, pm);
1115                         if (err)
1116                                 goto out;
1117                 }
1118         }
1119 out:
1120         return err;
1121 }
1122
1123 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1124                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1125 {
1126         u64 frame = 0, flags = 0;
1127         struct page *page = NULL;
1128
1129         if (pte_present(pte)) {
1130                 if (pm->show_pfn)
1131                         frame = pte_pfn(pte);
1132                 flags |= PM_PRESENT;
1133                 page = vm_normal_page(vma, addr, pte);
1134                 if (pte_soft_dirty(pte))
1135                         flags |= PM_SOFT_DIRTY;
1136         } else if (is_swap_pte(pte)) {
1137                 swp_entry_t entry;
1138                 if (pte_swp_soft_dirty(pte))
1139                         flags |= PM_SOFT_DIRTY;
1140                 entry = pte_to_swp_entry(pte);
1141                 frame = swp_type(entry) |
1142                         (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1143                 flags |= PM_SWAP;
1144                 if (is_migration_entry(entry))
1145                         page = migration_entry_to_page(entry);
1146         }
1147
1148         if (page && !PageAnon(page))
1149                 flags |= PM_FILE;
1150         if (page && page_mapcount(page) == 1)
1151                 flags |= PM_MMAP_EXCLUSIVE;
1152         if (vma->vm_flags & VM_SOFTDIRTY)
1153                 flags |= PM_SOFT_DIRTY;
1154
1155         return make_pme(frame, flags);
1156 }
1157
1158 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1159                              struct mm_walk *walk)
1160 {
1161         struct vm_area_struct *vma = walk->vma;
1162         struct pagemapread *pm = walk->private;
1163         spinlock_t *ptl;
1164         pte_t *pte, *orig_pte;
1165         int err = 0;
1166
1167 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1168         if (pmd_trans_huge_lock(pmdp, vma, &ptl) == 1) {
1169                 u64 flags = 0, frame = 0;
1170                 pmd_t pmd = *pmdp;
1171
1172                 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1173                         flags |= PM_SOFT_DIRTY;
1174
1175                 /*
1176                  * Currently pmd for thp is always present because thp
1177                  * can not be swapped-out, migrated, or HWPOISONed
1178                  * (split in such cases instead.)
1179                  * This if-check is just to prepare for future implementation.
1180                  */
1181                 if (pmd_present(pmd)) {
1182                         struct page *page = pmd_page(pmd);
1183
1184                         if (page_mapcount(page) == 1)
1185                                 flags |= PM_MMAP_EXCLUSIVE;
1186
1187                         flags |= PM_PRESENT;
1188                         if (pm->show_pfn)
1189                                 frame = pmd_pfn(pmd) +
1190                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1191                 }
1192
1193                 for (; addr != end; addr += PAGE_SIZE) {
1194                         pagemap_entry_t pme = make_pme(frame, flags);
1195
1196                         err = add_to_pagemap(addr, &pme, pm);
1197                         if (err)
1198                                 break;
1199                         if (pm->show_pfn && (flags & PM_PRESENT))
1200                                 frame++;
1201                 }
1202                 spin_unlock(ptl);
1203                 return err;
1204         }
1205
1206         if (pmd_trans_unstable(pmdp))
1207                 return 0;
1208 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1209
1210         /*
1211          * We can assume that @vma always points to a valid one and @end never
1212          * goes beyond vma->vm_end.
1213          */
1214         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1215         for (; addr < end; pte++, addr += PAGE_SIZE) {
1216                 pagemap_entry_t pme;
1217
1218                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1219                 err = add_to_pagemap(addr, &pme, pm);
1220                 if (err)
1221                         break;
1222         }
1223         pte_unmap_unlock(orig_pte, ptl);
1224
1225         cond_resched();
1226
1227         return err;
1228 }
1229
1230 #ifdef CONFIG_HUGETLB_PAGE
1231 /* This function walks within one hugetlb entry in the single call */
1232 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1233                                  unsigned long addr, unsigned long end,
1234                                  struct mm_walk *walk)
1235 {
1236         struct pagemapread *pm = walk->private;
1237         struct vm_area_struct *vma = walk->vma;
1238         u64 flags = 0, frame = 0;
1239         int err = 0;
1240         pte_t pte;
1241
1242         if (vma->vm_flags & VM_SOFTDIRTY)
1243                 flags |= PM_SOFT_DIRTY;
1244
1245         pte = huge_ptep_get(ptep);
1246         if (pte_present(pte)) {
1247                 struct page *page = pte_page(pte);
1248
1249                 if (!PageAnon(page))
1250                         flags |= PM_FILE;
1251
1252                 if (page_mapcount(page) == 1)
1253                         flags |= PM_MMAP_EXCLUSIVE;
1254
1255                 flags |= PM_PRESENT;
1256                 if (pm->show_pfn)
1257                         frame = pte_pfn(pte) +
1258                                 ((addr & ~hmask) >> PAGE_SHIFT);
1259         }
1260
1261         for (; addr != end; addr += PAGE_SIZE) {
1262                 pagemap_entry_t pme = make_pme(frame, flags);
1263
1264                 err = add_to_pagemap(addr, &pme, pm);
1265                 if (err)
1266                         return err;
1267                 if (pm->show_pfn && (flags & PM_PRESENT))
1268                         frame++;
1269         }
1270
1271         cond_resched();
1272
1273         return err;
1274 }
1275 #endif /* HUGETLB_PAGE */
1276
1277 /*
1278  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1279  *
1280  * For each page in the address space, this file contains one 64-bit entry
1281  * consisting of the following:
1282  *
1283  * Bits 0-54  page frame number (PFN) if present
1284  * Bits 0-4   swap type if swapped
1285  * Bits 5-54  swap offset if swapped
1286  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1287  * Bit  56    page exclusively mapped
1288  * Bits 57-60 zero
1289  * Bit  61    page is file-page or shared-anon
1290  * Bit  62    page swapped
1291  * Bit  63    page present
1292  *
1293  * If the page is not present but in swap, then the PFN contains an
1294  * encoding of the swap file number and the page's offset into the
1295  * swap. Unmapped pages return a null PFN. This allows determining
1296  * precisely which pages are mapped (or in swap) and comparing mapped
1297  * pages between processes.
1298  *
1299  * Efficient users of this interface will use /proc/pid/maps to
1300  * determine which areas of memory are actually mapped and llseek to
1301  * skip over unmapped regions.
1302  */
1303 static ssize_t pagemap_read(struct file *file, char __user *buf,
1304                             size_t count, loff_t *ppos)
1305 {
1306         struct mm_struct *mm = file->private_data;
1307         struct pagemapread pm;
1308         struct mm_walk pagemap_walk = {};
1309         unsigned long src;
1310         unsigned long svpfn;
1311         unsigned long start_vaddr;
1312         unsigned long end_vaddr;
1313         int ret = 0, copied = 0;
1314
1315         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1316                 goto out;
1317
1318         ret = -EINVAL;
1319         /* file position must be aligned */
1320         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1321                 goto out_mm;
1322
1323         ret = 0;
1324         if (!count)
1325                 goto out_mm;
1326
1327         /* do not disclose physical addresses: attack vector */
1328         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1329
1330         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1331         pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1332         ret = -ENOMEM;
1333         if (!pm.buffer)
1334                 goto out_mm;
1335
1336         pagemap_walk.pmd_entry = pagemap_pmd_range;
1337         pagemap_walk.pte_hole = pagemap_pte_hole;
1338 #ifdef CONFIG_HUGETLB_PAGE
1339         pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1340 #endif
1341         pagemap_walk.mm = mm;
1342         pagemap_walk.private = &pm;
1343
1344         src = *ppos;
1345         svpfn = src / PM_ENTRY_BYTES;
1346         start_vaddr = svpfn << PAGE_SHIFT;
1347         end_vaddr = mm->task_size;
1348
1349         /* watch out for wraparound */
1350         if (svpfn > mm->task_size >> PAGE_SHIFT)
1351                 start_vaddr = end_vaddr;
1352
1353         /*
1354          * The odds are that this will stop walking way
1355          * before end_vaddr, because the length of the
1356          * user buffer is tracked in "pm", and the walk
1357          * will stop when we hit the end of the buffer.
1358          */
1359         ret = 0;
1360         while (count && (start_vaddr < end_vaddr)) {
1361                 int len;
1362                 unsigned long end;
1363
1364                 pm.pos = 0;
1365                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1366                 /* overflow ? */
1367                 if (end < start_vaddr || end > end_vaddr)
1368                         end = end_vaddr;
1369                 down_read(&mm->mmap_sem);
1370                 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1371                 up_read(&mm->mmap_sem);
1372                 start_vaddr = end;
1373
1374                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1375                 if (copy_to_user(buf, pm.buffer, len)) {
1376                         ret = -EFAULT;
1377                         goto out_free;
1378                 }
1379                 copied += len;
1380                 buf += len;
1381                 count -= len;
1382         }
1383         *ppos += copied;
1384         if (!ret || ret == PM_END_OF_BUFFER)
1385                 ret = copied;
1386
1387 out_free:
1388         kfree(pm.buffer);
1389 out_mm:
1390         mmput(mm);
1391 out:
1392         return ret;
1393 }
1394
1395 static int pagemap_open(struct inode *inode, struct file *file)
1396 {
1397         struct mm_struct *mm;
1398
1399         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1400         if (IS_ERR(mm))
1401                 return PTR_ERR(mm);
1402         file->private_data = mm;
1403         return 0;
1404 }
1405
1406 static int pagemap_release(struct inode *inode, struct file *file)
1407 {
1408         struct mm_struct *mm = file->private_data;
1409
1410         if (mm)
1411                 mmdrop(mm);
1412         return 0;
1413 }
1414
1415 const struct file_operations proc_pagemap_operations = {
1416         .llseek         = mem_lseek, /* borrow this */
1417         .read           = pagemap_read,
1418         .open           = pagemap_open,
1419         .release        = pagemap_release,
1420 };
1421 #endif /* CONFIG_PROC_PAGE_MONITOR */
1422
1423 #ifdef CONFIG_NUMA
1424
1425 struct numa_maps {
1426         unsigned long pages;
1427         unsigned long anon;
1428         unsigned long active;
1429         unsigned long writeback;
1430         unsigned long mapcount_max;
1431         unsigned long dirty;
1432         unsigned long swapcache;
1433         unsigned long node[MAX_NUMNODES];
1434 };
1435
1436 struct numa_maps_private {
1437         struct proc_maps_private proc_maps;
1438         struct numa_maps md;
1439 };
1440
1441 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1442                         unsigned long nr_pages)
1443 {
1444         int count = page_mapcount(page);
1445
1446         md->pages += nr_pages;
1447         if (pte_dirty || PageDirty(page))
1448                 md->dirty += nr_pages;
1449
1450         if (PageSwapCache(page))
1451                 md->swapcache += nr_pages;
1452
1453         if (PageActive(page) || PageUnevictable(page))
1454                 md->active += nr_pages;
1455
1456         if (PageWriteback(page))
1457                 md->writeback += nr_pages;
1458
1459         if (PageAnon(page))
1460                 md->anon += nr_pages;
1461
1462         if (count > md->mapcount_max)
1463                 md->mapcount_max = count;
1464
1465         md->node[page_to_nid(page)] += nr_pages;
1466 }
1467
1468 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1469                 unsigned long addr)
1470 {
1471         struct page *page;
1472         int nid;
1473
1474         if (!pte_present(pte))
1475                 return NULL;
1476
1477         page = vm_normal_page(vma, addr, pte);
1478         if (!page)
1479                 return NULL;
1480
1481         if (PageReserved(page))
1482                 return NULL;
1483
1484         nid = page_to_nid(page);
1485         if (!node_isset(nid, node_states[N_MEMORY]))
1486                 return NULL;
1487
1488         return page;
1489 }
1490
1491 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1492 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1493                                               struct vm_area_struct *vma,
1494                                               unsigned long addr)
1495 {
1496         struct page *page;
1497         int nid;
1498
1499         if (!pmd_present(pmd))
1500                 return NULL;
1501
1502         page = vm_normal_page_pmd(vma, addr, pmd);
1503         if (!page)
1504                 return NULL;
1505
1506         if (PageReserved(page))
1507                 return NULL;
1508
1509         nid = page_to_nid(page);
1510         if (!node_isset(nid, node_states[N_MEMORY]))
1511                 return NULL;
1512
1513         return page;
1514 }
1515 #endif
1516
1517 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1518                 unsigned long end, struct mm_walk *walk)
1519 {
1520         struct numa_maps *md = walk->private;
1521         struct vm_area_struct *vma = walk->vma;
1522         spinlock_t *ptl;
1523         pte_t *orig_pte;
1524         pte_t *pte;
1525
1526 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1527         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1528                 struct page *page;
1529
1530                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1531                 if (page)
1532                         gather_stats(page, md, pmd_dirty(*pmd),
1533                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1534                 spin_unlock(ptl);
1535                 return 0;
1536         }
1537
1538         if (pmd_trans_unstable(pmd))
1539                 return 0;
1540 #endif
1541         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1542         do {
1543                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1544                 if (!page)
1545                         continue;
1546                 gather_stats(page, md, pte_dirty(*pte), 1);
1547
1548         } while (pte++, addr += PAGE_SIZE, addr != end);
1549         pte_unmap_unlock(orig_pte, ptl);
1550         return 0;
1551 }
1552 #ifdef CONFIG_HUGETLB_PAGE
1553 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1554                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1555 {
1556         pte_t huge_pte = huge_ptep_get(pte);
1557         struct numa_maps *md;
1558         struct page *page;
1559
1560         if (!pte_present(huge_pte))
1561                 return 0;
1562
1563         page = pte_page(huge_pte);
1564         if (!page)
1565                 return 0;
1566
1567         md = walk->private;
1568         gather_stats(page, md, pte_dirty(huge_pte), 1);
1569         return 0;
1570 }
1571
1572 #else
1573 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1574                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1575 {
1576         return 0;
1577 }
1578 #endif
1579
1580 /*
1581  * Display pages allocated per node and memory policy via /proc.
1582  */
1583 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1584 {
1585         struct numa_maps_private *numa_priv = m->private;
1586         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1587         struct vm_area_struct *vma = v;
1588         struct numa_maps *md = &numa_priv->md;
1589         struct file *file = vma->vm_file;
1590         struct mm_struct *mm = vma->vm_mm;
1591         struct mm_walk walk = {
1592                 .hugetlb_entry = gather_hugetlb_stats,
1593                 .pmd_entry = gather_pte_stats,
1594                 .private = md,
1595                 .mm = mm,
1596         };
1597         struct mempolicy *pol;
1598         char buffer[64];
1599         int nid;
1600
1601         if (!mm)
1602                 return 0;
1603
1604         /* Ensure we start with an empty set of numa_maps statistics. */
1605         memset(md, 0, sizeof(*md));
1606
1607         pol = __get_vma_policy(vma, vma->vm_start);
1608         if (pol) {
1609                 mpol_to_str(buffer, sizeof(buffer), pol);
1610                 mpol_cond_put(pol);
1611         } else {
1612                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1613         }
1614
1615         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1616
1617         if (file) {
1618                 seq_puts(m, " file=");
1619                 seq_file_path(m, file, "\n\t= ");
1620         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1621                 seq_puts(m, " heap");
1622         } else if (is_stack(proc_priv, vma, is_pid)) {
1623                 seq_puts(m, " stack");
1624         }
1625
1626         if (is_vm_hugetlb_page(vma))
1627                 seq_puts(m, " huge");
1628
1629         /* mmap_sem is held by m_start */
1630         walk_page_vma(vma, &walk);
1631
1632         if (!md->pages)
1633                 goto out;
1634
1635         if (md->anon)
1636                 seq_printf(m, " anon=%lu", md->anon);
1637
1638         if (md->dirty)
1639                 seq_printf(m, " dirty=%lu", md->dirty);
1640
1641         if (md->pages != md->anon && md->pages != md->dirty)
1642                 seq_printf(m, " mapped=%lu", md->pages);
1643
1644         if (md->mapcount_max > 1)
1645                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1646
1647         if (md->swapcache)
1648                 seq_printf(m, " swapcache=%lu", md->swapcache);
1649
1650         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1651                 seq_printf(m, " active=%lu", md->active);
1652
1653         if (md->writeback)
1654                 seq_printf(m, " writeback=%lu", md->writeback);
1655
1656         for_each_node_state(nid, N_MEMORY)
1657                 if (md->node[nid])
1658                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1659
1660         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1661 out:
1662         seq_putc(m, '\n');
1663         m_cache_vma(m, vma);
1664         return 0;
1665 }
1666
1667 static int show_pid_numa_map(struct seq_file *m, void *v)
1668 {
1669         return show_numa_map(m, v, 1);
1670 }
1671
1672 static int show_tid_numa_map(struct seq_file *m, void *v)
1673 {
1674         return show_numa_map(m, v, 0);
1675 }
1676
1677 static const struct seq_operations proc_pid_numa_maps_op = {
1678         .start  = m_start,
1679         .next   = m_next,
1680         .stop   = m_stop,
1681         .show   = show_pid_numa_map,
1682 };
1683
1684 static const struct seq_operations proc_tid_numa_maps_op = {
1685         .start  = m_start,
1686         .next   = m_next,
1687         .stop   = m_stop,
1688         .show   = show_tid_numa_map,
1689 };
1690
1691 static int numa_maps_open(struct inode *inode, struct file *file,
1692                           const struct seq_operations *ops)
1693 {
1694         return proc_maps_open(inode, file, ops,
1695                                 sizeof(struct numa_maps_private));
1696 }
1697
1698 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1699 {
1700         return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1701 }
1702
1703 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1704 {
1705         return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1706 }
1707
1708 const struct file_operations proc_pid_numa_maps_operations = {
1709         .open           = pid_numa_maps_open,
1710         .read           = seq_read,
1711         .llseek         = seq_lseek,
1712         .release        = proc_map_release,
1713 };
1714
1715 const struct file_operations proc_tid_numa_maps_operations = {
1716         .open           = tid_numa_maps_open,
1717         .read           = seq_read,
1718         .llseek         = seq_lseek,
1719         .release        = proc_map_release,
1720 };
1721 #endif /* CONFIG_NUMA */