Merge remote-tracking branch 'lsk/v3.10/topic/gator' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u16 csum_lo;
57         __u16 csum_hi = 0;
58         __u32 csum;
59
60         csum_lo = le16_to_cpu(raw->i_checksum_lo);
61         raw->i_checksum_lo = 0;
62         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65                 raw->i_checksum_hi = 0;
66         }
67
68         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69                            EXT4_INODE_SIZE(inode->i_sb));
70
71         raw->i_checksum_lo = cpu_to_le16(csum_lo);
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76         return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80                                   struct ext4_inode_info *ei)
81 {
82         __u32 provided, calculated;
83
84         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85             cpu_to_le32(EXT4_OS_LINUX) ||
86             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88                 return 1;
89
90         provided = le16_to_cpu(raw->i_checksum_lo);
91         calculated = ext4_inode_csum(inode, raw, ei);
92         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95         else
96                 calculated &= 0xFFFF;
97
98         return provided == calculated;
99 }
100
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102                                 struct ext4_inode_info *ei)
103 {
104         __u32 csum;
105
106         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107             cpu_to_le32(EXT4_OS_LINUX) ||
108             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110                 return;
111
112         csum = ext4_inode_csum(inode, raw, ei);
113         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120                                               loff_t new_size)
121 {
122         trace_ext4_begin_ordered_truncate(inode, new_size);
123         /*
124          * If jinode is zero, then we never opened the file for
125          * writing, so there's no need to call
126          * jbd2_journal_begin_ordered_truncate() since there's no
127          * outstanding writes we need to flush.
128          */
129         if (!EXT4_I(inode)->jinode)
130                 return 0;
131         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132                                                    EXT4_I(inode)->jinode,
133                                                    new_size);
134 }
135
136 static void ext4_invalidatepage(struct page *page, unsigned long offset);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
140                 struct inode *inode, struct page *page, loff_t from,
141                 loff_t length, int flags);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149                 (inode->i_sb->s_blocksize >> 9) : 0;
150
151         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152 }
153
154 /*
155  * Restart the transaction associated with *handle.  This does a commit,
156  * so before we call here everything must be consistently dirtied against
157  * this transaction.
158  */
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160                                  int nblocks)
161 {
162         int ret;
163
164         /*
165          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
166          * moment, get_block can be called only for blocks inside i_size since
167          * page cache has been already dropped and writes are blocked by
168          * i_mutex. So we can safely drop the i_data_sem here.
169          */
170         BUG_ON(EXT4_JOURNAL(inode) == NULL);
171         jbd_debug(2, "restarting handle %p\n", handle);
172         up_write(&EXT4_I(inode)->i_data_sem);
173         ret = ext4_journal_restart(handle, nblocks);
174         down_write(&EXT4_I(inode)->i_data_sem);
175         ext4_discard_preallocations(inode);
176
177         return ret;
178 }
179
180 /*
181  * Called at the last iput() if i_nlink is zero.
182  */
183 void ext4_evict_inode(struct inode *inode)
184 {
185         handle_t *handle;
186         int err;
187
188         trace_ext4_evict_inode(inode);
189
190         if (inode->i_nlink) {
191                 /*
192                  * When journalling data dirty buffers are tracked only in the
193                  * journal. So although mm thinks everything is clean and
194                  * ready for reaping the inode might still have some pages to
195                  * write in the running transaction or waiting to be
196                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
197                  * (via truncate_inode_pages()) to discard these buffers can
198                  * cause data loss. Also even if we did not discard these
199                  * buffers, we would have no way to find them after the inode
200                  * is reaped and thus user could see stale data if he tries to
201                  * read them before the transaction is checkpointed. So be
202                  * careful and force everything to disk here... We use
203                  * ei->i_datasync_tid to store the newest transaction
204                  * containing inode's data.
205                  *
206                  * Note that directories do not have this problem because they
207                  * don't use page cache.
208                  */
209                 if (ext4_should_journal_data(inode) &&
210                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211                     inode->i_ino != EXT4_JOURNAL_INO) {
212                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
215                         jbd2_complete_transaction(journal, commit_tid);
216                         filemap_write_and_wait(&inode->i_data);
217                 }
218                 truncate_inode_pages(&inode->i_data, 0);
219                 ext4_ioend_shutdown(inode);
220                 goto no_delete;
221         }
222
223         if (!is_bad_inode(inode))
224                 dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages(&inode->i_data, 0);
229         ext4_ioend_shutdown(inode);
230
231         if (is_bad_inode(inode))
232                 goto no_delete;
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it
237          */
238         sb_start_intwrite(inode->i_sb);
239         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240                                     ext4_blocks_for_truncate(inode)+3);
241         if (IS_ERR(handle)) {
242                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243                 /*
244                  * If we're going to skip the normal cleanup, we still need to
245                  * make sure that the in-core orphan linked list is properly
246                  * cleaned up.
247                  */
248                 ext4_orphan_del(NULL, inode);
249                 sb_end_intwrite(inode->i_sb);
250                 goto no_delete;
251         }
252
253         if (IS_SYNC(inode))
254                 ext4_handle_sync(handle);
255         inode->i_size = 0;
256         err = ext4_mark_inode_dirty(handle, inode);
257         if (err) {
258                 ext4_warning(inode->i_sb,
259                              "couldn't mark inode dirty (err %d)", err);
260                 goto stop_handle;
261         }
262         if (inode->i_blocks)
263                 ext4_truncate(inode);
264
265         /*
266          * ext4_ext_truncate() doesn't reserve any slop when it
267          * restarts journal transactions; therefore there may not be
268          * enough credits left in the handle to remove the inode from
269          * the orphan list and set the dtime field.
270          */
271         if (!ext4_handle_has_enough_credits(handle, 3)) {
272                 err = ext4_journal_extend(handle, 3);
273                 if (err > 0)
274                         err = ext4_journal_restart(handle, 3);
275                 if (err != 0) {
276                         ext4_warning(inode->i_sb,
277                                      "couldn't extend journal (err %d)", err);
278                 stop_handle:
279                         ext4_journal_stop(handle);
280                         ext4_orphan_del(NULL, inode);
281                         sb_end_intwrite(inode->i_sb);
282                         goto no_delete;
283                 }
284         }
285
286         /*
287          * Kill off the orphan record which ext4_truncate created.
288          * AKPM: I think this can be inside the above `if'.
289          * Note that ext4_orphan_del() has to be able to cope with the
290          * deletion of a non-existent orphan - this is because we don't
291          * know if ext4_truncate() actually created an orphan record.
292          * (Well, we could do this if we need to, but heck - it works)
293          */
294         ext4_orphan_del(handle, inode);
295         EXT4_I(inode)->i_dtime  = get_seconds();
296
297         /*
298          * One subtle ordering requirement: if anything has gone wrong
299          * (transaction abort, IO errors, whatever), then we can still
300          * do these next steps (the fs will already have been marked as
301          * having errors), but we can't free the inode if the mark_dirty
302          * fails.
303          */
304         if (ext4_mark_inode_dirty(handle, inode))
305                 /* If that failed, just do the required in-core inode clear. */
306                 ext4_clear_inode(inode);
307         else
308                 ext4_free_inode(handle, inode);
309         ext4_journal_stop(handle);
310         sb_end_intwrite(inode->i_sb);
311         return;
312 no_delete:
313         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319         return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330                 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332         return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340                                         int used, int quota_claim)
341 {
342         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343         struct ext4_inode_info *ei = EXT4_I(inode);
344
345         spin_lock(&ei->i_block_reservation_lock);
346         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347         if (unlikely(used > ei->i_reserved_data_blocks)) {
348                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349                          "with only %d reserved data blocks",
350                          __func__, inode->i_ino, used,
351                          ei->i_reserved_data_blocks);
352                 WARN_ON(1);
353                 used = ei->i_reserved_data_blocks;
354         }
355
356         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358                         "with only %d reserved metadata blocks "
359                         "(releasing %d blocks with reserved %d data blocks)",
360                         inode->i_ino, ei->i_allocated_meta_blocks,
361                              ei->i_reserved_meta_blocks, used,
362                              ei->i_reserved_data_blocks);
363                 WARN_ON(1);
364                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365         }
366
367         /* Update per-inode reservations */
368         ei->i_reserved_data_blocks -= used;
369         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371                            used + ei->i_allocated_meta_blocks);
372         ei->i_allocated_meta_blocks = 0;
373
374         if (ei->i_reserved_data_blocks == 0) {
375                 /*
376                  * We can release all of the reserved metadata blocks
377                  * only when we have written all of the delayed
378                  * allocation blocks.
379                  */
380                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381                                    ei->i_reserved_meta_blocks);
382                 ei->i_reserved_meta_blocks = 0;
383                 ei->i_da_metadata_calc_len = 0;
384         }
385         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387         /* Update quota subsystem for data blocks */
388         if (quota_claim)
389                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390         else {
391                 /*
392                  * We did fallocate with an offset that is already delayed
393                  * allocated. So on delayed allocated writeback we should
394                  * not re-claim the quota for fallocated blocks.
395                  */
396                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397         }
398
399         /*
400          * If we have done all the pending block allocations and if
401          * there aren't any writers on the inode, we can discard the
402          * inode's preallocations.
403          */
404         if ((ei->i_reserved_data_blocks == 0) &&
405             (atomic_read(&inode->i_writecount) == 0))
406                 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410                                 unsigned int line,
411                                 struct ext4_map_blocks *map)
412 {
413         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414                                    map->m_len)) {
415                 ext4_error_inode(inode, func, line, map->m_pblk,
416                                  "lblock %lu mapped to illegal pblock "
417                                  "(length %d)", (unsigned long) map->m_lblk,
418                                  map->m_len);
419                 return -EIO;
420         }
421         return 0;
422 }
423
424 #define check_block_validity(inode, map)        \
425         __check_block_validity((inode), __func__, __LINE__, (map))
426
427 /*
428  * Return the number of contiguous dirty pages in a given inode
429  * starting at page frame idx.
430  */
431 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
432                                     unsigned int max_pages)
433 {
434         struct address_space *mapping = inode->i_mapping;
435         pgoff_t index;
436         struct pagevec pvec;
437         pgoff_t num = 0;
438         int i, nr_pages, done = 0;
439
440         if (max_pages == 0)
441                 return 0;
442         pagevec_init(&pvec, 0);
443         while (!done) {
444                 index = idx;
445                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
446                                               PAGECACHE_TAG_DIRTY,
447                                               (pgoff_t)PAGEVEC_SIZE);
448                 if (nr_pages == 0)
449                         break;
450                 for (i = 0; i < nr_pages; i++) {
451                         struct page *page = pvec.pages[i];
452                         struct buffer_head *bh, *head;
453
454                         lock_page(page);
455                         if (unlikely(page->mapping != mapping) ||
456                             !PageDirty(page) ||
457                             PageWriteback(page) ||
458                             page->index != idx) {
459                                 done = 1;
460                                 unlock_page(page);
461                                 break;
462                         }
463                         if (page_has_buffers(page)) {
464                                 bh = head = page_buffers(page);
465                                 do {
466                                         if (!buffer_delay(bh) &&
467                                             !buffer_unwritten(bh))
468                                                 done = 1;
469                                         bh = bh->b_this_page;
470                                 } while (!done && (bh != head));
471                         }
472                         unlock_page(page);
473                         if (done)
474                                 break;
475                         idx++;
476                         num++;
477                         if (num >= max_pages) {
478                                 done = 1;
479                                 break;
480                         }
481                 }
482                 pagevec_release(&pvec);
483         }
484         return num;
485 }
486
487 #ifdef ES_AGGRESSIVE_TEST
488 static void ext4_map_blocks_es_recheck(handle_t *handle,
489                                        struct inode *inode,
490                                        struct ext4_map_blocks *es_map,
491                                        struct ext4_map_blocks *map,
492                                        int flags)
493 {
494         int retval;
495
496         map->m_flags = 0;
497         /*
498          * There is a race window that the result is not the same.
499          * e.g. xfstests #223 when dioread_nolock enables.  The reason
500          * is that we lookup a block mapping in extent status tree with
501          * out taking i_data_sem.  So at the time the unwritten extent
502          * could be converted.
503          */
504         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
505                 down_read((&EXT4_I(inode)->i_data_sem));
506         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
507                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
508                                              EXT4_GET_BLOCKS_KEEP_SIZE);
509         } else {
510                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
511                                              EXT4_GET_BLOCKS_KEEP_SIZE);
512         }
513         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
514                 up_read((&EXT4_I(inode)->i_data_sem));
515         /*
516          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
517          * because it shouldn't be marked in es_map->m_flags.
518          */
519         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
520
521         /*
522          * We don't check m_len because extent will be collpased in status
523          * tree.  So the m_len might not equal.
524          */
525         if (es_map->m_lblk != map->m_lblk ||
526             es_map->m_flags != map->m_flags ||
527             es_map->m_pblk != map->m_pblk) {
528                 printk("ES cache assertation failed for inode: %lu "
529                        "es_cached ex [%d/%d/%llu/%x] != "
530                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
531                        inode->i_ino, es_map->m_lblk, es_map->m_len,
532                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
533                        map->m_len, map->m_pblk, map->m_flags,
534                        retval, flags);
535         }
536 }
537 #endif /* ES_AGGRESSIVE_TEST */
538
539 /*
540  * The ext4_map_blocks() function tries to look up the requested blocks,
541  * and returns if the blocks are already mapped.
542  *
543  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
544  * and store the allocated blocks in the result buffer head and mark it
545  * mapped.
546  *
547  * If file type is extents based, it will call ext4_ext_map_blocks(),
548  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
549  * based files
550  *
551  * On success, it returns the number of blocks being mapped or allocate.
552  * if create==0 and the blocks are pre-allocated and uninitialized block,
553  * the result buffer head is unmapped. If the create ==1, it will make sure
554  * the buffer head is mapped.
555  *
556  * It returns 0 if plain look up failed (blocks have not been allocated), in
557  * that case, buffer head is unmapped
558  *
559  * It returns the error in case of allocation failure.
560  */
561 int ext4_map_blocks(handle_t *handle, struct inode *inode,
562                     struct ext4_map_blocks *map, int flags)
563 {
564         struct extent_status es;
565         int retval;
566 #ifdef ES_AGGRESSIVE_TEST
567         struct ext4_map_blocks orig_map;
568
569         memcpy(&orig_map, map, sizeof(*map));
570 #endif
571
572         map->m_flags = 0;
573         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
574                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
575                   (unsigned long) map->m_lblk);
576
577         /* Lookup extent status tree firstly */
578         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
579                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
580                         map->m_pblk = ext4_es_pblock(&es) +
581                                         map->m_lblk - es.es_lblk;
582                         map->m_flags |= ext4_es_is_written(&es) ?
583                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
584                         retval = es.es_len - (map->m_lblk - es.es_lblk);
585                         if (retval > map->m_len)
586                                 retval = map->m_len;
587                         map->m_len = retval;
588                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
589                         retval = 0;
590                 } else {
591                         BUG_ON(1);
592                 }
593 #ifdef ES_AGGRESSIVE_TEST
594                 ext4_map_blocks_es_recheck(handle, inode, map,
595                                            &orig_map, flags);
596 #endif
597                 goto found;
598         }
599
600         /*
601          * Try to see if we can get the block without requesting a new
602          * file system block.
603          */
604         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
605                 down_read((&EXT4_I(inode)->i_data_sem));
606         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
607                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
608                                              EXT4_GET_BLOCKS_KEEP_SIZE);
609         } else {
610                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
611                                              EXT4_GET_BLOCKS_KEEP_SIZE);
612         }
613         if (retval > 0) {
614                 int ret;
615                 unsigned long long status;
616
617 #ifdef ES_AGGRESSIVE_TEST
618                 if (retval != map->m_len) {
619                         printk("ES len assertation failed for inode: %lu "
620                                "retval %d != map->m_len %d "
621                                "in %s (lookup)\n", inode->i_ino, retval,
622                                map->m_len, __func__);
623                 }
624 #endif
625
626                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
627                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
628                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
629                     ext4_find_delalloc_range(inode, map->m_lblk,
630                                              map->m_lblk + map->m_len - 1))
631                         status |= EXTENT_STATUS_DELAYED;
632                 ret = ext4_es_insert_extent(inode, map->m_lblk,
633                                             map->m_len, map->m_pblk, status);
634                 if (ret < 0)
635                         retval = ret;
636         }
637         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
638                 up_read((&EXT4_I(inode)->i_data_sem));
639
640 found:
641         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
642                 int ret = check_block_validity(inode, map);
643                 if (ret != 0)
644                         return ret;
645         }
646
647         /* If it is only a block(s) look up */
648         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
649                 return retval;
650
651         /*
652          * Returns if the blocks have already allocated
653          *
654          * Note that if blocks have been preallocated
655          * ext4_ext_get_block() returns the create = 0
656          * with buffer head unmapped.
657          */
658         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
659                 return retval;
660
661         /*
662          * Here we clear m_flags because after allocating an new extent,
663          * it will be set again.
664          */
665         map->m_flags &= ~EXT4_MAP_FLAGS;
666
667         /*
668          * New blocks allocate and/or writing to uninitialized extent
669          * will possibly result in updating i_data, so we take
670          * the write lock of i_data_sem, and call get_blocks()
671          * with create == 1 flag.
672          */
673         down_write((&EXT4_I(inode)->i_data_sem));
674
675         /*
676          * if the caller is from delayed allocation writeout path
677          * we have already reserved fs blocks for allocation
678          * let the underlying get_block() function know to
679          * avoid double accounting
680          */
681         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
682                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
683         /*
684          * We need to check for EXT4 here because migrate
685          * could have changed the inode type in between
686          */
687         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
688                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
689         } else {
690                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
691
692                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
693                         /*
694                          * We allocated new blocks which will result in
695                          * i_data's format changing.  Force the migrate
696                          * to fail by clearing migrate flags
697                          */
698                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
699                 }
700
701                 /*
702                  * Update reserved blocks/metadata blocks after successful
703                  * block allocation which had been deferred till now. We don't
704                  * support fallocate for non extent files. So we can update
705                  * reserve space here.
706                  */
707                 if ((retval > 0) &&
708                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
709                         ext4_da_update_reserve_space(inode, retval, 1);
710         }
711         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
712                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
713
714         if (retval > 0) {
715                 int ret;
716                 unsigned long long status;
717
718 #ifdef ES_AGGRESSIVE_TEST
719                 if (retval != map->m_len) {
720                         printk("ES len assertation failed for inode: %lu "
721                                "retval %d != map->m_len %d "
722                                "in %s (allocation)\n", inode->i_ino, retval,
723                                map->m_len, __func__);
724                 }
725 #endif
726
727                 /*
728                  * If the extent has been zeroed out, we don't need to update
729                  * extent status tree.
730                  */
731                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
732                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
733                         if (ext4_es_is_written(&es))
734                                 goto has_zeroout;
735                 }
736                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
737                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
738                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
739                     ext4_find_delalloc_range(inode, map->m_lblk,
740                                              map->m_lblk + map->m_len - 1))
741                         status |= EXTENT_STATUS_DELAYED;
742                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
743                                             map->m_pblk, status);
744                 if (ret < 0)
745                         retval = ret;
746         }
747
748 has_zeroout:
749         up_write((&EXT4_I(inode)->i_data_sem));
750         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
751                 int ret = check_block_validity(inode, map);
752                 if (ret != 0)
753                         return ret;
754         }
755         return retval;
756 }
757
758 /* Maximum number of blocks we map for direct IO at once. */
759 #define DIO_MAX_BLOCKS 4096
760
761 static int _ext4_get_block(struct inode *inode, sector_t iblock,
762                            struct buffer_head *bh, int flags)
763 {
764         handle_t *handle = ext4_journal_current_handle();
765         struct ext4_map_blocks map;
766         int ret = 0, started = 0;
767         int dio_credits;
768
769         if (ext4_has_inline_data(inode))
770                 return -ERANGE;
771
772         map.m_lblk = iblock;
773         map.m_len = bh->b_size >> inode->i_blkbits;
774
775         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
776                 /* Direct IO write... */
777                 if (map.m_len > DIO_MAX_BLOCKS)
778                         map.m_len = DIO_MAX_BLOCKS;
779                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
780                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
781                                             dio_credits);
782                 if (IS_ERR(handle)) {
783                         ret = PTR_ERR(handle);
784                         return ret;
785                 }
786                 started = 1;
787         }
788
789         ret = ext4_map_blocks(handle, inode, &map, flags);
790         if (ret > 0) {
791                 map_bh(bh, inode->i_sb, map.m_pblk);
792                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
793                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
794                 ret = 0;
795         }
796         if (started)
797                 ext4_journal_stop(handle);
798         return ret;
799 }
800
801 int ext4_get_block(struct inode *inode, sector_t iblock,
802                    struct buffer_head *bh, int create)
803 {
804         return _ext4_get_block(inode, iblock, bh,
805                                create ? EXT4_GET_BLOCKS_CREATE : 0);
806 }
807
808 /*
809  * `handle' can be NULL if create is zero
810  */
811 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
812                                 ext4_lblk_t block, int create, int *errp)
813 {
814         struct ext4_map_blocks map;
815         struct buffer_head *bh;
816         int fatal = 0, err;
817
818         J_ASSERT(handle != NULL || create == 0);
819
820         map.m_lblk = block;
821         map.m_len = 1;
822         err = ext4_map_blocks(handle, inode, &map,
823                               create ? EXT4_GET_BLOCKS_CREATE : 0);
824
825         /* ensure we send some value back into *errp */
826         *errp = 0;
827
828         if (create && err == 0)
829                 err = -ENOSPC;  /* should never happen */
830         if (err < 0)
831                 *errp = err;
832         if (err <= 0)
833                 return NULL;
834
835         bh = sb_getblk(inode->i_sb, map.m_pblk);
836         if (unlikely(!bh)) {
837                 *errp = -ENOMEM;
838                 return NULL;
839         }
840         if (map.m_flags & EXT4_MAP_NEW) {
841                 J_ASSERT(create != 0);
842                 J_ASSERT(handle != NULL);
843
844                 /*
845                  * Now that we do not always journal data, we should
846                  * keep in mind whether this should always journal the
847                  * new buffer as metadata.  For now, regular file
848                  * writes use ext4_get_block instead, so it's not a
849                  * problem.
850                  */
851                 lock_buffer(bh);
852                 BUFFER_TRACE(bh, "call get_create_access");
853                 fatal = ext4_journal_get_create_access(handle, bh);
854                 if (!fatal && !buffer_uptodate(bh)) {
855                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
856                         set_buffer_uptodate(bh);
857                 }
858                 unlock_buffer(bh);
859                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
860                 err = ext4_handle_dirty_metadata(handle, inode, bh);
861                 if (!fatal)
862                         fatal = err;
863         } else {
864                 BUFFER_TRACE(bh, "not a new buffer");
865         }
866         if (fatal) {
867                 *errp = fatal;
868                 brelse(bh);
869                 bh = NULL;
870         }
871         return bh;
872 }
873
874 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
875                                ext4_lblk_t block, int create, int *err)
876 {
877         struct buffer_head *bh;
878
879         bh = ext4_getblk(handle, inode, block, create, err);
880         if (!bh)
881                 return bh;
882         if (buffer_uptodate(bh))
883                 return bh;
884         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
885         wait_on_buffer(bh);
886         if (buffer_uptodate(bh))
887                 return bh;
888         put_bh(bh);
889         *err = -EIO;
890         return NULL;
891 }
892
893 int ext4_walk_page_buffers(handle_t *handle,
894                            struct buffer_head *head,
895                            unsigned from,
896                            unsigned to,
897                            int *partial,
898                            int (*fn)(handle_t *handle,
899                                      struct buffer_head *bh))
900 {
901         struct buffer_head *bh;
902         unsigned block_start, block_end;
903         unsigned blocksize = head->b_size;
904         int err, ret = 0;
905         struct buffer_head *next;
906
907         for (bh = head, block_start = 0;
908              ret == 0 && (bh != head || !block_start);
909              block_start = block_end, bh = next) {
910                 next = bh->b_this_page;
911                 block_end = block_start + blocksize;
912                 if (block_end <= from || block_start >= to) {
913                         if (partial && !buffer_uptodate(bh))
914                                 *partial = 1;
915                         continue;
916                 }
917                 err = (*fn)(handle, bh);
918                 if (!ret)
919                         ret = err;
920         }
921         return ret;
922 }
923
924 /*
925  * To preserve ordering, it is essential that the hole instantiation and
926  * the data write be encapsulated in a single transaction.  We cannot
927  * close off a transaction and start a new one between the ext4_get_block()
928  * and the commit_write().  So doing the jbd2_journal_start at the start of
929  * prepare_write() is the right place.
930  *
931  * Also, this function can nest inside ext4_writepage().  In that case, we
932  * *know* that ext4_writepage() has generated enough buffer credits to do the
933  * whole page.  So we won't block on the journal in that case, which is good,
934  * because the caller may be PF_MEMALLOC.
935  *
936  * By accident, ext4 can be reentered when a transaction is open via
937  * quota file writes.  If we were to commit the transaction while thus
938  * reentered, there can be a deadlock - we would be holding a quota
939  * lock, and the commit would never complete if another thread had a
940  * transaction open and was blocking on the quota lock - a ranking
941  * violation.
942  *
943  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
944  * will _not_ run commit under these circumstances because handle->h_ref
945  * is elevated.  We'll still have enough credits for the tiny quotafile
946  * write.
947  */
948 int do_journal_get_write_access(handle_t *handle,
949                                 struct buffer_head *bh)
950 {
951         int dirty = buffer_dirty(bh);
952         int ret;
953
954         if (!buffer_mapped(bh) || buffer_freed(bh))
955                 return 0;
956         /*
957          * __block_write_begin() could have dirtied some buffers. Clean
958          * the dirty bit as jbd2_journal_get_write_access() could complain
959          * otherwise about fs integrity issues. Setting of the dirty bit
960          * by __block_write_begin() isn't a real problem here as we clear
961          * the bit before releasing a page lock and thus writeback cannot
962          * ever write the buffer.
963          */
964         if (dirty)
965                 clear_buffer_dirty(bh);
966         ret = ext4_journal_get_write_access(handle, bh);
967         if (!ret && dirty)
968                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
969         return ret;
970 }
971
972 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
973                    struct buffer_head *bh_result, int create);
974 static int ext4_write_begin(struct file *file, struct address_space *mapping,
975                             loff_t pos, unsigned len, unsigned flags,
976                             struct page **pagep, void **fsdata)
977 {
978         struct inode *inode = mapping->host;
979         int ret, needed_blocks;
980         handle_t *handle;
981         int retries = 0;
982         struct page *page;
983         pgoff_t index;
984         unsigned from, to;
985
986         trace_ext4_write_begin(inode, pos, len, flags);
987         /*
988          * Reserve one block more for addition to orphan list in case
989          * we allocate blocks but write fails for some reason
990          */
991         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
992         index = pos >> PAGE_CACHE_SHIFT;
993         from = pos & (PAGE_CACHE_SIZE - 1);
994         to = from + len;
995
996         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
997                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
998                                                     flags, pagep);
999                 if (ret < 0)
1000                         return ret;
1001                 if (ret == 1)
1002                         return 0;
1003         }
1004
1005         /*
1006          * grab_cache_page_write_begin() can take a long time if the
1007          * system is thrashing due to memory pressure, or if the page
1008          * is being written back.  So grab it first before we start
1009          * the transaction handle.  This also allows us to allocate
1010          * the page (if needed) without using GFP_NOFS.
1011          */
1012 retry_grab:
1013         page = grab_cache_page_write_begin(mapping, index, flags);
1014         if (!page)
1015                 return -ENOMEM;
1016         unlock_page(page);
1017
1018 retry_journal:
1019         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1020         if (IS_ERR(handle)) {
1021                 page_cache_release(page);
1022                 return PTR_ERR(handle);
1023         }
1024
1025         lock_page(page);
1026         if (page->mapping != mapping) {
1027                 /* The page got truncated from under us */
1028                 unlock_page(page);
1029                 page_cache_release(page);
1030                 ext4_journal_stop(handle);
1031                 goto retry_grab;
1032         }
1033         wait_on_page_writeback(page);
1034
1035         if (ext4_should_dioread_nolock(inode))
1036                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1037         else
1038                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1039
1040         if (!ret && ext4_should_journal_data(inode)) {
1041                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1042                                              from, to, NULL,
1043                                              do_journal_get_write_access);
1044         }
1045
1046         if (ret) {
1047                 unlock_page(page);
1048                 /*
1049                  * __block_write_begin may have instantiated a few blocks
1050                  * outside i_size.  Trim these off again. Don't need
1051                  * i_size_read because we hold i_mutex.
1052                  *
1053                  * Add inode to orphan list in case we crash before
1054                  * truncate finishes
1055                  */
1056                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1057                         ext4_orphan_add(handle, inode);
1058
1059                 ext4_journal_stop(handle);
1060                 if (pos + len > inode->i_size) {
1061                         ext4_truncate_failed_write(inode);
1062                         /*
1063                          * If truncate failed early the inode might
1064                          * still be on the orphan list; we need to
1065                          * make sure the inode is removed from the
1066                          * orphan list in that case.
1067                          */
1068                         if (inode->i_nlink)
1069                                 ext4_orphan_del(NULL, inode);
1070                 }
1071
1072                 if (ret == -ENOSPC &&
1073                     ext4_should_retry_alloc(inode->i_sb, &retries))
1074                         goto retry_journal;
1075                 page_cache_release(page);
1076                 return ret;
1077         }
1078         *pagep = page;
1079         return ret;
1080 }
1081
1082 /* For write_end() in data=journal mode */
1083 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1084 {
1085         int ret;
1086         if (!buffer_mapped(bh) || buffer_freed(bh))
1087                 return 0;
1088         set_buffer_uptodate(bh);
1089         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1090         clear_buffer_meta(bh);
1091         clear_buffer_prio(bh);
1092         return ret;
1093 }
1094
1095 /*
1096  * We need to pick up the new inode size which generic_commit_write gave us
1097  * `file' can be NULL - eg, when called from page_symlink().
1098  *
1099  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1100  * buffers are managed internally.
1101  */
1102 static int ext4_write_end(struct file *file,
1103                           struct address_space *mapping,
1104                           loff_t pos, unsigned len, unsigned copied,
1105                           struct page *page, void *fsdata)
1106 {
1107         handle_t *handle = ext4_journal_current_handle();
1108         struct inode *inode = mapping->host;
1109         int ret = 0, ret2;
1110         int i_size_changed = 0;
1111
1112         trace_ext4_write_end(inode, pos, len, copied);
1113         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1114                 ret = ext4_jbd2_file_inode(handle, inode);
1115                 if (ret) {
1116                         unlock_page(page);
1117                         page_cache_release(page);
1118                         goto errout;
1119                 }
1120         }
1121
1122         if (ext4_has_inline_data(inode)) {
1123                 ret = ext4_write_inline_data_end(inode, pos, len,
1124                                                  copied, page);
1125                 if (ret < 0)
1126                         goto errout;
1127                 copied = ret;
1128         } else
1129                 copied = block_write_end(file, mapping, pos,
1130                                          len, copied, page, fsdata);
1131
1132         /*
1133          * No need to use i_size_read() here, the i_size
1134          * cannot change under us because we hole i_mutex.
1135          *
1136          * But it's important to update i_size while still holding page lock:
1137          * page writeout could otherwise come in and zero beyond i_size.
1138          */
1139         if (pos + copied > inode->i_size) {
1140                 i_size_write(inode, pos + copied);
1141                 i_size_changed = 1;
1142         }
1143
1144         if (pos + copied > EXT4_I(inode)->i_disksize) {
1145                 /* We need to mark inode dirty even if
1146                  * new_i_size is less that inode->i_size
1147                  * but greater than i_disksize. (hint delalloc)
1148                  */
1149                 ext4_update_i_disksize(inode, (pos + copied));
1150                 i_size_changed = 1;
1151         }
1152         unlock_page(page);
1153         page_cache_release(page);
1154
1155         /*
1156          * Don't mark the inode dirty under page lock. First, it unnecessarily
1157          * makes the holding time of page lock longer. Second, it forces lock
1158          * ordering of page lock and transaction start for journaling
1159          * filesystems.
1160          */
1161         if (i_size_changed)
1162                 ext4_mark_inode_dirty(handle, inode);
1163
1164         if (copied < 0)
1165                 ret = copied;
1166         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1167                 /* if we have allocated more blocks and copied
1168                  * less. We will have blocks allocated outside
1169                  * inode->i_size. So truncate them
1170                  */
1171                 ext4_orphan_add(handle, inode);
1172 errout:
1173         ret2 = ext4_journal_stop(handle);
1174         if (!ret)
1175                 ret = ret2;
1176
1177         if (pos + len > inode->i_size) {
1178                 ext4_truncate_failed_write(inode);
1179                 /*
1180                  * If truncate failed early the inode might still be
1181                  * on the orphan list; we need to make sure the inode
1182                  * is removed from the orphan list in that case.
1183                  */
1184                 if (inode->i_nlink)
1185                         ext4_orphan_del(NULL, inode);
1186         }
1187
1188         return ret ? ret : copied;
1189 }
1190
1191 static int ext4_journalled_write_end(struct file *file,
1192                                      struct address_space *mapping,
1193                                      loff_t pos, unsigned len, unsigned copied,
1194                                      struct page *page, void *fsdata)
1195 {
1196         handle_t *handle = ext4_journal_current_handle();
1197         struct inode *inode = mapping->host;
1198         int ret = 0, ret2;
1199         int partial = 0;
1200         unsigned from, to;
1201         loff_t new_i_size;
1202
1203         trace_ext4_journalled_write_end(inode, pos, len, copied);
1204         from = pos & (PAGE_CACHE_SIZE - 1);
1205         to = from + len;
1206
1207         BUG_ON(!ext4_handle_valid(handle));
1208
1209         if (ext4_has_inline_data(inode))
1210                 copied = ext4_write_inline_data_end(inode, pos, len,
1211                                                     copied, page);
1212         else {
1213                 if (copied < len) {
1214                         if (!PageUptodate(page))
1215                                 copied = 0;
1216                         page_zero_new_buffers(page, from+copied, to);
1217                 }
1218
1219                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1220                                              to, &partial, write_end_fn);
1221                 if (!partial)
1222                         SetPageUptodate(page);
1223         }
1224         new_i_size = pos + copied;
1225         if (new_i_size > inode->i_size)
1226                 i_size_write(inode, pos+copied);
1227         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1228         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1229         if (new_i_size > EXT4_I(inode)->i_disksize) {
1230                 ext4_update_i_disksize(inode, new_i_size);
1231                 ret2 = ext4_mark_inode_dirty(handle, inode);
1232                 if (!ret)
1233                         ret = ret2;
1234         }
1235
1236         unlock_page(page);
1237         page_cache_release(page);
1238         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1239                 /* if we have allocated more blocks and copied
1240                  * less. We will have blocks allocated outside
1241                  * inode->i_size. So truncate them
1242                  */
1243                 ext4_orphan_add(handle, inode);
1244
1245         ret2 = ext4_journal_stop(handle);
1246         if (!ret)
1247                 ret = ret2;
1248         if (pos + len > inode->i_size) {
1249                 ext4_truncate_failed_write(inode);
1250                 /*
1251                  * If truncate failed early the inode might still be
1252                  * on the orphan list; we need to make sure the inode
1253                  * is removed from the orphan list in that case.
1254                  */
1255                 if (inode->i_nlink)
1256                         ext4_orphan_del(NULL, inode);
1257         }
1258
1259         return ret ? ret : copied;
1260 }
1261
1262 /*
1263  * Reserve a metadata for a single block located at lblock
1264  */
1265 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1266 {
1267         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1268         struct ext4_inode_info *ei = EXT4_I(inode);
1269         unsigned int md_needed;
1270         ext4_lblk_t save_last_lblock;
1271         int save_len;
1272
1273         /*
1274          * recalculate the amount of metadata blocks to reserve
1275          * in order to allocate nrblocks
1276          * worse case is one extent per block
1277          */
1278         spin_lock(&ei->i_block_reservation_lock);
1279         /*
1280          * ext4_calc_metadata_amount() has side effects, which we have
1281          * to be prepared undo if we fail to claim space.
1282          */
1283         save_len = ei->i_da_metadata_calc_len;
1284         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1285         md_needed = EXT4_NUM_B2C(sbi,
1286                                  ext4_calc_metadata_amount(inode, lblock));
1287         trace_ext4_da_reserve_space(inode, md_needed);
1288
1289         /*
1290          * We do still charge estimated metadata to the sb though;
1291          * we cannot afford to run out of free blocks.
1292          */
1293         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1294                 ei->i_da_metadata_calc_len = save_len;
1295                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1296                 spin_unlock(&ei->i_block_reservation_lock);
1297                 return -ENOSPC;
1298         }
1299         ei->i_reserved_meta_blocks += md_needed;
1300         spin_unlock(&ei->i_block_reservation_lock);
1301
1302         return 0;       /* success */
1303 }
1304
1305 /*
1306  * Reserve a single cluster located at lblock
1307  */
1308 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1309 {
1310         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1311         struct ext4_inode_info *ei = EXT4_I(inode);
1312         unsigned int md_needed;
1313         int ret;
1314         ext4_lblk_t save_last_lblock;
1315         int save_len;
1316
1317         /*
1318          * We will charge metadata quota at writeout time; this saves
1319          * us from metadata over-estimation, though we may go over by
1320          * a small amount in the end.  Here we just reserve for data.
1321          */
1322         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1323         if (ret)
1324                 return ret;
1325
1326         /*
1327          * recalculate the amount of metadata blocks to reserve
1328          * in order to allocate nrblocks
1329          * worse case is one extent per block
1330          */
1331         spin_lock(&ei->i_block_reservation_lock);
1332         /*
1333          * ext4_calc_metadata_amount() has side effects, which we have
1334          * to be prepared undo if we fail to claim space.
1335          */
1336         save_len = ei->i_da_metadata_calc_len;
1337         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1338         md_needed = EXT4_NUM_B2C(sbi,
1339                                  ext4_calc_metadata_amount(inode, lblock));
1340         trace_ext4_da_reserve_space(inode, md_needed);
1341
1342         /*
1343          * We do still charge estimated metadata to the sb though;
1344          * we cannot afford to run out of free blocks.
1345          */
1346         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1347                 ei->i_da_metadata_calc_len = save_len;
1348                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1349                 spin_unlock(&ei->i_block_reservation_lock);
1350                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1351                 return -ENOSPC;
1352         }
1353         ei->i_reserved_data_blocks++;
1354         ei->i_reserved_meta_blocks += md_needed;
1355         spin_unlock(&ei->i_block_reservation_lock);
1356
1357         return 0;       /* success */
1358 }
1359
1360 static void ext4_da_release_space(struct inode *inode, int to_free)
1361 {
1362         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1363         struct ext4_inode_info *ei = EXT4_I(inode);
1364
1365         if (!to_free)
1366                 return;         /* Nothing to release, exit */
1367
1368         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1369
1370         trace_ext4_da_release_space(inode, to_free);
1371         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1372                 /*
1373                  * if there aren't enough reserved blocks, then the
1374                  * counter is messed up somewhere.  Since this
1375                  * function is called from invalidate page, it's
1376                  * harmless to return without any action.
1377                  */
1378                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1379                          "ino %lu, to_free %d with only %d reserved "
1380                          "data blocks", inode->i_ino, to_free,
1381                          ei->i_reserved_data_blocks);
1382                 WARN_ON(1);
1383                 to_free = ei->i_reserved_data_blocks;
1384         }
1385         ei->i_reserved_data_blocks -= to_free;
1386
1387         if (ei->i_reserved_data_blocks == 0) {
1388                 /*
1389                  * We can release all of the reserved metadata blocks
1390                  * only when we have written all of the delayed
1391                  * allocation blocks.
1392                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1393                  * i_reserved_data_blocks, etc. refer to number of clusters.
1394                  */
1395                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1396                                    ei->i_reserved_meta_blocks);
1397                 ei->i_reserved_meta_blocks = 0;
1398                 ei->i_da_metadata_calc_len = 0;
1399         }
1400
1401         /* update fs dirty data blocks counter */
1402         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1403
1404         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1405
1406         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1407 }
1408
1409 static void ext4_da_page_release_reservation(struct page *page,
1410                                              unsigned long offset)
1411 {
1412         int to_release = 0;
1413         struct buffer_head *head, *bh;
1414         unsigned int curr_off = 0;
1415         struct inode *inode = page->mapping->host;
1416         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1417         int num_clusters;
1418         ext4_fsblk_t lblk;
1419
1420         head = page_buffers(page);
1421         bh = head;
1422         do {
1423                 unsigned int next_off = curr_off + bh->b_size;
1424
1425                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1426                         to_release++;
1427                         clear_buffer_delay(bh);
1428                 }
1429                 curr_off = next_off;
1430         } while ((bh = bh->b_this_page) != head);
1431
1432         if (to_release) {
1433                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1434                 ext4_es_remove_extent(inode, lblk, to_release);
1435         }
1436
1437         /* If we have released all the blocks belonging to a cluster, then we
1438          * need to release the reserved space for that cluster. */
1439         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1440         while (num_clusters > 0) {
1441                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1442                         ((num_clusters - 1) << sbi->s_cluster_bits);
1443                 if (sbi->s_cluster_ratio == 1 ||
1444                     !ext4_find_delalloc_cluster(inode, lblk))
1445                         ext4_da_release_space(inode, 1);
1446
1447                 num_clusters--;
1448         }
1449 }
1450
1451 /*
1452  * Delayed allocation stuff
1453  */
1454
1455 /*
1456  * mpage_da_submit_io - walks through extent of pages and try to write
1457  * them with writepage() call back
1458  *
1459  * @mpd->inode: inode
1460  * @mpd->first_page: first page of the extent
1461  * @mpd->next_page: page after the last page of the extent
1462  *
1463  * By the time mpage_da_submit_io() is called we expect all blocks
1464  * to be allocated. this may be wrong if allocation failed.
1465  *
1466  * As pages are already locked by write_cache_pages(), we can't use it
1467  */
1468 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1469                               struct ext4_map_blocks *map)
1470 {
1471         struct pagevec pvec;
1472         unsigned long index, end;
1473         int ret = 0, err, nr_pages, i;
1474         struct inode *inode = mpd->inode;
1475         struct address_space *mapping = inode->i_mapping;
1476         loff_t size = i_size_read(inode);
1477         unsigned int len, block_start;
1478         struct buffer_head *bh, *page_bufs = NULL;
1479         sector_t pblock = 0, cur_logical = 0;
1480         struct ext4_io_submit io_submit;
1481
1482         BUG_ON(mpd->next_page <= mpd->first_page);
1483         memset(&io_submit, 0, sizeof(io_submit));
1484         /*
1485          * We need to start from the first_page to the next_page - 1
1486          * to make sure we also write the mapped dirty buffer_heads.
1487          * If we look at mpd->b_blocknr we would only be looking
1488          * at the currently mapped buffer_heads.
1489          */
1490         index = mpd->first_page;
1491         end = mpd->next_page - 1;
1492
1493         pagevec_init(&pvec, 0);
1494         while (index <= end) {
1495                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1496                 if (nr_pages == 0)
1497                         break;
1498                 for (i = 0; i < nr_pages; i++) {
1499                         int skip_page = 0;
1500                         struct page *page = pvec.pages[i];
1501
1502                         index = page->index;
1503                         if (index > end)
1504                                 break;
1505
1506                         if (index == size >> PAGE_CACHE_SHIFT)
1507                                 len = size & ~PAGE_CACHE_MASK;
1508                         else
1509                                 len = PAGE_CACHE_SIZE;
1510                         if (map) {
1511                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1512                                                         inode->i_blkbits);
1513                                 pblock = map->m_pblk + (cur_logical -
1514                                                         map->m_lblk);
1515                         }
1516                         index++;
1517
1518                         BUG_ON(!PageLocked(page));
1519                         BUG_ON(PageWriteback(page));
1520
1521                         bh = page_bufs = page_buffers(page);
1522                         block_start = 0;
1523                         do {
1524                                 if (map && (cur_logical >= map->m_lblk) &&
1525                                     (cur_logical <= (map->m_lblk +
1526                                                      (map->m_len - 1)))) {
1527                                         if (buffer_delay(bh)) {
1528                                                 clear_buffer_delay(bh);
1529                                                 bh->b_blocknr = pblock;
1530                                         }
1531                                         if (buffer_unwritten(bh) ||
1532                                             buffer_mapped(bh))
1533                                                 BUG_ON(bh->b_blocknr != pblock);
1534                                         if (map->m_flags & EXT4_MAP_UNINIT)
1535                                                 set_buffer_uninit(bh);
1536                                         clear_buffer_unwritten(bh);
1537                                 }
1538
1539                                 /*
1540                                  * skip page if block allocation undone and
1541                                  * block is dirty
1542                                  */
1543                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1544                                         skip_page = 1;
1545                                 bh = bh->b_this_page;
1546                                 block_start += bh->b_size;
1547                                 cur_logical++;
1548                                 pblock++;
1549                         } while (bh != page_bufs);
1550
1551                         if (skip_page) {
1552                                 unlock_page(page);
1553                                 continue;
1554                         }
1555
1556                         clear_page_dirty_for_io(page);
1557                         err = ext4_bio_write_page(&io_submit, page, len,
1558                                                   mpd->wbc);
1559                         if (!err)
1560                                 mpd->pages_written++;
1561                         /*
1562                          * In error case, we have to continue because
1563                          * remaining pages are still locked
1564                          */
1565                         if (ret == 0)
1566                                 ret = err;
1567                 }
1568                 pagevec_release(&pvec);
1569         }
1570         ext4_io_submit(&io_submit);
1571         return ret;
1572 }
1573
1574 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1575 {
1576         int nr_pages, i;
1577         pgoff_t index, end;
1578         struct pagevec pvec;
1579         struct inode *inode = mpd->inode;
1580         struct address_space *mapping = inode->i_mapping;
1581         ext4_lblk_t start, last;
1582
1583         index = mpd->first_page;
1584         end   = mpd->next_page - 1;
1585
1586         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1587         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1588         ext4_es_remove_extent(inode, start, last - start + 1);
1589
1590         pagevec_init(&pvec, 0);
1591         while (index <= end) {
1592                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1593                 if (nr_pages == 0)
1594                         break;
1595                 for (i = 0; i < nr_pages; i++) {
1596                         struct page *page = pvec.pages[i];
1597                         if (page->index > end)
1598                                 break;
1599                         BUG_ON(!PageLocked(page));
1600                         BUG_ON(PageWriteback(page));
1601                         block_invalidatepage(page, 0);
1602                         ClearPageUptodate(page);
1603                         unlock_page(page);
1604                 }
1605                 index = pvec.pages[nr_pages - 1]->index + 1;
1606                 pagevec_release(&pvec);
1607         }
1608         return;
1609 }
1610
1611 static void ext4_print_free_blocks(struct inode *inode)
1612 {
1613         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1614         struct super_block *sb = inode->i_sb;
1615         struct ext4_inode_info *ei = EXT4_I(inode);
1616
1617         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1618                EXT4_C2B(EXT4_SB(inode->i_sb),
1619                         ext4_count_free_clusters(sb)));
1620         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1621         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1622                (long long) EXT4_C2B(EXT4_SB(sb),
1623                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1624         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1625                (long long) EXT4_C2B(EXT4_SB(sb),
1626                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1627         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1628         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1629                  ei->i_reserved_data_blocks);
1630         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1631                ei->i_reserved_meta_blocks);
1632         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1633                ei->i_allocated_meta_blocks);
1634         return;
1635 }
1636
1637 /*
1638  * mpage_da_map_and_submit - go through given space, map them
1639  *       if necessary, and then submit them for I/O
1640  *
1641  * @mpd - bh describing space
1642  *
1643  * The function skips space we know is already mapped to disk blocks.
1644  *
1645  */
1646 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1647 {
1648         int err, blks, get_blocks_flags;
1649         struct ext4_map_blocks map, *mapp = NULL;
1650         sector_t next = mpd->b_blocknr;
1651         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1652         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1653         handle_t *handle = NULL;
1654
1655         /*
1656          * If the blocks are mapped already, or we couldn't accumulate
1657          * any blocks, then proceed immediately to the submission stage.
1658          */
1659         if ((mpd->b_size == 0) ||
1660             ((mpd->b_state  & (1 << BH_Mapped)) &&
1661              !(mpd->b_state & (1 << BH_Delay)) &&
1662              !(mpd->b_state & (1 << BH_Unwritten))))
1663                 goto submit_io;
1664
1665         handle = ext4_journal_current_handle();
1666         BUG_ON(!handle);
1667
1668         /*
1669          * Call ext4_map_blocks() to allocate any delayed allocation
1670          * blocks, or to convert an uninitialized extent to be
1671          * initialized (in the case where we have written into
1672          * one or more preallocated blocks).
1673          *
1674          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1675          * indicate that we are on the delayed allocation path.  This
1676          * affects functions in many different parts of the allocation
1677          * call path.  This flag exists primarily because we don't
1678          * want to change *many* call functions, so ext4_map_blocks()
1679          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1680          * inode's allocation semaphore is taken.
1681          *
1682          * If the blocks in questions were delalloc blocks, set
1683          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1684          * variables are updated after the blocks have been allocated.
1685          */
1686         map.m_lblk = next;
1687         map.m_len = max_blocks;
1688         /*
1689          * We're in delalloc path and it is possible that we're going to
1690          * need more metadata blocks than previously reserved. However
1691          * we must not fail because we're in writeback and there is
1692          * nothing we can do about it so it might result in data loss.
1693          * So use reserved blocks to allocate metadata if possible.
1694          */
1695         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1696                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
1697         if (ext4_should_dioread_nolock(mpd->inode))
1698                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1699         if (mpd->b_state & (1 << BH_Delay))
1700                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1701
1702
1703         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1704         if (blks < 0) {
1705                 struct super_block *sb = mpd->inode->i_sb;
1706
1707                 err = blks;
1708                 /*
1709                  * If get block returns EAGAIN or ENOSPC and there
1710                  * appears to be free blocks we will just let
1711                  * mpage_da_submit_io() unlock all of the pages.
1712                  */
1713                 if (err == -EAGAIN)
1714                         goto submit_io;
1715
1716                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1717                         mpd->retval = err;
1718                         goto submit_io;
1719                 }
1720
1721                 /*
1722                  * get block failure will cause us to loop in
1723                  * writepages, because a_ops->writepage won't be able
1724                  * to make progress. The page will be redirtied by
1725                  * writepage and writepages will again try to write
1726                  * the same.
1727                  */
1728                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1729                         ext4_msg(sb, KERN_CRIT,
1730                                  "delayed block allocation failed for inode %lu "
1731                                  "at logical offset %llu with max blocks %zd "
1732                                  "with error %d", mpd->inode->i_ino,
1733                                  (unsigned long long) next,
1734                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1735                         ext4_msg(sb, KERN_CRIT,
1736                                 "This should not happen!! Data will be lost");
1737                         if (err == -ENOSPC)
1738                                 ext4_print_free_blocks(mpd->inode);
1739                 }
1740                 /* invalidate all the pages */
1741                 ext4_da_block_invalidatepages(mpd);
1742
1743                 /* Mark this page range as having been completed */
1744                 mpd->io_done = 1;
1745                 return;
1746         }
1747         BUG_ON(blks == 0);
1748
1749         mapp = &map;
1750         if (map.m_flags & EXT4_MAP_NEW) {
1751                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1752                 int i;
1753
1754                 for (i = 0; i < map.m_len; i++)
1755                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1756         }
1757
1758         /*
1759          * Update on-disk size along with block allocation.
1760          */
1761         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1762         if (disksize > i_size_read(mpd->inode))
1763                 disksize = i_size_read(mpd->inode);
1764         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1765                 ext4_update_i_disksize(mpd->inode, disksize);
1766                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1767                 if (err)
1768                         ext4_error(mpd->inode->i_sb,
1769                                    "Failed to mark inode %lu dirty",
1770                                    mpd->inode->i_ino);
1771         }
1772
1773 submit_io:
1774         mpage_da_submit_io(mpd, mapp);
1775         mpd->io_done = 1;
1776 }
1777
1778 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1779                 (1 << BH_Delay) | (1 << BH_Unwritten))
1780
1781 /*
1782  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1783  *
1784  * @mpd->lbh - extent of blocks
1785  * @logical - logical number of the block in the file
1786  * @b_state - b_state of the buffer head added
1787  *
1788  * the function is used to collect contig. blocks in same state
1789  */
1790 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1791                                    unsigned long b_state)
1792 {
1793         sector_t next;
1794         int blkbits = mpd->inode->i_blkbits;
1795         int nrblocks = mpd->b_size >> blkbits;
1796
1797         /*
1798          * XXX Don't go larger than mballoc is willing to allocate
1799          * This is a stopgap solution.  We eventually need to fold
1800          * mpage_da_submit_io() into this function and then call
1801          * ext4_map_blocks() multiple times in a loop
1802          */
1803         if (nrblocks >= (8*1024*1024 >> blkbits))
1804                 goto flush_it;
1805
1806         /* check if the reserved journal credits might overflow */
1807         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1808                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1809                         /*
1810                          * With non-extent format we are limited by the journal
1811                          * credit available.  Total credit needed to insert
1812                          * nrblocks contiguous blocks is dependent on the
1813                          * nrblocks.  So limit nrblocks.
1814                          */
1815                         goto flush_it;
1816                 }
1817         }
1818         /*
1819          * First block in the extent
1820          */
1821         if (mpd->b_size == 0) {
1822                 mpd->b_blocknr = logical;
1823                 mpd->b_size = 1 << blkbits;
1824                 mpd->b_state = b_state & BH_FLAGS;
1825                 return;
1826         }
1827
1828         next = mpd->b_blocknr + nrblocks;
1829         /*
1830          * Can we merge the block to our big extent?
1831          */
1832         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1833                 mpd->b_size += 1 << blkbits;
1834                 return;
1835         }
1836
1837 flush_it:
1838         /*
1839          * We couldn't merge the block to our extent, so we
1840          * need to flush current  extent and start new one
1841          */
1842         mpage_da_map_and_submit(mpd);
1843         return;
1844 }
1845
1846 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1847 {
1848         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1849 }
1850
1851 /*
1852  * This function is grabs code from the very beginning of
1853  * ext4_map_blocks, but assumes that the caller is from delayed write
1854  * time. This function looks up the requested blocks and sets the
1855  * buffer delay bit under the protection of i_data_sem.
1856  */
1857 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1858                               struct ext4_map_blocks *map,
1859                               struct buffer_head *bh)
1860 {
1861         struct extent_status es;
1862         int retval;
1863         sector_t invalid_block = ~((sector_t) 0xffff);
1864 #ifdef ES_AGGRESSIVE_TEST
1865         struct ext4_map_blocks orig_map;
1866
1867         memcpy(&orig_map, map, sizeof(*map));
1868 #endif
1869
1870         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1871                 invalid_block = ~0;
1872
1873         map->m_flags = 0;
1874         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1875                   "logical block %lu\n", inode->i_ino, map->m_len,
1876                   (unsigned long) map->m_lblk);
1877
1878         /* Lookup extent status tree firstly */
1879         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1880
1881                 if (ext4_es_is_hole(&es)) {
1882                         retval = 0;
1883                         down_read((&EXT4_I(inode)->i_data_sem));
1884                         goto add_delayed;
1885                 }
1886
1887                 /*
1888                  * Delayed extent could be allocated by fallocate.
1889                  * So we need to check it.
1890                  */
1891                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1892                         map_bh(bh, inode->i_sb, invalid_block);
1893                         set_buffer_new(bh);
1894                         set_buffer_delay(bh);
1895                         return 0;
1896                 }
1897
1898                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1899                 retval = es.es_len - (iblock - es.es_lblk);
1900                 if (retval > map->m_len)
1901                         retval = map->m_len;
1902                 map->m_len = retval;
1903                 if (ext4_es_is_written(&es))
1904                         map->m_flags |= EXT4_MAP_MAPPED;
1905                 else if (ext4_es_is_unwritten(&es))
1906                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1907                 else
1908                         BUG_ON(1);
1909
1910 #ifdef ES_AGGRESSIVE_TEST
1911                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1912 #endif
1913                 return retval;
1914         }
1915
1916         /*
1917          * Try to see if we can get the block without requesting a new
1918          * file system block.
1919          */
1920         down_read((&EXT4_I(inode)->i_data_sem));
1921         if (ext4_has_inline_data(inode)) {
1922                 /*
1923                  * We will soon create blocks for this page, and let
1924                  * us pretend as if the blocks aren't allocated yet.
1925                  * In case of clusters, we have to handle the work
1926                  * of mapping from cluster so that the reserved space
1927                  * is calculated properly.
1928                  */
1929                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1930                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1931                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1932                 retval = 0;
1933         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1934                 retval = ext4_ext_map_blocks(NULL, inode, map,
1935                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1936         else
1937                 retval = ext4_ind_map_blocks(NULL, inode, map,
1938                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1939
1940 add_delayed:
1941         if (retval == 0) {
1942                 int ret;
1943                 /*
1944                  * XXX: __block_prepare_write() unmaps passed block,
1945                  * is it OK?
1946                  */
1947                 /*
1948                  * If the block was allocated from previously allocated cluster,
1949                  * then we don't need to reserve it again. However we still need
1950                  * to reserve metadata for every block we're going to write.
1951                  */
1952                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1953                         ret = ext4_da_reserve_space(inode, iblock);
1954                         if (ret) {
1955                                 /* not enough space to reserve */
1956                                 retval = ret;
1957                                 goto out_unlock;
1958                         }
1959                 } else {
1960                         ret = ext4_da_reserve_metadata(inode, iblock);
1961                         if (ret) {
1962                                 /* not enough space to reserve */
1963                                 retval = ret;
1964                                 goto out_unlock;
1965                         }
1966                 }
1967
1968                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1969                                             ~0, EXTENT_STATUS_DELAYED);
1970                 if (ret) {
1971                         retval = ret;
1972                         goto out_unlock;
1973                 }
1974
1975                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1976                  * and it should not appear on the bh->b_state.
1977                  */
1978                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1979
1980                 map_bh(bh, inode->i_sb, invalid_block);
1981                 set_buffer_new(bh);
1982                 set_buffer_delay(bh);
1983         } else if (retval > 0) {
1984                 int ret;
1985                 unsigned long long status;
1986
1987 #ifdef ES_AGGRESSIVE_TEST
1988                 if (retval != map->m_len) {
1989                         printk("ES len assertation failed for inode: %lu "
1990                                "retval %d != map->m_len %d "
1991                                "in %s (lookup)\n", inode->i_ino, retval,
1992                                map->m_len, __func__);
1993                 }
1994 #endif
1995
1996                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1997                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1998                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1999                                             map->m_pblk, status);
2000                 if (ret != 0)
2001                         retval = ret;
2002         }
2003
2004 out_unlock:
2005         up_read((&EXT4_I(inode)->i_data_sem));
2006
2007         return retval;
2008 }
2009
2010 /*
2011  * This is a special get_blocks_t callback which is used by
2012  * ext4_da_write_begin().  It will either return mapped block or
2013  * reserve space for a single block.
2014  *
2015  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2016  * We also have b_blocknr = -1 and b_bdev initialized properly
2017  *
2018  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2019  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2020  * initialized properly.
2021  */
2022 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2023                            struct buffer_head *bh, int create)
2024 {
2025         struct ext4_map_blocks map;
2026         int ret = 0;
2027
2028         BUG_ON(create == 0);
2029         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2030
2031         map.m_lblk = iblock;
2032         map.m_len = 1;
2033
2034         /*
2035          * first, we need to know whether the block is allocated already
2036          * preallocated blocks are unmapped but should treated
2037          * the same as allocated blocks.
2038          */
2039         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2040         if (ret <= 0)
2041                 return ret;
2042
2043         map_bh(bh, inode->i_sb, map.m_pblk);
2044         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2045
2046         if (buffer_unwritten(bh)) {
2047                 /* A delayed write to unwritten bh should be marked
2048                  * new and mapped.  Mapped ensures that we don't do
2049                  * get_block multiple times when we write to the same
2050                  * offset and new ensures that we do proper zero out
2051                  * for partial write.
2052                  */
2053                 set_buffer_new(bh);
2054                 set_buffer_mapped(bh);
2055         }
2056         return 0;
2057 }
2058
2059 static int bget_one(handle_t *handle, struct buffer_head *bh)
2060 {
2061         get_bh(bh);
2062         return 0;
2063 }
2064
2065 static int bput_one(handle_t *handle, struct buffer_head *bh)
2066 {
2067         put_bh(bh);
2068         return 0;
2069 }
2070
2071 static int __ext4_journalled_writepage(struct page *page,
2072                                        unsigned int len)
2073 {
2074         struct address_space *mapping = page->mapping;
2075         struct inode *inode = mapping->host;
2076         struct buffer_head *page_bufs = NULL;
2077         handle_t *handle = NULL;
2078         int ret = 0, err = 0;
2079         int inline_data = ext4_has_inline_data(inode);
2080         struct buffer_head *inode_bh = NULL;
2081
2082         ClearPageChecked(page);
2083
2084         if (inline_data) {
2085                 BUG_ON(page->index != 0);
2086                 BUG_ON(len > ext4_get_max_inline_size(inode));
2087                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2088                 if (inode_bh == NULL)
2089                         goto out;
2090         } else {
2091                 page_bufs = page_buffers(page);
2092                 if (!page_bufs) {
2093                         BUG();
2094                         goto out;
2095                 }
2096                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2097                                        NULL, bget_one);
2098         }
2099         /* As soon as we unlock the page, it can go away, but we have
2100          * references to buffers so we are safe */
2101         unlock_page(page);
2102
2103         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2104                                     ext4_writepage_trans_blocks(inode));
2105         if (IS_ERR(handle)) {
2106                 ret = PTR_ERR(handle);
2107                 goto out;
2108         }
2109
2110         BUG_ON(!ext4_handle_valid(handle));
2111
2112         if (inline_data) {
2113                 ret = ext4_journal_get_write_access(handle, inode_bh);
2114
2115                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2116
2117         } else {
2118                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2119                                              do_journal_get_write_access);
2120
2121                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2122                                              write_end_fn);
2123         }
2124         if (ret == 0)
2125                 ret = err;
2126         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2127         err = ext4_journal_stop(handle);
2128         if (!ret)
2129                 ret = err;
2130
2131         if (!ext4_has_inline_data(inode))
2132                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2133                                        NULL, bput_one);
2134         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2135 out:
2136         brelse(inode_bh);
2137         return ret;
2138 }
2139
2140 /*
2141  * Note that we don't need to start a transaction unless we're journaling data
2142  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2143  * need to file the inode to the transaction's list in ordered mode because if
2144  * we are writing back data added by write(), the inode is already there and if
2145  * we are writing back data modified via mmap(), no one guarantees in which
2146  * transaction the data will hit the disk. In case we are journaling data, we
2147  * cannot start transaction directly because transaction start ranks above page
2148  * lock so we have to do some magic.
2149  *
2150  * This function can get called via...
2151  *   - ext4_da_writepages after taking page lock (have journal handle)
2152  *   - journal_submit_inode_data_buffers (no journal handle)
2153  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2154  *   - grab_page_cache when doing write_begin (have journal handle)
2155  *
2156  * We don't do any block allocation in this function. If we have page with
2157  * multiple blocks we need to write those buffer_heads that are mapped. This
2158  * is important for mmaped based write. So if we do with blocksize 1K
2159  * truncate(f, 1024);
2160  * a = mmap(f, 0, 4096);
2161  * a[0] = 'a';
2162  * truncate(f, 4096);
2163  * we have in the page first buffer_head mapped via page_mkwrite call back
2164  * but other buffer_heads would be unmapped but dirty (dirty done via the
2165  * do_wp_page). So writepage should write the first block. If we modify
2166  * the mmap area beyond 1024 we will again get a page_fault and the
2167  * page_mkwrite callback will do the block allocation and mark the
2168  * buffer_heads mapped.
2169  *
2170  * We redirty the page if we have any buffer_heads that is either delay or
2171  * unwritten in the page.
2172  *
2173  * We can get recursively called as show below.
2174  *
2175  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2176  *              ext4_writepage()
2177  *
2178  * But since we don't do any block allocation we should not deadlock.
2179  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2180  */
2181 static int ext4_writepage(struct page *page,
2182                           struct writeback_control *wbc)
2183 {
2184         int ret = 0;
2185         loff_t size;
2186         unsigned int len;
2187         struct buffer_head *page_bufs = NULL;
2188         struct inode *inode = page->mapping->host;
2189         struct ext4_io_submit io_submit;
2190
2191         trace_ext4_writepage(page);
2192         size = i_size_read(inode);
2193         if (page->index == size >> PAGE_CACHE_SHIFT)
2194                 len = size & ~PAGE_CACHE_MASK;
2195         else
2196                 len = PAGE_CACHE_SIZE;
2197
2198         page_bufs = page_buffers(page);
2199         /*
2200          * We cannot do block allocation or other extent handling in this
2201          * function. If there are buffers needing that, we have to redirty
2202          * the page. But we may reach here when we do a journal commit via
2203          * journal_submit_inode_data_buffers() and in that case we must write
2204          * allocated buffers to achieve data=ordered mode guarantees.
2205          */
2206         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2207                                    ext4_bh_delay_or_unwritten)) {
2208                 redirty_page_for_writepage(wbc, page);
2209                 if (current->flags & PF_MEMALLOC) {
2210                         /*
2211                          * For memory cleaning there's no point in writing only
2212                          * some buffers. So just bail out. Warn if we came here
2213                          * from direct reclaim.
2214                          */
2215                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2216                                                         == PF_MEMALLOC);
2217                         unlock_page(page);
2218                         return 0;
2219                 }
2220         }
2221
2222         if (PageChecked(page) && ext4_should_journal_data(inode))
2223                 /*
2224                  * It's mmapped pagecache.  Add buffers and journal it.  There
2225                  * doesn't seem much point in redirtying the page here.
2226                  */
2227                 return __ext4_journalled_writepage(page, len);
2228
2229         memset(&io_submit, 0, sizeof(io_submit));
2230         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2231         ext4_io_submit(&io_submit);
2232         return ret;
2233 }
2234
2235 /*
2236  * This is called via ext4_da_writepages() to
2237  * calculate the total number of credits to reserve to fit
2238  * a single extent allocation into a single transaction,
2239  * ext4_da_writpeages() will loop calling this before
2240  * the block allocation.
2241  */
2242
2243 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2244 {
2245         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2246
2247         /*
2248          * With non-extent format the journal credit needed to
2249          * insert nrblocks contiguous block is dependent on
2250          * number of contiguous block. So we will limit
2251          * number of contiguous block to a sane value
2252          */
2253         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2254             (max_blocks > EXT4_MAX_TRANS_DATA))
2255                 max_blocks = EXT4_MAX_TRANS_DATA;
2256
2257         return ext4_chunk_trans_blocks(inode, max_blocks);
2258 }
2259
2260 /*
2261  * write_cache_pages_da - walk the list of dirty pages of the given
2262  * address space and accumulate pages that need writing, and call
2263  * mpage_da_map_and_submit to map a single contiguous memory region
2264  * and then write them.
2265  */
2266 static int write_cache_pages_da(handle_t *handle,
2267                                 struct address_space *mapping,
2268                                 struct writeback_control *wbc,
2269                                 struct mpage_da_data *mpd,
2270                                 pgoff_t *done_index)
2271 {
2272         struct buffer_head      *bh, *head;
2273         struct inode            *inode = mapping->host;
2274         struct pagevec          pvec;
2275         unsigned int            nr_pages;
2276         sector_t                logical;
2277         pgoff_t                 index, end;
2278         long                    nr_to_write = wbc->nr_to_write;
2279         int                     i, tag, ret = 0;
2280
2281         memset(mpd, 0, sizeof(struct mpage_da_data));
2282         mpd->wbc = wbc;
2283         mpd->inode = inode;
2284         pagevec_init(&pvec, 0);
2285         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2286         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2287
2288         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2289                 tag = PAGECACHE_TAG_TOWRITE;
2290         else
2291                 tag = PAGECACHE_TAG_DIRTY;
2292
2293         *done_index = index;
2294         while (index <= end) {
2295                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2296                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2297                 if (nr_pages == 0)
2298                         return 0;
2299
2300                 for (i = 0; i < nr_pages; i++) {
2301                         struct page *page = pvec.pages[i];
2302
2303                         /*
2304                          * At this point, the page may be truncated or
2305                          * invalidated (changing page->mapping to NULL), or
2306                          * even swizzled back from swapper_space to tmpfs file
2307                          * mapping. However, page->index will not change
2308                          * because we have a reference on the page.
2309                          */
2310                         if (page->index > end)
2311                                 goto out;
2312
2313                         *done_index = page->index + 1;
2314
2315                         /*
2316                          * If we can't merge this page, and we have
2317                          * accumulated an contiguous region, write it
2318                          */
2319                         if ((mpd->next_page != page->index) &&
2320                             (mpd->next_page != mpd->first_page)) {
2321                                 mpage_da_map_and_submit(mpd);
2322                                 goto ret_extent_tail;
2323                         }
2324
2325                         lock_page(page);
2326
2327                         /*
2328                          * If the page is no longer dirty, or its
2329                          * mapping no longer corresponds to inode we
2330                          * are writing (which means it has been
2331                          * truncated or invalidated), or the page is
2332                          * already under writeback and we are not
2333                          * doing a data integrity writeback, skip the page
2334                          */
2335                         if (!PageDirty(page) ||
2336                             (PageWriteback(page) &&
2337                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2338                             unlikely(page->mapping != mapping)) {
2339                                 unlock_page(page);
2340                                 continue;
2341                         }
2342
2343                         wait_on_page_writeback(page);
2344                         BUG_ON(PageWriteback(page));
2345
2346                         /*
2347                          * If we have inline data and arrive here, it means that
2348                          * we will soon create the block for the 1st page, so
2349                          * we'd better clear the inline data here.
2350                          */
2351                         if (ext4_has_inline_data(inode)) {
2352                                 BUG_ON(ext4_test_inode_state(inode,
2353                                                 EXT4_STATE_MAY_INLINE_DATA));
2354                                 ext4_destroy_inline_data(handle, inode);
2355                         }
2356
2357                         if (mpd->next_page != page->index)
2358                                 mpd->first_page = page->index;
2359                         mpd->next_page = page->index + 1;
2360                         logical = (sector_t) page->index <<
2361                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2362
2363                         /* Add all dirty buffers to mpd */
2364                         head = page_buffers(page);
2365                         bh = head;
2366                         do {
2367                                 BUG_ON(buffer_locked(bh));
2368                                 /*
2369                                  * We need to try to allocate unmapped blocks
2370                                  * in the same page.  Otherwise we won't make
2371                                  * progress with the page in ext4_writepage
2372                                  */
2373                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2374                                         mpage_add_bh_to_extent(mpd, logical,
2375                                                                bh->b_state);
2376                                         if (mpd->io_done)
2377                                                 goto ret_extent_tail;
2378                                 } else if (buffer_dirty(bh) &&
2379                                            buffer_mapped(bh)) {
2380                                         /*
2381                                          * mapped dirty buffer. We need to
2382                                          * update the b_state because we look
2383                                          * at b_state in mpage_da_map_blocks.
2384                                          * We don't update b_size because if we
2385                                          * find an unmapped buffer_head later
2386                                          * we need to use the b_state flag of
2387                                          * that buffer_head.
2388                                          */
2389                                         if (mpd->b_size == 0)
2390                                                 mpd->b_state =
2391                                                         bh->b_state & BH_FLAGS;
2392                                 }
2393                                 logical++;
2394                         } while ((bh = bh->b_this_page) != head);
2395
2396                         if (nr_to_write > 0) {
2397                                 nr_to_write--;
2398                                 if (nr_to_write == 0 &&
2399                                     wbc->sync_mode == WB_SYNC_NONE)
2400                                         /*
2401                                          * We stop writing back only if we are
2402                                          * not doing integrity sync. In case of
2403                                          * integrity sync we have to keep going
2404                                          * because someone may be concurrently
2405                                          * dirtying pages, and we might have
2406                                          * synced a lot of newly appeared dirty
2407                                          * pages, but have not synced all of the
2408                                          * old dirty pages.
2409                                          */
2410                                         goto out;
2411                         }
2412                 }
2413                 pagevec_release(&pvec);
2414                 cond_resched();
2415         }
2416         return 0;
2417 ret_extent_tail:
2418         ret = MPAGE_DA_EXTENT_TAIL;
2419 out:
2420         pagevec_release(&pvec);
2421         cond_resched();
2422         return ret;
2423 }
2424
2425
2426 static int ext4_da_writepages(struct address_space *mapping,
2427                               struct writeback_control *wbc)
2428 {
2429         pgoff_t index;
2430         int range_whole = 0;
2431         handle_t *handle = NULL;
2432         struct mpage_da_data mpd;
2433         struct inode *inode = mapping->host;
2434         int pages_written = 0;
2435         unsigned int max_pages;
2436         int range_cyclic, cycled = 1, io_done = 0;
2437         int needed_blocks, ret = 0;
2438         long desired_nr_to_write, nr_to_writebump = 0;
2439         loff_t range_start = wbc->range_start;
2440         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2441         pgoff_t done_index = 0;
2442         pgoff_t end;
2443         struct blk_plug plug;
2444
2445         trace_ext4_da_writepages(inode, wbc);
2446
2447         /*
2448          * No pages to write? This is mainly a kludge to avoid starting
2449          * a transaction for special inodes like journal inode on last iput()
2450          * because that could violate lock ordering on umount
2451          */
2452         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2453                 return 0;
2454
2455         /*
2456          * If the filesystem has aborted, it is read-only, so return
2457          * right away instead of dumping stack traces later on that
2458          * will obscure the real source of the problem.  We test
2459          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2460          * the latter could be true if the filesystem is mounted
2461          * read-only, and in that case, ext4_da_writepages should
2462          * *never* be called, so if that ever happens, we would want
2463          * the stack trace.
2464          */
2465         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2466                 return -EROFS;
2467
2468         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2469                 range_whole = 1;
2470
2471         range_cyclic = wbc->range_cyclic;
2472         if (wbc->range_cyclic) {
2473                 index = mapping->writeback_index;
2474                 if (index)
2475                         cycled = 0;
2476                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2477                 wbc->range_end  = LLONG_MAX;
2478                 wbc->range_cyclic = 0;
2479                 end = -1;
2480         } else {
2481                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2482                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2483         }
2484
2485         /*
2486          * This works around two forms of stupidity.  The first is in
2487          * the writeback code, which caps the maximum number of pages
2488          * written to be 1024 pages.  This is wrong on multiple
2489          * levels; different architectues have a different page size,
2490          * which changes the maximum amount of data which gets
2491          * written.  Secondly, 4 megabytes is way too small.  XFS
2492          * forces this value to be 16 megabytes by multiplying
2493          * nr_to_write parameter by four, and then relies on its
2494          * allocator to allocate larger extents to make them
2495          * contiguous.  Unfortunately this brings us to the second
2496          * stupidity, which is that ext4's mballoc code only allocates
2497          * at most 2048 blocks.  So we force contiguous writes up to
2498          * the number of dirty blocks in the inode, or
2499          * sbi->max_writeback_mb_bump whichever is smaller.
2500          */
2501         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2502         if (!range_cyclic && range_whole) {
2503                 if (wbc->nr_to_write == LONG_MAX)
2504                         desired_nr_to_write = wbc->nr_to_write;
2505                 else
2506                         desired_nr_to_write = wbc->nr_to_write * 8;
2507         } else
2508                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2509                                                            max_pages);
2510         if (desired_nr_to_write > max_pages)
2511                 desired_nr_to_write = max_pages;
2512
2513         if (wbc->nr_to_write < desired_nr_to_write) {
2514                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2515                 wbc->nr_to_write = desired_nr_to_write;
2516         }
2517
2518 retry:
2519         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2520                 tag_pages_for_writeback(mapping, index, end);
2521
2522         blk_start_plug(&plug);
2523         while (!ret && wbc->nr_to_write > 0) {
2524
2525                 /*
2526                  * we  insert one extent at a time. So we need
2527                  * credit needed for single extent allocation.
2528                  * journalled mode is currently not supported
2529                  * by delalloc
2530                  */
2531                 BUG_ON(ext4_should_journal_data(inode));
2532                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2533
2534                 /* start a new transaction*/
2535                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2536                                             needed_blocks);
2537                 if (IS_ERR(handle)) {
2538                         ret = PTR_ERR(handle);
2539                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2540                                "%ld pages, ino %lu; err %d", __func__,
2541                                 wbc->nr_to_write, inode->i_ino, ret);
2542                         blk_finish_plug(&plug);
2543                         goto out_writepages;
2544                 }
2545
2546                 /*
2547                  * Now call write_cache_pages_da() to find the next
2548                  * contiguous region of logical blocks that need
2549                  * blocks to be allocated by ext4 and submit them.
2550                  */
2551                 ret = write_cache_pages_da(handle, mapping,
2552                                            wbc, &mpd, &done_index);
2553                 /*
2554                  * If we have a contiguous extent of pages and we
2555                  * haven't done the I/O yet, map the blocks and submit
2556                  * them for I/O.
2557                  */
2558                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2559                         mpage_da_map_and_submit(&mpd);
2560                         ret = MPAGE_DA_EXTENT_TAIL;
2561                 }
2562                 trace_ext4_da_write_pages(inode, &mpd);
2563                 wbc->nr_to_write -= mpd.pages_written;
2564
2565                 ext4_journal_stop(handle);
2566
2567                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2568                         /* commit the transaction which would
2569                          * free blocks released in the transaction
2570                          * and try again
2571                          */
2572                         jbd2_journal_force_commit_nested(sbi->s_journal);
2573                         ret = 0;
2574                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2575                         /*
2576                          * Got one extent now try with rest of the pages.
2577                          * If mpd.retval is set -EIO, journal is aborted.
2578                          * So we don't need to write any more.
2579                          */
2580                         pages_written += mpd.pages_written;
2581                         ret = mpd.retval;
2582                         io_done = 1;
2583                 } else if (wbc->nr_to_write)
2584                         /*
2585                          * There is no more writeout needed
2586                          * or we requested for a noblocking writeout
2587                          * and we found the device congested
2588                          */
2589                         break;
2590         }
2591         blk_finish_plug(&plug);
2592         if (!io_done && !cycled) {
2593                 cycled = 1;
2594                 index = 0;
2595                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2596                 wbc->range_end  = mapping->writeback_index - 1;
2597                 goto retry;
2598         }
2599
2600         /* Update index */
2601         wbc->range_cyclic = range_cyclic;
2602         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2603                 /*
2604                  * set the writeback_index so that range_cyclic
2605                  * mode will write it back later
2606                  */
2607                 mapping->writeback_index = done_index;
2608
2609 out_writepages:
2610         wbc->nr_to_write -= nr_to_writebump;
2611         wbc->range_start = range_start;
2612         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2613         return ret;
2614 }
2615
2616 static int ext4_nonda_switch(struct super_block *sb)
2617 {
2618         s64 free_clusters, dirty_clusters;
2619         struct ext4_sb_info *sbi = EXT4_SB(sb);
2620
2621         /*
2622          * switch to non delalloc mode if we are running low
2623          * on free block. The free block accounting via percpu
2624          * counters can get slightly wrong with percpu_counter_batch getting
2625          * accumulated on each CPU without updating global counters
2626          * Delalloc need an accurate free block accounting. So switch
2627          * to non delalloc when we are near to error range.
2628          */
2629         free_clusters =
2630                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2631         dirty_clusters =
2632                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2633         /*
2634          * Start pushing delalloc when 1/2 of free blocks are dirty.
2635          */
2636         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2637                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2638
2639         if (2 * free_clusters < 3 * dirty_clusters ||
2640             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2641                 /*
2642                  * free block count is less than 150% of dirty blocks
2643                  * or free blocks is less than watermark
2644                  */
2645                 return 1;
2646         }
2647         return 0;
2648 }
2649
2650 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2651                                loff_t pos, unsigned len, unsigned flags,
2652                                struct page **pagep, void **fsdata)
2653 {
2654         int ret, retries = 0;
2655         struct page *page;
2656         pgoff_t index;
2657         struct inode *inode = mapping->host;
2658         handle_t *handle;
2659
2660         index = pos >> PAGE_CACHE_SHIFT;
2661
2662         if (ext4_nonda_switch(inode->i_sb)) {
2663                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2664                 return ext4_write_begin(file, mapping, pos,
2665                                         len, flags, pagep, fsdata);
2666         }
2667         *fsdata = (void *)0;
2668         trace_ext4_da_write_begin(inode, pos, len, flags);
2669
2670         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2671                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2672                                                       pos, len, flags,
2673                                                       pagep, fsdata);
2674                 if (ret < 0)
2675                         return ret;
2676                 if (ret == 1)
2677                         return 0;
2678         }
2679
2680         /*
2681          * grab_cache_page_write_begin() can take a long time if the
2682          * system is thrashing due to memory pressure, or if the page
2683          * is being written back.  So grab it first before we start
2684          * the transaction handle.  This also allows us to allocate
2685          * the page (if needed) without using GFP_NOFS.
2686          */
2687 retry_grab:
2688         page = grab_cache_page_write_begin(mapping, index, flags);
2689         if (!page)
2690                 return -ENOMEM;
2691         unlock_page(page);
2692
2693         /*
2694          * With delayed allocation, we don't log the i_disksize update
2695          * if there is delayed block allocation. But we still need
2696          * to journalling the i_disksize update if writes to the end
2697          * of file which has an already mapped buffer.
2698          */
2699 retry_journal:
2700         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2701         if (IS_ERR(handle)) {
2702                 page_cache_release(page);
2703                 return PTR_ERR(handle);
2704         }
2705
2706         lock_page(page);
2707         if (page->mapping != mapping) {
2708                 /* The page got truncated from under us */
2709                 unlock_page(page);
2710                 page_cache_release(page);
2711                 ext4_journal_stop(handle);
2712                 goto retry_grab;
2713         }
2714         /* In case writeback began while the page was unlocked */
2715         wait_on_page_writeback(page);
2716
2717         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2718         if (ret < 0) {
2719                 unlock_page(page);
2720                 ext4_journal_stop(handle);
2721                 /*
2722                  * block_write_begin may have instantiated a few blocks
2723                  * outside i_size.  Trim these off again. Don't need
2724                  * i_size_read because we hold i_mutex.
2725                  */
2726                 if (pos + len > inode->i_size)
2727                         ext4_truncate_failed_write(inode);
2728
2729                 if (ret == -ENOSPC &&
2730                     ext4_should_retry_alloc(inode->i_sb, &retries))
2731                         goto retry_journal;
2732
2733                 page_cache_release(page);
2734                 return ret;
2735         }
2736
2737         *pagep = page;
2738         return ret;
2739 }
2740
2741 /*
2742  * Check if we should update i_disksize
2743  * when write to the end of file but not require block allocation
2744  */
2745 static int ext4_da_should_update_i_disksize(struct page *page,
2746                                             unsigned long offset)
2747 {
2748         struct buffer_head *bh;
2749         struct inode *inode = page->mapping->host;
2750         unsigned int idx;
2751         int i;
2752
2753         bh = page_buffers(page);
2754         idx = offset >> inode->i_blkbits;
2755
2756         for (i = 0; i < idx; i++)
2757                 bh = bh->b_this_page;
2758
2759         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2760                 return 0;
2761         return 1;
2762 }
2763
2764 static int ext4_da_write_end(struct file *file,
2765                              struct address_space *mapping,
2766                              loff_t pos, unsigned len, unsigned copied,
2767                              struct page *page, void *fsdata)
2768 {
2769         struct inode *inode = mapping->host;
2770         int ret = 0, ret2;
2771         handle_t *handle = ext4_journal_current_handle();
2772         loff_t new_i_size;
2773         unsigned long start, end;
2774         int write_mode = (int)(unsigned long)fsdata;
2775
2776         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2777                 return ext4_write_end(file, mapping, pos,
2778                                       len, copied, page, fsdata);
2779
2780         trace_ext4_da_write_end(inode, pos, len, copied);
2781         start = pos & (PAGE_CACHE_SIZE - 1);
2782         end = start + copied - 1;
2783
2784         /*
2785          * generic_write_end() will run mark_inode_dirty() if i_size
2786          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2787          * into that.
2788          */
2789         new_i_size = pos + copied;
2790         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2791                 if (ext4_has_inline_data(inode) ||
2792                     ext4_da_should_update_i_disksize(page, end)) {
2793                         down_write(&EXT4_I(inode)->i_data_sem);
2794                         if (new_i_size > EXT4_I(inode)->i_disksize)
2795                                 EXT4_I(inode)->i_disksize = new_i_size;
2796                         up_write(&EXT4_I(inode)->i_data_sem);
2797                         /* We need to mark inode dirty even if
2798                          * new_i_size is less that inode->i_size
2799                          * bu greater than i_disksize.(hint delalloc)
2800                          */
2801                         ext4_mark_inode_dirty(handle, inode);
2802                 }
2803         }
2804
2805         if (write_mode != CONVERT_INLINE_DATA &&
2806             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2807             ext4_has_inline_data(inode))
2808                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2809                                                      page);
2810         else
2811                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2812                                                         page, fsdata);
2813
2814         copied = ret2;
2815         if (ret2 < 0)
2816                 ret = ret2;
2817         ret2 = ext4_journal_stop(handle);
2818         if (!ret)
2819                 ret = ret2;
2820
2821         return ret ? ret : copied;
2822 }
2823
2824 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2825 {
2826         /*
2827          * Drop reserved blocks
2828          */
2829         BUG_ON(!PageLocked(page));
2830         if (!page_has_buffers(page))
2831                 goto out;
2832
2833         ext4_da_page_release_reservation(page, offset);
2834
2835 out:
2836         ext4_invalidatepage(page, offset);
2837
2838         return;
2839 }
2840
2841 /*
2842  * Force all delayed allocation blocks to be allocated for a given inode.
2843  */
2844 int ext4_alloc_da_blocks(struct inode *inode)
2845 {
2846         trace_ext4_alloc_da_blocks(inode);
2847
2848         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2849             !EXT4_I(inode)->i_reserved_meta_blocks)
2850                 return 0;
2851
2852         /*
2853          * We do something simple for now.  The filemap_flush() will
2854          * also start triggering a write of the data blocks, which is
2855          * not strictly speaking necessary (and for users of
2856          * laptop_mode, not even desirable).  However, to do otherwise
2857          * would require replicating code paths in:
2858          *
2859          * ext4_da_writepages() ->
2860          *    write_cache_pages() ---> (via passed in callback function)
2861          *        __mpage_da_writepage() -->
2862          *           mpage_add_bh_to_extent()
2863          *           mpage_da_map_blocks()
2864          *
2865          * The problem is that write_cache_pages(), located in
2866          * mm/page-writeback.c, marks pages clean in preparation for
2867          * doing I/O, which is not desirable if we're not planning on
2868          * doing I/O at all.
2869          *
2870          * We could call write_cache_pages(), and then redirty all of
2871          * the pages by calling redirty_page_for_writepage() but that
2872          * would be ugly in the extreme.  So instead we would need to
2873          * replicate parts of the code in the above functions,
2874          * simplifying them because we wouldn't actually intend to
2875          * write out the pages, but rather only collect contiguous
2876          * logical block extents, call the multi-block allocator, and
2877          * then update the buffer heads with the block allocations.
2878          *
2879          * For now, though, we'll cheat by calling filemap_flush(),
2880          * which will map the blocks, and start the I/O, but not
2881          * actually wait for the I/O to complete.
2882          */
2883         return filemap_flush(inode->i_mapping);
2884 }
2885
2886 /*
2887  * bmap() is special.  It gets used by applications such as lilo and by
2888  * the swapper to find the on-disk block of a specific piece of data.
2889  *
2890  * Naturally, this is dangerous if the block concerned is still in the
2891  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2892  * filesystem and enables swap, then they may get a nasty shock when the
2893  * data getting swapped to that swapfile suddenly gets overwritten by
2894  * the original zero's written out previously to the journal and
2895  * awaiting writeback in the kernel's buffer cache.
2896  *
2897  * So, if we see any bmap calls here on a modified, data-journaled file,
2898  * take extra steps to flush any blocks which might be in the cache.
2899  */
2900 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2901 {
2902         struct inode *inode = mapping->host;
2903         journal_t *journal;
2904         int err;
2905
2906         /*
2907          * We can get here for an inline file via the FIBMAP ioctl
2908          */
2909         if (ext4_has_inline_data(inode))
2910                 return 0;
2911
2912         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2913                         test_opt(inode->i_sb, DELALLOC)) {
2914                 /*
2915                  * With delalloc we want to sync the file
2916                  * so that we can make sure we allocate
2917                  * blocks for file
2918                  */
2919                 filemap_write_and_wait(mapping);
2920         }
2921
2922         if (EXT4_JOURNAL(inode) &&
2923             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2924                 /*
2925                  * This is a REALLY heavyweight approach, but the use of
2926                  * bmap on dirty files is expected to be extremely rare:
2927                  * only if we run lilo or swapon on a freshly made file
2928                  * do we expect this to happen.
2929                  *
2930                  * (bmap requires CAP_SYS_RAWIO so this does not
2931                  * represent an unprivileged user DOS attack --- we'd be
2932                  * in trouble if mortal users could trigger this path at
2933                  * will.)
2934                  *
2935                  * NB. EXT4_STATE_JDATA is not set on files other than
2936                  * regular files.  If somebody wants to bmap a directory
2937                  * or symlink and gets confused because the buffer
2938                  * hasn't yet been flushed to disk, they deserve
2939                  * everything they get.
2940                  */
2941
2942                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2943                 journal = EXT4_JOURNAL(inode);
2944                 jbd2_journal_lock_updates(journal);
2945                 err = jbd2_journal_flush(journal);
2946                 jbd2_journal_unlock_updates(journal);
2947
2948                 if (err)
2949                         return 0;
2950         }
2951
2952         return generic_block_bmap(mapping, block, ext4_get_block);
2953 }
2954
2955 static int ext4_readpage(struct file *file, struct page *page)
2956 {
2957         int ret = -EAGAIN;
2958         struct inode *inode = page->mapping->host;
2959
2960         trace_ext4_readpage(page);
2961
2962         if (ext4_has_inline_data(inode))
2963                 ret = ext4_readpage_inline(inode, page);
2964
2965         if (ret == -EAGAIN)
2966                 return mpage_readpage(page, ext4_get_block);
2967
2968         return ret;
2969 }
2970
2971 static int
2972 ext4_readpages(struct file *file, struct address_space *mapping,
2973                 struct list_head *pages, unsigned nr_pages)
2974 {
2975         struct inode *inode = mapping->host;
2976
2977         /* If the file has inline data, no need to do readpages. */
2978         if (ext4_has_inline_data(inode))
2979                 return 0;
2980
2981         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2982 }
2983
2984 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2985 {
2986         trace_ext4_invalidatepage(page, offset);
2987
2988         /* No journalling happens on data buffers when this function is used */
2989         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2990
2991         block_invalidatepage(page, offset);
2992 }
2993
2994 static int __ext4_journalled_invalidatepage(struct page *page,
2995                                             unsigned long offset)
2996 {
2997         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2998
2999         trace_ext4_journalled_invalidatepage(page, offset);
3000
3001         /*
3002          * If it's a full truncate we just forget about the pending dirtying
3003          */
3004         if (offset == 0)
3005                 ClearPageChecked(page);
3006
3007         return jbd2_journal_invalidatepage(journal, page, offset);
3008 }
3009
3010 /* Wrapper for aops... */
3011 static void ext4_journalled_invalidatepage(struct page *page,
3012                                            unsigned long offset)
3013 {
3014         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3015 }
3016
3017 static int ext4_releasepage(struct page *page, gfp_t wait)
3018 {
3019         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3020
3021         trace_ext4_releasepage(page);
3022
3023         /* Page has dirty journalled data -> cannot release */
3024         if (PageChecked(page))
3025                 return 0;
3026         if (journal)
3027                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3028         else
3029                 return try_to_free_buffers(page);
3030 }
3031
3032 /*
3033  * ext4_get_block used when preparing for a DIO write or buffer write.
3034  * We allocate an uinitialized extent if blocks haven't been allocated.
3035  * The extent will be converted to initialized after the IO is complete.
3036  */
3037 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3038                    struct buffer_head *bh_result, int create)
3039 {
3040         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3041                    inode->i_ino, create);
3042         return _ext4_get_block(inode, iblock, bh_result,
3043                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3044 }
3045
3046 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3047                    struct buffer_head *bh_result, int create)
3048 {
3049         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3050                    inode->i_ino, create);
3051         return _ext4_get_block(inode, iblock, bh_result,
3052                                EXT4_GET_BLOCKS_NO_LOCK);
3053 }
3054
3055 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3056                             ssize_t size, void *private, int ret,
3057                             bool is_async)
3058 {
3059         struct inode *inode = file_inode(iocb->ki_filp);
3060         ext4_io_end_t *io_end = iocb->private;
3061
3062         /* if not async direct IO or dio with 0 bytes write, just return */
3063         if (!io_end || !size)
3064                 goto out;
3065
3066         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3067                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3068                   iocb->private, io_end->inode->i_ino, iocb, offset,
3069                   size);
3070
3071         iocb->private = NULL;
3072
3073         /* if not aio dio with unwritten extents, just free io and return */
3074         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3075                 ext4_free_io_end(io_end);
3076 out:
3077                 inode_dio_done(inode);
3078                 if (is_async)
3079                         aio_complete(iocb, ret, 0);
3080                 return;
3081         }
3082
3083         io_end->offset = offset;
3084         io_end->size = size;
3085         if (is_async) {
3086                 io_end->iocb = iocb;
3087                 io_end->result = ret;
3088         }
3089
3090         ext4_add_complete_io(io_end);
3091 }
3092
3093 /*
3094  * For ext4 extent files, ext4 will do direct-io write to holes,
3095  * preallocated extents, and those write extend the file, no need to
3096  * fall back to buffered IO.
3097  *
3098  * For holes, we fallocate those blocks, mark them as uninitialized
3099  * If those blocks were preallocated, we mark sure they are split, but
3100  * still keep the range to write as uninitialized.
3101  *
3102  * The unwritten extents will be converted to written when DIO is completed.
3103  * For async direct IO, since the IO may still pending when return, we
3104  * set up an end_io call back function, which will do the conversion
3105  * when async direct IO completed.
3106  *
3107  * If the O_DIRECT write will extend the file then add this inode to the
3108  * orphan list.  So recovery will truncate it back to the original size
3109  * if the machine crashes during the write.
3110  *
3111  */
3112 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3113                               const struct iovec *iov, loff_t offset,
3114                               unsigned long nr_segs)
3115 {
3116         struct file *file = iocb->ki_filp;
3117         struct inode *inode = file->f_mapping->host;
3118         ssize_t ret;
3119         size_t count = iov_length(iov, nr_segs);
3120         int overwrite = 0;
3121         get_block_t *get_block_func = NULL;
3122         int dio_flags = 0;
3123         loff_t final_size = offset + count;
3124
3125         /* Use the old path for reads and writes beyond i_size. */
3126         if (rw != WRITE || final_size > inode->i_size)
3127                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3128
3129         BUG_ON(iocb->private == NULL);
3130
3131         /* If we do a overwrite dio, i_mutex locking can be released */
3132         overwrite = *((int *)iocb->private);
3133
3134         if (overwrite) {
3135                 atomic_inc(&inode->i_dio_count);
3136                 down_read(&EXT4_I(inode)->i_data_sem);
3137                 mutex_unlock(&inode->i_mutex);
3138         }
3139
3140         /*
3141          * We could direct write to holes and fallocate.
3142          *
3143          * Allocated blocks to fill the hole are marked as
3144          * uninitialized to prevent parallel buffered read to expose
3145          * the stale data before DIO complete the data IO.
3146          *
3147          * As to previously fallocated extents, ext4 get_block will
3148          * just simply mark the buffer mapped but still keep the
3149          * extents uninitialized.
3150          *
3151          * For non AIO case, we will convert those unwritten extents
3152          * to written after return back from blockdev_direct_IO.
3153          *
3154          * For async DIO, the conversion needs to be deferred when the
3155          * IO is completed. The ext4 end_io callback function will be
3156          * called to take care of the conversion work.  Here for async
3157          * case, we allocate an io_end structure to hook to the iocb.
3158          */
3159         iocb->private = NULL;
3160         ext4_inode_aio_set(inode, NULL);
3161         if (!is_sync_kiocb(iocb)) {
3162                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3163                 if (!io_end) {
3164                         ret = -ENOMEM;
3165                         goto retake_lock;
3166                 }
3167                 io_end->flag |= EXT4_IO_END_DIRECT;
3168                 iocb->private = io_end;
3169                 /*
3170                  * we save the io structure for current async direct
3171                  * IO, so that later ext4_map_blocks() could flag the
3172                  * io structure whether there is a unwritten extents
3173                  * needs to be converted when IO is completed.
3174                  */
3175                 ext4_inode_aio_set(inode, io_end);
3176         }
3177
3178         if (overwrite) {
3179                 get_block_func = ext4_get_block_write_nolock;
3180         } else {
3181                 get_block_func = ext4_get_block_write;
3182                 dio_flags = DIO_LOCKING;
3183         }
3184         ret = __blockdev_direct_IO(rw, iocb, inode,
3185                                    inode->i_sb->s_bdev, iov,
3186                                    offset, nr_segs,
3187                                    get_block_func,
3188                                    ext4_end_io_dio,
3189                                    NULL,
3190                                    dio_flags);
3191
3192         if (iocb->private)
3193                 ext4_inode_aio_set(inode, NULL);
3194         /*
3195          * The io_end structure takes a reference to the inode, that
3196          * structure needs to be destroyed and the reference to the
3197          * inode need to be dropped, when IO is complete, even with 0
3198          * byte write, or failed.
3199          *
3200          * In the successful AIO DIO case, the io_end structure will
3201          * be destroyed and the reference to the inode will be dropped
3202          * after the end_io call back function is called.
3203          *
3204          * In the case there is 0 byte write, or error case, since VFS
3205          * direct IO won't invoke the end_io call back function, we
3206          * need to free the end_io structure here.
3207          */
3208         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3209                 ext4_free_io_end(iocb->private);
3210                 iocb->private = NULL;
3211         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3212                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3213                 int err;
3214                 /*
3215                  * for non AIO case, since the IO is already
3216                  * completed, we could do the conversion right here
3217                  */
3218                 err = ext4_convert_unwritten_extents(inode,
3219                                                      offset, ret);
3220                 if (err < 0)
3221                         ret = err;
3222                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3223         }
3224
3225 retake_lock:
3226         /* take i_mutex locking again if we do a ovewrite dio */
3227         if (overwrite) {
3228                 inode_dio_done(inode);
3229                 up_read(&EXT4_I(inode)->i_data_sem);
3230                 mutex_lock(&inode->i_mutex);
3231         }
3232
3233         return ret;
3234 }
3235
3236 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3237                               const struct iovec *iov, loff_t offset,
3238                               unsigned long nr_segs)
3239 {
3240         struct file *file = iocb->ki_filp;
3241         struct inode *inode = file->f_mapping->host;
3242         ssize_t ret;
3243
3244         /*
3245          * If we are doing data journalling we don't support O_DIRECT
3246          */
3247         if (ext4_should_journal_data(inode))
3248                 return 0;
3249
3250         /* Let buffer I/O handle the inline data case. */
3251         if (ext4_has_inline_data(inode))
3252                 return 0;
3253
3254         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3255         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3256                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3257         else
3258                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3259         trace_ext4_direct_IO_exit(inode, offset,
3260                                 iov_length(iov, nr_segs), rw, ret);
3261         return ret;
3262 }
3263
3264 /*
3265  * Pages can be marked dirty completely asynchronously from ext4's journalling
3266  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3267  * much here because ->set_page_dirty is called under VFS locks.  The page is
3268  * not necessarily locked.
3269  *
3270  * We cannot just dirty the page and leave attached buffers clean, because the
3271  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3272  * or jbddirty because all the journalling code will explode.
3273  *
3274  * So what we do is to mark the page "pending dirty" and next time writepage
3275  * is called, propagate that into the buffers appropriately.
3276  */
3277 static int ext4_journalled_set_page_dirty(struct page *page)
3278 {
3279         SetPageChecked(page);
3280         return __set_page_dirty_nobuffers(page);
3281 }
3282
3283 static const struct address_space_operations ext4_aops = {
3284         .readpage               = ext4_readpage,
3285         .readpages              = ext4_readpages,
3286         .writepage              = ext4_writepage,
3287         .write_begin            = ext4_write_begin,
3288         .write_end              = ext4_write_end,
3289         .bmap                   = ext4_bmap,
3290         .invalidatepage         = ext4_invalidatepage,
3291         .releasepage            = ext4_releasepage,
3292         .direct_IO              = ext4_direct_IO,
3293         .migratepage            = buffer_migrate_page,
3294         .is_partially_uptodate  = block_is_partially_uptodate,
3295         .error_remove_page      = generic_error_remove_page,
3296 };
3297
3298 static const struct address_space_operations ext4_journalled_aops = {
3299         .readpage               = ext4_readpage,
3300         .readpages              = ext4_readpages,
3301         .writepage              = ext4_writepage,
3302         .write_begin            = ext4_write_begin,
3303         .write_end              = ext4_journalled_write_end,
3304         .set_page_dirty         = ext4_journalled_set_page_dirty,
3305         .bmap                   = ext4_bmap,
3306         .invalidatepage         = ext4_journalled_invalidatepage,
3307         .releasepage            = ext4_releasepage,
3308         .direct_IO              = ext4_direct_IO,
3309         .is_partially_uptodate  = block_is_partially_uptodate,
3310         .error_remove_page      = generic_error_remove_page,
3311 };
3312
3313 static const struct address_space_operations ext4_da_aops = {
3314         .readpage               = ext4_readpage,
3315         .readpages              = ext4_readpages,
3316         .writepage              = ext4_writepage,
3317         .writepages             = ext4_da_writepages,
3318         .write_begin            = ext4_da_write_begin,
3319         .write_end              = ext4_da_write_end,
3320         .bmap                   = ext4_bmap,
3321         .invalidatepage         = ext4_da_invalidatepage,
3322         .releasepage            = ext4_releasepage,
3323         .direct_IO              = ext4_direct_IO,
3324         .migratepage            = buffer_migrate_page,
3325         .is_partially_uptodate  = block_is_partially_uptodate,
3326         .error_remove_page      = generic_error_remove_page,
3327 };
3328
3329 void ext4_set_aops(struct inode *inode)
3330 {
3331         switch (ext4_inode_journal_mode(inode)) {
3332         case EXT4_INODE_ORDERED_DATA_MODE:
3333                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3334                 break;
3335         case EXT4_INODE_WRITEBACK_DATA_MODE:
3336                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3337                 break;
3338         case EXT4_INODE_JOURNAL_DATA_MODE:
3339                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3340                 return;
3341         default:
3342                 BUG();
3343         }
3344         if (test_opt(inode->i_sb, DELALLOC))
3345                 inode->i_mapping->a_ops = &ext4_da_aops;
3346         else
3347                 inode->i_mapping->a_ops = &ext4_aops;
3348 }
3349
3350
3351 /*
3352  * ext4_discard_partial_page_buffers()
3353  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3354  * This function finds and locks the page containing the offset
3355  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3356  * Calling functions that already have the page locked should call
3357  * ext4_discard_partial_page_buffers_no_lock directly.
3358  */
3359 int ext4_discard_partial_page_buffers(handle_t *handle,
3360                 struct address_space *mapping, loff_t from,
3361                 loff_t length, int flags)
3362 {
3363         struct inode *inode = mapping->host;
3364         struct page *page;
3365         int err = 0;
3366
3367         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3368                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3369         if (!page)
3370                 return -ENOMEM;
3371
3372         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3373                 from, length, flags);
3374
3375         unlock_page(page);
3376         page_cache_release(page);
3377         return err;
3378 }
3379
3380 /*
3381  * ext4_discard_partial_page_buffers_no_lock()
3382  * Zeros a page range of length 'length' starting from offset 'from'.
3383  * Buffer heads that correspond to the block aligned regions of the
3384  * zeroed range will be unmapped.  Unblock aligned regions
3385  * will have the corresponding buffer head mapped if needed so that
3386  * that region of the page can be updated with the partial zero out.
3387  *
3388  * This function assumes that the page has already been  locked.  The
3389  * The range to be discarded must be contained with in the given page.
3390  * If the specified range exceeds the end of the page it will be shortened
3391  * to the end of the page that corresponds to 'from'.  This function is
3392  * appropriate for updating a page and it buffer heads to be unmapped and
3393  * zeroed for blocks that have been either released, or are going to be
3394  * released.
3395  *
3396  * handle: The journal handle
3397  * inode:  The files inode
3398  * page:   A locked page that contains the offset "from"
3399  * from:   The starting byte offset (from the beginning of the file)
3400  *         to begin discarding
3401  * len:    The length of bytes to discard
3402  * flags:  Optional flags that may be used:
3403  *
3404  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3405  *         Only zero the regions of the page whose buffer heads
3406  *         have already been unmapped.  This flag is appropriate
3407  *         for updating the contents of a page whose blocks may
3408  *         have already been released, and we only want to zero
3409  *         out the regions that correspond to those released blocks.
3410  *
3411  * Returns zero on success or negative on failure.
3412  */
3413 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3414                 struct inode *inode, struct page *page, loff_t from,
3415                 loff_t length, int flags)
3416 {
3417         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3418         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3419         unsigned int blocksize, max, pos;
3420         ext4_lblk_t iblock;
3421         struct buffer_head *bh;
3422         int err = 0;
3423
3424         blocksize = inode->i_sb->s_blocksize;
3425         max = PAGE_CACHE_SIZE - offset;
3426
3427         if (index != page->index)
3428                 return -EINVAL;
3429
3430         /*
3431          * correct length if it does not fall between
3432          * 'from' and the end of the page
3433          */
3434         if (length > max || length < 0)
3435                 length = max;
3436
3437         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3438
3439         if (!page_has_buffers(page))
3440                 create_empty_buffers(page, blocksize, 0);
3441
3442         /* Find the buffer that contains "offset" */
3443         bh = page_buffers(page);
3444         pos = blocksize;
3445         while (offset >= pos) {
3446                 bh = bh->b_this_page;
3447                 iblock++;
3448                 pos += blocksize;
3449         }
3450
3451         pos = offset;
3452         while (pos < offset + length) {
3453                 unsigned int end_of_block, range_to_discard;
3454
3455                 err = 0;
3456
3457                 /* The length of space left to zero and unmap */
3458                 range_to_discard = offset + length - pos;
3459
3460                 /* The length of space until the end of the block */
3461                 end_of_block = blocksize - (pos & (blocksize-1));
3462
3463                 /*
3464                  * Do not unmap or zero past end of block
3465                  * for this buffer head
3466                  */
3467                 if (range_to_discard > end_of_block)
3468                         range_to_discard = end_of_block;
3469
3470
3471                 /*
3472                  * Skip this buffer head if we are only zeroing unampped
3473                  * regions of the page
3474                  */
3475                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3476                         buffer_mapped(bh))
3477                                 goto next;
3478
3479                 /* If the range is block aligned, unmap */
3480                 if (range_to_discard == blocksize) {
3481                         clear_buffer_dirty(bh);
3482                         bh->b_bdev = NULL;
3483                         clear_buffer_mapped(bh);
3484                         clear_buffer_req(bh);
3485                         clear_buffer_new(bh);
3486                         clear_buffer_delay(bh);
3487                         clear_buffer_unwritten(bh);
3488                         clear_buffer_uptodate(bh);
3489                         zero_user(page, pos, range_to_discard);
3490                         BUFFER_TRACE(bh, "Buffer discarded");
3491                         goto next;
3492                 }
3493
3494                 /*
3495                  * If this block is not completely contained in the range
3496                  * to be discarded, then it is not going to be released. Because
3497                  * we need to keep this block, we need to make sure this part
3498                  * of the page is uptodate before we modify it by writeing
3499                  * partial zeros on it.
3500                  */
3501                 if (!buffer_mapped(bh)) {
3502                         /*
3503                          * Buffer head must be mapped before we can read
3504                          * from the block
3505                          */
3506                         BUFFER_TRACE(bh, "unmapped");
3507                         ext4_get_block(inode, iblock, bh, 0);
3508                         /* unmapped? It's a hole - nothing to do */
3509                         if (!buffer_mapped(bh)) {
3510                                 BUFFER_TRACE(bh, "still unmapped");
3511                                 goto next;
3512                         }
3513                 }
3514
3515                 /* Ok, it's mapped. Make sure it's up-to-date */
3516                 if (PageUptodate(page))
3517                         set_buffer_uptodate(bh);
3518
3519                 if (!buffer_uptodate(bh)) {
3520                         err = -EIO;
3521                         ll_rw_block(READ, 1, &bh);
3522                         wait_on_buffer(bh);
3523                         /* Uhhuh. Read error. Complain and punt.*/
3524                         if (!buffer_uptodate(bh))
3525                                 goto next;
3526                 }
3527
3528                 if (ext4_should_journal_data(inode)) {
3529                         BUFFER_TRACE(bh, "get write access");
3530                         err = ext4_journal_get_write_access(handle, bh);
3531                         if (err)
3532                                 goto next;
3533                 }
3534
3535                 zero_user(page, pos, range_to_discard);
3536
3537                 err = 0;
3538                 if (ext4_should_journal_data(inode)) {
3539                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3540                 } else
3541                         mark_buffer_dirty(bh);
3542
3543                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3544 next:
3545                 bh = bh->b_this_page;
3546                 iblock++;
3547                 pos += range_to_discard;
3548         }
3549
3550         return err;
3551 }
3552
3553 int ext4_can_truncate(struct inode *inode)
3554 {
3555         if (S_ISREG(inode->i_mode))
3556                 return 1;
3557         if (S_ISDIR(inode->i_mode))
3558                 return 1;
3559         if (S_ISLNK(inode->i_mode))
3560                 return !ext4_inode_is_fast_symlink(inode);
3561         return 0;
3562 }
3563
3564 /*
3565  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3566  * associated with the given offset and length
3567  *
3568  * @inode:  File inode
3569  * @offset: The offset where the hole will begin
3570  * @len:    The length of the hole
3571  *
3572  * Returns: 0 on success or negative on failure
3573  */
3574
3575 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3576 {
3577         struct inode *inode = file_inode(file);
3578         struct super_block *sb = inode->i_sb;
3579         ext4_lblk_t first_block, stop_block;
3580         struct address_space *mapping = inode->i_mapping;
3581         loff_t first_page, last_page, page_len;
3582         loff_t first_page_offset, last_page_offset;
3583         handle_t *handle;
3584         unsigned int credits;
3585         int ret = 0;
3586
3587         if (!S_ISREG(inode->i_mode))
3588                 return -EOPNOTSUPP;
3589
3590         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3591                 /* TODO: Add support for bigalloc file systems */
3592                 return -EOPNOTSUPP;
3593         }
3594
3595         trace_ext4_punch_hole(inode, offset, length);
3596
3597         /*
3598          * Write out all dirty pages to avoid race conditions
3599          * Then release them.
3600          */
3601         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3602                 ret = filemap_write_and_wait_range(mapping, offset,
3603                                                    offset + length - 1);
3604                 if (ret)
3605                         return ret;
3606         }
3607
3608         mutex_lock(&inode->i_mutex);
3609         /* It's not possible punch hole on append only file */
3610         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3611                 ret = -EPERM;
3612                 goto out_mutex;
3613         }
3614         if (IS_SWAPFILE(inode)) {
3615                 ret = -ETXTBSY;
3616                 goto out_mutex;
3617         }
3618
3619         /* No need to punch hole beyond i_size */
3620         if (offset >= inode->i_size)
3621                 goto out_mutex;
3622
3623         /*
3624          * If the hole extends beyond i_size, set the hole
3625          * to end after the page that contains i_size
3626          */
3627         if (offset + length > inode->i_size) {
3628                 length = inode->i_size +
3629                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3630                    offset;
3631         }
3632
3633         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3634         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3635
3636         first_page_offset = first_page << PAGE_CACHE_SHIFT;
3637         last_page_offset = last_page << PAGE_CACHE_SHIFT;
3638
3639         /* Now release the pages */
3640         if (last_page_offset > first_page_offset) {
3641                 truncate_pagecache_range(inode, first_page_offset,
3642                                          last_page_offset - 1);
3643         }
3644
3645         /* Wait all existing dio workers, newcomers will block on i_mutex */
3646         ext4_inode_block_unlocked_dio(inode);
3647         ret = ext4_flush_unwritten_io(inode);
3648         if (ret)
3649                 goto out_dio;
3650         inode_dio_wait(inode);
3651
3652         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3653                 credits = ext4_writepage_trans_blocks(inode);
3654         else
3655                 credits = ext4_blocks_for_truncate(inode);
3656         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3657         if (IS_ERR(handle)) {
3658                 ret = PTR_ERR(handle);
3659                 ext4_std_error(sb, ret);
3660                 goto out_dio;
3661         }
3662
3663         /*
3664          * Now we need to zero out the non-page-aligned data in the
3665          * pages at the start and tail of the hole, and unmap the
3666          * buffer heads for the block aligned regions of the page that
3667          * were completely zeroed.
3668          */
3669         if (first_page > last_page) {
3670                 /*
3671                  * If the file space being truncated is contained
3672                  * within a page just zero out and unmap the middle of
3673                  * that page
3674                  */
3675                 ret = ext4_discard_partial_page_buffers(handle,
3676                         mapping, offset, length, 0);
3677
3678                 if (ret)
3679                         goto out_stop;
3680         } else {
3681                 /*
3682                  * zero out and unmap the partial page that contains
3683                  * the start of the hole
3684                  */
3685                 page_len = first_page_offset - offset;
3686                 if (page_len > 0) {
3687                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3688                                                 offset, page_len, 0);
3689                         if (ret)
3690                                 goto out_stop;
3691                 }
3692
3693                 /*
3694                  * zero out and unmap the partial page that contains
3695                  * the end of the hole
3696                  */
3697                 page_len = offset + length - last_page_offset;
3698                 if (page_len > 0) {
3699                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3700                                         last_page_offset, page_len, 0);
3701                         if (ret)
3702                                 goto out_stop;
3703                 }
3704         }
3705
3706         /*
3707          * If i_size is contained in the last page, we need to
3708          * unmap and zero the partial page after i_size
3709          */
3710         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3711            inode->i_size % PAGE_CACHE_SIZE != 0) {
3712                 page_len = PAGE_CACHE_SIZE -
3713                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3714
3715                 if (page_len > 0) {
3716                         ret = ext4_discard_partial_page_buffers(handle,
3717                                         mapping, inode->i_size, page_len, 0);
3718
3719                         if (ret)
3720                                 goto out_stop;
3721                 }
3722         }
3723
3724         first_block = (offset + sb->s_blocksize - 1) >>
3725                 EXT4_BLOCK_SIZE_BITS(sb);
3726         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3727
3728         /* If there are no blocks to remove, return now */
3729         if (first_block >= stop_block)
3730                 goto out_stop;
3731
3732         down_write(&EXT4_I(inode)->i_data_sem);
3733         ext4_discard_preallocations(inode);
3734
3735         ret = ext4_es_remove_extent(inode, first_block,
3736                                     stop_block - first_block);
3737         if (ret) {
3738                 up_write(&EXT4_I(inode)->i_data_sem);
3739                 goto out_stop;
3740         }
3741
3742         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3743                 ret = ext4_ext_remove_space(inode, first_block,
3744                                             stop_block - 1);
3745         else
3746                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3747                                             stop_block);
3748
3749         ext4_discard_preallocations(inode);
3750         up_write(&EXT4_I(inode)->i_data_sem);
3751         if (IS_SYNC(inode))
3752                 ext4_handle_sync(handle);
3753         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3754         ext4_mark_inode_dirty(handle, inode);
3755 out_stop:
3756         ext4_journal_stop(handle);
3757 out_dio:
3758         ext4_inode_resume_unlocked_dio(inode);
3759 out_mutex:
3760         mutex_unlock(&inode->i_mutex);
3761         return ret;
3762 }
3763
3764 /*
3765  * ext4_truncate()
3766  *
3767  * We block out ext4_get_block() block instantiations across the entire
3768  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3769  * simultaneously on behalf of the same inode.
3770  *
3771  * As we work through the truncate and commit bits of it to the journal there
3772  * is one core, guiding principle: the file's tree must always be consistent on
3773  * disk.  We must be able to restart the truncate after a crash.
3774  *
3775  * The file's tree may be transiently inconsistent in memory (although it
3776  * probably isn't), but whenever we close off and commit a journal transaction,
3777  * the contents of (the filesystem + the journal) must be consistent and
3778  * restartable.  It's pretty simple, really: bottom up, right to left (although
3779  * left-to-right works OK too).
3780  *
3781  * Note that at recovery time, journal replay occurs *before* the restart of
3782  * truncate against the orphan inode list.
3783  *
3784  * The committed inode has the new, desired i_size (which is the same as
3785  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3786  * that this inode's truncate did not complete and it will again call
3787  * ext4_truncate() to have another go.  So there will be instantiated blocks
3788  * to the right of the truncation point in a crashed ext4 filesystem.  But
3789  * that's fine - as long as they are linked from the inode, the post-crash
3790  * ext4_truncate() run will find them and release them.
3791  */
3792 void ext4_truncate(struct inode *inode)
3793 {
3794         struct ext4_inode_info *ei = EXT4_I(inode);
3795         unsigned int credits;
3796         handle_t *handle;
3797         struct address_space *mapping = inode->i_mapping;
3798         loff_t page_len;
3799
3800         /*
3801          * There is a possibility that we're either freeing the inode
3802          * or it completely new indode. In those cases we might not
3803          * have i_mutex locked because it's not necessary.
3804          */
3805         if (!(inode->i_state & (I_NEW|I_FREEING)))
3806                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3807         trace_ext4_truncate_enter(inode);
3808
3809         if (!ext4_can_truncate(inode))
3810                 return;
3811
3812         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3813
3814         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3815                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3816
3817         if (ext4_has_inline_data(inode)) {
3818                 int has_inline = 1;
3819
3820                 ext4_inline_data_truncate(inode, &has_inline);
3821                 if (has_inline)
3822                         return;
3823         }
3824
3825         /*
3826          * finish any pending end_io work so we won't run the risk of
3827          * converting any truncated blocks to initialized later
3828          */
3829         ext4_flush_unwritten_io(inode);
3830
3831         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3832                 credits = ext4_writepage_trans_blocks(inode);
3833         else
3834                 credits = ext4_blocks_for_truncate(inode);
3835
3836         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3837         if (IS_ERR(handle)) {
3838                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3839                 return;
3840         }
3841
3842         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3843                 page_len = PAGE_CACHE_SIZE -
3844                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3845
3846                 if (ext4_discard_partial_page_buffers(handle,
3847                                 mapping, inode->i_size, page_len, 0))
3848                         goto out_stop;
3849         }
3850
3851         /*
3852          * We add the inode to the orphan list, so that if this
3853          * truncate spans multiple transactions, and we crash, we will
3854          * resume the truncate when the filesystem recovers.  It also
3855          * marks the inode dirty, to catch the new size.
3856          *
3857          * Implication: the file must always be in a sane, consistent
3858          * truncatable state while each transaction commits.
3859          */
3860         if (ext4_orphan_add(handle, inode))
3861                 goto out_stop;
3862
3863         down_write(&EXT4_I(inode)->i_data_sem);
3864
3865         ext4_discard_preallocations(inode);
3866
3867         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3868                 ext4_ext_truncate(handle, inode);
3869         else
3870                 ext4_ind_truncate(handle, inode);
3871
3872         up_write(&ei->i_data_sem);
3873
3874         if (IS_SYNC(inode))
3875                 ext4_handle_sync(handle);
3876
3877 out_stop:
3878         /*
3879          * If this was a simple ftruncate() and the file will remain alive,
3880          * then we need to clear up the orphan record which we created above.
3881          * However, if this was a real unlink then we were called by
3882          * ext4_delete_inode(), and we allow that function to clean up the
3883          * orphan info for us.
3884          */
3885         if (inode->i_nlink)
3886                 ext4_orphan_del(handle, inode);
3887
3888         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3889         ext4_mark_inode_dirty(handle, inode);
3890         ext4_journal_stop(handle);
3891
3892         trace_ext4_truncate_exit(inode);
3893 }
3894
3895 /*
3896  * ext4_get_inode_loc returns with an extra refcount against the inode's
3897  * underlying buffer_head on success. If 'in_mem' is true, we have all
3898  * data in memory that is needed to recreate the on-disk version of this
3899  * inode.
3900  */
3901 static int __ext4_get_inode_loc(struct inode *inode,
3902                                 struct ext4_iloc *iloc, int in_mem)
3903 {
3904         struct ext4_group_desc  *gdp;
3905         struct buffer_head      *bh;
3906         struct super_block      *sb = inode->i_sb;
3907         ext4_fsblk_t            block;
3908         int                     inodes_per_block, inode_offset;
3909
3910         iloc->bh = NULL;
3911         if (!ext4_valid_inum(sb, inode->i_ino))
3912                 return -EIO;
3913
3914         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3915         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3916         if (!gdp)
3917                 return -EIO;
3918
3919         /*
3920          * Figure out the offset within the block group inode table
3921          */
3922         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3923         inode_offset = ((inode->i_ino - 1) %
3924                         EXT4_INODES_PER_GROUP(sb));
3925         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3926         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3927
3928         bh = sb_getblk(sb, block);
3929         if (unlikely(!bh))
3930                 return -ENOMEM;
3931         if (!buffer_uptodate(bh)) {
3932                 lock_buffer(bh);
3933
3934                 /*
3935                  * If the buffer has the write error flag, we have failed
3936                  * to write out another inode in the same block.  In this
3937                  * case, we don't have to read the block because we may
3938                  * read the old inode data successfully.
3939                  */
3940                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3941                         set_buffer_uptodate(bh);
3942
3943                 if (buffer_uptodate(bh)) {
3944                         /* someone brought it uptodate while we waited */
3945                         unlock_buffer(bh);
3946                         goto has_buffer;
3947                 }
3948
3949                 /*
3950                  * If we have all information of the inode in memory and this
3951                  * is the only valid inode in the block, we need not read the
3952                  * block.
3953                  */
3954                 if (in_mem) {
3955                         struct buffer_head *bitmap_bh;
3956                         int i, start;
3957
3958                         start = inode_offset & ~(inodes_per_block - 1);
3959
3960                         /* Is the inode bitmap in cache? */
3961                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3962                         if (unlikely(!bitmap_bh))
3963                                 goto make_io;
3964
3965                         /*
3966                          * If the inode bitmap isn't in cache then the
3967                          * optimisation may end up performing two reads instead
3968                          * of one, so skip it.
3969                          */
3970                         if (!buffer_uptodate(bitmap_bh)) {
3971                                 brelse(bitmap_bh);
3972                                 goto make_io;
3973                         }
3974                         for (i = start; i < start + inodes_per_block; i++) {
3975                                 if (i == inode_offset)
3976                                         continue;
3977                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3978                                         break;
3979                         }
3980                         brelse(bitmap_bh);
3981                         if (i == start + inodes_per_block) {
3982                                 /* all other inodes are free, so skip I/O */
3983                                 memset(bh->b_data, 0, bh->b_size);
3984                                 set_buffer_uptodate(bh);
3985                                 unlock_buffer(bh);
3986                                 goto has_buffer;
3987                         }
3988                 }
3989
3990 make_io:
3991                 /*
3992                  * If we need to do any I/O, try to pre-readahead extra
3993                  * blocks from the inode table.
3994                  */
3995                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3996                         ext4_fsblk_t b, end, table;
3997                         unsigned num;
3998                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3999
4000                         table = ext4_inode_table(sb, gdp);
4001                         /* s_inode_readahead_blks is always a power of 2 */
4002                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4003                         if (table > b)
4004                                 b = table;
4005                         end = b + ra_blks;
4006                         num = EXT4_INODES_PER_GROUP(sb);
4007                         if (ext4_has_group_desc_csum(sb))
4008                                 num -= ext4_itable_unused_count(sb, gdp);
4009                         table += num / inodes_per_block;
4010                         if (end > table)
4011                                 end = table;
4012                         while (b <= end)
4013                                 sb_breadahead(sb, b++);
4014                 }
4015
4016                 /*
4017                  * There are other valid inodes in the buffer, this inode
4018                  * has in-inode xattrs, or we don't have this inode in memory.
4019                  * Read the block from disk.
4020                  */
4021                 trace_ext4_load_inode(inode);
4022                 get_bh(bh);
4023                 bh->b_end_io = end_buffer_read_sync;
4024                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4025                 wait_on_buffer(bh);
4026                 if (!buffer_uptodate(bh)) {
4027                         EXT4_ERROR_INODE_BLOCK(inode, block,
4028                                                "unable to read itable block");
4029                         brelse(bh);
4030                         return -EIO;
4031                 }
4032         }
4033 has_buffer:
4034         iloc->bh = bh;
4035         return 0;
4036 }
4037
4038 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4039 {
4040         /* We have all inode data except xattrs in memory here. */
4041         return __ext4_get_inode_loc(inode, iloc,
4042                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4043 }
4044
4045 void ext4_set_inode_flags(struct inode *inode)
4046 {
4047         unsigned int flags = EXT4_I(inode)->i_flags;
4048         unsigned int new_fl = 0;
4049
4050         if (flags & EXT4_SYNC_FL)
4051                 new_fl |= S_SYNC;
4052         if (flags & EXT4_APPEND_FL)
4053                 new_fl |= S_APPEND;
4054         if (flags & EXT4_IMMUTABLE_FL)
4055                 new_fl |= S_IMMUTABLE;
4056         if (flags & EXT4_NOATIME_FL)
4057                 new_fl |= S_NOATIME;
4058         if (flags & EXT4_DIRSYNC_FL)
4059                 new_fl |= S_DIRSYNC;
4060         set_mask_bits(&inode->i_flags,
4061                       S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC, new_fl);
4062 }
4063
4064 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4065 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4066 {
4067         unsigned int vfs_fl;
4068         unsigned long old_fl, new_fl;
4069
4070         do {
4071                 vfs_fl = ei->vfs_inode.i_flags;
4072                 old_fl = ei->i_flags;
4073                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4074                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4075                                 EXT4_DIRSYNC_FL);
4076                 if (vfs_fl & S_SYNC)
4077                         new_fl |= EXT4_SYNC_FL;
4078                 if (vfs_fl & S_APPEND)
4079                         new_fl |= EXT4_APPEND_FL;
4080                 if (vfs_fl & S_IMMUTABLE)
4081                         new_fl |= EXT4_IMMUTABLE_FL;
4082                 if (vfs_fl & S_NOATIME)
4083                         new_fl |= EXT4_NOATIME_FL;
4084                 if (vfs_fl & S_DIRSYNC)
4085                         new_fl |= EXT4_DIRSYNC_FL;
4086         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4087 }
4088
4089 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4090                                   struct ext4_inode_info *ei)
4091 {
4092         blkcnt_t i_blocks ;
4093         struct inode *inode = &(ei->vfs_inode);
4094         struct super_block *sb = inode->i_sb;
4095
4096         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4097                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4098                 /* we are using combined 48 bit field */
4099                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4100                                         le32_to_cpu(raw_inode->i_blocks_lo);
4101                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4102                         /* i_blocks represent file system block size */
4103                         return i_blocks  << (inode->i_blkbits - 9);
4104                 } else {
4105                         return i_blocks;
4106                 }
4107         } else {
4108                 return le32_to_cpu(raw_inode->i_blocks_lo);
4109         }
4110 }
4111
4112 static inline void ext4_iget_extra_inode(struct inode *inode,
4113                                          struct ext4_inode *raw_inode,
4114                                          struct ext4_inode_info *ei)
4115 {
4116         __le32 *magic = (void *)raw_inode +
4117                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4118         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4119                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4120                 ext4_find_inline_data_nolock(inode);
4121         } else
4122                 EXT4_I(inode)->i_inline_off = 0;
4123 }
4124
4125 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4126 {
4127         struct ext4_iloc iloc;
4128         struct ext4_inode *raw_inode;
4129         struct ext4_inode_info *ei;
4130         struct inode *inode;
4131         journal_t *journal = EXT4_SB(sb)->s_journal;
4132         long ret;
4133         int block;
4134         uid_t i_uid;
4135         gid_t i_gid;
4136
4137         inode = iget_locked(sb, ino);
4138         if (!inode)
4139                 return ERR_PTR(-ENOMEM);
4140         if (!(inode->i_state & I_NEW))
4141                 return inode;
4142
4143         ei = EXT4_I(inode);
4144         iloc.bh = NULL;
4145
4146         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4147         if (ret < 0)
4148                 goto bad_inode;
4149         raw_inode = ext4_raw_inode(&iloc);
4150
4151         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4152                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4153                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4154                     EXT4_INODE_SIZE(inode->i_sb)) {
4155                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4156                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4157                                 EXT4_INODE_SIZE(inode->i_sb));
4158                         ret = -EIO;
4159                         goto bad_inode;
4160                 }
4161         } else
4162                 ei->i_extra_isize = 0;
4163
4164         /* Precompute checksum seed for inode metadata */
4165         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4166                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4167                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4168                 __u32 csum;
4169                 __le32 inum = cpu_to_le32(inode->i_ino);
4170                 __le32 gen = raw_inode->i_generation;
4171                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4172                                    sizeof(inum));
4173                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4174                                               sizeof(gen));
4175         }
4176
4177         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4178                 EXT4_ERROR_INODE(inode, "checksum invalid");
4179                 ret = -EIO;
4180                 goto bad_inode;
4181         }
4182
4183         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4184         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4185         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4186         if (!(test_opt(inode->i_sb, NO_UID32))) {
4187                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4188                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4189         }
4190         i_uid_write(inode, i_uid);
4191         i_gid_write(inode, i_gid);
4192         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4193
4194         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4195         ei->i_inline_off = 0;
4196         ei->i_dir_start_lookup = 0;
4197         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4198         /* We now have enough fields to check if the inode was active or not.
4199          * This is needed because nfsd might try to access dead inodes
4200          * the test is that same one that e2fsck uses
4201          * NeilBrown 1999oct15
4202          */
4203         if (inode->i_nlink == 0) {
4204                 if ((inode->i_mode == 0 ||
4205                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4206                     ino != EXT4_BOOT_LOADER_INO) {
4207                         /* this inode is deleted */
4208                         ret = -ESTALE;
4209                         goto bad_inode;
4210                 }
4211                 /* The only unlinked inodes we let through here have
4212                  * valid i_mode and are being read by the orphan
4213                  * recovery code: that's fine, we're about to complete
4214                  * the process of deleting those.
4215                  * OR it is the EXT4_BOOT_LOADER_INO which is
4216                  * not initialized on a new filesystem. */
4217         }
4218         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4219         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4220         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4221         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4222                 ei->i_file_acl |=
4223                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4224         inode->i_size = ext4_isize(raw_inode);
4225         ei->i_disksize = inode->i_size;
4226 #ifdef CONFIG_QUOTA
4227         ei->i_reserved_quota = 0;
4228 #endif
4229         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4230         ei->i_block_group = iloc.block_group;
4231         ei->i_last_alloc_group = ~0;
4232         /*
4233          * NOTE! The in-memory inode i_data array is in little-endian order
4234          * even on big-endian machines: we do NOT byteswap the block numbers!
4235          */
4236         for (block = 0; block < EXT4_N_BLOCKS; block++)
4237                 ei->i_data[block] = raw_inode->i_block[block];
4238         INIT_LIST_HEAD(&ei->i_orphan);
4239
4240         /*
4241          * Set transaction id's of transactions that have to be committed
4242          * to finish f[data]sync. We set them to currently running transaction
4243          * as we cannot be sure that the inode or some of its metadata isn't
4244          * part of the transaction - the inode could have been reclaimed and
4245          * now it is reread from disk.
4246          */
4247         if (journal) {
4248                 transaction_t *transaction;
4249                 tid_t tid;
4250
4251                 read_lock(&journal->j_state_lock);
4252                 if (journal->j_running_transaction)
4253                         transaction = journal->j_running_transaction;
4254                 else
4255                         transaction = journal->j_committing_transaction;
4256                 if (transaction)
4257                         tid = transaction->t_tid;
4258                 else
4259                         tid = journal->j_commit_sequence;
4260                 read_unlock(&journal->j_state_lock);
4261                 ei->i_sync_tid = tid;
4262                 ei->i_datasync_tid = tid;
4263         }
4264
4265         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4266                 if (ei->i_extra_isize == 0) {
4267                         /* The extra space is currently unused. Use it. */
4268                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4269                                             EXT4_GOOD_OLD_INODE_SIZE;
4270                 } else {
4271                         ext4_iget_extra_inode(inode, raw_inode, ei);
4272                 }
4273         }
4274
4275         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4276         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4277         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4278         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4279
4280         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4281         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4282                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4283                         inode->i_version |=
4284                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4285         }
4286
4287         ret = 0;
4288         if (ei->i_file_acl &&
4289             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4290                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4291                                  ei->i_file_acl);
4292                 ret = -EIO;
4293                 goto bad_inode;
4294         } else if (!ext4_has_inline_data(inode)) {
4295                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4296                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4297                             (S_ISLNK(inode->i_mode) &&
4298                              !ext4_inode_is_fast_symlink(inode))))
4299                                 /* Validate extent which is part of inode */
4300                                 ret = ext4_ext_check_inode(inode);
4301                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4302                            (S_ISLNK(inode->i_mode) &&
4303                             !ext4_inode_is_fast_symlink(inode))) {
4304                         /* Validate block references which are part of inode */
4305                         ret = ext4_ind_check_inode(inode);
4306                 }
4307         }
4308         if (ret)
4309                 goto bad_inode;
4310
4311         if (S_ISREG(inode->i_mode)) {
4312                 inode->i_op = &ext4_file_inode_operations;
4313                 inode->i_fop = &ext4_file_operations;
4314                 ext4_set_aops(inode);
4315         } else if (S_ISDIR(inode->i_mode)) {
4316                 inode->i_op = &ext4_dir_inode_operations;
4317                 inode->i_fop = &ext4_dir_operations;
4318         } else if (S_ISLNK(inode->i_mode)) {
4319                 if (ext4_inode_is_fast_symlink(inode)) {
4320                         inode->i_op = &ext4_fast_symlink_inode_operations;
4321                         nd_terminate_link(ei->i_data, inode->i_size,
4322                                 sizeof(ei->i_data) - 1);
4323                 } else {
4324                         inode->i_op = &ext4_symlink_inode_operations;
4325                         ext4_set_aops(inode);
4326                 }
4327         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4328               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4329                 inode->i_op = &ext4_special_inode_operations;
4330                 if (raw_inode->i_block[0])
4331                         init_special_inode(inode, inode->i_mode,
4332                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4333                 else
4334                         init_special_inode(inode, inode->i_mode,
4335                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4336         } else if (ino == EXT4_BOOT_LOADER_INO) {
4337                 make_bad_inode(inode);
4338         } else {
4339                 ret = -EIO;
4340                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4341                 goto bad_inode;
4342         }
4343         brelse(iloc.bh);
4344         ext4_set_inode_flags(inode);
4345         unlock_new_inode(inode);
4346         return inode;
4347
4348 bad_inode:
4349         brelse(iloc.bh);
4350         iget_failed(inode);
4351         return ERR_PTR(ret);
4352 }
4353
4354 static int ext4_inode_blocks_set(handle_t *handle,
4355                                 struct ext4_inode *raw_inode,
4356                                 struct ext4_inode_info *ei)
4357 {
4358         struct inode *inode = &(ei->vfs_inode);
4359         u64 i_blocks = inode->i_blocks;
4360         struct super_block *sb = inode->i_sb;
4361
4362         if (i_blocks <= ~0U) {
4363                 /*
4364                  * i_blocks can be represented in a 32 bit variable
4365                  * as multiple of 512 bytes
4366                  */
4367                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4368                 raw_inode->i_blocks_high = 0;
4369                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4370                 return 0;
4371         }
4372         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4373                 return -EFBIG;
4374
4375         if (i_blocks <= 0xffffffffffffULL) {
4376                 /*
4377                  * i_blocks can be represented in a 48 bit variable
4378                  * as multiple of 512 bytes
4379                  */
4380                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4381                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4382                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4383         } else {
4384                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4385                 /* i_block is stored in file system block size */
4386                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4387                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4388                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4389         }
4390         return 0;
4391 }
4392
4393 /*
4394  * Post the struct inode info into an on-disk inode location in the
4395  * buffer-cache.  This gobbles the caller's reference to the
4396  * buffer_head in the inode location struct.
4397  *
4398  * The caller must have write access to iloc->bh.
4399  */
4400 static int ext4_do_update_inode(handle_t *handle,
4401                                 struct inode *inode,
4402                                 struct ext4_iloc *iloc)
4403 {
4404         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4405         struct ext4_inode_info *ei = EXT4_I(inode);
4406         struct buffer_head *bh = iloc->bh;
4407         int err = 0, rc, block;
4408         int need_datasync = 0;
4409         uid_t i_uid;
4410         gid_t i_gid;
4411
4412         /* For fields not not tracking in the in-memory inode,
4413          * initialise them to zero for new inodes. */
4414         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4415                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4416
4417         ext4_get_inode_flags(ei);
4418         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4419         i_uid = i_uid_read(inode);
4420         i_gid = i_gid_read(inode);
4421         if (!(test_opt(inode->i_sb, NO_UID32))) {
4422                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4423                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4424 /*
4425  * Fix up interoperability with old kernels. Otherwise, old inodes get
4426  * re-used with the upper 16 bits of the uid/gid intact
4427  */
4428                 if (!ei->i_dtime) {
4429                         raw_inode->i_uid_high =
4430                                 cpu_to_le16(high_16_bits(i_uid));
4431                         raw_inode->i_gid_high =
4432                                 cpu_to_le16(high_16_bits(i_gid));
4433                 } else {
4434                         raw_inode->i_uid_high = 0;
4435                         raw_inode->i_gid_high = 0;
4436                 }
4437         } else {
4438                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4439                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4440                 raw_inode->i_uid_high = 0;
4441                 raw_inode->i_gid_high = 0;
4442         }
4443         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4444
4445         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4446         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4447         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4448         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4449
4450         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4451                 goto out_brelse;
4452         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4453         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4454         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4455             cpu_to_le32(EXT4_OS_HURD))
4456                 raw_inode->i_file_acl_high =
4457                         cpu_to_le16(ei->i_file_acl >> 32);
4458         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4459         if (ei->i_disksize != ext4_isize(raw_inode)) {
4460                 ext4_isize_set(raw_inode, ei->i_disksize);
4461                 need_datasync = 1;
4462         }
4463         if (ei->i_disksize > 0x7fffffffULL) {
4464                 struct super_block *sb = inode->i_sb;
4465                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4466                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4467                                 EXT4_SB(sb)->s_es->s_rev_level ==
4468                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4469                         /* If this is the first large file
4470                          * created, add a flag to the superblock.
4471                          */
4472                         err = ext4_journal_get_write_access(handle,
4473                                         EXT4_SB(sb)->s_sbh);
4474                         if (err)
4475                                 goto out_brelse;
4476                         ext4_update_dynamic_rev(sb);
4477                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4478                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4479                         ext4_handle_sync(handle);
4480                         err = ext4_handle_dirty_super(handle, sb);
4481                 }
4482         }
4483         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4484         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4485                 if (old_valid_dev(inode->i_rdev)) {
4486                         raw_inode->i_block[0] =
4487                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4488                         raw_inode->i_block[1] = 0;
4489                 } else {
4490                         raw_inode->i_block[0] = 0;
4491                         raw_inode->i_block[1] =
4492                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4493                         raw_inode->i_block[2] = 0;
4494                 }
4495         } else if (!ext4_has_inline_data(inode)) {
4496                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4497                         raw_inode->i_block[block] = ei->i_data[block];
4498         }
4499
4500         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4501         if (ei->i_extra_isize) {
4502                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4503                         raw_inode->i_version_hi =
4504                         cpu_to_le32(inode->i_version >> 32);
4505                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4506         }
4507
4508         ext4_inode_csum_set(inode, raw_inode, ei);
4509
4510         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4511         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4512         if (!err)
4513                 err = rc;
4514         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4515
4516         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4517 out_brelse:
4518         brelse(bh);
4519         ext4_std_error(inode->i_sb, err);
4520         return err;
4521 }
4522
4523 /*
4524  * ext4_write_inode()
4525  *
4526  * We are called from a few places:
4527  *
4528  * - Within generic_file_write() for O_SYNC files.
4529  *   Here, there will be no transaction running. We wait for any running
4530  *   transaction to commit.
4531  *
4532  * - Within sys_sync(), kupdate and such.
4533  *   We wait on commit, if tol to.
4534  *
4535  * - Within prune_icache() (PF_MEMALLOC == true)
4536  *   Here we simply return.  We can't afford to block kswapd on the
4537  *   journal commit.
4538  *
4539  * In all cases it is actually safe for us to return without doing anything,
4540  * because the inode has been copied into a raw inode buffer in
4541  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4542  * knfsd.
4543  *
4544  * Note that we are absolutely dependent upon all inode dirtiers doing the
4545  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4546  * which we are interested.
4547  *
4548  * It would be a bug for them to not do this.  The code:
4549  *
4550  *      mark_inode_dirty(inode)
4551  *      stuff();
4552  *      inode->i_size = expr;
4553  *
4554  * is in error because a kswapd-driven write_inode() could occur while
4555  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4556  * will no longer be on the superblock's dirty inode list.
4557  */
4558 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4559 {
4560         int err;
4561
4562         if (current->flags & PF_MEMALLOC)
4563                 return 0;
4564
4565         if (EXT4_SB(inode->i_sb)->s_journal) {
4566                 if (ext4_journal_current_handle()) {
4567                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4568                         dump_stack();
4569                         return -EIO;
4570                 }
4571
4572                 if (wbc->sync_mode != WB_SYNC_ALL)
4573                         return 0;
4574
4575                 err = ext4_force_commit(inode->i_sb);
4576         } else {
4577                 struct ext4_iloc iloc;
4578
4579                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4580                 if (err)
4581                         return err;
4582                 if (wbc->sync_mode == WB_SYNC_ALL)
4583                         sync_dirty_buffer(iloc.bh);
4584                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4585                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4586                                          "IO error syncing inode");
4587                         err = -EIO;
4588                 }
4589                 brelse(iloc.bh);
4590         }
4591         return err;
4592 }
4593
4594 /*
4595  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4596  * buffers that are attached to a page stradding i_size and are undergoing
4597  * commit. In that case we have to wait for commit to finish and try again.
4598  */
4599 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4600 {
4601         struct page *page;
4602         unsigned offset;
4603         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4604         tid_t commit_tid = 0;
4605         int ret;
4606
4607         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4608         /*
4609          * All buffers in the last page remain valid? Then there's nothing to
4610          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4611          * blocksize case
4612          */
4613         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4614                 return;
4615         while (1) {
4616                 page = find_lock_page(inode->i_mapping,
4617                                       inode->i_size >> PAGE_CACHE_SHIFT);
4618                 if (!page)
4619                         return;
4620                 ret = __ext4_journalled_invalidatepage(page, offset);
4621                 unlock_page(page);
4622                 page_cache_release(page);
4623                 if (ret != -EBUSY)
4624                         return;
4625                 commit_tid = 0;
4626                 read_lock(&journal->j_state_lock);
4627                 if (journal->j_committing_transaction)
4628                         commit_tid = journal->j_committing_transaction->t_tid;
4629                 read_unlock(&journal->j_state_lock);
4630                 if (commit_tid)
4631                         jbd2_log_wait_commit(journal, commit_tid);
4632         }
4633 }
4634
4635 /*
4636  * ext4_setattr()
4637  *
4638  * Called from notify_change.
4639  *
4640  * We want to trap VFS attempts to truncate the file as soon as
4641  * possible.  In particular, we want to make sure that when the VFS
4642  * shrinks i_size, we put the inode on the orphan list and modify
4643  * i_disksize immediately, so that during the subsequent flushing of
4644  * dirty pages and freeing of disk blocks, we can guarantee that any
4645  * commit will leave the blocks being flushed in an unused state on
4646  * disk.  (On recovery, the inode will get truncated and the blocks will
4647  * be freed, so we have a strong guarantee that no future commit will
4648  * leave these blocks visible to the user.)
4649  *
4650  * Another thing we have to assure is that if we are in ordered mode
4651  * and inode is still attached to the committing transaction, we must
4652  * we start writeout of all the dirty pages which are being truncated.
4653  * This way we are sure that all the data written in the previous
4654  * transaction are already on disk (truncate waits for pages under
4655  * writeback).
4656  *
4657  * Called with inode->i_mutex down.
4658  */
4659 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4660 {
4661         struct inode *inode = dentry->d_inode;
4662         int error, rc = 0;
4663         int orphan = 0;
4664         const unsigned int ia_valid = attr->ia_valid;
4665
4666         error = inode_change_ok(inode, attr);
4667         if (error)
4668                 return error;
4669
4670         if (is_quota_modification(inode, attr))
4671                 dquot_initialize(inode);
4672         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4673             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4674                 handle_t *handle;
4675
4676                 /* (user+group)*(old+new) structure, inode write (sb,
4677                  * inode block, ? - but truncate inode update has it) */
4678                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4679                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4680                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4681                 if (IS_ERR(handle)) {
4682                         error = PTR_ERR(handle);
4683                         goto err_out;
4684                 }
4685                 error = dquot_transfer(inode, attr);
4686                 if (error) {
4687                         ext4_journal_stop(handle);
4688                         return error;
4689                 }
4690                 /* Update corresponding info in inode so that everything is in
4691                  * one transaction */
4692                 if (attr->ia_valid & ATTR_UID)
4693                         inode->i_uid = attr->ia_uid;
4694                 if (attr->ia_valid & ATTR_GID)
4695                         inode->i_gid = attr->ia_gid;
4696                 error = ext4_mark_inode_dirty(handle, inode);
4697                 ext4_journal_stop(handle);
4698         }
4699
4700         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4701                 handle_t *handle;
4702                 loff_t oldsize = inode->i_size;
4703
4704                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4705                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4706
4707                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4708                                 return -EFBIG;
4709                 }
4710
4711                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4712                         inode_inc_iversion(inode);
4713
4714                 if (S_ISREG(inode->i_mode) &&
4715                     (attr->ia_size < inode->i_size)) {
4716                         if (ext4_should_order_data(inode)) {
4717                                 error = ext4_begin_ordered_truncate(inode,
4718                                                             attr->ia_size);
4719                                 if (error)
4720                                         goto err_out;
4721                         }
4722                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4723                         if (IS_ERR(handle)) {
4724                                 error = PTR_ERR(handle);
4725                                 goto err_out;
4726                         }
4727                         if (ext4_handle_valid(handle)) {
4728                                 error = ext4_orphan_add(handle, inode);
4729                                 orphan = 1;
4730                         }
4731                         EXT4_I(inode)->i_disksize = attr->ia_size;
4732                         rc = ext4_mark_inode_dirty(handle, inode);
4733                         if (!error)
4734                                 error = rc;
4735                         ext4_journal_stop(handle);
4736                         if (error) {
4737                                 ext4_orphan_del(NULL, inode);
4738                                 goto err_out;
4739                         }
4740                 }
4741
4742                 i_size_write(inode, attr->ia_size);
4743                 /*
4744                  * Blocks are going to be removed from the inode. Wait
4745                  * for dio in flight.  Temporarily disable
4746                  * dioread_nolock to prevent livelock.
4747                  */
4748                 if (orphan) {
4749                         if (!ext4_should_journal_data(inode)) {
4750                                 ext4_inode_block_unlocked_dio(inode);
4751                                 inode_dio_wait(inode);
4752                                 ext4_inode_resume_unlocked_dio(inode);
4753                         } else
4754                                 ext4_wait_for_tail_page_commit(inode);
4755                 }
4756                 /*
4757                  * Truncate pagecache after we've waited for commit
4758                  * in data=journal mode to make pages freeable.
4759                  */
4760                 truncate_pagecache(inode, oldsize, inode->i_size);
4761         }
4762         /*
4763          * We want to call ext4_truncate() even if attr->ia_size ==
4764          * inode->i_size for cases like truncation of fallocated space
4765          */
4766         if (attr->ia_valid & ATTR_SIZE)
4767                 ext4_truncate(inode);
4768
4769         if (!rc) {
4770                 setattr_copy(inode, attr);
4771                 mark_inode_dirty(inode);
4772         }
4773
4774         /*
4775          * If the call to ext4_truncate failed to get a transaction handle at
4776          * all, we need to clean up the in-core orphan list manually.
4777          */
4778         if (orphan && inode->i_nlink)
4779                 ext4_orphan_del(NULL, inode);
4780
4781         if (!rc && (ia_valid & ATTR_MODE))
4782                 rc = ext4_acl_chmod(inode);
4783
4784 err_out:
4785         ext4_std_error(inode->i_sb, error);
4786         if (!error)
4787                 error = rc;
4788         return error;
4789 }
4790
4791 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4792                  struct kstat *stat)
4793 {
4794         struct inode *inode;
4795         unsigned long long delalloc_blocks;
4796
4797         inode = dentry->d_inode;
4798         generic_fillattr(inode, stat);
4799
4800         /*
4801          * We can't update i_blocks if the block allocation is delayed
4802          * otherwise in the case of system crash before the real block
4803          * allocation is done, we will have i_blocks inconsistent with
4804          * on-disk file blocks.
4805          * We always keep i_blocks updated together with real
4806          * allocation. But to not confuse with user, stat
4807          * will return the blocks that include the delayed allocation
4808          * blocks for this file.
4809          */
4810         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4811                                 EXT4_I(inode)->i_reserved_data_blocks);
4812
4813         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4814         return 0;
4815 }
4816
4817 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4818 {
4819         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4820                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4821         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4822 }
4823
4824 /*
4825  * Account for index blocks, block groups bitmaps and block group
4826  * descriptor blocks if modify datablocks and index blocks
4827  * worse case, the indexs blocks spread over different block groups
4828  *
4829  * If datablocks are discontiguous, they are possible to spread over
4830  * different block groups too. If they are contiguous, with flexbg,
4831  * they could still across block group boundary.
4832  *
4833  * Also account for superblock, inode, quota and xattr blocks
4834  */
4835 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4836 {
4837         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4838         int gdpblocks;
4839         int idxblocks;
4840         int ret = 0;
4841
4842         /*
4843          * How many index blocks need to touch to modify nrblocks?
4844          * The "Chunk" flag indicating whether the nrblocks is
4845          * physically contiguous on disk
4846          *
4847          * For Direct IO and fallocate, they calls get_block to allocate
4848          * one single extent at a time, so they could set the "Chunk" flag
4849          */
4850         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4851
4852         ret = idxblocks;
4853
4854         /*
4855          * Now let's see how many group bitmaps and group descriptors need
4856          * to account
4857          */
4858         groups = idxblocks;
4859         if (chunk)
4860                 groups += 1;
4861         else
4862                 groups += nrblocks;
4863
4864         gdpblocks = groups;
4865         if (groups > ngroups)
4866                 groups = ngroups;
4867         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4868                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4869
4870         /* bitmaps and block group descriptor blocks */
4871         ret += groups + gdpblocks;
4872
4873         /* Blocks for super block, inode, quota and xattr blocks */
4874         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4875
4876         return ret;
4877 }
4878
4879 /*
4880  * Calculate the total number of credits to reserve to fit
4881  * the modification of a single pages into a single transaction,
4882  * which may include multiple chunks of block allocations.
4883  *
4884  * This could be called via ext4_write_begin()
4885  *
4886  * We need to consider the worse case, when
4887  * one new block per extent.
4888  */
4889 int ext4_writepage_trans_blocks(struct inode *inode)
4890 {
4891         int bpp = ext4_journal_blocks_per_page(inode);
4892         int ret;
4893
4894         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4895
4896         /* Account for data blocks for journalled mode */
4897         if (ext4_should_journal_data(inode))
4898                 ret += bpp;
4899         return ret;
4900 }
4901
4902 /*
4903  * Calculate the journal credits for a chunk of data modification.
4904  *
4905  * This is called from DIO, fallocate or whoever calling
4906  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4907  *
4908  * journal buffers for data blocks are not included here, as DIO
4909  * and fallocate do no need to journal data buffers.
4910  */
4911 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4912 {
4913         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4914 }
4915
4916 /*
4917  * The caller must have previously called ext4_reserve_inode_write().
4918  * Give this, we know that the caller already has write access to iloc->bh.
4919  */
4920 int ext4_mark_iloc_dirty(handle_t *handle,
4921                          struct inode *inode, struct ext4_iloc *iloc)
4922 {
4923         int err = 0;
4924
4925         if (IS_I_VERSION(inode))
4926                 inode_inc_iversion(inode);
4927
4928         /* the do_update_inode consumes one bh->b_count */
4929         get_bh(iloc->bh);
4930
4931         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4932         err = ext4_do_update_inode(handle, inode, iloc);
4933         put_bh(iloc->bh);
4934         return err;
4935 }
4936
4937 /*
4938  * On success, We end up with an outstanding reference count against
4939  * iloc->bh.  This _must_ be cleaned up later.
4940  */
4941
4942 int
4943 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4944                          struct ext4_iloc *iloc)
4945 {
4946         int err;
4947
4948         err = ext4_get_inode_loc(inode, iloc);
4949         if (!err) {
4950                 BUFFER_TRACE(iloc->bh, "get_write_access");
4951                 err = ext4_journal_get_write_access(handle, iloc->bh);
4952                 if (err) {
4953                         brelse(iloc->bh);
4954                         iloc->bh = NULL;
4955                 }
4956         }
4957         ext4_std_error(inode->i_sb, err);
4958         return err;
4959 }
4960
4961 /*
4962  * Expand an inode by new_extra_isize bytes.
4963  * Returns 0 on success or negative error number on failure.
4964  */
4965 static int ext4_expand_extra_isize(struct inode *inode,
4966                                    unsigned int new_extra_isize,
4967                                    struct ext4_iloc iloc,
4968                                    handle_t *handle)
4969 {
4970         struct ext4_inode *raw_inode;
4971         struct ext4_xattr_ibody_header *header;
4972
4973         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4974                 return 0;
4975
4976         raw_inode = ext4_raw_inode(&iloc);
4977
4978         header = IHDR(inode, raw_inode);
4979
4980         /* No extended attributes present */
4981         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4982             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4983                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4984                         new_extra_isize);
4985                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4986                 return 0;
4987         }
4988
4989         /* try to expand with EAs present */
4990         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4991                                           raw_inode, handle);
4992 }
4993
4994 /*
4995  * What we do here is to mark the in-core inode as clean with respect to inode
4996  * dirtiness (it may still be data-dirty).
4997  * This means that the in-core inode may be reaped by prune_icache
4998  * without having to perform any I/O.  This is a very good thing,
4999  * because *any* task may call prune_icache - even ones which
5000  * have a transaction open against a different journal.
5001  *
5002  * Is this cheating?  Not really.  Sure, we haven't written the
5003  * inode out, but prune_icache isn't a user-visible syncing function.
5004  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5005  * we start and wait on commits.
5006  */
5007 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5008 {
5009         struct ext4_iloc iloc;
5010         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5011         static unsigned int mnt_count;
5012         int err, ret;
5013
5014         might_sleep();
5015         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5016         err = ext4_reserve_inode_write(handle, inode, &iloc);
5017         if (ext4_handle_valid(handle) &&
5018             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5019             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5020                 /*
5021                  * We need extra buffer credits since we may write into EA block
5022                  * with this same handle. If journal_extend fails, then it will
5023                  * only result in a minor loss of functionality for that inode.
5024                  * If this is felt to be critical, then e2fsck should be run to
5025                  * force a large enough s_min_extra_isize.
5026                  */
5027                 if ((jbd2_journal_extend(handle,
5028                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5029                         ret = ext4_expand_extra_isize(inode,
5030                                                       sbi->s_want_extra_isize,
5031                                                       iloc, handle);
5032                         if (ret) {
5033                                 ext4_set_inode_state(inode,
5034                                                      EXT4_STATE_NO_EXPAND);
5035                                 if (mnt_count !=
5036                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5037                                         ext4_warning(inode->i_sb,
5038                                         "Unable to expand inode %lu. Delete"
5039                                         " some EAs or run e2fsck.",
5040                                         inode->i_ino);
5041                                         mnt_count =
5042                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5043                                 }
5044                         }
5045                 }
5046         }
5047         if (!err)
5048                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5049         return err;
5050 }
5051
5052 /*
5053  * ext4_dirty_inode() is called from __mark_inode_dirty()
5054  *
5055  * We're really interested in the case where a file is being extended.
5056  * i_size has been changed by generic_commit_write() and we thus need
5057  * to include the updated inode in the current transaction.
5058  *
5059  * Also, dquot_alloc_block() will always dirty the inode when blocks
5060  * are allocated to the file.
5061  *
5062  * If the inode is marked synchronous, we don't honour that here - doing
5063  * so would cause a commit on atime updates, which we don't bother doing.
5064  * We handle synchronous inodes at the highest possible level.
5065  */
5066 void ext4_dirty_inode(struct inode *inode, int flags)
5067 {
5068         handle_t *handle;
5069
5070         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5071         if (IS_ERR(handle))
5072                 goto out;
5073
5074         ext4_mark_inode_dirty(handle, inode);
5075
5076         ext4_journal_stop(handle);
5077 out:
5078         return;
5079 }
5080
5081 #if 0
5082 /*
5083  * Bind an inode's backing buffer_head into this transaction, to prevent
5084  * it from being flushed to disk early.  Unlike
5085  * ext4_reserve_inode_write, this leaves behind no bh reference and
5086  * returns no iloc structure, so the caller needs to repeat the iloc
5087  * lookup to mark the inode dirty later.
5088  */
5089 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5090 {
5091         struct ext4_iloc iloc;
5092
5093         int err = 0;
5094         if (handle) {
5095                 err = ext4_get_inode_loc(inode, &iloc);
5096                 if (!err) {
5097                         BUFFER_TRACE(iloc.bh, "get_write_access");
5098                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5099                         if (!err)
5100                                 err = ext4_handle_dirty_metadata(handle,
5101                                                                  NULL,
5102                                                                  iloc.bh);
5103                         brelse(iloc.bh);
5104                 }
5105         }
5106         ext4_std_error(inode->i_sb, err);
5107         return err;
5108 }
5109 #endif
5110
5111 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5112 {
5113         journal_t *journal;
5114         handle_t *handle;
5115         int err;
5116
5117         /*
5118          * We have to be very careful here: changing a data block's
5119          * journaling status dynamically is dangerous.  If we write a
5120          * data block to the journal, change the status and then delete
5121          * that block, we risk forgetting to revoke the old log record
5122          * from the journal and so a subsequent replay can corrupt data.
5123          * So, first we make sure that the journal is empty and that
5124          * nobody is changing anything.
5125          */
5126
5127         journal = EXT4_JOURNAL(inode);
5128         if (!journal)
5129                 return 0;
5130         if (is_journal_aborted(journal))
5131                 return -EROFS;
5132         /* We have to allocate physical blocks for delalloc blocks
5133          * before flushing journal. otherwise delalloc blocks can not
5134          * be allocated any more. even more truncate on delalloc blocks
5135          * could trigger BUG by flushing delalloc blocks in journal.
5136          * There is no delalloc block in non-journal data mode.
5137          */
5138         if (val && test_opt(inode->i_sb, DELALLOC)) {
5139                 err = ext4_alloc_da_blocks(inode);
5140                 if (err < 0)
5141                         return err;
5142         }
5143
5144         /* Wait for all existing dio workers */
5145         ext4_inode_block_unlocked_dio(inode);
5146         inode_dio_wait(inode);
5147
5148         jbd2_journal_lock_updates(journal);
5149
5150         /*
5151          * OK, there are no updates running now, and all cached data is
5152          * synced to disk.  We are now in a completely consistent state
5153          * which doesn't have anything in the journal, and we know that
5154          * no filesystem updates are running, so it is safe to modify
5155          * the inode's in-core data-journaling state flag now.
5156          */
5157
5158         if (val)
5159                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5160         else {
5161                 jbd2_journal_flush(journal);
5162                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5163         }
5164         ext4_set_aops(inode);
5165
5166         jbd2_journal_unlock_updates(journal);
5167         ext4_inode_resume_unlocked_dio(inode);
5168
5169         /* Finally we can mark the inode as dirty. */
5170
5171         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5172         if (IS_ERR(handle))
5173                 return PTR_ERR(handle);
5174
5175         err = ext4_mark_inode_dirty(handle, inode);
5176         ext4_handle_sync(handle);
5177         ext4_journal_stop(handle);
5178         ext4_std_error(inode->i_sb, err);
5179
5180         return err;
5181 }
5182
5183 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5184 {
5185         return !buffer_mapped(bh);
5186 }
5187
5188 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5189 {
5190         struct page *page = vmf->page;
5191         loff_t size;
5192         unsigned long len;
5193         int ret;
5194         struct file *file = vma->vm_file;
5195         struct inode *inode = file_inode(file);
5196         struct address_space *mapping = inode->i_mapping;
5197         handle_t *handle;
5198         get_block_t *get_block;
5199         int retries = 0;
5200
5201         sb_start_pagefault(inode->i_sb);
5202         file_update_time(vma->vm_file);
5203         /* Delalloc case is easy... */
5204         if (test_opt(inode->i_sb, DELALLOC) &&
5205             !ext4_should_journal_data(inode) &&
5206             !ext4_nonda_switch(inode->i_sb)) {
5207                 do {
5208                         ret = __block_page_mkwrite(vma, vmf,
5209                                                    ext4_da_get_block_prep);
5210                 } while (ret == -ENOSPC &&
5211                        ext4_should_retry_alloc(inode->i_sb, &retries));
5212                 goto out_ret;
5213         }
5214
5215         lock_page(page);
5216         size = i_size_read(inode);
5217         /* Page got truncated from under us? */
5218         if (page->mapping != mapping || page_offset(page) > size) {
5219                 unlock_page(page);
5220                 ret = VM_FAULT_NOPAGE;
5221                 goto out;
5222         }
5223
5224         if (page->index == size >> PAGE_CACHE_SHIFT)
5225                 len = size & ~PAGE_CACHE_MASK;
5226         else
5227                 len = PAGE_CACHE_SIZE;
5228         /*
5229          * Return if we have all the buffers mapped. This avoids the need to do
5230          * journal_start/journal_stop which can block and take a long time
5231          */
5232         if (page_has_buffers(page)) {
5233                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5234                                             0, len, NULL,
5235                                             ext4_bh_unmapped)) {
5236                         /* Wait so that we don't change page under IO */
5237                         wait_for_stable_page(page);
5238                         ret = VM_FAULT_LOCKED;
5239                         goto out;
5240                 }
5241         }
5242         unlock_page(page);
5243         /* OK, we need to fill the hole... */
5244         if (ext4_should_dioread_nolock(inode))
5245                 get_block = ext4_get_block_write;
5246         else
5247                 get_block = ext4_get_block;
5248 retry_alloc:
5249         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5250                                     ext4_writepage_trans_blocks(inode));
5251         if (IS_ERR(handle)) {
5252                 ret = VM_FAULT_SIGBUS;
5253                 goto out;
5254         }
5255         ret = __block_page_mkwrite(vma, vmf, get_block);
5256         if (!ret && ext4_should_journal_data(inode)) {
5257                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5258                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5259                         unlock_page(page);
5260                         ret = VM_FAULT_SIGBUS;
5261                         ext4_journal_stop(handle);
5262                         goto out;
5263                 }
5264                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5265         }
5266         ext4_journal_stop(handle);
5267         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5268                 goto retry_alloc;
5269 out_ret:
5270         ret = block_page_mkwrite_return(ret);
5271 out:
5272         sb_end_pagefault(inode->i_sb);
5273         return ret;
5274 }