ext4: hole-punch use truncate_pagecache_range
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = raw->i_checksum_lo;
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = raw->i_checksum_hi;
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = csum_lo;
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = csum_hi;
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136                                    struct buffer_head *bh_result, int create);
137 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142                 struct inode *inode, struct page *page, loff_t from,
143                 loff_t length, int flags);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 static int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                 (inode->i_sb->s_blocksize >> 9) : 0;
152
153         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 }
155
156 /*
157  * Restart the transaction associated with *handle.  This does a commit,
158  * so before we call here everything must be consistently dirtied against
159  * this transaction.
160  */
161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162                                  int nblocks)
163 {
164         int ret;
165
166         /*
167          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168          * moment, get_block can be called only for blocks inside i_size since
169          * page cache has been already dropped and writes are blocked by
170          * i_mutex. So we can safely drop the i_data_sem here.
171          */
172         BUG_ON(EXT4_JOURNAL(inode) == NULL);
173         jbd_debug(2, "restarting handle %p\n", handle);
174         up_write(&EXT4_I(inode)->i_data_sem);
175         ret = ext4_journal_restart(handle, nblocks);
176         down_write(&EXT4_I(inode)->i_data_sem);
177         ext4_discard_preallocations(inode);
178
179         return ret;
180 }
181
182 /*
183  * Called at the last iput() if i_nlink is zero.
184  */
185 void ext4_evict_inode(struct inode *inode)
186 {
187         handle_t *handle;
188         int err;
189
190         trace_ext4_evict_inode(inode);
191
192         ext4_ioend_wait(inode);
193
194         if (inode->i_nlink) {
195                 /*
196                  * When journalling data dirty buffers are tracked only in the
197                  * journal. So although mm thinks everything is clean and
198                  * ready for reaping the inode might still have some pages to
199                  * write in the running transaction or waiting to be
200                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
201                  * (via truncate_inode_pages()) to discard these buffers can
202                  * cause data loss. Also even if we did not discard these
203                  * buffers, we would have no way to find them after the inode
204                  * is reaped and thus user could see stale data if he tries to
205                  * read them before the transaction is checkpointed. So be
206                  * careful and force everything to disk here... We use
207                  * ei->i_datasync_tid to store the newest transaction
208                  * containing inode's data.
209                  *
210                  * Note that directories do not have this problem because they
211                  * don't use page cache.
212                  */
213                 if (ext4_should_journal_data(inode) &&
214                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218                         jbd2_log_start_commit(journal, commit_tid);
219                         jbd2_log_wait_commit(journal, commit_tid);
220                         filemap_write_and_wait(&inode->i_data);
221                 }
222                 truncate_inode_pages(&inode->i_data, 0);
223                 goto no_delete;
224         }
225
226         if (!is_bad_inode(inode))
227                 dquot_initialize(inode);
228
229         if (ext4_should_order_data(inode))
230                 ext4_begin_ordered_truncate(inode, 0);
231         truncate_inode_pages(&inode->i_data, 0);
232
233         if (is_bad_inode(inode))
234                 goto no_delete;
235
236         handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
237         if (IS_ERR(handle)) {
238                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
239                 /*
240                  * If we're going to skip the normal cleanup, we still need to
241                  * make sure that the in-core orphan linked list is properly
242                  * cleaned up.
243                  */
244                 ext4_orphan_del(NULL, inode);
245                 goto no_delete;
246         }
247
248         if (IS_SYNC(inode))
249                 ext4_handle_sync(handle);
250         inode->i_size = 0;
251         err = ext4_mark_inode_dirty(handle, inode);
252         if (err) {
253                 ext4_warning(inode->i_sb,
254                              "couldn't mark inode dirty (err %d)", err);
255                 goto stop_handle;
256         }
257         if (inode->i_blocks)
258                 ext4_truncate(inode);
259
260         /*
261          * ext4_ext_truncate() doesn't reserve any slop when it
262          * restarts journal transactions; therefore there may not be
263          * enough credits left in the handle to remove the inode from
264          * the orphan list and set the dtime field.
265          */
266         if (!ext4_handle_has_enough_credits(handle, 3)) {
267                 err = ext4_journal_extend(handle, 3);
268                 if (err > 0)
269                         err = ext4_journal_restart(handle, 3);
270                 if (err != 0) {
271                         ext4_warning(inode->i_sb,
272                                      "couldn't extend journal (err %d)", err);
273                 stop_handle:
274                         ext4_journal_stop(handle);
275                         ext4_orphan_del(NULL, inode);
276                         goto no_delete;
277                 }
278         }
279
280         /*
281          * Kill off the orphan record which ext4_truncate created.
282          * AKPM: I think this can be inside the above `if'.
283          * Note that ext4_orphan_del() has to be able to cope with the
284          * deletion of a non-existent orphan - this is because we don't
285          * know if ext4_truncate() actually created an orphan record.
286          * (Well, we could do this if we need to, but heck - it works)
287          */
288         ext4_orphan_del(handle, inode);
289         EXT4_I(inode)->i_dtime  = get_seconds();
290
291         /*
292          * One subtle ordering requirement: if anything has gone wrong
293          * (transaction abort, IO errors, whatever), then we can still
294          * do these next steps (the fs will already have been marked as
295          * having errors), but we can't free the inode if the mark_dirty
296          * fails.
297          */
298         if (ext4_mark_inode_dirty(handle, inode))
299                 /* If that failed, just do the required in-core inode clear. */
300                 ext4_clear_inode(inode);
301         else
302                 ext4_free_inode(handle, inode);
303         ext4_journal_stop(handle);
304         return;
305 no_delete:
306         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
307 }
308
309 #ifdef CONFIG_QUOTA
310 qsize_t *ext4_get_reserved_space(struct inode *inode)
311 {
312         return &EXT4_I(inode)->i_reserved_quota;
313 }
314 #endif
315
316 /*
317  * Calculate the number of metadata blocks need to reserve
318  * to allocate a block located at @lblock
319  */
320 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
321 {
322         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
323                 return ext4_ext_calc_metadata_amount(inode, lblock);
324
325         return ext4_ind_calc_metadata_amount(inode, lblock);
326 }
327
328 /*
329  * Called with i_data_sem down, which is important since we can call
330  * ext4_discard_preallocations() from here.
331  */
332 void ext4_da_update_reserve_space(struct inode *inode,
333                                         int used, int quota_claim)
334 {
335         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336         struct ext4_inode_info *ei = EXT4_I(inode);
337
338         spin_lock(&ei->i_block_reservation_lock);
339         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340         if (unlikely(used > ei->i_reserved_data_blocks)) {
341                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
342                          "with only %d reserved data blocks",
343                          __func__, inode->i_ino, used,
344                          ei->i_reserved_data_blocks);
345                 WARN_ON(1);
346                 used = ei->i_reserved_data_blocks;
347         }
348
349         /* Update per-inode reservations */
350         ei->i_reserved_data_blocks -= used;
351         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
352         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
353                            used + ei->i_allocated_meta_blocks);
354         ei->i_allocated_meta_blocks = 0;
355
356         if (ei->i_reserved_data_blocks == 0) {
357                 /*
358                  * We can release all of the reserved metadata blocks
359                  * only when we have written all of the delayed
360                  * allocation blocks.
361                  */
362                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
363                                    ei->i_reserved_meta_blocks);
364                 ei->i_reserved_meta_blocks = 0;
365                 ei->i_da_metadata_calc_len = 0;
366         }
367         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
368
369         /* Update quota subsystem for data blocks */
370         if (quota_claim)
371                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
372         else {
373                 /*
374                  * We did fallocate with an offset that is already delayed
375                  * allocated. So on delayed allocated writeback we should
376                  * not re-claim the quota for fallocated blocks.
377                  */
378                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
379         }
380
381         /*
382          * If we have done all the pending block allocations and if
383          * there aren't any writers on the inode, we can discard the
384          * inode's preallocations.
385          */
386         if ((ei->i_reserved_data_blocks == 0) &&
387             (atomic_read(&inode->i_writecount) == 0))
388                 ext4_discard_preallocations(inode);
389 }
390
391 static int __check_block_validity(struct inode *inode, const char *func,
392                                 unsigned int line,
393                                 struct ext4_map_blocks *map)
394 {
395         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
396                                    map->m_len)) {
397                 ext4_error_inode(inode, func, line, map->m_pblk,
398                                  "lblock %lu mapped to illegal pblock "
399                                  "(length %d)", (unsigned long) map->m_lblk,
400                                  map->m_len);
401                 return -EIO;
402         }
403         return 0;
404 }
405
406 #define check_block_validity(inode, map)        \
407         __check_block_validity((inode), __func__, __LINE__, (map))
408
409 /*
410  * Return the number of contiguous dirty pages in a given inode
411  * starting at page frame idx.
412  */
413 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
414                                     unsigned int max_pages)
415 {
416         struct address_space *mapping = inode->i_mapping;
417         pgoff_t index;
418         struct pagevec pvec;
419         pgoff_t num = 0;
420         int i, nr_pages, done = 0;
421
422         if (max_pages == 0)
423                 return 0;
424         pagevec_init(&pvec, 0);
425         while (!done) {
426                 index = idx;
427                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
428                                               PAGECACHE_TAG_DIRTY,
429                                               (pgoff_t)PAGEVEC_SIZE);
430                 if (nr_pages == 0)
431                         break;
432                 for (i = 0; i < nr_pages; i++) {
433                         struct page *page = pvec.pages[i];
434                         struct buffer_head *bh, *head;
435
436                         lock_page(page);
437                         if (unlikely(page->mapping != mapping) ||
438                             !PageDirty(page) ||
439                             PageWriteback(page) ||
440                             page->index != idx) {
441                                 done = 1;
442                                 unlock_page(page);
443                                 break;
444                         }
445                         if (page_has_buffers(page)) {
446                                 bh = head = page_buffers(page);
447                                 do {
448                                         if (!buffer_delay(bh) &&
449                                             !buffer_unwritten(bh))
450                                                 done = 1;
451                                         bh = bh->b_this_page;
452                                 } while (!done && (bh != head));
453                         }
454                         unlock_page(page);
455                         if (done)
456                                 break;
457                         idx++;
458                         num++;
459                         if (num >= max_pages) {
460                                 done = 1;
461                                 break;
462                         }
463                 }
464                 pagevec_release(&pvec);
465         }
466         return num;
467 }
468
469 /*
470  * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
471  */
472 static void set_buffers_da_mapped(struct inode *inode,
473                                    struct ext4_map_blocks *map)
474 {
475         struct address_space *mapping = inode->i_mapping;
476         struct pagevec pvec;
477         int i, nr_pages;
478         pgoff_t index, end;
479
480         index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
481         end = (map->m_lblk + map->m_len - 1) >>
482                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
483
484         pagevec_init(&pvec, 0);
485         while (index <= end) {
486                 nr_pages = pagevec_lookup(&pvec, mapping, index,
487                                           min(end - index + 1,
488                                               (pgoff_t)PAGEVEC_SIZE));
489                 if (nr_pages == 0)
490                         break;
491                 for (i = 0; i < nr_pages; i++) {
492                         struct page *page = pvec.pages[i];
493                         struct buffer_head *bh, *head;
494
495                         if (unlikely(page->mapping != mapping) ||
496                             !PageDirty(page))
497                                 break;
498
499                         if (page_has_buffers(page)) {
500                                 bh = head = page_buffers(page);
501                                 do {
502                                         set_buffer_da_mapped(bh);
503                                         bh = bh->b_this_page;
504                                 } while (bh != head);
505                         }
506                         index++;
507                 }
508                 pagevec_release(&pvec);
509         }
510 }
511
512 /*
513  * The ext4_map_blocks() function tries to look up the requested blocks,
514  * and returns if the blocks are already mapped.
515  *
516  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
517  * and store the allocated blocks in the result buffer head and mark it
518  * mapped.
519  *
520  * If file type is extents based, it will call ext4_ext_map_blocks(),
521  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
522  * based files
523  *
524  * On success, it returns the number of blocks being mapped or allocate.
525  * if create==0 and the blocks are pre-allocated and uninitialized block,
526  * the result buffer head is unmapped. If the create ==1, it will make sure
527  * the buffer head is mapped.
528  *
529  * It returns 0 if plain look up failed (blocks have not been allocated), in
530  * that case, buffer head is unmapped
531  *
532  * It returns the error in case of allocation failure.
533  */
534 int ext4_map_blocks(handle_t *handle, struct inode *inode,
535                     struct ext4_map_blocks *map, int flags)
536 {
537         int retval;
538
539         map->m_flags = 0;
540         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
541                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
542                   (unsigned long) map->m_lblk);
543         /*
544          * Try to see if we can get the block without requesting a new
545          * file system block.
546          */
547         down_read((&EXT4_I(inode)->i_data_sem));
548         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
549                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
550                                              EXT4_GET_BLOCKS_KEEP_SIZE);
551         } else {
552                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
553                                              EXT4_GET_BLOCKS_KEEP_SIZE);
554         }
555         up_read((&EXT4_I(inode)->i_data_sem));
556
557         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
558                 int ret = check_block_validity(inode, map);
559                 if (ret != 0)
560                         return ret;
561         }
562
563         /* If it is only a block(s) look up */
564         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
565                 return retval;
566
567         /*
568          * Returns if the blocks have already allocated
569          *
570          * Note that if blocks have been preallocated
571          * ext4_ext_get_block() returns the create = 0
572          * with buffer head unmapped.
573          */
574         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
575                 return retval;
576
577         /*
578          * When we call get_blocks without the create flag, the
579          * BH_Unwritten flag could have gotten set if the blocks
580          * requested were part of a uninitialized extent.  We need to
581          * clear this flag now that we are committed to convert all or
582          * part of the uninitialized extent to be an initialized
583          * extent.  This is because we need to avoid the combination
584          * of BH_Unwritten and BH_Mapped flags being simultaneously
585          * set on the buffer_head.
586          */
587         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
588
589         /*
590          * New blocks allocate and/or writing to uninitialized extent
591          * will possibly result in updating i_data, so we take
592          * the write lock of i_data_sem, and call get_blocks()
593          * with create == 1 flag.
594          */
595         down_write((&EXT4_I(inode)->i_data_sem));
596
597         /*
598          * if the caller is from delayed allocation writeout path
599          * we have already reserved fs blocks for allocation
600          * let the underlying get_block() function know to
601          * avoid double accounting
602          */
603         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
604                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
605         /*
606          * We need to check for EXT4 here because migrate
607          * could have changed the inode type in between
608          */
609         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
610                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
611         } else {
612                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
613
614                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
615                         /*
616                          * We allocated new blocks which will result in
617                          * i_data's format changing.  Force the migrate
618                          * to fail by clearing migrate flags
619                          */
620                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
621                 }
622
623                 /*
624                  * Update reserved blocks/metadata blocks after successful
625                  * block allocation which had been deferred till now. We don't
626                  * support fallocate for non extent files. So we can update
627                  * reserve space here.
628                  */
629                 if ((retval > 0) &&
630                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
631                         ext4_da_update_reserve_space(inode, retval, 1);
632         }
633         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
634                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
635
636                 /* If we have successfully mapped the delayed allocated blocks,
637                  * set the BH_Da_Mapped bit on them. Its important to do this
638                  * under the protection of i_data_sem.
639                  */
640                 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
641                         set_buffers_da_mapped(inode, map);
642         }
643
644         up_write((&EXT4_I(inode)->i_data_sem));
645         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
646                 int ret = check_block_validity(inode, map);
647                 if (ret != 0)
648                         return ret;
649         }
650         return retval;
651 }
652
653 /* Maximum number of blocks we map for direct IO at once. */
654 #define DIO_MAX_BLOCKS 4096
655
656 static int _ext4_get_block(struct inode *inode, sector_t iblock,
657                            struct buffer_head *bh, int flags)
658 {
659         handle_t *handle = ext4_journal_current_handle();
660         struct ext4_map_blocks map;
661         int ret = 0, started = 0;
662         int dio_credits;
663
664         map.m_lblk = iblock;
665         map.m_len = bh->b_size >> inode->i_blkbits;
666
667         if (flags && !handle) {
668                 /* Direct IO write... */
669                 if (map.m_len > DIO_MAX_BLOCKS)
670                         map.m_len = DIO_MAX_BLOCKS;
671                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
672                 handle = ext4_journal_start(inode, dio_credits);
673                 if (IS_ERR(handle)) {
674                         ret = PTR_ERR(handle);
675                         return ret;
676                 }
677                 started = 1;
678         }
679
680         ret = ext4_map_blocks(handle, inode, &map, flags);
681         if (ret > 0) {
682                 map_bh(bh, inode->i_sb, map.m_pblk);
683                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
684                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
685                 ret = 0;
686         }
687         if (started)
688                 ext4_journal_stop(handle);
689         return ret;
690 }
691
692 int ext4_get_block(struct inode *inode, sector_t iblock,
693                    struct buffer_head *bh, int create)
694 {
695         return _ext4_get_block(inode, iblock, bh,
696                                create ? EXT4_GET_BLOCKS_CREATE : 0);
697 }
698
699 /*
700  * `handle' can be NULL if create is zero
701  */
702 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
703                                 ext4_lblk_t block, int create, int *errp)
704 {
705         struct ext4_map_blocks map;
706         struct buffer_head *bh;
707         int fatal = 0, err;
708
709         J_ASSERT(handle != NULL || create == 0);
710
711         map.m_lblk = block;
712         map.m_len = 1;
713         err = ext4_map_blocks(handle, inode, &map,
714                               create ? EXT4_GET_BLOCKS_CREATE : 0);
715
716         if (err < 0)
717                 *errp = err;
718         if (err <= 0)
719                 return NULL;
720         *errp = 0;
721
722         bh = sb_getblk(inode->i_sb, map.m_pblk);
723         if (!bh) {
724                 *errp = -EIO;
725                 return NULL;
726         }
727         if (map.m_flags & EXT4_MAP_NEW) {
728                 J_ASSERT(create != 0);
729                 J_ASSERT(handle != NULL);
730
731                 /*
732                  * Now that we do not always journal data, we should
733                  * keep in mind whether this should always journal the
734                  * new buffer as metadata.  For now, regular file
735                  * writes use ext4_get_block instead, so it's not a
736                  * problem.
737                  */
738                 lock_buffer(bh);
739                 BUFFER_TRACE(bh, "call get_create_access");
740                 fatal = ext4_journal_get_create_access(handle, bh);
741                 if (!fatal && !buffer_uptodate(bh)) {
742                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
743                         set_buffer_uptodate(bh);
744                 }
745                 unlock_buffer(bh);
746                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
747                 err = ext4_handle_dirty_metadata(handle, inode, bh);
748                 if (!fatal)
749                         fatal = err;
750         } else {
751                 BUFFER_TRACE(bh, "not a new buffer");
752         }
753         if (fatal) {
754                 *errp = fatal;
755                 brelse(bh);
756                 bh = NULL;
757         }
758         return bh;
759 }
760
761 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
762                                ext4_lblk_t block, int create, int *err)
763 {
764         struct buffer_head *bh;
765
766         bh = ext4_getblk(handle, inode, block, create, err);
767         if (!bh)
768                 return bh;
769         if (buffer_uptodate(bh))
770                 return bh;
771         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
772         wait_on_buffer(bh);
773         if (buffer_uptodate(bh))
774                 return bh;
775         put_bh(bh);
776         *err = -EIO;
777         return NULL;
778 }
779
780 static int walk_page_buffers(handle_t *handle,
781                              struct buffer_head *head,
782                              unsigned from,
783                              unsigned to,
784                              int *partial,
785                              int (*fn)(handle_t *handle,
786                                        struct buffer_head *bh))
787 {
788         struct buffer_head *bh;
789         unsigned block_start, block_end;
790         unsigned blocksize = head->b_size;
791         int err, ret = 0;
792         struct buffer_head *next;
793
794         for (bh = head, block_start = 0;
795              ret == 0 && (bh != head || !block_start);
796              block_start = block_end, bh = next) {
797                 next = bh->b_this_page;
798                 block_end = block_start + blocksize;
799                 if (block_end <= from || block_start >= to) {
800                         if (partial && !buffer_uptodate(bh))
801                                 *partial = 1;
802                         continue;
803                 }
804                 err = (*fn)(handle, bh);
805                 if (!ret)
806                         ret = err;
807         }
808         return ret;
809 }
810
811 /*
812  * To preserve ordering, it is essential that the hole instantiation and
813  * the data write be encapsulated in a single transaction.  We cannot
814  * close off a transaction and start a new one between the ext4_get_block()
815  * and the commit_write().  So doing the jbd2_journal_start at the start of
816  * prepare_write() is the right place.
817  *
818  * Also, this function can nest inside ext4_writepage() ->
819  * block_write_full_page(). In that case, we *know* that ext4_writepage()
820  * has generated enough buffer credits to do the whole page.  So we won't
821  * block on the journal in that case, which is good, because the caller may
822  * be PF_MEMALLOC.
823  *
824  * By accident, ext4 can be reentered when a transaction is open via
825  * quota file writes.  If we were to commit the transaction while thus
826  * reentered, there can be a deadlock - we would be holding a quota
827  * lock, and the commit would never complete if another thread had a
828  * transaction open and was blocking on the quota lock - a ranking
829  * violation.
830  *
831  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
832  * will _not_ run commit under these circumstances because handle->h_ref
833  * is elevated.  We'll still have enough credits for the tiny quotafile
834  * write.
835  */
836 static int do_journal_get_write_access(handle_t *handle,
837                                        struct buffer_head *bh)
838 {
839         int dirty = buffer_dirty(bh);
840         int ret;
841
842         if (!buffer_mapped(bh) || buffer_freed(bh))
843                 return 0;
844         /*
845          * __block_write_begin() could have dirtied some buffers. Clean
846          * the dirty bit as jbd2_journal_get_write_access() could complain
847          * otherwise about fs integrity issues. Setting of the dirty bit
848          * by __block_write_begin() isn't a real problem here as we clear
849          * the bit before releasing a page lock and thus writeback cannot
850          * ever write the buffer.
851          */
852         if (dirty)
853                 clear_buffer_dirty(bh);
854         ret = ext4_journal_get_write_access(handle, bh);
855         if (!ret && dirty)
856                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
857         return ret;
858 }
859
860 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
861                    struct buffer_head *bh_result, int create);
862 static int ext4_write_begin(struct file *file, struct address_space *mapping,
863                             loff_t pos, unsigned len, unsigned flags,
864                             struct page **pagep, void **fsdata)
865 {
866         struct inode *inode = mapping->host;
867         int ret, needed_blocks;
868         handle_t *handle;
869         int retries = 0;
870         struct page *page;
871         pgoff_t index;
872         unsigned from, to;
873
874         trace_ext4_write_begin(inode, pos, len, flags);
875         /*
876          * Reserve one block more for addition to orphan list in case
877          * we allocate blocks but write fails for some reason
878          */
879         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
880         index = pos >> PAGE_CACHE_SHIFT;
881         from = pos & (PAGE_CACHE_SIZE - 1);
882         to = from + len;
883
884 retry:
885         handle = ext4_journal_start(inode, needed_blocks);
886         if (IS_ERR(handle)) {
887                 ret = PTR_ERR(handle);
888                 goto out;
889         }
890
891         /* We cannot recurse into the filesystem as the transaction is already
892          * started */
893         flags |= AOP_FLAG_NOFS;
894
895         page = grab_cache_page_write_begin(mapping, index, flags);
896         if (!page) {
897                 ext4_journal_stop(handle);
898                 ret = -ENOMEM;
899                 goto out;
900         }
901         *pagep = page;
902
903         if (ext4_should_dioread_nolock(inode))
904                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
905         else
906                 ret = __block_write_begin(page, pos, len, ext4_get_block);
907
908         if (!ret && ext4_should_journal_data(inode)) {
909                 ret = walk_page_buffers(handle, page_buffers(page),
910                                 from, to, NULL, do_journal_get_write_access);
911         }
912
913         if (ret) {
914                 unlock_page(page);
915                 page_cache_release(page);
916                 /*
917                  * __block_write_begin may have instantiated a few blocks
918                  * outside i_size.  Trim these off again. Don't need
919                  * i_size_read because we hold i_mutex.
920                  *
921                  * Add inode to orphan list in case we crash before
922                  * truncate finishes
923                  */
924                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
925                         ext4_orphan_add(handle, inode);
926
927                 ext4_journal_stop(handle);
928                 if (pos + len > inode->i_size) {
929                         ext4_truncate_failed_write(inode);
930                         /*
931                          * If truncate failed early the inode might
932                          * still be on the orphan list; we need to
933                          * make sure the inode is removed from the
934                          * orphan list in that case.
935                          */
936                         if (inode->i_nlink)
937                                 ext4_orphan_del(NULL, inode);
938                 }
939         }
940
941         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
942                 goto retry;
943 out:
944         return ret;
945 }
946
947 /* For write_end() in data=journal mode */
948 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
949 {
950         if (!buffer_mapped(bh) || buffer_freed(bh))
951                 return 0;
952         set_buffer_uptodate(bh);
953         return ext4_handle_dirty_metadata(handle, NULL, bh);
954 }
955
956 static int ext4_generic_write_end(struct file *file,
957                                   struct address_space *mapping,
958                                   loff_t pos, unsigned len, unsigned copied,
959                                   struct page *page, void *fsdata)
960 {
961         int i_size_changed = 0;
962         struct inode *inode = mapping->host;
963         handle_t *handle = ext4_journal_current_handle();
964
965         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
966
967         /*
968          * No need to use i_size_read() here, the i_size
969          * cannot change under us because we hold i_mutex.
970          *
971          * But it's important to update i_size while still holding page lock:
972          * page writeout could otherwise come in and zero beyond i_size.
973          */
974         if (pos + copied > inode->i_size) {
975                 i_size_write(inode, pos + copied);
976                 i_size_changed = 1;
977         }
978
979         if (pos + copied >  EXT4_I(inode)->i_disksize) {
980                 /* We need to mark inode dirty even if
981                  * new_i_size is less that inode->i_size
982                  * bu greater than i_disksize.(hint delalloc)
983                  */
984                 ext4_update_i_disksize(inode, (pos + copied));
985                 i_size_changed = 1;
986         }
987         unlock_page(page);
988         page_cache_release(page);
989
990         /*
991          * Don't mark the inode dirty under page lock. First, it unnecessarily
992          * makes the holding time of page lock longer. Second, it forces lock
993          * ordering of page lock and transaction start for journaling
994          * filesystems.
995          */
996         if (i_size_changed)
997                 ext4_mark_inode_dirty(handle, inode);
998
999         return copied;
1000 }
1001
1002 /*
1003  * We need to pick up the new inode size which generic_commit_write gave us
1004  * `file' can be NULL - eg, when called from page_symlink().
1005  *
1006  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1007  * buffers are managed internally.
1008  */
1009 static int ext4_ordered_write_end(struct file *file,
1010                                   struct address_space *mapping,
1011                                   loff_t pos, unsigned len, unsigned copied,
1012                                   struct page *page, void *fsdata)
1013 {
1014         handle_t *handle = ext4_journal_current_handle();
1015         struct inode *inode = mapping->host;
1016         int ret = 0, ret2;
1017
1018         trace_ext4_ordered_write_end(inode, pos, len, copied);
1019         ret = ext4_jbd2_file_inode(handle, inode);
1020
1021         if (ret == 0) {
1022                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1023                                                         page, fsdata);
1024                 copied = ret2;
1025                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1026                         /* if we have allocated more blocks and copied
1027                          * less. We will have blocks allocated outside
1028                          * inode->i_size. So truncate them
1029                          */
1030                         ext4_orphan_add(handle, inode);
1031                 if (ret2 < 0)
1032                         ret = ret2;
1033         } else {
1034                 unlock_page(page);
1035                 page_cache_release(page);
1036         }
1037
1038         ret2 = ext4_journal_stop(handle);
1039         if (!ret)
1040                 ret = ret2;
1041
1042         if (pos + len > inode->i_size) {
1043                 ext4_truncate_failed_write(inode);
1044                 /*
1045                  * If truncate failed early the inode might still be
1046                  * on the orphan list; we need to make sure the inode
1047                  * is removed from the orphan list in that case.
1048                  */
1049                 if (inode->i_nlink)
1050                         ext4_orphan_del(NULL, inode);
1051         }
1052
1053
1054         return ret ? ret : copied;
1055 }
1056
1057 static int ext4_writeback_write_end(struct file *file,
1058                                     struct address_space *mapping,
1059                                     loff_t pos, unsigned len, unsigned copied,
1060                                     struct page *page, void *fsdata)
1061 {
1062         handle_t *handle = ext4_journal_current_handle();
1063         struct inode *inode = mapping->host;
1064         int ret = 0, ret2;
1065
1066         trace_ext4_writeback_write_end(inode, pos, len, copied);
1067         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1068                                                         page, fsdata);
1069         copied = ret2;
1070         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1071                 /* if we have allocated more blocks and copied
1072                  * less. We will have blocks allocated outside
1073                  * inode->i_size. So truncate them
1074                  */
1075                 ext4_orphan_add(handle, inode);
1076
1077         if (ret2 < 0)
1078                 ret = ret2;
1079
1080         ret2 = ext4_journal_stop(handle);
1081         if (!ret)
1082                 ret = ret2;
1083
1084         if (pos + len > inode->i_size) {
1085                 ext4_truncate_failed_write(inode);
1086                 /*
1087                  * If truncate failed early the inode might still be
1088                  * on the orphan list; we need to make sure the inode
1089                  * is removed from the orphan list in that case.
1090                  */
1091                 if (inode->i_nlink)
1092                         ext4_orphan_del(NULL, inode);
1093         }
1094
1095         return ret ? ret : copied;
1096 }
1097
1098 static int ext4_journalled_write_end(struct file *file,
1099                                      struct address_space *mapping,
1100                                      loff_t pos, unsigned len, unsigned copied,
1101                                      struct page *page, void *fsdata)
1102 {
1103         handle_t *handle = ext4_journal_current_handle();
1104         struct inode *inode = mapping->host;
1105         int ret = 0, ret2;
1106         int partial = 0;
1107         unsigned from, to;
1108         loff_t new_i_size;
1109
1110         trace_ext4_journalled_write_end(inode, pos, len, copied);
1111         from = pos & (PAGE_CACHE_SIZE - 1);
1112         to = from + len;
1113
1114         BUG_ON(!ext4_handle_valid(handle));
1115
1116         if (copied < len) {
1117                 if (!PageUptodate(page))
1118                         copied = 0;
1119                 page_zero_new_buffers(page, from+copied, to);
1120         }
1121
1122         ret = walk_page_buffers(handle, page_buffers(page), from,
1123                                 to, &partial, write_end_fn);
1124         if (!partial)
1125                 SetPageUptodate(page);
1126         new_i_size = pos + copied;
1127         if (new_i_size > inode->i_size)
1128                 i_size_write(inode, pos+copied);
1129         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1130         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1131         if (new_i_size > EXT4_I(inode)->i_disksize) {
1132                 ext4_update_i_disksize(inode, new_i_size);
1133                 ret2 = ext4_mark_inode_dirty(handle, inode);
1134                 if (!ret)
1135                         ret = ret2;
1136         }
1137
1138         unlock_page(page);
1139         page_cache_release(page);
1140         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1141                 /* if we have allocated more blocks and copied
1142                  * less. We will have blocks allocated outside
1143                  * inode->i_size. So truncate them
1144                  */
1145                 ext4_orphan_add(handle, inode);
1146
1147         ret2 = ext4_journal_stop(handle);
1148         if (!ret)
1149                 ret = ret2;
1150         if (pos + len > inode->i_size) {
1151                 ext4_truncate_failed_write(inode);
1152                 /*
1153                  * If truncate failed early the inode might still be
1154                  * on the orphan list; we need to make sure the inode
1155                  * is removed from the orphan list in that case.
1156                  */
1157                 if (inode->i_nlink)
1158                         ext4_orphan_del(NULL, inode);
1159         }
1160
1161         return ret ? ret : copied;
1162 }
1163
1164 /*
1165  * Reserve a single cluster located at lblock
1166  */
1167 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1168 {
1169         int retries = 0;
1170         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1171         struct ext4_inode_info *ei = EXT4_I(inode);
1172         unsigned int md_needed;
1173         int ret;
1174
1175         /*
1176          * recalculate the amount of metadata blocks to reserve
1177          * in order to allocate nrblocks
1178          * worse case is one extent per block
1179          */
1180 repeat:
1181         spin_lock(&ei->i_block_reservation_lock);
1182         md_needed = EXT4_NUM_B2C(sbi,
1183                                  ext4_calc_metadata_amount(inode, lblock));
1184         trace_ext4_da_reserve_space(inode, md_needed);
1185         spin_unlock(&ei->i_block_reservation_lock);
1186
1187         /*
1188          * We will charge metadata quota at writeout time; this saves
1189          * us from metadata over-estimation, though we may go over by
1190          * a small amount in the end.  Here we just reserve for data.
1191          */
1192         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1193         if (ret)
1194                 return ret;
1195         /*
1196          * We do still charge estimated metadata to the sb though;
1197          * we cannot afford to run out of free blocks.
1198          */
1199         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1200                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1201                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1202                         yield();
1203                         goto repeat;
1204                 }
1205                 return -ENOSPC;
1206         }
1207         spin_lock(&ei->i_block_reservation_lock);
1208         ei->i_reserved_data_blocks++;
1209         ei->i_reserved_meta_blocks += md_needed;
1210         spin_unlock(&ei->i_block_reservation_lock);
1211
1212         return 0;       /* success */
1213 }
1214
1215 static void ext4_da_release_space(struct inode *inode, int to_free)
1216 {
1217         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1218         struct ext4_inode_info *ei = EXT4_I(inode);
1219
1220         if (!to_free)
1221                 return;         /* Nothing to release, exit */
1222
1223         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1224
1225         trace_ext4_da_release_space(inode, to_free);
1226         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1227                 /*
1228                  * if there aren't enough reserved blocks, then the
1229                  * counter is messed up somewhere.  Since this
1230                  * function is called from invalidate page, it's
1231                  * harmless to return without any action.
1232                  */
1233                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1234                          "ino %lu, to_free %d with only %d reserved "
1235                          "data blocks", inode->i_ino, to_free,
1236                          ei->i_reserved_data_blocks);
1237                 WARN_ON(1);
1238                 to_free = ei->i_reserved_data_blocks;
1239         }
1240         ei->i_reserved_data_blocks -= to_free;
1241
1242         if (ei->i_reserved_data_blocks == 0) {
1243                 /*
1244                  * We can release all of the reserved metadata blocks
1245                  * only when we have written all of the delayed
1246                  * allocation blocks.
1247                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1248                  * i_reserved_data_blocks, etc. refer to number of clusters.
1249                  */
1250                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1251                                    ei->i_reserved_meta_blocks);
1252                 ei->i_reserved_meta_blocks = 0;
1253                 ei->i_da_metadata_calc_len = 0;
1254         }
1255
1256         /* update fs dirty data blocks counter */
1257         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1258
1259         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1260
1261         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1262 }
1263
1264 static void ext4_da_page_release_reservation(struct page *page,
1265                                              unsigned long offset)
1266 {
1267         int to_release = 0;
1268         struct buffer_head *head, *bh;
1269         unsigned int curr_off = 0;
1270         struct inode *inode = page->mapping->host;
1271         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1272         int num_clusters;
1273
1274         head = page_buffers(page);
1275         bh = head;
1276         do {
1277                 unsigned int next_off = curr_off + bh->b_size;
1278
1279                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1280                         to_release++;
1281                         clear_buffer_delay(bh);
1282                         clear_buffer_da_mapped(bh);
1283                 }
1284                 curr_off = next_off;
1285         } while ((bh = bh->b_this_page) != head);
1286
1287         /* If we have released all the blocks belonging to a cluster, then we
1288          * need to release the reserved space for that cluster. */
1289         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1290         while (num_clusters > 0) {
1291                 ext4_fsblk_t lblk;
1292                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1293                         ((num_clusters - 1) << sbi->s_cluster_bits);
1294                 if (sbi->s_cluster_ratio == 1 ||
1295                     !ext4_find_delalloc_cluster(inode, lblk, 1))
1296                         ext4_da_release_space(inode, 1);
1297
1298                 num_clusters--;
1299         }
1300 }
1301
1302 /*
1303  * Delayed allocation stuff
1304  */
1305
1306 /*
1307  * mpage_da_submit_io - walks through extent of pages and try to write
1308  * them with writepage() call back
1309  *
1310  * @mpd->inode: inode
1311  * @mpd->first_page: first page of the extent
1312  * @mpd->next_page: page after the last page of the extent
1313  *
1314  * By the time mpage_da_submit_io() is called we expect all blocks
1315  * to be allocated. this may be wrong if allocation failed.
1316  *
1317  * As pages are already locked by write_cache_pages(), we can't use it
1318  */
1319 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1320                               struct ext4_map_blocks *map)
1321 {
1322         struct pagevec pvec;
1323         unsigned long index, end;
1324         int ret = 0, err, nr_pages, i;
1325         struct inode *inode = mpd->inode;
1326         struct address_space *mapping = inode->i_mapping;
1327         loff_t size = i_size_read(inode);
1328         unsigned int len, block_start;
1329         struct buffer_head *bh, *page_bufs = NULL;
1330         int journal_data = ext4_should_journal_data(inode);
1331         sector_t pblock = 0, cur_logical = 0;
1332         struct ext4_io_submit io_submit;
1333
1334         BUG_ON(mpd->next_page <= mpd->first_page);
1335         memset(&io_submit, 0, sizeof(io_submit));
1336         /*
1337          * We need to start from the first_page to the next_page - 1
1338          * to make sure we also write the mapped dirty buffer_heads.
1339          * If we look at mpd->b_blocknr we would only be looking
1340          * at the currently mapped buffer_heads.
1341          */
1342         index = mpd->first_page;
1343         end = mpd->next_page - 1;
1344
1345         pagevec_init(&pvec, 0);
1346         while (index <= end) {
1347                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1348                 if (nr_pages == 0)
1349                         break;
1350                 for (i = 0; i < nr_pages; i++) {
1351                         int commit_write = 0, skip_page = 0;
1352                         struct page *page = pvec.pages[i];
1353
1354                         index = page->index;
1355                         if (index > end)
1356                                 break;
1357
1358                         if (index == size >> PAGE_CACHE_SHIFT)
1359                                 len = size & ~PAGE_CACHE_MASK;
1360                         else
1361                                 len = PAGE_CACHE_SIZE;
1362                         if (map) {
1363                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1364                                                         inode->i_blkbits);
1365                                 pblock = map->m_pblk + (cur_logical -
1366                                                         map->m_lblk);
1367                         }
1368                         index++;
1369
1370                         BUG_ON(!PageLocked(page));
1371                         BUG_ON(PageWriteback(page));
1372
1373                         /*
1374                          * If the page does not have buffers (for
1375                          * whatever reason), try to create them using
1376                          * __block_write_begin.  If this fails,
1377                          * skip the page and move on.
1378                          */
1379                         if (!page_has_buffers(page)) {
1380                                 if (__block_write_begin(page, 0, len,
1381                                                 noalloc_get_block_write)) {
1382                                 skip_page:
1383                                         unlock_page(page);
1384                                         continue;
1385                                 }
1386                                 commit_write = 1;
1387                         }
1388
1389                         bh = page_bufs = page_buffers(page);
1390                         block_start = 0;
1391                         do {
1392                                 if (!bh)
1393                                         goto skip_page;
1394                                 if (map && (cur_logical >= map->m_lblk) &&
1395                                     (cur_logical <= (map->m_lblk +
1396                                                      (map->m_len - 1)))) {
1397                                         if (buffer_delay(bh)) {
1398                                                 clear_buffer_delay(bh);
1399                                                 bh->b_blocknr = pblock;
1400                                         }
1401                                         if (buffer_da_mapped(bh))
1402                                                 clear_buffer_da_mapped(bh);
1403                                         if (buffer_unwritten(bh) ||
1404                                             buffer_mapped(bh))
1405                                                 BUG_ON(bh->b_blocknr != pblock);
1406                                         if (map->m_flags & EXT4_MAP_UNINIT)
1407                                                 set_buffer_uninit(bh);
1408                                         clear_buffer_unwritten(bh);
1409                                 }
1410
1411                                 /*
1412                                  * skip page if block allocation undone and
1413                                  * block is dirty
1414                                  */
1415                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1416                                         skip_page = 1;
1417                                 bh = bh->b_this_page;
1418                                 block_start += bh->b_size;
1419                                 cur_logical++;
1420                                 pblock++;
1421                         } while (bh != page_bufs);
1422
1423                         if (skip_page)
1424                                 goto skip_page;
1425
1426                         if (commit_write)
1427                                 /* mark the buffer_heads as dirty & uptodate */
1428                                 block_commit_write(page, 0, len);
1429
1430                         clear_page_dirty_for_io(page);
1431                         /*
1432                          * Delalloc doesn't support data journalling,
1433                          * but eventually maybe we'll lift this
1434                          * restriction.
1435                          */
1436                         if (unlikely(journal_data && PageChecked(page)))
1437                                 err = __ext4_journalled_writepage(page, len);
1438                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1439                                 err = ext4_bio_write_page(&io_submit, page,
1440                                                           len, mpd->wbc);
1441                         else if (buffer_uninit(page_bufs)) {
1442                                 ext4_set_bh_endio(page_bufs, inode);
1443                                 err = block_write_full_page_endio(page,
1444                                         noalloc_get_block_write,
1445                                         mpd->wbc, ext4_end_io_buffer_write);
1446                         } else
1447                                 err = block_write_full_page(page,
1448                                         noalloc_get_block_write, mpd->wbc);
1449
1450                         if (!err)
1451                                 mpd->pages_written++;
1452                         /*
1453                          * In error case, we have to continue because
1454                          * remaining pages are still locked
1455                          */
1456                         if (ret == 0)
1457                                 ret = err;
1458                 }
1459                 pagevec_release(&pvec);
1460         }
1461         ext4_io_submit(&io_submit);
1462         return ret;
1463 }
1464
1465 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1466 {
1467         int nr_pages, i;
1468         pgoff_t index, end;
1469         struct pagevec pvec;
1470         struct inode *inode = mpd->inode;
1471         struct address_space *mapping = inode->i_mapping;
1472
1473         index = mpd->first_page;
1474         end   = mpd->next_page - 1;
1475         while (index <= end) {
1476                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1477                 if (nr_pages == 0)
1478                         break;
1479                 for (i = 0; i < nr_pages; i++) {
1480                         struct page *page = pvec.pages[i];
1481                         if (page->index > end)
1482                                 break;
1483                         BUG_ON(!PageLocked(page));
1484                         BUG_ON(PageWriteback(page));
1485                         block_invalidatepage(page, 0);
1486                         ClearPageUptodate(page);
1487                         unlock_page(page);
1488                 }
1489                 index = pvec.pages[nr_pages - 1]->index + 1;
1490                 pagevec_release(&pvec);
1491         }
1492         return;
1493 }
1494
1495 static void ext4_print_free_blocks(struct inode *inode)
1496 {
1497         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1498         struct super_block *sb = inode->i_sb;
1499
1500         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1501                EXT4_C2B(EXT4_SB(inode->i_sb),
1502                         ext4_count_free_clusters(inode->i_sb)));
1503         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1504         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1505                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1506                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1507         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1508                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1509                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1510         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1511         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1512                  EXT4_I(inode)->i_reserved_data_blocks);
1513         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1514                EXT4_I(inode)->i_reserved_meta_blocks);
1515         return;
1516 }
1517
1518 /*
1519  * mpage_da_map_and_submit - go through given space, map them
1520  *       if necessary, and then submit them for I/O
1521  *
1522  * @mpd - bh describing space
1523  *
1524  * The function skips space we know is already mapped to disk blocks.
1525  *
1526  */
1527 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1528 {
1529         int err, blks, get_blocks_flags;
1530         struct ext4_map_blocks map, *mapp = NULL;
1531         sector_t next = mpd->b_blocknr;
1532         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1533         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1534         handle_t *handle = NULL;
1535
1536         /*
1537          * If the blocks are mapped already, or we couldn't accumulate
1538          * any blocks, then proceed immediately to the submission stage.
1539          */
1540         if ((mpd->b_size == 0) ||
1541             ((mpd->b_state  & (1 << BH_Mapped)) &&
1542              !(mpd->b_state & (1 << BH_Delay)) &&
1543              !(mpd->b_state & (1 << BH_Unwritten))))
1544                 goto submit_io;
1545
1546         handle = ext4_journal_current_handle();
1547         BUG_ON(!handle);
1548
1549         /*
1550          * Call ext4_map_blocks() to allocate any delayed allocation
1551          * blocks, or to convert an uninitialized extent to be
1552          * initialized (in the case where we have written into
1553          * one or more preallocated blocks).
1554          *
1555          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1556          * indicate that we are on the delayed allocation path.  This
1557          * affects functions in many different parts of the allocation
1558          * call path.  This flag exists primarily because we don't
1559          * want to change *many* call functions, so ext4_map_blocks()
1560          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1561          * inode's allocation semaphore is taken.
1562          *
1563          * If the blocks in questions were delalloc blocks, set
1564          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1565          * variables are updated after the blocks have been allocated.
1566          */
1567         map.m_lblk = next;
1568         map.m_len = max_blocks;
1569         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1570         if (ext4_should_dioread_nolock(mpd->inode))
1571                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1572         if (mpd->b_state & (1 << BH_Delay))
1573                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1574
1575         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1576         if (blks < 0) {
1577                 struct super_block *sb = mpd->inode->i_sb;
1578
1579                 err = blks;
1580                 /*
1581                  * If get block returns EAGAIN or ENOSPC and there
1582                  * appears to be free blocks we will just let
1583                  * mpage_da_submit_io() unlock all of the pages.
1584                  */
1585                 if (err == -EAGAIN)
1586                         goto submit_io;
1587
1588                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1589                         mpd->retval = err;
1590                         goto submit_io;
1591                 }
1592
1593                 /*
1594                  * get block failure will cause us to loop in
1595                  * writepages, because a_ops->writepage won't be able
1596                  * to make progress. The page will be redirtied by
1597                  * writepage and writepages will again try to write
1598                  * the same.
1599                  */
1600                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1601                         ext4_msg(sb, KERN_CRIT,
1602                                  "delayed block allocation failed for inode %lu "
1603                                  "at logical offset %llu with max blocks %zd "
1604                                  "with error %d", mpd->inode->i_ino,
1605                                  (unsigned long long) next,
1606                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1607                         ext4_msg(sb, KERN_CRIT,
1608                                 "This should not happen!! Data will be lost\n");
1609                         if (err == -ENOSPC)
1610                                 ext4_print_free_blocks(mpd->inode);
1611                 }
1612                 /* invalidate all the pages */
1613                 ext4_da_block_invalidatepages(mpd);
1614
1615                 /* Mark this page range as having been completed */
1616                 mpd->io_done = 1;
1617                 return;
1618         }
1619         BUG_ON(blks == 0);
1620
1621         mapp = &map;
1622         if (map.m_flags & EXT4_MAP_NEW) {
1623                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1624                 int i;
1625
1626                 for (i = 0; i < map.m_len; i++)
1627                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1628
1629                 if (ext4_should_order_data(mpd->inode)) {
1630                         err = ext4_jbd2_file_inode(handle, mpd->inode);
1631                         if (err) {
1632                                 /* Only if the journal is aborted */
1633                                 mpd->retval = err;
1634                                 goto submit_io;
1635                         }
1636                 }
1637         }
1638
1639         /*
1640          * Update on-disk size along with block allocation.
1641          */
1642         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1643         if (disksize > i_size_read(mpd->inode))
1644                 disksize = i_size_read(mpd->inode);
1645         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1646                 ext4_update_i_disksize(mpd->inode, disksize);
1647                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1648                 if (err)
1649                         ext4_error(mpd->inode->i_sb,
1650                                    "Failed to mark inode %lu dirty",
1651                                    mpd->inode->i_ino);
1652         }
1653
1654 submit_io:
1655         mpage_da_submit_io(mpd, mapp);
1656         mpd->io_done = 1;
1657 }
1658
1659 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1660                 (1 << BH_Delay) | (1 << BH_Unwritten))
1661
1662 /*
1663  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1664  *
1665  * @mpd->lbh - extent of blocks
1666  * @logical - logical number of the block in the file
1667  * @bh - bh of the block (used to access block's state)
1668  *
1669  * the function is used to collect contig. blocks in same state
1670  */
1671 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1672                                    sector_t logical, size_t b_size,
1673                                    unsigned long b_state)
1674 {
1675         sector_t next;
1676         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1677
1678         /*
1679          * XXX Don't go larger than mballoc is willing to allocate
1680          * This is a stopgap solution.  We eventually need to fold
1681          * mpage_da_submit_io() into this function and then call
1682          * ext4_map_blocks() multiple times in a loop
1683          */
1684         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1685                 goto flush_it;
1686
1687         /* check if thereserved journal credits might overflow */
1688         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1689                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1690                         /*
1691                          * With non-extent format we are limited by the journal
1692                          * credit available.  Total credit needed to insert
1693                          * nrblocks contiguous blocks is dependent on the
1694                          * nrblocks.  So limit nrblocks.
1695                          */
1696                         goto flush_it;
1697                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1698                                 EXT4_MAX_TRANS_DATA) {
1699                         /*
1700                          * Adding the new buffer_head would make it cross the
1701                          * allowed limit for which we have journal credit
1702                          * reserved. So limit the new bh->b_size
1703                          */
1704                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1705                                                 mpd->inode->i_blkbits;
1706                         /* we will do mpage_da_submit_io in the next loop */
1707                 }
1708         }
1709         /*
1710          * First block in the extent
1711          */
1712         if (mpd->b_size == 0) {
1713                 mpd->b_blocknr = logical;
1714                 mpd->b_size = b_size;
1715                 mpd->b_state = b_state & BH_FLAGS;
1716                 return;
1717         }
1718
1719         next = mpd->b_blocknr + nrblocks;
1720         /*
1721          * Can we merge the block to our big extent?
1722          */
1723         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1724                 mpd->b_size += b_size;
1725                 return;
1726         }
1727
1728 flush_it:
1729         /*
1730          * We couldn't merge the block to our extent, so we
1731          * need to flush current  extent and start new one
1732          */
1733         mpage_da_map_and_submit(mpd);
1734         return;
1735 }
1736
1737 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1738 {
1739         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1740 }
1741
1742 /*
1743  * This function is grabs code from the very beginning of
1744  * ext4_map_blocks, but assumes that the caller is from delayed write
1745  * time. This function looks up the requested blocks and sets the
1746  * buffer delay bit under the protection of i_data_sem.
1747  */
1748 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1749                               struct ext4_map_blocks *map,
1750                               struct buffer_head *bh)
1751 {
1752         int retval;
1753         sector_t invalid_block = ~((sector_t) 0xffff);
1754
1755         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1756                 invalid_block = ~0;
1757
1758         map->m_flags = 0;
1759         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1760                   "logical block %lu\n", inode->i_ino, map->m_len,
1761                   (unsigned long) map->m_lblk);
1762         /*
1763          * Try to see if we can get the block without requesting a new
1764          * file system block.
1765          */
1766         down_read((&EXT4_I(inode)->i_data_sem));
1767         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1768                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1769         else
1770                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1771
1772         if (retval == 0) {
1773                 /*
1774                  * XXX: __block_prepare_write() unmaps passed block,
1775                  * is it OK?
1776                  */
1777                 /* If the block was allocated from previously allocated cluster,
1778                  * then we dont need to reserve it again. */
1779                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1780                         retval = ext4_da_reserve_space(inode, iblock);
1781                         if (retval)
1782                                 /* not enough space to reserve */
1783                                 goto out_unlock;
1784                 }
1785
1786                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1787                  * and it should not appear on the bh->b_state.
1788                  */
1789                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1790
1791                 map_bh(bh, inode->i_sb, invalid_block);
1792                 set_buffer_new(bh);
1793                 set_buffer_delay(bh);
1794         }
1795
1796 out_unlock:
1797         up_read((&EXT4_I(inode)->i_data_sem));
1798
1799         return retval;
1800 }
1801
1802 /*
1803  * This is a special get_blocks_t callback which is used by
1804  * ext4_da_write_begin().  It will either return mapped block or
1805  * reserve space for a single block.
1806  *
1807  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1808  * We also have b_blocknr = -1 and b_bdev initialized properly
1809  *
1810  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1811  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1812  * initialized properly.
1813  */
1814 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1815                                   struct buffer_head *bh, int create)
1816 {
1817         struct ext4_map_blocks map;
1818         int ret = 0;
1819
1820         BUG_ON(create == 0);
1821         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1822
1823         map.m_lblk = iblock;
1824         map.m_len = 1;
1825
1826         /*
1827          * first, we need to know whether the block is allocated already
1828          * preallocated blocks are unmapped but should treated
1829          * the same as allocated blocks.
1830          */
1831         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1832         if (ret <= 0)
1833                 return ret;
1834
1835         map_bh(bh, inode->i_sb, map.m_pblk);
1836         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1837
1838         if (buffer_unwritten(bh)) {
1839                 /* A delayed write to unwritten bh should be marked
1840                  * new and mapped.  Mapped ensures that we don't do
1841                  * get_block multiple times when we write to the same
1842                  * offset and new ensures that we do proper zero out
1843                  * for partial write.
1844                  */
1845                 set_buffer_new(bh);
1846                 set_buffer_mapped(bh);
1847         }
1848         return 0;
1849 }
1850
1851 /*
1852  * This function is used as a standard get_block_t calback function
1853  * when there is no desire to allocate any blocks.  It is used as a
1854  * callback function for block_write_begin() and block_write_full_page().
1855  * These functions should only try to map a single block at a time.
1856  *
1857  * Since this function doesn't do block allocations even if the caller
1858  * requests it by passing in create=1, it is critically important that
1859  * any caller checks to make sure that any buffer heads are returned
1860  * by this function are either all already mapped or marked for
1861  * delayed allocation before calling  block_write_full_page().  Otherwise,
1862  * b_blocknr could be left unitialized, and the page write functions will
1863  * be taken by surprise.
1864  */
1865 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1866                                    struct buffer_head *bh_result, int create)
1867 {
1868         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1869         return _ext4_get_block(inode, iblock, bh_result, 0);
1870 }
1871
1872 static int bget_one(handle_t *handle, struct buffer_head *bh)
1873 {
1874         get_bh(bh);
1875         return 0;
1876 }
1877
1878 static int bput_one(handle_t *handle, struct buffer_head *bh)
1879 {
1880         put_bh(bh);
1881         return 0;
1882 }
1883
1884 static int __ext4_journalled_writepage(struct page *page,
1885                                        unsigned int len)
1886 {
1887         struct address_space *mapping = page->mapping;
1888         struct inode *inode = mapping->host;
1889         struct buffer_head *page_bufs;
1890         handle_t *handle = NULL;
1891         int ret = 0;
1892         int err;
1893
1894         ClearPageChecked(page);
1895         page_bufs = page_buffers(page);
1896         BUG_ON(!page_bufs);
1897         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1898         /* As soon as we unlock the page, it can go away, but we have
1899          * references to buffers so we are safe */
1900         unlock_page(page);
1901
1902         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1903         if (IS_ERR(handle)) {
1904                 ret = PTR_ERR(handle);
1905                 goto out;
1906         }
1907
1908         BUG_ON(!ext4_handle_valid(handle));
1909
1910         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1911                                 do_journal_get_write_access);
1912
1913         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1914                                 write_end_fn);
1915         if (ret == 0)
1916                 ret = err;
1917         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1918         err = ext4_journal_stop(handle);
1919         if (!ret)
1920                 ret = err;
1921
1922         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1923         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1924 out:
1925         return ret;
1926 }
1927
1928 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1929 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1930
1931 /*
1932  * Note that we don't need to start a transaction unless we're journaling data
1933  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1934  * need to file the inode to the transaction's list in ordered mode because if
1935  * we are writing back data added by write(), the inode is already there and if
1936  * we are writing back data modified via mmap(), no one guarantees in which
1937  * transaction the data will hit the disk. In case we are journaling data, we
1938  * cannot start transaction directly because transaction start ranks above page
1939  * lock so we have to do some magic.
1940  *
1941  * This function can get called via...
1942  *   - ext4_da_writepages after taking page lock (have journal handle)
1943  *   - journal_submit_inode_data_buffers (no journal handle)
1944  *   - shrink_page_list via pdflush (no journal handle)
1945  *   - grab_page_cache when doing write_begin (have journal handle)
1946  *
1947  * We don't do any block allocation in this function. If we have page with
1948  * multiple blocks we need to write those buffer_heads that are mapped. This
1949  * is important for mmaped based write. So if we do with blocksize 1K
1950  * truncate(f, 1024);
1951  * a = mmap(f, 0, 4096);
1952  * a[0] = 'a';
1953  * truncate(f, 4096);
1954  * we have in the page first buffer_head mapped via page_mkwrite call back
1955  * but other buffer_heads would be unmapped but dirty (dirty done via the
1956  * do_wp_page). So writepage should write the first block. If we modify
1957  * the mmap area beyond 1024 we will again get a page_fault and the
1958  * page_mkwrite callback will do the block allocation and mark the
1959  * buffer_heads mapped.
1960  *
1961  * We redirty the page if we have any buffer_heads that is either delay or
1962  * unwritten in the page.
1963  *
1964  * We can get recursively called as show below.
1965  *
1966  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1967  *              ext4_writepage()
1968  *
1969  * But since we don't do any block allocation we should not deadlock.
1970  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1971  */
1972 static int ext4_writepage(struct page *page,
1973                           struct writeback_control *wbc)
1974 {
1975         int ret = 0, commit_write = 0;
1976         loff_t size;
1977         unsigned int len;
1978         struct buffer_head *page_bufs = NULL;
1979         struct inode *inode = page->mapping->host;
1980
1981         trace_ext4_writepage(page);
1982         size = i_size_read(inode);
1983         if (page->index == size >> PAGE_CACHE_SHIFT)
1984                 len = size & ~PAGE_CACHE_MASK;
1985         else
1986                 len = PAGE_CACHE_SIZE;
1987
1988         /*
1989          * If the page does not have buffers (for whatever reason),
1990          * try to create them using __block_write_begin.  If this
1991          * fails, redirty the page and move on.
1992          */
1993         if (!page_has_buffers(page)) {
1994                 if (__block_write_begin(page, 0, len,
1995                                         noalloc_get_block_write)) {
1996                 redirty_page:
1997                         redirty_page_for_writepage(wbc, page);
1998                         unlock_page(page);
1999                         return 0;
2000                 }
2001                 commit_write = 1;
2002         }
2003         page_bufs = page_buffers(page);
2004         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2005                               ext4_bh_delay_or_unwritten)) {
2006                 /*
2007                  * We don't want to do block allocation, so redirty
2008                  * the page and return.  We may reach here when we do
2009                  * a journal commit via journal_submit_inode_data_buffers.
2010                  * We can also reach here via shrink_page_list but it
2011                  * should never be for direct reclaim so warn if that
2012                  * happens
2013                  */
2014                 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2015                                                                 PF_MEMALLOC);
2016                 goto redirty_page;
2017         }
2018         if (commit_write)
2019                 /* now mark the buffer_heads as dirty and uptodate */
2020                 block_commit_write(page, 0, len);
2021
2022         if (PageChecked(page) && ext4_should_journal_data(inode))
2023                 /*
2024                  * It's mmapped pagecache.  Add buffers and journal it.  There
2025                  * doesn't seem much point in redirtying the page here.
2026                  */
2027                 return __ext4_journalled_writepage(page, len);
2028
2029         if (buffer_uninit(page_bufs)) {
2030                 ext4_set_bh_endio(page_bufs, inode);
2031                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2032                                             wbc, ext4_end_io_buffer_write);
2033         } else
2034                 ret = block_write_full_page(page, noalloc_get_block_write,
2035                                             wbc);
2036
2037         return ret;
2038 }
2039
2040 /*
2041  * This is called via ext4_da_writepages() to
2042  * calculate the total number of credits to reserve to fit
2043  * a single extent allocation into a single transaction,
2044  * ext4_da_writpeages() will loop calling this before
2045  * the block allocation.
2046  */
2047
2048 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2049 {
2050         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2051
2052         /*
2053          * With non-extent format the journal credit needed to
2054          * insert nrblocks contiguous block is dependent on
2055          * number of contiguous block. So we will limit
2056          * number of contiguous block to a sane value
2057          */
2058         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2059             (max_blocks > EXT4_MAX_TRANS_DATA))
2060                 max_blocks = EXT4_MAX_TRANS_DATA;
2061
2062         return ext4_chunk_trans_blocks(inode, max_blocks);
2063 }
2064
2065 /*
2066  * write_cache_pages_da - walk the list of dirty pages of the given
2067  * address space and accumulate pages that need writing, and call
2068  * mpage_da_map_and_submit to map a single contiguous memory region
2069  * and then write them.
2070  */
2071 static int write_cache_pages_da(struct address_space *mapping,
2072                                 struct writeback_control *wbc,
2073                                 struct mpage_da_data *mpd,
2074                                 pgoff_t *done_index)
2075 {
2076         struct buffer_head      *bh, *head;
2077         struct inode            *inode = mapping->host;
2078         struct pagevec          pvec;
2079         unsigned int            nr_pages;
2080         sector_t                logical;
2081         pgoff_t                 index, end;
2082         long                    nr_to_write = wbc->nr_to_write;
2083         int                     i, tag, ret = 0;
2084
2085         memset(mpd, 0, sizeof(struct mpage_da_data));
2086         mpd->wbc = wbc;
2087         mpd->inode = inode;
2088         pagevec_init(&pvec, 0);
2089         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2090         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2091
2092         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2093                 tag = PAGECACHE_TAG_TOWRITE;
2094         else
2095                 tag = PAGECACHE_TAG_DIRTY;
2096
2097         *done_index = index;
2098         while (index <= end) {
2099                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2100                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2101                 if (nr_pages == 0)
2102                         return 0;
2103
2104                 for (i = 0; i < nr_pages; i++) {
2105                         struct page *page = pvec.pages[i];
2106
2107                         /*
2108                          * At this point, the page may be truncated or
2109                          * invalidated (changing page->mapping to NULL), or
2110                          * even swizzled back from swapper_space to tmpfs file
2111                          * mapping. However, page->index will not change
2112                          * because we have a reference on the page.
2113                          */
2114                         if (page->index > end)
2115                                 goto out;
2116
2117                         *done_index = page->index + 1;
2118
2119                         /*
2120                          * If we can't merge this page, and we have
2121                          * accumulated an contiguous region, write it
2122                          */
2123                         if ((mpd->next_page != page->index) &&
2124                             (mpd->next_page != mpd->first_page)) {
2125                                 mpage_da_map_and_submit(mpd);
2126                                 goto ret_extent_tail;
2127                         }
2128
2129                         lock_page(page);
2130
2131                         /*
2132                          * If the page is no longer dirty, or its
2133                          * mapping no longer corresponds to inode we
2134                          * are writing (which means it has been
2135                          * truncated or invalidated), or the page is
2136                          * already under writeback and we are not
2137                          * doing a data integrity writeback, skip the page
2138                          */
2139                         if (!PageDirty(page) ||
2140                             (PageWriteback(page) &&
2141                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2142                             unlikely(page->mapping != mapping)) {
2143                                 unlock_page(page);
2144                                 continue;
2145                         }
2146
2147                         wait_on_page_writeback(page);
2148                         BUG_ON(PageWriteback(page));
2149
2150                         if (mpd->next_page != page->index)
2151                                 mpd->first_page = page->index;
2152                         mpd->next_page = page->index + 1;
2153                         logical = (sector_t) page->index <<
2154                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2155
2156                         if (!page_has_buffers(page)) {
2157                                 mpage_add_bh_to_extent(mpd, logical,
2158                                                        PAGE_CACHE_SIZE,
2159                                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2160                                 if (mpd->io_done)
2161                                         goto ret_extent_tail;
2162                         } else {
2163                                 /*
2164                                  * Page with regular buffer heads,
2165                                  * just add all dirty ones
2166                                  */
2167                                 head = page_buffers(page);
2168                                 bh = head;
2169                                 do {
2170                                         BUG_ON(buffer_locked(bh));
2171                                         /*
2172                                          * We need to try to allocate
2173                                          * unmapped blocks in the same page.
2174                                          * Otherwise we won't make progress
2175                                          * with the page in ext4_writepage
2176                                          */
2177                                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2178                                                 mpage_add_bh_to_extent(mpd, logical,
2179                                                                        bh->b_size,
2180                                                                        bh->b_state);
2181                                                 if (mpd->io_done)
2182                                                         goto ret_extent_tail;
2183                                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2184                                                 /*
2185                                                  * mapped dirty buffer. We need
2186                                                  * to update the b_state
2187                                                  * because we look at b_state
2188                                                  * in mpage_da_map_blocks.  We
2189                                                  * don't update b_size because
2190                                                  * if we find an unmapped
2191                                                  * buffer_head later we need to
2192                                                  * use the b_state flag of that
2193                                                  * buffer_head.
2194                                                  */
2195                                                 if (mpd->b_size == 0)
2196                                                         mpd->b_state = bh->b_state & BH_FLAGS;
2197                                         }
2198                                         logical++;
2199                                 } while ((bh = bh->b_this_page) != head);
2200                         }
2201
2202                         if (nr_to_write > 0) {
2203                                 nr_to_write--;
2204                                 if (nr_to_write == 0 &&
2205                                     wbc->sync_mode == WB_SYNC_NONE)
2206                                         /*
2207                                          * We stop writing back only if we are
2208                                          * not doing integrity sync. In case of
2209                                          * integrity sync we have to keep going
2210                                          * because someone may be concurrently
2211                                          * dirtying pages, and we might have
2212                                          * synced a lot of newly appeared dirty
2213                                          * pages, but have not synced all of the
2214                                          * old dirty pages.
2215                                          */
2216                                         goto out;
2217                         }
2218                 }
2219                 pagevec_release(&pvec);
2220                 cond_resched();
2221         }
2222         return 0;
2223 ret_extent_tail:
2224         ret = MPAGE_DA_EXTENT_TAIL;
2225 out:
2226         pagevec_release(&pvec);
2227         cond_resched();
2228         return ret;
2229 }
2230
2231
2232 static int ext4_da_writepages(struct address_space *mapping,
2233                               struct writeback_control *wbc)
2234 {
2235         pgoff_t index;
2236         int range_whole = 0;
2237         handle_t *handle = NULL;
2238         struct mpage_da_data mpd;
2239         struct inode *inode = mapping->host;
2240         int pages_written = 0;
2241         unsigned int max_pages;
2242         int range_cyclic, cycled = 1, io_done = 0;
2243         int needed_blocks, ret = 0;
2244         long desired_nr_to_write, nr_to_writebump = 0;
2245         loff_t range_start = wbc->range_start;
2246         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2247         pgoff_t done_index = 0;
2248         pgoff_t end;
2249         struct blk_plug plug;
2250
2251         trace_ext4_da_writepages(inode, wbc);
2252
2253         /*
2254          * No pages to write? This is mainly a kludge to avoid starting
2255          * a transaction for special inodes like journal inode on last iput()
2256          * because that could violate lock ordering on umount
2257          */
2258         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2259                 return 0;
2260
2261         /*
2262          * If the filesystem has aborted, it is read-only, so return
2263          * right away instead of dumping stack traces later on that
2264          * will obscure the real source of the problem.  We test
2265          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2266          * the latter could be true if the filesystem is mounted
2267          * read-only, and in that case, ext4_da_writepages should
2268          * *never* be called, so if that ever happens, we would want
2269          * the stack trace.
2270          */
2271         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2272                 return -EROFS;
2273
2274         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2275                 range_whole = 1;
2276
2277         range_cyclic = wbc->range_cyclic;
2278         if (wbc->range_cyclic) {
2279                 index = mapping->writeback_index;
2280                 if (index)
2281                         cycled = 0;
2282                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2283                 wbc->range_end  = LLONG_MAX;
2284                 wbc->range_cyclic = 0;
2285                 end = -1;
2286         } else {
2287                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2288                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2289         }
2290
2291         /*
2292          * This works around two forms of stupidity.  The first is in
2293          * the writeback code, which caps the maximum number of pages
2294          * written to be 1024 pages.  This is wrong on multiple
2295          * levels; different architectues have a different page size,
2296          * which changes the maximum amount of data which gets
2297          * written.  Secondly, 4 megabytes is way too small.  XFS
2298          * forces this value to be 16 megabytes by multiplying
2299          * nr_to_write parameter by four, and then relies on its
2300          * allocator to allocate larger extents to make them
2301          * contiguous.  Unfortunately this brings us to the second
2302          * stupidity, which is that ext4's mballoc code only allocates
2303          * at most 2048 blocks.  So we force contiguous writes up to
2304          * the number of dirty blocks in the inode, or
2305          * sbi->max_writeback_mb_bump whichever is smaller.
2306          */
2307         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2308         if (!range_cyclic && range_whole) {
2309                 if (wbc->nr_to_write == LONG_MAX)
2310                         desired_nr_to_write = wbc->nr_to_write;
2311                 else
2312                         desired_nr_to_write = wbc->nr_to_write * 8;
2313         } else
2314                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2315                                                            max_pages);
2316         if (desired_nr_to_write > max_pages)
2317                 desired_nr_to_write = max_pages;
2318
2319         if (wbc->nr_to_write < desired_nr_to_write) {
2320                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2321                 wbc->nr_to_write = desired_nr_to_write;
2322         }
2323
2324 retry:
2325         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2326                 tag_pages_for_writeback(mapping, index, end);
2327
2328         blk_start_plug(&plug);
2329         while (!ret && wbc->nr_to_write > 0) {
2330
2331                 /*
2332                  * we  insert one extent at a time. So we need
2333                  * credit needed for single extent allocation.
2334                  * journalled mode is currently not supported
2335                  * by delalloc
2336                  */
2337                 BUG_ON(ext4_should_journal_data(inode));
2338                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2339
2340                 /* start a new transaction*/
2341                 handle = ext4_journal_start(inode, needed_blocks);
2342                 if (IS_ERR(handle)) {
2343                         ret = PTR_ERR(handle);
2344                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2345                                "%ld pages, ino %lu; err %d", __func__,
2346                                 wbc->nr_to_write, inode->i_ino, ret);
2347                         blk_finish_plug(&plug);
2348                         goto out_writepages;
2349                 }
2350
2351                 /*
2352                  * Now call write_cache_pages_da() to find the next
2353                  * contiguous region of logical blocks that need
2354                  * blocks to be allocated by ext4 and submit them.
2355                  */
2356                 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2357                 /*
2358                  * If we have a contiguous extent of pages and we
2359                  * haven't done the I/O yet, map the blocks and submit
2360                  * them for I/O.
2361                  */
2362                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2363                         mpage_da_map_and_submit(&mpd);
2364                         ret = MPAGE_DA_EXTENT_TAIL;
2365                 }
2366                 trace_ext4_da_write_pages(inode, &mpd);
2367                 wbc->nr_to_write -= mpd.pages_written;
2368
2369                 ext4_journal_stop(handle);
2370
2371                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2372                         /* commit the transaction which would
2373                          * free blocks released in the transaction
2374                          * and try again
2375                          */
2376                         jbd2_journal_force_commit_nested(sbi->s_journal);
2377                         ret = 0;
2378                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2379                         /*
2380                          * Got one extent now try with rest of the pages.
2381                          * If mpd.retval is set -EIO, journal is aborted.
2382                          * So we don't need to write any more.
2383                          */
2384                         pages_written += mpd.pages_written;
2385                         ret = mpd.retval;
2386                         io_done = 1;
2387                 } else if (wbc->nr_to_write)
2388                         /*
2389                          * There is no more writeout needed
2390                          * or we requested for a noblocking writeout
2391                          * and we found the device congested
2392                          */
2393                         break;
2394         }
2395         blk_finish_plug(&plug);
2396         if (!io_done && !cycled) {
2397                 cycled = 1;
2398                 index = 0;
2399                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2400                 wbc->range_end  = mapping->writeback_index - 1;
2401                 goto retry;
2402         }
2403
2404         /* Update index */
2405         wbc->range_cyclic = range_cyclic;
2406         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2407                 /*
2408                  * set the writeback_index so that range_cyclic
2409                  * mode will write it back later
2410                  */
2411                 mapping->writeback_index = done_index;
2412
2413 out_writepages:
2414         wbc->nr_to_write -= nr_to_writebump;
2415         wbc->range_start = range_start;
2416         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2417         return ret;
2418 }
2419
2420 #define FALL_BACK_TO_NONDELALLOC 1
2421 static int ext4_nonda_switch(struct super_block *sb)
2422 {
2423         s64 free_blocks, dirty_blocks;
2424         struct ext4_sb_info *sbi = EXT4_SB(sb);
2425
2426         /*
2427          * switch to non delalloc mode if we are running low
2428          * on free block. The free block accounting via percpu
2429          * counters can get slightly wrong with percpu_counter_batch getting
2430          * accumulated on each CPU without updating global counters
2431          * Delalloc need an accurate free block accounting. So switch
2432          * to non delalloc when we are near to error range.
2433          */
2434         free_blocks  = EXT4_C2B(sbi,
2435                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2436         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2437         if (2 * free_blocks < 3 * dirty_blocks ||
2438                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2439                 /*
2440                  * free block count is less than 150% of dirty blocks
2441                  * or free blocks is less than watermark
2442                  */
2443                 return 1;
2444         }
2445         /*
2446          * Even if we don't switch but are nearing capacity,
2447          * start pushing delalloc when 1/2 of free blocks are dirty.
2448          */
2449         if (free_blocks < 2 * dirty_blocks)
2450                 writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2451
2452         return 0;
2453 }
2454
2455 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2456                                loff_t pos, unsigned len, unsigned flags,
2457                                struct page **pagep, void **fsdata)
2458 {
2459         int ret, retries = 0;
2460         struct page *page;
2461         pgoff_t index;
2462         struct inode *inode = mapping->host;
2463         handle_t *handle;
2464
2465         index = pos >> PAGE_CACHE_SHIFT;
2466
2467         if (ext4_nonda_switch(inode->i_sb)) {
2468                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2469                 return ext4_write_begin(file, mapping, pos,
2470                                         len, flags, pagep, fsdata);
2471         }
2472         *fsdata = (void *)0;
2473         trace_ext4_da_write_begin(inode, pos, len, flags);
2474 retry:
2475         /*
2476          * With delayed allocation, we don't log the i_disksize update
2477          * if there is delayed block allocation. But we still need
2478          * to journalling the i_disksize update if writes to the end
2479          * of file which has an already mapped buffer.
2480          */
2481         handle = ext4_journal_start(inode, 1);
2482         if (IS_ERR(handle)) {
2483                 ret = PTR_ERR(handle);
2484                 goto out;
2485         }
2486         /* We cannot recurse into the filesystem as the transaction is already
2487          * started */
2488         flags |= AOP_FLAG_NOFS;
2489
2490         page = grab_cache_page_write_begin(mapping, index, flags);
2491         if (!page) {
2492                 ext4_journal_stop(handle);
2493                 ret = -ENOMEM;
2494                 goto out;
2495         }
2496         *pagep = page;
2497
2498         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2499         if (ret < 0) {
2500                 unlock_page(page);
2501                 ext4_journal_stop(handle);
2502                 page_cache_release(page);
2503                 /*
2504                  * block_write_begin may have instantiated a few blocks
2505                  * outside i_size.  Trim these off again. Don't need
2506                  * i_size_read because we hold i_mutex.
2507                  */
2508                 if (pos + len > inode->i_size)
2509                         ext4_truncate_failed_write(inode);
2510         }
2511
2512         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2513                 goto retry;
2514 out:
2515         return ret;
2516 }
2517
2518 /*
2519  * Check if we should update i_disksize
2520  * when write to the end of file but not require block allocation
2521  */
2522 static int ext4_da_should_update_i_disksize(struct page *page,
2523                                             unsigned long offset)
2524 {
2525         struct buffer_head *bh;
2526         struct inode *inode = page->mapping->host;
2527         unsigned int idx;
2528         int i;
2529
2530         bh = page_buffers(page);
2531         idx = offset >> inode->i_blkbits;
2532
2533         for (i = 0; i < idx; i++)
2534                 bh = bh->b_this_page;
2535
2536         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2537                 return 0;
2538         return 1;
2539 }
2540
2541 static int ext4_da_write_end(struct file *file,
2542                              struct address_space *mapping,
2543                              loff_t pos, unsigned len, unsigned copied,
2544                              struct page *page, void *fsdata)
2545 {
2546         struct inode *inode = mapping->host;
2547         int ret = 0, ret2;
2548         handle_t *handle = ext4_journal_current_handle();
2549         loff_t new_i_size;
2550         unsigned long start, end;
2551         int write_mode = (int)(unsigned long)fsdata;
2552
2553         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2554                 switch (ext4_inode_journal_mode(inode)) {
2555                 case EXT4_INODE_ORDERED_DATA_MODE:
2556                         return ext4_ordered_write_end(file, mapping, pos,
2557                                         len, copied, page, fsdata);
2558                 case EXT4_INODE_WRITEBACK_DATA_MODE:
2559                         return ext4_writeback_write_end(file, mapping, pos,
2560                                         len, copied, page, fsdata);
2561                 default:
2562                         BUG();
2563                 }
2564         }
2565
2566         trace_ext4_da_write_end(inode, pos, len, copied);
2567         start = pos & (PAGE_CACHE_SIZE - 1);
2568         end = start + copied - 1;
2569
2570         /*
2571          * generic_write_end() will run mark_inode_dirty() if i_size
2572          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2573          * into that.
2574          */
2575
2576         new_i_size = pos + copied;
2577         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2578                 if (ext4_da_should_update_i_disksize(page, end)) {
2579                         down_write(&EXT4_I(inode)->i_data_sem);
2580                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2581                                 /*
2582                                  * Updating i_disksize when extending file
2583                                  * without needing block allocation
2584                                  */
2585                                 if (ext4_should_order_data(inode))
2586                                         ret = ext4_jbd2_file_inode(handle,
2587                                                                    inode);
2588
2589                                 EXT4_I(inode)->i_disksize = new_i_size;
2590                         }
2591                         up_write(&EXT4_I(inode)->i_data_sem);
2592                         /* We need to mark inode dirty even if
2593                          * new_i_size is less that inode->i_size
2594                          * bu greater than i_disksize.(hint delalloc)
2595                          */
2596                         ext4_mark_inode_dirty(handle, inode);
2597                 }
2598         }
2599         ret2 = generic_write_end(file, mapping, pos, len, copied,
2600                                                         page, fsdata);
2601         copied = ret2;
2602         if (ret2 < 0)
2603                 ret = ret2;
2604         ret2 = ext4_journal_stop(handle);
2605         if (!ret)
2606                 ret = ret2;
2607
2608         return ret ? ret : copied;
2609 }
2610
2611 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2612 {
2613         /*
2614          * Drop reserved blocks
2615          */
2616         BUG_ON(!PageLocked(page));
2617         if (!page_has_buffers(page))
2618                 goto out;
2619
2620         ext4_da_page_release_reservation(page, offset);
2621
2622 out:
2623         ext4_invalidatepage(page, offset);
2624
2625         return;
2626 }
2627
2628 /*
2629  * Force all delayed allocation blocks to be allocated for a given inode.
2630  */
2631 int ext4_alloc_da_blocks(struct inode *inode)
2632 {
2633         trace_ext4_alloc_da_blocks(inode);
2634
2635         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2636             !EXT4_I(inode)->i_reserved_meta_blocks)
2637                 return 0;
2638
2639         /*
2640          * We do something simple for now.  The filemap_flush() will
2641          * also start triggering a write of the data blocks, which is
2642          * not strictly speaking necessary (and for users of
2643          * laptop_mode, not even desirable).  However, to do otherwise
2644          * would require replicating code paths in:
2645          *
2646          * ext4_da_writepages() ->
2647          *    write_cache_pages() ---> (via passed in callback function)
2648          *        __mpage_da_writepage() -->
2649          *           mpage_add_bh_to_extent()
2650          *           mpage_da_map_blocks()
2651          *
2652          * The problem is that write_cache_pages(), located in
2653          * mm/page-writeback.c, marks pages clean in preparation for
2654          * doing I/O, which is not desirable if we're not planning on
2655          * doing I/O at all.
2656          *
2657          * We could call write_cache_pages(), and then redirty all of
2658          * the pages by calling redirty_page_for_writepage() but that
2659          * would be ugly in the extreme.  So instead we would need to
2660          * replicate parts of the code in the above functions,
2661          * simplifying them because we wouldn't actually intend to
2662          * write out the pages, but rather only collect contiguous
2663          * logical block extents, call the multi-block allocator, and
2664          * then update the buffer heads with the block allocations.
2665          *
2666          * For now, though, we'll cheat by calling filemap_flush(),
2667          * which will map the blocks, and start the I/O, but not
2668          * actually wait for the I/O to complete.
2669          */
2670         return filemap_flush(inode->i_mapping);
2671 }
2672
2673 /*
2674  * bmap() is special.  It gets used by applications such as lilo and by
2675  * the swapper to find the on-disk block of a specific piece of data.
2676  *
2677  * Naturally, this is dangerous if the block concerned is still in the
2678  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2679  * filesystem and enables swap, then they may get a nasty shock when the
2680  * data getting swapped to that swapfile suddenly gets overwritten by
2681  * the original zero's written out previously to the journal and
2682  * awaiting writeback in the kernel's buffer cache.
2683  *
2684  * So, if we see any bmap calls here on a modified, data-journaled file,
2685  * take extra steps to flush any blocks which might be in the cache.
2686  */
2687 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2688 {
2689         struct inode *inode = mapping->host;
2690         journal_t *journal;
2691         int err;
2692
2693         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2694                         test_opt(inode->i_sb, DELALLOC)) {
2695                 /*
2696                  * With delalloc we want to sync the file
2697                  * so that we can make sure we allocate
2698                  * blocks for file
2699                  */
2700                 filemap_write_and_wait(mapping);
2701         }
2702
2703         if (EXT4_JOURNAL(inode) &&
2704             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2705                 /*
2706                  * This is a REALLY heavyweight approach, but the use of
2707                  * bmap on dirty files is expected to be extremely rare:
2708                  * only if we run lilo or swapon on a freshly made file
2709                  * do we expect this to happen.
2710                  *
2711                  * (bmap requires CAP_SYS_RAWIO so this does not
2712                  * represent an unprivileged user DOS attack --- we'd be
2713                  * in trouble if mortal users could trigger this path at
2714                  * will.)
2715                  *
2716                  * NB. EXT4_STATE_JDATA is not set on files other than
2717                  * regular files.  If somebody wants to bmap a directory
2718                  * or symlink and gets confused because the buffer
2719                  * hasn't yet been flushed to disk, they deserve
2720                  * everything they get.
2721                  */
2722
2723                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2724                 journal = EXT4_JOURNAL(inode);
2725                 jbd2_journal_lock_updates(journal);
2726                 err = jbd2_journal_flush(journal);
2727                 jbd2_journal_unlock_updates(journal);
2728
2729                 if (err)
2730                         return 0;
2731         }
2732
2733         return generic_block_bmap(mapping, block, ext4_get_block);
2734 }
2735
2736 static int ext4_readpage(struct file *file, struct page *page)
2737 {
2738         trace_ext4_readpage(page);
2739         return mpage_readpage(page, ext4_get_block);
2740 }
2741
2742 static int
2743 ext4_readpages(struct file *file, struct address_space *mapping,
2744                 struct list_head *pages, unsigned nr_pages)
2745 {
2746         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2747 }
2748
2749 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2750 {
2751         struct buffer_head *head, *bh;
2752         unsigned int curr_off = 0;
2753
2754         if (!page_has_buffers(page))
2755                 return;
2756         head = bh = page_buffers(page);
2757         do {
2758                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2759                                         && bh->b_private) {
2760                         ext4_free_io_end(bh->b_private);
2761                         bh->b_private = NULL;
2762                         bh->b_end_io = NULL;
2763                 }
2764                 curr_off = curr_off + bh->b_size;
2765                 bh = bh->b_this_page;
2766         } while (bh != head);
2767 }
2768
2769 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2770 {
2771         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2772
2773         trace_ext4_invalidatepage(page, offset);
2774
2775         /*
2776          * free any io_end structure allocated for buffers to be discarded
2777          */
2778         if (ext4_should_dioread_nolock(page->mapping->host))
2779                 ext4_invalidatepage_free_endio(page, offset);
2780         /*
2781          * If it's a full truncate we just forget about the pending dirtying
2782          */
2783         if (offset == 0)
2784                 ClearPageChecked(page);
2785
2786         if (journal)
2787                 jbd2_journal_invalidatepage(journal, page, offset);
2788         else
2789                 block_invalidatepage(page, offset);
2790 }
2791
2792 static int ext4_releasepage(struct page *page, gfp_t wait)
2793 {
2794         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2795
2796         trace_ext4_releasepage(page);
2797
2798         WARN_ON(PageChecked(page));
2799         if (!page_has_buffers(page))
2800                 return 0;
2801         if (journal)
2802                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2803         else
2804                 return try_to_free_buffers(page);
2805 }
2806
2807 /*
2808  * ext4_get_block used when preparing for a DIO write or buffer write.
2809  * We allocate an uinitialized extent if blocks haven't been allocated.
2810  * The extent will be converted to initialized after the IO is complete.
2811  */
2812 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2813                    struct buffer_head *bh_result, int create)
2814 {
2815         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2816                    inode->i_ino, create);
2817         return _ext4_get_block(inode, iblock, bh_result,
2818                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2819 }
2820
2821 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2822                             ssize_t size, void *private, int ret,
2823                             bool is_async)
2824 {
2825         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2826         ext4_io_end_t *io_end = iocb->private;
2827         struct workqueue_struct *wq;
2828         unsigned long flags;
2829         struct ext4_inode_info *ei;
2830
2831         /* if not async direct IO or dio with 0 bytes write, just return */
2832         if (!io_end || !size)
2833                 goto out;
2834
2835         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2836                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2837                   iocb->private, io_end->inode->i_ino, iocb, offset,
2838                   size);
2839
2840         iocb->private = NULL;
2841
2842         /* if not aio dio with unwritten extents, just free io and return */
2843         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2844                 ext4_free_io_end(io_end);
2845 out:
2846                 if (is_async)
2847                         aio_complete(iocb, ret, 0);
2848                 inode_dio_done(inode);
2849                 return;
2850         }
2851
2852         io_end->offset = offset;
2853         io_end->size = size;
2854         if (is_async) {
2855                 io_end->iocb = iocb;
2856                 io_end->result = ret;
2857         }
2858         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2859
2860         /* Add the io_end to per-inode completed aio dio list*/
2861         ei = EXT4_I(io_end->inode);
2862         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2863         list_add_tail(&io_end->list, &ei->i_completed_io_list);
2864         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2865
2866         /* queue the work to convert unwritten extents to written */
2867         queue_work(wq, &io_end->work);
2868 }
2869
2870 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2871 {
2872         ext4_io_end_t *io_end = bh->b_private;
2873         struct workqueue_struct *wq;
2874         struct inode *inode;
2875         unsigned long flags;
2876
2877         if (!test_clear_buffer_uninit(bh) || !io_end)
2878                 goto out;
2879
2880         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2881                 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2882                          "sb umounted, discard end_io request for inode %lu",
2883                          io_end->inode->i_ino);
2884                 ext4_free_io_end(io_end);
2885                 goto out;
2886         }
2887
2888         /*
2889          * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2890          * but being more careful is always safe for the future change.
2891          */
2892         inode = io_end->inode;
2893         ext4_set_io_unwritten_flag(inode, io_end);
2894
2895         /* Add the io_end to per-inode completed io list*/
2896         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2897         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2898         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2899
2900         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2901         /* queue the work to convert unwritten extents to written */
2902         queue_work(wq, &io_end->work);
2903 out:
2904         bh->b_private = NULL;
2905         bh->b_end_io = NULL;
2906         clear_buffer_uninit(bh);
2907         end_buffer_async_write(bh, uptodate);
2908 }
2909
2910 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2911 {
2912         ext4_io_end_t *io_end;
2913         struct page *page = bh->b_page;
2914         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2915         size_t size = bh->b_size;
2916
2917 retry:
2918         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2919         if (!io_end) {
2920                 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2921                 schedule();
2922                 goto retry;
2923         }
2924         io_end->offset = offset;
2925         io_end->size = size;
2926         /*
2927          * We need to hold a reference to the page to make sure it
2928          * doesn't get evicted before ext4_end_io_work() has a chance
2929          * to convert the extent from written to unwritten.
2930          */
2931         io_end->page = page;
2932         get_page(io_end->page);
2933
2934         bh->b_private = io_end;
2935         bh->b_end_io = ext4_end_io_buffer_write;
2936         return 0;
2937 }
2938
2939 /*
2940  * For ext4 extent files, ext4 will do direct-io write to holes,
2941  * preallocated extents, and those write extend the file, no need to
2942  * fall back to buffered IO.
2943  *
2944  * For holes, we fallocate those blocks, mark them as uninitialized
2945  * If those blocks were preallocated, we mark sure they are splited, but
2946  * still keep the range to write as uninitialized.
2947  *
2948  * The unwrritten extents will be converted to written when DIO is completed.
2949  * For async direct IO, since the IO may still pending when return, we
2950  * set up an end_io call back function, which will do the conversion
2951  * when async direct IO completed.
2952  *
2953  * If the O_DIRECT write will extend the file then add this inode to the
2954  * orphan list.  So recovery will truncate it back to the original size
2955  * if the machine crashes during the write.
2956  *
2957  */
2958 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2959                               const struct iovec *iov, loff_t offset,
2960                               unsigned long nr_segs)
2961 {
2962         struct file *file = iocb->ki_filp;
2963         struct inode *inode = file->f_mapping->host;
2964         ssize_t ret;
2965         size_t count = iov_length(iov, nr_segs);
2966
2967         loff_t final_size = offset + count;
2968         if (rw == WRITE && final_size <= inode->i_size) {
2969                 /*
2970                  * We could direct write to holes and fallocate.
2971                  *
2972                  * Allocated blocks to fill the hole are marked as uninitialized
2973                  * to prevent parallel buffered read to expose the stale data
2974                  * before DIO complete the data IO.
2975                  *
2976                  * As to previously fallocated extents, ext4 get_block
2977                  * will just simply mark the buffer mapped but still
2978                  * keep the extents uninitialized.
2979                  *
2980                  * for non AIO case, we will convert those unwritten extents
2981                  * to written after return back from blockdev_direct_IO.
2982                  *
2983                  * for async DIO, the conversion needs to be defered when
2984                  * the IO is completed. The ext4 end_io callback function
2985                  * will be called to take care of the conversion work.
2986                  * Here for async case, we allocate an io_end structure to
2987                  * hook to the iocb.
2988                  */
2989                 iocb->private = NULL;
2990                 EXT4_I(inode)->cur_aio_dio = NULL;
2991                 if (!is_sync_kiocb(iocb)) {
2992                         ext4_io_end_t *io_end =
2993                                 ext4_init_io_end(inode, GFP_NOFS);
2994                         if (!io_end)
2995                                 return -ENOMEM;
2996                         io_end->flag |= EXT4_IO_END_DIRECT;
2997                         iocb->private = io_end;
2998                         /*
2999                          * we save the io structure for current async
3000                          * direct IO, so that later ext4_map_blocks()
3001                          * could flag the io structure whether there
3002                          * is a unwritten extents needs to be converted
3003                          * when IO is completed.
3004                          */
3005                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3006                 }
3007
3008                 ret = __blockdev_direct_IO(rw, iocb, inode,
3009                                          inode->i_sb->s_bdev, iov,
3010                                          offset, nr_segs,
3011                                          ext4_get_block_write,
3012                                          ext4_end_io_dio,
3013                                          NULL,
3014                                          DIO_LOCKING);
3015                 if (iocb->private)
3016                         EXT4_I(inode)->cur_aio_dio = NULL;
3017                 /*
3018                  * The io_end structure takes a reference to the inode,
3019                  * that structure needs to be destroyed and the
3020                  * reference to the inode need to be dropped, when IO is
3021                  * complete, even with 0 byte write, or failed.
3022                  *
3023                  * In the successful AIO DIO case, the io_end structure will be
3024                  * desctroyed and the reference to the inode will be dropped
3025                  * after the end_io call back function is called.
3026                  *
3027                  * In the case there is 0 byte write, or error case, since
3028                  * VFS direct IO won't invoke the end_io call back function,
3029                  * we need to free the end_io structure here.
3030                  */
3031                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3032                         ext4_free_io_end(iocb->private);
3033                         iocb->private = NULL;
3034                 } else if (ret > 0 && ext4_test_inode_state(inode,
3035                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3036                         int err;
3037                         /*
3038                          * for non AIO case, since the IO is already
3039                          * completed, we could do the conversion right here
3040                          */
3041                         err = ext4_convert_unwritten_extents(inode,
3042                                                              offset, ret);
3043                         if (err < 0)
3044                                 ret = err;
3045                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3046                 }
3047                 return ret;
3048         }
3049
3050         /* for write the the end of file case, we fall back to old way */
3051         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3052 }
3053
3054 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3055                               const struct iovec *iov, loff_t offset,
3056                               unsigned long nr_segs)
3057 {
3058         struct file *file = iocb->ki_filp;
3059         struct inode *inode = file->f_mapping->host;
3060         ssize_t ret;
3061
3062         /*
3063          * If we are doing data journalling we don't support O_DIRECT
3064          */
3065         if (ext4_should_journal_data(inode))
3066                 return 0;
3067
3068         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3069         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3070                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3071         else
3072                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3073         trace_ext4_direct_IO_exit(inode, offset,
3074                                 iov_length(iov, nr_segs), rw, ret);
3075         return ret;
3076 }
3077
3078 /*
3079  * Pages can be marked dirty completely asynchronously from ext4's journalling
3080  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3081  * much here because ->set_page_dirty is called under VFS locks.  The page is
3082  * not necessarily locked.
3083  *
3084  * We cannot just dirty the page and leave attached buffers clean, because the
3085  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3086  * or jbddirty because all the journalling code will explode.
3087  *
3088  * So what we do is to mark the page "pending dirty" and next time writepage
3089  * is called, propagate that into the buffers appropriately.
3090  */
3091 static int ext4_journalled_set_page_dirty(struct page *page)
3092 {
3093         SetPageChecked(page);
3094         return __set_page_dirty_nobuffers(page);
3095 }
3096
3097 static const struct address_space_operations ext4_ordered_aops = {
3098         .readpage               = ext4_readpage,
3099         .readpages              = ext4_readpages,
3100         .writepage              = ext4_writepage,
3101         .write_begin            = ext4_write_begin,
3102         .write_end              = ext4_ordered_write_end,
3103         .bmap                   = ext4_bmap,
3104         .invalidatepage         = ext4_invalidatepage,
3105         .releasepage            = ext4_releasepage,
3106         .direct_IO              = ext4_direct_IO,
3107         .migratepage            = buffer_migrate_page,
3108         .is_partially_uptodate  = block_is_partially_uptodate,
3109         .error_remove_page      = generic_error_remove_page,
3110 };
3111
3112 static const struct address_space_operations ext4_writeback_aops = {
3113         .readpage               = ext4_readpage,
3114         .readpages              = ext4_readpages,
3115         .writepage              = ext4_writepage,
3116         .write_begin            = ext4_write_begin,
3117         .write_end              = ext4_writeback_write_end,
3118         .bmap                   = ext4_bmap,
3119         .invalidatepage         = ext4_invalidatepage,
3120         .releasepage            = ext4_releasepage,
3121         .direct_IO              = ext4_direct_IO,
3122         .migratepage            = buffer_migrate_page,
3123         .is_partially_uptodate  = block_is_partially_uptodate,
3124         .error_remove_page      = generic_error_remove_page,
3125 };
3126
3127 static const struct address_space_operations ext4_journalled_aops = {
3128         .readpage               = ext4_readpage,
3129         .readpages              = ext4_readpages,
3130         .writepage              = ext4_writepage,
3131         .write_begin            = ext4_write_begin,
3132         .write_end              = ext4_journalled_write_end,
3133         .set_page_dirty         = ext4_journalled_set_page_dirty,
3134         .bmap                   = ext4_bmap,
3135         .invalidatepage         = ext4_invalidatepage,
3136         .releasepage            = ext4_releasepage,
3137         .direct_IO              = ext4_direct_IO,
3138         .is_partially_uptodate  = block_is_partially_uptodate,
3139         .error_remove_page      = generic_error_remove_page,
3140 };
3141
3142 static const struct address_space_operations ext4_da_aops = {
3143         .readpage               = ext4_readpage,
3144         .readpages              = ext4_readpages,
3145         .writepage              = ext4_writepage,
3146         .writepages             = ext4_da_writepages,
3147         .write_begin            = ext4_da_write_begin,
3148         .write_end              = ext4_da_write_end,
3149         .bmap                   = ext4_bmap,
3150         .invalidatepage         = ext4_da_invalidatepage,
3151         .releasepage            = ext4_releasepage,
3152         .direct_IO              = ext4_direct_IO,
3153         .migratepage            = buffer_migrate_page,
3154         .is_partially_uptodate  = block_is_partially_uptodate,
3155         .error_remove_page      = generic_error_remove_page,
3156 };
3157
3158 void ext4_set_aops(struct inode *inode)
3159 {
3160         switch (ext4_inode_journal_mode(inode)) {
3161         case EXT4_INODE_ORDERED_DATA_MODE:
3162                 if (test_opt(inode->i_sb, DELALLOC))
3163                         inode->i_mapping->a_ops = &ext4_da_aops;
3164                 else
3165                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3166                 break;
3167         case EXT4_INODE_WRITEBACK_DATA_MODE:
3168                 if (test_opt(inode->i_sb, DELALLOC))
3169                         inode->i_mapping->a_ops = &ext4_da_aops;
3170                 else
3171                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3172                 break;
3173         case EXT4_INODE_JOURNAL_DATA_MODE:
3174                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3175                 break;
3176         default:
3177                 BUG();
3178         }
3179 }
3180
3181
3182 /*
3183  * ext4_discard_partial_page_buffers()
3184  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3185  * This function finds and locks the page containing the offset
3186  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3187  * Calling functions that already have the page locked should call
3188  * ext4_discard_partial_page_buffers_no_lock directly.
3189  */
3190 int ext4_discard_partial_page_buffers(handle_t *handle,
3191                 struct address_space *mapping, loff_t from,
3192                 loff_t length, int flags)
3193 {
3194         struct inode *inode = mapping->host;
3195         struct page *page;
3196         int err = 0;
3197
3198         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3199                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3200         if (!page)
3201                 return -ENOMEM;
3202
3203         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3204                 from, length, flags);
3205
3206         unlock_page(page);
3207         page_cache_release(page);
3208         return err;
3209 }
3210
3211 /*
3212  * ext4_discard_partial_page_buffers_no_lock()
3213  * Zeros a page range of length 'length' starting from offset 'from'.
3214  * Buffer heads that correspond to the block aligned regions of the
3215  * zeroed range will be unmapped.  Unblock aligned regions
3216  * will have the corresponding buffer head mapped if needed so that
3217  * that region of the page can be updated with the partial zero out.
3218  *
3219  * This function assumes that the page has already been  locked.  The
3220  * The range to be discarded must be contained with in the given page.
3221  * If the specified range exceeds the end of the page it will be shortened
3222  * to the end of the page that corresponds to 'from'.  This function is
3223  * appropriate for updating a page and it buffer heads to be unmapped and
3224  * zeroed for blocks that have been either released, or are going to be
3225  * released.
3226  *
3227  * handle: The journal handle
3228  * inode:  The files inode
3229  * page:   A locked page that contains the offset "from"
3230  * from:   The starting byte offset (from the begining of the file)
3231  *         to begin discarding
3232  * len:    The length of bytes to discard
3233  * flags:  Optional flags that may be used:
3234  *
3235  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3236  *         Only zero the regions of the page whose buffer heads
3237  *         have already been unmapped.  This flag is appropriate
3238  *         for updateing the contents of a page whose blocks may
3239  *         have already been released, and we only want to zero
3240  *         out the regions that correspond to those released blocks.
3241  *
3242  * Returns zero on sucess or negative on failure.
3243  */
3244 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3245                 struct inode *inode, struct page *page, loff_t from,
3246                 loff_t length, int flags)
3247 {
3248         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3249         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3250         unsigned int blocksize, max, pos;
3251         ext4_lblk_t iblock;
3252         struct buffer_head *bh;
3253         int err = 0;
3254
3255         blocksize = inode->i_sb->s_blocksize;
3256         max = PAGE_CACHE_SIZE - offset;
3257
3258         if (index != page->index)
3259                 return -EINVAL;
3260
3261         /*
3262          * correct length if it does not fall between
3263          * 'from' and the end of the page
3264          */
3265         if (length > max || length < 0)
3266                 length = max;
3267
3268         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3269
3270         if (!page_has_buffers(page))
3271                 create_empty_buffers(page, blocksize, 0);
3272
3273         /* Find the buffer that contains "offset" */
3274         bh = page_buffers(page);
3275         pos = blocksize;
3276         while (offset >= pos) {
3277                 bh = bh->b_this_page;
3278                 iblock++;
3279                 pos += blocksize;
3280         }
3281
3282         pos = offset;
3283         while (pos < offset + length) {
3284                 unsigned int end_of_block, range_to_discard;
3285
3286                 err = 0;
3287
3288                 /* The length of space left to zero and unmap */
3289                 range_to_discard = offset + length - pos;
3290
3291                 /* The length of space until the end of the block */
3292                 end_of_block = blocksize - (pos & (blocksize-1));
3293
3294                 /*
3295                  * Do not unmap or zero past end of block
3296                  * for this buffer head
3297                  */
3298                 if (range_to_discard > end_of_block)
3299                         range_to_discard = end_of_block;
3300
3301
3302                 /*
3303                  * Skip this buffer head if we are only zeroing unampped
3304                  * regions of the page
3305                  */
3306                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3307                         buffer_mapped(bh))
3308                                 goto next;
3309
3310                 /* If the range is block aligned, unmap */
3311                 if (range_to_discard == blocksize) {
3312                         clear_buffer_dirty(bh);
3313                         bh->b_bdev = NULL;
3314                         clear_buffer_mapped(bh);
3315                         clear_buffer_req(bh);
3316                         clear_buffer_new(bh);
3317                         clear_buffer_delay(bh);
3318                         clear_buffer_unwritten(bh);
3319                         clear_buffer_uptodate(bh);
3320                         zero_user(page, pos, range_to_discard);
3321                         BUFFER_TRACE(bh, "Buffer discarded");
3322                         goto next;
3323                 }
3324
3325                 /*
3326                  * If this block is not completely contained in the range
3327                  * to be discarded, then it is not going to be released. Because
3328                  * we need to keep this block, we need to make sure this part
3329                  * of the page is uptodate before we modify it by writeing
3330                  * partial zeros on it.
3331                  */
3332                 if (!buffer_mapped(bh)) {
3333                         /*
3334                          * Buffer head must be mapped before we can read
3335                          * from the block
3336                          */
3337                         BUFFER_TRACE(bh, "unmapped");
3338                         ext4_get_block(inode, iblock, bh, 0);
3339                         /* unmapped? It's a hole - nothing to do */
3340                         if (!buffer_mapped(bh)) {
3341                                 BUFFER_TRACE(bh, "still unmapped");
3342                                 goto next;
3343                         }
3344                 }
3345
3346                 /* Ok, it's mapped. Make sure it's up-to-date */
3347                 if (PageUptodate(page))
3348                         set_buffer_uptodate(bh);
3349
3350                 if (!buffer_uptodate(bh)) {
3351                         err = -EIO;
3352                         ll_rw_block(READ, 1, &bh);
3353                         wait_on_buffer(bh);
3354                         /* Uhhuh. Read error. Complain and punt.*/
3355                         if (!buffer_uptodate(bh))
3356                                 goto next;
3357                 }
3358
3359                 if (ext4_should_journal_data(inode)) {
3360                         BUFFER_TRACE(bh, "get write access");
3361                         err = ext4_journal_get_write_access(handle, bh);
3362                         if (err)
3363                                 goto next;
3364                 }
3365
3366                 zero_user(page, pos, range_to_discard);
3367
3368                 err = 0;
3369                 if (ext4_should_journal_data(inode)) {
3370                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3371                 } else
3372                         mark_buffer_dirty(bh);
3373
3374                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3375 next:
3376                 bh = bh->b_this_page;
3377                 iblock++;
3378                 pos += range_to_discard;
3379         }
3380
3381         return err;
3382 }
3383
3384 int ext4_can_truncate(struct inode *inode)
3385 {
3386         if (S_ISREG(inode->i_mode))
3387                 return 1;
3388         if (S_ISDIR(inode->i_mode))
3389                 return 1;
3390         if (S_ISLNK(inode->i_mode))
3391                 return !ext4_inode_is_fast_symlink(inode);
3392         return 0;
3393 }
3394
3395 /*
3396  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3397  * associated with the given offset and length
3398  *
3399  * @inode:  File inode
3400  * @offset: The offset where the hole will begin
3401  * @len:    The length of the hole
3402  *
3403  * Returns: 0 on sucess or negative on failure
3404  */
3405
3406 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3407 {
3408         struct inode *inode = file->f_path.dentry->d_inode;
3409         if (!S_ISREG(inode->i_mode))
3410                 return -EOPNOTSUPP;
3411
3412         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3413                 /* TODO: Add support for non extent hole punching */
3414                 return -EOPNOTSUPP;
3415         }
3416
3417         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3418                 /* TODO: Add support for bigalloc file systems */
3419                 return -EOPNOTSUPP;
3420         }
3421
3422         return ext4_ext_punch_hole(file, offset, length);
3423 }
3424
3425 /*
3426  * ext4_truncate()
3427  *
3428  * We block out ext4_get_block() block instantiations across the entire
3429  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3430  * simultaneously on behalf of the same inode.
3431  *
3432  * As we work through the truncate and commit bits of it to the journal there
3433  * is one core, guiding principle: the file's tree must always be consistent on
3434  * disk.  We must be able to restart the truncate after a crash.
3435  *
3436  * The file's tree may be transiently inconsistent in memory (although it
3437  * probably isn't), but whenever we close off and commit a journal transaction,
3438  * the contents of (the filesystem + the journal) must be consistent and
3439  * restartable.  It's pretty simple, really: bottom up, right to left (although
3440  * left-to-right works OK too).
3441  *
3442  * Note that at recovery time, journal replay occurs *before* the restart of
3443  * truncate against the orphan inode list.
3444  *
3445  * The committed inode has the new, desired i_size (which is the same as
3446  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3447  * that this inode's truncate did not complete and it will again call
3448  * ext4_truncate() to have another go.  So there will be instantiated blocks
3449  * to the right of the truncation point in a crashed ext4 filesystem.  But
3450  * that's fine - as long as they are linked from the inode, the post-crash
3451  * ext4_truncate() run will find them and release them.
3452  */
3453 void ext4_truncate(struct inode *inode)
3454 {
3455         trace_ext4_truncate_enter(inode);
3456
3457         if (!ext4_can_truncate(inode))
3458                 return;
3459
3460         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3461
3462         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3463                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3464
3465         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3466                 ext4_ext_truncate(inode);
3467         else
3468                 ext4_ind_truncate(inode);
3469
3470         trace_ext4_truncate_exit(inode);
3471 }
3472
3473 /*
3474  * ext4_get_inode_loc returns with an extra refcount against the inode's
3475  * underlying buffer_head on success. If 'in_mem' is true, we have all
3476  * data in memory that is needed to recreate the on-disk version of this
3477  * inode.
3478  */
3479 static int __ext4_get_inode_loc(struct inode *inode,
3480                                 struct ext4_iloc *iloc, int in_mem)
3481 {
3482         struct ext4_group_desc  *gdp;
3483         struct buffer_head      *bh;
3484         struct super_block      *sb = inode->i_sb;
3485         ext4_fsblk_t            block;
3486         int                     inodes_per_block, inode_offset;
3487
3488         iloc->bh = NULL;
3489         if (!ext4_valid_inum(sb, inode->i_ino))
3490                 return -EIO;
3491
3492         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3493         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3494         if (!gdp)
3495                 return -EIO;
3496
3497         /*
3498          * Figure out the offset within the block group inode table
3499          */
3500         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3501         inode_offset = ((inode->i_ino - 1) %
3502                         EXT4_INODES_PER_GROUP(sb));
3503         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3504         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3505
3506         bh = sb_getblk(sb, block);
3507         if (!bh) {
3508                 EXT4_ERROR_INODE_BLOCK(inode, block,
3509                                        "unable to read itable block");
3510                 return -EIO;
3511         }
3512         if (!buffer_uptodate(bh)) {
3513                 lock_buffer(bh);
3514
3515                 /*
3516                  * If the buffer has the write error flag, we have failed
3517                  * to write out another inode in the same block.  In this
3518                  * case, we don't have to read the block because we may
3519                  * read the old inode data successfully.
3520                  */
3521                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3522                         set_buffer_uptodate(bh);
3523
3524                 if (buffer_uptodate(bh)) {
3525                         /* someone brought it uptodate while we waited */
3526                         unlock_buffer(bh);
3527                         goto has_buffer;
3528                 }
3529
3530                 /*
3531                  * If we have all information of the inode in memory and this
3532                  * is the only valid inode in the block, we need not read the
3533                  * block.
3534                  */
3535                 if (in_mem) {
3536                         struct buffer_head *bitmap_bh;
3537                         int i, start;
3538
3539                         start = inode_offset & ~(inodes_per_block - 1);
3540
3541                         /* Is the inode bitmap in cache? */
3542                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3543                         if (!bitmap_bh)
3544                                 goto make_io;
3545
3546                         /*
3547                          * If the inode bitmap isn't in cache then the
3548                          * optimisation may end up performing two reads instead
3549                          * of one, so skip it.
3550                          */
3551                         if (!buffer_uptodate(bitmap_bh)) {
3552                                 brelse(bitmap_bh);
3553                                 goto make_io;
3554                         }
3555                         for (i = start; i < start + inodes_per_block; i++) {
3556                                 if (i == inode_offset)
3557                                         continue;
3558                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3559                                         break;
3560                         }
3561                         brelse(bitmap_bh);
3562                         if (i == start + inodes_per_block) {
3563                                 /* all other inodes are free, so skip I/O */
3564                                 memset(bh->b_data, 0, bh->b_size);
3565                                 set_buffer_uptodate(bh);
3566                                 unlock_buffer(bh);
3567                                 goto has_buffer;
3568                         }
3569                 }
3570
3571 make_io:
3572                 /*
3573                  * If we need to do any I/O, try to pre-readahead extra
3574                  * blocks from the inode table.
3575                  */
3576                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3577                         ext4_fsblk_t b, end, table;
3578                         unsigned num;
3579
3580                         table = ext4_inode_table(sb, gdp);
3581                         /* s_inode_readahead_blks is always a power of 2 */
3582                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3583                         if (table > b)
3584                                 b = table;
3585                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3586                         num = EXT4_INODES_PER_GROUP(sb);
3587                         if (ext4_has_group_desc_csum(sb))
3588                                 num -= ext4_itable_unused_count(sb, gdp);
3589                         table += num / inodes_per_block;
3590                         if (end > table)
3591                                 end = table;
3592                         while (b <= end)
3593                                 sb_breadahead(sb, b++);
3594                 }
3595
3596                 /*
3597                  * There are other valid inodes in the buffer, this inode
3598                  * has in-inode xattrs, or we don't have this inode in memory.
3599                  * Read the block from disk.
3600                  */
3601                 trace_ext4_load_inode(inode);
3602                 get_bh(bh);
3603                 bh->b_end_io = end_buffer_read_sync;
3604                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3605                 wait_on_buffer(bh);
3606                 if (!buffer_uptodate(bh)) {
3607                         EXT4_ERROR_INODE_BLOCK(inode, block,
3608                                                "unable to read itable block");
3609                         brelse(bh);
3610                         return -EIO;
3611                 }
3612         }
3613 has_buffer:
3614         iloc->bh = bh;
3615         return 0;
3616 }
3617
3618 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3619 {
3620         /* We have all inode data except xattrs in memory here. */
3621         return __ext4_get_inode_loc(inode, iloc,
3622                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3623 }
3624
3625 void ext4_set_inode_flags(struct inode *inode)
3626 {
3627         unsigned int flags = EXT4_I(inode)->i_flags;
3628
3629         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3630         if (flags & EXT4_SYNC_FL)
3631                 inode->i_flags |= S_SYNC;
3632         if (flags & EXT4_APPEND_FL)
3633                 inode->i_flags |= S_APPEND;
3634         if (flags & EXT4_IMMUTABLE_FL)
3635                 inode->i_flags |= S_IMMUTABLE;
3636         if (flags & EXT4_NOATIME_FL)
3637                 inode->i_flags |= S_NOATIME;
3638         if (flags & EXT4_DIRSYNC_FL)
3639                 inode->i_flags |= S_DIRSYNC;
3640 }
3641
3642 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3643 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3644 {
3645         unsigned int vfs_fl;
3646         unsigned long old_fl, new_fl;
3647
3648         do {
3649                 vfs_fl = ei->vfs_inode.i_flags;
3650                 old_fl = ei->i_flags;
3651                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3652                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3653                                 EXT4_DIRSYNC_FL);
3654                 if (vfs_fl & S_SYNC)
3655                         new_fl |= EXT4_SYNC_FL;
3656                 if (vfs_fl & S_APPEND)
3657                         new_fl |= EXT4_APPEND_FL;
3658                 if (vfs_fl & S_IMMUTABLE)
3659                         new_fl |= EXT4_IMMUTABLE_FL;
3660                 if (vfs_fl & S_NOATIME)
3661                         new_fl |= EXT4_NOATIME_FL;
3662                 if (vfs_fl & S_DIRSYNC)
3663                         new_fl |= EXT4_DIRSYNC_FL;
3664         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3665 }
3666
3667 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3668                                   struct ext4_inode_info *ei)
3669 {
3670         blkcnt_t i_blocks ;
3671         struct inode *inode = &(ei->vfs_inode);
3672         struct super_block *sb = inode->i_sb;
3673
3674         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3675                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3676                 /* we are using combined 48 bit field */
3677                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3678                                         le32_to_cpu(raw_inode->i_blocks_lo);
3679                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3680                         /* i_blocks represent file system block size */
3681                         return i_blocks  << (inode->i_blkbits - 9);
3682                 } else {
3683                         return i_blocks;
3684                 }
3685         } else {
3686                 return le32_to_cpu(raw_inode->i_blocks_lo);
3687         }
3688 }
3689
3690 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3691 {
3692         struct ext4_iloc iloc;
3693         struct ext4_inode *raw_inode;
3694         struct ext4_inode_info *ei;
3695         struct inode *inode;
3696         journal_t *journal = EXT4_SB(sb)->s_journal;
3697         long ret;
3698         int block;
3699
3700         inode = iget_locked(sb, ino);
3701         if (!inode)
3702                 return ERR_PTR(-ENOMEM);
3703         if (!(inode->i_state & I_NEW))
3704                 return inode;
3705
3706         ei = EXT4_I(inode);
3707         iloc.bh = NULL;
3708
3709         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3710         if (ret < 0)
3711                 goto bad_inode;
3712         raw_inode = ext4_raw_inode(&iloc);
3713
3714         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3715                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3716                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3717                     EXT4_INODE_SIZE(inode->i_sb)) {
3718                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3719                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3720                                 EXT4_INODE_SIZE(inode->i_sb));
3721                         ret = -EIO;
3722                         goto bad_inode;
3723                 }
3724         } else
3725                 ei->i_extra_isize = 0;
3726
3727         /* Precompute checksum seed for inode metadata */
3728         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3729                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3730                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3731                 __u32 csum;
3732                 __le32 inum = cpu_to_le32(inode->i_ino);
3733                 __le32 gen = raw_inode->i_generation;
3734                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3735                                    sizeof(inum));
3736                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3737                                               sizeof(gen));
3738         }
3739
3740         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3741                 EXT4_ERROR_INODE(inode, "checksum invalid");
3742                 ret = -EIO;
3743                 goto bad_inode;
3744         }
3745
3746         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3747         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3748         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3749         if (!(test_opt(inode->i_sb, NO_UID32))) {
3750                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3751                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3752         }
3753         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3754
3755         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3756         ei->i_dir_start_lookup = 0;
3757         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3758         /* We now have enough fields to check if the inode was active or not.
3759          * This is needed because nfsd might try to access dead inodes
3760          * the test is that same one that e2fsck uses
3761          * NeilBrown 1999oct15
3762          */
3763         if (inode->i_nlink == 0) {
3764                 if (inode->i_mode == 0 ||
3765                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3766                         /* this inode is deleted */
3767                         ret = -ESTALE;
3768                         goto bad_inode;
3769                 }
3770                 /* The only unlinked inodes we let through here have
3771                  * valid i_mode and are being read by the orphan
3772                  * recovery code: that's fine, we're about to complete
3773                  * the process of deleting those. */
3774         }
3775         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3776         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3777         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3778         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3779                 ei->i_file_acl |=
3780                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3781         inode->i_size = ext4_isize(raw_inode);
3782         ei->i_disksize = inode->i_size;
3783 #ifdef CONFIG_QUOTA
3784         ei->i_reserved_quota = 0;
3785 #endif
3786         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3787         ei->i_block_group = iloc.block_group;
3788         ei->i_last_alloc_group = ~0;
3789         /*
3790          * NOTE! The in-memory inode i_data array is in little-endian order
3791          * even on big-endian machines: we do NOT byteswap the block numbers!
3792          */
3793         for (block = 0; block < EXT4_N_BLOCKS; block++)
3794                 ei->i_data[block] = raw_inode->i_block[block];
3795         INIT_LIST_HEAD(&ei->i_orphan);
3796
3797         /*
3798          * Set transaction id's of transactions that have to be committed
3799          * to finish f[data]sync. We set them to currently running transaction
3800          * as we cannot be sure that the inode or some of its metadata isn't
3801          * part of the transaction - the inode could have been reclaimed and
3802          * now it is reread from disk.
3803          */
3804         if (journal) {
3805                 transaction_t *transaction;
3806                 tid_t tid;
3807
3808                 read_lock(&journal->j_state_lock);
3809                 if (journal->j_running_transaction)
3810                         transaction = journal->j_running_transaction;
3811                 else
3812                         transaction = journal->j_committing_transaction;
3813                 if (transaction)
3814                         tid = transaction->t_tid;
3815                 else
3816                         tid = journal->j_commit_sequence;
3817                 read_unlock(&journal->j_state_lock);
3818                 ei->i_sync_tid = tid;
3819                 ei->i_datasync_tid = tid;
3820         }
3821
3822         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3823                 if (ei->i_extra_isize == 0) {
3824                         /* The extra space is currently unused. Use it. */
3825                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3826                                             EXT4_GOOD_OLD_INODE_SIZE;
3827                 } else {
3828                         __le32 *magic = (void *)raw_inode +
3829                                         EXT4_GOOD_OLD_INODE_SIZE +
3830                                         ei->i_extra_isize;
3831                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3832                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3833                 }
3834         }
3835
3836         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3837         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3838         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3839         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3840
3841         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3842         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3843                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3844                         inode->i_version |=
3845                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3846         }
3847
3848         ret = 0;
3849         if (ei->i_file_acl &&
3850             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3851                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3852                                  ei->i_file_acl);
3853                 ret = -EIO;
3854                 goto bad_inode;
3855         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3856                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3857                     (S_ISLNK(inode->i_mode) &&
3858                      !ext4_inode_is_fast_symlink(inode)))
3859                         /* Validate extent which is part of inode */
3860                         ret = ext4_ext_check_inode(inode);
3861         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3862                    (S_ISLNK(inode->i_mode) &&
3863                     !ext4_inode_is_fast_symlink(inode))) {
3864                 /* Validate block references which are part of inode */
3865                 ret = ext4_ind_check_inode(inode);
3866         }
3867         if (ret)
3868                 goto bad_inode;
3869
3870         if (S_ISREG(inode->i_mode)) {
3871                 inode->i_op = &ext4_file_inode_operations;
3872                 inode->i_fop = &ext4_file_operations;
3873                 ext4_set_aops(inode);
3874         } else if (S_ISDIR(inode->i_mode)) {
3875                 inode->i_op = &ext4_dir_inode_operations;
3876                 inode->i_fop = &ext4_dir_operations;
3877         } else if (S_ISLNK(inode->i_mode)) {
3878                 if (ext4_inode_is_fast_symlink(inode)) {
3879                         inode->i_op = &ext4_fast_symlink_inode_operations;
3880                         nd_terminate_link(ei->i_data, inode->i_size,
3881                                 sizeof(ei->i_data) - 1);
3882                 } else {
3883                         inode->i_op = &ext4_symlink_inode_operations;
3884                         ext4_set_aops(inode);
3885                 }
3886         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3887               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3888                 inode->i_op = &ext4_special_inode_operations;
3889                 if (raw_inode->i_block[0])
3890                         init_special_inode(inode, inode->i_mode,
3891                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3892                 else
3893                         init_special_inode(inode, inode->i_mode,
3894                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3895         } else {
3896                 ret = -EIO;
3897                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3898                 goto bad_inode;
3899         }
3900         brelse(iloc.bh);
3901         ext4_set_inode_flags(inode);
3902         unlock_new_inode(inode);
3903         return inode;
3904
3905 bad_inode:
3906         brelse(iloc.bh);
3907         iget_failed(inode);
3908         return ERR_PTR(ret);
3909 }
3910
3911 static int ext4_inode_blocks_set(handle_t *handle,
3912                                 struct ext4_inode *raw_inode,
3913                                 struct ext4_inode_info *ei)
3914 {
3915         struct inode *inode = &(ei->vfs_inode);
3916         u64 i_blocks = inode->i_blocks;
3917         struct super_block *sb = inode->i_sb;
3918
3919         if (i_blocks <= ~0U) {
3920                 /*
3921                  * i_blocks can be represnted in a 32 bit variable
3922                  * as multiple of 512 bytes
3923                  */
3924                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3925                 raw_inode->i_blocks_high = 0;
3926                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3927                 return 0;
3928         }
3929         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3930                 return -EFBIG;
3931
3932         if (i_blocks <= 0xffffffffffffULL) {
3933                 /*
3934                  * i_blocks can be represented in a 48 bit variable
3935                  * as multiple of 512 bytes
3936                  */
3937                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3938                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3939                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3940         } else {
3941                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3942                 /* i_block is stored in file system block size */
3943                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3944                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3945                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3946         }
3947         return 0;
3948 }
3949
3950 /*
3951  * Post the struct inode info into an on-disk inode location in the
3952  * buffer-cache.  This gobbles the caller's reference to the
3953  * buffer_head in the inode location struct.
3954  *
3955  * The caller must have write access to iloc->bh.
3956  */
3957 static int ext4_do_update_inode(handle_t *handle,
3958                                 struct inode *inode,
3959                                 struct ext4_iloc *iloc)
3960 {
3961         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3962         struct ext4_inode_info *ei = EXT4_I(inode);
3963         struct buffer_head *bh = iloc->bh;
3964         int err = 0, rc, block;
3965
3966         /* For fields not not tracking in the in-memory inode,
3967          * initialise them to zero for new inodes. */
3968         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3969                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3970
3971         ext4_get_inode_flags(ei);
3972         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3973         if (!(test_opt(inode->i_sb, NO_UID32))) {
3974                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3975                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3976 /*
3977  * Fix up interoperability with old kernels. Otherwise, old inodes get
3978  * re-used with the upper 16 bits of the uid/gid intact
3979  */
3980                 if (!ei->i_dtime) {
3981                         raw_inode->i_uid_high =
3982                                 cpu_to_le16(high_16_bits(inode->i_uid));
3983                         raw_inode->i_gid_high =
3984                                 cpu_to_le16(high_16_bits(inode->i_gid));
3985                 } else {
3986                         raw_inode->i_uid_high = 0;
3987                         raw_inode->i_gid_high = 0;
3988                 }
3989         } else {
3990                 raw_inode->i_uid_low =
3991                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
3992                 raw_inode->i_gid_low =
3993                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
3994                 raw_inode->i_uid_high = 0;
3995                 raw_inode->i_gid_high = 0;
3996         }
3997         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3998
3999         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4000         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4001         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4002         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4003
4004         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4005                 goto out_brelse;
4006         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4007         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4008         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4009             cpu_to_le32(EXT4_OS_HURD))
4010                 raw_inode->i_file_acl_high =
4011                         cpu_to_le16(ei->i_file_acl >> 32);
4012         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4013         ext4_isize_set(raw_inode, ei->i_disksize);
4014         if (ei->i_disksize > 0x7fffffffULL) {
4015                 struct super_block *sb = inode->i_sb;
4016                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4017                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4018                                 EXT4_SB(sb)->s_es->s_rev_level ==
4019                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4020                         /* If this is the first large file
4021                          * created, add a flag to the superblock.
4022                          */
4023                         err = ext4_journal_get_write_access(handle,
4024                                         EXT4_SB(sb)->s_sbh);
4025                         if (err)
4026                                 goto out_brelse;
4027                         ext4_update_dynamic_rev(sb);
4028                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4029                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4030                         ext4_handle_sync(handle);
4031                         err = ext4_handle_dirty_super_now(handle, sb);
4032                 }
4033         }
4034         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4035         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4036                 if (old_valid_dev(inode->i_rdev)) {
4037                         raw_inode->i_block[0] =
4038                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4039                         raw_inode->i_block[1] = 0;
4040                 } else {
4041                         raw_inode->i_block[0] = 0;
4042                         raw_inode->i_block[1] =
4043                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4044                         raw_inode->i_block[2] = 0;
4045                 }
4046         } else
4047                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4048                         raw_inode->i_block[block] = ei->i_data[block];
4049
4050         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4051         if (ei->i_extra_isize) {
4052                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4053                         raw_inode->i_version_hi =
4054                         cpu_to_le32(inode->i_version >> 32);
4055                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4056         }
4057
4058         ext4_inode_csum_set(inode, raw_inode, ei);
4059
4060         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4061         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4062         if (!err)
4063                 err = rc;
4064         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4065
4066         ext4_update_inode_fsync_trans(handle, inode, 0);
4067 out_brelse:
4068         brelse(bh);
4069         ext4_std_error(inode->i_sb, err);
4070         return err;
4071 }
4072
4073 /*
4074  * ext4_write_inode()
4075  *
4076  * We are called from a few places:
4077  *
4078  * - Within generic_file_write() for O_SYNC files.
4079  *   Here, there will be no transaction running. We wait for any running
4080  *   trasnaction to commit.
4081  *
4082  * - Within sys_sync(), kupdate and such.
4083  *   We wait on commit, if tol to.
4084  *
4085  * - Within prune_icache() (PF_MEMALLOC == true)
4086  *   Here we simply return.  We can't afford to block kswapd on the
4087  *   journal commit.
4088  *
4089  * In all cases it is actually safe for us to return without doing anything,
4090  * because the inode has been copied into a raw inode buffer in
4091  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4092  * knfsd.
4093  *
4094  * Note that we are absolutely dependent upon all inode dirtiers doing the
4095  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4096  * which we are interested.
4097  *
4098  * It would be a bug for them to not do this.  The code:
4099  *
4100  *      mark_inode_dirty(inode)
4101  *      stuff();
4102  *      inode->i_size = expr;
4103  *
4104  * is in error because a kswapd-driven write_inode() could occur while
4105  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4106  * will no longer be on the superblock's dirty inode list.
4107  */
4108 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4109 {
4110         int err;
4111
4112         if (current->flags & PF_MEMALLOC)
4113                 return 0;
4114
4115         if (EXT4_SB(inode->i_sb)->s_journal) {
4116                 if (ext4_journal_current_handle()) {
4117                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4118                         dump_stack();
4119                         return -EIO;
4120                 }
4121
4122                 if (wbc->sync_mode != WB_SYNC_ALL)
4123                         return 0;
4124
4125                 err = ext4_force_commit(inode->i_sb);
4126         } else {
4127                 struct ext4_iloc iloc;
4128
4129                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4130                 if (err)
4131                         return err;
4132                 if (wbc->sync_mode == WB_SYNC_ALL)
4133                         sync_dirty_buffer(iloc.bh);
4134                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4135                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4136                                          "IO error syncing inode");
4137                         err = -EIO;
4138                 }
4139                 brelse(iloc.bh);
4140         }
4141         return err;
4142 }
4143
4144 /*
4145  * ext4_setattr()
4146  *
4147  * Called from notify_change.
4148  *
4149  * We want to trap VFS attempts to truncate the file as soon as
4150  * possible.  In particular, we want to make sure that when the VFS
4151  * shrinks i_size, we put the inode on the orphan list and modify
4152  * i_disksize immediately, so that during the subsequent flushing of
4153  * dirty pages and freeing of disk blocks, we can guarantee that any
4154  * commit will leave the blocks being flushed in an unused state on
4155  * disk.  (On recovery, the inode will get truncated and the blocks will
4156  * be freed, so we have a strong guarantee that no future commit will
4157  * leave these blocks visible to the user.)
4158  *
4159  * Another thing we have to assure is that if we are in ordered mode
4160  * and inode is still attached to the committing transaction, we must
4161  * we start writeout of all the dirty pages which are being truncated.
4162  * This way we are sure that all the data written in the previous
4163  * transaction are already on disk (truncate waits for pages under
4164  * writeback).
4165  *
4166  * Called with inode->i_mutex down.
4167  */
4168 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4169 {
4170         struct inode *inode = dentry->d_inode;
4171         int error, rc = 0;
4172         int orphan = 0;
4173         const unsigned int ia_valid = attr->ia_valid;
4174
4175         error = inode_change_ok(inode, attr);
4176         if (error)
4177                 return error;
4178
4179         if (is_quota_modification(inode, attr))
4180                 dquot_initialize(inode);
4181         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4182                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4183                 handle_t *handle;
4184
4185                 /* (user+group)*(old+new) structure, inode write (sb,
4186                  * inode block, ? - but truncate inode update has it) */
4187                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4188                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4189                 if (IS_ERR(handle)) {
4190                         error = PTR_ERR(handle);
4191                         goto err_out;
4192                 }
4193                 error = dquot_transfer(inode, attr);
4194                 if (error) {
4195                         ext4_journal_stop(handle);
4196                         return error;
4197                 }
4198                 /* Update corresponding info in inode so that everything is in
4199                  * one transaction */
4200                 if (attr->ia_valid & ATTR_UID)
4201                         inode->i_uid = attr->ia_uid;
4202                 if (attr->ia_valid & ATTR_GID)
4203                         inode->i_gid = attr->ia_gid;
4204                 error = ext4_mark_inode_dirty(handle, inode);
4205                 ext4_journal_stop(handle);
4206         }
4207
4208         if (attr->ia_valid & ATTR_SIZE) {
4209                 inode_dio_wait(inode);
4210
4211                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4212                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4213
4214                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4215                                 return -EFBIG;
4216                 }
4217         }
4218
4219         if (S_ISREG(inode->i_mode) &&
4220             attr->ia_valid & ATTR_SIZE &&
4221             (attr->ia_size < inode->i_size)) {
4222                 handle_t *handle;
4223
4224                 handle = ext4_journal_start(inode, 3);
4225                 if (IS_ERR(handle)) {
4226                         error = PTR_ERR(handle);
4227                         goto err_out;
4228                 }
4229                 if (ext4_handle_valid(handle)) {
4230                         error = ext4_orphan_add(handle, inode);
4231                         orphan = 1;
4232                 }
4233                 EXT4_I(inode)->i_disksize = attr->ia_size;
4234                 rc = ext4_mark_inode_dirty(handle, inode);
4235                 if (!error)
4236                         error = rc;
4237                 ext4_journal_stop(handle);
4238
4239                 if (ext4_should_order_data(inode)) {
4240                         error = ext4_begin_ordered_truncate(inode,
4241                                                             attr->ia_size);
4242                         if (error) {
4243                                 /* Do as much error cleanup as possible */
4244                                 handle = ext4_journal_start(inode, 3);
4245                                 if (IS_ERR(handle)) {
4246                                         ext4_orphan_del(NULL, inode);
4247                                         goto err_out;
4248                                 }
4249                                 ext4_orphan_del(handle, inode);
4250                                 orphan = 0;
4251                                 ext4_journal_stop(handle);
4252                                 goto err_out;
4253                         }
4254                 }
4255         }
4256
4257         if (attr->ia_valid & ATTR_SIZE) {
4258                 if (attr->ia_size != i_size_read(inode))
4259                         truncate_setsize(inode, attr->ia_size);
4260                 ext4_truncate(inode);
4261         }
4262
4263         if (!rc) {
4264                 setattr_copy(inode, attr);
4265                 mark_inode_dirty(inode);
4266         }
4267
4268         /*
4269          * If the call to ext4_truncate failed to get a transaction handle at
4270          * all, we need to clean up the in-core orphan list manually.
4271          */
4272         if (orphan && inode->i_nlink)
4273                 ext4_orphan_del(NULL, inode);
4274
4275         if (!rc && (ia_valid & ATTR_MODE))
4276                 rc = ext4_acl_chmod(inode);
4277
4278 err_out:
4279         ext4_std_error(inode->i_sb, error);
4280         if (!error)
4281                 error = rc;
4282         return error;
4283 }
4284
4285 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4286                  struct kstat *stat)
4287 {
4288         struct inode *inode;
4289         unsigned long delalloc_blocks;
4290
4291         inode = dentry->d_inode;
4292         generic_fillattr(inode, stat);
4293
4294         /*
4295          * We can't update i_blocks if the block allocation is delayed
4296          * otherwise in the case of system crash before the real block
4297          * allocation is done, we will have i_blocks inconsistent with
4298          * on-disk file blocks.
4299          * We always keep i_blocks updated together with real
4300          * allocation. But to not confuse with user, stat
4301          * will return the blocks that include the delayed allocation
4302          * blocks for this file.
4303          */
4304         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4305                                 EXT4_I(inode)->i_reserved_data_blocks);
4306
4307         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4308         return 0;
4309 }
4310
4311 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4312 {
4313         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4314                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4315         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4316 }
4317
4318 /*
4319  * Account for index blocks, block groups bitmaps and block group
4320  * descriptor blocks if modify datablocks and index blocks
4321  * worse case, the indexs blocks spread over different block groups
4322  *
4323  * If datablocks are discontiguous, they are possible to spread over
4324  * different block groups too. If they are contiuguous, with flexbg,
4325  * they could still across block group boundary.
4326  *
4327  * Also account for superblock, inode, quota and xattr blocks
4328  */
4329 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4330 {
4331         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4332         int gdpblocks;
4333         int idxblocks;
4334         int ret = 0;
4335
4336         /*
4337          * How many index blocks need to touch to modify nrblocks?
4338          * The "Chunk" flag indicating whether the nrblocks is
4339          * physically contiguous on disk
4340          *
4341          * For Direct IO and fallocate, they calls get_block to allocate
4342          * one single extent at a time, so they could set the "Chunk" flag
4343          */
4344         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4345
4346         ret = idxblocks;
4347
4348         /*
4349          * Now let's see how many group bitmaps and group descriptors need
4350          * to account
4351          */
4352         groups = idxblocks;
4353         if (chunk)
4354                 groups += 1;
4355         else
4356                 groups += nrblocks;
4357
4358         gdpblocks = groups;
4359         if (groups > ngroups)
4360                 groups = ngroups;
4361         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4362                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4363
4364         /* bitmaps and block group descriptor blocks */
4365         ret += groups + gdpblocks;
4366
4367         /* Blocks for super block, inode, quota and xattr blocks */
4368         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4369
4370         return ret;
4371 }
4372
4373 /*
4374  * Calculate the total number of credits to reserve to fit
4375  * the modification of a single pages into a single transaction,
4376  * which may include multiple chunks of block allocations.
4377  *
4378  * This could be called via ext4_write_begin()
4379  *
4380  * We need to consider the worse case, when
4381  * one new block per extent.
4382  */
4383 int ext4_writepage_trans_blocks(struct inode *inode)
4384 {
4385         int bpp = ext4_journal_blocks_per_page(inode);
4386         int ret;
4387
4388         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4389
4390         /* Account for data blocks for journalled mode */
4391         if (ext4_should_journal_data(inode))
4392                 ret += bpp;
4393         return ret;
4394 }
4395
4396 /*
4397  * Calculate the journal credits for a chunk of data modification.
4398  *
4399  * This is called from DIO, fallocate or whoever calling
4400  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4401  *
4402  * journal buffers for data blocks are not included here, as DIO
4403  * and fallocate do no need to journal data buffers.
4404  */
4405 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4406 {
4407         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4408 }
4409
4410 /*
4411  * The caller must have previously called ext4_reserve_inode_write().
4412  * Give this, we know that the caller already has write access to iloc->bh.
4413  */
4414 int ext4_mark_iloc_dirty(handle_t *handle,
4415                          struct inode *inode, struct ext4_iloc *iloc)
4416 {
4417         int err = 0;
4418
4419         if (IS_I_VERSION(inode))
4420                 inode_inc_iversion(inode);
4421
4422         /* the do_update_inode consumes one bh->b_count */
4423         get_bh(iloc->bh);
4424
4425         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4426         err = ext4_do_update_inode(handle, inode, iloc);
4427         put_bh(iloc->bh);
4428         return err;
4429 }
4430
4431 /*
4432  * On success, We end up with an outstanding reference count against
4433  * iloc->bh.  This _must_ be cleaned up later.
4434  */
4435
4436 int
4437 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4438                          struct ext4_iloc *iloc)
4439 {
4440         int err;
4441
4442         err = ext4_get_inode_loc(inode, iloc);
4443         if (!err) {
4444                 BUFFER_TRACE(iloc->bh, "get_write_access");
4445                 err = ext4_journal_get_write_access(handle, iloc->bh);
4446                 if (err) {
4447                         brelse(iloc->bh);
4448                         iloc->bh = NULL;
4449                 }
4450         }
4451         ext4_std_error(inode->i_sb, err);
4452         return err;
4453 }
4454
4455 /*
4456  * Expand an inode by new_extra_isize bytes.
4457  * Returns 0 on success or negative error number on failure.
4458  */
4459 static int ext4_expand_extra_isize(struct inode *inode,
4460                                    unsigned int new_extra_isize,
4461                                    struct ext4_iloc iloc,
4462                                    handle_t *handle)
4463 {
4464         struct ext4_inode *raw_inode;
4465         struct ext4_xattr_ibody_header *header;
4466
4467         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4468                 return 0;
4469
4470         raw_inode = ext4_raw_inode(&iloc);
4471
4472         header = IHDR(inode, raw_inode);
4473
4474         /* No extended attributes present */
4475         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4476             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4477                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4478                         new_extra_isize);
4479                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4480                 return 0;
4481         }
4482
4483         /* try to expand with EAs present */
4484         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4485                                           raw_inode, handle);
4486 }
4487
4488 /*
4489  * What we do here is to mark the in-core inode as clean with respect to inode
4490  * dirtiness (it may still be data-dirty).
4491  * This means that the in-core inode may be reaped by prune_icache
4492  * without having to perform any I/O.  This is a very good thing,
4493  * because *any* task may call prune_icache - even ones which
4494  * have a transaction open against a different journal.
4495  *
4496  * Is this cheating?  Not really.  Sure, we haven't written the
4497  * inode out, but prune_icache isn't a user-visible syncing function.
4498  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4499  * we start and wait on commits.
4500  *
4501  * Is this efficient/effective?  Well, we're being nice to the system
4502  * by cleaning up our inodes proactively so they can be reaped
4503  * without I/O.  But we are potentially leaving up to five seconds'
4504  * worth of inodes floating about which prune_icache wants us to
4505  * write out.  One way to fix that would be to get prune_icache()
4506  * to do a write_super() to free up some memory.  It has the desired
4507  * effect.
4508  */
4509 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4510 {
4511         struct ext4_iloc iloc;
4512         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4513         static unsigned int mnt_count;
4514         int err, ret;
4515
4516         might_sleep();
4517         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4518         err = ext4_reserve_inode_write(handle, inode, &iloc);
4519         if (ext4_handle_valid(handle) &&
4520             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4521             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4522                 /*
4523                  * We need extra buffer credits since we may write into EA block
4524                  * with this same handle. If journal_extend fails, then it will
4525                  * only result in a minor loss of functionality for that inode.
4526                  * If this is felt to be critical, then e2fsck should be run to
4527                  * force a large enough s_min_extra_isize.
4528                  */
4529                 if ((jbd2_journal_extend(handle,
4530                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4531                         ret = ext4_expand_extra_isize(inode,
4532                                                       sbi->s_want_extra_isize,
4533                                                       iloc, handle);
4534                         if (ret) {
4535                                 ext4_set_inode_state(inode,
4536                                                      EXT4_STATE_NO_EXPAND);
4537                                 if (mnt_count !=
4538                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4539                                         ext4_warning(inode->i_sb,
4540                                         "Unable to expand inode %lu. Delete"
4541                                         " some EAs or run e2fsck.",
4542                                         inode->i_ino);
4543                                         mnt_count =
4544                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4545                                 }
4546                         }
4547                 }
4548         }
4549         if (!err)
4550                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4551         return err;
4552 }
4553
4554 /*
4555  * ext4_dirty_inode() is called from __mark_inode_dirty()
4556  *
4557  * We're really interested in the case where a file is being extended.
4558  * i_size has been changed by generic_commit_write() and we thus need
4559  * to include the updated inode in the current transaction.
4560  *
4561  * Also, dquot_alloc_block() will always dirty the inode when blocks
4562  * are allocated to the file.
4563  *
4564  * If the inode is marked synchronous, we don't honour that here - doing
4565  * so would cause a commit on atime updates, which we don't bother doing.
4566  * We handle synchronous inodes at the highest possible level.
4567  */
4568 void ext4_dirty_inode(struct inode *inode, int flags)
4569 {
4570         handle_t *handle;
4571
4572         handle = ext4_journal_start(inode, 2);
4573         if (IS_ERR(handle))
4574                 goto out;
4575
4576         ext4_mark_inode_dirty(handle, inode);
4577
4578         ext4_journal_stop(handle);
4579 out:
4580         return;
4581 }
4582
4583 #if 0
4584 /*
4585  * Bind an inode's backing buffer_head into this transaction, to prevent
4586  * it from being flushed to disk early.  Unlike
4587  * ext4_reserve_inode_write, this leaves behind no bh reference and
4588  * returns no iloc structure, so the caller needs to repeat the iloc
4589  * lookup to mark the inode dirty later.
4590  */
4591 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4592 {
4593         struct ext4_iloc iloc;
4594
4595         int err = 0;
4596         if (handle) {
4597                 err = ext4_get_inode_loc(inode, &iloc);
4598                 if (!err) {
4599                         BUFFER_TRACE(iloc.bh, "get_write_access");
4600                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4601                         if (!err)
4602                                 err = ext4_handle_dirty_metadata(handle,
4603                                                                  NULL,
4604                                                                  iloc.bh);
4605                         brelse(iloc.bh);
4606                 }
4607         }
4608         ext4_std_error(inode->i_sb, err);
4609         return err;
4610 }
4611 #endif
4612
4613 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4614 {
4615         journal_t *journal;
4616         handle_t *handle;
4617         int err;
4618
4619         /*
4620          * We have to be very careful here: changing a data block's
4621          * journaling status dynamically is dangerous.  If we write a
4622          * data block to the journal, change the status and then delete
4623          * that block, we risk forgetting to revoke the old log record
4624          * from the journal and so a subsequent replay can corrupt data.
4625          * So, first we make sure that the journal is empty and that
4626          * nobody is changing anything.
4627          */
4628
4629         journal = EXT4_JOURNAL(inode);
4630         if (!journal)
4631                 return 0;
4632         if (is_journal_aborted(journal))
4633                 return -EROFS;
4634         /* We have to allocate physical blocks for delalloc blocks
4635          * before flushing journal. otherwise delalloc blocks can not
4636          * be allocated any more. even more truncate on delalloc blocks
4637          * could trigger BUG by flushing delalloc blocks in journal.
4638          * There is no delalloc block in non-journal data mode.
4639          */
4640         if (val && test_opt(inode->i_sb, DELALLOC)) {
4641                 err = ext4_alloc_da_blocks(inode);
4642                 if (err < 0)
4643                         return err;
4644         }
4645
4646         jbd2_journal_lock_updates(journal);
4647
4648         /*
4649          * OK, there are no updates running now, and all cached data is
4650          * synced to disk.  We are now in a completely consistent state
4651          * which doesn't have anything in the journal, and we know that
4652          * no filesystem updates are running, so it is safe to modify
4653          * the inode's in-core data-journaling state flag now.
4654          */
4655
4656         if (val)
4657                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4658         else {
4659                 jbd2_journal_flush(journal);
4660                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4661         }
4662         ext4_set_aops(inode);
4663
4664         jbd2_journal_unlock_updates(journal);
4665
4666         /* Finally we can mark the inode as dirty. */
4667
4668         handle = ext4_journal_start(inode, 1);
4669         if (IS_ERR(handle))
4670                 return PTR_ERR(handle);
4671
4672         err = ext4_mark_inode_dirty(handle, inode);
4673         ext4_handle_sync(handle);
4674         ext4_journal_stop(handle);
4675         ext4_std_error(inode->i_sb, err);
4676
4677         return err;
4678 }
4679
4680 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4681 {
4682         return !buffer_mapped(bh);
4683 }
4684
4685 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4686 {
4687         struct page *page = vmf->page;
4688         loff_t size;
4689         unsigned long len;
4690         int ret;
4691         struct file *file = vma->vm_file;
4692         struct inode *inode = file->f_path.dentry->d_inode;
4693         struct address_space *mapping = inode->i_mapping;
4694         handle_t *handle;
4695         get_block_t *get_block;
4696         int retries = 0;
4697
4698         /*
4699          * This check is racy but catches the common case. We rely on
4700          * __block_page_mkwrite() to do a reliable check.
4701          */
4702         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4703         /* Delalloc case is easy... */
4704         if (test_opt(inode->i_sb, DELALLOC) &&
4705             !ext4_should_journal_data(inode) &&
4706             !ext4_nonda_switch(inode->i_sb)) {
4707                 do {
4708                         ret = __block_page_mkwrite(vma, vmf,
4709                                                    ext4_da_get_block_prep);
4710                 } while (ret == -ENOSPC &&
4711                        ext4_should_retry_alloc(inode->i_sb, &retries));
4712                 goto out_ret;
4713         }
4714
4715         lock_page(page);
4716         size = i_size_read(inode);
4717         /* Page got truncated from under us? */
4718         if (page->mapping != mapping || page_offset(page) > size) {
4719                 unlock_page(page);
4720                 ret = VM_FAULT_NOPAGE;
4721                 goto out;
4722         }
4723
4724         if (page->index == size >> PAGE_CACHE_SHIFT)
4725                 len = size & ~PAGE_CACHE_MASK;
4726         else
4727                 len = PAGE_CACHE_SIZE;
4728         /*
4729          * Return if we have all the buffers mapped. This avoids the need to do
4730          * journal_start/journal_stop which can block and take a long time
4731          */
4732         if (page_has_buffers(page)) {
4733                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4734                                         ext4_bh_unmapped)) {
4735                         /* Wait so that we don't change page under IO */
4736                         wait_on_page_writeback(page);
4737                         ret = VM_FAULT_LOCKED;
4738                         goto out;
4739                 }
4740         }
4741         unlock_page(page);
4742         /* OK, we need to fill the hole... */
4743         if (ext4_should_dioread_nolock(inode))
4744                 get_block = ext4_get_block_write;
4745         else
4746                 get_block = ext4_get_block;
4747 retry_alloc:
4748         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4749         if (IS_ERR(handle)) {
4750                 ret = VM_FAULT_SIGBUS;
4751                 goto out;
4752         }
4753         ret = __block_page_mkwrite(vma, vmf, get_block);
4754         if (!ret && ext4_should_journal_data(inode)) {
4755                 if (walk_page_buffers(handle, page_buffers(page), 0,
4756                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4757                         unlock_page(page);
4758                         ret = VM_FAULT_SIGBUS;
4759                         ext4_journal_stop(handle);
4760                         goto out;
4761                 }
4762                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4763         }
4764         ext4_journal_stop(handle);
4765         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4766                 goto retry_alloc;
4767 out_ret:
4768         ret = block_page_mkwrite_return(ret);
4769 out:
4770         return ret;
4771 }