Merge branch 'linux-linaro-lsk-v3.10' into linux-linaro-lsk-v3.10-android
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / super.c
1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h"       /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64                              unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68                                         struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70                                    struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77                        const char *dev_name, void *data);
78 static inline int ext2_feature_set_ok(struct super_block *sb);
79 static inline int ext3_feature_set_ok(struct super_block *sb);
80 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
81 static void ext4_destroy_lazyinit_thread(void);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
85
86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
87 static struct file_system_type ext2_fs_type = {
88         .owner          = THIS_MODULE,
89         .name           = "ext2",
90         .mount          = ext4_mount,
91         .kill_sb        = kill_block_super,
92         .fs_flags       = FS_REQUIRES_DEV,
93 };
94 MODULE_ALIAS_FS("ext2");
95 MODULE_ALIAS("ext2");
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97 #else
98 #define IS_EXT2_SB(sb) (0)
99 #endif
100
101
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104         .owner          = THIS_MODULE,
105         .name           = "ext3",
106         .mount          = ext4_mount,
107         .kill_sb        = kill_block_super,
108         .fs_flags       = FS_REQUIRES_DEV,
109 };
110 MODULE_ALIAS_FS("ext3");
111 MODULE_ALIAS("ext3");
112 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
113 #else
114 #define IS_EXT3_SB(sb) (0)
115 #endif
116
117 static int ext4_verify_csum_type(struct super_block *sb,
118                                  struct ext4_super_block *es)
119 {
120         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
121                                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
122                 return 1;
123
124         return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
125 }
126
127 static __le32 ext4_superblock_csum(struct super_block *sb,
128                                    struct ext4_super_block *es)
129 {
130         struct ext4_sb_info *sbi = EXT4_SB(sb);
131         int offset = offsetof(struct ext4_super_block, s_checksum);
132         __u32 csum;
133
134         csum = ext4_chksum(sbi, ~0, (char *)es, offset);
135
136         return cpu_to_le32(csum);
137 }
138
139 int ext4_superblock_csum_verify(struct super_block *sb,
140                                 struct ext4_super_block *es)
141 {
142         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
143                                        EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
144                 return 1;
145
146         return es->s_checksum == ext4_superblock_csum(sb, es);
147 }
148
149 void ext4_superblock_csum_set(struct super_block *sb)
150 {
151         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
152
153         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
154                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
155                 return;
156
157         es->s_checksum = ext4_superblock_csum(sb, es);
158 }
159
160 void *ext4_kvmalloc(size_t size, gfp_t flags)
161 {
162         void *ret;
163
164         ret = kmalloc(size, flags);
165         if (!ret)
166                 ret = __vmalloc(size, flags, PAGE_KERNEL);
167         return ret;
168 }
169
170 void *ext4_kvzalloc(size_t size, gfp_t flags)
171 {
172         void *ret;
173
174         ret = kzalloc(size, flags);
175         if (!ret)
176                 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
177         return ret;
178 }
179
180 void ext4_kvfree(void *ptr)
181 {
182         if (is_vmalloc_addr(ptr))
183                 vfree(ptr);
184         else
185                 kfree(ptr);
186
187 }
188
189 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
190                                struct ext4_group_desc *bg)
191 {
192         return le32_to_cpu(bg->bg_block_bitmap_lo) |
193                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
194                  (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
195 }
196
197 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
198                                struct ext4_group_desc *bg)
199 {
200         return le32_to_cpu(bg->bg_inode_bitmap_lo) |
201                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
202                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
203 }
204
205 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
206                               struct ext4_group_desc *bg)
207 {
208         return le32_to_cpu(bg->bg_inode_table_lo) |
209                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
210                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
211 }
212
213 __u32 ext4_free_group_clusters(struct super_block *sb,
214                                struct ext4_group_desc *bg)
215 {
216         return le16_to_cpu(bg->bg_free_blocks_count_lo) |
217                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
218                  (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
219 }
220
221 __u32 ext4_free_inodes_count(struct super_block *sb,
222                               struct ext4_group_desc *bg)
223 {
224         return le16_to_cpu(bg->bg_free_inodes_count_lo) |
225                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
226                  (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
227 }
228
229 __u32 ext4_used_dirs_count(struct super_block *sb,
230                               struct ext4_group_desc *bg)
231 {
232         return le16_to_cpu(bg->bg_used_dirs_count_lo) |
233                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
234                  (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
235 }
236
237 __u32 ext4_itable_unused_count(struct super_block *sb,
238                               struct ext4_group_desc *bg)
239 {
240         return le16_to_cpu(bg->bg_itable_unused_lo) |
241                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
242                  (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
243 }
244
245 void ext4_block_bitmap_set(struct super_block *sb,
246                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
247 {
248         bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
249         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
250                 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
251 }
252
253 void ext4_inode_bitmap_set(struct super_block *sb,
254                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
255 {
256         bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
257         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
258                 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
259 }
260
261 void ext4_inode_table_set(struct super_block *sb,
262                           struct ext4_group_desc *bg, ext4_fsblk_t blk)
263 {
264         bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
265         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
266                 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
267 }
268
269 void ext4_free_group_clusters_set(struct super_block *sb,
270                                   struct ext4_group_desc *bg, __u32 count)
271 {
272         bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
273         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
274                 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
275 }
276
277 void ext4_free_inodes_set(struct super_block *sb,
278                           struct ext4_group_desc *bg, __u32 count)
279 {
280         bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
281         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
282                 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
283 }
284
285 void ext4_used_dirs_set(struct super_block *sb,
286                           struct ext4_group_desc *bg, __u32 count)
287 {
288         bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
289         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
290                 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
291 }
292
293 void ext4_itable_unused_set(struct super_block *sb,
294                           struct ext4_group_desc *bg, __u32 count)
295 {
296         bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
297         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
298                 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
299 }
300
301
302 static void __save_error_info(struct super_block *sb, const char *func,
303                             unsigned int line)
304 {
305         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
306
307         EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
308         if (bdev_read_only(sb->s_bdev))
309                 return;
310         es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
311         es->s_last_error_time = cpu_to_le32(get_seconds());
312         strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
313         es->s_last_error_line = cpu_to_le32(line);
314         if (!es->s_first_error_time) {
315                 es->s_first_error_time = es->s_last_error_time;
316                 strncpy(es->s_first_error_func, func,
317                         sizeof(es->s_first_error_func));
318                 es->s_first_error_line = cpu_to_le32(line);
319                 es->s_first_error_ino = es->s_last_error_ino;
320                 es->s_first_error_block = es->s_last_error_block;
321         }
322         /*
323          * Start the daily error reporting function if it hasn't been
324          * started already
325          */
326         if (!es->s_error_count)
327                 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
328         le32_add_cpu(&es->s_error_count, 1);
329 }
330
331 static void save_error_info(struct super_block *sb, const char *func,
332                             unsigned int line)
333 {
334         __save_error_info(sb, func, line);
335         ext4_commit_super(sb, 1);
336 }
337
338 /*
339  * The del_gendisk() function uninitializes the disk-specific data
340  * structures, including the bdi structure, without telling anyone
341  * else.  Once this happens, any attempt to call mark_buffer_dirty()
342  * (for example, by ext4_commit_super), will cause a kernel OOPS.
343  * This is a kludge to prevent these oops until we can put in a proper
344  * hook in del_gendisk() to inform the VFS and file system layers.
345  */
346 static int block_device_ejected(struct super_block *sb)
347 {
348         struct inode *bd_inode = sb->s_bdev->bd_inode;
349         struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
350
351         return bdi->dev == NULL;
352 }
353
354 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
355 {
356         struct super_block              *sb = journal->j_private;
357         struct ext4_sb_info             *sbi = EXT4_SB(sb);
358         int                             error = is_journal_aborted(journal);
359         struct ext4_journal_cb_entry    *jce;
360
361         BUG_ON(txn->t_state == T_FINISHED);
362         spin_lock(&sbi->s_md_lock);
363         while (!list_empty(&txn->t_private_list)) {
364                 jce = list_entry(txn->t_private_list.next,
365                                  struct ext4_journal_cb_entry, jce_list);
366                 list_del_init(&jce->jce_list);
367                 spin_unlock(&sbi->s_md_lock);
368                 jce->jce_func(sb, jce, error);
369                 spin_lock(&sbi->s_md_lock);
370         }
371         spin_unlock(&sbi->s_md_lock);
372 }
373
374 /* Deal with the reporting of failure conditions on a filesystem such as
375  * inconsistencies detected or read IO failures.
376  *
377  * On ext2, we can store the error state of the filesystem in the
378  * superblock.  That is not possible on ext4, because we may have other
379  * write ordering constraints on the superblock which prevent us from
380  * writing it out straight away; and given that the journal is about to
381  * be aborted, we can't rely on the current, or future, transactions to
382  * write out the superblock safely.
383  *
384  * We'll just use the jbd2_journal_abort() error code to record an error in
385  * the journal instead.  On recovery, the journal will complain about
386  * that error until we've noted it down and cleared it.
387  */
388
389 static void ext4_handle_error(struct super_block *sb)
390 {
391         if (sb->s_flags & MS_RDONLY)
392                 return;
393
394         if (!test_opt(sb, ERRORS_CONT)) {
395                 journal_t *journal = EXT4_SB(sb)->s_journal;
396
397                 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
398                 if (journal)
399                         jbd2_journal_abort(journal, -EIO);
400         }
401         if (test_opt(sb, ERRORS_RO)) {
402                 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
403                 sb->s_flags |= MS_RDONLY;
404         }
405         if (test_opt(sb, ERRORS_PANIC))
406                 panic("EXT4-fs (device %s): panic forced after error\n",
407                         sb->s_id);
408 }
409
410 void __ext4_error(struct super_block *sb, const char *function,
411                   unsigned int line, const char *fmt, ...)
412 {
413         struct va_format vaf;
414         va_list args;
415
416         va_start(args, fmt);
417         vaf.fmt = fmt;
418         vaf.va = &args;
419         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
420                sb->s_id, function, line, current->comm, &vaf);
421         va_end(args);
422         save_error_info(sb, function, line);
423
424         ext4_handle_error(sb);
425 }
426
427 void ext4_error_inode(struct inode *inode, const char *function,
428                       unsigned int line, ext4_fsblk_t block,
429                       const char *fmt, ...)
430 {
431         va_list args;
432         struct va_format vaf;
433         struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
434
435         es->s_last_error_ino = cpu_to_le32(inode->i_ino);
436         es->s_last_error_block = cpu_to_le64(block);
437         save_error_info(inode->i_sb, function, line);
438         va_start(args, fmt);
439         vaf.fmt = fmt;
440         vaf.va = &args;
441         if (block)
442                 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
443                        "inode #%lu: block %llu: comm %s: %pV\n",
444                        inode->i_sb->s_id, function, line, inode->i_ino,
445                        block, current->comm, &vaf);
446         else
447                 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
448                        "inode #%lu: comm %s: %pV\n",
449                        inode->i_sb->s_id, function, line, inode->i_ino,
450                        current->comm, &vaf);
451         va_end(args);
452
453         ext4_handle_error(inode->i_sb);
454 }
455
456 void ext4_error_file(struct file *file, const char *function,
457                      unsigned int line, ext4_fsblk_t block,
458                      const char *fmt, ...)
459 {
460         va_list args;
461         struct va_format vaf;
462         struct ext4_super_block *es;
463         struct inode *inode = file_inode(file);
464         char pathname[80], *path;
465
466         es = EXT4_SB(inode->i_sb)->s_es;
467         es->s_last_error_ino = cpu_to_le32(inode->i_ino);
468         save_error_info(inode->i_sb, function, line);
469         path = d_path(&(file->f_path), pathname, sizeof(pathname));
470         if (IS_ERR(path))
471                 path = "(unknown)";
472         va_start(args, fmt);
473         vaf.fmt = fmt;
474         vaf.va = &args;
475         if (block)
476                 printk(KERN_CRIT
477                        "EXT4-fs error (device %s): %s:%d: inode #%lu: "
478                        "block %llu: comm %s: path %s: %pV\n",
479                        inode->i_sb->s_id, function, line, inode->i_ino,
480                        block, current->comm, path, &vaf);
481         else
482                 printk(KERN_CRIT
483                        "EXT4-fs error (device %s): %s:%d: inode #%lu: "
484                        "comm %s: path %s: %pV\n",
485                        inode->i_sb->s_id, function, line, inode->i_ino,
486                        current->comm, path, &vaf);
487         va_end(args);
488
489         ext4_handle_error(inode->i_sb);
490 }
491
492 const char *ext4_decode_error(struct super_block *sb, int errno,
493                               char nbuf[16])
494 {
495         char *errstr = NULL;
496
497         switch (errno) {
498         case -EIO:
499                 errstr = "IO failure";
500                 break;
501         case -ENOMEM:
502                 errstr = "Out of memory";
503                 break;
504         case -EROFS:
505                 if (!sb || (EXT4_SB(sb)->s_journal &&
506                             EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
507                         errstr = "Journal has aborted";
508                 else
509                         errstr = "Readonly filesystem";
510                 break;
511         default:
512                 /* If the caller passed in an extra buffer for unknown
513                  * errors, textualise them now.  Else we just return
514                  * NULL. */
515                 if (nbuf) {
516                         /* Check for truncated error codes... */
517                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
518                                 errstr = nbuf;
519                 }
520                 break;
521         }
522
523         return errstr;
524 }
525
526 /* __ext4_std_error decodes expected errors from journaling functions
527  * automatically and invokes the appropriate error response.  */
528
529 void __ext4_std_error(struct super_block *sb, const char *function,
530                       unsigned int line, int errno)
531 {
532         char nbuf[16];
533         const char *errstr;
534
535         /* Special case: if the error is EROFS, and we're not already
536          * inside a transaction, then there's really no point in logging
537          * an error. */
538         if (errno == -EROFS && journal_current_handle() == NULL &&
539             (sb->s_flags & MS_RDONLY))
540                 return;
541
542         errstr = ext4_decode_error(sb, errno, nbuf);
543         printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
544                sb->s_id, function, line, errstr);
545         save_error_info(sb, function, line);
546
547         ext4_handle_error(sb);
548 }
549
550 /*
551  * ext4_abort is a much stronger failure handler than ext4_error.  The
552  * abort function may be used to deal with unrecoverable failures such
553  * as journal IO errors or ENOMEM at a critical moment in log management.
554  *
555  * We unconditionally force the filesystem into an ABORT|READONLY state,
556  * unless the error response on the fs has been set to panic in which
557  * case we take the easy way out and panic immediately.
558  */
559
560 void __ext4_abort(struct super_block *sb, const char *function,
561                 unsigned int line, const char *fmt, ...)
562 {
563         va_list args;
564
565         save_error_info(sb, function, line);
566         va_start(args, fmt);
567         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
568                function, line);
569         vprintk(fmt, args);
570         printk("\n");
571         va_end(args);
572
573         if ((sb->s_flags & MS_RDONLY) == 0) {
574                 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
575                 sb->s_flags |= MS_RDONLY;
576                 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
577                 if (EXT4_SB(sb)->s_journal)
578                         jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
579                 save_error_info(sb, function, line);
580         }
581         if (test_opt(sb, ERRORS_PANIC))
582                 panic("EXT4-fs panic from previous error\n");
583 }
584
585 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
586 {
587         struct va_format vaf;
588         va_list args;
589
590         va_start(args, fmt);
591         vaf.fmt = fmt;
592         vaf.va = &args;
593         printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
594         va_end(args);
595 }
596
597 void __ext4_warning(struct super_block *sb, const char *function,
598                     unsigned int line, const char *fmt, ...)
599 {
600         struct va_format vaf;
601         va_list args;
602
603         va_start(args, fmt);
604         vaf.fmt = fmt;
605         vaf.va = &args;
606         printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
607                sb->s_id, function, line, &vaf);
608         va_end(args);
609 }
610
611 void __ext4_grp_locked_error(const char *function, unsigned int line,
612                              struct super_block *sb, ext4_group_t grp,
613                              unsigned long ino, ext4_fsblk_t block,
614                              const char *fmt, ...)
615 __releases(bitlock)
616 __acquires(bitlock)
617 {
618         struct va_format vaf;
619         va_list args;
620         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
621
622         es->s_last_error_ino = cpu_to_le32(ino);
623         es->s_last_error_block = cpu_to_le64(block);
624         __save_error_info(sb, function, line);
625
626         va_start(args, fmt);
627
628         vaf.fmt = fmt;
629         vaf.va = &args;
630         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
631                sb->s_id, function, line, grp);
632         if (ino)
633                 printk(KERN_CONT "inode %lu: ", ino);
634         if (block)
635                 printk(KERN_CONT "block %llu:", (unsigned long long) block);
636         printk(KERN_CONT "%pV\n", &vaf);
637         va_end(args);
638
639         if (test_opt(sb, ERRORS_CONT)) {
640                 ext4_commit_super(sb, 0);
641                 return;
642         }
643
644         ext4_unlock_group(sb, grp);
645         ext4_handle_error(sb);
646         /*
647          * We only get here in the ERRORS_RO case; relocking the group
648          * may be dangerous, but nothing bad will happen since the
649          * filesystem will have already been marked read/only and the
650          * journal has been aborted.  We return 1 as a hint to callers
651          * who might what to use the return value from
652          * ext4_grp_locked_error() to distinguish between the
653          * ERRORS_CONT and ERRORS_RO case, and perhaps return more
654          * aggressively from the ext4 function in question, with a
655          * more appropriate error code.
656          */
657         ext4_lock_group(sb, grp);
658         return;
659 }
660
661 void ext4_update_dynamic_rev(struct super_block *sb)
662 {
663         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
664
665         if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
666                 return;
667
668         ext4_warning(sb,
669                      "updating to rev %d because of new feature flag, "
670                      "running e2fsck is recommended",
671                      EXT4_DYNAMIC_REV);
672
673         es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
674         es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
675         es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
676         /* leave es->s_feature_*compat flags alone */
677         /* es->s_uuid will be set by e2fsck if empty */
678
679         /*
680          * The rest of the superblock fields should be zero, and if not it
681          * means they are likely already in use, so leave them alone.  We
682          * can leave it up to e2fsck to clean up any inconsistencies there.
683          */
684 }
685
686 /*
687  * Open the external journal device
688  */
689 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
690 {
691         struct block_device *bdev;
692         char b[BDEVNAME_SIZE];
693
694         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
695         if (IS_ERR(bdev))
696                 goto fail;
697         return bdev;
698
699 fail:
700         ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
701                         __bdevname(dev, b), PTR_ERR(bdev));
702         return NULL;
703 }
704
705 /*
706  * Release the journal device
707  */
708 static void ext4_blkdev_put(struct block_device *bdev)
709 {
710         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
711 }
712
713 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
714 {
715         struct block_device *bdev;
716         bdev = sbi->journal_bdev;
717         if (bdev) {
718                 ext4_blkdev_put(bdev);
719                 sbi->journal_bdev = NULL;
720         }
721 }
722
723 static inline struct inode *orphan_list_entry(struct list_head *l)
724 {
725         return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
726 }
727
728 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
729 {
730         struct list_head *l;
731
732         ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
733                  le32_to_cpu(sbi->s_es->s_last_orphan));
734
735         printk(KERN_ERR "sb_info orphan list:\n");
736         list_for_each(l, &sbi->s_orphan) {
737                 struct inode *inode = orphan_list_entry(l);
738                 printk(KERN_ERR "  "
739                        "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
740                        inode->i_sb->s_id, inode->i_ino, inode,
741                        inode->i_mode, inode->i_nlink,
742                        NEXT_ORPHAN(inode));
743         }
744 }
745
746 static void ext4_put_super(struct super_block *sb)
747 {
748         struct ext4_sb_info *sbi = EXT4_SB(sb);
749         struct ext4_super_block *es = sbi->s_es;
750         int i, err;
751
752         ext4_unregister_li_request(sb);
753         dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
754
755         flush_workqueue(sbi->dio_unwritten_wq);
756         destroy_workqueue(sbi->dio_unwritten_wq);
757
758         if (sbi->s_journal) {
759                 err = jbd2_journal_destroy(sbi->s_journal);
760                 sbi->s_journal = NULL;
761                 if (err < 0)
762                         ext4_abort(sb, "Couldn't clean up the journal");
763         }
764
765         ext4_es_unregister_shrinker(sb);
766         del_timer(&sbi->s_err_report);
767         ext4_release_system_zone(sb);
768         ext4_mb_release(sb);
769         ext4_ext_release(sb);
770         ext4_xattr_put_super(sb);
771
772         if (!(sb->s_flags & MS_RDONLY)) {
773                 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
774                 es->s_state = cpu_to_le16(sbi->s_mount_state);
775         }
776         if (!(sb->s_flags & MS_RDONLY))
777                 ext4_commit_super(sb, 1);
778
779         if (sbi->s_proc) {
780                 remove_proc_entry("options", sbi->s_proc);
781                 remove_proc_entry(sb->s_id, ext4_proc_root);
782         }
783         kobject_del(&sbi->s_kobj);
784
785         for (i = 0; i < sbi->s_gdb_count; i++)
786                 brelse(sbi->s_group_desc[i]);
787         ext4_kvfree(sbi->s_group_desc);
788         ext4_kvfree(sbi->s_flex_groups);
789         percpu_counter_destroy(&sbi->s_freeclusters_counter);
790         percpu_counter_destroy(&sbi->s_freeinodes_counter);
791         percpu_counter_destroy(&sbi->s_dirs_counter);
792         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
793         percpu_counter_destroy(&sbi->s_extent_cache_cnt);
794         brelse(sbi->s_sbh);
795 #ifdef CONFIG_QUOTA
796         for (i = 0; i < MAXQUOTAS; i++)
797                 kfree(sbi->s_qf_names[i]);
798 #endif
799
800         /* Debugging code just in case the in-memory inode orphan list
801          * isn't empty.  The on-disk one can be non-empty if we've
802          * detected an error and taken the fs readonly, but the
803          * in-memory list had better be clean by this point. */
804         if (!list_empty(&sbi->s_orphan))
805                 dump_orphan_list(sb, sbi);
806         J_ASSERT(list_empty(&sbi->s_orphan));
807
808         sync_blockdev(sb->s_bdev);
809         invalidate_bdev(sb->s_bdev);
810         if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
811                 /*
812                  * Invalidate the journal device's buffers.  We don't want them
813                  * floating about in memory - the physical journal device may
814                  * hotswapped, and it breaks the `ro-after' testing code.
815                  */
816                 sync_blockdev(sbi->journal_bdev);
817                 invalidate_bdev(sbi->journal_bdev);
818                 ext4_blkdev_remove(sbi);
819         }
820         if (sbi->s_mmp_tsk)
821                 kthread_stop(sbi->s_mmp_tsk);
822         sb->s_fs_info = NULL;
823         /*
824          * Now that we are completely done shutting down the
825          * superblock, we need to actually destroy the kobject.
826          */
827         kobject_put(&sbi->s_kobj);
828         wait_for_completion(&sbi->s_kobj_unregister);
829         if (sbi->s_chksum_driver)
830                 crypto_free_shash(sbi->s_chksum_driver);
831         kfree(sbi->s_blockgroup_lock);
832         kfree(sbi);
833 }
834
835 static struct kmem_cache *ext4_inode_cachep;
836
837 /*
838  * Called inside transaction, so use GFP_NOFS
839  */
840 static struct inode *ext4_alloc_inode(struct super_block *sb)
841 {
842         struct ext4_inode_info *ei;
843
844         ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
845         if (!ei)
846                 return NULL;
847
848         ei->vfs_inode.i_version = 1;
849         INIT_LIST_HEAD(&ei->i_prealloc_list);
850         spin_lock_init(&ei->i_prealloc_lock);
851         ext4_es_init_tree(&ei->i_es_tree);
852         rwlock_init(&ei->i_es_lock);
853         INIT_LIST_HEAD(&ei->i_es_lru);
854         ei->i_es_lru_nr = 0;
855         ei->i_reserved_data_blocks = 0;
856         ei->i_reserved_meta_blocks = 0;
857         ei->i_allocated_meta_blocks = 0;
858         ei->i_da_metadata_calc_len = 0;
859         ei->i_da_metadata_calc_last_lblock = 0;
860         spin_lock_init(&(ei->i_block_reservation_lock));
861 #ifdef CONFIG_QUOTA
862         ei->i_reserved_quota = 0;
863 #endif
864         ei->jinode = NULL;
865         INIT_LIST_HEAD(&ei->i_completed_io_list);
866         spin_lock_init(&ei->i_completed_io_lock);
867         ei->i_sync_tid = 0;
868         ei->i_datasync_tid = 0;
869         atomic_set(&ei->i_ioend_count, 0);
870         atomic_set(&ei->i_unwritten, 0);
871         INIT_WORK(&ei->i_unwritten_work, ext4_end_io_work);
872
873         return &ei->vfs_inode;
874 }
875
876 static int ext4_drop_inode(struct inode *inode)
877 {
878         int drop = generic_drop_inode(inode);
879
880         trace_ext4_drop_inode(inode, drop);
881         return drop;
882 }
883
884 static void ext4_i_callback(struct rcu_head *head)
885 {
886         struct inode *inode = container_of(head, struct inode, i_rcu);
887         kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
888 }
889
890 static void ext4_destroy_inode(struct inode *inode)
891 {
892         if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
893                 ext4_msg(inode->i_sb, KERN_ERR,
894                          "Inode %lu (%p): orphan list check failed!",
895                          inode->i_ino, EXT4_I(inode));
896                 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
897                                 EXT4_I(inode), sizeof(struct ext4_inode_info),
898                                 true);
899                 dump_stack();
900         }
901         call_rcu(&inode->i_rcu, ext4_i_callback);
902 }
903
904 static void init_once(void *foo)
905 {
906         struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
907
908         INIT_LIST_HEAD(&ei->i_orphan);
909         init_rwsem(&ei->xattr_sem);
910         init_rwsem(&ei->i_data_sem);
911         inode_init_once(&ei->vfs_inode);
912 }
913
914 static int init_inodecache(void)
915 {
916         ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
917                                              sizeof(struct ext4_inode_info),
918                                              0, (SLAB_RECLAIM_ACCOUNT|
919                                                 SLAB_MEM_SPREAD),
920                                              init_once);
921         if (ext4_inode_cachep == NULL)
922                 return -ENOMEM;
923         return 0;
924 }
925
926 static void destroy_inodecache(void)
927 {
928         /*
929          * Make sure all delayed rcu free inodes are flushed before we
930          * destroy cache.
931          */
932         rcu_barrier();
933         kmem_cache_destroy(ext4_inode_cachep);
934 }
935
936 void ext4_clear_inode(struct inode *inode)
937 {
938         invalidate_inode_buffers(inode);
939         clear_inode(inode);
940         dquot_drop(inode);
941         ext4_discard_preallocations(inode);
942         ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
943         ext4_es_lru_del(inode);
944         if (EXT4_I(inode)->jinode) {
945                 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
946                                                EXT4_I(inode)->jinode);
947                 jbd2_free_inode(EXT4_I(inode)->jinode);
948                 EXT4_I(inode)->jinode = NULL;
949         }
950 }
951
952 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
953                                         u64 ino, u32 generation)
954 {
955         struct inode *inode;
956
957         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
958                 return ERR_PTR(-ESTALE);
959         if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
960                 return ERR_PTR(-ESTALE);
961
962         /* iget isn't really right if the inode is currently unallocated!!
963          *
964          * ext4_read_inode will return a bad_inode if the inode had been
965          * deleted, so we should be safe.
966          *
967          * Currently we don't know the generation for parent directory, so
968          * a generation of 0 means "accept any"
969          */
970         inode = ext4_iget_normal(sb, ino);
971         if (IS_ERR(inode))
972                 return ERR_CAST(inode);
973         if (generation && inode->i_generation != generation) {
974                 iput(inode);
975                 return ERR_PTR(-ESTALE);
976         }
977
978         return inode;
979 }
980
981 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
982                                         int fh_len, int fh_type)
983 {
984         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
985                                     ext4_nfs_get_inode);
986 }
987
988 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
989                                         int fh_len, int fh_type)
990 {
991         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
992                                     ext4_nfs_get_inode);
993 }
994
995 /*
996  * Try to release metadata pages (indirect blocks, directories) which are
997  * mapped via the block device.  Since these pages could have journal heads
998  * which would prevent try_to_free_buffers() from freeing them, we must use
999  * jbd2 layer's try_to_free_buffers() function to release them.
1000  */
1001 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1002                                  gfp_t wait)
1003 {
1004         journal_t *journal = EXT4_SB(sb)->s_journal;
1005
1006         WARN_ON(PageChecked(page));
1007         if (!page_has_buffers(page))
1008                 return 0;
1009         if (journal)
1010                 return jbd2_journal_try_to_free_buffers(journal, page,
1011                                                         wait & ~__GFP_WAIT);
1012         return try_to_free_buffers(page);
1013 }
1014
1015 #ifdef CONFIG_QUOTA
1016 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1017 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1018
1019 static int ext4_write_dquot(struct dquot *dquot);
1020 static int ext4_acquire_dquot(struct dquot *dquot);
1021 static int ext4_release_dquot(struct dquot *dquot);
1022 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1023 static int ext4_write_info(struct super_block *sb, int type);
1024 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1025                          struct path *path);
1026 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1027                                  int format_id);
1028 static int ext4_quota_off(struct super_block *sb, int type);
1029 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1030 static int ext4_quota_on_mount(struct super_block *sb, int type);
1031 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1032                                size_t len, loff_t off);
1033 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1034                                 const char *data, size_t len, loff_t off);
1035 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1036                              unsigned int flags);
1037 static int ext4_enable_quotas(struct super_block *sb);
1038
1039 static const struct dquot_operations ext4_quota_operations = {
1040         .get_reserved_space = ext4_get_reserved_space,
1041         .write_dquot    = ext4_write_dquot,
1042         .acquire_dquot  = ext4_acquire_dquot,
1043         .release_dquot  = ext4_release_dquot,
1044         .mark_dirty     = ext4_mark_dquot_dirty,
1045         .write_info     = ext4_write_info,
1046         .alloc_dquot    = dquot_alloc,
1047         .destroy_dquot  = dquot_destroy,
1048 };
1049
1050 static const struct quotactl_ops ext4_qctl_operations = {
1051         .quota_on       = ext4_quota_on,
1052         .quota_off      = ext4_quota_off,
1053         .quota_sync     = dquot_quota_sync,
1054         .get_info       = dquot_get_dqinfo,
1055         .set_info       = dquot_set_dqinfo,
1056         .get_dqblk      = dquot_get_dqblk,
1057         .set_dqblk      = dquot_set_dqblk
1058 };
1059
1060 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1061         .quota_on_meta  = ext4_quota_on_sysfile,
1062         .quota_off      = ext4_quota_off_sysfile,
1063         .quota_sync     = dquot_quota_sync,
1064         .get_info       = dquot_get_dqinfo,
1065         .set_info       = dquot_set_dqinfo,
1066         .get_dqblk      = dquot_get_dqblk,
1067         .set_dqblk      = dquot_set_dqblk
1068 };
1069 #endif
1070
1071 static const struct super_operations ext4_sops = {
1072         .alloc_inode    = ext4_alloc_inode,
1073         .destroy_inode  = ext4_destroy_inode,
1074         .write_inode    = ext4_write_inode,
1075         .dirty_inode    = ext4_dirty_inode,
1076         .drop_inode     = ext4_drop_inode,
1077         .evict_inode    = ext4_evict_inode,
1078         .put_super      = ext4_put_super,
1079         .sync_fs        = ext4_sync_fs,
1080         .freeze_fs      = ext4_freeze,
1081         .unfreeze_fs    = ext4_unfreeze,
1082         .statfs         = ext4_statfs,
1083         .remount_fs     = ext4_remount,
1084         .show_options   = ext4_show_options,
1085 #ifdef CONFIG_QUOTA
1086         .quota_read     = ext4_quota_read,
1087         .quota_write    = ext4_quota_write,
1088 #endif
1089         .bdev_try_to_free_page = bdev_try_to_free_page,
1090 };
1091
1092 static const struct super_operations ext4_nojournal_sops = {
1093         .alloc_inode    = ext4_alloc_inode,
1094         .destroy_inode  = ext4_destroy_inode,
1095         .write_inode    = ext4_write_inode,
1096         .dirty_inode    = ext4_dirty_inode,
1097         .drop_inode     = ext4_drop_inode,
1098         .evict_inode    = ext4_evict_inode,
1099         .put_super      = ext4_put_super,
1100         .statfs         = ext4_statfs,
1101         .remount_fs     = ext4_remount,
1102         .show_options   = ext4_show_options,
1103 #ifdef CONFIG_QUOTA
1104         .quota_read     = ext4_quota_read,
1105         .quota_write    = ext4_quota_write,
1106 #endif
1107         .bdev_try_to_free_page = bdev_try_to_free_page,
1108 };
1109
1110 static const struct export_operations ext4_export_ops = {
1111         .fh_to_dentry = ext4_fh_to_dentry,
1112         .fh_to_parent = ext4_fh_to_parent,
1113         .get_parent = ext4_get_parent,
1114 };
1115
1116 enum {
1117         Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1118         Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1119         Opt_nouid32, Opt_debug, Opt_removed,
1120         Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1121         Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1122         Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1123         Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1124         Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1125         Opt_data_err_abort, Opt_data_err_ignore,
1126         Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1127         Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1128         Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1129         Opt_usrquota, Opt_grpquota, Opt_i_version,
1130         Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1131         Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1132         Opt_inode_readahead_blks, Opt_journal_ioprio,
1133         Opt_dioread_nolock, Opt_dioread_lock,
1134         Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1135         Opt_max_dir_size_kb,
1136 };
1137
1138 static const match_table_t tokens = {
1139         {Opt_bsd_df, "bsddf"},
1140         {Opt_minix_df, "minixdf"},
1141         {Opt_grpid, "grpid"},
1142         {Opt_grpid, "bsdgroups"},
1143         {Opt_nogrpid, "nogrpid"},
1144         {Opt_nogrpid, "sysvgroups"},
1145         {Opt_resgid, "resgid=%u"},
1146         {Opt_resuid, "resuid=%u"},
1147         {Opt_sb, "sb=%u"},
1148         {Opt_err_cont, "errors=continue"},
1149         {Opt_err_panic, "errors=panic"},
1150         {Opt_err_ro, "errors=remount-ro"},
1151         {Opt_nouid32, "nouid32"},
1152         {Opt_debug, "debug"},
1153         {Opt_removed, "oldalloc"},
1154         {Opt_removed, "orlov"},
1155         {Opt_user_xattr, "user_xattr"},
1156         {Opt_nouser_xattr, "nouser_xattr"},
1157         {Opt_acl, "acl"},
1158         {Opt_noacl, "noacl"},
1159         {Opt_noload, "norecovery"},
1160         {Opt_noload, "noload"},
1161         {Opt_removed, "nobh"},
1162         {Opt_removed, "bh"},
1163         {Opt_commit, "commit=%u"},
1164         {Opt_min_batch_time, "min_batch_time=%u"},
1165         {Opt_max_batch_time, "max_batch_time=%u"},
1166         {Opt_journal_dev, "journal_dev=%u"},
1167         {Opt_journal_checksum, "journal_checksum"},
1168         {Opt_journal_async_commit, "journal_async_commit"},
1169         {Opt_abort, "abort"},
1170         {Opt_data_journal, "data=journal"},
1171         {Opt_data_ordered, "data=ordered"},
1172         {Opt_data_writeback, "data=writeback"},
1173         {Opt_data_err_abort, "data_err=abort"},
1174         {Opt_data_err_ignore, "data_err=ignore"},
1175         {Opt_offusrjquota, "usrjquota="},
1176         {Opt_usrjquota, "usrjquota=%s"},
1177         {Opt_offgrpjquota, "grpjquota="},
1178         {Opt_grpjquota, "grpjquota=%s"},
1179         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1180         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1181         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1182         {Opt_grpquota, "grpquota"},
1183         {Opt_noquota, "noquota"},
1184         {Opt_quota, "quota"},
1185         {Opt_usrquota, "usrquota"},
1186         {Opt_barrier, "barrier=%u"},
1187         {Opt_barrier, "barrier"},
1188         {Opt_nobarrier, "nobarrier"},
1189         {Opt_i_version, "i_version"},
1190         {Opt_stripe, "stripe=%u"},
1191         {Opt_delalloc, "delalloc"},
1192         {Opt_nodelalloc, "nodelalloc"},
1193         {Opt_removed, "mblk_io_submit"},
1194         {Opt_removed, "nomblk_io_submit"},
1195         {Opt_block_validity, "block_validity"},
1196         {Opt_noblock_validity, "noblock_validity"},
1197         {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1198         {Opt_journal_ioprio, "journal_ioprio=%u"},
1199         {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1200         {Opt_auto_da_alloc, "auto_da_alloc"},
1201         {Opt_noauto_da_alloc, "noauto_da_alloc"},
1202         {Opt_dioread_nolock, "dioread_nolock"},
1203         {Opt_dioread_lock, "dioread_lock"},
1204         {Opt_discard, "discard"},
1205         {Opt_nodiscard, "nodiscard"},
1206         {Opt_init_itable, "init_itable=%u"},
1207         {Opt_init_itable, "init_itable"},
1208         {Opt_noinit_itable, "noinit_itable"},
1209         {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1210         {Opt_removed, "check=none"},    /* mount option from ext2/3 */
1211         {Opt_removed, "nocheck"},       /* mount option from ext2/3 */
1212         {Opt_removed, "reservation"},   /* mount option from ext2/3 */
1213         {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1214         {Opt_removed, "journal=%u"},    /* mount option from ext2/3 */
1215         {Opt_err, NULL},
1216 };
1217
1218 static ext4_fsblk_t get_sb_block(void **data)
1219 {
1220         ext4_fsblk_t    sb_block;
1221         char            *options = (char *) *data;
1222
1223         if (!options || strncmp(options, "sb=", 3) != 0)
1224                 return 1;       /* Default location */
1225
1226         options += 3;
1227         /* TODO: use simple_strtoll with >32bit ext4 */
1228         sb_block = simple_strtoul(options, &options, 0);
1229         if (*options && *options != ',') {
1230                 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1231                        (char *) *data);
1232                 return 1;
1233         }
1234         if (*options == ',')
1235                 options++;
1236         *data = (void *) options;
1237
1238         return sb_block;
1239 }
1240
1241 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1242 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1243         "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1244
1245 #ifdef CONFIG_QUOTA
1246 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1247 {
1248         struct ext4_sb_info *sbi = EXT4_SB(sb);
1249         char *qname;
1250         int ret = -1;
1251
1252         if (sb_any_quota_loaded(sb) &&
1253                 !sbi->s_qf_names[qtype]) {
1254                 ext4_msg(sb, KERN_ERR,
1255                         "Cannot change journaled "
1256                         "quota options when quota turned on");
1257                 return -1;
1258         }
1259         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1260                 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1261                          "when QUOTA feature is enabled");
1262                 return -1;
1263         }
1264         qname = match_strdup(args);
1265         if (!qname) {
1266                 ext4_msg(sb, KERN_ERR,
1267                         "Not enough memory for storing quotafile name");
1268                 return -1;
1269         }
1270         if (sbi->s_qf_names[qtype]) {
1271                 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1272                         ret = 1;
1273                 else
1274                         ext4_msg(sb, KERN_ERR,
1275                                  "%s quota file already specified",
1276                                  QTYPE2NAME(qtype));
1277                 goto errout;
1278         }
1279         if (strchr(qname, '/')) {
1280                 ext4_msg(sb, KERN_ERR,
1281                         "quotafile must be on filesystem root");
1282                 goto errout;
1283         }
1284         sbi->s_qf_names[qtype] = qname;
1285         set_opt(sb, QUOTA);
1286         return 1;
1287 errout:
1288         kfree(qname);
1289         return ret;
1290 }
1291
1292 static int clear_qf_name(struct super_block *sb, int qtype)
1293 {
1294
1295         struct ext4_sb_info *sbi = EXT4_SB(sb);
1296
1297         if (sb_any_quota_loaded(sb) &&
1298                 sbi->s_qf_names[qtype]) {
1299                 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1300                         " when quota turned on");
1301                 return -1;
1302         }
1303         kfree(sbi->s_qf_names[qtype]);
1304         sbi->s_qf_names[qtype] = NULL;
1305         return 1;
1306 }
1307 #endif
1308
1309 #define MOPT_SET        0x0001
1310 #define MOPT_CLEAR      0x0002
1311 #define MOPT_NOSUPPORT  0x0004
1312 #define MOPT_EXPLICIT   0x0008
1313 #define MOPT_CLEAR_ERR  0x0010
1314 #define MOPT_GTE0       0x0020
1315 #ifdef CONFIG_QUOTA
1316 #define MOPT_Q          0
1317 #define MOPT_QFMT       0x0040
1318 #else
1319 #define MOPT_Q          MOPT_NOSUPPORT
1320 #define MOPT_QFMT       MOPT_NOSUPPORT
1321 #endif
1322 #define MOPT_DATAJ      0x0080
1323 #define MOPT_NO_EXT2    0x0100
1324 #define MOPT_NO_EXT3    0x0200
1325 #define MOPT_EXT4_ONLY  (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1326
1327 static const struct mount_opts {
1328         int     token;
1329         int     mount_opt;
1330         int     flags;
1331 } ext4_mount_opts[] = {
1332         {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1333         {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1334         {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1335         {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1336         {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1337         {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1338         {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1339          MOPT_EXT4_ONLY | MOPT_SET},
1340         {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1341          MOPT_EXT4_ONLY | MOPT_CLEAR},
1342         {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1343         {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1344         {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1345          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1346         {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1347          MOPT_EXT4_ONLY | MOPT_CLEAR},
1348         {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1349          MOPT_EXT4_ONLY | MOPT_SET},
1350         {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1351                                     EXT4_MOUNT_JOURNAL_CHECKSUM),
1352          MOPT_EXT4_ONLY | MOPT_SET},
1353         {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1354         {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1355         {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1356         {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1357         {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1358          MOPT_NO_EXT2 | MOPT_SET},
1359         {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1360          MOPT_NO_EXT2 | MOPT_CLEAR},
1361         {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1362         {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1363         {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1364         {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1365         {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1366         {Opt_commit, 0, MOPT_GTE0},
1367         {Opt_max_batch_time, 0, MOPT_GTE0},
1368         {Opt_min_batch_time, 0, MOPT_GTE0},
1369         {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1370         {Opt_init_itable, 0, MOPT_GTE0},
1371         {Opt_stripe, 0, MOPT_GTE0},
1372         {Opt_resuid, 0, MOPT_GTE0},
1373         {Opt_resgid, 0, MOPT_GTE0},
1374         {Opt_journal_dev, 0, MOPT_GTE0},
1375         {Opt_journal_ioprio, 0, MOPT_GTE0},
1376         {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1377         {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1378         {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1379          MOPT_NO_EXT2 | MOPT_DATAJ},
1380         {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1381         {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1382 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1383         {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1384         {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1385 #else
1386         {Opt_acl, 0, MOPT_NOSUPPORT},
1387         {Opt_noacl, 0, MOPT_NOSUPPORT},
1388 #endif
1389         {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1390         {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1391         {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1392         {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1393                                                         MOPT_SET | MOPT_Q},
1394         {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1395                                                         MOPT_SET | MOPT_Q},
1396         {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1397                        EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1398         {Opt_usrjquota, 0, MOPT_Q},
1399         {Opt_grpjquota, 0, MOPT_Q},
1400         {Opt_offusrjquota, 0, MOPT_Q},
1401         {Opt_offgrpjquota, 0, MOPT_Q},
1402         {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1403         {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1404         {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1405         {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1406         {Opt_err, 0, 0}
1407 };
1408
1409 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1410                             substring_t *args, unsigned long *journal_devnum,
1411                             unsigned int *journal_ioprio, int is_remount)
1412 {
1413         struct ext4_sb_info *sbi = EXT4_SB(sb);
1414         const struct mount_opts *m;
1415         kuid_t uid;
1416         kgid_t gid;
1417         int arg = 0;
1418
1419 #ifdef CONFIG_QUOTA
1420         if (token == Opt_usrjquota)
1421                 return set_qf_name(sb, USRQUOTA, &args[0]);
1422         else if (token == Opt_grpjquota)
1423                 return set_qf_name(sb, GRPQUOTA, &args[0]);
1424         else if (token == Opt_offusrjquota)
1425                 return clear_qf_name(sb, USRQUOTA);
1426         else if (token == Opt_offgrpjquota)
1427                 return clear_qf_name(sb, GRPQUOTA);
1428 #endif
1429         switch (token) {
1430         case Opt_noacl:
1431         case Opt_nouser_xattr:
1432                 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1433                 break;
1434         case Opt_sb:
1435                 return 1;       /* handled by get_sb_block() */
1436         case Opt_removed:
1437                 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1438                 return 1;
1439         case Opt_abort:
1440                 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1441                 return 1;
1442         case Opt_i_version:
1443                 sb->s_flags |= MS_I_VERSION;
1444                 return 1;
1445         }
1446
1447         for (m = ext4_mount_opts; m->token != Opt_err; m++)
1448                 if (token == m->token)
1449                         break;
1450
1451         if (m->token == Opt_err) {
1452                 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1453                          "or missing value", opt);
1454                 return -1;
1455         }
1456
1457         if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1458                 ext4_msg(sb, KERN_ERR,
1459                          "Mount option \"%s\" incompatible with ext2", opt);
1460                 return -1;
1461         }
1462         if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1463                 ext4_msg(sb, KERN_ERR,
1464                          "Mount option \"%s\" incompatible with ext3", opt);
1465                 return -1;
1466         }
1467
1468         if (args->from && match_int(args, &arg))
1469                 return -1;
1470         if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1471                 return -1;
1472         if (m->flags & MOPT_EXPLICIT)
1473                 set_opt2(sb, EXPLICIT_DELALLOC);
1474         if (m->flags & MOPT_CLEAR_ERR)
1475                 clear_opt(sb, ERRORS_MASK);
1476         if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1477                 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1478                          "options when quota turned on");
1479                 return -1;
1480         }
1481
1482         if (m->flags & MOPT_NOSUPPORT) {
1483                 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1484         } else if (token == Opt_commit) {
1485                 if (arg == 0)
1486                         arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1487                 sbi->s_commit_interval = HZ * arg;
1488         } else if (token == Opt_max_batch_time) {
1489                 sbi->s_max_batch_time = arg;
1490         } else if (token == Opt_min_batch_time) {
1491                 sbi->s_min_batch_time = arg;
1492         } else if (token == Opt_inode_readahead_blks) {
1493                 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1494                         ext4_msg(sb, KERN_ERR,
1495                                  "EXT4-fs: inode_readahead_blks must be "
1496                                  "0 or a power of 2 smaller than 2^31");
1497                         return -1;
1498                 }
1499                 sbi->s_inode_readahead_blks = arg;
1500         } else if (token == Opt_init_itable) {
1501                 set_opt(sb, INIT_INODE_TABLE);
1502                 if (!args->from)
1503                         arg = EXT4_DEF_LI_WAIT_MULT;
1504                 sbi->s_li_wait_mult = arg;
1505         } else if (token == Opt_max_dir_size_kb) {
1506                 sbi->s_max_dir_size_kb = arg;
1507         } else if (token == Opt_stripe) {
1508                 sbi->s_stripe = arg;
1509         } else if (token == Opt_resuid) {
1510                 uid = make_kuid(current_user_ns(), arg);
1511                 if (!uid_valid(uid)) {
1512                         ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1513                         return -1;
1514                 }
1515                 sbi->s_resuid = uid;
1516         } else if (token == Opt_resgid) {
1517                 gid = make_kgid(current_user_ns(), arg);
1518                 if (!gid_valid(gid)) {
1519                         ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1520                         return -1;
1521                 }
1522                 sbi->s_resgid = gid;
1523         } else if (token == Opt_journal_dev) {
1524                 if (is_remount) {
1525                         ext4_msg(sb, KERN_ERR,
1526                                  "Cannot specify journal on remount");
1527                         return -1;
1528                 }
1529                 *journal_devnum = arg;
1530         } else if (token == Opt_journal_ioprio) {
1531                 if (arg > 7) {
1532                         ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1533                                  " (must be 0-7)");
1534                         return -1;
1535                 }
1536                 *journal_ioprio =
1537                         IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1538         } else if (m->flags & MOPT_DATAJ) {
1539                 if (is_remount) {
1540                         if (!sbi->s_journal)
1541                                 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1542                         else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1543                                 ext4_msg(sb, KERN_ERR,
1544                                          "Cannot change data mode on remount");
1545                                 return -1;
1546                         }
1547                 } else {
1548                         clear_opt(sb, DATA_FLAGS);
1549                         sbi->s_mount_opt |= m->mount_opt;
1550                 }
1551 #ifdef CONFIG_QUOTA
1552         } else if (m->flags & MOPT_QFMT) {
1553                 if (sb_any_quota_loaded(sb) &&
1554                     sbi->s_jquota_fmt != m->mount_opt) {
1555                         ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1556                                  "quota options when quota turned on");
1557                         return -1;
1558                 }
1559                 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1560                                                EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1561                         ext4_msg(sb, KERN_ERR,
1562                                  "Cannot set journaled quota options "
1563                                  "when QUOTA feature is enabled");
1564                         return -1;
1565                 }
1566                 sbi->s_jquota_fmt = m->mount_opt;
1567 #endif
1568         } else {
1569                 if (!args->from)
1570                         arg = 1;
1571                 if (m->flags & MOPT_CLEAR)
1572                         arg = !arg;
1573                 else if (unlikely(!(m->flags & MOPT_SET))) {
1574                         ext4_msg(sb, KERN_WARNING,
1575                                  "buggy handling of option %s", opt);
1576                         WARN_ON(1);
1577                         return -1;
1578                 }
1579                 if (arg != 0)
1580                         sbi->s_mount_opt |= m->mount_opt;
1581                 else
1582                         sbi->s_mount_opt &= ~m->mount_opt;
1583         }
1584         return 1;
1585 }
1586
1587 static int parse_options(char *options, struct super_block *sb,
1588                          unsigned long *journal_devnum,
1589                          unsigned int *journal_ioprio,
1590                          int is_remount)
1591 {
1592         struct ext4_sb_info *sbi = EXT4_SB(sb);
1593         char *p;
1594         substring_t args[MAX_OPT_ARGS];
1595         int token;
1596
1597         if (!options)
1598                 return 1;
1599
1600         while ((p = strsep(&options, ",")) != NULL) {
1601                 if (!*p)
1602                         continue;
1603                 /*
1604                  * Initialize args struct so we know whether arg was
1605                  * found; some options take optional arguments.
1606                  */
1607                 args[0].to = args[0].from = NULL;
1608                 token = match_token(p, tokens, args);
1609                 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1610                                      journal_ioprio, is_remount) < 0)
1611                         return 0;
1612         }
1613 #ifdef CONFIG_QUOTA
1614         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1615             (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1616                 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1617                          "feature is enabled");
1618                 return 0;
1619         }
1620         if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1621                 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1622                         clear_opt(sb, USRQUOTA);
1623
1624                 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1625                         clear_opt(sb, GRPQUOTA);
1626
1627                 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1628                         ext4_msg(sb, KERN_ERR, "old and new quota "
1629                                         "format mixing");
1630                         return 0;
1631                 }
1632
1633                 if (!sbi->s_jquota_fmt) {
1634                         ext4_msg(sb, KERN_ERR, "journaled quota format "
1635                                         "not specified");
1636                         return 0;
1637                 }
1638         }
1639 #endif
1640         if (test_opt(sb, DIOREAD_NOLOCK)) {
1641                 int blocksize =
1642                         BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1643
1644                 if (blocksize < PAGE_CACHE_SIZE) {
1645                         ext4_msg(sb, KERN_ERR, "can't mount with "
1646                                  "dioread_nolock if block size != PAGE_SIZE");
1647                         return 0;
1648                 }
1649         }
1650         return 1;
1651 }
1652
1653 static inline void ext4_show_quota_options(struct seq_file *seq,
1654                                            struct super_block *sb)
1655 {
1656 #if defined(CONFIG_QUOTA)
1657         struct ext4_sb_info *sbi = EXT4_SB(sb);
1658
1659         if (sbi->s_jquota_fmt) {
1660                 char *fmtname = "";
1661
1662                 switch (sbi->s_jquota_fmt) {
1663                 case QFMT_VFS_OLD:
1664                         fmtname = "vfsold";
1665                         break;
1666                 case QFMT_VFS_V0:
1667                         fmtname = "vfsv0";
1668                         break;
1669                 case QFMT_VFS_V1:
1670                         fmtname = "vfsv1";
1671                         break;
1672                 }
1673                 seq_printf(seq, ",jqfmt=%s", fmtname);
1674         }
1675
1676         if (sbi->s_qf_names[USRQUOTA])
1677                 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1678
1679         if (sbi->s_qf_names[GRPQUOTA])
1680                 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1681 #endif
1682 }
1683
1684 static const char *token2str(int token)
1685 {
1686         const struct match_token *t;
1687
1688         for (t = tokens; t->token != Opt_err; t++)
1689                 if (t->token == token && !strchr(t->pattern, '='))
1690                         break;
1691         return t->pattern;
1692 }
1693
1694 /*
1695  * Show an option if
1696  *  - it's set to a non-default value OR
1697  *  - if the per-sb default is different from the global default
1698  */
1699 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1700                               int nodefs)
1701 {
1702         struct ext4_sb_info *sbi = EXT4_SB(sb);
1703         struct ext4_super_block *es = sbi->s_es;
1704         int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1705         const struct mount_opts *m;
1706         char sep = nodefs ? '\n' : ',';
1707
1708 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1709 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1710
1711         if (sbi->s_sb_block != 1)
1712                 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1713
1714         for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1715                 int want_set = m->flags & MOPT_SET;
1716                 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1717                     (m->flags & MOPT_CLEAR_ERR))
1718                         continue;
1719                 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1720                         continue; /* skip if same as the default */
1721                 if ((want_set &&
1722                      (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1723                     (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1724                         continue; /* select Opt_noFoo vs Opt_Foo */
1725                 SEQ_OPTS_PRINT("%s", token2str(m->token));
1726         }
1727
1728         if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1729             le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1730                 SEQ_OPTS_PRINT("resuid=%u",
1731                                 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1732         if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1733             le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1734                 SEQ_OPTS_PRINT("resgid=%u",
1735                                 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1736         def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1737         if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1738                 SEQ_OPTS_PUTS("errors=remount-ro");
1739         if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1740                 SEQ_OPTS_PUTS("errors=continue");
1741         if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1742                 SEQ_OPTS_PUTS("errors=panic");
1743         if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1744                 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1745         if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1746                 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1747         if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1748                 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1749         if (sb->s_flags & MS_I_VERSION)
1750                 SEQ_OPTS_PUTS("i_version");
1751         if (nodefs || sbi->s_stripe)
1752                 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1753         if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1754                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1755                         SEQ_OPTS_PUTS("data=journal");
1756                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1757                         SEQ_OPTS_PUTS("data=ordered");
1758                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1759                         SEQ_OPTS_PUTS("data=writeback");
1760         }
1761         if (nodefs ||
1762             sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1763                 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1764                                sbi->s_inode_readahead_blks);
1765
1766         if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1767                        (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1768                 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1769         if (nodefs || sbi->s_max_dir_size_kb)
1770                 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1771
1772         ext4_show_quota_options(seq, sb);
1773         return 0;
1774 }
1775
1776 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1777 {
1778         return _ext4_show_options(seq, root->d_sb, 0);
1779 }
1780
1781 static int options_seq_show(struct seq_file *seq, void *offset)
1782 {
1783         struct super_block *sb = seq->private;
1784         int rc;
1785
1786         seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1787         rc = _ext4_show_options(seq, sb, 1);
1788         seq_puts(seq, "\n");
1789         return rc;
1790 }
1791
1792 static int options_open_fs(struct inode *inode, struct file *file)
1793 {
1794         return single_open(file, options_seq_show, PDE_DATA(inode));
1795 }
1796
1797 static const struct file_operations ext4_seq_options_fops = {
1798         .owner = THIS_MODULE,
1799         .open = options_open_fs,
1800         .read = seq_read,
1801         .llseek = seq_lseek,
1802         .release = single_release,
1803 };
1804
1805 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1806                             int read_only)
1807 {
1808         struct ext4_sb_info *sbi = EXT4_SB(sb);
1809         int res = 0;
1810
1811         if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1812                 ext4_msg(sb, KERN_ERR, "revision level too high, "
1813                          "forcing read-only mode");
1814                 res = MS_RDONLY;
1815         }
1816         if (read_only)
1817                 goto done;
1818         if (!(sbi->s_mount_state & EXT4_VALID_FS))
1819                 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1820                          "running e2fsck is recommended");
1821         else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1822                 ext4_msg(sb, KERN_WARNING,
1823                          "warning: mounting fs with errors, "
1824                          "running e2fsck is recommended");
1825         else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1826                  le16_to_cpu(es->s_mnt_count) >=
1827                  (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1828                 ext4_msg(sb, KERN_WARNING,
1829                          "warning: maximal mount count reached, "
1830                          "running e2fsck is recommended");
1831         else if (le32_to_cpu(es->s_checkinterval) &&
1832                 (le32_to_cpu(es->s_lastcheck) +
1833                         le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1834                 ext4_msg(sb, KERN_WARNING,
1835                          "warning: checktime reached, "
1836                          "running e2fsck is recommended");
1837         if (!sbi->s_journal)
1838                 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1839         if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1840                 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1841         le16_add_cpu(&es->s_mnt_count, 1);
1842         es->s_mtime = cpu_to_le32(get_seconds());
1843         ext4_update_dynamic_rev(sb);
1844         if (sbi->s_journal)
1845                 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1846
1847         ext4_commit_super(sb, 1);
1848 done:
1849         if (test_opt(sb, DEBUG))
1850                 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1851                                 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1852                         sb->s_blocksize,
1853                         sbi->s_groups_count,
1854                         EXT4_BLOCKS_PER_GROUP(sb),
1855                         EXT4_INODES_PER_GROUP(sb),
1856                         sbi->s_mount_opt, sbi->s_mount_opt2);
1857
1858         cleancache_init_fs(sb);
1859         return res;
1860 }
1861
1862 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1863 {
1864         struct ext4_sb_info *sbi = EXT4_SB(sb);
1865         struct flex_groups *new_groups;
1866         int size;
1867
1868         if (!sbi->s_log_groups_per_flex)
1869                 return 0;
1870
1871         size = ext4_flex_group(sbi, ngroup - 1) + 1;
1872         if (size <= sbi->s_flex_groups_allocated)
1873                 return 0;
1874
1875         size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1876         new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1877         if (!new_groups) {
1878                 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1879                          size / (int) sizeof(struct flex_groups));
1880                 return -ENOMEM;
1881         }
1882
1883         if (sbi->s_flex_groups) {
1884                 memcpy(new_groups, sbi->s_flex_groups,
1885                        (sbi->s_flex_groups_allocated *
1886                         sizeof(struct flex_groups)));
1887                 ext4_kvfree(sbi->s_flex_groups);
1888         }
1889         sbi->s_flex_groups = new_groups;
1890         sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1891         return 0;
1892 }
1893
1894 static int ext4_fill_flex_info(struct super_block *sb)
1895 {
1896         struct ext4_sb_info *sbi = EXT4_SB(sb);
1897         struct ext4_group_desc *gdp = NULL;
1898         ext4_group_t flex_group;
1899         unsigned int groups_per_flex = 0;
1900         int i, err;
1901
1902         sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1903         if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1904                 sbi->s_log_groups_per_flex = 0;
1905                 return 1;
1906         }
1907         groups_per_flex = 1U << sbi->s_log_groups_per_flex;
1908
1909         err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1910         if (err)
1911                 goto failed;
1912
1913         for (i = 0; i < sbi->s_groups_count; i++) {
1914                 gdp = ext4_get_group_desc(sb, i, NULL);
1915
1916                 flex_group = ext4_flex_group(sbi, i);
1917                 atomic_add(ext4_free_inodes_count(sb, gdp),
1918                            &sbi->s_flex_groups[flex_group].free_inodes);
1919                 atomic64_add(ext4_free_group_clusters(sb, gdp),
1920                              &sbi->s_flex_groups[flex_group].free_clusters);
1921                 atomic_add(ext4_used_dirs_count(sb, gdp),
1922                            &sbi->s_flex_groups[flex_group].used_dirs);
1923         }
1924
1925         return 1;
1926 failed:
1927         return 0;
1928 }
1929
1930 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1931                                    struct ext4_group_desc *gdp)
1932 {
1933         int offset;
1934         __u16 crc = 0;
1935         __le32 le_group = cpu_to_le32(block_group);
1936
1937         if ((sbi->s_es->s_feature_ro_compat &
1938              cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1939                 /* Use new metadata_csum algorithm */
1940                 __le16 save_csum;
1941                 __u32 csum32;
1942
1943                 save_csum = gdp->bg_checksum;
1944                 gdp->bg_checksum = 0;
1945                 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
1946                                      sizeof(le_group));
1947                 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
1948                                      sbi->s_desc_size);
1949                 gdp->bg_checksum = save_csum;
1950
1951                 crc = csum32 & 0xFFFF;
1952                 goto out;
1953         }
1954
1955         /* old crc16 code */
1956         if (!(sbi->s_es->s_feature_ro_compat &
1957               cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)))
1958                 return 0;
1959
1960         offset = offsetof(struct ext4_group_desc, bg_checksum);
1961
1962         crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1963         crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1964         crc = crc16(crc, (__u8 *)gdp, offset);
1965         offset += sizeof(gdp->bg_checksum); /* skip checksum */
1966         /* for checksum of struct ext4_group_desc do the rest...*/
1967         if ((sbi->s_es->s_feature_incompat &
1968              cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1969             offset < le16_to_cpu(sbi->s_es->s_desc_size))
1970                 crc = crc16(crc, (__u8 *)gdp + offset,
1971                             le16_to_cpu(sbi->s_es->s_desc_size) -
1972                                 offset);
1973
1974 out:
1975         return cpu_to_le16(crc);
1976 }
1977
1978 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
1979                                 struct ext4_group_desc *gdp)
1980 {
1981         if (ext4_has_group_desc_csum(sb) &&
1982             (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
1983                                                       block_group, gdp)))
1984                 return 0;
1985
1986         return 1;
1987 }
1988
1989 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
1990                               struct ext4_group_desc *gdp)
1991 {
1992         if (!ext4_has_group_desc_csum(sb))
1993                 return;
1994         gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
1995 }
1996
1997 /* Called at mount-time, super-block is locked */
1998 static int ext4_check_descriptors(struct super_block *sb,
1999                                   ext4_group_t *first_not_zeroed)
2000 {
2001         struct ext4_sb_info *sbi = EXT4_SB(sb);
2002         ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2003         ext4_fsblk_t last_block;
2004         ext4_fsblk_t block_bitmap;
2005         ext4_fsblk_t inode_bitmap;
2006         ext4_fsblk_t inode_table;
2007         int flexbg_flag = 0;
2008         ext4_group_t i, grp = sbi->s_groups_count;
2009
2010         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2011                 flexbg_flag = 1;
2012
2013         ext4_debug("Checking group descriptors");
2014
2015         for (i = 0; i < sbi->s_groups_count; i++) {
2016                 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2017
2018                 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2019                         last_block = ext4_blocks_count(sbi->s_es) - 1;
2020                 else
2021                         last_block = first_block +
2022                                 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2023
2024                 if ((grp == sbi->s_groups_count) &&
2025                    !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2026                         grp = i;
2027
2028                 block_bitmap = ext4_block_bitmap(sb, gdp);
2029                 if (block_bitmap < first_block || block_bitmap > last_block) {
2030                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2031                                "Block bitmap for group %u not in group "
2032                                "(block %llu)!", i, block_bitmap);
2033                         return 0;
2034                 }
2035                 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2036                 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2037                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2038                                "Inode bitmap for group %u not in group "
2039                                "(block %llu)!", i, inode_bitmap);
2040                         return 0;
2041                 }
2042                 inode_table = ext4_inode_table(sb, gdp);
2043                 if (inode_table < first_block ||
2044                     inode_table + sbi->s_itb_per_group - 1 > last_block) {
2045                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2046                                "Inode table for group %u not in group "
2047                                "(block %llu)!", i, inode_table);
2048                         return 0;
2049                 }
2050                 ext4_lock_group(sb, i);
2051                 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2052                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2053                                  "Checksum for group %u failed (%u!=%u)",
2054                                  i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2055                                      gdp)), le16_to_cpu(gdp->bg_checksum));
2056                         if (!(sb->s_flags & MS_RDONLY)) {
2057                                 ext4_unlock_group(sb, i);
2058                                 return 0;
2059                         }
2060                 }
2061                 ext4_unlock_group(sb, i);
2062                 if (!flexbg_flag)
2063                         first_block += EXT4_BLOCKS_PER_GROUP(sb);
2064         }
2065         if (NULL != first_not_zeroed)
2066                 *first_not_zeroed = grp;
2067
2068         ext4_free_blocks_count_set(sbi->s_es,
2069                                    EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2070         sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2071         return 1;
2072 }
2073
2074 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2075  * the superblock) which were deleted from all directories, but held open by
2076  * a process at the time of a crash.  We walk the list and try to delete these
2077  * inodes at recovery time (only with a read-write filesystem).
2078  *
2079  * In order to keep the orphan inode chain consistent during traversal (in
2080  * case of crash during recovery), we link each inode into the superblock
2081  * orphan list_head and handle it the same way as an inode deletion during
2082  * normal operation (which journals the operations for us).
2083  *
2084  * We only do an iget() and an iput() on each inode, which is very safe if we
2085  * accidentally point at an in-use or already deleted inode.  The worst that
2086  * can happen in this case is that we get a "bit already cleared" message from
2087  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2088  * e2fsck was run on this filesystem, and it must have already done the orphan
2089  * inode cleanup for us, so we can safely abort without any further action.
2090  */
2091 static void ext4_orphan_cleanup(struct super_block *sb,
2092                                 struct ext4_super_block *es)
2093 {
2094         unsigned int s_flags = sb->s_flags;
2095         int nr_orphans = 0, nr_truncates = 0;
2096 #ifdef CONFIG_QUOTA
2097         int i;
2098 #endif
2099         if (!es->s_last_orphan) {
2100                 jbd_debug(4, "no orphan inodes to clean up\n");
2101                 return;
2102         }
2103
2104         if (bdev_read_only(sb->s_bdev)) {
2105                 ext4_msg(sb, KERN_ERR, "write access "
2106                         "unavailable, skipping orphan cleanup");
2107                 return;
2108         }
2109
2110         /* Check if feature set would not allow a r/w mount */
2111         if (!ext4_feature_set_ok(sb, 0)) {
2112                 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2113                          "unknown ROCOMPAT features");
2114                 return;
2115         }
2116
2117         if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2118                 /* don't clear list on RO mount w/ errors */
2119                 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2120                         jbd_debug(1, "Errors on filesystem, "
2121                                   "clearing orphan list.\n");
2122                         es->s_last_orphan = 0;
2123                 }
2124                 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2125                 return;
2126         }
2127
2128         if (s_flags & MS_RDONLY) {
2129                 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2130                 sb->s_flags &= ~MS_RDONLY;
2131         }
2132 #ifdef CONFIG_QUOTA
2133         /* Needed for iput() to work correctly and not trash data */
2134         sb->s_flags |= MS_ACTIVE;
2135         /* Turn on quotas so that they are updated correctly */
2136         for (i = 0; i < MAXQUOTAS; i++) {
2137                 if (EXT4_SB(sb)->s_qf_names[i]) {
2138                         int ret = ext4_quota_on_mount(sb, i);
2139                         if (ret < 0)
2140                                 ext4_msg(sb, KERN_ERR,
2141                                         "Cannot turn on journaled "
2142                                         "quota: error %d", ret);
2143                 }
2144         }
2145 #endif
2146
2147         while (es->s_last_orphan) {
2148                 struct inode *inode;
2149
2150                 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2151                 if (IS_ERR(inode)) {
2152                         es->s_last_orphan = 0;
2153                         break;
2154                 }
2155
2156                 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2157                 dquot_initialize(inode);
2158                 if (inode->i_nlink) {
2159                         ext4_msg(sb, KERN_DEBUG,
2160                                 "%s: truncating inode %lu to %lld bytes",
2161                                 __func__, inode->i_ino, inode->i_size);
2162                         jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2163                                   inode->i_ino, inode->i_size);
2164                         mutex_lock(&inode->i_mutex);
2165                         ext4_truncate(inode);
2166                         mutex_unlock(&inode->i_mutex);
2167                         nr_truncates++;
2168                 } else {
2169                         ext4_msg(sb, KERN_DEBUG,
2170                                 "%s: deleting unreferenced inode %lu",
2171                                 __func__, inode->i_ino);
2172                         jbd_debug(2, "deleting unreferenced inode %lu\n",
2173                                   inode->i_ino);
2174                         nr_orphans++;
2175                 }
2176                 iput(inode);  /* The delete magic happens here! */
2177         }
2178
2179 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2180
2181         if (nr_orphans)
2182                 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2183                        PLURAL(nr_orphans));
2184         if (nr_truncates)
2185                 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2186                        PLURAL(nr_truncates));
2187 #ifdef CONFIG_QUOTA
2188         /* Turn quotas off */
2189         for (i = 0; i < MAXQUOTAS; i++) {
2190                 if (sb_dqopt(sb)->files[i])
2191                         dquot_quota_off(sb, i);
2192         }
2193 #endif
2194         sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2195 }
2196
2197 /*
2198  * Maximal extent format file size.
2199  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2200  * extent format containers, within a sector_t, and within i_blocks
2201  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2202  * so that won't be a limiting factor.
2203  *
2204  * However there is other limiting factor. We do store extents in the form
2205  * of starting block and length, hence the resulting length of the extent
2206  * covering maximum file size must fit into on-disk format containers as
2207  * well. Given that length is always by 1 unit bigger than max unit (because
2208  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2209  *
2210  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2211  */
2212 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2213 {
2214         loff_t res;
2215         loff_t upper_limit = MAX_LFS_FILESIZE;
2216
2217         /* small i_blocks in vfs inode? */
2218         if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2219                 /*
2220                  * CONFIG_LBDAF is not enabled implies the inode
2221                  * i_block represent total blocks in 512 bytes
2222                  * 32 == size of vfs inode i_blocks * 8
2223                  */
2224                 upper_limit = (1LL << 32) - 1;
2225
2226                 /* total blocks in file system block size */
2227                 upper_limit >>= (blkbits - 9);
2228                 upper_limit <<= blkbits;
2229         }
2230
2231         /*
2232          * 32-bit extent-start container, ee_block. We lower the maxbytes
2233          * by one fs block, so ee_len can cover the extent of maximum file
2234          * size
2235          */
2236         res = (1LL << 32) - 1;
2237         res <<= blkbits;
2238
2239         /* Sanity check against vm- & vfs- imposed limits */
2240         if (res > upper_limit)
2241                 res = upper_limit;
2242
2243         return res;
2244 }
2245
2246 /*
2247  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2248  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2249  * We need to be 1 filesystem block less than the 2^48 sector limit.
2250  */
2251 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2252 {
2253         loff_t res = EXT4_NDIR_BLOCKS;
2254         int meta_blocks;
2255         loff_t upper_limit;
2256         /* This is calculated to be the largest file size for a dense, block
2257          * mapped file such that the file's total number of 512-byte sectors,
2258          * including data and all indirect blocks, does not exceed (2^48 - 1).
2259          *
2260          * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2261          * number of 512-byte sectors of the file.
2262          */
2263
2264         if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2265                 /*
2266                  * !has_huge_files or CONFIG_LBDAF not enabled implies that
2267                  * the inode i_block field represents total file blocks in
2268                  * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2269                  */
2270                 upper_limit = (1LL << 32) - 1;
2271
2272                 /* total blocks in file system block size */
2273                 upper_limit >>= (bits - 9);
2274
2275         } else {
2276                 /*
2277                  * We use 48 bit ext4_inode i_blocks
2278                  * With EXT4_HUGE_FILE_FL set the i_blocks
2279                  * represent total number of blocks in
2280                  * file system block size
2281                  */
2282                 upper_limit = (1LL << 48) - 1;
2283
2284         }
2285
2286         /* indirect blocks */
2287         meta_blocks = 1;
2288         /* double indirect blocks */
2289         meta_blocks += 1 + (1LL << (bits-2));
2290         /* tripple indirect blocks */
2291         meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2292
2293         upper_limit -= meta_blocks;
2294         upper_limit <<= bits;
2295
2296         res += 1LL << (bits-2);
2297         res += 1LL << (2*(bits-2));
2298         res += 1LL << (3*(bits-2));
2299         res <<= bits;
2300         if (res > upper_limit)
2301                 res = upper_limit;
2302
2303         if (res > MAX_LFS_FILESIZE)
2304                 res = MAX_LFS_FILESIZE;
2305
2306         return res;
2307 }
2308
2309 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2310                                    ext4_fsblk_t logical_sb_block, int nr)
2311 {
2312         struct ext4_sb_info *sbi = EXT4_SB(sb);
2313         ext4_group_t bg, first_meta_bg;
2314         int has_super = 0;
2315
2316         first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2317
2318         if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2319             nr < first_meta_bg)
2320                 return logical_sb_block + nr + 1;
2321         bg = sbi->s_desc_per_block * nr;
2322         if (ext4_bg_has_super(sb, bg))
2323                 has_super = 1;
2324
2325         return (has_super + ext4_group_first_block_no(sb, bg));
2326 }
2327
2328 /**
2329  * ext4_get_stripe_size: Get the stripe size.
2330  * @sbi: In memory super block info
2331  *
2332  * If we have specified it via mount option, then
2333  * use the mount option value. If the value specified at mount time is
2334  * greater than the blocks per group use the super block value.
2335  * If the super block value is greater than blocks per group return 0.
2336  * Allocator needs it be less than blocks per group.
2337  *
2338  */
2339 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2340 {
2341         unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2342         unsigned long stripe_width =
2343                         le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2344         int ret;
2345
2346         if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2347                 ret = sbi->s_stripe;
2348         else if (stripe_width <= sbi->s_blocks_per_group)
2349                 ret = stripe_width;
2350         else if (stride <= sbi->s_blocks_per_group)
2351                 ret = stride;
2352         else
2353                 ret = 0;
2354
2355         /*
2356          * If the stripe width is 1, this makes no sense and
2357          * we set it to 0 to turn off stripe handling code.
2358          */
2359         if (ret <= 1)
2360                 ret = 0;
2361
2362         return ret;
2363 }
2364
2365 /* sysfs supprt */
2366
2367 struct ext4_attr {
2368         struct attribute attr;
2369         ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2370         ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2371                          const char *, size_t);
2372         int offset;
2373 };
2374
2375 static int parse_strtoull(const char *buf,
2376                 unsigned long long max, unsigned long long *value)
2377 {
2378         int ret;
2379
2380         ret = kstrtoull(skip_spaces(buf), 0, value);
2381         if (!ret && *value > max)
2382                 ret = -EINVAL;
2383         return ret;
2384 }
2385
2386 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2387                                               struct ext4_sb_info *sbi,
2388                                               char *buf)
2389 {
2390         return snprintf(buf, PAGE_SIZE, "%llu\n",
2391                 (s64) EXT4_C2B(sbi,
2392                         percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2393 }
2394
2395 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2396                                          struct ext4_sb_info *sbi, char *buf)
2397 {
2398         struct super_block *sb = sbi->s_buddy_cache->i_sb;
2399
2400         if (!sb->s_bdev->bd_part)
2401                 return snprintf(buf, PAGE_SIZE, "0\n");
2402         return snprintf(buf, PAGE_SIZE, "%lu\n",
2403                         (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2404                          sbi->s_sectors_written_start) >> 1);
2405 }
2406
2407 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2408                                           struct ext4_sb_info *sbi, char *buf)
2409 {
2410         struct super_block *sb = sbi->s_buddy_cache->i_sb;
2411
2412         if (!sb->s_bdev->bd_part)
2413                 return snprintf(buf, PAGE_SIZE, "0\n");
2414         return snprintf(buf, PAGE_SIZE, "%llu\n",
2415                         (unsigned long long)(sbi->s_kbytes_written +
2416                         ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2417                           EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2418 }
2419
2420 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2421                                           struct ext4_sb_info *sbi,
2422                                           const char *buf, size_t count)
2423 {
2424         unsigned long t;
2425         int ret;
2426
2427         ret = kstrtoul(skip_spaces(buf), 0, &t);
2428         if (ret)
2429                 return ret;
2430
2431         if (t && (!is_power_of_2(t) || t > 0x40000000))
2432                 return -EINVAL;
2433
2434         sbi->s_inode_readahead_blks = t;
2435         return count;
2436 }
2437
2438 static ssize_t sbi_ui_show(struct ext4_attr *a,
2439                            struct ext4_sb_info *sbi, char *buf)
2440 {
2441         unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2442
2443         return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2444 }
2445
2446 static ssize_t sbi_ui_store(struct ext4_attr *a,
2447                             struct ext4_sb_info *sbi,
2448                             const char *buf, size_t count)
2449 {
2450         unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2451         unsigned long t;
2452         int ret;
2453
2454         ret = kstrtoul(skip_spaces(buf), 0, &t);
2455         if (ret)
2456                 return ret;
2457         *ui = t;
2458         return count;
2459 }
2460
2461 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2462                                   struct ext4_sb_info *sbi, char *buf)
2463 {
2464         return snprintf(buf, PAGE_SIZE, "%llu\n",
2465                 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2466 }
2467
2468 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2469                                    struct ext4_sb_info *sbi,
2470                                    const char *buf, size_t count)
2471 {
2472         unsigned long long val;
2473         int ret;
2474
2475         if (parse_strtoull(buf, -1ULL, &val))
2476                 return -EINVAL;
2477         ret = ext4_reserve_clusters(sbi, val);
2478
2479         return ret ? ret : count;
2480 }
2481
2482 static ssize_t trigger_test_error(struct ext4_attr *a,
2483                                   struct ext4_sb_info *sbi,
2484                                   const char *buf, size_t count)
2485 {
2486         int len = count;
2487
2488         if (!capable(CAP_SYS_ADMIN))
2489                 return -EPERM;
2490
2491         if (len && buf[len-1] == '\n')
2492                 len--;
2493
2494         if (len)
2495                 ext4_error(sbi->s_sb, "%.*s", len, buf);
2496         return count;
2497 }
2498
2499 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2500 static struct ext4_attr ext4_attr_##_name = {                   \
2501         .attr = {.name = __stringify(_name), .mode = _mode },   \
2502         .show   = _show,                                        \
2503         .store  = _store,                                       \
2504         .offset = offsetof(struct ext4_sb_info, _elname),       \
2505 }
2506 #define EXT4_ATTR(name, mode, show, store) \
2507 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2508
2509 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2510 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2511 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2512 #define EXT4_RW_ATTR_SBI_UI(name, elname)       \
2513         EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2514 #define ATTR_LIST(name) &ext4_attr_##name.attr
2515
2516 EXT4_RO_ATTR(delayed_allocation_blocks);
2517 EXT4_RO_ATTR(session_write_kbytes);
2518 EXT4_RO_ATTR(lifetime_write_kbytes);
2519 EXT4_RW_ATTR(reserved_clusters);
2520 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2521                  inode_readahead_blks_store, s_inode_readahead_blks);
2522 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2523 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2524 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2525 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2526 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2527 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2528 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2529 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2530 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2531 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2532
2533 static struct attribute *ext4_attrs[] = {
2534         ATTR_LIST(delayed_allocation_blocks),
2535         ATTR_LIST(session_write_kbytes),
2536         ATTR_LIST(lifetime_write_kbytes),
2537         ATTR_LIST(reserved_clusters),
2538         ATTR_LIST(inode_readahead_blks),
2539         ATTR_LIST(inode_goal),
2540         ATTR_LIST(mb_stats),
2541         ATTR_LIST(mb_max_to_scan),
2542         ATTR_LIST(mb_min_to_scan),
2543         ATTR_LIST(mb_order2_req),
2544         ATTR_LIST(mb_stream_req),
2545         ATTR_LIST(mb_group_prealloc),
2546         ATTR_LIST(max_writeback_mb_bump),
2547         ATTR_LIST(extent_max_zeroout_kb),
2548         ATTR_LIST(trigger_fs_error),
2549         NULL,
2550 };
2551
2552 /* Features this copy of ext4 supports */
2553 EXT4_INFO_ATTR(lazy_itable_init);
2554 EXT4_INFO_ATTR(batched_discard);
2555 EXT4_INFO_ATTR(meta_bg_resize);
2556
2557 static struct attribute *ext4_feat_attrs[] = {
2558         ATTR_LIST(lazy_itable_init),
2559         ATTR_LIST(batched_discard),
2560         ATTR_LIST(meta_bg_resize),
2561         NULL,
2562 };
2563
2564 static ssize_t ext4_attr_show(struct kobject *kobj,
2565                               struct attribute *attr, char *buf)
2566 {
2567         struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2568                                                 s_kobj);
2569         struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2570
2571         return a->show ? a->show(a, sbi, buf) : 0;
2572 }
2573
2574 static ssize_t ext4_attr_store(struct kobject *kobj,
2575                                struct attribute *attr,
2576                                const char *buf, size_t len)
2577 {
2578         struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2579                                                 s_kobj);
2580         struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2581
2582         return a->store ? a->store(a, sbi, buf, len) : 0;
2583 }
2584
2585 static void ext4_sb_release(struct kobject *kobj)
2586 {
2587         struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2588                                                 s_kobj);
2589         complete(&sbi->s_kobj_unregister);
2590 }
2591
2592 static const struct sysfs_ops ext4_attr_ops = {
2593         .show   = ext4_attr_show,
2594         .store  = ext4_attr_store,
2595 };
2596
2597 static struct kobj_type ext4_ktype = {
2598         .default_attrs  = ext4_attrs,
2599         .sysfs_ops      = &ext4_attr_ops,
2600         .release        = ext4_sb_release,
2601 };
2602
2603 static void ext4_feat_release(struct kobject *kobj)
2604 {
2605         complete(&ext4_feat->f_kobj_unregister);
2606 }
2607
2608 static struct kobj_type ext4_feat_ktype = {
2609         .default_attrs  = ext4_feat_attrs,
2610         .sysfs_ops      = &ext4_attr_ops,
2611         .release        = ext4_feat_release,
2612 };
2613
2614 /*
2615  * Check whether this filesystem can be mounted based on
2616  * the features present and the RDONLY/RDWR mount requested.
2617  * Returns 1 if this filesystem can be mounted as requested,
2618  * 0 if it cannot be.
2619  */
2620 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2621 {
2622         if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2623                 ext4_msg(sb, KERN_ERR,
2624                         "Couldn't mount because of "
2625                         "unsupported optional features (%x)",
2626                         (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2627                         ~EXT4_FEATURE_INCOMPAT_SUPP));
2628                 return 0;
2629         }
2630
2631         if (readonly)
2632                 return 1;
2633
2634         /* Check that feature set is OK for a read-write mount */
2635         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2636                 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2637                          "unsupported optional features (%x)",
2638                          (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2639                                 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2640                 return 0;
2641         }
2642         /*
2643          * Large file size enabled file system can only be mounted
2644          * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2645          */
2646         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2647                 if (sizeof(blkcnt_t) < sizeof(u64)) {
2648                         ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2649                                  "cannot be mounted RDWR without "
2650                                  "CONFIG_LBDAF");
2651                         return 0;
2652                 }
2653         }
2654         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2655             !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2656                 ext4_msg(sb, KERN_ERR,
2657                          "Can't support bigalloc feature without "
2658                          "extents feature\n");
2659                 return 0;
2660         }
2661
2662 #ifndef CONFIG_QUOTA
2663         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2664             !readonly) {
2665                 ext4_msg(sb, KERN_ERR,
2666                          "Filesystem with quota feature cannot be mounted RDWR "
2667                          "without CONFIG_QUOTA");
2668                 return 0;
2669         }
2670 #endif  /* CONFIG_QUOTA */
2671         return 1;
2672 }
2673
2674 /*
2675  * This function is called once a day if we have errors logged
2676  * on the file system
2677  */
2678 static void print_daily_error_info(unsigned long arg)
2679 {
2680         struct super_block *sb = (struct super_block *) arg;
2681         struct ext4_sb_info *sbi;
2682         struct ext4_super_block *es;
2683
2684         sbi = EXT4_SB(sb);
2685         es = sbi->s_es;
2686
2687         if (es->s_error_count)
2688                 /* fsck newer than v1.41.13 is needed to clean this condition. */
2689                 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2690                          le32_to_cpu(es->s_error_count));
2691         if (es->s_first_error_time) {
2692                 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2693                        sb->s_id, le32_to_cpu(es->s_first_error_time),
2694                        (int) sizeof(es->s_first_error_func),
2695                        es->s_first_error_func,
2696                        le32_to_cpu(es->s_first_error_line));
2697                 if (es->s_first_error_ino)
2698                         printk(": inode %u",
2699                                le32_to_cpu(es->s_first_error_ino));
2700                 if (es->s_first_error_block)
2701                         printk(": block %llu", (unsigned long long)
2702                                le64_to_cpu(es->s_first_error_block));
2703                 printk("\n");
2704         }
2705         if (es->s_last_error_time) {
2706                 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2707                        sb->s_id, le32_to_cpu(es->s_last_error_time),
2708                        (int) sizeof(es->s_last_error_func),
2709                        es->s_last_error_func,
2710                        le32_to_cpu(es->s_last_error_line));
2711                 if (es->s_last_error_ino)
2712                         printk(": inode %u",
2713                                le32_to_cpu(es->s_last_error_ino));
2714                 if (es->s_last_error_block)
2715                         printk(": block %llu", (unsigned long long)
2716                                le64_to_cpu(es->s_last_error_block));
2717                 printk("\n");
2718         }
2719         mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2720 }
2721
2722 /* Find next suitable group and run ext4_init_inode_table */
2723 static int ext4_run_li_request(struct ext4_li_request *elr)
2724 {
2725         struct ext4_group_desc *gdp = NULL;
2726         ext4_group_t group, ngroups;
2727         struct super_block *sb;
2728         unsigned long timeout = 0;
2729         int ret = 0;
2730
2731         sb = elr->lr_super;
2732         ngroups = EXT4_SB(sb)->s_groups_count;
2733
2734         sb_start_write(sb);
2735         for (group = elr->lr_next_group; group < ngroups; group++) {
2736                 gdp = ext4_get_group_desc(sb, group, NULL);
2737                 if (!gdp) {
2738                         ret = 1;
2739                         break;
2740                 }
2741
2742                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2743                         break;
2744         }
2745
2746         if (group >= ngroups)
2747                 ret = 1;
2748
2749         if (!ret) {
2750                 timeout = jiffies;
2751                 ret = ext4_init_inode_table(sb, group,
2752                                             elr->lr_timeout ? 0 : 1);
2753                 if (elr->lr_timeout == 0) {
2754                         timeout = (jiffies - timeout) *
2755                                   elr->lr_sbi->s_li_wait_mult;
2756                         elr->lr_timeout = timeout;
2757                 }
2758                 elr->lr_next_sched = jiffies + elr->lr_timeout;
2759                 elr->lr_next_group = group + 1;
2760         }
2761         sb_end_write(sb);
2762
2763         return ret;
2764 }
2765
2766 /*
2767  * Remove lr_request from the list_request and free the
2768  * request structure. Should be called with li_list_mtx held
2769  */
2770 static void ext4_remove_li_request(struct ext4_li_request *elr)
2771 {
2772         struct ext4_sb_info *sbi;
2773
2774         if (!elr)
2775                 return;
2776
2777         sbi = elr->lr_sbi;
2778
2779         list_del(&elr->lr_request);
2780         sbi->s_li_request = NULL;
2781         kfree(elr);
2782 }
2783
2784 static void ext4_unregister_li_request(struct super_block *sb)
2785 {
2786         mutex_lock(&ext4_li_mtx);
2787         if (!ext4_li_info) {
2788                 mutex_unlock(&ext4_li_mtx);
2789                 return;
2790         }
2791
2792         mutex_lock(&ext4_li_info->li_list_mtx);
2793         ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2794         mutex_unlock(&ext4_li_info->li_list_mtx);
2795         mutex_unlock(&ext4_li_mtx);
2796 }
2797
2798 static struct task_struct *ext4_lazyinit_task;
2799
2800 /*
2801  * This is the function where ext4lazyinit thread lives. It walks
2802  * through the request list searching for next scheduled filesystem.
2803  * When such a fs is found, run the lazy initialization request
2804  * (ext4_rn_li_request) and keep track of the time spend in this
2805  * function. Based on that time we compute next schedule time of
2806  * the request. When walking through the list is complete, compute
2807  * next waking time and put itself into sleep.
2808  */
2809 static int ext4_lazyinit_thread(void *arg)
2810 {
2811         struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2812         struct list_head *pos, *n;
2813         struct ext4_li_request *elr;
2814         unsigned long next_wakeup, cur;
2815
2816         BUG_ON(NULL == eli);
2817
2818 cont_thread:
2819         while (true) {
2820                 next_wakeup = MAX_JIFFY_OFFSET;
2821
2822                 mutex_lock(&eli->li_list_mtx);
2823                 if (list_empty(&eli->li_request_list)) {
2824                         mutex_unlock(&eli->li_list_mtx);
2825                         goto exit_thread;
2826                 }
2827
2828                 list_for_each_safe(pos, n, &eli->li_request_list) {
2829                         elr = list_entry(pos, struct ext4_li_request,
2830                                          lr_request);
2831
2832                         if (time_after_eq(jiffies, elr->lr_next_sched)) {
2833                                 if (ext4_run_li_request(elr) != 0) {
2834                                         /* error, remove the lazy_init job */
2835                                         ext4_remove_li_request(elr);
2836                                         continue;
2837                                 }
2838                         }
2839
2840                         if (time_before(elr->lr_next_sched, next_wakeup))
2841                                 next_wakeup = elr->lr_next_sched;
2842                 }
2843                 mutex_unlock(&eli->li_list_mtx);
2844
2845                 try_to_freeze();
2846
2847                 cur = jiffies;
2848                 if ((time_after_eq(cur, next_wakeup)) ||
2849                     (MAX_JIFFY_OFFSET == next_wakeup)) {
2850                         cond_resched();
2851                         continue;
2852                 }
2853
2854                 schedule_timeout_interruptible(next_wakeup - cur);
2855
2856                 if (kthread_should_stop()) {
2857                         ext4_clear_request_list();
2858                         goto exit_thread;
2859                 }
2860         }
2861
2862 exit_thread:
2863         /*
2864          * It looks like the request list is empty, but we need
2865          * to check it under the li_list_mtx lock, to prevent any
2866          * additions into it, and of course we should lock ext4_li_mtx
2867          * to atomically free the list and ext4_li_info, because at
2868          * this point another ext4 filesystem could be registering
2869          * new one.
2870          */
2871         mutex_lock(&ext4_li_mtx);
2872         mutex_lock(&eli->li_list_mtx);
2873         if (!list_empty(&eli->li_request_list)) {
2874                 mutex_unlock(&eli->li_list_mtx);
2875                 mutex_unlock(&ext4_li_mtx);
2876                 goto cont_thread;
2877         }
2878         mutex_unlock(&eli->li_list_mtx);
2879         kfree(ext4_li_info);
2880         ext4_li_info = NULL;
2881         mutex_unlock(&ext4_li_mtx);
2882
2883         return 0;
2884 }
2885
2886 static void ext4_clear_request_list(void)
2887 {
2888         struct list_head *pos, *n;
2889         struct ext4_li_request *elr;
2890
2891         mutex_lock(&ext4_li_info->li_list_mtx);
2892         list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2893                 elr = list_entry(pos, struct ext4_li_request,
2894                                  lr_request);
2895                 ext4_remove_li_request(elr);
2896         }
2897         mutex_unlock(&ext4_li_info->li_list_mtx);
2898 }
2899
2900 static int ext4_run_lazyinit_thread(void)
2901 {
2902         ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2903                                          ext4_li_info, "ext4lazyinit");
2904         if (IS_ERR(ext4_lazyinit_task)) {
2905                 int err = PTR_ERR(ext4_lazyinit_task);
2906                 ext4_clear_request_list();
2907                 kfree(ext4_li_info);
2908                 ext4_li_info = NULL;
2909                 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2910                                  "initialization thread\n",
2911                                  err);
2912                 return err;
2913         }
2914         ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2915         return 0;
2916 }
2917
2918 /*
2919  * Check whether it make sense to run itable init. thread or not.
2920  * If there is at least one uninitialized inode table, return
2921  * corresponding group number, else the loop goes through all
2922  * groups and return total number of groups.
2923  */
2924 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2925 {
2926         ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2927         struct ext4_group_desc *gdp = NULL;
2928
2929         for (group = 0; group < ngroups; group++) {
2930                 gdp = ext4_get_group_desc(sb, group, NULL);
2931                 if (!gdp)
2932                         continue;
2933
2934                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2935                         break;
2936         }
2937
2938         return group;
2939 }
2940
2941 static int ext4_li_info_new(void)
2942 {
2943         struct ext4_lazy_init *eli = NULL;
2944
2945         eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2946         if (!eli)
2947                 return -ENOMEM;
2948
2949         INIT_LIST_HEAD(&eli->li_request_list);
2950         mutex_init(&eli->li_list_mtx);
2951
2952         eli->li_state |= EXT4_LAZYINIT_QUIT;
2953
2954         ext4_li_info = eli;
2955
2956         return 0;
2957 }
2958
2959 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2960                                             ext4_group_t start)
2961 {
2962         struct ext4_sb_info *sbi = EXT4_SB(sb);
2963         struct ext4_li_request *elr;
2964         unsigned long rnd;
2965
2966         elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2967         if (!elr)
2968                 return NULL;
2969
2970         elr->lr_super = sb;
2971         elr->lr_sbi = sbi;
2972         elr->lr_next_group = start;
2973
2974         /*
2975          * Randomize first schedule time of the request to
2976          * spread the inode table initialization requests
2977          * better.
2978          */
2979         get_random_bytes(&rnd, sizeof(rnd));
2980         elr->lr_next_sched = jiffies + (unsigned long)rnd %
2981                              (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2982
2983         return elr;
2984 }
2985
2986 int ext4_register_li_request(struct super_block *sb,
2987                              ext4_group_t first_not_zeroed)
2988 {
2989         struct ext4_sb_info *sbi = EXT4_SB(sb);
2990         struct ext4_li_request *elr = NULL;
2991         ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2992         int ret = 0;
2993
2994         mutex_lock(&ext4_li_mtx);
2995         if (sbi->s_li_request != NULL) {
2996                 /*
2997                  * Reset timeout so it can be computed again, because
2998                  * s_li_wait_mult might have changed.
2999                  */
3000                 sbi->s_li_request->lr_timeout = 0;
3001                 goto out;
3002         }
3003
3004         if (first_not_zeroed == ngroups ||
3005             (sb->s_flags & MS_RDONLY) ||
3006             !test_opt(sb, INIT_INODE_TABLE))
3007                 goto out;
3008
3009         elr = ext4_li_request_new(sb, first_not_zeroed);
3010         if (!elr) {
3011                 ret = -ENOMEM;
3012                 goto out;
3013         }
3014
3015         if (NULL == ext4_li_info) {
3016                 ret = ext4_li_info_new();
3017                 if (ret)
3018                         goto out;
3019         }
3020
3021         mutex_lock(&ext4_li_info->li_list_mtx);
3022         list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3023         mutex_unlock(&ext4_li_info->li_list_mtx);
3024
3025         sbi->s_li_request = elr;
3026         /*
3027          * set elr to NULL here since it has been inserted to
3028          * the request_list and the removal and free of it is
3029          * handled by ext4_clear_request_list from now on.
3030          */
3031         elr = NULL;
3032
3033         if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3034                 ret = ext4_run_lazyinit_thread();
3035                 if (ret)
3036                         goto out;
3037         }
3038 out:
3039         mutex_unlock(&ext4_li_mtx);
3040         if (ret)
3041                 kfree(elr);
3042         return ret;
3043 }
3044
3045 /*
3046  * We do not need to lock anything since this is called on
3047  * module unload.
3048  */
3049 static void ext4_destroy_lazyinit_thread(void)
3050 {
3051         /*
3052          * If thread exited earlier
3053          * there's nothing to be done.
3054          */
3055         if (!ext4_li_info || !ext4_lazyinit_task)
3056                 return;
3057
3058         kthread_stop(ext4_lazyinit_task);
3059 }
3060
3061 static int set_journal_csum_feature_set(struct super_block *sb)
3062 {
3063         int ret = 1;
3064         int compat, incompat;
3065         struct ext4_sb_info *sbi = EXT4_SB(sb);
3066
3067         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3068                                        EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3069                 /* journal checksum v2 */
3070                 compat = 0;
3071                 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3072         } else {
3073                 /* journal checksum v1 */
3074                 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3075                 incompat = 0;
3076         }
3077
3078         if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3079                 ret = jbd2_journal_set_features(sbi->s_journal,
3080                                 compat, 0,
3081                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3082                                 incompat);
3083         } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3084                 ret = jbd2_journal_set_features(sbi->s_journal,
3085                                 compat, 0,
3086                                 incompat);
3087                 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3088                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3089         } else {
3090                 jbd2_journal_clear_features(sbi->s_journal,
3091                                 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3092                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3093                                 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3094         }
3095
3096         return ret;
3097 }
3098
3099 /*
3100  * Note: calculating the overhead so we can be compatible with
3101  * historical BSD practice is quite difficult in the face of
3102  * clusters/bigalloc.  This is because multiple metadata blocks from
3103  * different block group can end up in the same allocation cluster.
3104  * Calculating the exact overhead in the face of clustered allocation
3105  * requires either O(all block bitmaps) in memory or O(number of block
3106  * groups**2) in time.  We will still calculate the superblock for
3107  * older file systems --- and if we come across with a bigalloc file
3108  * system with zero in s_overhead_clusters the estimate will be close to
3109  * correct especially for very large cluster sizes --- but for newer
3110  * file systems, it's better to calculate this figure once at mkfs
3111  * time, and store it in the superblock.  If the superblock value is
3112  * present (even for non-bigalloc file systems), we will use it.
3113  */
3114 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3115                           char *buf)
3116 {
3117         struct ext4_sb_info     *sbi = EXT4_SB(sb);
3118         struct ext4_group_desc  *gdp;
3119         ext4_fsblk_t            first_block, last_block, b;
3120         ext4_group_t            i, ngroups = ext4_get_groups_count(sb);
3121         int                     s, j, count = 0;
3122
3123         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3124                 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3125                         sbi->s_itb_per_group + 2);
3126
3127         first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3128                 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3129         last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3130         for (i = 0; i < ngroups; i++) {
3131                 gdp = ext4_get_group_desc(sb, i, NULL);
3132                 b = ext4_block_bitmap(sb, gdp);
3133                 if (b >= first_block && b <= last_block) {
3134                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3135                         count++;
3136                 }
3137                 b = ext4_inode_bitmap(sb, gdp);
3138                 if (b >= first_block && b <= last_block) {
3139                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3140                         count++;
3141                 }
3142                 b = ext4_inode_table(sb, gdp);
3143                 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3144                         for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3145                                 int c = EXT4_B2C(sbi, b - first_block);
3146                                 ext4_set_bit(c, buf);
3147                                 count++;
3148                         }
3149                 if (i != grp)
3150                         continue;
3151                 s = 0;
3152                 if (ext4_bg_has_super(sb, grp)) {
3153                         ext4_set_bit(s++, buf);
3154                         count++;
3155                 }
3156                 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3157                         ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3158                         count++;
3159                 }
3160         }
3161         if (!count)
3162                 return 0;
3163         return EXT4_CLUSTERS_PER_GROUP(sb) -
3164                 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3165 }
3166
3167 /*
3168  * Compute the overhead and stash it in sbi->s_overhead
3169  */
3170 int ext4_calculate_overhead(struct super_block *sb)
3171 {
3172         struct ext4_sb_info *sbi = EXT4_SB(sb);
3173         struct ext4_super_block *es = sbi->s_es;
3174         ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3175         ext4_fsblk_t overhead = 0;
3176         char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3177
3178         if (!buf)
3179                 return -ENOMEM;
3180
3181         /*
3182          * Compute the overhead (FS structures).  This is constant
3183          * for a given filesystem unless the number of block groups
3184          * changes so we cache the previous value until it does.
3185          */
3186
3187         /*
3188          * All of the blocks before first_data_block are overhead
3189          */
3190         overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3191
3192         /*
3193          * Add the overhead found in each block group
3194          */
3195         for (i = 0; i < ngroups; i++) {
3196                 int blks;
3197
3198                 blks = count_overhead(sb, i, buf);
3199                 overhead += blks;
3200                 if (blks)
3201                         memset(buf, 0, PAGE_SIZE);
3202                 cond_resched();
3203         }
3204         /* Add the journal blocks as well */
3205         if (sbi->s_journal)
3206                 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3207
3208         sbi->s_overhead = overhead;
3209         smp_wmb();
3210         free_page((unsigned long) buf);
3211         return 0;
3212 }
3213
3214
3215 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3216 {
3217         ext4_fsblk_t resv_clusters;
3218
3219         /*
3220          * There's no need to reserve anything when we aren't using extents.
3221          * The space estimates are exact, there are no unwritten extents,
3222          * hole punching doesn't need new metadata... This is needed especially
3223          * to keep ext2/3 backward compatibility.
3224          */
3225         if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3226                 return 0;
3227         /*
3228          * By default we reserve 2% or 4096 clusters, whichever is smaller.
3229          * This should cover the situations where we can not afford to run
3230          * out of space like for example punch hole, or converting
3231          * uninitialized extents in delalloc path. In most cases such
3232          * allocation would require 1, or 2 blocks, higher numbers are
3233          * very rare.
3234          */
3235         resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3236                         EXT4_SB(sb)->s_cluster_bits;
3237
3238         do_div(resv_clusters, 50);
3239         resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3240
3241         return resv_clusters;
3242 }
3243
3244
3245 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3246 {
3247         ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3248                                 sbi->s_cluster_bits;
3249
3250         if (count >= clusters)
3251                 return -EINVAL;
3252
3253         atomic64_set(&sbi->s_resv_clusters, count);
3254         return 0;
3255 }
3256
3257 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3258 {
3259         char *orig_data = kstrdup(data, GFP_KERNEL);
3260         struct buffer_head *bh;
3261         struct ext4_super_block *es = NULL;
3262         struct ext4_sb_info *sbi;
3263         ext4_fsblk_t block;
3264         ext4_fsblk_t sb_block = get_sb_block(&data);
3265         ext4_fsblk_t logical_sb_block;
3266         unsigned long offset = 0;
3267         unsigned long journal_devnum = 0;
3268         unsigned long def_mount_opts;
3269         struct inode *root;
3270         char *cp;
3271         const char *descr;
3272         int ret = -ENOMEM;
3273         int blocksize, clustersize;
3274         unsigned int db_count;
3275         unsigned int i;
3276         int needs_recovery, has_huge_files, has_bigalloc;
3277         __u64 blocks_count;
3278         int err = 0;
3279         unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3280         ext4_group_t first_not_zeroed;
3281
3282         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3283         if (!sbi)
3284                 goto out_free_orig;
3285
3286         sbi->s_blockgroup_lock =
3287                 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3288         if (!sbi->s_blockgroup_lock) {
3289                 kfree(sbi);
3290                 goto out_free_orig;
3291         }
3292         sb->s_fs_info = sbi;
3293         sbi->s_sb = sb;
3294         sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3295         sbi->s_sb_block = sb_block;
3296         if (sb->s_bdev->bd_part)
3297                 sbi->s_sectors_written_start =
3298                         part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3299
3300         /* Cleanup superblock name */
3301         for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3302                 *cp = '!';
3303
3304         /* -EINVAL is default */
3305         ret = -EINVAL;
3306         blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3307         if (!blocksize) {
3308                 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3309                 goto out_fail;
3310         }
3311
3312         /*
3313          * The ext4 superblock will not be buffer aligned for other than 1kB
3314          * block sizes.  We need to calculate the offset from buffer start.
3315          */
3316         if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3317                 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3318                 offset = do_div(logical_sb_block, blocksize);
3319         } else {
3320                 logical_sb_block = sb_block;
3321         }
3322
3323         if (!(bh = sb_bread(sb, logical_sb_block))) {
3324                 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3325                 goto out_fail;
3326         }
3327         /*
3328          * Note: s_es must be initialized as soon as possible because
3329          *       some ext4 macro-instructions depend on its value
3330          */
3331         es = (struct ext4_super_block *) (bh->b_data + offset);
3332         sbi->s_es = es;
3333         sb->s_magic = le16_to_cpu(es->s_magic);
3334         if (sb->s_magic != EXT4_SUPER_MAGIC)
3335                 goto cantfind_ext4;
3336         sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3337
3338         /* Warn if metadata_csum and gdt_csum are both set. */
3339         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3340                                        EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3341             EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3342                 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3343                              "redundant flags; please run fsck.");
3344
3345         /* Check for a known checksum algorithm */
3346         if (!ext4_verify_csum_type(sb, es)) {
3347                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3348                          "unknown checksum algorithm.");
3349                 silent = 1;
3350                 goto cantfind_ext4;
3351         }
3352
3353         /* Load the checksum driver */
3354         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3355                                        EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3356                 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3357                 if (IS_ERR(sbi->s_chksum_driver)) {
3358                         ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3359                         ret = PTR_ERR(sbi->s_chksum_driver);
3360                         sbi->s_chksum_driver = NULL;
3361                         goto failed_mount;
3362                 }
3363         }
3364
3365         /* Check superblock checksum */
3366         if (!ext4_superblock_csum_verify(sb, es)) {
3367                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3368                          "invalid superblock checksum.  Run e2fsck?");
3369                 silent = 1;
3370                 goto cantfind_ext4;
3371         }
3372
3373         /* Precompute checksum seed for all metadata */
3374         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3375                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3376                 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3377                                                sizeof(es->s_uuid));
3378
3379         /* Set defaults before we parse the mount options */
3380         def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3381         set_opt(sb, INIT_INODE_TABLE);
3382         if (def_mount_opts & EXT4_DEFM_DEBUG)
3383                 set_opt(sb, DEBUG);
3384         if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3385                 set_opt(sb, GRPID);
3386         if (def_mount_opts & EXT4_DEFM_UID16)
3387                 set_opt(sb, NO_UID32);
3388         /* xattr user namespace & acls are now defaulted on */
3389         set_opt(sb, XATTR_USER);
3390 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3391         set_opt(sb, POSIX_ACL);
3392 #endif
3393         if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3394                 set_opt(sb, JOURNAL_DATA);
3395         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3396                 set_opt(sb, ORDERED_DATA);
3397         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3398                 set_opt(sb, WRITEBACK_DATA);
3399
3400         if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3401                 set_opt(sb, ERRORS_PANIC);
3402         else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3403                 set_opt(sb, ERRORS_CONT);
3404         else
3405                 set_opt(sb, ERRORS_RO);
3406         if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3407                 set_opt(sb, BLOCK_VALIDITY);
3408         if (def_mount_opts & EXT4_DEFM_DISCARD)
3409                 set_opt(sb, DISCARD);
3410
3411         sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3412         sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3413         sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3414         sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3415         sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3416
3417         if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3418                 set_opt(sb, BARRIER);
3419
3420         /*
3421          * enable delayed allocation by default
3422          * Use -o nodelalloc to turn it off
3423          */
3424         if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3425             ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3426                 set_opt(sb, DELALLOC);
3427
3428         /*
3429          * set default s_li_wait_mult for lazyinit, for the case there is
3430          * no mount option specified.
3431          */
3432         sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3433
3434         if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3435                            &journal_devnum, &journal_ioprio, 0)) {
3436                 ext4_msg(sb, KERN_WARNING,
3437                          "failed to parse options in superblock: %s",
3438                          sbi->s_es->s_mount_opts);
3439         }
3440         sbi->s_def_mount_opt = sbi->s_mount_opt;
3441         if (!parse_options((char *) data, sb, &journal_devnum,
3442                            &journal_ioprio, 0))
3443                 goto failed_mount;
3444
3445         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3446                 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3447                             "with data=journal disables delayed "
3448                             "allocation and O_DIRECT support!\n");
3449                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3450                         ext4_msg(sb, KERN_ERR, "can't mount with "
3451                                  "both data=journal and delalloc");
3452                         goto failed_mount;
3453                 }
3454                 if (test_opt(sb, DIOREAD_NOLOCK)) {
3455                         ext4_msg(sb, KERN_ERR, "can't mount with "
3456                                  "both data=journal and dioread_nolock");
3457                         goto failed_mount;
3458                 }
3459                 if (test_opt(sb, DELALLOC))
3460                         clear_opt(sb, DELALLOC);
3461         }
3462
3463         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3464                 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3465
3466         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3467             (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3468              EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3469              EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3470                 ext4_msg(sb, KERN_WARNING,
3471                        "feature flags set on rev 0 fs, "
3472                        "running e2fsck is recommended");
3473
3474         if (IS_EXT2_SB(sb)) {
3475                 if (ext2_feature_set_ok(sb))
3476                         ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3477                                  "using the ext4 subsystem");
3478                 else {
3479                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3480                                  "to feature incompatibilities");
3481                         goto failed_mount;
3482                 }
3483         }
3484
3485         if (IS_EXT3_SB(sb)) {
3486                 if (ext3_feature_set_ok(sb))
3487                         ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3488                                  "using the ext4 subsystem");
3489                 else {
3490                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3491                                  "to feature incompatibilities");
3492                         goto failed_mount;
3493                 }
3494         }
3495
3496         /*
3497          * Check feature flags regardless of the revision level, since we
3498          * previously didn't change the revision level when setting the flags,
3499          * so there is a chance incompat flags are set on a rev 0 filesystem.
3500          */
3501         if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3502                 goto failed_mount;
3503
3504         blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3505         if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3506             blocksize > EXT4_MAX_BLOCK_SIZE) {
3507                 ext4_msg(sb, KERN_ERR,
3508                        "Unsupported filesystem blocksize %d", blocksize);
3509                 goto failed_mount;
3510         }
3511
3512         if (sb->s_blocksize != blocksize) {
3513                 /* Validate the filesystem blocksize */
3514                 if (!sb_set_blocksize(sb, blocksize)) {
3515                         ext4_msg(sb, KERN_ERR, "bad block size %d",
3516                                         blocksize);
3517                         goto failed_mount;
3518                 }
3519
3520                 brelse(bh);
3521                 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3522                 offset = do_div(logical_sb_block, blocksize);
3523                 bh = sb_bread(sb, logical_sb_block);
3524                 if (!bh) {
3525                         ext4_msg(sb, KERN_ERR,
3526                                "Can't read superblock on 2nd try");
3527                         goto failed_mount;
3528                 }
3529                 es = (struct ext4_super_block *)(bh->b_data + offset);
3530                 sbi->s_es = es;
3531                 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3532                         ext4_msg(sb, KERN_ERR,
3533                                "Magic mismatch, very weird!");
3534                         goto failed_mount;
3535                 }
3536         }
3537
3538         has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3539                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3540         sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3541                                                       has_huge_files);
3542         sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3543
3544         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3545                 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3546                 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3547         } else {
3548                 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3549                 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3550                 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3551                     (!is_power_of_2(sbi->s_inode_size)) ||
3552                     (sbi->s_inode_size > blocksize)) {
3553                         ext4_msg(sb, KERN_ERR,
3554                                "unsupported inode size: %d",
3555                                sbi->s_inode_size);
3556                         goto failed_mount;
3557                 }
3558                 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3559                         sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3560         }
3561
3562         sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3563         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3564                 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3565                     sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3566                     !is_power_of_2(sbi->s_desc_size)) {
3567                         ext4_msg(sb, KERN_ERR,
3568                                "unsupported descriptor size %lu",
3569                                sbi->s_desc_size);
3570                         goto failed_mount;
3571                 }
3572         } else
3573                 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3574
3575         sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3576         sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3577         if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3578                 goto cantfind_ext4;
3579
3580         sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3581         if (sbi->s_inodes_per_block == 0)
3582                 goto cantfind_ext4;
3583         sbi->s_itb_per_group = sbi->s_inodes_per_group /
3584                                         sbi->s_inodes_per_block;
3585         sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3586         sbi->s_sbh = bh;
3587         sbi->s_mount_state = le16_to_cpu(es->s_state);
3588         sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3589         sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3590
3591         for (i = 0; i < 4; i++)
3592                 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3593         sbi->s_def_hash_version = es->s_def_hash_version;
3594         if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3595                 i = le32_to_cpu(es->s_flags);
3596                 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3597                         sbi->s_hash_unsigned = 3;
3598                 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3599 #ifdef __CHAR_UNSIGNED__
3600                         if (!(sb->s_flags & MS_RDONLY))
3601                                 es->s_flags |=
3602                                         cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3603                         sbi->s_hash_unsigned = 3;
3604 #else
3605                         if (!(sb->s_flags & MS_RDONLY))
3606                                 es->s_flags |=
3607                                         cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3608 #endif
3609                 }
3610         }
3611
3612         /* Handle clustersize */
3613         clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3614         has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3615                                 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3616         if (has_bigalloc) {
3617                 if (clustersize < blocksize) {
3618                         ext4_msg(sb, KERN_ERR,
3619                                  "cluster size (%d) smaller than "
3620                                  "block size (%d)", clustersize, blocksize);
3621                         goto failed_mount;
3622                 }
3623                 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3624                         le32_to_cpu(es->s_log_block_size);
3625                 sbi->s_clusters_per_group =
3626                         le32_to_cpu(es->s_clusters_per_group);
3627                 if (sbi->s_clusters_per_group > blocksize * 8) {
3628                         ext4_msg(sb, KERN_ERR,
3629                                  "#clusters per group too big: %lu",
3630                                  sbi->s_clusters_per_group);
3631                         goto failed_mount;
3632                 }
3633                 if (sbi->s_blocks_per_group !=
3634                     (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3635                         ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3636                                  "clusters per group (%lu) inconsistent",
3637                                  sbi->s_blocks_per_group,
3638                                  sbi->s_clusters_per_group);
3639                         goto failed_mount;
3640                 }
3641         } else {
3642                 if (clustersize != blocksize) {
3643                         ext4_warning(sb, "fragment/cluster size (%d) != "
3644                                      "block size (%d)", clustersize,
3645                                      blocksize);
3646                         clustersize = blocksize;
3647                 }
3648                 if (sbi->s_blocks_per_group > blocksize * 8) {
3649                         ext4_msg(sb, KERN_ERR,
3650                                  "#blocks per group too big: %lu",
3651                                  sbi->s_blocks_per_group);
3652                         goto failed_mount;
3653                 }
3654                 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3655                 sbi->s_cluster_bits = 0;
3656         }
3657         sbi->s_cluster_ratio = clustersize / blocksize;
3658
3659         if (sbi->s_inodes_per_group > blocksize * 8) {
3660                 ext4_msg(sb, KERN_ERR,
3661                        "#inodes per group too big: %lu",
3662                        sbi->s_inodes_per_group);
3663                 goto failed_mount;
3664         }
3665
3666         /* Do we have standard group size of clustersize * 8 blocks ? */
3667         if (sbi->s_blocks_per_group == clustersize << 3)
3668                 set_opt2(sb, STD_GROUP_SIZE);
3669
3670         /*
3671          * Test whether we have more sectors than will fit in sector_t,
3672          * and whether the max offset is addressable by the page cache.
3673          */
3674         err = generic_check_addressable(sb->s_blocksize_bits,
3675                                         ext4_blocks_count(es));
3676         if (err) {
3677                 ext4_msg(sb, KERN_ERR, "filesystem"
3678                          " too large to mount safely on this system");
3679                 if (sizeof(sector_t) < 8)
3680                         ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3681                 goto failed_mount;
3682         }
3683
3684         if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3685                 goto cantfind_ext4;
3686
3687         /* check blocks count against device size */
3688         blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3689         if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3690                 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3691                        "exceeds size of device (%llu blocks)",
3692                        ext4_blocks_count(es), blocks_count);
3693                 goto failed_mount;
3694         }
3695
3696         /*
3697          * It makes no sense for the first data block to be beyond the end
3698          * of the filesystem.
3699          */
3700         if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3701                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3702                          "block %u is beyond end of filesystem (%llu)",
3703                          le32_to_cpu(es->s_first_data_block),
3704                          ext4_blocks_count(es));
3705                 goto failed_mount;
3706         }
3707         blocks_count = (ext4_blocks_count(es) -
3708                         le32_to_cpu(es->s_first_data_block) +
3709                         EXT4_BLOCKS_PER_GROUP(sb) - 1);
3710         do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3711         if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3712                 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3713                        "(block count %llu, first data block %u, "
3714                        "blocks per group %lu)", sbi->s_groups_count,
3715                        ext4_blocks_count(es),
3716                        le32_to_cpu(es->s_first_data_block),
3717                        EXT4_BLOCKS_PER_GROUP(sb));
3718                 goto failed_mount;
3719         }
3720         sbi->s_groups_count = blocks_count;
3721         sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3722                         (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3723         db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3724                    EXT4_DESC_PER_BLOCK(sb);
3725         sbi->s_group_desc = ext4_kvmalloc(db_count *
3726                                           sizeof(struct buffer_head *),
3727                                           GFP_KERNEL);
3728         if (sbi->s_group_desc == NULL) {
3729                 ext4_msg(sb, KERN_ERR, "not enough memory");
3730                 ret = -ENOMEM;
3731                 goto failed_mount;
3732         }
3733
3734         if (ext4_proc_root)
3735                 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3736
3737         if (sbi->s_proc)
3738                 proc_create_data("options", S_IRUGO, sbi->s_proc,
3739                                  &ext4_seq_options_fops, sb);
3740
3741         bgl_lock_init(sbi->s_blockgroup_lock);
3742
3743         for (i = 0; i < db_count; i++) {
3744                 block = descriptor_loc(sb, logical_sb_block, i);
3745                 sbi->s_group_desc[i] = sb_bread(sb, block);
3746                 if (!sbi->s_group_desc[i]) {
3747                         ext4_msg(sb, KERN_ERR,
3748                                "can't read group descriptor %d", i);
3749                         db_count = i;
3750                         goto failed_mount2;
3751                 }
3752         }
3753         if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3754                 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3755                 goto failed_mount2;
3756         }
3757         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3758                 if (!ext4_fill_flex_info(sb)) {
3759                         ext4_msg(sb, KERN_ERR,
3760                                "unable to initialize "
3761                                "flex_bg meta info!");
3762                         goto failed_mount2;
3763                 }
3764
3765         sbi->s_gdb_count = db_count;
3766         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3767         spin_lock_init(&sbi->s_next_gen_lock);
3768
3769         init_timer(&sbi->s_err_report);
3770         sbi->s_err_report.function = print_daily_error_info;
3771         sbi->s_err_report.data = (unsigned long) sb;
3772
3773         /* Register extent status tree shrinker */
3774         ext4_es_register_shrinker(sb);
3775
3776         err = percpu_counter_init(&sbi->s_freeclusters_counter,
3777                         ext4_count_free_clusters(sb));
3778         if (!err) {
3779                 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3780                                 ext4_count_free_inodes(sb));
3781         }
3782         if (!err) {
3783                 err = percpu_counter_init(&sbi->s_dirs_counter,
3784                                 ext4_count_dirs(sb));
3785         }
3786         if (!err) {
3787                 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3788         }
3789         if (!err) {
3790                 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0);
3791         }
3792         if (err) {
3793                 ext4_msg(sb, KERN_ERR, "insufficient memory");
3794                 goto failed_mount3;
3795         }
3796
3797         sbi->s_stripe = ext4_get_stripe_size(sbi);
3798         sbi->s_max_writeback_mb_bump = 128;
3799         sbi->s_extent_max_zeroout_kb = 32;
3800
3801         /*
3802          * set up enough so that it can read an inode
3803          */
3804         if (!test_opt(sb, NOLOAD) &&
3805             EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3806                 sb->s_op = &ext4_sops;
3807         else
3808                 sb->s_op = &ext4_nojournal_sops;
3809         sb->s_export_op = &ext4_export_ops;
3810         sb->s_xattr = ext4_xattr_handlers;
3811 #ifdef CONFIG_QUOTA
3812         sb->dq_op = &ext4_quota_operations;
3813         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3814                 sb->s_qcop = &ext4_qctl_sysfile_operations;
3815         else
3816                 sb->s_qcop = &ext4_qctl_operations;
3817 #endif
3818         memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3819
3820         INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3821         mutex_init(&sbi->s_orphan_lock);
3822
3823         sb->s_root = NULL;
3824
3825         needs_recovery = (es->s_last_orphan != 0 ||
3826                           EXT4_HAS_INCOMPAT_FEATURE(sb,
3827                                     EXT4_FEATURE_INCOMPAT_RECOVER));
3828
3829         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3830             !(sb->s_flags & MS_RDONLY))
3831                 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3832                         goto failed_mount3;
3833
3834         /*
3835          * The first inode we look at is the journal inode.  Don't try
3836          * root first: it may be modified in the journal!
3837          */
3838         if (!test_opt(sb, NOLOAD) &&
3839             EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3840                 if (ext4_load_journal(sb, es, journal_devnum))
3841                         goto failed_mount3;
3842         } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3843               EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3844                 ext4_msg(sb, KERN_ERR, "required journal recovery "
3845                        "suppressed and not mounted read-only");
3846                 goto failed_mount_wq;
3847         } else {
3848                 clear_opt(sb, DATA_FLAGS);
3849                 sbi->s_journal = NULL;
3850                 needs_recovery = 0;
3851                 goto no_journal;
3852         }
3853
3854         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3855             !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3856                                        JBD2_FEATURE_INCOMPAT_64BIT)) {
3857                 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3858                 goto failed_mount_wq;
3859         }
3860
3861         if (!set_journal_csum_feature_set(sb)) {
3862                 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3863                          "feature set");
3864                 goto failed_mount_wq;
3865         }
3866
3867         /* We have now updated the journal if required, so we can
3868          * validate the data journaling mode. */
3869         switch (test_opt(sb, DATA_FLAGS)) {
3870         case 0:
3871                 /* No mode set, assume a default based on the journal
3872                  * capabilities: ORDERED_DATA if the journal can
3873                  * cope, else JOURNAL_DATA
3874                  */
3875                 if (jbd2_journal_check_available_features
3876                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3877                         set_opt(sb, ORDERED_DATA);
3878                 else
3879                         set_opt(sb, JOURNAL_DATA);
3880                 break;
3881
3882         case EXT4_MOUNT_ORDERED_DATA:
3883         case EXT4_MOUNT_WRITEBACK_DATA:
3884                 if (!jbd2_journal_check_available_features
3885                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3886                         ext4_msg(sb, KERN_ERR, "Journal does not support "
3887                                "requested data journaling mode");
3888                         goto failed_mount_wq;
3889                 }
3890         default:
3891                 break;
3892         }
3893         set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3894
3895         sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3896
3897         /*
3898          * The journal may have updated the bg summary counts, so we
3899          * need to update the global counters.
3900          */
3901         percpu_counter_set(&sbi->s_freeclusters_counter,
3902                            ext4_count_free_clusters(sb));
3903         percpu_counter_set(&sbi->s_freeinodes_counter,
3904                            ext4_count_free_inodes(sb));
3905         percpu_counter_set(&sbi->s_dirs_counter,
3906                            ext4_count_dirs(sb));
3907         percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3908
3909 no_journal:
3910         /*
3911          * Get the # of file system overhead blocks from the
3912          * superblock if present.
3913          */
3914         if (es->s_overhead_clusters)
3915                 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3916         else {
3917                 err = ext4_calculate_overhead(sb);
3918                 if (err)
3919                         goto failed_mount_wq;
3920         }
3921
3922         /*
3923          * The maximum number of concurrent works can be high and
3924          * concurrency isn't really necessary.  Limit it to 1.
3925          */
3926         EXT4_SB(sb)->dio_unwritten_wq =
3927                 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3928         if (!EXT4_SB(sb)->dio_unwritten_wq) {
3929                 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3930                 ret = -ENOMEM;
3931                 goto failed_mount_wq;
3932         }
3933
3934         /*
3935          * The jbd2_journal_load will have done any necessary log recovery,
3936          * so we can safely mount the rest of the filesystem now.
3937          */
3938
3939         root = ext4_iget(sb, EXT4_ROOT_INO);
3940         if (IS_ERR(root)) {
3941                 ext4_msg(sb, KERN_ERR, "get root inode failed");
3942                 ret = PTR_ERR(root);
3943                 root = NULL;
3944                 goto failed_mount4;
3945         }
3946         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3947                 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3948                 iput(root);
3949                 goto failed_mount4;
3950         }
3951         sb->s_root = d_make_root(root);
3952         if (!sb->s_root) {
3953                 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3954                 ret = -ENOMEM;
3955                 goto failed_mount4;
3956         }
3957
3958         if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3959                 sb->s_flags |= MS_RDONLY;
3960
3961         /* determine the minimum size of new large inodes, if present */
3962         if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3963                 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3964                                                      EXT4_GOOD_OLD_INODE_SIZE;
3965                 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3966                                        EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3967                         if (sbi->s_want_extra_isize <
3968                             le16_to_cpu(es->s_want_extra_isize))
3969                                 sbi->s_want_extra_isize =
3970                                         le16_to_cpu(es->s_want_extra_isize);
3971                         if (sbi->s_want_extra_isize <
3972                             le16_to_cpu(es->s_min_extra_isize))
3973                                 sbi->s_want_extra_isize =
3974                                         le16_to_cpu(es->s_min_extra_isize);
3975                 }
3976         }
3977         /* Check if enough inode space is available */
3978         if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3979                                                         sbi->s_inode_size) {
3980                 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3981                                                        EXT4_GOOD_OLD_INODE_SIZE;
3982                 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3983                          "available");
3984         }
3985
3986         err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
3987         if (err) {
3988                 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
3989                          "reserved pool", ext4_calculate_resv_clusters(sb));
3990                 goto failed_mount4a;
3991         }
3992
3993         err = ext4_setup_system_zone(sb);
3994         if (err) {
3995                 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3996                          "zone (%d)", err);
3997                 goto failed_mount4a;
3998         }
3999
4000         ext4_ext_init(sb);
4001         err = ext4_mb_init(sb);
4002         if (err) {
4003                 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4004                          err);
4005                 goto failed_mount5;
4006         }
4007
4008         err = ext4_register_li_request(sb, first_not_zeroed);
4009         if (err)
4010                 goto failed_mount6;
4011
4012         sbi->s_kobj.kset = ext4_kset;
4013         init_completion(&sbi->s_kobj_unregister);
4014         err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4015                                    "%s", sb->s_id);
4016         if (err)
4017                 goto failed_mount7;
4018
4019 #ifdef CONFIG_QUOTA
4020         /* Enable quota usage during mount. */
4021         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4022             !(sb->s_flags & MS_RDONLY)) {
4023                 err = ext4_enable_quotas(sb);
4024                 if (err)
4025                         goto failed_mount8;
4026         }
4027 #endif  /* CONFIG_QUOTA */
4028
4029         EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4030         ext4_orphan_cleanup(sb, es);
4031         EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4032         if (needs_recovery) {
4033                 ext4_msg(sb, KERN_INFO, "recovery complete");
4034                 ext4_mark_recovery_complete(sb, es);
4035         }
4036         if (EXT4_SB(sb)->s_journal) {
4037                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4038                         descr = " journalled data mode";
4039                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4040                         descr = " ordered data mode";
4041                 else
4042                         descr = " writeback data mode";
4043         } else
4044                 descr = "out journal";
4045
4046         if (test_opt(sb, DISCARD)) {
4047                 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4048                 if (!blk_queue_discard(q))
4049                         ext4_msg(sb, KERN_WARNING,
4050                                  "mounting with \"discard\" option, but "
4051                                  "the device does not support discard");
4052         }
4053
4054         ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4055                  "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4056                  *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4057
4058         if (es->s_error_count)
4059                 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4060
4061         kfree(orig_data);
4062         return 0;
4063
4064 cantfind_ext4:
4065         if (!silent)
4066                 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4067         goto failed_mount;
4068
4069 #ifdef CONFIG_QUOTA
4070 failed_mount8:
4071         kobject_del(&sbi->s_kobj);
4072 #endif
4073 failed_mount7:
4074         ext4_unregister_li_request(sb);
4075 failed_mount6:
4076         ext4_mb_release(sb);
4077 failed_mount5:
4078         ext4_ext_release(sb);
4079         ext4_release_system_zone(sb);
4080 failed_mount4a:
4081         dput(sb->s_root);
4082         sb->s_root = NULL;
4083 failed_mount4:
4084         ext4_msg(sb, KERN_ERR, "mount failed");
4085         destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
4086 failed_mount_wq:
4087         if (sbi->s_journal) {
4088                 jbd2_journal_destroy(sbi->s_journal);
4089                 sbi->s_journal = NULL;
4090         }
4091 failed_mount3:
4092         ext4_es_unregister_shrinker(sb);
4093         del_timer(&sbi->s_err_report);
4094         if (sbi->s_flex_groups)
4095                 ext4_kvfree(sbi->s_flex_groups);
4096         percpu_counter_destroy(&sbi->s_freeclusters_counter);
4097         percpu_counter_destroy(&sbi->s_freeinodes_counter);
4098         percpu_counter_destroy(&sbi->s_dirs_counter);
4099         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4100         percpu_counter_destroy(&sbi->s_extent_cache_cnt);
4101         if (sbi->s_mmp_tsk)
4102                 kthread_stop(sbi->s_mmp_tsk);
4103 failed_mount2:
4104         for (i = 0; i < db_count; i++)
4105                 brelse(sbi->s_group_desc[i]);
4106         ext4_kvfree(sbi->s_group_desc);
4107 failed_mount:
4108         if (sbi->s_chksum_driver)
4109                 crypto_free_shash(sbi->s_chksum_driver);
4110         if (sbi->s_proc) {
4111                 remove_proc_entry("options", sbi->s_proc);
4112                 remove_proc_entry(sb->s_id, ext4_proc_root);
4113         }
4114 #ifdef CONFIG_QUOTA
4115         for (i = 0; i < MAXQUOTAS; i++)
4116                 kfree(sbi->s_qf_names[i]);
4117 #endif
4118         ext4_blkdev_remove(sbi);
4119         brelse(bh);
4120 out_fail:
4121         sb->s_fs_info = NULL;
4122         kfree(sbi->s_blockgroup_lock);
4123         kfree(sbi);
4124 out_free_orig:
4125         kfree(orig_data);
4126         return err ? err : ret;
4127 }
4128
4129 /*
4130  * Setup any per-fs journal parameters now.  We'll do this both on
4131  * initial mount, once the journal has been initialised but before we've
4132  * done any recovery; and again on any subsequent remount.
4133  */
4134 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4135 {
4136         struct ext4_sb_info *sbi = EXT4_SB(sb);
4137
4138         journal->j_commit_interval = sbi->s_commit_interval;
4139         journal->j_min_batch_time = sbi->s_min_batch_time;
4140         journal->j_max_batch_time = sbi->s_max_batch_time;
4141
4142         write_lock(&journal->j_state_lock);
4143         if (test_opt(sb, BARRIER))
4144                 journal->j_flags |= JBD2_BARRIER;
4145         else
4146                 journal->j_flags &= ~JBD2_BARRIER;
4147         if (test_opt(sb, DATA_ERR_ABORT))
4148                 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4149         else
4150                 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4151         write_unlock(&journal->j_state_lock);
4152 }
4153
4154 static journal_t *ext4_get_journal(struct super_block *sb,
4155                                    unsigned int journal_inum)
4156 {
4157         struct inode *journal_inode;
4158         journal_t *journal;
4159
4160         BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4161
4162         /* First, test for the existence of a valid inode on disk.  Bad
4163          * things happen if we iget() an unused inode, as the subsequent
4164          * iput() will try to delete it. */
4165
4166         journal_inode = ext4_iget(sb, journal_inum);
4167         if (IS_ERR(journal_inode)) {
4168                 ext4_msg(sb, KERN_ERR, "no journal found");
4169                 return NULL;
4170         }
4171         if (!journal_inode->i_nlink) {
4172                 make_bad_inode(journal_inode);
4173                 iput(journal_inode);
4174                 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4175                 return NULL;
4176         }
4177
4178         jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4179                   journal_inode, journal_inode->i_size);
4180         if (!S_ISREG(journal_inode->i_mode)) {
4181                 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4182                 iput(journal_inode);
4183                 return NULL;
4184         }
4185
4186         journal = jbd2_journal_init_inode(journal_inode);
4187         if (!journal) {
4188                 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4189                 iput(journal_inode);
4190                 return NULL;
4191         }
4192         journal->j_private = sb;
4193         ext4_init_journal_params(sb, journal);
4194         return journal;
4195 }
4196
4197 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4198                                        dev_t j_dev)
4199 {
4200         struct buffer_head *bh;
4201         journal_t *journal;
4202         ext4_fsblk_t start;
4203         ext4_fsblk_t len;
4204         int hblock, blocksize;
4205         ext4_fsblk_t sb_block;
4206         unsigned long offset;
4207         struct ext4_super_block *es;
4208         struct block_device *bdev;
4209
4210         BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4211
4212         bdev = ext4_blkdev_get(j_dev, sb);
4213         if (bdev == NULL)
4214                 return NULL;
4215
4216         blocksize = sb->s_blocksize;
4217         hblock = bdev_logical_block_size(bdev);
4218         if (blocksize < hblock) {
4219                 ext4_msg(sb, KERN_ERR,
4220                         "blocksize too small for journal device");
4221                 goto out_bdev;
4222         }
4223
4224         sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4225         offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4226         set_blocksize(bdev, blocksize);
4227         if (!(bh = __bread(bdev, sb_block, blocksize))) {
4228                 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4229                        "external journal");
4230                 goto out_bdev;
4231         }
4232
4233         es = (struct ext4_super_block *) (bh->b_data + offset);
4234         if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4235             !(le32_to_cpu(es->s_feature_incompat) &
4236               EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4237                 ext4_msg(sb, KERN_ERR, "external journal has "
4238                                         "bad superblock");
4239                 brelse(bh);
4240                 goto out_bdev;
4241         }
4242
4243         if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4244                 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4245                 brelse(bh);
4246                 goto out_bdev;
4247         }
4248
4249         len = ext4_blocks_count(es);
4250         start = sb_block + 1;
4251         brelse(bh);     /* we're done with the superblock */
4252
4253         journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4254                                         start, len, blocksize);
4255         if (!journal) {
4256                 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4257                 goto out_bdev;
4258         }
4259         journal->j_private = sb;
4260         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4261         wait_on_buffer(journal->j_sb_buffer);
4262         if (!buffer_uptodate(journal->j_sb_buffer)) {
4263                 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4264                 goto out_journal;
4265         }
4266         if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4267                 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4268                                         "user (unsupported) - %d",
4269                         be32_to_cpu(journal->j_superblock->s_nr_users));
4270                 goto out_journal;
4271         }
4272         EXT4_SB(sb)->journal_bdev = bdev;
4273         ext4_init_journal_params(sb, journal);
4274         return journal;
4275
4276 out_journal:
4277         jbd2_journal_destroy(journal);
4278 out_bdev:
4279         ext4_blkdev_put(bdev);
4280         return NULL;
4281 }
4282
4283 static int ext4_load_journal(struct super_block *sb,
4284                              struct ext4_super_block *es,
4285                              unsigned long journal_devnum)
4286 {
4287         journal_t *journal;
4288         unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4289         dev_t journal_dev;
4290         int err = 0;
4291         int really_read_only;
4292
4293         BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4294
4295         if (journal_devnum &&
4296             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4297                 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4298                         "numbers have changed");
4299                 journal_dev = new_decode_dev(journal_devnum);
4300         } else
4301                 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4302
4303         really_read_only = bdev_read_only(sb->s_bdev);
4304
4305         /*
4306          * Are we loading a blank journal or performing recovery after a
4307          * crash?  For recovery, we need to check in advance whether we
4308          * can get read-write access to the device.
4309          */
4310         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4311                 if (sb->s_flags & MS_RDONLY) {
4312                         ext4_msg(sb, KERN_INFO, "INFO: recovery "
4313                                         "required on readonly filesystem");
4314                         if (really_read_only) {
4315                                 ext4_msg(sb, KERN_ERR, "write access "
4316                                         "unavailable, cannot proceed");
4317                                 return -EROFS;
4318                         }
4319                         ext4_msg(sb, KERN_INFO, "write access will "
4320                                "be enabled during recovery");
4321                 }
4322         }
4323
4324         if (journal_inum && journal_dev) {
4325                 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4326                        "and inode journals!");
4327                 return -EINVAL;
4328         }
4329
4330         if (journal_inum) {
4331                 if (!(journal = ext4_get_journal(sb, journal_inum)))
4332                         return -EINVAL;
4333         } else {
4334                 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4335                         return -EINVAL;
4336         }
4337
4338         if (!(journal->j_flags & JBD2_BARRIER))
4339                 ext4_msg(sb, KERN_INFO, "barriers disabled");
4340
4341         if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4342                 err = jbd2_journal_wipe(journal, !really_read_only);
4343         if (!err) {
4344                 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4345                 if (save)
4346                         memcpy(save, ((char *) es) +
4347                                EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4348                 err = jbd2_journal_load(journal);
4349                 if (save)
4350                         memcpy(((char *) es) + EXT4_S_ERR_START,
4351                                save, EXT4_S_ERR_LEN);
4352                 kfree(save);
4353         }
4354
4355         if (err) {
4356                 ext4_msg(sb, KERN_ERR, "error loading journal");
4357                 jbd2_journal_destroy(journal);
4358                 return err;
4359         }
4360
4361         EXT4_SB(sb)->s_journal = journal;
4362         ext4_clear_journal_err(sb, es);
4363
4364         if (!really_read_only && journal_devnum &&
4365             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4366                 es->s_journal_dev = cpu_to_le32(journal_devnum);
4367
4368                 /* Make sure we flush the recovery flag to disk. */
4369                 ext4_commit_super(sb, 1);
4370         }
4371
4372         return 0;
4373 }
4374
4375 static int ext4_commit_super(struct super_block *sb, int sync)
4376 {
4377         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4378         struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4379         int error = 0;
4380
4381         if (!sbh || block_device_ejected(sb))
4382                 return error;
4383         if (buffer_write_io_error(sbh)) {
4384                 /*
4385                  * Oh, dear.  A previous attempt to write the
4386                  * superblock failed.  This could happen because the
4387                  * USB device was yanked out.  Or it could happen to
4388                  * be a transient write error and maybe the block will
4389                  * be remapped.  Nothing we can do but to retry the
4390                  * write and hope for the best.
4391                  */
4392                 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4393                        "superblock detected");
4394                 clear_buffer_write_io_error(sbh);
4395                 set_buffer_uptodate(sbh);
4396         }
4397         /*
4398          * If the file system is mounted read-only, don't update the
4399          * superblock write time.  This avoids updating the superblock
4400          * write time when we are mounting the root file system
4401          * read/only but we need to replay the journal; at that point,
4402          * for people who are east of GMT and who make their clock
4403          * tick in localtime for Windows bug-for-bug compatibility,
4404          * the clock is set in the future, and this will cause e2fsck
4405          * to complain and force a full file system check.
4406          */
4407         if (!(sb->s_flags & MS_RDONLY))
4408                 es->s_wtime = cpu_to_le32(get_seconds());
4409         if (sb->s_bdev->bd_part)
4410                 es->s_kbytes_written =
4411                         cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4412                             ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4413                               EXT4_SB(sb)->s_sectors_written_start) >> 1));
4414         else
4415                 es->s_kbytes_written =
4416                         cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4417         ext4_free_blocks_count_set(es,
4418                         EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4419                                 &EXT4_SB(sb)->s_freeclusters_counter)));
4420         es->s_free_inodes_count =
4421                 cpu_to_le32(percpu_counter_sum_positive(
4422                                 &EXT4_SB(sb)->s_freeinodes_counter));
4423         BUFFER_TRACE(sbh, "marking dirty");
4424         ext4_superblock_csum_set(sb);
4425         mark_buffer_dirty(sbh);
4426         if (sync) {
4427                 error = sync_dirty_buffer(sbh);
4428                 if (error)
4429                         return error;
4430
4431                 error = buffer_write_io_error(sbh);
4432                 if (error) {
4433                         ext4_msg(sb, KERN_ERR, "I/O error while writing "
4434                                "superblock");
4435                         clear_buffer_write_io_error(sbh);
4436                         set_buffer_uptodate(sbh);
4437                 }
4438         }
4439         return error;
4440 }
4441
4442 /*
4443  * Have we just finished recovery?  If so, and if we are mounting (or
4444  * remounting) the filesystem readonly, then we will end up with a
4445  * consistent fs on disk.  Record that fact.
4446  */
4447 static void ext4_mark_recovery_complete(struct super_block *sb,
4448                                         struct ext4_super_block *es)
4449 {
4450         journal_t *journal = EXT4_SB(sb)->s_journal;
4451
4452         if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4453                 BUG_ON(journal != NULL);
4454                 return;
4455         }
4456         jbd2_journal_lock_updates(journal);
4457         if (jbd2_journal_flush(journal) < 0)
4458                 goto out;
4459
4460         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4461             sb->s_flags & MS_RDONLY) {
4462                 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4463                 ext4_commit_super(sb, 1);
4464         }
4465
4466 out:
4467         jbd2_journal_unlock_updates(journal);
4468 }
4469
4470 /*
4471  * If we are mounting (or read-write remounting) a filesystem whose journal
4472  * has recorded an error from a previous lifetime, move that error to the
4473  * main filesystem now.
4474  */
4475 static void ext4_clear_journal_err(struct super_block *sb,
4476                                    struct ext4_super_block *es)
4477 {
4478         journal_t *journal;
4479         int j_errno;
4480         const char *errstr;
4481
4482         BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4483
4484         journal = EXT4_SB(sb)->s_journal;
4485
4486         /*
4487          * Now check for any error status which may have been recorded in the
4488          * journal by a prior ext4_error() or ext4_abort()
4489          */
4490
4491         j_errno = jbd2_journal_errno(journal);
4492         if (j_errno) {
4493                 char nbuf[16];
4494
4495                 errstr = ext4_decode_error(sb, j_errno, nbuf);
4496                 ext4_warning(sb, "Filesystem error recorded "
4497                              "from previous mount: %s", errstr);
4498                 ext4_warning(sb, "Marking fs in need of filesystem check.");
4499
4500                 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4501                 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4502                 ext4_commit_super(sb, 1);
4503
4504                 jbd2_journal_clear_err(journal);
4505                 jbd2_journal_update_sb_errno(journal);
4506         }
4507 }
4508
4509 /*
4510  * Force the running and committing transactions to commit,
4511  * and wait on the commit.
4512  */
4513 int ext4_force_commit(struct super_block *sb)
4514 {
4515         journal_t *journal;
4516
4517         if (sb->s_flags & MS_RDONLY)
4518                 return 0;
4519
4520         journal = EXT4_SB(sb)->s_journal;
4521         return ext4_journal_force_commit(journal);
4522 }
4523
4524 static int ext4_sync_fs(struct super_block *sb, int wait)
4525 {
4526         int ret = 0;
4527         tid_t target;
4528         struct ext4_sb_info *sbi = EXT4_SB(sb);
4529
4530         trace_ext4_sync_fs(sb, wait);
4531         flush_workqueue(sbi->dio_unwritten_wq);
4532         /*
4533          * Writeback quota in non-journalled quota case - journalled quota has
4534          * no dirty dquots
4535          */
4536         dquot_writeback_dquots(sb, -1);
4537         if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4538                 if (wait)
4539                         jbd2_log_wait_commit(sbi->s_journal, target);
4540         }
4541         return ret;
4542 }
4543
4544 /*
4545  * LVM calls this function before a (read-only) snapshot is created.  This
4546  * gives us a chance to flush the journal completely and mark the fs clean.
4547  *
4548  * Note that only this function cannot bring a filesystem to be in a clean
4549  * state independently. It relies on upper layer to stop all data & metadata
4550  * modifications.
4551  */
4552 static int ext4_freeze(struct super_block *sb)
4553 {
4554         int error = 0;
4555         journal_t *journal;
4556
4557         if (sb->s_flags & MS_RDONLY)
4558                 return 0;
4559
4560         journal = EXT4_SB(sb)->s_journal;
4561
4562         /* Now we set up the journal barrier. */
4563         jbd2_journal_lock_updates(journal);
4564
4565         /*
4566          * Don't clear the needs_recovery flag if we failed to flush
4567          * the journal.
4568          */
4569         error = jbd2_journal_flush(journal);
4570         if (error < 0)
4571                 goto out;
4572
4573         /* Journal blocked and flushed, clear needs_recovery flag. */
4574         EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4575         error = ext4_commit_super(sb, 1);
4576 out:
4577         /* we rely on upper layer to stop further updates */
4578         jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4579         return error;
4580 }
4581
4582 /*
4583  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4584  * flag here, even though the filesystem is not technically dirty yet.
4585  */
4586 static int ext4_unfreeze(struct super_block *sb)
4587 {
4588         if (sb->s_flags & MS_RDONLY)
4589                 return 0;
4590
4591         /* Reset the needs_recovery flag before the fs is unlocked. */
4592         EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4593         ext4_commit_super(sb, 1);
4594         return 0;
4595 }
4596
4597 /*
4598  * Structure to save mount options for ext4_remount's benefit
4599  */
4600 struct ext4_mount_options {
4601         unsigned long s_mount_opt;
4602         unsigned long s_mount_opt2;
4603         kuid_t s_resuid;
4604         kgid_t s_resgid;
4605         unsigned long s_commit_interval;
4606         u32 s_min_batch_time, s_max_batch_time;
4607 #ifdef CONFIG_QUOTA
4608         int s_jquota_fmt;
4609         char *s_qf_names[MAXQUOTAS];
4610 #endif
4611 };
4612
4613 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4614 {
4615         struct ext4_super_block *es;
4616         struct ext4_sb_info *sbi = EXT4_SB(sb);
4617         unsigned long old_sb_flags;
4618         struct ext4_mount_options old_opts;
4619         int enable_quota = 0;
4620         ext4_group_t g;
4621         unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4622         int err = 0;
4623 #ifdef CONFIG_QUOTA
4624         int i, j;
4625 #endif
4626         char *orig_data = kstrdup(data, GFP_KERNEL);
4627
4628         sync_filesystem(sb);
4629
4630         /* Store the original options */
4631         old_sb_flags = sb->s_flags;
4632         old_opts.s_mount_opt = sbi->s_mount_opt;
4633         old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4634         old_opts.s_resuid = sbi->s_resuid;
4635         old_opts.s_resgid = sbi->s_resgid;
4636         old_opts.s_commit_interval = sbi->s_commit_interval;
4637         old_opts.s_min_batch_time = sbi->s_min_batch_time;
4638         old_opts.s_max_batch_time = sbi->s_max_batch_time;
4639 #ifdef CONFIG_QUOTA
4640         old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4641         for (i = 0; i < MAXQUOTAS; i++)
4642                 if (sbi->s_qf_names[i]) {
4643                         old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4644                                                          GFP_KERNEL);
4645                         if (!old_opts.s_qf_names[i]) {
4646                                 for (j = 0; j < i; j++)
4647                                         kfree(old_opts.s_qf_names[j]);
4648                                 kfree(orig_data);
4649                                 return -ENOMEM;
4650                         }
4651                 } else
4652                         old_opts.s_qf_names[i] = NULL;
4653 #endif
4654         if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4655                 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4656
4657         /*
4658          * Allow the "check" option to be passed as a remount option.
4659          */
4660         if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4661                 err = -EINVAL;
4662                 goto restore_opts;
4663         }
4664
4665         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4666                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4667                         ext4_msg(sb, KERN_ERR, "can't mount with "
4668                                  "both data=journal and delalloc");
4669                         err = -EINVAL;
4670                         goto restore_opts;
4671                 }
4672                 if (test_opt(sb, DIOREAD_NOLOCK)) {
4673                         ext4_msg(sb, KERN_ERR, "can't mount with "
4674                                  "both data=journal and dioread_nolock");
4675                         err = -EINVAL;
4676                         goto restore_opts;
4677                 }
4678         }
4679
4680         if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4681                 ext4_abort(sb, "Abort forced by user");
4682
4683         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4684                 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4685
4686         es = sbi->s_es;
4687
4688         if (sbi->s_journal) {
4689                 ext4_init_journal_params(sb, sbi->s_journal);
4690                 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4691         }
4692
4693         if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4694                 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4695                         err = -EROFS;
4696                         goto restore_opts;
4697                 }
4698
4699                 if (*flags & MS_RDONLY) {
4700                         err = dquot_suspend(sb, -1);
4701                         if (err < 0)
4702                                 goto restore_opts;
4703
4704                         /*
4705                          * First of all, the unconditional stuff we have to do
4706                          * to disable replay of the journal when we next remount
4707                          */
4708                         sb->s_flags |= MS_RDONLY;
4709
4710                         /*
4711                          * OK, test if we are remounting a valid rw partition
4712                          * readonly, and if so set the rdonly flag and then
4713                          * mark the partition as valid again.
4714                          */
4715                         if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4716                             (sbi->s_mount_state & EXT4_VALID_FS))
4717                                 es->s_state = cpu_to_le16(sbi->s_mount_state);
4718
4719                         if (sbi->s_journal)
4720                                 ext4_mark_recovery_complete(sb, es);
4721                 } else {
4722                         /* Make sure we can mount this feature set readwrite */
4723                         if (!ext4_feature_set_ok(sb, 0)) {
4724                                 err = -EROFS;
4725                                 goto restore_opts;
4726                         }
4727                         /*
4728                          * Make sure the group descriptor checksums
4729                          * are sane.  If they aren't, refuse to remount r/w.
4730                          */
4731                         for (g = 0; g < sbi->s_groups_count; g++) {
4732                                 struct ext4_group_desc *gdp =
4733                                         ext4_get_group_desc(sb, g, NULL);
4734
4735                                 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4736                                         ext4_msg(sb, KERN_ERR,
4737                "ext4_remount: Checksum for group %u failed (%u!=%u)",
4738                 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4739                                                le16_to_cpu(gdp->bg_checksum));
4740                                         err = -EINVAL;
4741                                         goto restore_opts;
4742                                 }
4743                         }
4744
4745                         /*
4746                          * If we have an unprocessed orphan list hanging
4747                          * around from a previously readonly bdev mount,
4748                          * require a full umount/remount for now.
4749                          */
4750                         if (es->s_last_orphan) {
4751                                 ext4_msg(sb, KERN_WARNING, "Couldn't "
4752                                        "remount RDWR because of unprocessed "
4753                                        "orphan inode list.  Please "
4754                                        "umount/remount instead");
4755                                 err = -EINVAL;
4756                                 goto restore_opts;
4757                         }
4758
4759                         /*
4760                          * Mounting a RDONLY partition read-write, so reread
4761                          * and store the current valid flag.  (It may have
4762                          * been changed by e2fsck since we originally mounted
4763                          * the partition.)
4764                          */
4765                         if (sbi->s_journal)
4766                                 ext4_clear_journal_err(sb, es);
4767                         sbi->s_mount_state = le16_to_cpu(es->s_state);
4768                         if (!ext4_setup_super(sb, es, 0))
4769                                 sb->s_flags &= ~MS_RDONLY;
4770                         if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4771                                                      EXT4_FEATURE_INCOMPAT_MMP))
4772                                 if (ext4_multi_mount_protect(sb,
4773                                                 le64_to_cpu(es->s_mmp_block))) {
4774                                         err = -EROFS;
4775                                         goto restore_opts;
4776                                 }
4777                         enable_quota = 1;
4778                 }
4779         }
4780
4781         /*
4782          * Reinitialize lazy itable initialization thread based on
4783          * current settings
4784          */
4785         if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4786                 ext4_unregister_li_request(sb);
4787         else {
4788                 ext4_group_t first_not_zeroed;
4789                 first_not_zeroed = ext4_has_uninit_itable(sb);
4790                 ext4_register_li_request(sb, first_not_zeroed);
4791         }
4792
4793         ext4_setup_system_zone(sb);
4794         if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4795                 ext4_commit_super(sb, 1);
4796
4797 #ifdef CONFIG_QUOTA
4798         /* Release old quota file names */
4799         for (i = 0; i < MAXQUOTAS; i++)
4800                 kfree(old_opts.s_qf_names[i]);
4801         if (enable_quota) {
4802                 if (sb_any_quota_suspended(sb))
4803                         dquot_resume(sb, -1);
4804                 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4805                                         EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4806                         err = ext4_enable_quotas(sb);
4807                         if (err)
4808                                 goto restore_opts;
4809                 }
4810         }
4811 #endif
4812
4813         ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4814         kfree(orig_data);
4815         return 0;
4816
4817 restore_opts:
4818         sb->s_flags = old_sb_flags;
4819         sbi->s_mount_opt = old_opts.s_mount_opt;
4820         sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4821         sbi->s_resuid = old_opts.s_resuid;
4822         sbi->s_resgid = old_opts.s_resgid;
4823         sbi->s_commit_interval = old_opts.s_commit_interval;
4824         sbi->s_min_batch_time = old_opts.s_min_batch_time;
4825         sbi->s_max_batch_time = old_opts.s_max_batch_time;
4826 #ifdef CONFIG_QUOTA
4827         sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4828         for (i = 0; i < MAXQUOTAS; i++) {
4829                 kfree(sbi->s_qf_names[i]);
4830                 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4831         }
4832 #endif
4833         kfree(orig_data);
4834         return err;
4835 }
4836
4837 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4838 {
4839         struct super_block *sb = dentry->d_sb;
4840         struct ext4_sb_info *sbi = EXT4_SB(sb);
4841         struct ext4_super_block *es = sbi->s_es;
4842         ext4_fsblk_t overhead = 0, resv_blocks;
4843         u64 fsid;
4844         s64 bfree;
4845         resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4846
4847         if (!test_opt(sb, MINIX_DF))
4848                 overhead = sbi->s_overhead;
4849
4850         buf->f_type = EXT4_SUPER_MAGIC;
4851         buf->f_bsize = sb->s_blocksize;
4852         buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4853         bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4854                 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4855         /* prevent underflow in case that few free space is available */
4856         buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4857         buf->f_bavail = buf->f_bfree -
4858                         (ext4_r_blocks_count(es) + resv_blocks);
4859         if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4860                 buf->f_bavail = 0;
4861         buf->f_files = le32_to_cpu(es->s_inodes_count);
4862         buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4863         buf->f_namelen = EXT4_NAME_LEN;
4864         fsid = le64_to_cpup((void *)es->s_uuid) ^
4865                le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4866         buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4867         buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4868
4869         return 0;
4870 }
4871
4872 /* Helper function for writing quotas on sync - we need to start transaction
4873  * before quota file is locked for write. Otherwise the are possible deadlocks:
4874  * Process 1                         Process 2
4875  * ext4_create()                     quota_sync()
4876  *   jbd2_journal_start()                  write_dquot()
4877  *   dquot_initialize()                         down(dqio_mutex)
4878  *     down(dqio_mutex)                    jbd2_journal_start()
4879  *
4880  */
4881
4882 #ifdef CONFIG_QUOTA
4883
4884 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4885 {
4886         return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4887 }
4888
4889 static int ext4_write_dquot(struct dquot *dquot)
4890 {
4891         int ret, err;
4892         handle_t *handle;
4893         struct inode *inode;
4894
4895         inode = dquot_to_inode(dquot);
4896         handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4897                                     EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4898         if (IS_ERR(handle))
4899                 return PTR_ERR(handle);
4900         ret = dquot_commit(dquot);
4901         err = ext4_journal_stop(handle);
4902         if (!ret)
4903                 ret = err;
4904         return ret;
4905 }
4906
4907 static int ext4_acquire_dquot(struct dquot *dquot)
4908 {
4909         int ret, err;
4910         handle_t *handle;
4911
4912         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4913                                     EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4914         if (IS_ERR(handle))
4915                 return PTR_ERR(handle);
4916         ret = dquot_acquire(dquot);
4917         err = ext4_journal_stop(handle);
4918         if (!ret)
4919                 ret = err;
4920         return ret;
4921 }
4922
4923 static int ext4_release_dquot(struct dquot *dquot)
4924 {
4925         int ret, err;
4926         handle_t *handle;
4927
4928         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4929                                     EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4930         if (IS_ERR(handle)) {
4931                 /* Release dquot anyway to avoid endless cycle in dqput() */
4932                 dquot_release(dquot);
4933                 return PTR_ERR(handle);
4934         }
4935         ret = dquot_release(dquot);
4936         err = ext4_journal_stop(handle);
4937         if (!ret)
4938                 ret = err;
4939         return ret;
4940 }
4941
4942 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4943 {
4944         struct super_block *sb = dquot->dq_sb;
4945         struct ext4_sb_info *sbi = EXT4_SB(sb);
4946
4947         /* Are we journaling quotas? */
4948         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
4949             sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4950                 dquot_mark_dquot_dirty(dquot);
4951                 return ext4_write_dquot(dquot);
4952         } else {
4953                 return dquot_mark_dquot_dirty(dquot);
4954         }
4955 }
4956
4957 static int ext4_write_info(struct super_block *sb, int type)
4958 {
4959         int ret, err;
4960         handle_t *handle;
4961
4962         /* Data block + inode block */
4963         handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
4964         if (IS_ERR(handle))
4965                 return PTR_ERR(handle);
4966         ret = dquot_commit_info(sb, type);
4967         err = ext4_journal_stop(handle);
4968         if (!ret)
4969                 ret = err;
4970         return ret;
4971 }
4972
4973 /*
4974  * Turn on quotas during mount time - we need to find
4975  * the quota file and such...
4976  */
4977 static int ext4_quota_on_mount(struct super_block *sb, int type)
4978 {
4979         return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4980                                         EXT4_SB(sb)->s_jquota_fmt, type);
4981 }
4982
4983 /*
4984  * Standard function to be called on quota_on
4985  */
4986 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4987                          struct path *path)
4988 {
4989         int err;
4990
4991         if (!test_opt(sb, QUOTA))
4992                 return -EINVAL;
4993
4994         /* Quotafile not on the same filesystem? */
4995         if (path->dentry->d_sb != sb)
4996                 return -EXDEV;
4997         /* Journaling quota? */
4998         if (EXT4_SB(sb)->s_qf_names[type]) {
4999                 /* Quotafile not in fs root? */
5000                 if (path->dentry->d_parent != sb->s_root)
5001                         ext4_msg(sb, KERN_WARNING,
5002                                 "Quota file not on filesystem root. "
5003                                 "Journaled quota will not work");
5004         }
5005
5006         /*
5007          * When we journal data on quota file, we have to flush journal to see
5008          * all updates to the file when we bypass pagecache...
5009          */
5010         if (EXT4_SB(sb)->s_journal &&
5011             ext4_should_journal_data(path->dentry->d_inode)) {
5012                 /*
5013                  * We don't need to lock updates but journal_flush() could
5014                  * otherwise be livelocked...
5015                  */
5016                 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5017                 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5018                 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5019                 if (err)
5020                         return err;
5021         }
5022
5023         return dquot_quota_on(sb, type, format_id, path);
5024 }
5025
5026 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5027                              unsigned int flags)
5028 {
5029         int err;
5030         struct inode *qf_inode;
5031         unsigned long qf_inums[MAXQUOTAS] = {
5032                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5033                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5034         };
5035
5036         BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5037
5038         if (!qf_inums[type])
5039                 return -EPERM;
5040
5041         qf_inode = ext4_iget(sb, qf_inums[type]);
5042         if (IS_ERR(qf_inode)) {
5043                 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5044                 return PTR_ERR(qf_inode);
5045         }
5046
5047         /* Don't account quota for quota files to avoid recursion */
5048         qf_inode->i_flags |= S_NOQUOTA;
5049         err = dquot_enable(qf_inode, type, format_id, flags);
5050         iput(qf_inode);
5051
5052         return err;
5053 }
5054
5055 /* Enable usage tracking for all quota types. */
5056 static int ext4_enable_quotas(struct super_block *sb)
5057 {
5058         int type, err = 0;
5059         unsigned long qf_inums[MAXQUOTAS] = {
5060                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5061                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5062         };
5063
5064         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5065         for (type = 0; type < MAXQUOTAS; type++) {
5066                 if (qf_inums[type]) {
5067                         err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5068                                                 DQUOT_USAGE_ENABLED);
5069                         if (err) {
5070                                 ext4_warning(sb,
5071                                         "Failed to enable quota tracking "
5072                                         "(type=%d, err=%d). Please run "
5073                                         "e2fsck to fix.", type, err);
5074                                 return err;
5075                         }
5076                 }
5077         }
5078         return 0;
5079 }
5080
5081 /*
5082  * quota_on function that is used when QUOTA feature is set.
5083  */
5084 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5085                                  int format_id)
5086 {
5087         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5088                 return -EINVAL;
5089
5090         /*
5091          * USAGE was enabled at mount time. Only need to enable LIMITS now.
5092          */
5093         return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5094 }
5095
5096 static int ext4_quota_off(struct super_block *sb, int type)
5097 {
5098         struct inode *inode = sb_dqopt(sb)->files[type];
5099         handle_t *handle;
5100
5101         /* Force all delayed allocation blocks to be allocated.
5102          * Caller already holds s_umount sem */
5103         if (test_opt(sb, DELALLOC))
5104                 sync_filesystem(sb);
5105
5106         if (!inode)
5107                 goto out;
5108
5109         /* Update modification times of quota files when userspace can
5110          * start looking at them */
5111         handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5112         if (IS_ERR(handle))
5113                 goto out;
5114         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5115         ext4_mark_inode_dirty(handle, inode);
5116         ext4_journal_stop(handle);
5117
5118 out:
5119         return dquot_quota_off(sb, type);
5120 }
5121
5122 /*
5123  * quota_off function that is used when QUOTA feature is set.
5124  */
5125 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5126 {
5127         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5128                 return -EINVAL;
5129
5130         /* Disable only the limits. */
5131         return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5132 }
5133
5134 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5135  * acquiring the locks... As quota files are never truncated and quota code
5136  * itself serializes the operations (and no one else should touch the files)
5137  * we don't have to be afraid of races */
5138 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5139                                size_t len, loff_t off)
5140 {
5141         struct inode *inode = sb_dqopt(sb)->files[type];
5142         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5143         int err = 0;
5144         int offset = off & (sb->s_blocksize - 1);
5145         int tocopy;
5146         size_t toread;
5147         struct buffer_head *bh;
5148         loff_t i_size = i_size_read(inode);
5149
5150         if (off > i_size)
5151                 return 0;
5152         if (off+len > i_size)
5153                 len = i_size-off;
5154         toread = len;
5155         while (toread > 0) {
5156                 tocopy = sb->s_blocksize - offset < toread ?
5157                                 sb->s_blocksize - offset : toread;
5158                 bh = ext4_bread(NULL, inode, blk, 0, &err);
5159                 if (err)
5160                         return err;
5161                 if (!bh)        /* A hole? */
5162                         memset(data, 0, tocopy);
5163                 else
5164                         memcpy(data, bh->b_data+offset, tocopy);
5165                 brelse(bh);
5166                 offset = 0;
5167                 toread -= tocopy;
5168                 data += tocopy;
5169                 blk++;
5170         }
5171         return len;
5172 }
5173
5174 /* Write to quotafile (we know the transaction is already started and has
5175  * enough credits) */
5176 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5177                                 const char *data, size_t len, loff_t off)
5178 {
5179         struct inode *inode = sb_dqopt(sb)->files[type];
5180         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5181         int err = 0;
5182         int offset = off & (sb->s_blocksize - 1);
5183         struct buffer_head *bh;
5184         handle_t *handle = journal_current_handle();
5185
5186         if (EXT4_SB(sb)->s_journal && !handle) {
5187                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5188                         " cancelled because transaction is not started",
5189                         (unsigned long long)off, (unsigned long long)len);
5190                 return -EIO;
5191         }
5192         /*
5193          * Since we account only one data block in transaction credits,
5194          * then it is impossible to cross a block boundary.
5195          */
5196         if (sb->s_blocksize - offset < len) {
5197                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5198                         " cancelled because not block aligned",
5199                         (unsigned long long)off, (unsigned long long)len);
5200                 return -EIO;
5201         }
5202
5203         bh = ext4_bread(handle, inode, blk, 1, &err);
5204         if (!bh)
5205                 goto out;
5206         err = ext4_journal_get_write_access(handle, bh);
5207         if (err) {
5208                 brelse(bh);
5209                 goto out;
5210         }
5211         lock_buffer(bh);
5212         memcpy(bh->b_data+offset, data, len);
5213         flush_dcache_page(bh->b_page);
5214         unlock_buffer(bh);
5215         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5216         brelse(bh);
5217 out:
5218         if (err)
5219                 return err;
5220         if (inode->i_size < off + len) {
5221                 i_size_write(inode, off + len);
5222                 EXT4_I(inode)->i_disksize = inode->i_size;
5223                 ext4_mark_inode_dirty(handle, inode);
5224         }
5225         return len;
5226 }
5227
5228 #endif
5229
5230 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5231                        const char *dev_name, void *data)
5232 {
5233         return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5234 }
5235
5236 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5237 static inline void register_as_ext2(void)
5238 {
5239         int err = register_filesystem(&ext2_fs_type);
5240         if (err)
5241                 printk(KERN_WARNING
5242                        "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5243 }
5244
5245 static inline void unregister_as_ext2(void)
5246 {
5247         unregister_filesystem(&ext2_fs_type);
5248 }
5249
5250 static inline int ext2_feature_set_ok(struct super_block *sb)
5251 {
5252         if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5253                 return 0;
5254         if (sb->s_flags & MS_RDONLY)
5255                 return 1;
5256         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5257                 return 0;
5258         return 1;
5259 }
5260 #else
5261 static inline void register_as_ext2(void) { }
5262 static inline void unregister_as_ext2(void) { }
5263 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5264 #endif
5265
5266 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5267 static inline void register_as_ext3(void)
5268 {
5269         int err = register_filesystem(&ext3_fs_type);
5270         if (err)
5271                 printk(KERN_WARNING
5272                        "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5273 }
5274
5275 static inline void unregister_as_ext3(void)
5276 {
5277         unregister_filesystem(&ext3_fs_type);
5278 }
5279
5280 static inline int ext3_feature_set_ok(struct super_block *sb)
5281 {
5282         if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5283                 return 0;
5284         if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5285                 return 0;
5286         if (sb->s_flags & MS_RDONLY)
5287                 return 1;
5288         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5289                 return 0;
5290         return 1;
5291 }
5292 #else
5293 static inline void register_as_ext3(void) { }
5294 static inline void unregister_as_ext3(void) { }
5295 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5296 #endif
5297
5298 static struct file_system_type ext4_fs_type = {
5299         .owner          = THIS_MODULE,
5300         .name           = "ext4",
5301         .mount          = ext4_mount,
5302         .kill_sb        = kill_block_super,
5303         .fs_flags       = FS_REQUIRES_DEV,
5304 };
5305 MODULE_ALIAS_FS("ext4");
5306
5307 static int __init ext4_init_feat_adverts(void)
5308 {
5309         struct ext4_features *ef;
5310         int ret = -ENOMEM;
5311
5312         ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5313         if (!ef)
5314                 goto out;
5315
5316         ef->f_kobj.kset = ext4_kset;
5317         init_completion(&ef->f_kobj_unregister);
5318         ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5319                                    "features");
5320         if (ret) {
5321                 kfree(ef);
5322                 goto out;
5323         }
5324
5325         ext4_feat = ef;
5326         ret = 0;
5327 out:
5328         return ret;
5329 }
5330
5331 static void ext4_exit_feat_adverts(void)
5332 {
5333         kobject_put(&ext4_feat->f_kobj);
5334         wait_for_completion(&ext4_feat->f_kobj_unregister);
5335         kfree(ext4_feat);
5336 }
5337
5338 /* Shared across all ext4 file systems */
5339 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5340 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5341
5342 static int __init ext4_init_fs(void)
5343 {
5344         int i, err;
5345
5346         ext4_li_info = NULL;
5347         mutex_init(&ext4_li_mtx);
5348
5349         /* Build-time check for flags consistency */
5350         ext4_check_flag_values();
5351
5352         for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5353                 mutex_init(&ext4__aio_mutex[i]);
5354                 init_waitqueue_head(&ext4__ioend_wq[i]);
5355         }
5356
5357         err = ext4_init_es();
5358         if (err)
5359                 return err;
5360
5361         err = ext4_init_pageio();
5362         if (err)
5363                 goto out7;
5364
5365         err = ext4_init_system_zone();
5366         if (err)
5367                 goto out6;
5368         ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5369         if (!ext4_kset) {
5370                 err = -ENOMEM;
5371                 goto out5;
5372         }
5373         ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5374
5375         err = ext4_init_feat_adverts();
5376         if (err)
5377                 goto out4;
5378
5379         err = ext4_init_mballoc();
5380         if (err)
5381                 goto out3;
5382
5383         err = ext4_init_xattr();
5384         if (err)
5385                 goto out2;
5386         err = init_inodecache();
5387         if (err)
5388                 goto out1;
5389         register_as_ext3();
5390         register_as_ext2();
5391         err = register_filesystem(&ext4_fs_type);
5392         if (err)
5393                 goto out;
5394
5395         return 0;
5396 out:
5397         unregister_as_ext2();
5398         unregister_as_ext3();
5399         destroy_inodecache();
5400 out1:
5401         ext4_exit_xattr();
5402 out2:
5403         ext4_exit_mballoc();
5404 out3:
5405         ext4_exit_feat_adverts();
5406 out4:
5407         if (ext4_proc_root)
5408                 remove_proc_entry("fs/ext4", NULL);
5409         kset_unregister(ext4_kset);
5410 out5:
5411         ext4_exit_system_zone();
5412 out6:
5413         ext4_exit_pageio();
5414 out7:
5415         ext4_exit_es();
5416
5417         return err;
5418 }
5419
5420 static void __exit ext4_exit_fs(void)
5421 {
5422         ext4_destroy_lazyinit_thread();
5423         unregister_as_ext2();
5424         unregister_as_ext3();
5425         unregister_filesystem(&ext4_fs_type);
5426         destroy_inodecache();
5427         ext4_exit_xattr();
5428         ext4_exit_mballoc();
5429         ext4_exit_feat_adverts();
5430         remove_proc_entry("fs/ext4", NULL);
5431         kset_unregister(ext4_kset);
5432         ext4_exit_system_zone();
5433         ext4_exit_pageio();
5434         ext4_exit_es();
5435 }
5436
5437 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5438 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5439 MODULE_LICENSE("GPL");
5440 module_init(ext4_init_fs)
5441 module_exit(ext4_exit_fs)