arm: dts: rockchip: add mpu6050 to rk3288-evb-act8846
[firefly-linux-kernel-4.4.55.git] / fs / mpage.c
1 /*
2  * fs/mpage.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to preparing and submitting BIOs which contain
7  * multiple pagecache pages.
8  *
9  * 15May2002    Andrew Morton
10  *              Initial version
11  * 27Jun2002    axboe@suse.de
12  *              use bio_add_page() to build bio's just the right size
13  */
14
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/gfp.h>
20 #include <linux/bio.h>
21 #include <linux/fs.h>
22 #include <linux/buffer_head.h>
23 #include <linux/blkdev.h>
24 #include <linux/highmem.h>
25 #include <linux/prefetch.h>
26 #include <linux/mpage.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/cleancache.h>
31 #include "internal.h"
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/android_fs.h>
35
36 EXPORT_TRACEPOINT_SYMBOL(android_fs_datawrite_start);
37 EXPORT_TRACEPOINT_SYMBOL(android_fs_datawrite_end);
38 EXPORT_TRACEPOINT_SYMBOL(android_fs_dataread_start);
39 EXPORT_TRACEPOINT_SYMBOL(android_fs_dataread_end);
40
41 /*
42  * I/O completion handler for multipage BIOs.
43  *
44  * The mpage code never puts partial pages into a BIO (except for end-of-file).
45  * If a page does not map to a contiguous run of blocks then it simply falls
46  * back to block_read_full_page().
47  *
48  * Why is this?  If a page's completion depends on a number of different BIOs
49  * which can complete in any order (or at the same time) then determining the
50  * status of that page is hard.  See end_buffer_async_read() for the details.
51  * There is no point in duplicating all that complexity.
52  */
53 static void mpage_end_io(struct bio *bio)
54 {
55         struct bio_vec *bv;
56         int i;
57
58         if (trace_android_fs_dataread_end_enabled() &&
59             (bio_data_dir(bio) == READ)) {
60                 struct page *first_page = bio->bi_io_vec[0].bv_page;
61
62                 if (first_page != NULL)
63                         trace_android_fs_dataread_end(first_page->mapping->host,
64                                                       page_offset(first_page),
65                                                       bio->bi_iter.bi_size);
66         }
67
68         bio_for_each_segment_all(bv, bio, i) {
69                 struct page *page = bv->bv_page;
70                 page_endio(page, bio_data_dir(bio), bio->bi_error);
71         }
72
73         bio_put(bio);
74 }
75
76 static struct bio *mpage_bio_submit(int rw, struct bio *bio)
77 {
78         if (trace_android_fs_dataread_start_enabled() && (rw == READ)) {
79                 struct page *first_page = bio->bi_io_vec[0].bv_page;
80
81                 if (first_page != NULL) {
82                         trace_android_fs_dataread_start(
83                                 first_page->mapping->host,
84                                 page_offset(first_page),
85                                 bio->bi_iter.bi_size,
86                                 current->pid,
87                                 current->comm);
88                 }
89         }
90         bio->bi_end_io = mpage_end_io;
91         guard_bio_eod(rw, bio);
92         submit_bio(rw, bio);
93         return NULL;
94 }
95
96 static struct bio *
97 mpage_alloc(struct block_device *bdev,
98                 sector_t first_sector, int nr_vecs,
99                 gfp_t gfp_flags)
100 {
101         struct bio *bio;
102
103         bio = bio_alloc(gfp_flags, nr_vecs);
104
105         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
106                 while (!bio && (nr_vecs /= 2))
107                         bio = bio_alloc(gfp_flags, nr_vecs);
108         }
109
110         if (bio) {
111                 bio->bi_bdev = bdev;
112                 bio->bi_iter.bi_sector = first_sector;
113         }
114         return bio;
115 }
116
117 /*
118  * support function for mpage_readpages.  The fs supplied get_block might
119  * return an up to date buffer.  This is used to map that buffer into
120  * the page, which allows readpage to avoid triggering a duplicate call
121  * to get_block.
122  *
123  * The idea is to avoid adding buffers to pages that don't already have
124  * them.  So when the buffer is up to date and the page size == block size,
125  * this marks the page up to date instead of adding new buffers.
126  */
127 static void 
128 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 
129 {
130         struct inode *inode = page->mapping->host;
131         struct buffer_head *page_bh, *head;
132         int block = 0;
133
134         if (!page_has_buffers(page)) {
135                 /*
136                  * don't make any buffers if there is only one buffer on
137                  * the page and the page just needs to be set up to date
138                  */
139                 if (inode->i_blkbits == PAGE_CACHE_SHIFT && 
140                     buffer_uptodate(bh)) {
141                         SetPageUptodate(page);    
142                         return;
143                 }
144                 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
145         }
146         head = page_buffers(page);
147         page_bh = head;
148         do {
149                 if (block == page_block) {
150                         page_bh->b_state = bh->b_state;
151                         page_bh->b_bdev = bh->b_bdev;
152                         page_bh->b_blocknr = bh->b_blocknr;
153                         break;
154                 }
155                 page_bh = page_bh->b_this_page;
156                 block++;
157         } while (page_bh != head);
158 }
159
160 /*
161  * This is the worker routine which does all the work of mapping the disk
162  * blocks and constructs largest possible bios, submits them for IO if the
163  * blocks are not contiguous on the disk.
164  *
165  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
166  * represent the validity of its disk mapping and to decide when to do the next
167  * get_block() call.
168  */
169 static struct bio *
170 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
171                 sector_t *last_block_in_bio, struct buffer_head *map_bh,
172                 unsigned long *first_logical_block, get_block_t get_block,
173                 gfp_t gfp)
174 {
175         struct inode *inode = page->mapping->host;
176         const unsigned blkbits = inode->i_blkbits;
177         const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
178         const unsigned blocksize = 1 << blkbits;
179         sector_t block_in_file;
180         sector_t last_block;
181         sector_t last_block_in_file;
182         sector_t blocks[MAX_BUF_PER_PAGE];
183         unsigned page_block;
184         unsigned first_hole = blocks_per_page;
185         struct block_device *bdev = NULL;
186         int length;
187         int fully_mapped = 1;
188         unsigned nblocks;
189         unsigned relative_block;
190
191         if (page_has_buffers(page))
192                 goto confused;
193
194         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
195         last_block = block_in_file + nr_pages * blocks_per_page;
196         last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
197         if (last_block > last_block_in_file)
198                 last_block = last_block_in_file;
199         page_block = 0;
200
201         /*
202          * Map blocks using the result from the previous get_blocks call first.
203          */
204         nblocks = map_bh->b_size >> blkbits;
205         if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
206                         block_in_file < (*first_logical_block + nblocks)) {
207                 unsigned map_offset = block_in_file - *first_logical_block;
208                 unsigned last = nblocks - map_offset;
209
210                 for (relative_block = 0; ; relative_block++) {
211                         if (relative_block == last) {
212                                 clear_buffer_mapped(map_bh);
213                                 break;
214                         }
215                         if (page_block == blocks_per_page)
216                                 break;
217                         blocks[page_block] = map_bh->b_blocknr + map_offset +
218                                                 relative_block;
219                         page_block++;
220                         block_in_file++;
221                 }
222                 bdev = map_bh->b_bdev;
223         }
224
225         /*
226          * Then do more get_blocks calls until we are done with this page.
227          */
228         map_bh->b_page = page;
229         while (page_block < blocks_per_page) {
230                 map_bh->b_state = 0;
231                 map_bh->b_size = 0;
232
233                 if (block_in_file < last_block) {
234                         map_bh->b_size = (last_block-block_in_file) << blkbits;
235                         if (get_block(inode, block_in_file, map_bh, 0))
236                                 goto confused;
237                         *first_logical_block = block_in_file;
238                 }
239
240                 if (!buffer_mapped(map_bh)) {
241                         fully_mapped = 0;
242                         if (first_hole == blocks_per_page)
243                                 first_hole = page_block;
244                         page_block++;
245                         block_in_file++;
246                         continue;
247                 }
248
249                 /* some filesystems will copy data into the page during
250                  * the get_block call, in which case we don't want to
251                  * read it again.  map_buffer_to_page copies the data
252                  * we just collected from get_block into the page's buffers
253                  * so readpage doesn't have to repeat the get_block call
254                  */
255                 if (buffer_uptodate(map_bh)) {
256                         map_buffer_to_page(page, map_bh, page_block);
257                         goto confused;
258                 }
259         
260                 if (first_hole != blocks_per_page)
261                         goto confused;          /* hole -> non-hole */
262
263                 /* Contiguous blocks? */
264                 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
265                         goto confused;
266                 nblocks = map_bh->b_size >> blkbits;
267                 for (relative_block = 0; ; relative_block++) {
268                         if (relative_block == nblocks) {
269                                 clear_buffer_mapped(map_bh);
270                                 break;
271                         } else if (page_block == blocks_per_page)
272                                 break;
273                         blocks[page_block] = map_bh->b_blocknr+relative_block;
274                         page_block++;
275                         block_in_file++;
276                 }
277                 bdev = map_bh->b_bdev;
278         }
279
280         if (first_hole != blocks_per_page) {
281                 zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
282                 if (first_hole == 0) {
283                         SetPageUptodate(page);
284                         unlock_page(page);
285                         goto out;
286                 }
287         } else if (fully_mapped) {
288                 SetPageMappedToDisk(page);
289         }
290
291         if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
292             cleancache_get_page(page) == 0) {
293                 SetPageUptodate(page);
294                 goto confused;
295         }
296
297         /*
298          * This page will go to BIO.  Do we need to send this BIO off first?
299          */
300         if (bio && (*last_block_in_bio != blocks[0] - 1))
301                 bio = mpage_bio_submit(READ, bio);
302
303 alloc_new:
304         if (bio == NULL) {
305                 if (first_hole == blocks_per_page) {
306                         if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
307                                                                 page))
308                                 goto out;
309                 }
310                 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
311                                 min_t(int, nr_pages, BIO_MAX_PAGES), gfp);
312                 if (bio == NULL)
313                         goto confused;
314         }
315
316         length = first_hole << blkbits;
317         if (bio_add_page(bio, page, length, 0) < length) {
318                 bio = mpage_bio_submit(READ, bio);
319                 goto alloc_new;
320         }
321
322         relative_block = block_in_file - *first_logical_block;
323         nblocks = map_bh->b_size >> blkbits;
324         if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
325             (first_hole != blocks_per_page))
326                 bio = mpage_bio_submit(READ, bio);
327         else
328                 *last_block_in_bio = blocks[blocks_per_page - 1];
329 out:
330         return bio;
331
332 confused:
333         if (bio)
334                 bio = mpage_bio_submit(READ, bio);
335         if (!PageUptodate(page))
336                 block_read_full_page(page, get_block);
337         else
338                 unlock_page(page);
339         goto out;
340 }
341
342 /**
343  * mpage_readpages - populate an address space with some pages & start reads against them
344  * @mapping: the address_space
345  * @pages: The address of a list_head which contains the target pages.  These
346  *   pages have their ->index populated and are otherwise uninitialised.
347  *   The page at @pages->prev has the lowest file offset, and reads should be
348  *   issued in @pages->prev to @pages->next order.
349  * @nr_pages: The number of pages at *@pages
350  * @get_block: The filesystem's block mapper function.
351  *
352  * This function walks the pages and the blocks within each page, building and
353  * emitting large BIOs.
354  *
355  * If anything unusual happens, such as:
356  *
357  * - encountering a page which has buffers
358  * - encountering a page which has a non-hole after a hole
359  * - encountering a page with non-contiguous blocks
360  *
361  * then this code just gives up and calls the buffer_head-based read function.
362  * It does handle a page which has holes at the end - that is a common case:
363  * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
364  *
365  * BH_Boundary explanation:
366  *
367  * There is a problem.  The mpage read code assembles several pages, gets all
368  * their disk mappings, and then submits them all.  That's fine, but obtaining
369  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
370  *
371  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
372  * submitted in the following order:
373  *      12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
374  *
375  * because the indirect block has to be read to get the mappings of blocks
376  * 13,14,15,16.  Obviously, this impacts performance.
377  *
378  * So what we do it to allow the filesystem's get_block() function to set
379  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
380  * after this one will require I/O against a block which is probably close to
381  * this one.  So you should push what I/O you have currently accumulated.
382  *
383  * This all causes the disk requests to be issued in the correct order.
384  */
385 int
386 mpage_readpages(struct address_space *mapping, struct list_head *pages,
387                                 unsigned nr_pages, get_block_t get_block)
388 {
389         struct bio *bio = NULL;
390         unsigned page_idx;
391         sector_t last_block_in_bio = 0;
392         struct buffer_head map_bh;
393         unsigned long first_logical_block = 0;
394         gfp_t gfp = mapping_gfp_constraint(mapping, GFP_KERNEL);
395
396         map_bh.b_state = 0;
397         map_bh.b_size = 0;
398         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
399                 struct page *page = list_entry(pages->prev, struct page, lru);
400
401                 prefetchw(&page->flags);
402                 list_del(&page->lru);
403                 if (!add_to_page_cache_lru(page, mapping,
404                                         page->index,
405                                         gfp)) {
406                         bio = do_mpage_readpage(bio, page,
407                                         nr_pages - page_idx,
408                                         &last_block_in_bio, &map_bh,
409                                         &first_logical_block,
410                                         get_block, gfp);
411                 }
412                 page_cache_release(page);
413         }
414         BUG_ON(!list_empty(pages));
415         if (bio)
416                 mpage_bio_submit(READ, bio);
417         return 0;
418 }
419 EXPORT_SYMBOL(mpage_readpages);
420
421 /*
422  * This isn't called much at all
423  */
424 int mpage_readpage(struct page *page, get_block_t get_block)
425 {
426         struct bio *bio = NULL;
427         sector_t last_block_in_bio = 0;
428         struct buffer_head map_bh;
429         unsigned long first_logical_block = 0;
430         gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
431
432         map_bh.b_state = 0;
433         map_bh.b_size = 0;
434         bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
435                         &map_bh, &first_logical_block, get_block, gfp);
436         if (bio)
437                 mpage_bio_submit(READ, bio);
438         return 0;
439 }
440 EXPORT_SYMBOL(mpage_readpage);
441
442 /*
443  * Writing is not so simple.
444  *
445  * If the page has buffers then they will be used for obtaining the disk
446  * mapping.  We only support pages which are fully mapped-and-dirty, with a
447  * special case for pages which are unmapped at the end: end-of-file.
448  *
449  * If the page has no buffers (preferred) then the page is mapped here.
450  *
451  * If all blocks are found to be contiguous then the page can go into the
452  * BIO.  Otherwise fall back to the mapping's writepage().
453  * 
454  * FIXME: This code wants an estimate of how many pages are still to be
455  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
456  * just allocate full-size (16-page) BIOs.
457  */
458
459 struct mpage_data {
460         struct bio *bio;
461         sector_t last_block_in_bio;
462         get_block_t *get_block;
463         unsigned use_writepage;
464 };
465
466 /*
467  * We have our BIO, so we can now mark the buffers clean.  Make
468  * sure to only clean buffers which we know we'll be writing.
469  */
470 static void clean_buffers(struct page *page, unsigned first_unmapped)
471 {
472         unsigned buffer_counter = 0;
473         struct buffer_head *bh, *head;
474         if (!page_has_buffers(page))
475                 return;
476         head = page_buffers(page);
477         bh = head;
478
479         do {
480                 if (buffer_counter++ == first_unmapped)
481                         break;
482                 clear_buffer_dirty(bh);
483                 bh = bh->b_this_page;
484         } while (bh != head);
485
486         /*
487          * we cannot drop the bh if the page is not uptodate or a concurrent
488          * readpage would fail to serialize with the bh and it would read from
489          * disk before we reach the platter.
490          */
491         if (buffer_heads_over_limit && PageUptodate(page))
492                 try_to_free_buffers(page);
493 }
494
495 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
496                       void *data)
497 {
498         struct mpage_data *mpd = data;
499         struct bio *bio = mpd->bio;
500         struct address_space *mapping = page->mapping;
501         struct inode *inode = page->mapping->host;
502         const unsigned blkbits = inode->i_blkbits;
503         unsigned long end_index;
504         const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
505         sector_t last_block;
506         sector_t block_in_file;
507         sector_t blocks[MAX_BUF_PER_PAGE];
508         unsigned page_block;
509         unsigned first_unmapped = blocks_per_page;
510         struct block_device *bdev = NULL;
511         int boundary = 0;
512         sector_t boundary_block = 0;
513         struct block_device *boundary_bdev = NULL;
514         int length;
515         struct buffer_head map_bh;
516         loff_t i_size = i_size_read(inode);
517         int ret = 0;
518         int wr = (wbc->sync_mode == WB_SYNC_ALL ?  WRITE_SYNC : WRITE);
519
520         if (page_has_buffers(page)) {
521                 struct buffer_head *head = page_buffers(page);
522                 struct buffer_head *bh = head;
523
524                 /* If they're all mapped and dirty, do it */
525                 page_block = 0;
526                 do {
527                         BUG_ON(buffer_locked(bh));
528                         if (!buffer_mapped(bh)) {
529                                 /*
530                                  * unmapped dirty buffers are created by
531                                  * __set_page_dirty_buffers -> mmapped data
532                                  */
533                                 if (buffer_dirty(bh))
534                                         goto confused;
535                                 if (first_unmapped == blocks_per_page)
536                                         first_unmapped = page_block;
537                                 continue;
538                         }
539
540                         if (first_unmapped != blocks_per_page)
541                                 goto confused;  /* hole -> non-hole */
542
543                         if (!buffer_dirty(bh) || !buffer_uptodate(bh))
544                                 goto confused;
545                         if (page_block) {
546                                 if (bh->b_blocknr != blocks[page_block-1] + 1)
547                                         goto confused;
548                         }
549                         blocks[page_block++] = bh->b_blocknr;
550                         boundary = buffer_boundary(bh);
551                         if (boundary) {
552                                 boundary_block = bh->b_blocknr;
553                                 boundary_bdev = bh->b_bdev;
554                         }
555                         bdev = bh->b_bdev;
556                 } while ((bh = bh->b_this_page) != head);
557
558                 if (first_unmapped)
559                         goto page_is_mapped;
560
561                 /*
562                  * Page has buffers, but they are all unmapped. The page was
563                  * created by pagein or read over a hole which was handled by
564                  * block_read_full_page().  If this address_space is also
565                  * using mpage_readpages then this can rarely happen.
566                  */
567                 goto confused;
568         }
569
570         /*
571          * The page has no buffers: map it to disk
572          */
573         BUG_ON(!PageUptodate(page));
574         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
575         last_block = (i_size - 1) >> blkbits;
576         map_bh.b_page = page;
577         for (page_block = 0; page_block < blocks_per_page; ) {
578
579                 map_bh.b_state = 0;
580                 map_bh.b_size = 1 << blkbits;
581                 if (mpd->get_block(inode, block_in_file, &map_bh, 1))
582                         goto confused;
583                 if (buffer_new(&map_bh))
584                         unmap_underlying_metadata(map_bh.b_bdev,
585                                                 map_bh.b_blocknr);
586                 if (buffer_boundary(&map_bh)) {
587                         boundary_block = map_bh.b_blocknr;
588                         boundary_bdev = map_bh.b_bdev;
589                 }
590                 if (page_block) {
591                         if (map_bh.b_blocknr != blocks[page_block-1] + 1)
592                                 goto confused;
593                 }
594                 blocks[page_block++] = map_bh.b_blocknr;
595                 boundary = buffer_boundary(&map_bh);
596                 bdev = map_bh.b_bdev;
597                 if (block_in_file == last_block)
598                         break;
599                 block_in_file++;
600         }
601         BUG_ON(page_block == 0);
602
603         first_unmapped = page_block;
604
605 page_is_mapped:
606         end_index = i_size >> PAGE_CACHE_SHIFT;
607         if (page->index >= end_index) {
608                 /*
609                  * The page straddles i_size.  It must be zeroed out on each
610                  * and every writepage invocation because it may be mmapped.
611                  * "A file is mapped in multiples of the page size.  For a file
612                  * that is not a multiple of the page size, the remaining memory
613                  * is zeroed when mapped, and writes to that region are not
614                  * written out to the file."
615                  */
616                 unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
617
618                 if (page->index > end_index || !offset)
619                         goto confused;
620                 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
621         }
622
623         /*
624          * This page will go to BIO.  Do we need to send this BIO off first?
625          */
626         if (bio && mpd->last_block_in_bio != blocks[0] - 1)
627                 bio = mpage_bio_submit(wr, bio);
628
629 alloc_new:
630         if (bio == NULL) {
631                 if (first_unmapped == blocks_per_page) {
632                         if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
633                                                                 page, wbc)) {
634                                 clean_buffers(page, first_unmapped);
635                                 goto out;
636                         }
637                 }
638                 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
639                                 BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
640                 if (bio == NULL)
641                         goto confused;
642
643                 wbc_init_bio(wbc, bio);
644         }
645
646         /*
647          * Must try to add the page before marking the buffer clean or
648          * the confused fail path above (OOM) will be very confused when
649          * it finds all bh marked clean (i.e. it will not write anything)
650          */
651         wbc_account_io(wbc, page, PAGE_SIZE);
652         length = first_unmapped << blkbits;
653         if (bio_add_page(bio, page, length, 0) < length) {
654                 bio = mpage_bio_submit(wr, bio);
655                 goto alloc_new;
656         }
657
658         clean_buffers(page, first_unmapped);
659
660         BUG_ON(PageWriteback(page));
661         set_page_writeback(page);
662         unlock_page(page);
663         if (boundary || (first_unmapped != blocks_per_page)) {
664                 bio = mpage_bio_submit(wr, bio);
665                 if (boundary_block) {
666                         write_boundary_block(boundary_bdev,
667                                         boundary_block, 1 << blkbits);
668                 }
669         } else {
670                 mpd->last_block_in_bio = blocks[blocks_per_page - 1];
671         }
672         goto out;
673
674 confused:
675         if (bio)
676                 bio = mpage_bio_submit(wr, bio);
677
678         if (mpd->use_writepage) {
679                 ret = mapping->a_ops->writepage(page, wbc);
680         } else {
681                 ret = -EAGAIN;
682                 goto out;
683         }
684         /*
685          * The caller has a ref on the inode, so *mapping is stable
686          */
687         mapping_set_error(mapping, ret);
688 out:
689         mpd->bio = bio;
690         return ret;
691 }
692
693 /**
694  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
695  * @mapping: address space structure to write
696  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
697  * @get_block: the filesystem's block mapper function.
698  *             If this is NULL then use a_ops->writepage.  Otherwise, go
699  *             direct-to-BIO.
700  *
701  * This is a library function, which implements the writepages()
702  * address_space_operation.
703  *
704  * If a page is already under I/O, generic_writepages() skips it, even
705  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
706  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
707  * and msync() need to guarantee that all the data which was dirty at the time
708  * the call was made get new I/O started against them.  If wbc->sync_mode is
709  * WB_SYNC_ALL then we were called for data integrity and we must wait for
710  * existing IO to complete.
711  */
712 int
713 mpage_writepages(struct address_space *mapping,
714                 struct writeback_control *wbc, get_block_t get_block)
715 {
716         struct blk_plug plug;
717         int ret;
718
719         blk_start_plug(&plug);
720
721         if (!get_block)
722                 ret = generic_writepages(mapping, wbc);
723         else {
724                 struct mpage_data mpd = {
725                         .bio = NULL,
726                         .last_block_in_bio = 0,
727                         .get_block = get_block,
728                         .use_writepage = 1,
729                 };
730
731                 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
732                 if (mpd.bio) {
733                         int wr = (wbc->sync_mode == WB_SYNC_ALL ?
734                                   WRITE_SYNC : WRITE);
735                         mpage_bio_submit(wr, mpd.bio);
736                 }
737         }
738         blk_finish_plug(&plug);
739         return ret;
740 }
741 EXPORT_SYMBOL(mpage_writepages);
742
743 int mpage_writepage(struct page *page, get_block_t get_block,
744         struct writeback_control *wbc)
745 {
746         struct mpage_data mpd = {
747                 .bio = NULL,
748                 .last_block_in_bio = 0,
749                 .get_block = get_block,
750                 .use_writepage = 0,
751         };
752         int ret = __mpage_writepage(page, wbc, &mpd);
753         if (mpd.bio) {
754                 int wr = (wbc->sync_mode == WB_SYNC_ALL ?
755                           WRITE_SYNC : WRITE);
756                 mpage_bio_submit(wr, mpd.bio);
757         }
758         return ret;
759 }
760 EXPORT_SYMBOL(mpage_writepage);