Merge tag 'v4.4.18' into linux-linaro-lsk-v4.4
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = le16_to_cpu(raw->i_checksum_lo);
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = cpu_to_le16(csum_lo);
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !ext4_has_metadata_csum(inode->i_sb))
85                 return 1;
86
87         provided = le16_to_cpu(raw->i_checksum_lo);
88         calculated = ext4_inode_csum(inode, raw, ei);
89         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92         else
93                 calculated &= 0xFFFF;
94
95         return provided == calculated;
96 }
97
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99                                 struct ext4_inode_info *ei)
100 {
101         __u32 csum;
102
103         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104             cpu_to_le32(EXT4_OS_LINUX) ||
105             !ext4_has_metadata_csum(inode->i_sb))
106                 return;
107
108         csum = ext4_inode_csum(inode, raw, ei);
109         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116                                               loff_t new_size)
117 {
118         trace_ext4_begin_ordered_truncate(inode, new_size);
119         /*
120          * If jinode is zero, then we never opened the file for
121          * writing, so there's no need to call
122          * jbd2_journal_begin_ordered_truncate() since there's no
123          * outstanding writes we need to flush.
124          */
125         if (!EXT4_I(inode)->jinode)
126                 return 0;
127         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128                                                    EXT4_I(inode)->jinode,
129                                                    new_size);
130 }
131
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133                                 unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137                                   int pextents);
138
139 /*
140  * Test whether an inode is a fast symlink.
141  */
142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144         int ea_blocks = EXT4_I(inode)->i_file_acl ?
145                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146
147         if (ext4_has_inline_data(inode))
148                 return 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (inode->i_ino != EXT4_JOURNAL_INO &&
209                     ext4_should_journal_data(inode) &&
210                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages_final(&inode->i_data);
218
219                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220                 goto no_delete;
221         }
222
223         if (is_bad_inode(inode))
224                 goto no_delete;
225         dquot_initialize(inode);
226
227         if (ext4_should_order_data(inode))
228                 ext4_begin_ordered_truncate(inode, 0);
229         truncate_inode_pages_final(&inode->i_data);
230
231         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it
236          */
237         sb_start_intwrite(inode->i_sb);
238         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239                                     ext4_blocks_for_truncate(inode)+3);
240         if (IS_ERR(handle)) {
241                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242                 /*
243                  * If we're going to skip the normal cleanup, we still need to
244                  * make sure that the in-core orphan linked list is properly
245                  * cleaned up.
246                  */
247                 ext4_orphan_del(NULL, inode);
248                 sb_end_intwrite(inode->i_sb);
249                 goto no_delete;
250         }
251
252         if (IS_SYNC(inode))
253                 ext4_handle_sync(handle);
254         inode->i_size = 0;
255         err = ext4_mark_inode_dirty(handle, inode);
256         if (err) {
257                 ext4_warning(inode->i_sb,
258                              "couldn't mark inode dirty (err %d)", err);
259                 goto stop_handle;
260         }
261         if (inode->i_blocks)
262                 ext4_truncate(inode);
263
264         /*
265          * ext4_ext_truncate() doesn't reserve any slop when it
266          * restarts journal transactions; therefore there may not be
267          * enough credits left in the handle to remove the inode from
268          * the orphan list and set the dtime field.
269          */
270         if (!ext4_handle_has_enough_credits(handle, 3)) {
271                 err = ext4_journal_extend(handle, 3);
272                 if (err > 0)
273                         err = ext4_journal_restart(handle, 3);
274                 if (err != 0) {
275                         ext4_warning(inode->i_sb,
276                                      "couldn't extend journal (err %d)", err);
277                 stop_handle:
278                         ext4_journal_stop(handle);
279                         ext4_orphan_del(NULL, inode);
280                         sb_end_intwrite(inode->i_sb);
281                         goto no_delete;
282                 }
283         }
284
285         /*
286          * Kill off the orphan record which ext4_truncate created.
287          * AKPM: I think this can be inside the above `if'.
288          * Note that ext4_orphan_del() has to be able to cope with the
289          * deletion of a non-existent orphan - this is because we don't
290          * know if ext4_truncate() actually created an orphan record.
291          * (Well, we could do this if we need to, but heck - it works)
292          */
293         ext4_orphan_del(handle, inode);
294         EXT4_I(inode)->i_dtime  = get_seconds();
295
296         /*
297          * One subtle ordering requirement: if anything has gone wrong
298          * (transaction abort, IO errors, whatever), then we can still
299          * do these next steps (the fs will already have been marked as
300          * having errors), but we can't free the inode if the mark_dirty
301          * fails.
302          */
303         if (ext4_mark_inode_dirty(handle, inode))
304                 /* If that failed, just do the required in-core inode clear. */
305                 ext4_clear_inode(inode);
306         else
307                 ext4_free_inode(handle, inode);
308         ext4_journal_stop(handle);
309         sb_end_intwrite(inode->i_sb);
310         return;
311 no_delete:
312         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
313 }
314
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318         return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321
322 /*
323  * Called with i_data_sem down, which is important since we can call
324  * ext4_discard_preallocations() from here.
325  */
326 void ext4_da_update_reserve_space(struct inode *inode,
327                                         int used, int quota_claim)
328 {
329         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
330         struct ext4_inode_info *ei = EXT4_I(inode);
331
332         spin_lock(&ei->i_block_reservation_lock);
333         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
334         if (unlikely(used > ei->i_reserved_data_blocks)) {
335                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
336                          "with only %d reserved data blocks",
337                          __func__, inode->i_ino, used,
338                          ei->i_reserved_data_blocks);
339                 WARN_ON(1);
340                 used = ei->i_reserved_data_blocks;
341         }
342
343         /* Update per-inode reservations */
344         ei->i_reserved_data_blocks -= used;
345         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
346
347         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
348
349         /* Update quota subsystem for data blocks */
350         if (quota_claim)
351                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
352         else {
353                 /*
354                  * We did fallocate with an offset that is already delayed
355                  * allocated. So on delayed allocated writeback we should
356                  * not re-claim the quota for fallocated blocks.
357                  */
358                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
359         }
360
361         /*
362          * If we have done all the pending block allocations and if
363          * there aren't any writers on the inode, we can discard the
364          * inode's preallocations.
365          */
366         if ((ei->i_reserved_data_blocks == 0) &&
367             (atomic_read(&inode->i_writecount) == 0))
368                 ext4_discard_preallocations(inode);
369 }
370
371 static int __check_block_validity(struct inode *inode, const char *func,
372                                 unsigned int line,
373                                 struct ext4_map_blocks *map)
374 {
375         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376                                    map->m_len)) {
377                 ext4_error_inode(inode, func, line, map->m_pblk,
378                                  "lblock %lu mapped to illegal pblock "
379                                  "(length %d)", (unsigned long) map->m_lblk,
380                                  map->m_len);
381                 return -EFSCORRUPTED;
382         }
383         return 0;
384 }
385
386 #define check_block_validity(inode, map)        \
387         __check_block_validity((inode), __func__, __LINE__, (map))
388
389 #ifdef ES_AGGRESSIVE_TEST
390 static void ext4_map_blocks_es_recheck(handle_t *handle,
391                                        struct inode *inode,
392                                        struct ext4_map_blocks *es_map,
393                                        struct ext4_map_blocks *map,
394                                        int flags)
395 {
396         int retval;
397
398         map->m_flags = 0;
399         /*
400          * There is a race window that the result is not the same.
401          * e.g. xfstests #223 when dioread_nolock enables.  The reason
402          * is that we lookup a block mapping in extent status tree with
403          * out taking i_data_sem.  So at the time the unwritten extent
404          * could be converted.
405          */
406         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
407                 down_read(&EXT4_I(inode)->i_data_sem);
408         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
409                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
410                                              EXT4_GET_BLOCKS_KEEP_SIZE);
411         } else {
412                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
413                                              EXT4_GET_BLOCKS_KEEP_SIZE);
414         }
415         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
416                 up_read((&EXT4_I(inode)->i_data_sem));
417
418         /*
419          * We don't check m_len because extent will be collpased in status
420          * tree.  So the m_len might not equal.
421          */
422         if (es_map->m_lblk != map->m_lblk ||
423             es_map->m_flags != map->m_flags ||
424             es_map->m_pblk != map->m_pblk) {
425                 printk("ES cache assertion failed for inode: %lu "
426                        "es_cached ex [%d/%d/%llu/%x] != "
427                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
428                        inode->i_ino, es_map->m_lblk, es_map->m_len,
429                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
430                        map->m_len, map->m_pblk, map->m_flags,
431                        retval, flags);
432         }
433 }
434 #endif /* ES_AGGRESSIVE_TEST */
435
436 /*
437  * The ext4_map_blocks() function tries to look up the requested blocks,
438  * and returns if the blocks are already mapped.
439  *
440  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
441  * and store the allocated blocks in the result buffer head and mark it
442  * mapped.
443  *
444  * If file type is extents based, it will call ext4_ext_map_blocks(),
445  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
446  * based files
447  *
448  * On success, it returns the number of blocks being mapped or allocated.
449  * if create==0 and the blocks are pre-allocated and unwritten block,
450  * the result buffer head is unmapped. If the create ==1, it will make sure
451  * the buffer head is mapped.
452  *
453  * It returns 0 if plain look up failed (blocks have not been allocated), in
454  * that case, buffer head is unmapped
455  *
456  * It returns the error in case of allocation failure.
457  */
458 int ext4_map_blocks(handle_t *handle, struct inode *inode,
459                     struct ext4_map_blocks *map, int flags)
460 {
461         struct extent_status es;
462         int retval;
463         int ret = 0;
464 #ifdef ES_AGGRESSIVE_TEST
465         struct ext4_map_blocks orig_map;
466
467         memcpy(&orig_map, map, sizeof(*map));
468 #endif
469
470         map->m_flags = 0;
471         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
473                   (unsigned long) map->m_lblk);
474
475         /*
476          * ext4_map_blocks returns an int, and m_len is an unsigned int
477          */
478         if (unlikely(map->m_len > INT_MAX))
479                 map->m_len = INT_MAX;
480
481         /* We can handle the block number less than EXT_MAX_BLOCKS */
482         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
483                 return -EFSCORRUPTED;
484
485         /* Lookup extent status tree firstly */
486         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
487                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
488                         map->m_pblk = ext4_es_pblock(&es) +
489                                         map->m_lblk - es.es_lblk;
490                         map->m_flags |= ext4_es_is_written(&es) ?
491                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
492                         retval = es.es_len - (map->m_lblk - es.es_lblk);
493                         if (retval > map->m_len)
494                                 retval = map->m_len;
495                         map->m_len = retval;
496                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
497                         retval = 0;
498                 } else {
499                         BUG_ON(1);
500                 }
501 #ifdef ES_AGGRESSIVE_TEST
502                 ext4_map_blocks_es_recheck(handle, inode, map,
503                                            &orig_map, flags);
504 #endif
505                 goto found;
506         }
507
508         /*
509          * Try to see if we can get the block without requesting a new
510          * file system block.
511          */
512         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513                 down_read(&EXT4_I(inode)->i_data_sem);
514         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
515                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
516                                              EXT4_GET_BLOCKS_KEEP_SIZE);
517         } else {
518                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
519                                              EXT4_GET_BLOCKS_KEEP_SIZE);
520         }
521         if (retval > 0) {
522                 unsigned int status;
523
524                 if (unlikely(retval != map->m_len)) {
525                         ext4_warning(inode->i_sb,
526                                      "ES len assertion failed for inode "
527                                      "%lu: retval %d != map->m_len %d",
528                                      inode->i_ino, retval, map->m_len);
529                         WARN_ON(1);
530                 }
531
532                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
533                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
534                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
535                     !(status & EXTENT_STATUS_WRITTEN) &&
536                     ext4_find_delalloc_range(inode, map->m_lblk,
537                                              map->m_lblk + map->m_len - 1))
538                         status |= EXTENT_STATUS_DELAYED;
539                 ret = ext4_es_insert_extent(inode, map->m_lblk,
540                                             map->m_len, map->m_pblk, status);
541                 if (ret < 0)
542                         retval = ret;
543         }
544         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
545                 up_read((&EXT4_I(inode)->i_data_sem));
546
547 found:
548         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
549                 ret = check_block_validity(inode, map);
550                 if (ret != 0)
551                         return ret;
552         }
553
554         /* If it is only a block(s) look up */
555         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
556                 return retval;
557
558         /*
559          * Returns if the blocks have already allocated
560          *
561          * Note that if blocks have been preallocated
562          * ext4_ext_get_block() returns the create = 0
563          * with buffer head unmapped.
564          */
565         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
566                 /*
567                  * If we need to convert extent to unwritten
568                  * we continue and do the actual work in
569                  * ext4_ext_map_blocks()
570                  */
571                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
572                         return retval;
573
574         /*
575          * Here we clear m_flags because after allocating an new extent,
576          * it will be set again.
577          */
578         map->m_flags &= ~EXT4_MAP_FLAGS;
579
580         /*
581          * New blocks allocate and/or writing to unwritten extent
582          * will possibly result in updating i_data, so we take
583          * the write lock of i_data_sem, and call get_block()
584          * with create == 1 flag.
585          */
586         down_write(&EXT4_I(inode)->i_data_sem);
587
588         /*
589          * We need to check for EXT4 here because migrate
590          * could have changed the inode type in between
591          */
592         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
593                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
594         } else {
595                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
596
597                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
598                         /*
599                          * We allocated new blocks which will result in
600                          * i_data's format changing.  Force the migrate
601                          * to fail by clearing migrate flags
602                          */
603                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
604                 }
605
606                 /*
607                  * Update reserved blocks/metadata blocks after successful
608                  * block allocation which had been deferred till now. We don't
609                  * support fallocate for non extent files. So we can update
610                  * reserve space here.
611                  */
612                 if ((retval > 0) &&
613                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
614                         ext4_da_update_reserve_space(inode, retval, 1);
615         }
616
617         if (retval > 0) {
618                 unsigned int status;
619
620                 if (unlikely(retval != map->m_len)) {
621                         ext4_warning(inode->i_sb,
622                                      "ES len assertion failed for inode "
623                                      "%lu: retval %d != map->m_len %d",
624                                      inode->i_ino, retval, map->m_len);
625                         WARN_ON(1);
626                 }
627
628                 /*
629                  * If the extent has been zeroed out, we don't need to update
630                  * extent status tree.
631                  */
632                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
633                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
634                         if (ext4_es_is_written(&es))
635                                 goto has_zeroout;
636                 }
637                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
638                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
639                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
640                     !(status & EXTENT_STATUS_WRITTEN) &&
641                     ext4_find_delalloc_range(inode, map->m_lblk,
642                                              map->m_lblk + map->m_len - 1))
643                         status |= EXTENT_STATUS_DELAYED;
644                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
645                                             map->m_pblk, status);
646                 if (ret < 0)
647                         retval = ret;
648         }
649
650 has_zeroout:
651         up_write((&EXT4_I(inode)->i_data_sem));
652         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
653                 ret = check_block_validity(inode, map);
654                 if (ret != 0)
655                         return ret;
656         }
657         return retval;
658 }
659
660 /*
661  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
662  * we have to be careful as someone else may be manipulating b_state as well.
663  */
664 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
665 {
666         unsigned long old_state;
667         unsigned long new_state;
668
669         flags &= EXT4_MAP_FLAGS;
670
671         /* Dummy buffer_head? Set non-atomically. */
672         if (!bh->b_page) {
673                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
674                 return;
675         }
676         /*
677          * Someone else may be modifying b_state. Be careful! This is ugly but
678          * once we get rid of using bh as a container for mapping information
679          * to pass to / from get_block functions, this can go away.
680          */
681         do {
682                 old_state = READ_ONCE(bh->b_state);
683                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
684         } while (unlikely(
685                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
686 }
687
688 /* Maximum number of blocks we map for direct IO at once. */
689 #define DIO_MAX_BLOCKS 4096
690
691 static int _ext4_get_block(struct inode *inode, sector_t iblock,
692                            struct buffer_head *bh, int flags)
693 {
694         handle_t *handle = ext4_journal_current_handle();
695         struct ext4_map_blocks map;
696         int ret = 0, started = 0;
697         int dio_credits;
698
699         if (ext4_has_inline_data(inode))
700                 return -ERANGE;
701
702         map.m_lblk = iblock;
703         map.m_len = bh->b_size >> inode->i_blkbits;
704
705         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
706                 /* Direct IO write... */
707                 if (map.m_len > DIO_MAX_BLOCKS)
708                         map.m_len = DIO_MAX_BLOCKS;
709                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
710                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
711                                             dio_credits);
712                 if (IS_ERR(handle)) {
713                         ret = PTR_ERR(handle);
714                         return ret;
715                 }
716                 started = 1;
717         }
718
719         ret = ext4_map_blocks(handle, inode, &map, flags);
720         if (ret > 0) {
721                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
722
723                 map_bh(bh, inode->i_sb, map.m_pblk);
724                 ext4_update_bh_state(bh, map.m_flags);
725                 if (IS_DAX(inode) && buffer_unwritten(bh)) {
726                         /*
727                          * dgc: I suspect unwritten conversion on ext4+DAX is
728                          * fundamentally broken here when there are concurrent
729                          * read/write in progress on this inode.
730                          */
731                         WARN_ON_ONCE(io_end);
732                         bh->b_assoc_map = inode->i_mapping;
733                         bh->b_private = (void *)(unsigned long)iblock;
734                 }
735                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
736                         set_buffer_defer_completion(bh);
737                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
738                 ret = 0;
739         }
740         if (started)
741                 ext4_journal_stop(handle);
742         return ret;
743 }
744
745 int ext4_get_block(struct inode *inode, sector_t iblock,
746                    struct buffer_head *bh, int create)
747 {
748         return _ext4_get_block(inode, iblock, bh,
749                                create ? EXT4_GET_BLOCKS_CREATE : 0);
750 }
751
752 /*
753  * `handle' can be NULL if create is zero
754  */
755 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
756                                 ext4_lblk_t block, int map_flags)
757 {
758         struct ext4_map_blocks map;
759         struct buffer_head *bh;
760         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
761         int err;
762
763         J_ASSERT(handle != NULL || create == 0);
764
765         map.m_lblk = block;
766         map.m_len = 1;
767         err = ext4_map_blocks(handle, inode, &map, map_flags);
768
769         if (err == 0)
770                 return create ? ERR_PTR(-ENOSPC) : NULL;
771         if (err < 0)
772                 return ERR_PTR(err);
773
774         bh = sb_getblk(inode->i_sb, map.m_pblk);
775         if (unlikely(!bh))
776                 return ERR_PTR(-ENOMEM);
777         if (map.m_flags & EXT4_MAP_NEW) {
778                 J_ASSERT(create != 0);
779                 J_ASSERT(handle != NULL);
780
781                 /*
782                  * Now that we do not always journal data, we should
783                  * keep in mind whether this should always journal the
784                  * new buffer as metadata.  For now, regular file
785                  * writes use ext4_get_block instead, so it's not a
786                  * problem.
787                  */
788                 lock_buffer(bh);
789                 BUFFER_TRACE(bh, "call get_create_access");
790                 err = ext4_journal_get_create_access(handle, bh);
791                 if (unlikely(err)) {
792                         unlock_buffer(bh);
793                         goto errout;
794                 }
795                 if (!buffer_uptodate(bh)) {
796                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
797                         set_buffer_uptodate(bh);
798                 }
799                 unlock_buffer(bh);
800                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
801                 err = ext4_handle_dirty_metadata(handle, inode, bh);
802                 if (unlikely(err))
803                         goto errout;
804         } else
805                 BUFFER_TRACE(bh, "not a new buffer");
806         return bh;
807 errout:
808         brelse(bh);
809         return ERR_PTR(err);
810 }
811
812 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
813                                ext4_lblk_t block, int map_flags)
814 {
815         struct buffer_head *bh;
816
817         bh = ext4_getblk(handle, inode, block, map_flags);
818         if (IS_ERR(bh))
819                 return bh;
820         if (!bh || buffer_uptodate(bh))
821                 return bh;
822         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
823         wait_on_buffer(bh);
824         if (buffer_uptodate(bh))
825                 return bh;
826         put_bh(bh);
827         return ERR_PTR(-EIO);
828 }
829
830 int ext4_walk_page_buffers(handle_t *handle,
831                            struct buffer_head *head,
832                            unsigned from,
833                            unsigned to,
834                            int *partial,
835                            int (*fn)(handle_t *handle,
836                                      struct buffer_head *bh))
837 {
838         struct buffer_head *bh;
839         unsigned block_start, block_end;
840         unsigned blocksize = head->b_size;
841         int err, ret = 0;
842         struct buffer_head *next;
843
844         for (bh = head, block_start = 0;
845              ret == 0 && (bh != head || !block_start);
846              block_start = block_end, bh = next) {
847                 next = bh->b_this_page;
848                 block_end = block_start + blocksize;
849                 if (block_end <= from || block_start >= to) {
850                         if (partial && !buffer_uptodate(bh))
851                                 *partial = 1;
852                         continue;
853                 }
854                 err = (*fn)(handle, bh);
855                 if (!ret)
856                         ret = err;
857         }
858         return ret;
859 }
860
861 /*
862  * To preserve ordering, it is essential that the hole instantiation and
863  * the data write be encapsulated in a single transaction.  We cannot
864  * close off a transaction and start a new one between the ext4_get_block()
865  * and the commit_write().  So doing the jbd2_journal_start at the start of
866  * prepare_write() is the right place.
867  *
868  * Also, this function can nest inside ext4_writepage().  In that case, we
869  * *know* that ext4_writepage() has generated enough buffer credits to do the
870  * whole page.  So we won't block on the journal in that case, which is good,
871  * because the caller may be PF_MEMALLOC.
872  *
873  * By accident, ext4 can be reentered when a transaction is open via
874  * quota file writes.  If we were to commit the transaction while thus
875  * reentered, there can be a deadlock - we would be holding a quota
876  * lock, and the commit would never complete if another thread had a
877  * transaction open and was blocking on the quota lock - a ranking
878  * violation.
879  *
880  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
881  * will _not_ run commit under these circumstances because handle->h_ref
882  * is elevated.  We'll still have enough credits for the tiny quotafile
883  * write.
884  */
885 int do_journal_get_write_access(handle_t *handle,
886                                 struct buffer_head *bh)
887 {
888         int dirty = buffer_dirty(bh);
889         int ret;
890
891         if (!buffer_mapped(bh) || buffer_freed(bh))
892                 return 0;
893         /*
894          * __block_write_begin() could have dirtied some buffers. Clean
895          * the dirty bit as jbd2_journal_get_write_access() could complain
896          * otherwise about fs integrity issues. Setting of the dirty bit
897          * by __block_write_begin() isn't a real problem here as we clear
898          * the bit before releasing a page lock and thus writeback cannot
899          * ever write the buffer.
900          */
901         if (dirty)
902                 clear_buffer_dirty(bh);
903         BUFFER_TRACE(bh, "get write access");
904         ret = ext4_journal_get_write_access(handle, bh);
905         if (!ret && dirty)
906                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
907         return ret;
908 }
909
910 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
911                    struct buffer_head *bh_result, int create);
912
913 #ifdef CONFIG_EXT4_FS_ENCRYPTION
914 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
915                                   get_block_t *get_block)
916 {
917         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
918         unsigned to = from + len;
919         struct inode *inode = page->mapping->host;
920         unsigned block_start, block_end;
921         sector_t block;
922         int err = 0;
923         unsigned blocksize = inode->i_sb->s_blocksize;
924         unsigned bbits;
925         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
926         bool decrypt = false;
927
928         BUG_ON(!PageLocked(page));
929         BUG_ON(from > PAGE_CACHE_SIZE);
930         BUG_ON(to > PAGE_CACHE_SIZE);
931         BUG_ON(from > to);
932
933         if (!page_has_buffers(page))
934                 create_empty_buffers(page, blocksize, 0);
935         head = page_buffers(page);
936         bbits = ilog2(blocksize);
937         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
938
939         for (bh = head, block_start = 0; bh != head || !block_start;
940             block++, block_start = block_end, bh = bh->b_this_page) {
941                 block_end = block_start + blocksize;
942                 if (block_end <= from || block_start >= to) {
943                         if (PageUptodate(page)) {
944                                 if (!buffer_uptodate(bh))
945                                         set_buffer_uptodate(bh);
946                         }
947                         continue;
948                 }
949                 if (buffer_new(bh))
950                         clear_buffer_new(bh);
951                 if (!buffer_mapped(bh)) {
952                         WARN_ON(bh->b_size != blocksize);
953                         err = get_block(inode, block, bh, 1);
954                         if (err)
955                                 break;
956                         if (buffer_new(bh)) {
957                                 unmap_underlying_metadata(bh->b_bdev,
958                                                           bh->b_blocknr);
959                                 if (PageUptodate(page)) {
960                                         clear_buffer_new(bh);
961                                         set_buffer_uptodate(bh);
962                                         mark_buffer_dirty(bh);
963                                         continue;
964                                 }
965                                 if (block_end > to || block_start < from)
966                                         zero_user_segments(page, to, block_end,
967                                                            block_start, from);
968                                 continue;
969                         }
970                 }
971                 if (PageUptodate(page)) {
972                         if (!buffer_uptodate(bh))
973                                 set_buffer_uptodate(bh);
974                         continue;
975                 }
976                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
977                     !buffer_unwritten(bh) &&
978                     (block_start < from || block_end > to)) {
979                         ll_rw_block(READ, 1, &bh);
980                         *wait_bh++ = bh;
981                         decrypt = ext4_encrypted_inode(inode) &&
982                                 S_ISREG(inode->i_mode);
983                 }
984         }
985         /*
986          * If we issued read requests, let them complete.
987          */
988         while (wait_bh > wait) {
989                 wait_on_buffer(*--wait_bh);
990                 if (!buffer_uptodate(*wait_bh))
991                         err = -EIO;
992         }
993         if (unlikely(err))
994                 page_zero_new_buffers(page, from, to);
995         else if (decrypt)
996                 err = ext4_decrypt(page);
997         return err;
998 }
999 #endif
1000
1001 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1002                             loff_t pos, unsigned len, unsigned flags,
1003                             struct page **pagep, void **fsdata)
1004 {
1005         struct inode *inode = mapping->host;
1006         int ret, needed_blocks;
1007         handle_t *handle;
1008         int retries = 0;
1009         struct page *page;
1010         pgoff_t index;
1011         unsigned from, to;
1012
1013         trace_ext4_write_begin(inode, pos, len, flags);
1014         /*
1015          * Reserve one block more for addition to orphan list in case
1016          * we allocate blocks but write fails for some reason
1017          */
1018         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1019         index = pos >> PAGE_CACHE_SHIFT;
1020         from = pos & (PAGE_CACHE_SIZE - 1);
1021         to = from + len;
1022
1023         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1024                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1025                                                     flags, pagep);
1026                 if (ret < 0)
1027                         return ret;
1028                 if (ret == 1)
1029                         return 0;
1030         }
1031
1032         /*
1033          * grab_cache_page_write_begin() can take a long time if the
1034          * system is thrashing due to memory pressure, or if the page
1035          * is being written back.  So grab it first before we start
1036          * the transaction handle.  This also allows us to allocate
1037          * the page (if needed) without using GFP_NOFS.
1038          */
1039 retry_grab:
1040         page = grab_cache_page_write_begin(mapping, index, flags);
1041         if (!page)
1042                 return -ENOMEM;
1043         unlock_page(page);
1044
1045 retry_journal:
1046         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1047         if (IS_ERR(handle)) {
1048                 page_cache_release(page);
1049                 return PTR_ERR(handle);
1050         }
1051
1052         lock_page(page);
1053         if (page->mapping != mapping) {
1054                 /* The page got truncated from under us */
1055                 unlock_page(page);
1056                 page_cache_release(page);
1057                 ext4_journal_stop(handle);
1058                 goto retry_grab;
1059         }
1060         /* In case writeback began while the page was unlocked */
1061         wait_for_stable_page(page);
1062
1063 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1064         if (ext4_should_dioread_nolock(inode))
1065                 ret = ext4_block_write_begin(page, pos, len,
1066                                              ext4_get_block_write);
1067         else
1068                 ret = ext4_block_write_begin(page, pos, len,
1069                                              ext4_get_block);
1070 #else
1071         if (ext4_should_dioread_nolock(inode))
1072                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1073         else
1074                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1075 #endif
1076         if (!ret && ext4_should_journal_data(inode)) {
1077                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1078                                              from, to, NULL,
1079                                              do_journal_get_write_access);
1080         }
1081
1082         if (ret) {
1083                 unlock_page(page);
1084                 /*
1085                  * __block_write_begin may have instantiated a few blocks
1086                  * outside i_size.  Trim these off again. Don't need
1087                  * i_size_read because we hold i_mutex.
1088                  *
1089                  * Add inode to orphan list in case we crash before
1090                  * truncate finishes
1091                  */
1092                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1093                         ext4_orphan_add(handle, inode);
1094
1095                 ext4_journal_stop(handle);
1096                 if (pos + len > inode->i_size) {
1097                         ext4_truncate_failed_write(inode);
1098                         /*
1099                          * If truncate failed early the inode might
1100                          * still be on the orphan list; we need to
1101                          * make sure the inode is removed from the
1102                          * orphan list in that case.
1103                          */
1104                         if (inode->i_nlink)
1105                                 ext4_orphan_del(NULL, inode);
1106                 }
1107
1108                 if (ret == -ENOSPC &&
1109                     ext4_should_retry_alloc(inode->i_sb, &retries))
1110                         goto retry_journal;
1111                 page_cache_release(page);
1112                 return ret;
1113         }
1114         *pagep = page;
1115         return ret;
1116 }
1117
1118 /* For write_end() in data=journal mode */
1119 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1120 {
1121         int ret;
1122         if (!buffer_mapped(bh) || buffer_freed(bh))
1123                 return 0;
1124         set_buffer_uptodate(bh);
1125         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1126         clear_buffer_meta(bh);
1127         clear_buffer_prio(bh);
1128         return ret;
1129 }
1130
1131 /*
1132  * We need to pick up the new inode size which generic_commit_write gave us
1133  * `file' can be NULL - eg, when called from page_symlink().
1134  *
1135  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1136  * buffers are managed internally.
1137  */
1138 static int ext4_write_end(struct file *file,
1139                           struct address_space *mapping,
1140                           loff_t pos, unsigned len, unsigned copied,
1141                           struct page *page, void *fsdata)
1142 {
1143         handle_t *handle = ext4_journal_current_handle();
1144         struct inode *inode = mapping->host;
1145         loff_t old_size = inode->i_size;
1146         int ret = 0, ret2;
1147         int i_size_changed = 0;
1148
1149         trace_ext4_write_end(inode, pos, len, copied);
1150         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1151                 ret = ext4_jbd2_file_inode(handle, inode);
1152                 if (ret) {
1153                         unlock_page(page);
1154                         page_cache_release(page);
1155                         goto errout;
1156                 }
1157         }
1158
1159         if (ext4_has_inline_data(inode)) {
1160                 ret = ext4_write_inline_data_end(inode, pos, len,
1161                                                  copied, page);
1162                 if (ret < 0)
1163                         goto errout;
1164                 copied = ret;
1165         } else
1166                 copied = block_write_end(file, mapping, pos,
1167                                          len, copied, page, fsdata);
1168         /*
1169          * it's important to update i_size while still holding page lock:
1170          * page writeout could otherwise come in and zero beyond i_size.
1171          */
1172         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1173         unlock_page(page);
1174         page_cache_release(page);
1175
1176         if (old_size < pos)
1177                 pagecache_isize_extended(inode, old_size, pos);
1178         /*
1179          * Don't mark the inode dirty under page lock. First, it unnecessarily
1180          * makes the holding time of page lock longer. Second, it forces lock
1181          * ordering of page lock and transaction start for journaling
1182          * filesystems.
1183          */
1184         if (i_size_changed)
1185                 ext4_mark_inode_dirty(handle, inode);
1186
1187         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1188                 /* if we have allocated more blocks and copied
1189                  * less. We will have blocks allocated outside
1190                  * inode->i_size. So truncate them
1191                  */
1192                 ext4_orphan_add(handle, inode);
1193 errout:
1194         ret2 = ext4_journal_stop(handle);
1195         if (!ret)
1196                 ret = ret2;
1197
1198         if (pos + len > inode->i_size) {
1199                 ext4_truncate_failed_write(inode);
1200                 /*
1201                  * If truncate failed early the inode might still be
1202                  * on the orphan list; we need to make sure the inode
1203                  * is removed from the orphan list in that case.
1204                  */
1205                 if (inode->i_nlink)
1206                         ext4_orphan_del(NULL, inode);
1207         }
1208
1209         return ret ? ret : copied;
1210 }
1211
1212 /*
1213  * This is a private version of page_zero_new_buffers() which doesn't
1214  * set the buffer to be dirty, since in data=journalled mode we need
1215  * to call ext4_handle_dirty_metadata() instead.
1216  */
1217 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1218 {
1219         unsigned int block_start = 0, block_end;
1220         struct buffer_head *head, *bh;
1221
1222         bh = head = page_buffers(page);
1223         do {
1224                 block_end = block_start + bh->b_size;
1225                 if (buffer_new(bh)) {
1226                         if (block_end > from && block_start < to) {
1227                                 if (!PageUptodate(page)) {
1228                                         unsigned start, size;
1229
1230                                         start = max(from, block_start);
1231                                         size = min(to, block_end) - start;
1232
1233                                         zero_user(page, start, size);
1234                                         set_buffer_uptodate(bh);
1235                                 }
1236                                 clear_buffer_new(bh);
1237                         }
1238                 }
1239                 block_start = block_end;
1240                 bh = bh->b_this_page;
1241         } while (bh != head);
1242 }
1243
1244 static int ext4_journalled_write_end(struct file *file,
1245                                      struct address_space *mapping,
1246                                      loff_t pos, unsigned len, unsigned copied,
1247                                      struct page *page, void *fsdata)
1248 {
1249         handle_t *handle = ext4_journal_current_handle();
1250         struct inode *inode = mapping->host;
1251         loff_t old_size = inode->i_size;
1252         int ret = 0, ret2;
1253         int partial = 0;
1254         unsigned from, to;
1255         int size_changed = 0;
1256
1257         trace_ext4_journalled_write_end(inode, pos, len, copied);
1258         from = pos & (PAGE_CACHE_SIZE - 1);
1259         to = from + len;
1260
1261         BUG_ON(!ext4_handle_valid(handle));
1262
1263         if (ext4_has_inline_data(inode))
1264                 copied = ext4_write_inline_data_end(inode, pos, len,
1265                                                     copied, page);
1266         else {
1267                 if (copied < len) {
1268                         if (!PageUptodate(page))
1269                                 copied = 0;
1270                         zero_new_buffers(page, from+copied, to);
1271                 }
1272
1273                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1274                                              to, &partial, write_end_fn);
1275                 if (!partial)
1276                         SetPageUptodate(page);
1277         }
1278         size_changed = ext4_update_inode_size(inode, pos + copied);
1279         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1280         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1281         unlock_page(page);
1282         page_cache_release(page);
1283
1284         if (old_size < pos)
1285                 pagecache_isize_extended(inode, old_size, pos);
1286
1287         if (size_changed) {
1288                 ret2 = ext4_mark_inode_dirty(handle, inode);
1289                 if (!ret)
1290                         ret = ret2;
1291         }
1292
1293         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1294                 /* if we have allocated more blocks and copied
1295                  * less. We will have blocks allocated outside
1296                  * inode->i_size. So truncate them
1297                  */
1298                 ext4_orphan_add(handle, inode);
1299
1300         ret2 = ext4_journal_stop(handle);
1301         if (!ret)
1302                 ret = ret2;
1303         if (pos + len > inode->i_size) {
1304                 ext4_truncate_failed_write(inode);
1305                 /*
1306                  * If truncate failed early the inode might still be
1307                  * on the orphan list; we need to make sure the inode
1308                  * is removed from the orphan list in that case.
1309                  */
1310                 if (inode->i_nlink)
1311                         ext4_orphan_del(NULL, inode);
1312         }
1313
1314         return ret ? ret : copied;
1315 }
1316
1317 /*
1318  * Reserve space for a single cluster
1319  */
1320 static int ext4_da_reserve_space(struct inode *inode)
1321 {
1322         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1323         struct ext4_inode_info *ei = EXT4_I(inode);
1324         int ret;
1325
1326         /*
1327          * We will charge metadata quota at writeout time; this saves
1328          * us from metadata over-estimation, though we may go over by
1329          * a small amount in the end.  Here we just reserve for data.
1330          */
1331         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1332         if (ret)
1333                 return ret;
1334
1335         spin_lock(&ei->i_block_reservation_lock);
1336         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1337                 spin_unlock(&ei->i_block_reservation_lock);
1338                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1339                 return -ENOSPC;
1340         }
1341         ei->i_reserved_data_blocks++;
1342         trace_ext4_da_reserve_space(inode);
1343         spin_unlock(&ei->i_block_reservation_lock);
1344
1345         return 0;       /* success */
1346 }
1347
1348 static void ext4_da_release_space(struct inode *inode, int to_free)
1349 {
1350         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1351         struct ext4_inode_info *ei = EXT4_I(inode);
1352
1353         if (!to_free)
1354                 return;         /* Nothing to release, exit */
1355
1356         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1357
1358         trace_ext4_da_release_space(inode, to_free);
1359         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1360                 /*
1361                  * if there aren't enough reserved blocks, then the
1362                  * counter is messed up somewhere.  Since this
1363                  * function is called from invalidate page, it's
1364                  * harmless to return without any action.
1365                  */
1366                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1367                          "ino %lu, to_free %d with only %d reserved "
1368                          "data blocks", inode->i_ino, to_free,
1369                          ei->i_reserved_data_blocks);
1370                 WARN_ON(1);
1371                 to_free = ei->i_reserved_data_blocks;
1372         }
1373         ei->i_reserved_data_blocks -= to_free;
1374
1375         /* update fs dirty data blocks counter */
1376         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1377
1378         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1379
1380         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1381 }
1382
1383 static void ext4_da_page_release_reservation(struct page *page,
1384                                              unsigned int offset,
1385                                              unsigned int length)
1386 {
1387         int to_release = 0, contiguous_blks = 0;
1388         struct buffer_head *head, *bh;
1389         unsigned int curr_off = 0;
1390         struct inode *inode = page->mapping->host;
1391         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1392         unsigned int stop = offset + length;
1393         int num_clusters;
1394         ext4_fsblk_t lblk;
1395
1396         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1397
1398         head = page_buffers(page);
1399         bh = head;
1400         do {
1401                 unsigned int next_off = curr_off + bh->b_size;
1402
1403                 if (next_off > stop)
1404                         break;
1405
1406                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1407                         to_release++;
1408                         contiguous_blks++;
1409                         clear_buffer_delay(bh);
1410                 } else if (contiguous_blks) {
1411                         lblk = page->index <<
1412                                (PAGE_CACHE_SHIFT - inode->i_blkbits);
1413                         lblk += (curr_off >> inode->i_blkbits) -
1414                                 contiguous_blks;
1415                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1416                         contiguous_blks = 0;
1417                 }
1418                 curr_off = next_off;
1419         } while ((bh = bh->b_this_page) != head);
1420
1421         if (contiguous_blks) {
1422                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1423                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1424                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1425         }
1426
1427         /* If we have released all the blocks belonging to a cluster, then we
1428          * need to release the reserved space for that cluster. */
1429         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1430         while (num_clusters > 0) {
1431                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1432                         ((num_clusters - 1) << sbi->s_cluster_bits);
1433                 if (sbi->s_cluster_ratio == 1 ||
1434                     !ext4_find_delalloc_cluster(inode, lblk))
1435                         ext4_da_release_space(inode, 1);
1436
1437                 num_clusters--;
1438         }
1439 }
1440
1441 /*
1442  * Delayed allocation stuff
1443  */
1444
1445 struct mpage_da_data {
1446         struct inode *inode;
1447         struct writeback_control *wbc;
1448
1449         pgoff_t first_page;     /* The first page to write */
1450         pgoff_t next_page;      /* Current page to examine */
1451         pgoff_t last_page;      /* Last page to examine */
1452         /*
1453          * Extent to map - this can be after first_page because that can be
1454          * fully mapped. We somewhat abuse m_flags to store whether the extent
1455          * is delalloc or unwritten.
1456          */
1457         struct ext4_map_blocks map;
1458         struct ext4_io_submit io_submit;        /* IO submission data */
1459 };
1460
1461 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1462                                        bool invalidate)
1463 {
1464         int nr_pages, i;
1465         pgoff_t index, end;
1466         struct pagevec pvec;
1467         struct inode *inode = mpd->inode;
1468         struct address_space *mapping = inode->i_mapping;
1469
1470         /* This is necessary when next_page == 0. */
1471         if (mpd->first_page >= mpd->next_page)
1472                 return;
1473
1474         index = mpd->first_page;
1475         end   = mpd->next_page - 1;
1476         if (invalidate) {
1477                 ext4_lblk_t start, last;
1478                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1479                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1480                 ext4_es_remove_extent(inode, start, last - start + 1);
1481         }
1482
1483         pagevec_init(&pvec, 0);
1484         while (index <= end) {
1485                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1486                 if (nr_pages == 0)
1487                         break;
1488                 for (i = 0; i < nr_pages; i++) {
1489                         struct page *page = pvec.pages[i];
1490                         if (page->index > end)
1491                                 break;
1492                         BUG_ON(!PageLocked(page));
1493                         BUG_ON(PageWriteback(page));
1494                         if (invalidate) {
1495                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1496                                 ClearPageUptodate(page);
1497                         }
1498                         unlock_page(page);
1499                 }
1500                 index = pvec.pages[nr_pages - 1]->index + 1;
1501                 pagevec_release(&pvec);
1502         }
1503 }
1504
1505 static void ext4_print_free_blocks(struct inode *inode)
1506 {
1507         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1508         struct super_block *sb = inode->i_sb;
1509         struct ext4_inode_info *ei = EXT4_I(inode);
1510
1511         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1512                EXT4_C2B(EXT4_SB(inode->i_sb),
1513                         ext4_count_free_clusters(sb)));
1514         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1515         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1516                (long long) EXT4_C2B(EXT4_SB(sb),
1517                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1518         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1519                (long long) EXT4_C2B(EXT4_SB(sb),
1520                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1521         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1522         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1523                  ei->i_reserved_data_blocks);
1524         return;
1525 }
1526
1527 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1528 {
1529         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1530 }
1531
1532 /*
1533  * This function is grabs code from the very beginning of
1534  * ext4_map_blocks, but assumes that the caller is from delayed write
1535  * time. This function looks up the requested blocks and sets the
1536  * buffer delay bit under the protection of i_data_sem.
1537  */
1538 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1539                               struct ext4_map_blocks *map,
1540                               struct buffer_head *bh)
1541 {
1542         struct extent_status es;
1543         int retval;
1544         sector_t invalid_block = ~((sector_t) 0xffff);
1545 #ifdef ES_AGGRESSIVE_TEST
1546         struct ext4_map_blocks orig_map;
1547
1548         memcpy(&orig_map, map, sizeof(*map));
1549 #endif
1550
1551         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1552                 invalid_block = ~0;
1553
1554         map->m_flags = 0;
1555         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1556                   "logical block %lu\n", inode->i_ino, map->m_len,
1557                   (unsigned long) map->m_lblk);
1558
1559         /* Lookup extent status tree firstly */
1560         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1561                 if (ext4_es_is_hole(&es)) {
1562                         retval = 0;
1563                         down_read(&EXT4_I(inode)->i_data_sem);
1564                         goto add_delayed;
1565                 }
1566
1567                 /*
1568                  * Delayed extent could be allocated by fallocate.
1569                  * So we need to check it.
1570                  */
1571                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1572                         map_bh(bh, inode->i_sb, invalid_block);
1573                         set_buffer_new(bh);
1574                         set_buffer_delay(bh);
1575                         return 0;
1576                 }
1577
1578                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1579                 retval = es.es_len - (iblock - es.es_lblk);
1580                 if (retval > map->m_len)
1581                         retval = map->m_len;
1582                 map->m_len = retval;
1583                 if (ext4_es_is_written(&es))
1584                         map->m_flags |= EXT4_MAP_MAPPED;
1585                 else if (ext4_es_is_unwritten(&es))
1586                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1587                 else
1588                         BUG_ON(1);
1589
1590 #ifdef ES_AGGRESSIVE_TEST
1591                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1592 #endif
1593                 return retval;
1594         }
1595
1596         /*
1597          * Try to see if we can get the block without requesting a new
1598          * file system block.
1599          */
1600         down_read(&EXT4_I(inode)->i_data_sem);
1601         if (ext4_has_inline_data(inode))
1602                 retval = 0;
1603         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1604                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1605         else
1606                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1607
1608 add_delayed:
1609         if (retval == 0) {
1610                 int ret;
1611                 /*
1612                  * XXX: __block_prepare_write() unmaps passed block,
1613                  * is it OK?
1614                  */
1615                 /*
1616                  * If the block was allocated from previously allocated cluster,
1617                  * then we don't need to reserve it again. However we still need
1618                  * to reserve metadata for every block we're going to write.
1619                  */
1620                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1621                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1622                         ret = ext4_da_reserve_space(inode);
1623                         if (ret) {
1624                                 /* not enough space to reserve */
1625                                 retval = ret;
1626                                 goto out_unlock;
1627                         }
1628                 }
1629
1630                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1631                                             ~0, EXTENT_STATUS_DELAYED);
1632                 if (ret) {
1633                         retval = ret;
1634                         goto out_unlock;
1635                 }
1636
1637                 map_bh(bh, inode->i_sb, invalid_block);
1638                 set_buffer_new(bh);
1639                 set_buffer_delay(bh);
1640         } else if (retval > 0) {
1641                 int ret;
1642                 unsigned int status;
1643
1644                 if (unlikely(retval != map->m_len)) {
1645                         ext4_warning(inode->i_sb,
1646                                      "ES len assertion failed for inode "
1647                                      "%lu: retval %d != map->m_len %d",
1648                                      inode->i_ino, retval, map->m_len);
1649                         WARN_ON(1);
1650                 }
1651
1652                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1653                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1654                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1655                                             map->m_pblk, status);
1656                 if (ret != 0)
1657                         retval = ret;
1658         }
1659
1660 out_unlock:
1661         up_read((&EXT4_I(inode)->i_data_sem));
1662
1663         return retval;
1664 }
1665
1666 /*
1667  * This is a special get_block_t callback which is used by
1668  * ext4_da_write_begin().  It will either return mapped block or
1669  * reserve space for a single block.
1670  *
1671  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1672  * We also have b_blocknr = -1 and b_bdev initialized properly
1673  *
1674  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1675  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1676  * initialized properly.
1677  */
1678 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1679                            struct buffer_head *bh, int create)
1680 {
1681         struct ext4_map_blocks map;
1682         int ret = 0;
1683
1684         BUG_ON(create == 0);
1685         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1686
1687         map.m_lblk = iblock;
1688         map.m_len = 1;
1689
1690         /*
1691          * first, we need to know whether the block is allocated already
1692          * preallocated blocks are unmapped but should treated
1693          * the same as allocated blocks.
1694          */
1695         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1696         if (ret <= 0)
1697                 return ret;
1698
1699         map_bh(bh, inode->i_sb, map.m_pblk);
1700         ext4_update_bh_state(bh, map.m_flags);
1701
1702         if (buffer_unwritten(bh)) {
1703                 /* A delayed write to unwritten bh should be marked
1704                  * new and mapped.  Mapped ensures that we don't do
1705                  * get_block multiple times when we write to the same
1706                  * offset and new ensures that we do proper zero out
1707                  * for partial write.
1708                  */
1709                 set_buffer_new(bh);
1710                 set_buffer_mapped(bh);
1711         }
1712         return 0;
1713 }
1714
1715 static int bget_one(handle_t *handle, struct buffer_head *bh)
1716 {
1717         get_bh(bh);
1718         return 0;
1719 }
1720
1721 static int bput_one(handle_t *handle, struct buffer_head *bh)
1722 {
1723         put_bh(bh);
1724         return 0;
1725 }
1726
1727 static int __ext4_journalled_writepage(struct page *page,
1728                                        unsigned int len)
1729 {
1730         struct address_space *mapping = page->mapping;
1731         struct inode *inode = mapping->host;
1732         struct buffer_head *page_bufs = NULL;
1733         handle_t *handle = NULL;
1734         int ret = 0, err = 0;
1735         int inline_data = ext4_has_inline_data(inode);
1736         struct buffer_head *inode_bh = NULL;
1737
1738         ClearPageChecked(page);
1739
1740         if (inline_data) {
1741                 BUG_ON(page->index != 0);
1742                 BUG_ON(len > ext4_get_max_inline_size(inode));
1743                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1744                 if (inode_bh == NULL)
1745                         goto out;
1746         } else {
1747                 page_bufs = page_buffers(page);
1748                 if (!page_bufs) {
1749                         BUG();
1750                         goto out;
1751                 }
1752                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1753                                        NULL, bget_one);
1754         }
1755         /*
1756          * We need to release the page lock before we start the
1757          * journal, so grab a reference so the page won't disappear
1758          * out from under us.
1759          */
1760         get_page(page);
1761         unlock_page(page);
1762
1763         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1764                                     ext4_writepage_trans_blocks(inode));
1765         if (IS_ERR(handle)) {
1766                 ret = PTR_ERR(handle);
1767                 put_page(page);
1768                 goto out_no_pagelock;
1769         }
1770         BUG_ON(!ext4_handle_valid(handle));
1771
1772         lock_page(page);
1773         put_page(page);
1774         if (page->mapping != mapping) {
1775                 /* The page got truncated from under us */
1776                 ext4_journal_stop(handle);
1777                 ret = 0;
1778                 goto out;
1779         }
1780
1781         if (inline_data) {
1782                 BUFFER_TRACE(inode_bh, "get write access");
1783                 ret = ext4_journal_get_write_access(handle, inode_bh);
1784
1785                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1786
1787         } else {
1788                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1789                                              do_journal_get_write_access);
1790
1791                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1792                                              write_end_fn);
1793         }
1794         if (ret == 0)
1795                 ret = err;
1796         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1797         err = ext4_journal_stop(handle);
1798         if (!ret)
1799                 ret = err;
1800
1801         if (!ext4_has_inline_data(inode))
1802                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1803                                        NULL, bput_one);
1804         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1805 out:
1806         unlock_page(page);
1807 out_no_pagelock:
1808         brelse(inode_bh);
1809         return ret;
1810 }
1811
1812 /*
1813  * Note that we don't need to start a transaction unless we're journaling data
1814  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1815  * need to file the inode to the transaction's list in ordered mode because if
1816  * we are writing back data added by write(), the inode is already there and if
1817  * we are writing back data modified via mmap(), no one guarantees in which
1818  * transaction the data will hit the disk. In case we are journaling data, we
1819  * cannot start transaction directly because transaction start ranks above page
1820  * lock so we have to do some magic.
1821  *
1822  * This function can get called via...
1823  *   - ext4_writepages after taking page lock (have journal handle)
1824  *   - journal_submit_inode_data_buffers (no journal handle)
1825  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1826  *   - grab_page_cache when doing write_begin (have journal handle)
1827  *
1828  * We don't do any block allocation in this function. If we have page with
1829  * multiple blocks we need to write those buffer_heads that are mapped. This
1830  * is important for mmaped based write. So if we do with blocksize 1K
1831  * truncate(f, 1024);
1832  * a = mmap(f, 0, 4096);
1833  * a[0] = 'a';
1834  * truncate(f, 4096);
1835  * we have in the page first buffer_head mapped via page_mkwrite call back
1836  * but other buffer_heads would be unmapped but dirty (dirty done via the
1837  * do_wp_page). So writepage should write the first block. If we modify
1838  * the mmap area beyond 1024 we will again get a page_fault and the
1839  * page_mkwrite callback will do the block allocation and mark the
1840  * buffer_heads mapped.
1841  *
1842  * We redirty the page if we have any buffer_heads that is either delay or
1843  * unwritten in the page.
1844  *
1845  * We can get recursively called as show below.
1846  *
1847  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1848  *              ext4_writepage()
1849  *
1850  * But since we don't do any block allocation we should not deadlock.
1851  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1852  */
1853 static int ext4_writepage(struct page *page,
1854                           struct writeback_control *wbc)
1855 {
1856         int ret = 0;
1857         loff_t size;
1858         unsigned int len;
1859         struct buffer_head *page_bufs = NULL;
1860         struct inode *inode = page->mapping->host;
1861         struct ext4_io_submit io_submit;
1862         bool keep_towrite = false;
1863
1864         trace_ext4_writepage(page);
1865         size = i_size_read(inode);
1866         if (page->index == size >> PAGE_CACHE_SHIFT)
1867                 len = size & ~PAGE_CACHE_MASK;
1868         else
1869                 len = PAGE_CACHE_SIZE;
1870
1871         page_bufs = page_buffers(page);
1872         /*
1873          * We cannot do block allocation or other extent handling in this
1874          * function. If there are buffers needing that, we have to redirty
1875          * the page. But we may reach here when we do a journal commit via
1876          * journal_submit_inode_data_buffers() and in that case we must write
1877          * allocated buffers to achieve data=ordered mode guarantees.
1878          *
1879          * Also, if there is only one buffer per page (the fs block
1880          * size == the page size), if one buffer needs block
1881          * allocation or needs to modify the extent tree to clear the
1882          * unwritten flag, we know that the page can't be written at
1883          * all, so we might as well refuse the write immediately.
1884          * Unfortunately if the block size != page size, we can't as
1885          * easily detect this case using ext4_walk_page_buffers(), but
1886          * for the extremely common case, this is an optimization that
1887          * skips a useless round trip through ext4_bio_write_page().
1888          */
1889         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1890                                    ext4_bh_delay_or_unwritten)) {
1891                 redirty_page_for_writepage(wbc, page);
1892                 if ((current->flags & PF_MEMALLOC) ||
1893                     (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
1894                         /*
1895                          * For memory cleaning there's no point in writing only
1896                          * some buffers. So just bail out. Warn if we came here
1897                          * from direct reclaim.
1898                          */
1899                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1900                                                         == PF_MEMALLOC);
1901                         unlock_page(page);
1902                         return 0;
1903                 }
1904                 keep_towrite = true;
1905         }
1906
1907         if (PageChecked(page) && ext4_should_journal_data(inode))
1908                 /*
1909                  * It's mmapped pagecache.  Add buffers and journal it.  There
1910                  * doesn't seem much point in redirtying the page here.
1911                  */
1912                 return __ext4_journalled_writepage(page, len);
1913
1914         ext4_io_submit_init(&io_submit, wbc);
1915         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1916         if (!io_submit.io_end) {
1917                 redirty_page_for_writepage(wbc, page);
1918                 unlock_page(page);
1919                 return -ENOMEM;
1920         }
1921         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1922         ext4_io_submit(&io_submit);
1923         /* Drop io_end reference we got from init */
1924         ext4_put_io_end_defer(io_submit.io_end);
1925         return ret;
1926 }
1927
1928 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1929 {
1930         int len;
1931         loff_t size = i_size_read(mpd->inode);
1932         int err;
1933
1934         BUG_ON(page->index != mpd->first_page);
1935         if (page->index == size >> PAGE_CACHE_SHIFT)
1936                 len = size & ~PAGE_CACHE_MASK;
1937         else
1938                 len = PAGE_CACHE_SIZE;
1939         clear_page_dirty_for_io(page);
1940         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1941         if (!err)
1942                 mpd->wbc->nr_to_write--;
1943         mpd->first_page++;
1944
1945         return err;
1946 }
1947
1948 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1949
1950 /*
1951  * mballoc gives us at most this number of blocks...
1952  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1953  * The rest of mballoc seems to handle chunks up to full group size.
1954  */
1955 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1956
1957 /*
1958  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1959  *
1960  * @mpd - extent of blocks
1961  * @lblk - logical number of the block in the file
1962  * @bh - buffer head we want to add to the extent
1963  *
1964  * The function is used to collect contig. blocks in the same state. If the
1965  * buffer doesn't require mapping for writeback and we haven't started the
1966  * extent of buffers to map yet, the function returns 'true' immediately - the
1967  * caller can write the buffer right away. Otherwise the function returns true
1968  * if the block has been added to the extent, false if the block couldn't be
1969  * added.
1970  */
1971 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1972                                    struct buffer_head *bh)
1973 {
1974         struct ext4_map_blocks *map = &mpd->map;
1975
1976         /* Buffer that doesn't need mapping for writeback? */
1977         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1978             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1979                 /* So far no extent to map => we write the buffer right away */
1980                 if (map->m_len == 0)
1981                         return true;
1982                 return false;
1983         }
1984
1985         /* First block in the extent? */
1986         if (map->m_len == 0) {
1987                 map->m_lblk = lblk;
1988                 map->m_len = 1;
1989                 map->m_flags = bh->b_state & BH_FLAGS;
1990                 return true;
1991         }
1992
1993         /* Don't go larger than mballoc is willing to allocate */
1994         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1995                 return false;
1996
1997         /* Can we merge the block to our big extent? */
1998         if (lblk == map->m_lblk + map->m_len &&
1999             (bh->b_state & BH_FLAGS) == map->m_flags) {
2000                 map->m_len++;
2001                 return true;
2002         }
2003         return false;
2004 }
2005
2006 /*
2007  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2008  *
2009  * @mpd - extent of blocks for mapping
2010  * @head - the first buffer in the page
2011  * @bh - buffer we should start processing from
2012  * @lblk - logical number of the block in the file corresponding to @bh
2013  *
2014  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2015  * the page for IO if all buffers in this page were mapped and there's no
2016  * accumulated extent of buffers to map or add buffers in the page to the
2017  * extent of buffers to map. The function returns 1 if the caller can continue
2018  * by processing the next page, 0 if it should stop adding buffers to the
2019  * extent to map because we cannot extend it anymore. It can also return value
2020  * < 0 in case of error during IO submission.
2021  */
2022 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2023                                    struct buffer_head *head,
2024                                    struct buffer_head *bh,
2025                                    ext4_lblk_t lblk)
2026 {
2027         struct inode *inode = mpd->inode;
2028         int err;
2029         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2030                                                         >> inode->i_blkbits;
2031
2032         do {
2033                 BUG_ON(buffer_locked(bh));
2034
2035                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2036                         /* Found extent to map? */
2037                         if (mpd->map.m_len)
2038                                 return 0;
2039                         /* Everything mapped so far and we hit EOF */
2040                         break;
2041                 }
2042         } while (lblk++, (bh = bh->b_this_page) != head);
2043         /* So far everything mapped? Submit the page for IO. */
2044         if (mpd->map.m_len == 0) {
2045                 err = mpage_submit_page(mpd, head->b_page);
2046                 if (err < 0)
2047                         return err;
2048         }
2049         return lblk < blocks;
2050 }
2051
2052 /*
2053  * mpage_map_buffers - update buffers corresponding to changed extent and
2054  *                     submit fully mapped pages for IO
2055  *
2056  * @mpd - description of extent to map, on return next extent to map
2057  *
2058  * Scan buffers corresponding to changed extent (we expect corresponding pages
2059  * to be already locked) and update buffer state according to new extent state.
2060  * We map delalloc buffers to their physical location, clear unwritten bits,
2061  * and mark buffers as uninit when we perform writes to unwritten extents
2062  * and do extent conversion after IO is finished. If the last page is not fully
2063  * mapped, we update @map to the next extent in the last page that needs
2064  * mapping. Otherwise we submit the page for IO.
2065  */
2066 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2067 {
2068         struct pagevec pvec;
2069         int nr_pages, i;
2070         struct inode *inode = mpd->inode;
2071         struct buffer_head *head, *bh;
2072         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2073         pgoff_t start, end;
2074         ext4_lblk_t lblk;
2075         sector_t pblock;
2076         int err;
2077
2078         start = mpd->map.m_lblk >> bpp_bits;
2079         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2080         lblk = start << bpp_bits;
2081         pblock = mpd->map.m_pblk;
2082
2083         pagevec_init(&pvec, 0);
2084         while (start <= end) {
2085                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2086                                           PAGEVEC_SIZE);
2087                 if (nr_pages == 0)
2088                         break;
2089                 for (i = 0; i < nr_pages; i++) {
2090                         struct page *page = pvec.pages[i];
2091
2092                         if (page->index > end)
2093                                 break;
2094                         /* Up to 'end' pages must be contiguous */
2095                         BUG_ON(page->index != start);
2096                         bh = head = page_buffers(page);
2097                         do {
2098                                 if (lblk < mpd->map.m_lblk)
2099                                         continue;
2100                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2101                                         /*
2102                                          * Buffer after end of mapped extent.
2103                                          * Find next buffer in the page to map.
2104                                          */
2105                                         mpd->map.m_len = 0;
2106                                         mpd->map.m_flags = 0;
2107                                         /*
2108                                          * FIXME: If dioread_nolock supports
2109                                          * blocksize < pagesize, we need to make
2110                                          * sure we add size mapped so far to
2111                                          * io_end->size as the following call
2112                                          * can submit the page for IO.
2113                                          */
2114                                         err = mpage_process_page_bufs(mpd, head,
2115                                                                       bh, lblk);
2116                                         pagevec_release(&pvec);
2117                                         if (err > 0)
2118                                                 err = 0;
2119                                         return err;
2120                                 }
2121                                 if (buffer_delay(bh)) {
2122                                         clear_buffer_delay(bh);
2123                                         bh->b_blocknr = pblock++;
2124                                 }
2125                                 clear_buffer_unwritten(bh);
2126                         } while (lblk++, (bh = bh->b_this_page) != head);
2127
2128                         /*
2129                          * FIXME: This is going to break if dioread_nolock
2130                          * supports blocksize < pagesize as we will try to
2131                          * convert potentially unmapped parts of inode.
2132                          */
2133                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2134                         /* Page fully mapped - let IO run! */
2135                         err = mpage_submit_page(mpd, page);
2136                         if (err < 0) {
2137                                 pagevec_release(&pvec);
2138                                 return err;
2139                         }
2140                         start++;
2141                 }
2142                 pagevec_release(&pvec);
2143         }
2144         /* Extent fully mapped and matches with page boundary. We are done. */
2145         mpd->map.m_len = 0;
2146         mpd->map.m_flags = 0;
2147         return 0;
2148 }
2149
2150 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2151 {
2152         struct inode *inode = mpd->inode;
2153         struct ext4_map_blocks *map = &mpd->map;
2154         int get_blocks_flags;
2155         int err, dioread_nolock;
2156
2157         trace_ext4_da_write_pages_extent(inode, map);
2158         /*
2159          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2160          * to convert an unwritten extent to be initialized (in the case
2161          * where we have written into one or more preallocated blocks).  It is
2162          * possible that we're going to need more metadata blocks than
2163          * previously reserved. However we must not fail because we're in
2164          * writeback and there is nothing we can do about it so it might result
2165          * in data loss.  So use reserved blocks to allocate metadata if
2166          * possible.
2167          *
2168          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2169          * the blocks in question are delalloc blocks.  This indicates
2170          * that the blocks and quotas has already been checked when
2171          * the data was copied into the page cache.
2172          */
2173         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2174                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2175         dioread_nolock = ext4_should_dioread_nolock(inode);
2176         if (dioread_nolock)
2177                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2178         if (map->m_flags & (1 << BH_Delay))
2179                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2180
2181         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2182         if (err < 0)
2183                 return err;
2184         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2185                 if (!mpd->io_submit.io_end->handle &&
2186                     ext4_handle_valid(handle)) {
2187                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2188                         handle->h_rsv_handle = NULL;
2189                 }
2190                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2191         }
2192
2193         BUG_ON(map->m_len == 0);
2194         if (map->m_flags & EXT4_MAP_NEW) {
2195                 struct block_device *bdev = inode->i_sb->s_bdev;
2196                 int i;
2197
2198                 for (i = 0; i < map->m_len; i++)
2199                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2200         }
2201         return 0;
2202 }
2203
2204 /*
2205  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2206  *                               mpd->len and submit pages underlying it for IO
2207  *
2208  * @handle - handle for journal operations
2209  * @mpd - extent to map
2210  * @give_up_on_write - we set this to true iff there is a fatal error and there
2211  *                     is no hope of writing the data. The caller should discard
2212  *                     dirty pages to avoid infinite loops.
2213  *
2214  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2215  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2216  * them to initialized or split the described range from larger unwritten
2217  * extent. Note that we need not map all the described range since allocation
2218  * can return less blocks or the range is covered by more unwritten extents. We
2219  * cannot map more because we are limited by reserved transaction credits. On
2220  * the other hand we always make sure that the last touched page is fully
2221  * mapped so that it can be written out (and thus forward progress is
2222  * guaranteed). After mapping we submit all mapped pages for IO.
2223  */
2224 static int mpage_map_and_submit_extent(handle_t *handle,
2225                                        struct mpage_da_data *mpd,
2226                                        bool *give_up_on_write)
2227 {
2228         struct inode *inode = mpd->inode;
2229         struct ext4_map_blocks *map = &mpd->map;
2230         int err;
2231         loff_t disksize;
2232         int progress = 0;
2233
2234         mpd->io_submit.io_end->offset =
2235                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2236         do {
2237                 err = mpage_map_one_extent(handle, mpd);
2238                 if (err < 0) {
2239                         struct super_block *sb = inode->i_sb;
2240
2241                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2242                                 goto invalidate_dirty_pages;
2243                         /*
2244                          * Let the uper layers retry transient errors.
2245                          * In the case of ENOSPC, if ext4_count_free_blocks()
2246                          * is non-zero, a commit should free up blocks.
2247                          */
2248                         if ((err == -ENOMEM) ||
2249                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2250                                 if (progress)
2251                                         goto update_disksize;
2252                                 return err;
2253                         }
2254                         ext4_msg(sb, KERN_CRIT,
2255                                  "Delayed block allocation failed for "
2256                                  "inode %lu at logical offset %llu with"
2257                                  " max blocks %u with error %d",
2258                                  inode->i_ino,
2259                                  (unsigned long long)map->m_lblk,
2260                                  (unsigned)map->m_len, -err);
2261                         ext4_msg(sb, KERN_CRIT,
2262                                  "This should not happen!! Data will "
2263                                  "be lost\n");
2264                         if (err == -ENOSPC)
2265                                 ext4_print_free_blocks(inode);
2266                 invalidate_dirty_pages:
2267                         *give_up_on_write = true;
2268                         return err;
2269                 }
2270                 progress = 1;
2271                 /*
2272                  * Update buffer state, submit mapped pages, and get us new
2273                  * extent to map
2274                  */
2275                 err = mpage_map_and_submit_buffers(mpd);
2276                 if (err < 0)
2277                         goto update_disksize;
2278         } while (map->m_len);
2279
2280 update_disksize:
2281         /*
2282          * Update on-disk size after IO is submitted.  Races with
2283          * truncate are avoided by checking i_size under i_data_sem.
2284          */
2285         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2286         if (disksize > EXT4_I(inode)->i_disksize) {
2287                 int err2;
2288                 loff_t i_size;
2289
2290                 down_write(&EXT4_I(inode)->i_data_sem);
2291                 i_size = i_size_read(inode);
2292                 if (disksize > i_size)
2293                         disksize = i_size;
2294                 if (disksize > EXT4_I(inode)->i_disksize)
2295                         EXT4_I(inode)->i_disksize = disksize;
2296                 err2 = ext4_mark_inode_dirty(handle, inode);
2297                 up_write(&EXT4_I(inode)->i_data_sem);
2298                 if (err2)
2299                         ext4_error(inode->i_sb,
2300                                    "Failed to mark inode %lu dirty",
2301                                    inode->i_ino);
2302                 if (!err)
2303                         err = err2;
2304         }
2305         return err;
2306 }
2307
2308 /*
2309  * Calculate the total number of credits to reserve for one writepages
2310  * iteration. This is called from ext4_writepages(). We map an extent of
2311  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2312  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2313  * bpp - 1 blocks in bpp different extents.
2314  */
2315 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2316 {
2317         int bpp = ext4_journal_blocks_per_page(inode);
2318
2319         return ext4_meta_trans_blocks(inode,
2320                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2321 }
2322
2323 /*
2324  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2325  *                               and underlying extent to map
2326  *
2327  * @mpd - where to look for pages
2328  *
2329  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2330  * IO immediately. When we find a page which isn't mapped we start accumulating
2331  * extent of buffers underlying these pages that needs mapping (formed by
2332  * either delayed or unwritten buffers). We also lock the pages containing
2333  * these buffers. The extent found is returned in @mpd structure (starting at
2334  * mpd->lblk with length mpd->len blocks).
2335  *
2336  * Note that this function can attach bios to one io_end structure which are
2337  * neither logically nor physically contiguous. Although it may seem as an
2338  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2339  * case as we need to track IO to all buffers underlying a page in one io_end.
2340  */
2341 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2342 {
2343         struct address_space *mapping = mpd->inode->i_mapping;
2344         struct pagevec pvec;
2345         unsigned int nr_pages;
2346         long left = mpd->wbc->nr_to_write;
2347         pgoff_t index = mpd->first_page;
2348         pgoff_t end = mpd->last_page;
2349         int tag;
2350         int i, err = 0;
2351         int blkbits = mpd->inode->i_blkbits;
2352         ext4_lblk_t lblk;
2353         struct buffer_head *head;
2354
2355         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2356                 tag = PAGECACHE_TAG_TOWRITE;
2357         else
2358                 tag = PAGECACHE_TAG_DIRTY;
2359
2360         pagevec_init(&pvec, 0);
2361         mpd->map.m_len = 0;
2362         mpd->next_page = index;
2363         while (index <= end) {
2364                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2365                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2366                 if (nr_pages == 0)
2367                         goto out;
2368
2369                 for (i = 0; i < nr_pages; i++) {
2370                         struct page *page = pvec.pages[i];
2371
2372                         /*
2373                          * At this point, the page may be truncated or
2374                          * invalidated (changing page->mapping to NULL), or
2375                          * even swizzled back from swapper_space to tmpfs file
2376                          * mapping. However, page->index will not change
2377                          * because we have a reference on the page.
2378                          */
2379                         if (page->index > end)
2380                                 goto out;
2381
2382                         /*
2383                          * Accumulated enough dirty pages? This doesn't apply
2384                          * to WB_SYNC_ALL mode. For integrity sync we have to
2385                          * keep going because someone may be concurrently
2386                          * dirtying pages, and we might have synced a lot of
2387                          * newly appeared dirty pages, but have not synced all
2388                          * of the old dirty pages.
2389                          */
2390                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2391                                 goto out;
2392
2393                         /* If we can't merge this page, we are done. */
2394                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2395                                 goto out;
2396
2397                         lock_page(page);
2398                         /*
2399                          * If the page is no longer dirty, or its mapping no
2400                          * longer corresponds to inode we are writing (which
2401                          * means it has been truncated or invalidated), or the
2402                          * page is already under writeback and we are not doing
2403                          * a data integrity writeback, skip the page
2404                          */
2405                         if (!PageDirty(page) ||
2406                             (PageWriteback(page) &&
2407                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2408                             unlikely(page->mapping != mapping)) {
2409                                 unlock_page(page);
2410                                 continue;
2411                         }
2412
2413                         wait_on_page_writeback(page);
2414                         BUG_ON(PageWriteback(page));
2415
2416                         if (mpd->map.m_len == 0)
2417                                 mpd->first_page = page->index;
2418                         mpd->next_page = page->index + 1;
2419                         /* Add all dirty buffers to mpd */
2420                         lblk = ((ext4_lblk_t)page->index) <<
2421                                 (PAGE_CACHE_SHIFT - blkbits);
2422                         head = page_buffers(page);
2423                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2424                         if (err <= 0)
2425                                 goto out;
2426                         err = 0;
2427                         left--;
2428                 }
2429                 pagevec_release(&pvec);
2430                 cond_resched();
2431         }
2432         return 0;
2433 out:
2434         pagevec_release(&pvec);
2435         return err;
2436 }
2437
2438 static int __writepage(struct page *page, struct writeback_control *wbc,
2439                        void *data)
2440 {
2441         struct address_space *mapping = data;
2442         int ret = ext4_writepage(page, wbc);
2443         mapping_set_error(mapping, ret);
2444         return ret;
2445 }
2446
2447 static int ext4_writepages(struct address_space *mapping,
2448                            struct writeback_control *wbc)
2449 {
2450         pgoff_t writeback_index = 0;
2451         long nr_to_write = wbc->nr_to_write;
2452         int range_whole = 0;
2453         int cycled = 1;
2454         handle_t *handle = NULL;
2455         struct mpage_da_data mpd;
2456         struct inode *inode = mapping->host;
2457         int needed_blocks, rsv_blocks = 0, ret = 0;
2458         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2459         bool done;
2460         struct blk_plug plug;
2461         bool give_up_on_write = false;
2462
2463         trace_ext4_writepages(inode, wbc);
2464
2465         /*
2466          * No pages to write? This is mainly a kludge to avoid starting
2467          * a transaction for special inodes like journal inode on last iput()
2468          * because that could violate lock ordering on umount
2469          */
2470         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2471                 goto out_writepages;
2472
2473         if (ext4_should_journal_data(inode)) {
2474                 struct blk_plug plug;
2475
2476                 blk_start_plug(&plug);
2477                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2478                 blk_finish_plug(&plug);
2479                 goto out_writepages;
2480         }
2481
2482         /*
2483          * If the filesystem has aborted, it is read-only, so return
2484          * right away instead of dumping stack traces later on that
2485          * will obscure the real source of the problem.  We test
2486          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2487          * the latter could be true if the filesystem is mounted
2488          * read-only, and in that case, ext4_writepages should
2489          * *never* be called, so if that ever happens, we would want
2490          * the stack trace.
2491          */
2492         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2493                 ret = -EROFS;
2494                 goto out_writepages;
2495         }
2496
2497         if (ext4_should_dioread_nolock(inode)) {
2498                 /*
2499                  * We may need to convert up to one extent per block in
2500                  * the page and we may dirty the inode.
2501                  */
2502                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2503         }
2504
2505         /*
2506          * If we have inline data and arrive here, it means that
2507          * we will soon create the block for the 1st page, so
2508          * we'd better clear the inline data here.
2509          */
2510         if (ext4_has_inline_data(inode)) {
2511                 /* Just inode will be modified... */
2512                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2513                 if (IS_ERR(handle)) {
2514                         ret = PTR_ERR(handle);
2515                         goto out_writepages;
2516                 }
2517                 BUG_ON(ext4_test_inode_state(inode,
2518                                 EXT4_STATE_MAY_INLINE_DATA));
2519                 ext4_destroy_inline_data(handle, inode);
2520                 ext4_journal_stop(handle);
2521         }
2522
2523         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2524                 range_whole = 1;
2525
2526         if (wbc->range_cyclic) {
2527                 writeback_index = mapping->writeback_index;
2528                 if (writeback_index)
2529                         cycled = 0;
2530                 mpd.first_page = writeback_index;
2531                 mpd.last_page = -1;
2532         } else {
2533                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2534                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2535         }
2536
2537         mpd.inode = inode;
2538         mpd.wbc = wbc;
2539         ext4_io_submit_init(&mpd.io_submit, wbc);
2540 retry:
2541         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2542                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2543         done = false;
2544         blk_start_plug(&plug);
2545         while (!done && mpd.first_page <= mpd.last_page) {
2546                 /* For each extent of pages we use new io_end */
2547                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2548                 if (!mpd.io_submit.io_end) {
2549                         ret = -ENOMEM;
2550                         break;
2551                 }
2552
2553                 /*
2554                  * We have two constraints: We find one extent to map and we
2555                  * must always write out whole page (makes a difference when
2556                  * blocksize < pagesize) so that we don't block on IO when we
2557                  * try to write out the rest of the page. Journalled mode is
2558                  * not supported by delalloc.
2559                  */
2560                 BUG_ON(ext4_should_journal_data(inode));
2561                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2562
2563                 /* start a new transaction */
2564                 handle = ext4_journal_start_with_reserve(inode,
2565                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2566                 if (IS_ERR(handle)) {
2567                         ret = PTR_ERR(handle);
2568                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2569                                "%ld pages, ino %lu; err %d", __func__,
2570                                 wbc->nr_to_write, inode->i_ino, ret);
2571                         /* Release allocated io_end */
2572                         ext4_put_io_end(mpd.io_submit.io_end);
2573                         break;
2574                 }
2575
2576                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2577                 ret = mpage_prepare_extent_to_map(&mpd);
2578                 if (!ret) {
2579                         if (mpd.map.m_len)
2580                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2581                                         &give_up_on_write);
2582                         else {
2583                                 /*
2584                                  * We scanned the whole range (or exhausted
2585                                  * nr_to_write), submitted what was mapped and
2586                                  * didn't find anything needing mapping. We are
2587                                  * done.
2588                                  */
2589                                 done = true;
2590                         }
2591                 }
2592                 /*
2593                  * Caution: If the handle is synchronous,
2594                  * ext4_journal_stop() can wait for transaction commit
2595                  * to finish which may depend on writeback of pages to
2596                  * complete or on page lock to be released.  In that
2597                  * case, we have to wait until after after we have
2598                  * submitted all the IO, released page locks we hold,
2599                  * and dropped io_end reference (for extent conversion
2600                  * to be able to complete) before stopping the handle.
2601                  */
2602                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2603                         ext4_journal_stop(handle);
2604                         handle = NULL;
2605                 }
2606                 /* Submit prepared bio */
2607                 ext4_io_submit(&mpd.io_submit);
2608                 /* Unlock pages we didn't use */
2609                 mpage_release_unused_pages(&mpd, give_up_on_write);
2610                 /*
2611                  * Drop our io_end reference we got from init. We have
2612                  * to be careful and use deferred io_end finishing if
2613                  * we are still holding the transaction as we can
2614                  * release the last reference to io_end which may end
2615                  * up doing unwritten extent conversion.
2616                  */
2617                 if (handle) {
2618                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2619                         ext4_journal_stop(handle);
2620                 } else
2621                         ext4_put_io_end(mpd.io_submit.io_end);
2622
2623                 if (ret == -ENOSPC && sbi->s_journal) {
2624                         /*
2625                          * Commit the transaction which would
2626                          * free blocks released in the transaction
2627                          * and try again
2628                          */
2629                         jbd2_journal_force_commit_nested(sbi->s_journal);
2630                         ret = 0;
2631                         continue;
2632                 }
2633                 /* Fatal error - ENOMEM, EIO... */
2634                 if (ret)
2635                         break;
2636         }
2637         blk_finish_plug(&plug);
2638         if (!ret && !cycled && wbc->nr_to_write > 0) {
2639                 cycled = 1;
2640                 mpd.last_page = writeback_index - 1;
2641                 mpd.first_page = 0;
2642                 goto retry;
2643         }
2644
2645         /* Update index */
2646         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2647                 /*
2648                  * Set the writeback_index so that range_cyclic
2649                  * mode will write it back later
2650                  */
2651                 mapping->writeback_index = mpd.first_page;
2652
2653 out_writepages:
2654         trace_ext4_writepages_result(inode, wbc, ret,
2655                                      nr_to_write - wbc->nr_to_write);
2656         return ret;
2657 }
2658
2659 static int ext4_nonda_switch(struct super_block *sb)
2660 {
2661         s64 free_clusters, dirty_clusters;
2662         struct ext4_sb_info *sbi = EXT4_SB(sb);
2663
2664         /*
2665          * switch to non delalloc mode if we are running low
2666          * on free block. The free block accounting via percpu
2667          * counters can get slightly wrong with percpu_counter_batch getting
2668          * accumulated on each CPU without updating global counters
2669          * Delalloc need an accurate free block accounting. So switch
2670          * to non delalloc when we are near to error range.
2671          */
2672         free_clusters =
2673                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2674         dirty_clusters =
2675                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2676         /*
2677          * Start pushing delalloc when 1/2 of free blocks are dirty.
2678          */
2679         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2680                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2681
2682         if (2 * free_clusters < 3 * dirty_clusters ||
2683             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2684                 /*
2685                  * free block count is less than 150% of dirty blocks
2686                  * or free blocks is less than watermark
2687                  */
2688                 return 1;
2689         }
2690         return 0;
2691 }
2692
2693 /* We always reserve for an inode update; the superblock could be there too */
2694 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2695 {
2696         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2697                 return 1;
2698
2699         if (pos + len <= 0x7fffffffULL)
2700                 return 1;
2701
2702         /* We might need to update the superblock to set LARGE_FILE */
2703         return 2;
2704 }
2705
2706 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2707                                loff_t pos, unsigned len, unsigned flags,
2708                                struct page **pagep, void **fsdata)
2709 {
2710         int ret, retries = 0;
2711         struct page *page;
2712         pgoff_t index;
2713         struct inode *inode = mapping->host;
2714         handle_t *handle;
2715
2716         index = pos >> PAGE_CACHE_SHIFT;
2717
2718         if (ext4_nonda_switch(inode->i_sb)) {
2719                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2720                 return ext4_write_begin(file, mapping, pos,
2721                                         len, flags, pagep, fsdata);
2722         }
2723         *fsdata = (void *)0;
2724         trace_ext4_da_write_begin(inode, pos, len, flags);
2725
2726         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2727                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2728                                                       pos, len, flags,
2729                                                       pagep, fsdata);
2730                 if (ret < 0)
2731                         return ret;
2732                 if (ret == 1)
2733                         return 0;
2734         }
2735
2736         /*
2737          * grab_cache_page_write_begin() can take a long time if the
2738          * system is thrashing due to memory pressure, or if the page
2739          * is being written back.  So grab it first before we start
2740          * the transaction handle.  This also allows us to allocate
2741          * the page (if needed) without using GFP_NOFS.
2742          */
2743 retry_grab:
2744         page = grab_cache_page_write_begin(mapping, index, flags);
2745         if (!page)
2746                 return -ENOMEM;
2747         unlock_page(page);
2748
2749         /*
2750          * With delayed allocation, we don't log the i_disksize update
2751          * if there is delayed block allocation. But we still need
2752          * to journalling the i_disksize update if writes to the end
2753          * of file which has an already mapped buffer.
2754          */
2755 retry_journal:
2756         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2757                                 ext4_da_write_credits(inode, pos, len));
2758         if (IS_ERR(handle)) {
2759                 page_cache_release(page);
2760                 return PTR_ERR(handle);
2761         }
2762
2763         lock_page(page);
2764         if (page->mapping != mapping) {
2765                 /* The page got truncated from under us */
2766                 unlock_page(page);
2767                 page_cache_release(page);
2768                 ext4_journal_stop(handle);
2769                 goto retry_grab;
2770         }
2771         /* In case writeback began while the page was unlocked */
2772         wait_for_stable_page(page);
2773
2774 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2775         ret = ext4_block_write_begin(page, pos, len,
2776                                      ext4_da_get_block_prep);
2777 #else
2778         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2779 #endif
2780         if (ret < 0) {
2781                 unlock_page(page);
2782                 ext4_journal_stop(handle);
2783                 /*
2784                  * block_write_begin may have instantiated a few blocks
2785                  * outside i_size.  Trim these off again. Don't need
2786                  * i_size_read because we hold i_mutex.
2787                  */
2788                 if (pos + len > inode->i_size)
2789                         ext4_truncate_failed_write(inode);
2790
2791                 if (ret == -ENOSPC &&
2792                     ext4_should_retry_alloc(inode->i_sb, &retries))
2793                         goto retry_journal;
2794
2795                 page_cache_release(page);
2796                 return ret;
2797         }
2798
2799         *pagep = page;
2800         return ret;
2801 }
2802
2803 /*
2804  * Check if we should update i_disksize
2805  * when write to the end of file but not require block allocation
2806  */
2807 static int ext4_da_should_update_i_disksize(struct page *page,
2808                                             unsigned long offset)
2809 {
2810         struct buffer_head *bh;
2811         struct inode *inode = page->mapping->host;
2812         unsigned int idx;
2813         int i;
2814
2815         bh = page_buffers(page);
2816         idx = offset >> inode->i_blkbits;
2817
2818         for (i = 0; i < idx; i++)
2819                 bh = bh->b_this_page;
2820
2821         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2822                 return 0;
2823         return 1;
2824 }
2825
2826 static int ext4_da_write_end(struct file *file,
2827                              struct address_space *mapping,
2828                              loff_t pos, unsigned len, unsigned copied,
2829                              struct page *page, void *fsdata)
2830 {
2831         struct inode *inode = mapping->host;
2832         int ret = 0, ret2;
2833         handle_t *handle = ext4_journal_current_handle();
2834         loff_t new_i_size;
2835         unsigned long start, end;
2836         int write_mode = (int)(unsigned long)fsdata;
2837
2838         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2839                 return ext4_write_end(file, mapping, pos,
2840                                       len, copied, page, fsdata);
2841
2842         trace_ext4_da_write_end(inode, pos, len, copied);
2843         start = pos & (PAGE_CACHE_SIZE - 1);
2844         end = start + copied - 1;
2845
2846         /*
2847          * generic_write_end() will run mark_inode_dirty() if i_size
2848          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2849          * into that.
2850          */
2851         new_i_size = pos + copied;
2852         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2853                 if (ext4_has_inline_data(inode) ||
2854                     ext4_da_should_update_i_disksize(page, end)) {
2855                         ext4_update_i_disksize(inode, new_i_size);
2856                         /* We need to mark inode dirty even if
2857                          * new_i_size is less that inode->i_size
2858                          * bu greater than i_disksize.(hint delalloc)
2859                          */
2860                         ext4_mark_inode_dirty(handle, inode);
2861                 }
2862         }
2863
2864         if (write_mode != CONVERT_INLINE_DATA &&
2865             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2866             ext4_has_inline_data(inode))
2867                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2868                                                      page);
2869         else
2870                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2871                                                         page, fsdata);
2872
2873         copied = ret2;
2874         if (ret2 < 0)
2875                 ret = ret2;
2876         ret2 = ext4_journal_stop(handle);
2877         if (!ret)
2878                 ret = ret2;
2879
2880         return ret ? ret : copied;
2881 }
2882
2883 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2884                                    unsigned int length)
2885 {
2886         /*
2887          * Drop reserved blocks
2888          */
2889         BUG_ON(!PageLocked(page));
2890         if (!page_has_buffers(page))
2891                 goto out;
2892
2893         ext4_da_page_release_reservation(page, offset, length);
2894
2895 out:
2896         ext4_invalidatepage(page, offset, length);
2897
2898         return;
2899 }
2900
2901 /*
2902  * Force all delayed allocation blocks to be allocated for a given inode.
2903  */
2904 int ext4_alloc_da_blocks(struct inode *inode)
2905 {
2906         trace_ext4_alloc_da_blocks(inode);
2907
2908         if (!EXT4_I(inode)->i_reserved_data_blocks)
2909                 return 0;
2910
2911         /*
2912          * We do something simple for now.  The filemap_flush() will
2913          * also start triggering a write of the data blocks, which is
2914          * not strictly speaking necessary (and for users of
2915          * laptop_mode, not even desirable).  However, to do otherwise
2916          * would require replicating code paths in:
2917          *
2918          * ext4_writepages() ->
2919          *    write_cache_pages() ---> (via passed in callback function)
2920          *        __mpage_da_writepage() -->
2921          *           mpage_add_bh_to_extent()
2922          *           mpage_da_map_blocks()
2923          *
2924          * The problem is that write_cache_pages(), located in
2925          * mm/page-writeback.c, marks pages clean in preparation for
2926          * doing I/O, which is not desirable if we're not planning on
2927          * doing I/O at all.
2928          *
2929          * We could call write_cache_pages(), and then redirty all of
2930          * the pages by calling redirty_page_for_writepage() but that
2931          * would be ugly in the extreme.  So instead we would need to
2932          * replicate parts of the code in the above functions,
2933          * simplifying them because we wouldn't actually intend to
2934          * write out the pages, but rather only collect contiguous
2935          * logical block extents, call the multi-block allocator, and
2936          * then update the buffer heads with the block allocations.
2937          *
2938          * For now, though, we'll cheat by calling filemap_flush(),
2939          * which will map the blocks, and start the I/O, but not
2940          * actually wait for the I/O to complete.
2941          */
2942         return filemap_flush(inode->i_mapping);
2943 }
2944
2945 /*
2946  * bmap() is special.  It gets used by applications such as lilo and by
2947  * the swapper to find the on-disk block of a specific piece of data.
2948  *
2949  * Naturally, this is dangerous if the block concerned is still in the
2950  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2951  * filesystem and enables swap, then they may get a nasty shock when the
2952  * data getting swapped to that swapfile suddenly gets overwritten by
2953  * the original zero's written out previously to the journal and
2954  * awaiting writeback in the kernel's buffer cache.
2955  *
2956  * So, if we see any bmap calls here on a modified, data-journaled file,
2957  * take extra steps to flush any blocks which might be in the cache.
2958  */
2959 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2960 {
2961         struct inode *inode = mapping->host;
2962         journal_t *journal;
2963         int err;
2964
2965         /*
2966          * We can get here for an inline file via the FIBMAP ioctl
2967          */
2968         if (ext4_has_inline_data(inode))
2969                 return 0;
2970
2971         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2972                         test_opt(inode->i_sb, DELALLOC)) {
2973                 /*
2974                  * With delalloc we want to sync the file
2975                  * so that we can make sure we allocate
2976                  * blocks for file
2977                  */
2978                 filemap_write_and_wait(mapping);
2979         }
2980
2981         if (EXT4_JOURNAL(inode) &&
2982             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2983                 /*
2984                  * This is a REALLY heavyweight approach, but the use of
2985                  * bmap on dirty files is expected to be extremely rare:
2986                  * only if we run lilo or swapon on a freshly made file
2987                  * do we expect this to happen.
2988                  *
2989                  * (bmap requires CAP_SYS_RAWIO so this does not
2990                  * represent an unprivileged user DOS attack --- we'd be
2991                  * in trouble if mortal users could trigger this path at
2992                  * will.)
2993                  *
2994                  * NB. EXT4_STATE_JDATA is not set on files other than
2995                  * regular files.  If somebody wants to bmap a directory
2996                  * or symlink and gets confused because the buffer
2997                  * hasn't yet been flushed to disk, they deserve
2998                  * everything they get.
2999                  */
3000
3001                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3002                 journal = EXT4_JOURNAL(inode);
3003                 jbd2_journal_lock_updates(journal);
3004                 err = jbd2_journal_flush(journal);
3005                 jbd2_journal_unlock_updates(journal);
3006
3007                 if (err)
3008                         return 0;
3009         }
3010
3011         return generic_block_bmap(mapping, block, ext4_get_block);
3012 }
3013
3014 static int ext4_readpage(struct file *file, struct page *page)
3015 {
3016         int ret = -EAGAIN;
3017         struct inode *inode = page->mapping->host;
3018
3019         trace_ext4_readpage(page);
3020
3021         if (ext4_has_inline_data(inode))
3022                 ret = ext4_readpage_inline(inode, page);
3023
3024         if (ret == -EAGAIN)
3025                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3026
3027         return ret;
3028 }
3029
3030 static int
3031 ext4_readpages(struct file *file, struct address_space *mapping,
3032                 struct list_head *pages, unsigned nr_pages)
3033 {
3034         struct inode *inode = mapping->host;
3035
3036         /* If the file has inline data, no need to do readpages. */
3037         if (ext4_has_inline_data(inode))
3038                 return 0;
3039
3040         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3041 }
3042
3043 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3044                                 unsigned int length)
3045 {
3046         trace_ext4_invalidatepage(page, offset, length);
3047
3048         /* No journalling happens on data buffers when this function is used */
3049         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3050
3051         block_invalidatepage(page, offset, length);
3052 }
3053
3054 static int __ext4_journalled_invalidatepage(struct page *page,
3055                                             unsigned int offset,
3056                                             unsigned int length)
3057 {
3058         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3059
3060         trace_ext4_journalled_invalidatepage(page, offset, length);
3061
3062         /*
3063          * If it's a full truncate we just forget about the pending dirtying
3064          */
3065         if (offset == 0 && length == PAGE_CACHE_SIZE)
3066                 ClearPageChecked(page);
3067
3068         return jbd2_journal_invalidatepage(journal, page, offset, length);
3069 }
3070
3071 /* Wrapper for aops... */
3072 static void ext4_journalled_invalidatepage(struct page *page,
3073                                            unsigned int offset,
3074                                            unsigned int length)
3075 {
3076         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3077 }
3078
3079 static int ext4_releasepage(struct page *page, gfp_t wait)
3080 {
3081         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3082
3083         trace_ext4_releasepage(page);
3084
3085         /* Page has dirty journalled data -> cannot release */
3086         if (PageChecked(page))
3087                 return 0;
3088         if (journal)
3089                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3090         else
3091                 return try_to_free_buffers(page);
3092 }
3093
3094 /*
3095  * ext4_get_block used when preparing for a DIO write or buffer write.
3096  * We allocate an uinitialized extent if blocks haven't been allocated.
3097  * The extent will be converted to initialized after the IO is complete.
3098  */
3099 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3100                    struct buffer_head *bh_result, int create)
3101 {
3102         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3103                    inode->i_ino, create);
3104         return _ext4_get_block(inode, iblock, bh_result,
3105                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3106 }
3107
3108 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3109                    struct buffer_head *bh_result, int create)
3110 {
3111         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3112                    inode->i_ino, create);
3113         return _ext4_get_block(inode, iblock, bh_result,
3114                                EXT4_GET_BLOCKS_NO_LOCK);
3115 }
3116
3117 int ext4_get_block_dax(struct inode *inode, sector_t iblock,
3118                    struct buffer_head *bh_result, int create)
3119 {
3120         int flags = EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_UNWRIT_EXT;
3121         if (create)
3122                 flags |= EXT4_GET_BLOCKS_CREATE;
3123         ext4_debug("ext4_get_block_dax: inode %lu, create flag %d\n",
3124                    inode->i_ino, create);
3125         return _ext4_get_block(inode, iblock, bh_result, flags);
3126 }
3127
3128 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3129                             ssize_t size, void *private)
3130 {
3131         ext4_io_end_t *io_end = iocb->private;
3132
3133         /* if not async direct IO just return */
3134         if (!io_end)
3135                 return;
3136
3137         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3138                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3139                   iocb->private, io_end->inode->i_ino, iocb, offset,
3140                   size);
3141
3142         iocb->private = NULL;
3143         io_end->offset = offset;
3144         io_end->size = size;
3145         ext4_put_io_end(io_end);
3146 }
3147
3148 /*
3149  * For ext4 extent files, ext4 will do direct-io write to holes,
3150  * preallocated extents, and those write extend the file, no need to
3151  * fall back to buffered IO.
3152  *
3153  * For holes, we fallocate those blocks, mark them as unwritten
3154  * If those blocks were preallocated, we mark sure they are split, but
3155  * still keep the range to write as unwritten.
3156  *
3157  * The unwritten extents will be converted to written when DIO is completed.
3158  * For async direct IO, since the IO may still pending when return, we
3159  * set up an end_io call back function, which will do the conversion
3160  * when async direct IO completed.
3161  *
3162  * If the O_DIRECT write will extend the file then add this inode to the
3163  * orphan list.  So recovery will truncate it back to the original size
3164  * if the machine crashes during the write.
3165  *
3166  */
3167 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3168                                   loff_t offset)
3169 {
3170         struct file *file = iocb->ki_filp;
3171         struct inode *inode = file->f_mapping->host;
3172         ssize_t ret;
3173         size_t count = iov_iter_count(iter);
3174         int overwrite = 0;
3175         get_block_t *get_block_func = NULL;
3176         int dio_flags = 0;
3177         loff_t final_size = offset + count;
3178         ext4_io_end_t *io_end = NULL;
3179
3180         /* Use the old path for reads and writes beyond i_size. */
3181         if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3182                 return ext4_ind_direct_IO(iocb, iter, offset);
3183
3184         BUG_ON(iocb->private == NULL);
3185
3186         /*
3187          * Make all waiters for direct IO properly wait also for extent
3188          * conversion. This also disallows race between truncate() and
3189          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3190          */
3191         if (iov_iter_rw(iter) == WRITE)
3192                 inode_dio_begin(inode);
3193
3194         /* If we do a overwrite dio, i_mutex locking can be released */
3195         overwrite = *((int *)iocb->private);
3196
3197         if (overwrite) {
3198                 down_read(&EXT4_I(inode)->i_data_sem);
3199                 mutex_unlock(&inode->i_mutex);
3200         }
3201
3202         /*
3203          * We could direct write to holes and fallocate.
3204          *
3205          * Allocated blocks to fill the hole are marked as
3206          * unwritten to prevent parallel buffered read to expose
3207          * the stale data before DIO complete the data IO.
3208          *
3209          * As to previously fallocated extents, ext4 get_block will
3210          * just simply mark the buffer mapped but still keep the
3211          * extents unwritten.
3212          *
3213          * For non AIO case, we will convert those unwritten extents
3214          * to written after return back from blockdev_direct_IO.
3215          *
3216          * For async DIO, the conversion needs to be deferred when the
3217          * IO is completed. The ext4 end_io callback function will be
3218          * called to take care of the conversion work.  Here for async
3219          * case, we allocate an io_end structure to hook to the iocb.
3220          */
3221         iocb->private = NULL;
3222         ext4_inode_aio_set(inode, NULL);
3223         if (!is_sync_kiocb(iocb)) {
3224                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3225                 if (!io_end) {
3226                         ret = -ENOMEM;
3227                         goto retake_lock;
3228                 }
3229                 /*
3230                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3231                  */
3232                 iocb->private = ext4_get_io_end(io_end);
3233                 /*
3234                  * we save the io structure for current async direct
3235                  * IO, so that later ext4_map_blocks() could flag the
3236                  * io structure whether there is a unwritten extents
3237                  * needs to be converted when IO is completed.
3238                  */
3239                 ext4_inode_aio_set(inode, io_end);
3240         }
3241
3242         if (overwrite) {
3243                 get_block_func = ext4_get_block_write_nolock;
3244         } else {
3245                 get_block_func = ext4_get_block_write;
3246                 dio_flags = DIO_LOCKING;
3247         }
3248 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3249         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3250 #endif
3251         if (IS_DAX(inode))
3252                 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3253                                 ext4_end_io_dio, dio_flags);
3254         else
3255                 ret = __blockdev_direct_IO(iocb, inode,
3256                                            inode->i_sb->s_bdev, iter, offset,
3257                                            get_block_func,
3258                                            ext4_end_io_dio, NULL, dio_flags);
3259
3260         /*
3261          * Put our reference to io_end. This can free the io_end structure e.g.
3262          * in sync IO case or in case of error. It can even perform extent
3263          * conversion if all bios we submitted finished before we got here.
3264          * Note that in that case iocb->private can be already set to NULL
3265          * here.
3266          */
3267         if (io_end) {
3268                 ext4_inode_aio_set(inode, NULL);
3269                 ext4_put_io_end(io_end);
3270                 /*
3271                  * When no IO was submitted ext4_end_io_dio() was not
3272                  * called so we have to put iocb's reference.
3273                  */
3274                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3275                         WARN_ON(iocb->private != io_end);
3276                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3277                         ext4_put_io_end(io_end);
3278                         iocb->private = NULL;
3279                 }
3280         }
3281         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3282                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3283                 int err;
3284                 /*
3285                  * for non AIO case, since the IO is already
3286                  * completed, we could do the conversion right here
3287                  */
3288                 err = ext4_convert_unwritten_extents(NULL, inode,
3289                                                      offset, ret);
3290                 if (err < 0)
3291                         ret = err;
3292                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3293         }
3294
3295 retake_lock:
3296         if (iov_iter_rw(iter) == WRITE)
3297                 inode_dio_end(inode);
3298         /* take i_mutex locking again if we do a ovewrite dio */
3299         if (overwrite) {
3300                 up_read(&EXT4_I(inode)->i_data_sem);
3301                 mutex_lock(&inode->i_mutex);
3302         }
3303
3304         return ret;
3305 }
3306
3307 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3308                               loff_t offset)
3309 {
3310         struct file *file = iocb->ki_filp;
3311         struct inode *inode = file->f_mapping->host;
3312         size_t count = iov_iter_count(iter);
3313         ssize_t ret;
3314
3315 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3316         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3317                 return 0;
3318 #endif
3319
3320         /*
3321          * If we are doing data journalling we don't support O_DIRECT
3322          */
3323         if (ext4_should_journal_data(inode))
3324                 return 0;
3325
3326         /* Let buffer I/O handle the inline data case. */
3327         if (ext4_has_inline_data(inode))
3328                 return 0;
3329
3330         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3331         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3332                 ret = ext4_ext_direct_IO(iocb, iter, offset);
3333         else
3334                 ret = ext4_ind_direct_IO(iocb, iter, offset);
3335         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3336         return ret;
3337 }
3338
3339 /*
3340  * Pages can be marked dirty completely asynchronously from ext4's journalling
3341  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3342  * much here because ->set_page_dirty is called under VFS locks.  The page is
3343  * not necessarily locked.
3344  *
3345  * We cannot just dirty the page and leave attached buffers clean, because the
3346  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3347  * or jbddirty because all the journalling code will explode.
3348  *
3349  * So what we do is to mark the page "pending dirty" and next time writepage
3350  * is called, propagate that into the buffers appropriately.
3351  */
3352 static int ext4_journalled_set_page_dirty(struct page *page)
3353 {
3354         SetPageChecked(page);
3355         return __set_page_dirty_nobuffers(page);
3356 }
3357
3358 static const struct address_space_operations ext4_aops = {
3359         .readpage               = ext4_readpage,
3360         .readpages              = ext4_readpages,
3361         .writepage              = ext4_writepage,
3362         .writepages             = ext4_writepages,
3363         .write_begin            = ext4_write_begin,
3364         .write_end              = ext4_write_end,
3365         .bmap                   = ext4_bmap,
3366         .invalidatepage         = ext4_invalidatepage,
3367         .releasepage            = ext4_releasepage,
3368         .direct_IO              = ext4_direct_IO,
3369         .migratepage            = buffer_migrate_page,
3370         .is_partially_uptodate  = block_is_partially_uptodate,
3371         .error_remove_page      = generic_error_remove_page,
3372 };
3373
3374 static const struct address_space_operations ext4_journalled_aops = {
3375         .readpage               = ext4_readpage,
3376         .readpages              = ext4_readpages,
3377         .writepage              = ext4_writepage,
3378         .writepages             = ext4_writepages,
3379         .write_begin            = ext4_write_begin,
3380         .write_end              = ext4_journalled_write_end,
3381         .set_page_dirty         = ext4_journalled_set_page_dirty,
3382         .bmap                   = ext4_bmap,
3383         .invalidatepage         = ext4_journalled_invalidatepage,
3384         .releasepage            = ext4_releasepage,
3385         .direct_IO              = ext4_direct_IO,
3386         .is_partially_uptodate  = block_is_partially_uptodate,
3387         .error_remove_page      = generic_error_remove_page,
3388 };
3389
3390 static const struct address_space_operations ext4_da_aops = {
3391         .readpage               = ext4_readpage,
3392         .readpages              = ext4_readpages,
3393         .writepage              = ext4_writepage,
3394         .writepages             = ext4_writepages,
3395         .write_begin            = ext4_da_write_begin,
3396         .write_end              = ext4_da_write_end,
3397         .bmap                   = ext4_bmap,
3398         .invalidatepage         = ext4_da_invalidatepage,
3399         .releasepage            = ext4_releasepage,
3400         .direct_IO              = ext4_direct_IO,
3401         .migratepage            = buffer_migrate_page,
3402         .is_partially_uptodate  = block_is_partially_uptodate,
3403         .error_remove_page      = generic_error_remove_page,
3404 };
3405
3406 void ext4_set_aops(struct inode *inode)
3407 {
3408         switch (ext4_inode_journal_mode(inode)) {
3409         case EXT4_INODE_ORDERED_DATA_MODE:
3410                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3411                 break;
3412         case EXT4_INODE_WRITEBACK_DATA_MODE:
3413                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3414                 break;
3415         case EXT4_INODE_JOURNAL_DATA_MODE:
3416                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3417                 return;
3418         default:
3419                 BUG();
3420         }
3421         if (test_opt(inode->i_sb, DELALLOC))
3422                 inode->i_mapping->a_ops = &ext4_da_aops;
3423         else
3424                 inode->i_mapping->a_ops = &ext4_aops;
3425 }
3426
3427 static int __ext4_block_zero_page_range(handle_t *handle,
3428                 struct address_space *mapping, loff_t from, loff_t length)
3429 {
3430         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3431         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3432         unsigned blocksize, pos;
3433         ext4_lblk_t iblock;
3434         struct inode *inode = mapping->host;
3435         struct buffer_head *bh;
3436         struct page *page;
3437         int err = 0;
3438
3439         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3440                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3441         if (!page)
3442                 return -ENOMEM;
3443
3444         blocksize = inode->i_sb->s_blocksize;
3445
3446         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3447
3448         if (!page_has_buffers(page))
3449                 create_empty_buffers(page, blocksize, 0);
3450
3451         /* Find the buffer that contains "offset" */
3452         bh = page_buffers(page);
3453         pos = blocksize;
3454         while (offset >= pos) {
3455                 bh = bh->b_this_page;
3456                 iblock++;
3457                 pos += blocksize;
3458         }
3459         if (buffer_freed(bh)) {
3460                 BUFFER_TRACE(bh, "freed: skip");
3461                 goto unlock;
3462         }
3463         if (!buffer_mapped(bh)) {
3464                 BUFFER_TRACE(bh, "unmapped");
3465                 ext4_get_block(inode, iblock, bh, 0);
3466                 /* unmapped? It's a hole - nothing to do */
3467                 if (!buffer_mapped(bh)) {
3468                         BUFFER_TRACE(bh, "still unmapped");
3469                         goto unlock;
3470                 }
3471         }
3472
3473         /* Ok, it's mapped. Make sure it's up-to-date */
3474         if (PageUptodate(page))
3475                 set_buffer_uptodate(bh);
3476
3477         if (!buffer_uptodate(bh)) {
3478                 err = -EIO;
3479                 ll_rw_block(READ, 1, &bh);
3480                 wait_on_buffer(bh);
3481                 /* Uhhuh. Read error. Complain and punt. */
3482                 if (!buffer_uptodate(bh))
3483                         goto unlock;
3484                 if (S_ISREG(inode->i_mode) &&
3485                     ext4_encrypted_inode(inode)) {
3486                         /* We expect the key to be set. */
3487                         BUG_ON(!ext4_has_encryption_key(inode));
3488                         BUG_ON(blocksize != PAGE_CACHE_SIZE);
3489                         WARN_ON_ONCE(ext4_decrypt(page));
3490                 }
3491         }
3492         if (ext4_should_journal_data(inode)) {
3493                 BUFFER_TRACE(bh, "get write access");
3494                 err = ext4_journal_get_write_access(handle, bh);
3495                 if (err)
3496                         goto unlock;
3497         }
3498         zero_user(page, offset, length);
3499         BUFFER_TRACE(bh, "zeroed end of block");
3500
3501         if (ext4_should_journal_data(inode)) {
3502                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3503         } else {
3504                 err = 0;
3505                 mark_buffer_dirty(bh);
3506                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3507                         err = ext4_jbd2_file_inode(handle, inode);
3508         }
3509
3510 unlock:
3511         unlock_page(page);
3512         page_cache_release(page);
3513         return err;
3514 }
3515
3516 /*
3517  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3518  * starting from file offset 'from'.  The range to be zero'd must
3519  * be contained with in one block.  If the specified range exceeds
3520  * the end of the block it will be shortened to end of the block
3521  * that cooresponds to 'from'
3522  */
3523 static int ext4_block_zero_page_range(handle_t *handle,
3524                 struct address_space *mapping, loff_t from, loff_t length)
3525 {
3526         struct inode *inode = mapping->host;
3527         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3528         unsigned blocksize = inode->i_sb->s_blocksize;
3529         unsigned max = blocksize - (offset & (blocksize - 1));
3530
3531         /*
3532          * correct length if it does not fall between
3533          * 'from' and the end of the block
3534          */
3535         if (length > max || length < 0)
3536                 length = max;
3537
3538         if (IS_DAX(inode))
3539                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3540         return __ext4_block_zero_page_range(handle, mapping, from, length);
3541 }
3542
3543 /*
3544  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3545  * up to the end of the block which corresponds to `from'.
3546  * This required during truncate. We need to physically zero the tail end
3547  * of that block so it doesn't yield old data if the file is later grown.
3548  */
3549 static int ext4_block_truncate_page(handle_t *handle,
3550                 struct address_space *mapping, loff_t from)
3551 {
3552         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3553         unsigned length;
3554         unsigned blocksize;
3555         struct inode *inode = mapping->host;
3556
3557         blocksize = inode->i_sb->s_blocksize;
3558         length = blocksize - (offset & (blocksize - 1));
3559
3560         return ext4_block_zero_page_range(handle, mapping, from, length);
3561 }
3562
3563 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3564                              loff_t lstart, loff_t length)
3565 {
3566         struct super_block *sb = inode->i_sb;
3567         struct address_space *mapping = inode->i_mapping;
3568         unsigned partial_start, partial_end;
3569         ext4_fsblk_t start, end;
3570         loff_t byte_end = (lstart + length - 1);
3571         int err = 0;
3572
3573         partial_start = lstart & (sb->s_blocksize - 1);
3574         partial_end = byte_end & (sb->s_blocksize - 1);
3575
3576         start = lstart >> sb->s_blocksize_bits;
3577         end = byte_end >> sb->s_blocksize_bits;
3578
3579         /* Handle partial zero within the single block */
3580         if (start == end &&
3581             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3582                 err = ext4_block_zero_page_range(handle, mapping,
3583                                                  lstart, length);
3584                 return err;
3585         }
3586         /* Handle partial zero out on the start of the range */
3587         if (partial_start) {
3588                 err = ext4_block_zero_page_range(handle, mapping,
3589                                                  lstart, sb->s_blocksize);
3590                 if (err)
3591                         return err;
3592         }
3593         /* Handle partial zero out on the end of the range */
3594         if (partial_end != sb->s_blocksize - 1)
3595                 err = ext4_block_zero_page_range(handle, mapping,
3596                                                  byte_end - partial_end,
3597                                                  partial_end + 1);
3598         return err;
3599 }
3600
3601 int ext4_can_truncate(struct inode *inode)
3602 {
3603         if (S_ISREG(inode->i_mode))
3604                 return 1;
3605         if (S_ISDIR(inode->i_mode))
3606                 return 1;
3607         if (S_ISLNK(inode->i_mode))
3608                 return !ext4_inode_is_fast_symlink(inode);
3609         return 0;
3610 }
3611
3612 /*
3613  * We have to make sure i_disksize gets properly updated before we truncate
3614  * page cache due to hole punching or zero range. Otherwise i_disksize update
3615  * can get lost as it may have been postponed to submission of writeback but
3616  * that will never happen after we truncate page cache.
3617  */
3618 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3619                                       loff_t len)
3620 {
3621         handle_t *handle;
3622         loff_t size = i_size_read(inode);
3623
3624         WARN_ON(!mutex_is_locked(&inode->i_mutex));
3625         if (offset > size || offset + len < size)
3626                 return 0;
3627
3628         if (EXT4_I(inode)->i_disksize >= size)
3629                 return 0;
3630
3631         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3632         if (IS_ERR(handle))
3633                 return PTR_ERR(handle);
3634         ext4_update_i_disksize(inode, size);
3635         ext4_mark_inode_dirty(handle, inode);
3636         ext4_journal_stop(handle);
3637
3638         return 0;
3639 }
3640
3641 /*
3642  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3643  * associated with the given offset and length
3644  *
3645  * @inode:  File inode
3646  * @offset: The offset where the hole will begin
3647  * @len:    The length of the hole
3648  *
3649  * Returns: 0 on success or negative on failure
3650  */
3651
3652 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3653 {
3654         struct super_block *sb = inode->i_sb;
3655         ext4_lblk_t first_block, stop_block;
3656         struct address_space *mapping = inode->i_mapping;
3657         loff_t first_block_offset, last_block_offset;
3658         handle_t *handle;
3659         unsigned int credits;
3660         int ret = 0;
3661
3662         if (!S_ISREG(inode->i_mode))
3663                 return -EOPNOTSUPP;
3664
3665         trace_ext4_punch_hole(inode, offset, length, 0);
3666
3667         /*
3668          * Write out all dirty pages to avoid race conditions
3669          * Then release them.
3670          */
3671         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3672                 ret = filemap_write_and_wait_range(mapping, offset,
3673                                                    offset + length - 1);
3674                 if (ret)
3675                         return ret;
3676         }
3677
3678         mutex_lock(&inode->i_mutex);
3679
3680         /* No need to punch hole beyond i_size */
3681         if (offset >= inode->i_size)
3682                 goto out_mutex;
3683
3684         /*
3685          * If the hole extends beyond i_size, set the hole
3686          * to end after the page that contains i_size
3687          */
3688         if (offset + length > inode->i_size) {
3689                 length = inode->i_size +
3690                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3691                    offset;
3692         }
3693
3694         if (offset & (sb->s_blocksize - 1) ||
3695             (offset + length) & (sb->s_blocksize - 1)) {
3696                 /*
3697                  * Attach jinode to inode for jbd2 if we do any zeroing of
3698                  * partial block
3699                  */
3700                 ret = ext4_inode_attach_jinode(inode);
3701                 if (ret < 0)
3702                         goto out_mutex;
3703
3704         }
3705
3706         /* Wait all existing dio workers, newcomers will block on i_mutex */
3707         ext4_inode_block_unlocked_dio(inode);
3708         inode_dio_wait(inode);
3709
3710         /*
3711          * Prevent page faults from reinstantiating pages we have released from
3712          * page cache.
3713          */
3714         down_write(&EXT4_I(inode)->i_mmap_sem);
3715         first_block_offset = round_up(offset, sb->s_blocksize);
3716         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3717
3718         /* Now release the pages and zero block aligned part of pages*/
3719         if (last_block_offset > first_block_offset) {
3720                 ret = ext4_update_disksize_before_punch(inode, offset, length);
3721                 if (ret)
3722                         goto out_dio;
3723                 truncate_pagecache_range(inode, first_block_offset,
3724                                          last_block_offset);
3725         }
3726
3727         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3728                 credits = ext4_writepage_trans_blocks(inode);
3729         else
3730                 credits = ext4_blocks_for_truncate(inode);
3731         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3732         if (IS_ERR(handle)) {
3733                 ret = PTR_ERR(handle);
3734                 ext4_std_error(sb, ret);
3735                 goto out_dio;
3736         }
3737
3738         ret = ext4_zero_partial_blocks(handle, inode, offset,
3739                                        length);
3740         if (ret)
3741                 goto out_stop;
3742
3743         first_block = (offset + sb->s_blocksize - 1) >>
3744                 EXT4_BLOCK_SIZE_BITS(sb);
3745         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3746
3747         /* If there are no blocks to remove, return now */
3748         if (first_block >= stop_block)
3749                 goto out_stop;
3750
3751         down_write(&EXT4_I(inode)->i_data_sem);
3752         ext4_discard_preallocations(inode);
3753
3754         ret = ext4_es_remove_extent(inode, first_block,
3755                                     stop_block - first_block);
3756         if (ret) {
3757                 up_write(&EXT4_I(inode)->i_data_sem);
3758                 goto out_stop;
3759         }
3760
3761         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3762                 ret = ext4_ext_remove_space(inode, first_block,
3763                                             stop_block - 1);
3764         else
3765                 ret = ext4_ind_remove_space(handle, inode, first_block,
3766                                             stop_block);
3767
3768         up_write(&EXT4_I(inode)->i_data_sem);
3769         if (IS_SYNC(inode))
3770                 ext4_handle_sync(handle);
3771
3772         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3773         ext4_mark_inode_dirty(handle, inode);
3774 out_stop:
3775         ext4_journal_stop(handle);
3776 out_dio:
3777         up_write(&EXT4_I(inode)->i_mmap_sem);
3778         ext4_inode_resume_unlocked_dio(inode);
3779 out_mutex:
3780         mutex_unlock(&inode->i_mutex);
3781         return ret;
3782 }
3783
3784 int ext4_inode_attach_jinode(struct inode *inode)
3785 {
3786         struct ext4_inode_info *ei = EXT4_I(inode);
3787         struct jbd2_inode *jinode;
3788
3789         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3790                 return 0;
3791
3792         jinode = jbd2_alloc_inode(GFP_KERNEL);
3793         spin_lock(&inode->i_lock);
3794         if (!ei->jinode) {
3795                 if (!jinode) {
3796                         spin_unlock(&inode->i_lock);
3797                         return -ENOMEM;
3798                 }
3799                 ei->jinode = jinode;
3800                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3801                 jinode = NULL;
3802         }
3803         spin_unlock(&inode->i_lock);
3804         if (unlikely(jinode != NULL))
3805                 jbd2_free_inode(jinode);
3806         return 0;
3807 }
3808
3809 /*
3810  * ext4_truncate()
3811  *
3812  * We block out ext4_get_block() block instantiations across the entire
3813  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3814  * simultaneously on behalf of the same inode.
3815  *
3816  * As we work through the truncate and commit bits of it to the journal there
3817  * is one core, guiding principle: the file's tree must always be consistent on
3818  * disk.  We must be able to restart the truncate after a crash.
3819  *
3820  * The file's tree may be transiently inconsistent in memory (although it
3821  * probably isn't), but whenever we close off and commit a journal transaction,
3822  * the contents of (the filesystem + the journal) must be consistent and
3823  * restartable.  It's pretty simple, really: bottom up, right to left (although
3824  * left-to-right works OK too).
3825  *
3826  * Note that at recovery time, journal replay occurs *before* the restart of
3827  * truncate against the orphan inode list.
3828  *
3829  * The committed inode has the new, desired i_size (which is the same as
3830  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3831  * that this inode's truncate did not complete and it will again call
3832  * ext4_truncate() to have another go.  So there will be instantiated blocks
3833  * to the right of the truncation point in a crashed ext4 filesystem.  But
3834  * that's fine - as long as they are linked from the inode, the post-crash
3835  * ext4_truncate() run will find them and release them.
3836  */
3837 void ext4_truncate(struct inode *inode)
3838 {
3839         struct ext4_inode_info *ei = EXT4_I(inode);
3840         unsigned int credits;
3841         handle_t *handle;
3842         struct address_space *mapping = inode->i_mapping;
3843
3844         /*
3845          * There is a possibility that we're either freeing the inode
3846          * or it's a completely new inode. In those cases we might not
3847          * have i_mutex locked because it's not necessary.
3848          */
3849         if (!(inode->i_state & (I_NEW|I_FREEING)))
3850                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3851         trace_ext4_truncate_enter(inode);
3852
3853         if (!ext4_can_truncate(inode))
3854                 return;
3855
3856         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3857
3858         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3859                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3860
3861         if (ext4_has_inline_data(inode)) {
3862                 int has_inline = 1;
3863
3864                 ext4_inline_data_truncate(inode, &has_inline);
3865                 if (has_inline)
3866                         return;
3867         }
3868
3869         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3870         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3871                 if (ext4_inode_attach_jinode(inode) < 0)
3872                         return;
3873         }
3874
3875         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3876                 credits = ext4_writepage_trans_blocks(inode);
3877         else
3878                 credits = ext4_blocks_for_truncate(inode);
3879
3880         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3881         if (IS_ERR(handle)) {
3882                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3883                 return;
3884         }
3885
3886         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3887                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3888
3889         /*
3890          * We add the inode to the orphan list, so that if this
3891          * truncate spans multiple transactions, and we crash, we will
3892          * resume the truncate when the filesystem recovers.  It also
3893          * marks the inode dirty, to catch the new size.
3894          *
3895          * Implication: the file must always be in a sane, consistent
3896          * truncatable state while each transaction commits.
3897          */
3898         if (ext4_orphan_add(handle, inode))
3899                 goto out_stop;
3900
3901         down_write(&EXT4_I(inode)->i_data_sem);
3902
3903         ext4_discard_preallocations(inode);
3904
3905         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3906                 ext4_ext_truncate(handle, inode);
3907         else
3908                 ext4_ind_truncate(handle, inode);
3909
3910         up_write(&ei->i_data_sem);
3911
3912         if (IS_SYNC(inode))
3913                 ext4_handle_sync(handle);
3914
3915 out_stop:
3916         /*
3917          * If this was a simple ftruncate() and the file will remain alive,
3918          * then we need to clear up the orphan record which we created above.
3919          * However, if this was a real unlink then we were called by
3920          * ext4_evict_inode(), and we allow that function to clean up the
3921          * orphan info for us.
3922          */
3923         if (inode->i_nlink)
3924                 ext4_orphan_del(handle, inode);
3925
3926         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3927         ext4_mark_inode_dirty(handle, inode);
3928         ext4_journal_stop(handle);
3929
3930         trace_ext4_truncate_exit(inode);
3931 }
3932
3933 /*
3934  * ext4_get_inode_loc returns with an extra refcount against the inode's
3935  * underlying buffer_head on success. If 'in_mem' is true, we have all
3936  * data in memory that is needed to recreate the on-disk version of this
3937  * inode.
3938  */
3939 static int __ext4_get_inode_loc(struct inode *inode,
3940                                 struct ext4_iloc *iloc, int in_mem)
3941 {
3942         struct ext4_group_desc  *gdp;
3943         struct buffer_head      *bh;
3944         struct super_block      *sb = inode->i_sb;
3945         ext4_fsblk_t            block;
3946         int                     inodes_per_block, inode_offset;
3947
3948         iloc->bh = NULL;
3949         if (!ext4_valid_inum(sb, inode->i_ino))
3950                 return -EFSCORRUPTED;
3951
3952         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3953         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3954         if (!gdp)
3955                 return -EIO;
3956
3957         /*
3958          * Figure out the offset within the block group inode table
3959          */
3960         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3961         inode_offset = ((inode->i_ino - 1) %
3962                         EXT4_INODES_PER_GROUP(sb));
3963         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3964         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3965
3966         bh = sb_getblk(sb, block);
3967         if (unlikely(!bh))
3968                 return -ENOMEM;
3969         if (!buffer_uptodate(bh)) {
3970                 lock_buffer(bh);
3971
3972                 /*
3973                  * If the buffer has the write error flag, we have failed
3974                  * to write out another inode in the same block.  In this
3975                  * case, we don't have to read the block because we may
3976                  * read the old inode data successfully.
3977                  */
3978                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3979                         set_buffer_uptodate(bh);
3980
3981                 if (buffer_uptodate(bh)) {
3982                         /* someone brought it uptodate while we waited */
3983                         unlock_buffer(bh);
3984                         goto has_buffer;
3985                 }
3986
3987                 /*
3988                  * If we have all information of the inode in memory and this
3989                  * is the only valid inode in the block, we need not read the
3990                  * block.
3991                  */
3992                 if (in_mem) {
3993                         struct buffer_head *bitmap_bh;
3994                         int i, start;
3995
3996                         start = inode_offset & ~(inodes_per_block - 1);
3997
3998                         /* Is the inode bitmap in cache? */
3999                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4000                         if (unlikely(!bitmap_bh))
4001                                 goto make_io;
4002
4003                         /*
4004                          * If the inode bitmap isn't in cache then the
4005                          * optimisation may end up performing two reads instead
4006                          * of one, so skip it.
4007                          */
4008                         if (!buffer_uptodate(bitmap_bh)) {
4009                                 brelse(bitmap_bh);
4010                                 goto make_io;
4011                         }
4012                         for (i = start; i < start + inodes_per_block; i++) {
4013                                 if (i == inode_offset)
4014                                         continue;
4015                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4016                                         break;
4017                         }
4018                         brelse(bitmap_bh);
4019                         if (i == start + inodes_per_block) {
4020                                 /* all other inodes are free, so skip I/O */
4021                                 memset(bh->b_data, 0, bh->b_size);
4022                                 set_buffer_uptodate(bh);
4023                                 unlock_buffer(bh);
4024                                 goto has_buffer;
4025                         }
4026                 }
4027
4028 make_io:
4029                 /*
4030                  * If we need to do any I/O, try to pre-readahead extra
4031                  * blocks from the inode table.
4032                  */
4033                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4034                         ext4_fsblk_t b, end, table;
4035                         unsigned num;
4036                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4037
4038                         table = ext4_inode_table(sb, gdp);
4039                         /* s_inode_readahead_blks is always a power of 2 */
4040                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4041                         if (table > b)
4042                                 b = table;
4043                         end = b + ra_blks;
4044                         num = EXT4_INODES_PER_GROUP(sb);
4045                         if (ext4_has_group_desc_csum(sb))
4046                                 num -= ext4_itable_unused_count(sb, gdp);
4047                         table += num / inodes_per_block;
4048                         if (end > table)
4049                                 end = table;
4050                         while (b <= end)
4051                                 sb_breadahead(sb, b++);
4052                 }
4053
4054                 /*
4055                  * There are other valid inodes in the buffer, this inode
4056                  * has in-inode xattrs, or we don't have this inode in memory.
4057                  * Read the block from disk.
4058                  */
4059                 trace_ext4_load_inode(inode);
4060                 get_bh(bh);
4061                 bh->b_end_io = end_buffer_read_sync;
4062                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4063                 wait_on_buffer(bh);
4064                 if (!buffer_uptodate(bh)) {
4065                         EXT4_ERROR_INODE_BLOCK(inode, block,
4066                                                "unable to read itable block");
4067                         brelse(bh);
4068                         return -EIO;
4069                 }
4070         }
4071 has_buffer:
4072         iloc->bh = bh;
4073         return 0;
4074 }
4075
4076 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4077 {
4078         /* We have all inode data except xattrs in memory here. */
4079         return __ext4_get_inode_loc(inode, iloc,
4080                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4081 }
4082
4083 void ext4_set_inode_flags(struct inode *inode)
4084 {
4085         unsigned int flags = EXT4_I(inode)->i_flags;
4086         unsigned int new_fl = 0;
4087
4088         if (flags & EXT4_SYNC_FL)
4089                 new_fl |= S_SYNC;
4090         if (flags & EXT4_APPEND_FL)
4091                 new_fl |= S_APPEND;
4092         if (flags & EXT4_IMMUTABLE_FL)
4093                 new_fl |= S_IMMUTABLE;
4094         if (flags & EXT4_NOATIME_FL)
4095                 new_fl |= S_NOATIME;
4096         if (flags & EXT4_DIRSYNC_FL)
4097                 new_fl |= S_DIRSYNC;
4098         if (test_opt(inode->i_sb, DAX))
4099                 new_fl |= S_DAX;
4100         inode_set_flags(inode, new_fl,
4101                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4102 }
4103
4104 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4105 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4106 {
4107         unsigned int vfs_fl;
4108         unsigned long old_fl, new_fl;
4109
4110         do {
4111                 vfs_fl = ei->vfs_inode.i_flags;
4112                 old_fl = ei->i_flags;
4113                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4114                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4115                                 EXT4_DIRSYNC_FL);
4116                 if (vfs_fl & S_SYNC)
4117                         new_fl |= EXT4_SYNC_FL;
4118                 if (vfs_fl & S_APPEND)
4119                         new_fl |= EXT4_APPEND_FL;
4120                 if (vfs_fl & S_IMMUTABLE)
4121                         new_fl |= EXT4_IMMUTABLE_FL;
4122                 if (vfs_fl & S_NOATIME)
4123                         new_fl |= EXT4_NOATIME_FL;
4124                 if (vfs_fl & S_DIRSYNC)
4125                         new_fl |= EXT4_DIRSYNC_FL;
4126         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4127 }
4128
4129 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4130                                   struct ext4_inode_info *ei)
4131 {
4132         blkcnt_t i_blocks ;
4133         struct inode *inode = &(ei->vfs_inode);
4134         struct super_block *sb = inode->i_sb;
4135
4136         if (ext4_has_feature_huge_file(sb)) {
4137                 /* we are using combined 48 bit field */
4138                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4139                                         le32_to_cpu(raw_inode->i_blocks_lo);
4140                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4141                         /* i_blocks represent file system block size */
4142                         return i_blocks  << (inode->i_blkbits - 9);
4143                 } else {
4144                         return i_blocks;
4145                 }
4146         } else {
4147                 return le32_to_cpu(raw_inode->i_blocks_lo);
4148         }
4149 }
4150
4151 static inline void ext4_iget_extra_inode(struct inode *inode,
4152                                          struct ext4_inode *raw_inode,
4153                                          struct ext4_inode_info *ei)
4154 {
4155         __le32 *magic = (void *)raw_inode +
4156                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4157         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4158                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4159                 ext4_find_inline_data_nolock(inode);
4160         } else
4161                 EXT4_I(inode)->i_inline_off = 0;
4162 }
4163
4164 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4165 {
4166         struct ext4_iloc iloc;
4167         struct ext4_inode *raw_inode;
4168         struct ext4_inode_info *ei;
4169         struct inode *inode;
4170         journal_t *journal = EXT4_SB(sb)->s_journal;
4171         long ret;
4172         int block;
4173         uid_t i_uid;
4174         gid_t i_gid;
4175
4176         inode = iget_locked(sb, ino);
4177         if (!inode)
4178                 return ERR_PTR(-ENOMEM);
4179         if (!(inode->i_state & I_NEW))
4180                 return inode;
4181
4182         ei = EXT4_I(inode);
4183         iloc.bh = NULL;
4184
4185         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4186         if (ret < 0)
4187                 goto bad_inode;
4188         raw_inode = ext4_raw_inode(&iloc);
4189
4190         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4191                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4192                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4193                     EXT4_INODE_SIZE(inode->i_sb)) {
4194                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4195                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4196                                 EXT4_INODE_SIZE(inode->i_sb));
4197                         ret = -EFSCORRUPTED;
4198                         goto bad_inode;
4199                 }
4200         } else
4201                 ei->i_extra_isize = 0;
4202
4203         /* Precompute checksum seed for inode metadata */
4204         if (ext4_has_metadata_csum(sb)) {
4205                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4206                 __u32 csum;
4207                 __le32 inum = cpu_to_le32(inode->i_ino);
4208                 __le32 gen = raw_inode->i_generation;
4209                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4210                                    sizeof(inum));
4211                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4212                                               sizeof(gen));
4213         }
4214
4215         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4216                 EXT4_ERROR_INODE(inode, "checksum invalid");
4217                 ret = -EFSBADCRC;
4218                 goto bad_inode;
4219         }
4220
4221         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4222         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4223         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4224         if (!(test_opt(inode->i_sb, NO_UID32))) {
4225                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4226                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4227         }
4228         i_uid_write(inode, i_uid);
4229         i_gid_write(inode, i_gid);
4230         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4231
4232         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4233         ei->i_inline_off = 0;
4234         ei->i_dir_start_lookup = 0;
4235         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4236         /* We now have enough fields to check if the inode was active or not.
4237          * This is needed because nfsd might try to access dead inodes
4238          * the test is that same one that e2fsck uses
4239          * NeilBrown 1999oct15
4240          */
4241         if (inode->i_nlink == 0) {
4242                 if ((inode->i_mode == 0 ||
4243                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4244                     ino != EXT4_BOOT_LOADER_INO) {
4245                         /* this inode is deleted */
4246                         ret = -ESTALE;
4247                         goto bad_inode;
4248                 }
4249                 /* The only unlinked inodes we let through here have
4250                  * valid i_mode and are being read by the orphan
4251                  * recovery code: that's fine, we're about to complete
4252                  * the process of deleting those.
4253                  * OR it is the EXT4_BOOT_LOADER_INO which is
4254                  * not initialized on a new filesystem. */
4255         }
4256         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4257         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4258         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4259         if (ext4_has_feature_64bit(sb))
4260                 ei->i_file_acl |=
4261                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4262         inode->i_size = ext4_isize(raw_inode);
4263         ei->i_disksize = inode->i_size;
4264 #ifdef CONFIG_QUOTA
4265         ei->i_reserved_quota = 0;
4266 #endif
4267         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4268         ei->i_block_group = iloc.block_group;
4269         ei->i_last_alloc_group = ~0;
4270         /*
4271          * NOTE! The in-memory inode i_data array is in little-endian order
4272          * even on big-endian machines: we do NOT byteswap the block numbers!
4273          */
4274         for (block = 0; block < EXT4_N_BLOCKS; block++)
4275                 ei->i_data[block] = raw_inode->i_block[block];
4276         INIT_LIST_HEAD(&ei->i_orphan);
4277
4278         /*
4279          * Set transaction id's of transactions that have to be committed
4280          * to finish f[data]sync. We set them to currently running transaction
4281          * as we cannot be sure that the inode or some of its metadata isn't
4282          * part of the transaction - the inode could have been reclaimed and
4283          * now it is reread from disk.
4284          */
4285         if (journal) {
4286                 transaction_t *transaction;
4287                 tid_t tid;
4288
4289                 read_lock(&journal->j_state_lock);
4290                 if (journal->j_running_transaction)
4291                         transaction = journal->j_running_transaction;
4292                 else
4293                         transaction = journal->j_committing_transaction;
4294                 if (transaction)
4295                         tid = transaction->t_tid;
4296                 else
4297                         tid = journal->j_commit_sequence;
4298                 read_unlock(&journal->j_state_lock);
4299                 ei->i_sync_tid = tid;
4300                 ei->i_datasync_tid = tid;
4301         }
4302
4303         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4304                 if (ei->i_extra_isize == 0) {
4305                         /* The extra space is currently unused. Use it. */
4306                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4307                                             EXT4_GOOD_OLD_INODE_SIZE;
4308                 } else {
4309                         ext4_iget_extra_inode(inode, raw_inode, ei);
4310                 }
4311         }
4312
4313         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4314         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4315         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4316         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4317
4318         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4319                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4320                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4321                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4322                                 inode->i_version |=
4323                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4324                 }
4325         }
4326
4327         ret = 0;
4328         if (ei->i_file_acl &&
4329             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4330                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4331                                  ei->i_file_acl);
4332                 ret = -EFSCORRUPTED;
4333                 goto bad_inode;
4334         } else if (!ext4_has_inline_data(inode)) {
4335                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4336                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4337                             (S_ISLNK(inode->i_mode) &&
4338                              !ext4_inode_is_fast_symlink(inode))))
4339                                 /* Validate extent which is part of inode */
4340                                 ret = ext4_ext_check_inode(inode);
4341                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4342                            (S_ISLNK(inode->i_mode) &&
4343                             !ext4_inode_is_fast_symlink(inode))) {
4344                         /* Validate block references which are part of inode */
4345                         ret = ext4_ind_check_inode(inode);
4346                 }
4347         }
4348         if (ret)
4349                 goto bad_inode;
4350
4351         if (S_ISREG(inode->i_mode)) {
4352                 inode->i_op = &ext4_file_inode_operations;
4353                 inode->i_fop = &ext4_file_operations;
4354                 ext4_set_aops(inode);
4355         } else if (S_ISDIR(inode->i_mode)) {
4356                 inode->i_op = &ext4_dir_inode_operations;
4357                 inode->i_fop = &ext4_dir_operations;
4358         } else if (S_ISLNK(inode->i_mode)) {
4359                 if (ext4_encrypted_inode(inode)) {
4360                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4361                         ext4_set_aops(inode);
4362                 } else if (ext4_inode_is_fast_symlink(inode)) {
4363                         inode->i_link = (char *)ei->i_data;
4364                         inode->i_op = &ext4_fast_symlink_inode_operations;
4365                         nd_terminate_link(ei->i_data, inode->i_size,
4366                                 sizeof(ei->i_data) - 1);
4367                 } else {
4368                         inode->i_op = &ext4_symlink_inode_operations;
4369                         ext4_set_aops(inode);
4370                 }
4371         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4372               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4373                 inode->i_op = &ext4_special_inode_operations;
4374                 if (raw_inode->i_block[0])
4375                         init_special_inode(inode, inode->i_mode,
4376                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4377                 else
4378                         init_special_inode(inode, inode->i_mode,
4379                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4380         } else if (ino == EXT4_BOOT_LOADER_INO) {
4381                 make_bad_inode(inode);
4382         } else {
4383                 ret = -EFSCORRUPTED;
4384                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4385                 goto bad_inode;
4386         }
4387         brelse(iloc.bh);
4388         ext4_set_inode_flags(inode);
4389         unlock_new_inode(inode);
4390         return inode;
4391
4392 bad_inode:
4393         brelse(iloc.bh);
4394         iget_failed(inode);
4395         return ERR_PTR(ret);
4396 }
4397
4398 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4399 {
4400         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4401                 return ERR_PTR(-EFSCORRUPTED);
4402         return ext4_iget(sb, ino);
4403 }
4404
4405 static int ext4_inode_blocks_set(handle_t *handle,
4406                                 struct ext4_inode *raw_inode,
4407                                 struct ext4_inode_info *ei)
4408 {
4409         struct inode *inode = &(ei->vfs_inode);
4410         u64 i_blocks = inode->i_blocks;
4411         struct super_block *sb = inode->i_sb;
4412
4413         if (i_blocks <= ~0U) {
4414                 /*
4415                  * i_blocks can be represented in a 32 bit variable
4416                  * as multiple of 512 bytes
4417                  */
4418                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4419                 raw_inode->i_blocks_high = 0;
4420                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4421                 return 0;
4422         }
4423         if (!ext4_has_feature_huge_file(sb))
4424                 return -EFBIG;
4425
4426         if (i_blocks <= 0xffffffffffffULL) {
4427                 /*
4428                  * i_blocks can be represented in a 48 bit variable
4429                  * as multiple of 512 bytes
4430                  */
4431                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4432                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4433                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4434         } else {
4435                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4436                 /* i_block is stored in file system block size */
4437                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4438                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4439                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4440         }
4441         return 0;
4442 }
4443
4444 struct other_inode {
4445         unsigned long           orig_ino;
4446         struct ext4_inode       *raw_inode;
4447 };
4448
4449 static int other_inode_match(struct inode * inode, unsigned long ino,
4450                              void *data)
4451 {
4452         struct other_inode *oi = (struct other_inode *) data;
4453
4454         if ((inode->i_ino != ino) ||
4455             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4456                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4457             ((inode->i_state & I_DIRTY_TIME) == 0))
4458                 return 0;
4459         spin_lock(&inode->i_lock);
4460         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4461                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4462             (inode->i_state & I_DIRTY_TIME)) {
4463                 struct ext4_inode_info  *ei = EXT4_I(inode);
4464
4465                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4466                 spin_unlock(&inode->i_lock);
4467
4468                 spin_lock(&ei->i_raw_lock);
4469                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4470                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4471                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4472                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4473                 spin_unlock(&ei->i_raw_lock);
4474                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4475                 return -1;
4476         }
4477         spin_unlock(&inode->i_lock);
4478         return -1;
4479 }
4480
4481 /*
4482  * Opportunistically update the other time fields for other inodes in
4483  * the same inode table block.
4484  */
4485 static void ext4_update_other_inodes_time(struct super_block *sb,
4486                                           unsigned long orig_ino, char *buf)
4487 {
4488         struct other_inode oi;
4489         unsigned long ino;
4490         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4491         int inode_size = EXT4_INODE_SIZE(sb);
4492
4493         oi.orig_ino = orig_ino;
4494         /*
4495          * Calculate the first inode in the inode table block.  Inode
4496          * numbers are one-based.  That is, the first inode in a block
4497          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4498          */
4499         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4500         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4501                 if (ino == orig_ino)
4502                         continue;
4503                 oi.raw_inode = (struct ext4_inode *) buf;
4504                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4505         }
4506 }
4507
4508 /*
4509  * Post the struct inode info into an on-disk inode location in the
4510  * buffer-cache.  This gobbles the caller's reference to the
4511  * buffer_head in the inode location struct.
4512  *
4513  * The caller must have write access to iloc->bh.
4514  */
4515 static int ext4_do_update_inode(handle_t *handle,
4516                                 struct inode *inode,
4517                                 struct ext4_iloc *iloc)
4518 {
4519         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4520         struct ext4_inode_info *ei = EXT4_I(inode);
4521         struct buffer_head *bh = iloc->bh;
4522         struct super_block *sb = inode->i_sb;
4523         int err = 0, rc, block;
4524         int need_datasync = 0, set_large_file = 0;
4525         uid_t i_uid;
4526         gid_t i_gid;
4527
4528         spin_lock(&ei->i_raw_lock);
4529
4530         /* For fields not tracked in the in-memory inode,
4531          * initialise them to zero for new inodes. */
4532         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4533                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4534
4535         ext4_get_inode_flags(ei);
4536         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4537         i_uid = i_uid_read(inode);
4538         i_gid = i_gid_read(inode);
4539         if (!(test_opt(inode->i_sb, NO_UID32))) {
4540                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4541                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4542 /*
4543  * Fix up interoperability with old kernels. Otherwise, old inodes get
4544  * re-used with the upper 16 bits of the uid/gid intact
4545  */
4546                 if (!ei->i_dtime) {
4547                         raw_inode->i_uid_high =
4548                                 cpu_to_le16(high_16_bits(i_uid));
4549                         raw_inode->i_gid_high =
4550                                 cpu_to_le16(high_16_bits(i_gid));
4551                 } else {
4552                         raw_inode->i_uid_high = 0;
4553                         raw_inode->i_gid_high = 0;
4554                 }
4555         } else {
4556                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4557                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4558                 raw_inode->i_uid_high = 0;
4559                 raw_inode->i_gid_high = 0;
4560         }
4561         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4562
4563         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4564         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4565         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4566         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4567
4568         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4569         if (err) {
4570                 spin_unlock(&ei->i_raw_lock);
4571                 goto out_brelse;
4572         }
4573         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4574         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4575         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4576                 raw_inode->i_file_acl_high =
4577                         cpu_to_le16(ei->i_file_acl >> 32);
4578         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4579         if (ei->i_disksize != ext4_isize(raw_inode)) {
4580                 ext4_isize_set(raw_inode, ei->i_disksize);
4581                 need_datasync = 1;
4582         }
4583         if (ei->i_disksize > 0x7fffffffULL) {
4584                 if (!ext4_has_feature_large_file(sb) ||
4585                                 EXT4_SB(sb)->s_es->s_rev_level ==
4586                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4587                         set_large_file = 1;
4588         }
4589         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4590         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4591                 if (old_valid_dev(inode->i_rdev)) {
4592                         raw_inode->i_block[0] =
4593                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4594                         raw_inode->i_block[1] = 0;
4595                 } else {
4596                         raw_inode->i_block[0] = 0;
4597                         raw_inode->i_block[1] =
4598                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4599                         raw_inode->i_block[2] = 0;
4600                 }
4601         } else if (!ext4_has_inline_data(inode)) {
4602                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4603                         raw_inode->i_block[block] = ei->i_data[block];
4604         }
4605
4606         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4607                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4608                 if (ei->i_extra_isize) {
4609                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4610                                 raw_inode->i_version_hi =
4611                                         cpu_to_le32(inode->i_version >> 32);
4612                         raw_inode->i_extra_isize =
4613                                 cpu_to_le16(ei->i_extra_isize);
4614                 }
4615         }
4616         ext4_inode_csum_set(inode, raw_inode, ei);
4617         spin_unlock(&ei->i_raw_lock);
4618         if (inode->i_sb->s_flags & MS_LAZYTIME)
4619                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4620                                               bh->b_data);
4621
4622         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4623         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4624         if (!err)
4625                 err = rc;
4626         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4627         if (set_large_file) {
4628                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4629                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4630                 if (err)
4631                         goto out_brelse;
4632                 ext4_update_dynamic_rev(sb);
4633                 ext4_set_feature_large_file(sb);
4634                 ext4_handle_sync(handle);
4635                 err = ext4_handle_dirty_super(handle, sb);
4636         }
4637         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4638 out_brelse:
4639         brelse(bh);
4640         ext4_std_error(inode->i_sb, err);
4641         return err;
4642 }
4643
4644 /*
4645  * ext4_write_inode()
4646  *
4647  * We are called from a few places:
4648  *
4649  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4650  *   Here, there will be no transaction running. We wait for any running
4651  *   transaction to commit.
4652  *
4653  * - Within flush work (sys_sync(), kupdate and such).
4654  *   We wait on commit, if told to.
4655  *
4656  * - Within iput_final() -> write_inode_now()
4657  *   We wait on commit, if told to.
4658  *
4659  * In all cases it is actually safe for us to return without doing anything,
4660  * because the inode has been copied into a raw inode buffer in
4661  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4662  * writeback.
4663  *
4664  * Note that we are absolutely dependent upon all inode dirtiers doing the
4665  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4666  * which we are interested.
4667  *
4668  * It would be a bug for them to not do this.  The code:
4669  *
4670  *      mark_inode_dirty(inode)
4671  *      stuff();
4672  *      inode->i_size = expr;
4673  *
4674  * is in error because write_inode() could occur while `stuff()' is running,
4675  * and the new i_size will be lost.  Plus the inode will no longer be on the
4676  * superblock's dirty inode list.
4677  */
4678 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4679 {
4680         int err;
4681
4682         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4683                 return 0;
4684
4685         if (EXT4_SB(inode->i_sb)->s_journal) {
4686                 if (ext4_journal_current_handle()) {
4687                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4688                         dump_stack();
4689                         return -EIO;
4690                 }
4691
4692                 /*
4693                  * No need to force transaction in WB_SYNC_NONE mode. Also
4694                  * ext4_sync_fs() will force the commit after everything is
4695                  * written.
4696                  */
4697                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4698                         return 0;
4699
4700                 err = ext4_force_commit(inode->i_sb);
4701         } else {
4702                 struct ext4_iloc iloc;
4703
4704                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4705                 if (err)
4706                         return err;
4707                 /*
4708                  * sync(2) will flush the whole buffer cache. No need to do
4709                  * it here separately for each inode.
4710                  */
4711                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4712                         sync_dirty_buffer(iloc.bh);
4713                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4714                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4715                                          "IO error syncing inode");
4716                         err = -EIO;
4717                 }
4718                 brelse(iloc.bh);
4719         }
4720         return err;
4721 }
4722
4723 /*
4724  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4725  * buffers that are attached to a page stradding i_size and are undergoing
4726  * commit. In that case we have to wait for commit to finish and try again.
4727  */
4728 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4729 {
4730         struct page *page;
4731         unsigned offset;
4732         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4733         tid_t commit_tid = 0;
4734         int ret;
4735
4736         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4737         /*
4738          * All buffers in the last page remain valid? Then there's nothing to
4739          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4740          * blocksize case
4741          */
4742         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4743                 return;
4744         while (1) {
4745                 page = find_lock_page(inode->i_mapping,
4746                                       inode->i_size >> PAGE_CACHE_SHIFT);
4747                 if (!page)
4748                         return;
4749                 ret = __ext4_journalled_invalidatepage(page, offset,
4750                                                 PAGE_CACHE_SIZE - offset);
4751                 unlock_page(page);
4752                 page_cache_release(page);
4753                 if (ret != -EBUSY)
4754                         return;
4755                 commit_tid = 0;
4756                 read_lock(&journal->j_state_lock);
4757                 if (journal->j_committing_transaction)
4758                         commit_tid = journal->j_committing_transaction->t_tid;
4759                 read_unlock(&journal->j_state_lock);
4760                 if (commit_tid)
4761                         jbd2_log_wait_commit(journal, commit_tid);
4762         }
4763 }
4764
4765 /*
4766  * ext4_setattr()
4767  *
4768  * Called from notify_change.
4769  *
4770  * We want to trap VFS attempts to truncate the file as soon as
4771  * possible.  In particular, we want to make sure that when the VFS
4772  * shrinks i_size, we put the inode on the orphan list and modify
4773  * i_disksize immediately, so that during the subsequent flushing of
4774  * dirty pages and freeing of disk blocks, we can guarantee that any
4775  * commit will leave the blocks being flushed in an unused state on
4776  * disk.  (On recovery, the inode will get truncated and the blocks will
4777  * be freed, so we have a strong guarantee that no future commit will
4778  * leave these blocks visible to the user.)
4779  *
4780  * Another thing we have to assure is that if we are in ordered mode
4781  * and inode is still attached to the committing transaction, we must
4782  * we start writeout of all the dirty pages which are being truncated.
4783  * This way we are sure that all the data written in the previous
4784  * transaction are already on disk (truncate waits for pages under
4785  * writeback).
4786  *
4787  * Called with inode->i_mutex down.
4788  */
4789 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4790 {
4791         struct inode *inode = d_inode(dentry);
4792         int error, rc = 0;
4793         int orphan = 0;
4794         const unsigned int ia_valid = attr->ia_valid;
4795
4796         error = inode_change_ok(inode, attr);
4797         if (error)
4798                 return error;
4799
4800         if (is_quota_modification(inode, attr)) {
4801                 error = dquot_initialize(inode);
4802                 if (error)
4803                         return error;
4804         }
4805         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4806             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4807                 handle_t *handle;
4808
4809                 /* (user+group)*(old+new) structure, inode write (sb,
4810                  * inode block, ? - but truncate inode update has it) */
4811                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4812                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4813                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4814                 if (IS_ERR(handle)) {
4815                         error = PTR_ERR(handle);
4816                         goto err_out;
4817                 }
4818                 error = dquot_transfer(inode, attr);
4819                 if (error) {
4820                         ext4_journal_stop(handle);
4821                         return error;
4822                 }
4823                 /* Update corresponding info in inode so that everything is in
4824                  * one transaction */
4825                 if (attr->ia_valid & ATTR_UID)
4826                         inode->i_uid = attr->ia_uid;
4827                 if (attr->ia_valid & ATTR_GID)
4828                         inode->i_gid = attr->ia_gid;
4829                 error = ext4_mark_inode_dirty(handle, inode);
4830                 ext4_journal_stop(handle);
4831         }
4832
4833         if (attr->ia_valid & ATTR_SIZE) {
4834                 handle_t *handle;
4835                 loff_t oldsize = inode->i_size;
4836                 int shrink = (attr->ia_size <= inode->i_size);
4837
4838                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4839                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4840
4841                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4842                                 return -EFBIG;
4843                 }
4844                 if (!S_ISREG(inode->i_mode))
4845                         return -EINVAL;
4846
4847                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4848                         inode_inc_iversion(inode);
4849
4850                 if (ext4_should_order_data(inode) &&
4851                     (attr->ia_size < inode->i_size)) {
4852                         error = ext4_begin_ordered_truncate(inode,
4853                                                             attr->ia_size);
4854                         if (error)
4855                                 goto err_out;
4856                 }
4857                 if (attr->ia_size != inode->i_size) {
4858                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4859                         if (IS_ERR(handle)) {
4860                                 error = PTR_ERR(handle);
4861                                 goto err_out;
4862                         }
4863                         if (ext4_handle_valid(handle) && shrink) {
4864                                 error = ext4_orphan_add(handle, inode);
4865                                 orphan = 1;
4866                         }
4867                         /*
4868                          * Update c/mtime on truncate up, ext4_truncate() will
4869                          * update c/mtime in shrink case below
4870                          */
4871                         if (!shrink) {
4872                                 inode->i_mtime = ext4_current_time(inode);
4873                                 inode->i_ctime = inode->i_mtime;
4874                         }
4875                         down_write(&EXT4_I(inode)->i_data_sem);
4876                         EXT4_I(inode)->i_disksize = attr->ia_size;
4877                         rc = ext4_mark_inode_dirty(handle, inode);
4878                         if (!error)
4879                                 error = rc;
4880                         /*
4881                          * We have to update i_size under i_data_sem together
4882                          * with i_disksize to avoid races with writeback code
4883                          * running ext4_wb_update_i_disksize().
4884                          */
4885                         if (!error)
4886                                 i_size_write(inode, attr->ia_size);
4887                         up_write(&EXT4_I(inode)->i_data_sem);
4888                         ext4_journal_stop(handle);
4889                         if (error) {
4890                                 if (orphan)
4891                                         ext4_orphan_del(NULL, inode);
4892                                 goto err_out;
4893                         }
4894                 }
4895                 if (!shrink)
4896                         pagecache_isize_extended(inode, oldsize, inode->i_size);
4897
4898                 /*
4899                  * Blocks are going to be removed from the inode. Wait
4900                  * for dio in flight.  Temporarily disable
4901                  * dioread_nolock to prevent livelock.
4902                  */
4903                 if (orphan) {
4904                         if (!ext4_should_journal_data(inode)) {
4905                                 ext4_inode_block_unlocked_dio(inode);
4906                                 inode_dio_wait(inode);
4907                                 ext4_inode_resume_unlocked_dio(inode);
4908                         } else
4909                                 ext4_wait_for_tail_page_commit(inode);
4910                 }
4911                 down_write(&EXT4_I(inode)->i_mmap_sem);
4912                 /*
4913                  * Truncate pagecache after we've waited for commit
4914                  * in data=journal mode to make pages freeable.
4915                  */
4916                 truncate_pagecache(inode, inode->i_size);
4917                 if (shrink)
4918                         ext4_truncate(inode);
4919                 up_write(&EXT4_I(inode)->i_mmap_sem);
4920         }
4921
4922         if (!rc) {
4923                 setattr_copy(inode, attr);
4924                 mark_inode_dirty(inode);
4925         }
4926
4927         /*
4928          * If the call to ext4_truncate failed to get a transaction handle at
4929          * all, we need to clean up the in-core orphan list manually.
4930          */
4931         if (orphan && inode->i_nlink)
4932                 ext4_orphan_del(NULL, inode);
4933
4934         if (!rc && (ia_valid & ATTR_MODE))
4935                 rc = posix_acl_chmod(inode, inode->i_mode);
4936
4937 err_out:
4938         ext4_std_error(inode->i_sb, error);
4939         if (!error)
4940                 error = rc;
4941         return error;
4942 }
4943
4944 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4945                  struct kstat *stat)
4946 {
4947         struct inode *inode;
4948         unsigned long long delalloc_blocks;
4949
4950         inode = d_inode(dentry);
4951         generic_fillattr(inode, stat);
4952
4953         /*
4954          * If there is inline data in the inode, the inode will normally not
4955          * have data blocks allocated (it may have an external xattr block).
4956          * Report at least one sector for such files, so tools like tar, rsync,
4957          * others doen't incorrectly think the file is completely sparse.
4958          */
4959         if (unlikely(ext4_has_inline_data(inode)))
4960                 stat->blocks += (stat->size + 511) >> 9;
4961
4962         /*
4963          * We can't update i_blocks if the block allocation is delayed
4964          * otherwise in the case of system crash before the real block
4965          * allocation is done, we will have i_blocks inconsistent with
4966          * on-disk file blocks.
4967          * We always keep i_blocks updated together with real
4968          * allocation. But to not confuse with user, stat
4969          * will return the blocks that include the delayed allocation
4970          * blocks for this file.
4971          */
4972         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4973                                    EXT4_I(inode)->i_reserved_data_blocks);
4974         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4975         return 0;
4976 }
4977
4978 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4979                                    int pextents)
4980 {
4981         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4982                 return ext4_ind_trans_blocks(inode, lblocks);
4983         return ext4_ext_index_trans_blocks(inode, pextents);
4984 }
4985
4986 /*
4987  * Account for index blocks, block groups bitmaps and block group
4988  * descriptor blocks if modify datablocks and index blocks
4989  * worse case, the indexs blocks spread over different block groups
4990  *
4991  * If datablocks are discontiguous, they are possible to spread over
4992  * different block groups too. If they are contiguous, with flexbg,
4993  * they could still across block group boundary.
4994  *
4995  * Also account for superblock, inode, quota and xattr blocks
4996  */
4997 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4998                                   int pextents)
4999 {
5000         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5001         int gdpblocks;
5002         int idxblocks;
5003         int ret = 0;
5004
5005         /*
5006          * How many index blocks need to touch to map @lblocks logical blocks
5007          * to @pextents physical extents?
5008          */
5009         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5010
5011         ret = idxblocks;
5012
5013         /*
5014          * Now let's see how many group bitmaps and group descriptors need
5015          * to account
5016          */
5017         groups = idxblocks + pextents;
5018         gdpblocks = groups;
5019         if (groups > ngroups)
5020                 groups = ngroups;
5021         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5022                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5023
5024         /* bitmaps and block group descriptor blocks */
5025         ret += groups + gdpblocks;
5026
5027         /* Blocks for super block, inode, quota and xattr blocks */
5028         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5029
5030         return ret;
5031 }
5032
5033 /*
5034  * Calculate the total number of credits to reserve to fit
5035  * the modification of a single pages into a single transaction,
5036  * which may include multiple chunks of block allocations.
5037  *
5038  * This could be called via ext4_write_begin()
5039  *
5040  * We need to consider the worse case, when
5041  * one new block per extent.
5042  */
5043 int ext4_writepage_trans_blocks(struct inode *inode)
5044 {
5045         int bpp = ext4_journal_blocks_per_page(inode);
5046         int ret;
5047
5048         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5049
5050         /* Account for data blocks for journalled mode */
5051         if (ext4_should_journal_data(inode))
5052                 ret += bpp;
5053         return ret;
5054 }
5055
5056 /*
5057  * Calculate the journal credits for a chunk of data modification.
5058  *
5059  * This is called from DIO, fallocate or whoever calling
5060  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5061  *
5062  * journal buffers for data blocks are not included here, as DIO
5063  * and fallocate do no need to journal data buffers.
5064  */
5065 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5066 {
5067         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5068 }
5069
5070 /*
5071  * The caller must have previously called ext4_reserve_inode_write().
5072  * Give this, we know that the caller already has write access to iloc->bh.
5073  */
5074 int ext4_mark_iloc_dirty(handle_t *handle,
5075                          struct inode *inode, struct ext4_iloc *iloc)
5076 {
5077         int err = 0;
5078
5079         if (IS_I_VERSION(inode))
5080                 inode_inc_iversion(inode);
5081
5082         /* the do_update_inode consumes one bh->b_count */
5083         get_bh(iloc->bh);
5084
5085         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5086         err = ext4_do_update_inode(handle, inode, iloc);
5087         put_bh(iloc->bh);
5088         return err;
5089 }
5090
5091 /*
5092  * On success, We end up with an outstanding reference count against
5093  * iloc->bh.  This _must_ be cleaned up later.
5094  */
5095
5096 int
5097 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5098                          struct ext4_iloc *iloc)
5099 {
5100         int err;
5101
5102         err = ext4_get_inode_loc(inode, iloc);
5103         if (!err) {
5104                 BUFFER_TRACE(iloc->bh, "get_write_access");
5105                 err = ext4_journal_get_write_access(handle, iloc->bh);
5106                 if (err) {
5107                         brelse(iloc->bh);
5108                         iloc->bh = NULL;
5109                 }
5110         }
5111         ext4_std_error(inode->i_sb, err);
5112         return err;
5113 }
5114
5115 /*
5116  * Expand an inode by new_extra_isize bytes.
5117  * Returns 0 on success or negative error number on failure.
5118  */
5119 static int ext4_expand_extra_isize(struct inode *inode,
5120                                    unsigned int new_extra_isize,
5121                                    struct ext4_iloc iloc,
5122                                    handle_t *handle)
5123 {
5124         struct ext4_inode *raw_inode;
5125         struct ext4_xattr_ibody_header *header;
5126
5127         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5128                 return 0;
5129
5130         raw_inode = ext4_raw_inode(&iloc);
5131
5132         header = IHDR(inode, raw_inode);
5133
5134         /* No extended attributes present */
5135         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5136             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5137                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5138                         new_extra_isize);
5139                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5140                 return 0;
5141         }
5142
5143         /* try to expand with EAs present */
5144         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5145                                           raw_inode, handle);
5146 }
5147
5148 /*
5149  * What we do here is to mark the in-core inode as clean with respect to inode
5150  * dirtiness (it may still be data-dirty).
5151  * This means that the in-core inode may be reaped by prune_icache
5152  * without having to perform any I/O.  This is a very good thing,
5153  * because *any* task may call prune_icache - even ones which
5154  * have a transaction open against a different journal.
5155  *
5156  * Is this cheating?  Not really.  Sure, we haven't written the
5157  * inode out, but prune_icache isn't a user-visible syncing function.
5158  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5159  * we start and wait on commits.
5160  */
5161 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5162 {
5163         struct ext4_iloc iloc;
5164         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5165         static unsigned int mnt_count;
5166         int err, ret;
5167
5168         might_sleep();
5169         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5170         err = ext4_reserve_inode_write(handle, inode, &iloc);
5171         if (err)
5172                 return err;
5173         if (ext4_handle_valid(handle) &&
5174             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5175             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5176                 /*
5177                  * We need extra buffer credits since we may write into EA block
5178                  * with this same handle. If journal_extend fails, then it will
5179                  * only result in a minor loss of functionality for that inode.
5180                  * If this is felt to be critical, then e2fsck should be run to
5181                  * force a large enough s_min_extra_isize.
5182                  */
5183                 if ((jbd2_journal_extend(handle,
5184                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5185                         ret = ext4_expand_extra_isize(inode,
5186                                                       sbi->s_want_extra_isize,
5187                                                       iloc, handle);
5188                         if (ret) {
5189                                 ext4_set_inode_state(inode,
5190                                                      EXT4_STATE_NO_EXPAND);
5191                                 if (mnt_count !=
5192                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5193                                         ext4_warning(inode->i_sb,
5194                                         "Unable to expand inode %lu. Delete"
5195                                         " some EAs or run e2fsck.",
5196                                         inode->i_ino);
5197                                         mnt_count =
5198                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5199                                 }
5200                         }
5201                 }
5202         }
5203         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5204 }
5205
5206 /*
5207  * ext4_dirty_inode() is called from __mark_inode_dirty()
5208  *
5209  * We're really interested in the case where a file is being extended.
5210  * i_size has been changed by generic_commit_write() and we thus need
5211  * to include the updated inode in the current transaction.
5212  *
5213  * Also, dquot_alloc_block() will always dirty the inode when blocks
5214  * are allocated to the file.
5215  *
5216  * If the inode is marked synchronous, we don't honour that here - doing
5217  * so would cause a commit on atime updates, which we don't bother doing.
5218  * We handle synchronous inodes at the highest possible level.
5219  *
5220  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5221  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5222  * to copy into the on-disk inode structure are the timestamp files.
5223  */
5224 void ext4_dirty_inode(struct inode *inode, int flags)
5225 {
5226         handle_t *handle;
5227
5228         if (flags == I_DIRTY_TIME)
5229                 return;
5230         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5231         if (IS_ERR(handle))
5232                 goto out;
5233
5234         ext4_mark_inode_dirty(handle, inode);
5235
5236         ext4_journal_stop(handle);
5237 out:
5238         return;
5239 }
5240
5241 #if 0
5242 /*
5243  * Bind an inode's backing buffer_head into this transaction, to prevent
5244  * it from being flushed to disk early.  Unlike
5245  * ext4_reserve_inode_write, this leaves behind no bh reference and
5246  * returns no iloc structure, so the caller needs to repeat the iloc
5247  * lookup to mark the inode dirty later.
5248  */
5249 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5250 {
5251         struct ext4_iloc iloc;
5252
5253         int err = 0;
5254         if (handle) {
5255                 err = ext4_get_inode_loc(inode, &iloc);
5256                 if (!err) {
5257                         BUFFER_TRACE(iloc.bh, "get_write_access");
5258                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5259                         if (!err)
5260                                 err = ext4_handle_dirty_metadata(handle,
5261                                                                  NULL,
5262                                                                  iloc.bh);
5263                         brelse(iloc.bh);
5264                 }
5265         }
5266         ext4_std_error(inode->i_sb, err);
5267         return err;
5268 }
5269 #endif
5270
5271 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5272 {
5273         journal_t *journal;
5274         handle_t *handle;
5275         int err;
5276
5277         /*
5278          * We have to be very careful here: changing a data block's
5279          * journaling status dynamically is dangerous.  If we write a
5280          * data block to the journal, change the status and then delete
5281          * that block, we risk forgetting to revoke the old log record
5282          * from the journal and so a subsequent replay can corrupt data.
5283          * So, first we make sure that the journal is empty and that
5284          * nobody is changing anything.
5285          */
5286
5287         journal = EXT4_JOURNAL(inode);
5288         if (!journal)
5289                 return 0;
5290         if (is_journal_aborted(journal))
5291                 return -EROFS;
5292         /* We have to allocate physical blocks for delalloc blocks
5293          * before flushing journal. otherwise delalloc blocks can not
5294          * be allocated any more. even more truncate on delalloc blocks
5295          * could trigger BUG by flushing delalloc blocks in journal.
5296          * There is no delalloc block in non-journal data mode.
5297          */
5298         if (val && test_opt(inode->i_sb, DELALLOC)) {
5299                 err = ext4_alloc_da_blocks(inode);
5300                 if (err < 0)
5301                         return err;
5302         }
5303
5304         /* Wait for all existing dio workers */
5305         ext4_inode_block_unlocked_dio(inode);
5306         inode_dio_wait(inode);
5307
5308         jbd2_journal_lock_updates(journal);
5309
5310         /*
5311          * OK, there are no updates running now, and all cached data is
5312          * synced to disk.  We are now in a completely consistent state
5313          * which doesn't have anything in the journal, and we know that
5314          * no filesystem updates are running, so it is safe to modify
5315          * the inode's in-core data-journaling state flag now.
5316          */
5317
5318         if (val)
5319                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5320         else {
5321                 err = jbd2_journal_flush(journal);
5322                 if (err < 0) {
5323                         jbd2_journal_unlock_updates(journal);
5324                         ext4_inode_resume_unlocked_dio(inode);
5325                         return err;
5326                 }
5327                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5328         }
5329         ext4_set_aops(inode);
5330
5331         jbd2_journal_unlock_updates(journal);
5332         ext4_inode_resume_unlocked_dio(inode);
5333
5334         /* Finally we can mark the inode as dirty. */
5335
5336         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5337         if (IS_ERR(handle))
5338                 return PTR_ERR(handle);
5339
5340         err = ext4_mark_inode_dirty(handle, inode);
5341         ext4_handle_sync(handle);
5342         ext4_journal_stop(handle);
5343         ext4_std_error(inode->i_sb, err);
5344
5345         return err;
5346 }
5347
5348 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5349 {
5350         return !buffer_mapped(bh);
5351 }
5352
5353 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5354 {
5355         struct page *page = vmf->page;
5356         loff_t size;
5357         unsigned long len;
5358         int ret;
5359         struct file *file = vma->vm_file;
5360         struct inode *inode = file_inode(file);
5361         struct address_space *mapping = inode->i_mapping;
5362         handle_t *handle;
5363         get_block_t *get_block;
5364         int retries = 0;
5365
5366         sb_start_pagefault(inode->i_sb);
5367         file_update_time(vma->vm_file);
5368
5369         down_read(&EXT4_I(inode)->i_mmap_sem);
5370         /* Delalloc case is easy... */
5371         if (test_opt(inode->i_sb, DELALLOC) &&
5372             !ext4_should_journal_data(inode) &&
5373             !ext4_nonda_switch(inode->i_sb)) {
5374                 do {
5375                         ret = block_page_mkwrite(vma, vmf,
5376                                                    ext4_da_get_block_prep);
5377                 } while (ret == -ENOSPC &&
5378                        ext4_should_retry_alloc(inode->i_sb, &retries));
5379                 goto out_ret;
5380         }
5381
5382         lock_page(page);
5383         size = i_size_read(inode);
5384         /* Page got truncated from under us? */
5385         if (page->mapping != mapping || page_offset(page) > size) {
5386                 unlock_page(page);
5387                 ret = VM_FAULT_NOPAGE;
5388                 goto out;
5389         }
5390
5391         if (page->index == size >> PAGE_CACHE_SHIFT)
5392                 len = size & ~PAGE_CACHE_MASK;
5393         else
5394                 len = PAGE_CACHE_SIZE;
5395         /*
5396          * Return if we have all the buffers mapped. This avoids the need to do
5397          * journal_start/journal_stop which can block and take a long time
5398          */
5399         if (page_has_buffers(page)) {
5400                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5401                                             0, len, NULL,
5402                                             ext4_bh_unmapped)) {
5403                         /* Wait so that we don't change page under IO */
5404                         wait_for_stable_page(page);
5405                         ret = VM_FAULT_LOCKED;
5406                         goto out;
5407                 }
5408         }
5409         unlock_page(page);
5410         /* OK, we need to fill the hole... */
5411         if (ext4_should_dioread_nolock(inode))
5412                 get_block = ext4_get_block_write;
5413         else
5414                 get_block = ext4_get_block;
5415 retry_alloc:
5416         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5417                                     ext4_writepage_trans_blocks(inode));
5418         if (IS_ERR(handle)) {
5419                 ret = VM_FAULT_SIGBUS;
5420                 goto out;
5421         }
5422         ret = block_page_mkwrite(vma, vmf, get_block);
5423         if (!ret && ext4_should_journal_data(inode)) {
5424                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5425                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5426                         unlock_page(page);
5427                         ret = VM_FAULT_SIGBUS;
5428                         ext4_journal_stop(handle);
5429                         goto out;
5430                 }
5431                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5432         }
5433         ext4_journal_stop(handle);
5434         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5435                 goto retry_alloc;
5436 out_ret:
5437         ret = block_page_mkwrite_return(ret);
5438 out:
5439         up_read(&EXT4_I(inode)->i_mmap_sem);
5440         sb_end_pagefault(inode->i_sb);
5441         return ret;
5442 }
5443
5444 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5445 {
5446         struct inode *inode = file_inode(vma->vm_file);
5447         int err;
5448
5449         down_read(&EXT4_I(inode)->i_mmap_sem);
5450         err = filemap_fault(vma, vmf);
5451         up_read(&EXT4_I(inode)->i_mmap_sem);
5452
5453         return err;
5454 }