Merge commit 'ed30f24e8d07d30aa3e69d1f508f4d7bd2e8ea14' of git://git.linaro.org/landi...
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u16 csum_lo;
56         __u16 csum_hi = 0;
57         __u32 csum;
58
59         csum_lo = le16_to_cpu(raw->i_checksum_lo);
60         raw->i_checksum_lo = 0;
61         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64                 raw->i_checksum_hi = 0;
65         }
66
67         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68                            EXT4_INODE_SIZE(inode->i_sb));
69
70         raw->i_checksum_lo = cpu_to_le16(csum_lo);
71         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75         return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79                                   struct ext4_inode_info *ei)
80 {
81         __u32 provided, calculated;
82
83         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84             cpu_to_le32(EXT4_OS_LINUX) ||
85             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109                 return;
110
111         csum = ext4_inode_csum(inode, raw, ei);
112         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119                                               loff_t new_size)
120 {
121         trace_ext4_begin_ordered_truncate(inode, new_size);
122         /*
123          * If jinode is zero, then we never opened the file for
124          * writing, so there's no need to call
125          * jbd2_journal_begin_ordered_truncate() since there's no
126          * outstanding writes we need to flush.
127          */
128         if (!EXT4_I(inode)->jinode)
129                 return 0;
130         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131                                                    EXT4_I(inode)->jinode,
132                                                    new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned long offset);
136 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
138 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
139                 struct inode *inode, struct page *page, loff_t from,
140                 loff_t length, int flags);
141
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147         int ea_blocks = EXT4_I(inode)->i_file_acl ?
148                 (inode->i_sb->s_blocksize >> 9) : 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages(&inode->i_data, 0);
218                 ext4_ioend_shutdown(inode);
219                 goto no_delete;
220         }
221
222         if (!is_bad_inode(inode))
223                 dquot_initialize(inode);
224
225         if (ext4_should_order_data(inode))
226                 ext4_begin_ordered_truncate(inode, 0);
227         truncate_inode_pages(&inode->i_data, 0);
228         ext4_ioend_shutdown(inode);
229
230         if (is_bad_inode(inode))
231                 goto no_delete;
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it
236          */
237         sb_start_intwrite(inode->i_sb);
238         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239                                     ext4_blocks_for_truncate(inode)+3);
240         if (IS_ERR(handle)) {
241                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242                 /*
243                  * If we're going to skip the normal cleanup, we still need to
244                  * make sure that the in-core orphan linked list is properly
245                  * cleaned up.
246                  */
247                 ext4_orphan_del(NULL, inode);
248                 sb_end_intwrite(inode->i_sb);
249                 goto no_delete;
250         }
251
252         if (IS_SYNC(inode))
253                 ext4_handle_sync(handle);
254         inode->i_size = 0;
255         err = ext4_mark_inode_dirty(handle, inode);
256         if (err) {
257                 ext4_warning(inode->i_sb,
258                              "couldn't mark inode dirty (err %d)", err);
259                 goto stop_handle;
260         }
261         if (inode->i_blocks)
262                 ext4_truncate(inode);
263
264         /*
265          * ext4_ext_truncate() doesn't reserve any slop when it
266          * restarts journal transactions; therefore there may not be
267          * enough credits left in the handle to remove the inode from
268          * the orphan list and set the dtime field.
269          */
270         if (!ext4_handle_has_enough_credits(handle, 3)) {
271                 err = ext4_journal_extend(handle, 3);
272                 if (err > 0)
273                         err = ext4_journal_restart(handle, 3);
274                 if (err != 0) {
275                         ext4_warning(inode->i_sb,
276                                      "couldn't extend journal (err %d)", err);
277                 stop_handle:
278                         ext4_journal_stop(handle);
279                         ext4_orphan_del(NULL, inode);
280                         sb_end_intwrite(inode->i_sb);
281                         goto no_delete;
282                 }
283         }
284
285         /*
286          * Kill off the orphan record which ext4_truncate created.
287          * AKPM: I think this can be inside the above `if'.
288          * Note that ext4_orphan_del() has to be able to cope with the
289          * deletion of a non-existent orphan - this is because we don't
290          * know if ext4_truncate() actually created an orphan record.
291          * (Well, we could do this if we need to, but heck - it works)
292          */
293         ext4_orphan_del(handle, inode);
294         EXT4_I(inode)->i_dtime  = get_seconds();
295
296         /*
297          * One subtle ordering requirement: if anything has gone wrong
298          * (transaction abort, IO errors, whatever), then we can still
299          * do these next steps (the fs will already have been marked as
300          * having errors), but we can't free the inode if the mark_dirty
301          * fails.
302          */
303         if (ext4_mark_inode_dirty(handle, inode))
304                 /* If that failed, just do the required in-core inode clear. */
305                 ext4_clear_inode(inode);
306         else
307                 ext4_free_inode(handle, inode);
308         ext4_journal_stop(handle);
309         sb_end_intwrite(inode->i_sb);
310         return;
311 no_delete:
312         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
313 }
314
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318         return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321
322 /*
323  * Calculate the number of metadata blocks need to reserve
324  * to allocate a block located at @lblock
325  */
326 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
327 {
328         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
329                 return ext4_ext_calc_metadata_amount(inode, lblock);
330
331         return ext4_ind_calc_metadata_amount(inode, lblock);
332 }
333
334 /*
335  * Called with i_data_sem down, which is important since we can call
336  * ext4_discard_preallocations() from here.
337  */
338 void ext4_da_update_reserve_space(struct inode *inode,
339                                         int used, int quota_claim)
340 {
341         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
342         struct ext4_inode_info *ei = EXT4_I(inode);
343
344         spin_lock(&ei->i_block_reservation_lock);
345         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
346         if (unlikely(used > ei->i_reserved_data_blocks)) {
347                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
348                          "with only %d reserved data blocks",
349                          __func__, inode->i_ino, used,
350                          ei->i_reserved_data_blocks);
351                 WARN_ON(1);
352                 used = ei->i_reserved_data_blocks;
353         }
354
355         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
356                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
357                         "with only %d reserved metadata blocks "
358                         "(releasing %d blocks with reserved %d data blocks)",
359                         inode->i_ino, ei->i_allocated_meta_blocks,
360                              ei->i_reserved_meta_blocks, used,
361                              ei->i_reserved_data_blocks);
362                 WARN_ON(1);
363                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364         }
365
366         /* Update per-inode reservations */
367         ei->i_reserved_data_blocks -= used;
368         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370                            used + ei->i_allocated_meta_blocks);
371         ei->i_allocated_meta_blocks = 0;
372
373         if (ei->i_reserved_data_blocks == 0) {
374                 /*
375                  * We can release all of the reserved metadata blocks
376                  * only when we have written all of the delayed
377                  * allocation blocks.
378                  */
379                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380                                    ei->i_reserved_meta_blocks);
381                 ei->i_reserved_meta_blocks = 0;
382                 ei->i_da_metadata_calc_len = 0;
383         }
384         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385
386         /* Update quota subsystem for data blocks */
387         if (quota_claim)
388                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
389         else {
390                 /*
391                  * We did fallocate with an offset that is already delayed
392                  * allocated. So on delayed allocated writeback we should
393                  * not re-claim the quota for fallocated blocks.
394                  */
395                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396         }
397
398         /*
399          * If we have done all the pending block allocations and if
400          * there aren't any writers on the inode, we can discard the
401          * inode's preallocations.
402          */
403         if ((ei->i_reserved_data_blocks == 0) &&
404             (atomic_read(&inode->i_writecount) == 0))
405                 ext4_discard_preallocations(inode);
406 }
407
408 static int __check_block_validity(struct inode *inode, const char *func,
409                                 unsigned int line,
410                                 struct ext4_map_blocks *map)
411 {
412         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413                                    map->m_len)) {
414                 ext4_error_inode(inode, func, line, map->m_pblk,
415                                  "lblock %lu mapped to illegal pblock "
416                                  "(length %d)", (unsigned long) map->m_lblk,
417                                  map->m_len);
418                 return -EIO;
419         }
420         return 0;
421 }
422
423 #define check_block_validity(inode, map)        \
424         __check_block_validity((inode), __func__, __LINE__, (map))
425
426 /*
427  * Return the number of contiguous dirty pages in a given inode
428  * starting at page frame idx.
429  */
430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431                                     unsigned int max_pages)
432 {
433         struct address_space *mapping = inode->i_mapping;
434         pgoff_t index;
435         struct pagevec pvec;
436         pgoff_t num = 0;
437         int i, nr_pages, done = 0;
438
439         if (max_pages == 0)
440                 return 0;
441         pagevec_init(&pvec, 0);
442         while (!done) {
443                 index = idx;
444                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445                                               PAGECACHE_TAG_DIRTY,
446                                               (pgoff_t)PAGEVEC_SIZE);
447                 if (nr_pages == 0)
448                         break;
449                 for (i = 0; i < nr_pages; i++) {
450                         struct page *page = pvec.pages[i];
451                         struct buffer_head *bh, *head;
452
453                         lock_page(page);
454                         if (unlikely(page->mapping != mapping) ||
455                             !PageDirty(page) ||
456                             PageWriteback(page) ||
457                             page->index != idx) {
458                                 done = 1;
459                                 unlock_page(page);
460                                 break;
461                         }
462                         if (page_has_buffers(page)) {
463                                 bh = head = page_buffers(page);
464                                 do {
465                                         if (!buffer_delay(bh) &&
466                                             !buffer_unwritten(bh))
467                                                 done = 1;
468                                         bh = bh->b_this_page;
469                                 } while (!done && (bh != head));
470                         }
471                         unlock_page(page);
472                         if (done)
473                                 break;
474                         idx++;
475                         num++;
476                         if (num >= max_pages) {
477                                 done = 1;
478                                 break;
479                         }
480                 }
481                 pagevec_release(&pvec);
482         }
483         return num;
484 }
485
486 #ifdef ES_AGGRESSIVE_TEST
487 static void ext4_map_blocks_es_recheck(handle_t *handle,
488                                        struct inode *inode,
489                                        struct ext4_map_blocks *es_map,
490                                        struct ext4_map_blocks *map,
491                                        int flags)
492 {
493         int retval;
494
495         map->m_flags = 0;
496         /*
497          * There is a race window that the result is not the same.
498          * e.g. xfstests #223 when dioread_nolock enables.  The reason
499          * is that we lookup a block mapping in extent status tree with
500          * out taking i_data_sem.  So at the time the unwritten extent
501          * could be converted.
502          */
503         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
504                 down_read((&EXT4_I(inode)->i_data_sem));
505         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
506                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
507                                              EXT4_GET_BLOCKS_KEEP_SIZE);
508         } else {
509                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
510                                              EXT4_GET_BLOCKS_KEEP_SIZE);
511         }
512         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513                 up_read((&EXT4_I(inode)->i_data_sem));
514         /*
515          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
516          * because it shouldn't be marked in es_map->m_flags.
517          */
518         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
519
520         /*
521          * We don't check m_len because extent will be collpased in status
522          * tree.  So the m_len might not equal.
523          */
524         if (es_map->m_lblk != map->m_lblk ||
525             es_map->m_flags != map->m_flags ||
526             es_map->m_pblk != map->m_pblk) {
527                 printk("ES cache assertation failed for inode: %lu "
528                        "es_cached ex [%d/%d/%llu/%x] != "
529                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
530                        inode->i_ino, es_map->m_lblk, es_map->m_len,
531                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
532                        map->m_len, map->m_pblk, map->m_flags,
533                        retval, flags);
534         }
535 }
536 #endif /* ES_AGGRESSIVE_TEST */
537
538 /*
539  * The ext4_map_blocks() function tries to look up the requested blocks,
540  * and returns if the blocks are already mapped.
541  *
542  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
543  * and store the allocated blocks in the result buffer head and mark it
544  * mapped.
545  *
546  * If file type is extents based, it will call ext4_ext_map_blocks(),
547  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
548  * based files
549  *
550  * On success, it returns the number of blocks being mapped or allocate.
551  * if create==0 and the blocks are pre-allocated and uninitialized block,
552  * the result buffer head is unmapped. If the create ==1, it will make sure
553  * the buffer head is mapped.
554  *
555  * It returns 0 if plain look up failed (blocks have not been allocated), in
556  * that case, buffer head is unmapped
557  *
558  * It returns the error in case of allocation failure.
559  */
560 int ext4_map_blocks(handle_t *handle, struct inode *inode,
561                     struct ext4_map_blocks *map, int flags)
562 {
563         struct extent_status es;
564         int retval;
565 #ifdef ES_AGGRESSIVE_TEST
566         struct ext4_map_blocks orig_map;
567
568         memcpy(&orig_map, map, sizeof(*map));
569 #endif
570
571         map->m_flags = 0;
572         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
573                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
574                   (unsigned long) map->m_lblk);
575
576         /* Lookup extent status tree firstly */
577         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
578                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
579                         map->m_pblk = ext4_es_pblock(&es) +
580                                         map->m_lblk - es.es_lblk;
581                         map->m_flags |= ext4_es_is_written(&es) ?
582                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
583                         retval = es.es_len - (map->m_lblk - es.es_lblk);
584                         if (retval > map->m_len)
585                                 retval = map->m_len;
586                         map->m_len = retval;
587                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
588                         retval = 0;
589                 } else {
590                         BUG_ON(1);
591                 }
592 #ifdef ES_AGGRESSIVE_TEST
593                 ext4_map_blocks_es_recheck(handle, inode, map,
594                                            &orig_map, flags);
595 #endif
596                 goto found;
597         }
598
599         /*
600          * Try to see if we can get the block without requesting a new
601          * file system block.
602          */
603         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
604                 down_read((&EXT4_I(inode)->i_data_sem));
605         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
607                                              EXT4_GET_BLOCKS_KEEP_SIZE);
608         } else {
609                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
610                                              EXT4_GET_BLOCKS_KEEP_SIZE);
611         }
612         if (retval > 0) {
613                 int ret;
614                 unsigned long long status;
615
616 #ifdef ES_AGGRESSIVE_TEST
617                 if (retval != map->m_len) {
618                         printk("ES len assertation failed for inode: %lu "
619                                "retval %d != map->m_len %d "
620                                "in %s (lookup)\n", inode->i_ino, retval,
621                                map->m_len, __func__);
622                 }
623 #endif
624
625                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
626                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
627                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
628                     ext4_find_delalloc_range(inode, map->m_lblk,
629                                              map->m_lblk + map->m_len - 1))
630                         status |= EXTENT_STATUS_DELAYED;
631                 ret = ext4_es_insert_extent(inode, map->m_lblk,
632                                             map->m_len, map->m_pblk, status);
633                 if (ret < 0)
634                         retval = ret;
635         }
636         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
637                 up_read((&EXT4_I(inode)->i_data_sem));
638
639 found:
640         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
641                 int ret = check_block_validity(inode, map);
642                 if (ret != 0)
643                         return ret;
644         }
645
646         /* If it is only a block(s) look up */
647         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
648                 return retval;
649
650         /*
651          * Returns if the blocks have already allocated
652          *
653          * Note that if blocks have been preallocated
654          * ext4_ext_get_block() returns the create = 0
655          * with buffer head unmapped.
656          */
657         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
658                 return retval;
659
660         /*
661          * Here we clear m_flags because after allocating an new extent,
662          * it will be set again.
663          */
664         map->m_flags &= ~EXT4_MAP_FLAGS;
665
666         /*
667          * New blocks allocate and/or writing to uninitialized extent
668          * will possibly result in updating i_data, so we take
669          * the write lock of i_data_sem, and call get_blocks()
670          * with create == 1 flag.
671          */
672         down_write((&EXT4_I(inode)->i_data_sem));
673
674         /*
675          * if the caller is from delayed allocation writeout path
676          * we have already reserved fs blocks for allocation
677          * let the underlying get_block() function know to
678          * avoid double accounting
679          */
680         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
681                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
682         /*
683          * We need to check for EXT4 here because migrate
684          * could have changed the inode type in between
685          */
686         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
687                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
688         } else {
689                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
690
691                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
692                         /*
693                          * We allocated new blocks which will result in
694                          * i_data's format changing.  Force the migrate
695                          * to fail by clearing migrate flags
696                          */
697                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
698                 }
699
700                 /*
701                  * Update reserved blocks/metadata blocks after successful
702                  * block allocation which had been deferred till now. We don't
703                  * support fallocate for non extent files. So we can update
704                  * reserve space here.
705                  */
706                 if ((retval > 0) &&
707                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
708                         ext4_da_update_reserve_space(inode, retval, 1);
709         }
710         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
711                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
712
713         if (retval > 0) {
714                 int ret;
715                 unsigned long long status;
716
717 #ifdef ES_AGGRESSIVE_TEST
718                 if (retval != map->m_len) {
719                         printk("ES len assertation failed for inode: %lu "
720                                "retval %d != map->m_len %d "
721                                "in %s (allocation)\n", inode->i_ino, retval,
722                                map->m_len, __func__);
723                 }
724 #endif
725
726                 /*
727                  * If the extent has been zeroed out, we don't need to update
728                  * extent status tree.
729                  */
730                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
731                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
732                         if (ext4_es_is_written(&es))
733                                 goto has_zeroout;
734                 }
735                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
736                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
737                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
738                     ext4_find_delalloc_range(inode, map->m_lblk,
739                                              map->m_lblk + map->m_len - 1))
740                         status |= EXTENT_STATUS_DELAYED;
741                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
742                                             map->m_pblk, status);
743                 if (ret < 0)
744                         retval = ret;
745         }
746
747 has_zeroout:
748         up_write((&EXT4_I(inode)->i_data_sem));
749         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
750                 int ret = check_block_validity(inode, map);
751                 if (ret != 0)
752                         return ret;
753         }
754         return retval;
755 }
756
757 /* Maximum number of blocks we map for direct IO at once. */
758 #define DIO_MAX_BLOCKS 4096
759
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761                            struct buffer_head *bh, int flags)
762 {
763         handle_t *handle = ext4_journal_current_handle();
764         struct ext4_map_blocks map;
765         int ret = 0, started = 0;
766         int dio_credits;
767
768         if (ext4_has_inline_data(inode))
769                 return -ERANGE;
770
771         map.m_lblk = iblock;
772         map.m_len = bh->b_size >> inode->i_blkbits;
773
774         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
775                 /* Direct IO write... */
776                 if (map.m_len > DIO_MAX_BLOCKS)
777                         map.m_len = DIO_MAX_BLOCKS;
778                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
779                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
780                                             dio_credits);
781                 if (IS_ERR(handle)) {
782                         ret = PTR_ERR(handle);
783                         return ret;
784                 }
785                 started = 1;
786         }
787
788         ret = ext4_map_blocks(handle, inode, &map, flags);
789         if (ret > 0) {
790                 map_bh(bh, inode->i_sb, map.m_pblk);
791                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
792                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
793                 ret = 0;
794         }
795         if (started)
796                 ext4_journal_stop(handle);
797         return ret;
798 }
799
800 int ext4_get_block(struct inode *inode, sector_t iblock,
801                    struct buffer_head *bh, int create)
802 {
803         return _ext4_get_block(inode, iblock, bh,
804                                create ? EXT4_GET_BLOCKS_CREATE : 0);
805 }
806
807 /*
808  * `handle' can be NULL if create is zero
809  */
810 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
811                                 ext4_lblk_t block, int create, int *errp)
812 {
813         struct ext4_map_blocks map;
814         struct buffer_head *bh;
815         int fatal = 0, err;
816
817         J_ASSERT(handle != NULL || create == 0);
818
819         map.m_lblk = block;
820         map.m_len = 1;
821         err = ext4_map_blocks(handle, inode, &map,
822                               create ? EXT4_GET_BLOCKS_CREATE : 0);
823
824         /* ensure we send some value back into *errp */
825         *errp = 0;
826
827         if (create && err == 0)
828                 err = -ENOSPC;  /* should never happen */
829         if (err < 0)
830                 *errp = err;
831         if (err <= 0)
832                 return NULL;
833
834         bh = sb_getblk(inode->i_sb, map.m_pblk);
835         if (unlikely(!bh)) {
836                 *errp = -ENOMEM;
837                 return NULL;
838         }
839         if (map.m_flags & EXT4_MAP_NEW) {
840                 J_ASSERT(create != 0);
841                 J_ASSERT(handle != NULL);
842
843                 /*
844                  * Now that we do not always journal data, we should
845                  * keep in mind whether this should always journal the
846                  * new buffer as metadata.  For now, regular file
847                  * writes use ext4_get_block instead, so it's not a
848                  * problem.
849                  */
850                 lock_buffer(bh);
851                 BUFFER_TRACE(bh, "call get_create_access");
852                 fatal = ext4_journal_get_create_access(handle, bh);
853                 if (!fatal && !buffer_uptodate(bh)) {
854                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
855                         set_buffer_uptodate(bh);
856                 }
857                 unlock_buffer(bh);
858                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
859                 err = ext4_handle_dirty_metadata(handle, inode, bh);
860                 if (!fatal)
861                         fatal = err;
862         } else {
863                 BUFFER_TRACE(bh, "not a new buffer");
864         }
865         if (fatal) {
866                 *errp = fatal;
867                 brelse(bh);
868                 bh = NULL;
869         }
870         return bh;
871 }
872
873 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
874                                ext4_lblk_t block, int create, int *err)
875 {
876         struct buffer_head *bh;
877
878         bh = ext4_getblk(handle, inode, block, create, err);
879         if (!bh)
880                 return bh;
881         if (buffer_uptodate(bh))
882                 return bh;
883         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
884         wait_on_buffer(bh);
885         if (buffer_uptodate(bh))
886                 return bh;
887         put_bh(bh);
888         *err = -EIO;
889         return NULL;
890 }
891
892 int ext4_walk_page_buffers(handle_t *handle,
893                            struct buffer_head *head,
894                            unsigned from,
895                            unsigned to,
896                            int *partial,
897                            int (*fn)(handle_t *handle,
898                                      struct buffer_head *bh))
899 {
900         struct buffer_head *bh;
901         unsigned block_start, block_end;
902         unsigned blocksize = head->b_size;
903         int err, ret = 0;
904         struct buffer_head *next;
905
906         for (bh = head, block_start = 0;
907              ret == 0 && (bh != head || !block_start);
908              block_start = block_end, bh = next) {
909                 next = bh->b_this_page;
910                 block_end = block_start + blocksize;
911                 if (block_end <= from || block_start >= to) {
912                         if (partial && !buffer_uptodate(bh))
913                                 *partial = 1;
914                         continue;
915                 }
916                 err = (*fn)(handle, bh);
917                 if (!ret)
918                         ret = err;
919         }
920         return ret;
921 }
922
923 /*
924  * To preserve ordering, it is essential that the hole instantiation and
925  * the data write be encapsulated in a single transaction.  We cannot
926  * close off a transaction and start a new one between the ext4_get_block()
927  * and the commit_write().  So doing the jbd2_journal_start at the start of
928  * prepare_write() is the right place.
929  *
930  * Also, this function can nest inside ext4_writepage().  In that case, we
931  * *know* that ext4_writepage() has generated enough buffer credits to do the
932  * whole page.  So we won't block on the journal in that case, which is good,
933  * because the caller may be PF_MEMALLOC.
934  *
935  * By accident, ext4 can be reentered when a transaction is open via
936  * quota file writes.  If we were to commit the transaction while thus
937  * reentered, there can be a deadlock - we would be holding a quota
938  * lock, and the commit would never complete if another thread had a
939  * transaction open and was blocking on the quota lock - a ranking
940  * violation.
941  *
942  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
943  * will _not_ run commit under these circumstances because handle->h_ref
944  * is elevated.  We'll still have enough credits for the tiny quotafile
945  * write.
946  */
947 int do_journal_get_write_access(handle_t *handle,
948                                 struct buffer_head *bh)
949 {
950         int dirty = buffer_dirty(bh);
951         int ret;
952
953         if (!buffer_mapped(bh) || buffer_freed(bh))
954                 return 0;
955         /*
956          * __block_write_begin() could have dirtied some buffers. Clean
957          * the dirty bit as jbd2_journal_get_write_access() could complain
958          * otherwise about fs integrity issues. Setting of the dirty bit
959          * by __block_write_begin() isn't a real problem here as we clear
960          * the bit before releasing a page lock and thus writeback cannot
961          * ever write the buffer.
962          */
963         if (dirty)
964                 clear_buffer_dirty(bh);
965         ret = ext4_journal_get_write_access(handle, bh);
966         if (!ret && dirty)
967                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
968         return ret;
969 }
970
971 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
972                    struct buffer_head *bh_result, int create);
973 static int ext4_write_begin(struct file *file, struct address_space *mapping,
974                             loff_t pos, unsigned len, unsigned flags,
975                             struct page **pagep, void **fsdata)
976 {
977         struct inode *inode = mapping->host;
978         int ret, needed_blocks;
979         handle_t *handle;
980         int retries = 0;
981         struct page *page;
982         pgoff_t index;
983         unsigned from, to;
984
985         trace_ext4_write_begin(inode, pos, len, flags);
986         /*
987          * Reserve one block more for addition to orphan list in case
988          * we allocate blocks but write fails for some reason
989          */
990         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
991         index = pos >> PAGE_CACHE_SHIFT;
992         from = pos & (PAGE_CACHE_SIZE - 1);
993         to = from + len;
994
995         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
996                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
997                                                     flags, pagep);
998                 if (ret < 0)
999                         return ret;
1000                 if (ret == 1)
1001                         return 0;
1002         }
1003
1004         /*
1005          * grab_cache_page_write_begin() can take a long time if the
1006          * system is thrashing due to memory pressure, or if the page
1007          * is being written back.  So grab it first before we start
1008          * the transaction handle.  This also allows us to allocate
1009          * the page (if needed) without using GFP_NOFS.
1010          */
1011 retry_grab:
1012         page = grab_cache_page_write_begin(mapping, index, flags);
1013         if (!page)
1014                 return -ENOMEM;
1015         unlock_page(page);
1016
1017 retry_journal:
1018         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1019         if (IS_ERR(handle)) {
1020                 page_cache_release(page);
1021                 return PTR_ERR(handle);
1022         }
1023
1024         lock_page(page);
1025         if (page->mapping != mapping) {
1026                 /* The page got truncated from under us */
1027                 unlock_page(page);
1028                 page_cache_release(page);
1029                 ext4_journal_stop(handle);
1030                 goto retry_grab;
1031         }
1032         wait_on_page_writeback(page);
1033
1034         if (ext4_should_dioread_nolock(inode))
1035                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1036         else
1037                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1038
1039         if (!ret && ext4_should_journal_data(inode)) {
1040                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1041                                              from, to, NULL,
1042                                              do_journal_get_write_access);
1043         }
1044
1045         if (ret) {
1046                 unlock_page(page);
1047                 /*
1048                  * __block_write_begin may have instantiated a few blocks
1049                  * outside i_size.  Trim these off again. Don't need
1050                  * i_size_read because we hold i_mutex.
1051                  *
1052                  * Add inode to orphan list in case we crash before
1053                  * truncate finishes
1054                  */
1055                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1056                         ext4_orphan_add(handle, inode);
1057
1058                 ext4_journal_stop(handle);
1059                 if (pos + len > inode->i_size) {
1060                         ext4_truncate_failed_write(inode);
1061                         /*
1062                          * If truncate failed early the inode might
1063                          * still be on the orphan list; we need to
1064                          * make sure the inode is removed from the
1065                          * orphan list in that case.
1066                          */
1067                         if (inode->i_nlink)
1068                                 ext4_orphan_del(NULL, inode);
1069                 }
1070
1071                 if (ret == -ENOSPC &&
1072                     ext4_should_retry_alloc(inode->i_sb, &retries))
1073                         goto retry_journal;
1074                 page_cache_release(page);
1075                 return ret;
1076         }
1077         *pagep = page;
1078         return ret;
1079 }
1080
1081 /* For write_end() in data=journal mode */
1082 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1083 {
1084         int ret;
1085         if (!buffer_mapped(bh) || buffer_freed(bh))
1086                 return 0;
1087         set_buffer_uptodate(bh);
1088         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089         clear_buffer_meta(bh);
1090         clear_buffer_prio(bh);
1091         return ret;
1092 }
1093
1094 /*
1095  * We need to pick up the new inode size which generic_commit_write gave us
1096  * `file' can be NULL - eg, when called from page_symlink().
1097  *
1098  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1099  * buffers are managed internally.
1100  */
1101 static int ext4_write_end(struct file *file,
1102                           struct address_space *mapping,
1103                           loff_t pos, unsigned len, unsigned copied,
1104                           struct page *page, void *fsdata)
1105 {
1106         handle_t *handle = ext4_journal_current_handle();
1107         struct inode *inode = mapping->host;
1108         int ret = 0, ret2;
1109         int i_size_changed = 0;
1110
1111         trace_ext4_write_end(inode, pos, len, copied);
1112         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1113                 ret = ext4_jbd2_file_inode(handle, inode);
1114                 if (ret) {
1115                         unlock_page(page);
1116                         page_cache_release(page);
1117                         goto errout;
1118                 }
1119         }
1120
1121         if (ext4_has_inline_data(inode))
1122                 copied = ext4_write_inline_data_end(inode, pos, len,
1123                                                     copied, page);
1124         else
1125                 copied = block_write_end(file, mapping, pos,
1126                                          len, copied, page, fsdata);
1127
1128         /*
1129          * No need to use i_size_read() here, the i_size
1130          * cannot change under us because we hole i_mutex.
1131          *
1132          * But it's important to update i_size while still holding page lock:
1133          * page writeout could otherwise come in and zero beyond i_size.
1134          */
1135         if (pos + copied > inode->i_size) {
1136                 i_size_write(inode, pos + copied);
1137                 i_size_changed = 1;
1138         }
1139
1140         if (pos + copied > EXT4_I(inode)->i_disksize) {
1141                 /* We need to mark inode dirty even if
1142                  * new_i_size is less that inode->i_size
1143                  * but greater than i_disksize. (hint delalloc)
1144                  */
1145                 ext4_update_i_disksize(inode, (pos + copied));
1146                 i_size_changed = 1;
1147         }
1148         unlock_page(page);
1149         page_cache_release(page);
1150
1151         /*
1152          * Don't mark the inode dirty under page lock. First, it unnecessarily
1153          * makes the holding time of page lock longer. Second, it forces lock
1154          * ordering of page lock and transaction start for journaling
1155          * filesystems.
1156          */
1157         if (i_size_changed)
1158                 ext4_mark_inode_dirty(handle, inode);
1159
1160         if (copied < 0)
1161                 ret = copied;
1162         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1163                 /* if we have allocated more blocks and copied
1164                  * less. We will have blocks allocated outside
1165                  * inode->i_size. So truncate them
1166                  */
1167                 ext4_orphan_add(handle, inode);
1168 errout:
1169         ret2 = ext4_journal_stop(handle);
1170         if (!ret)
1171                 ret = ret2;
1172
1173         if (pos + len > inode->i_size) {
1174                 ext4_truncate_failed_write(inode);
1175                 /*
1176                  * If truncate failed early the inode might still be
1177                  * on the orphan list; we need to make sure the inode
1178                  * is removed from the orphan list in that case.
1179                  */
1180                 if (inode->i_nlink)
1181                         ext4_orphan_del(NULL, inode);
1182         }
1183
1184         return ret ? ret : copied;
1185 }
1186
1187 static int ext4_journalled_write_end(struct file *file,
1188                                      struct address_space *mapping,
1189                                      loff_t pos, unsigned len, unsigned copied,
1190                                      struct page *page, void *fsdata)
1191 {
1192         handle_t *handle = ext4_journal_current_handle();
1193         struct inode *inode = mapping->host;
1194         int ret = 0, ret2;
1195         int partial = 0;
1196         unsigned from, to;
1197         loff_t new_i_size;
1198
1199         trace_ext4_journalled_write_end(inode, pos, len, copied);
1200         from = pos & (PAGE_CACHE_SIZE - 1);
1201         to = from + len;
1202
1203         BUG_ON(!ext4_handle_valid(handle));
1204
1205         if (ext4_has_inline_data(inode))
1206                 copied = ext4_write_inline_data_end(inode, pos, len,
1207                                                     copied, page);
1208         else {
1209                 if (copied < len) {
1210                         if (!PageUptodate(page))
1211                                 copied = 0;
1212                         page_zero_new_buffers(page, from+copied, to);
1213                 }
1214
1215                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1216                                              to, &partial, write_end_fn);
1217                 if (!partial)
1218                         SetPageUptodate(page);
1219         }
1220         new_i_size = pos + copied;
1221         if (new_i_size > inode->i_size)
1222                 i_size_write(inode, pos+copied);
1223         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1224         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1225         if (new_i_size > EXT4_I(inode)->i_disksize) {
1226                 ext4_update_i_disksize(inode, new_i_size);
1227                 ret2 = ext4_mark_inode_dirty(handle, inode);
1228                 if (!ret)
1229                         ret = ret2;
1230         }
1231
1232         unlock_page(page);
1233         page_cache_release(page);
1234         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1235                 /* if we have allocated more blocks and copied
1236                  * less. We will have blocks allocated outside
1237                  * inode->i_size. So truncate them
1238                  */
1239                 ext4_orphan_add(handle, inode);
1240
1241         ret2 = ext4_journal_stop(handle);
1242         if (!ret)
1243                 ret = ret2;
1244         if (pos + len > inode->i_size) {
1245                 ext4_truncate_failed_write(inode);
1246                 /*
1247                  * If truncate failed early the inode might still be
1248                  * on the orphan list; we need to make sure the inode
1249                  * is removed from the orphan list in that case.
1250                  */
1251                 if (inode->i_nlink)
1252                         ext4_orphan_del(NULL, inode);
1253         }
1254
1255         return ret ? ret : copied;
1256 }
1257
1258 /*
1259  * Reserve a metadata for a single block located at lblock
1260  */
1261 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1262 {
1263         int retries = 0;
1264         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1265         struct ext4_inode_info *ei = EXT4_I(inode);
1266         unsigned int md_needed;
1267         ext4_lblk_t save_last_lblock;
1268         int save_len;
1269
1270         /*
1271          * recalculate the amount of metadata blocks to reserve
1272          * in order to allocate nrblocks
1273          * worse case is one extent per block
1274          */
1275 repeat:
1276         spin_lock(&ei->i_block_reservation_lock);
1277         /*
1278          * ext4_calc_metadata_amount() has side effects, which we have
1279          * to be prepared undo if we fail to claim space.
1280          */
1281         save_len = ei->i_da_metadata_calc_len;
1282         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1283         md_needed = EXT4_NUM_B2C(sbi,
1284                                  ext4_calc_metadata_amount(inode, lblock));
1285         trace_ext4_da_reserve_space(inode, md_needed);
1286
1287         /*
1288          * We do still charge estimated metadata to the sb though;
1289          * we cannot afford to run out of free blocks.
1290          */
1291         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1292                 ei->i_da_metadata_calc_len = save_len;
1293                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1294                 spin_unlock(&ei->i_block_reservation_lock);
1295                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1296                         cond_resched();
1297                         goto repeat;
1298                 }
1299                 return -ENOSPC;
1300         }
1301         ei->i_reserved_meta_blocks += md_needed;
1302         spin_unlock(&ei->i_block_reservation_lock);
1303
1304         return 0;       /* success */
1305 }
1306
1307 /*
1308  * Reserve a single cluster located at lblock
1309  */
1310 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1311 {
1312         int retries = 0;
1313         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1314         struct ext4_inode_info *ei = EXT4_I(inode);
1315         unsigned int md_needed;
1316         int ret;
1317         ext4_lblk_t save_last_lblock;
1318         int save_len;
1319
1320         /*
1321          * We will charge metadata quota at writeout time; this saves
1322          * us from metadata over-estimation, though we may go over by
1323          * a small amount in the end.  Here we just reserve for data.
1324          */
1325         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1326         if (ret)
1327                 return ret;
1328
1329         /*
1330          * recalculate the amount of metadata blocks to reserve
1331          * in order to allocate nrblocks
1332          * worse case is one extent per block
1333          */
1334 repeat:
1335         spin_lock(&ei->i_block_reservation_lock);
1336         /*
1337          * ext4_calc_metadata_amount() has side effects, which we have
1338          * to be prepared undo if we fail to claim space.
1339          */
1340         save_len = ei->i_da_metadata_calc_len;
1341         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1342         md_needed = EXT4_NUM_B2C(sbi,
1343                                  ext4_calc_metadata_amount(inode, lblock));
1344         trace_ext4_da_reserve_space(inode, md_needed);
1345
1346         /*
1347          * We do still charge estimated metadata to the sb though;
1348          * we cannot afford to run out of free blocks.
1349          */
1350         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1351                 ei->i_da_metadata_calc_len = save_len;
1352                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1353                 spin_unlock(&ei->i_block_reservation_lock);
1354                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1355                         cond_resched();
1356                         goto repeat;
1357                 }
1358                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1359                 return -ENOSPC;
1360         }
1361         ei->i_reserved_data_blocks++;
1362         ei->i_reserved_meta_blocks += md_needed;
1363         spin_unlock(&ei->i_block_reservation_lock);
1364
1365         return 0;       /* success */
1366 }
1367
1368 static void ext4_da_release_space(struct inode *inode, int to_free)
1369 {
1370         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1371         struct ext4_inode_info *ei = EXT4_I(inode);
1372
1373         if (!to_free)
1374                 return;         /* Nothing to release, exit */
1375
1376         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1377
1378         trace_ext4_da_release_space(inode, to_free);
1379         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1380                 /*
1381                  * if there aren't enough reserved blocks, then the
1382                  * counter is messed up somewhere.  Since this
1383                  * function is called from invalidate page, it's
1384                  * harmless to return without any action.
1385                  */
1386                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1387                          "ino %lu, to_free %d with only %d reserved "
1388                          "data blocks", inode->i_ino, to_free,
1389                          ei->i_reserved_data_blocks);
1390                 WARN_ON(1);
1391                 to_free = ei->i_reserved_data_blocks;
1392         }
1393         ei->i_reserved_data_blocks -= to_free;
1394
1395         if (ei->i_reserved_data_blocks == 0) {
1396                 /*
1397                  * We can release all of the reserved metadata blocks
1398                  * only when we have written all of the delayed
1399                  * allocation blocks.
1400                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1401                  * i_reserved_data_blocks, etc. refer to number of clusters.
1402                  */
1403                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1404                                    ei->i_reserved_meta_blocks);
1405                 ei->i_reserved_meta_blocks = 0;
1406                 ei->i_da_metadata_calc_len = 0;
1407         }
1408
1409         /* update fs dirty data blocks counter */
1410         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1411
1412         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1413
1414         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1415 }
1416
1417 static void ext4_da_page_release_reservation(struct page *page,
1418                                              unsigned long offset)
1419 {
1420         int to_release = 0;
1421         struct buffer_head *head, *bh;
1422         unsigned int curr_off = 0;
1423         struct inode *inode = page->mapping->host;
1424         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1425         int num_clusters;
1426         ext4_fsblk_t lblk;
1427
1428         head = page_buffers(page);
1429         bh = head;
1430         do {
1431                 unsigned int next_off = curr_off + bh->b_size;
1432
1433                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1434                         to_release++;
1435                         clear_buffer_delay(bh);
1436                 }
1437                 curr_off = next_off;
1438         } while ((bh = bh->b_this_page) != head);
1439
1440         if (to_release) {
1441                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1442                 ext4_es_remove_extent(inode, lblk, to_release);
1443         }
1444
1445         /* If we have released all the blocks belonging to a cluster, then we
1446          * need to release the reserved space for that cluster. */
1447         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1448         while (num_clusters > 0) {
1449                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1450                         ((num_clusters - 1) << sbi->s_cluster_bits);
1451                 if (sbi->s_cluster_ratio == 1 ||
1452                     !ext4_find_delalloc_cluster(inode, lblk))
1453                         ext4_da_release_space(inode, 1);
1454
1455                 num_clusters--;
1456         }
1457 }
1458
1459 /*
1460  * Delayed allocation stuff
1461  */
1462
1463 /*
1464  * mpage_da_submit_io - walks through extent of pages and try to write
1465  * them with writepage() call back
1466  *
1467  * @mpd->inode: inode
1468  * @mpd->first_page: first page of the extent
1469  * @mpd->next_page: page after the last page of the extent
1470  *
1471  * By the time mpage_da_submit_io() is called we expect all blocks
1472  * to be allocated. this may be wrong if allocation failed.
1473  *
1474  * As pages are already locked by write_cache_pages(), we can't use it
1475  */
1476 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1477                               struct ext4_map_blocks *map)
1478 {
1479         struct pagevec pvec;
1480         unsigned long index, end;
1481         int ret = 0, err, nr_pages, i;
1482         struct inode *inode = mpd->inode;
1483         struct address_space *mapping = inode->i_mapping;
1484         loff_t size = i_size_read(inode);
1485         unsigned int len, block_start;
1486         struct buffer_head *bh, *page_bufs = NULL;
1487         sector_t pblock = 0, cur_logical = 0;
1488         struct ext4_io_submit io_submit;
1489
1490         BUG_ON(mpd->next_page <= mpd->first_page);
1491         memset(&io_submit, 0, sizeof(io_submit));
1492         /*
1493          * We need to start from the first_page to the next_page - 1
1494          * to make sure we also write the mapped dirty buffer_heads.
1495          * If we look at mpd->b_blocknr we would only be looking
1496          * at the currently mapped buffer_heads.
1497          */
1498         index = mpd->first_page;
1499         end = mpd->next_page - 1;
1500
1501         pagevec_init(&pvec, 0);
1502         while (index <= end) {
1503                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1504                 if (nr_pages == 0)
1505                         break;
1506                 for (i = 0; i < nr_pages; i++) {
1507                         int skip_page = 0;
1508                         struct page *page = pvec.pages[i];
1509
1510                         index = page->index;
1511                         if (index > end)
1512                                 break;
1513
1514                         if (index == size >> PAGE_CACHE_SHIFT)
1515                                 len = size & ~PAGE_CACHE_MASK;
1516                         else
1517                                 len = PAGE_CACHE_SIZE;
1518                         if (map) {
1519                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1520                                                         inode->i_blkbits);
1521                                 pblock = map->m_pblk + (cur_logical -
1522                                                         map->m_lblk);
1523                         }
1524                         index++;
1525
1526                         BUG_ON(!PageLocked(page));
1527                         BUG_ON(PageWriteback(page));
1528
1529                         bh = page_bufs = page_buffers(page);
1530                         block_start = 0;
1531                         do {
1532                                 if (map && (cur_logical >= map->m_lblk) &&
1533                                     (cur_logical <= (map->m_lblk +
1534                                                      (map->m_len - 1)))) {
1535                                         if (buffer_delay(bh)) {
1536                                                 clear_buffer_delay(bh);
1537                                                 bh->b_blocknr = pblock;
1538                                         }
1539                                         if (buffer_unwritten(bh) ||
1540                                             buffer_mapped(bh))
1541                                                 BUG_ON(bh->b_blocknr != pblock);
1542                                         if (map->m_flags & EXT4_MAP_UNINIT)
1543                                                 set_buffer_uninit(bh);
1544                                         clear_buffer_unwritten(bh);
1545                                 }
1546
1547                                 /*
1548                                  * skip page if block allocation undone and
1549                                  * block is dirty
1550                                  */
1551                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1552                                         skip_page = 1;
1553                                 bh = bh->b_this_page;
1554                                 block_start += bh->b_size;
1555                                 cur_logical++;
1556                                 pblock++;
1557                         } while (bh != page_bufs);
1558
1559                         if (skip_page) {
1560                                 unlock_page(page);
1561                                 continue;
1562                         }
1563
1564                         clear_page_dirty_for_io(page);
1565                         err = ext4_bio_write_page(&io_submit, page, len,
1566                                                   mpd->wbc);
1567                         if (!err)
1568                                 mpd->pages_written++;
1569                         /*
1570                          * In error case, we have to continue because
1571                          * remaining pages are still locked
1572                          */
1573                         if (ret == 0)
1574                                 ret = err;
1575                 }
1576                 pagevec_release(&pvec);
1577         }
1578         ext4_io_submit(&io_submit);
1579         return ret;
1580 }
1581
1582 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1583 {
1584         int nr_pages, i;
1585         pgoff_t index, end;
1586         struct pagevec pvec;
1587         struct inode *inode = mpd->inode;
1588         struct address_space *mapping = inode->i_mapping;
1589         ext4_lblk_t start, last;
1590
1591         index = mpd->first_page;
1592         end   = mpd->next_page - 1;
1593
1594         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1595         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1596         ext4_es_remove_extent(inode, start, last - start + 1);
1597
1598         pagevec_init(&pvec, 0);
1599         while (index <= end) {
1600                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1601                 if (nr_pages == 0)
1602                         break;
1603                 for (i = 0; i < nr_pages; i++) {
1604                         struct page *page = pvec.pages[i];
1605                         if (page->index > end)
1606                                 break;
1607                         BUG_ON(!PageLocked(page));
1608                         BUG_ON(PageWriteback(page));
1609                         block_invalidatepage(page, 0);
1610                         ClearPageUptodate(page);
1611                         unlock_page(page);
1612                 }
1613                 index = pvec.pages[nr_pages - 1]->index + 1;
1614                 pagevec_release(&pvec);
1615         }
1616         return;
1617 }
1618
1619 static void ext4_print_free_blocks(struct inode *inode)
1620 {
1621         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1622         struct super_block *sb = inode->i_sb;
1623         struct ext4_inode_info *ei = EXT4_I(inode);
1624
1625         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1626                EXT4_C2B(EXT4_SB(inode->i_sb),
1627                         ext4_count_free_clusters(sb)));
1628         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1629         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1630                (long long) EXT4_C2B(EXT4_SB(sb),
1631                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1632         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1633                (long long) EXT4_C2B(EXT4_SB(sb),
1634                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1635         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1636         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1637                  ei->i_reserved_data_blocks);
1638         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1639                ei->i_reserved_meta_blocks);
1640         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1641                ei->i_allocated_meta_blocks);
1642         return;
1643 }
1644
1645 /*
1646  * mpage_da_map_and_submit - go through given space, map them
1647  *       if necessary, and then submit them for I/O
1648  *
1649  * @mpd - bh describing space
1650  *
1651  * The function skips space we know is already mapped to disk blocks.
1652  *
1653  */
1654 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1655 {
1656         int err, blks, get_blocks_flags;
1657         struct ext4_map_blocks map, *mapp = NULL;
1658         sector_t next = mpd->b_blocknr;
1659         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1660         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1661         handle_t *handle = NULL;
1662
1663         /*
1664          * If the blocks are mapped already, or we couldn't accumulate
1665          * any blocks, then proceed immediately to the submission stage.
1666          */
1667         if ((mpd->b_size == 0) ||
1668             ((mpd->b_state  & (1 << BH_Mapped)) &&
1669              !(mpd->b_state & (1 << BH_Delay)) &&
1670              !(mpd->b_state & (1 << BH_Unwritten))))
1671                 goto submit_io;
1672
1673         handle = ext4_journal_current_handle();
1674         BUG_ON(!handle);
1675
1676         /*
1677          * Call ext4_map_blocks() to allocate any delayed allocation
1678          * blocks, or to convert an uninitialized extent to be
1679          * initialized (in the case where we have written into
1680          * one or more preallocated blocks).
1681          *
1682          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1683          * indicate that we are on the delayed allocation path.  This
1684          * affects functions in many different parts of the allocation
1685          * call path.  This flag exists primarily because we don't
1686          * want to change *many* call functions, so ext4_map_blocks()
1687          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1688          * inode's allocation semaphore is taken.
1689          *
1690          * If the blocks in questions were delalloc blocks, set
1691          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1692          * variables are updated after the blocks have been allocated.
1693          */
1694         map.m_lblk = next;
1695         map.m_len = max_blocks;
1696         /*
1697          * We're in delalloc path and it is possible that we're going to
1698          * need more metadata blocks than previously reserved. However
1699          * we must not fail because we're in writeback and there is
1700          * nothing we can do about it so it might result in data loss.
1701          * So use reserved blocks to allocate metadata if possible.
1702          */
1703         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1704                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
1705         if (ext4_should_dioread_nolock(mpd->inode))
1706                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1707         if (mpd->b_state & (1 << BH_Delay))
1708                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1709
1710
1711         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1712         if (blks < 0) {
1713                 struct super_block *sb = mpd->inode->i_sb;
1714
1715                 err = blks;
1716                 /*
1717                  * If get block returns EAGAIN or ENOSPC and there
1718                  * appears to be free blocks we will just let
1719                  * mpage_da_submit_io() unlock all of the pages.
1720                  */
1721                 if (err == -EAGAIN)
1722                         goto submit_io;
1723
1724                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1725                         mpd->retval = err;
1726                         goto submit_io;
1727                 }
1728
1729                 /*
1730                  * get block failure will cause us to loop in
1731                  * writepages, because a_ops->writepage won't be able
1732                  * to make progress. The page will be redirtied by
1733                  * writepage and writepages will again try to write
1734                  * the same.
1735                  */
1736                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1737                         ext4_msg(sb, KERN_CRIT,
1738                                  "delayed block allocation failed for inode %lu "
1739                                  "at logical offset %llu with max blocks %zd "
1740                                  "with error %d", mpd->inode->i_ino,
1741                                  (unsigned long long) next,
1742                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1743                         ext4_msg(sb, KERN_CRIT,
1744                                 "This should not happen!! Data will be lost");
1745                         if (err == -ENOSPC)
1746                                 ext4_print_free_blocks(mpd->inode);
1747                 }
1748                 /* invalidate all the pages */
1749                 ext4_da_block_invalidatepages(mpd);
1750
1751                 /* Mark this page range as having been completed */
1752                 mpd->io_done = 1;
1753                 return;
1754         }
1755         BUG_ON(blks == 0);
1756
1757         mapp = &map;
1758         if (map.m_flags & EXT4_MAP_NEW) {
1759                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1760                 int i;
1761
1762                 for (i = 0; i < map.m_len; i++)
1763                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1764         }
1765
1766         /*
1767          * Update on-disk size along with block allocation.
1768          */
1769         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1770         if (disksize > i_size_read(mpd->inode))
1771                 disksize = i_size_read(mpd->inode);
1772         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1773                 ext4_update_i_disksize(mpd->inode, disksize);
1774                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1775                 if (err)
1776                         ext4_error(mpd->inode->i_sb,
1777                                    "Failed to mark inode %lu dirty",
1778                                    mpd->inode->i_ino);
1779         }
1780
1781 submit_io:
1782         mpage_da_submit_io(mpd, mapp);
1783         mpd->io_done = 1;
1784 }
1785
1786 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1787                 (1 << BH_Delay) | (1 << BH_Unwritten))
1788
1789 /*
1790  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1791  *
1792  * @mpd->lbh - extent of blocks
1793  * @logical - logical number of the block in the file
1794  * @b_state - b_state of the buffer head added
1795  *
1796  * the function is used to collect contig. blocks in same state
1797  */
1798 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1799                                    unsigned long b_state)
1800 {
1801         sector_t next;
1802         int blkbits = mpd->inode->i_blkbits;
1803         int nrblocks = mpd->b_size >> blkbits;
1804
1805         /*
1806          * XXX Don't go larger than mballoc is willing to allocate
1807          * This is a stopgap solution.  We eventually need to fold
1808          * mpage_da_submit_io() into this function and then call
1809          * ext4_map_blocks() multiple times in a loop
1810          */
1811         if (nrblocks >= (8*1024*1024 >> blkbits))
1812                 goto flush_it;
1813
1814         /* check if the reserved journal credits might overflow */
1815         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1816                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1817                         /*
1818                          * With non-extent format we are limited by the journal
1819                          * credit available.  Total credit needed to insert
1820                          * nrblocks contiguous blocks is dependent on the
1821                          * nrblocks.  So limit nrblocks.
1822                          */
1823                         goto flush_it;
1824                 }
1825         }
1826         /*
1827          * First block in the extent
1828          */
1829         if (mpd->b_size == 0) {
1830                 mpd->b_blocknr = logical;
1831                 mpd->b_size = 1 << blkbits;
1832                 mpd->b_state = b_state & BH_FLAGS;
1833                 return;
1834         }
1835
1836         next = mpd->b_blocknr + nrblocks;
1837         /*
1838          * Can we merge the block to our big extent?
1839          */
1840         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1841                 mpd->b_size += 1 << blkbits;
1842                 return;
1843         }
1844
1845 flush_it:
1846         /*
1847          * We couldn't merge the block to our extent, so we
1848          * need to flush current  extent and start new one
1849          */
1850         mpage_da_map_and_submit(mpd);
1851         return;
1852 }
1853
1854 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1855 {
1856         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1857 }
1858
1859 /*
1860  * This function is grabs code from the very beginning of
1861  * ext4_map_blocks, but assumes that the caller is from delayed write
1862  * time. This function looks up the requested blocks and sets the
1863  * buffer delay bit under the protection of i_data_sem.
1864  */
1865 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1866                               struct ext4_map_blocks *map,
1867                               struct buffer_head *bh)
1868 {
1869         struct extent_status es;
1870         int retval;
1871         sector_t invalid_block = ~((sector_t) 0xffff);
1872 #ifdef ES_AGGRESSIVE_TEST
1873         struct ext4_map_blocks orig_map;
1874
1875         memcpy(&orig_map, map, sizeof(*map));
1876 #endif
1877
1878         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1879                 invalid_block = ~0;
1880
1881         map->m_flags = 0;
1882         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1883                   "logical block %lu\n", inode->i_ino, map->m_len,
1884                   (unsigned long) map->m_lblk);
1885
1886         /* Lookup extent status tree firstly */
1887         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1888
1889                 if (ext4_es_is_hole(&es)) {
1890                         retval = 0;
1891                         down_read((&EXT4_I(inode)->i_data_sem));
1892                         goto add_delayed;
1893                 }
1894
1895                 /*
1896                  * Delayed extent could be allocated by fallocate.
1897                  * So we need to check it.
1898                  */
1899                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1900                         map_bh(bh, inode->i_sb, invalid_block);
1901                         set_buffer_new(bh);
1902                         set_buffer_delay(bh);
1903                         return 0;
1904                 }
1905
1906                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1907                 retval = es.es_len - (iblock - es.es_lblk);
1908                 if (retval > map->m_len)
1909                         retval = map->m_len;
1910                 map->m_len = retval;
1911                 if (ext4_es_is_written(&es))
1912                         map->m_flags |= EXT4_MAP_MAPPED;
1913                 else if (ext4_es_is_unwritten(&es))
1914                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1915                 else
1916                         BUG_ON(1);
1917
1918 #ifdef ES_AGGRESSIVE_TEST
1919                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1920 #endif
1921                 return retval;
1922         }
1923
1924         /*
1925          * Try to see if we can get the block without requesting a new
1926          * file system block.
1927          */
1928         down_read((&EXT4_I(inode)->i_data_sem));
1929         if (ext4_has_inline_data(inode)) {
1930                 /*
1931                  * We will soon create blocks for this page, and let
1932                  * us pretend as if the blocks aren't allocated yet.
1933                  * In case of clusters, we have to handle the work
1934                  * of mapping from cluster so that the reserved space
1935                  * is calculated properly.
1936                  */
1937                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1938                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1939                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1940                 retval = 0;
1941         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1942                 retval = ext4_ext_map_blocks(NULL, inode, map,
1943                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1944         else
1945                 retval = ext4_ind_map_blocks(NULL, inode, map,
1946                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1947
1948 add_delayed:
1949         if (retval == 0) {
1950                 int ret;
1951                 /*
1952                  * XXX: __block_prepare_write() unmaps passed block,
1953                  * is it OK?
1954                  */
1955                 /*
1956                  * If the block was allocated from previously allocated cluster,
1957                  * then we don't need to reserve it again. However we still need
1958                  * to reserve metadata for every block we're going to write.
1959                  */
1960                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1961                         ret = ext4_da_reserve_space(inode, iblock);
1962                         if (ret) {
1963                                 /* not enough space to reserve */
1964                                 retval = ret;
1965                                 goto out_unlock;
1966                         }
1967                 } else {
1968                         ret = ext4_da_reserve_metadata(inode, iblock);
1969                         if (ret) {
1970                                 /* not enough space to reserve */
1971                                 retval = ret;
1972                                 goto out_unlock;
1973                         }
1974                 }
1975
1976                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1977                                             ~0, EXTENT_STATUS_DELAYED);
1978                 if (ret) {
1979                         retval = ret;
1980                         goto out_unlock;
1981                 }
1982
1983                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1984                  * and it should not appear on the bh->b_state.
1985                  */
1986                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1987
1988                 map_bh(bh, inode->i_sb, invalid_block);
1989                 set_buffer_new(bh);
1990                 set_buffer_delay(bh);
1991         } else if (retval > 0) {
1992                 int ret;
1993                 unsigned long long status;
1994
1995 #ifdef ES_AGGRESSIVE_TEST
1996                 if (retval != map->m_len) {
1997                         printk("ES len assertation failed for inode: %lu "
1998                                "retval %d != map->m_len %d "
1999                                "in %s (lookup)\n", inode->i_ino, retval,
2000                                map->m_len, __func__);
2001                 }
2002 #endif
2003
2004                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2005                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2006                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2007                                             map->m_pblk, status);
2008                 if (ret != 0)
2009                         retval = ret;
2010         }
2011
2012 out_unlock:
2013         up_read((&EXT4_I(inode)->i_data_sem));
2014
2015         return retval;
2016 }
2017
2018 /*
2019  * This is a special get_blocks_t callback which is used by
2020  * ext4_da_write_begin().  It will either return mapped block or
2021  * reserve space for a single block.
2022  *
2023  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2024  * We also have b_blocknr = -1 and b_bdev initialized properly
2025  *
2026  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2027  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2028  * initialized properly.
2029  */
2030 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2031                            struct buffer_head *bh, int create)
2032 {
2033         struct ext4_map_blocks map;
2034         int ret = 0;
2035
2036         BUG_ON(create == 0);
2037         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2038
2039         map.m_lblk = iblock;
2040         map.m_len = 1;
2041
2042         /*
2043          * first, we need to know whether the block is allocated already
2044          * preallocated blocks are unmapped but should treated
2045          * the same as allocated blocks.
2046          */
2047         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2048         if (ret <= 0)
2049                 return ret;
2050
2051         map_bh(bh, inode->i_sb, map.m_pblk);
2052         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2053
2054         if (buffer_unwritten(bh)) {
2055                 /* A delayed write to unwritten bh should be marked
2056                  * new and mapped.  Mapped ensures that we don't do
2057                  * get_block multiple times when we write to the same
2058                  * offset and new ensures that we do proper zero out
2059                  * for partial write.
2060                  */
2061                 set_buffer_new(bh);
2062                 set_buffer_mapped(bh);
2063         }
2064         return 0;
2065 }
2066
2067 static int bget_one(handle_t *handle, struct buffer_head *bh)
2068 {
2069         get_bh(bh);
2070         return 0;
2071 }
2072
2073 static int bput_one(handle_t *handle, struct buffer_head *bh)
2074 {
2075         put_bh(bh);
2076         return 0;
2077 }
2078
2079 static int __ext4_journalled_writepage(struct page *page,
2080                                        unsigned int len)
2081 {
2082         struct address_space *mapping = page->mapping;
2083         struct inode *inode = mapping->host;
2084         struct buffer_head *page_bufs = NULL;
2085         handle_t *handle = NULL;
2086         int ret = 0, err = 0;
2087         int inline_data = ext4_has_inline_data(inode);
2088         struct buffer_head *inode_bh = NULL;
2089
2090         ClearPageChecked(page);
2091
2092         if (inline_data) {
2093                 BUG_ON(page->index != 0);
2094                 BUG_ON(len > ext4_get_max_inline_size(inode));
2095                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2096                 if (inode_bh == NULL)
2097                         goto out;
2098         } else {
2099                 page_bufs = page_buffers(page);
2100                 if (!page_bufs) {
2101                         BUG();
2102                         goto out;
2103                 }
2104                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2105                                        NULL, bget_one);
2106         }
2107         /* As soon as we unlock the page, it can go away, but we have
2108          * references to buffers so we are safe */
2109         unlock_page(page);
2110
2111         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2112                                     ext4_writepage_trans_blocks(inode));
2113         if (IS_ERR(handle)) {
2114                 ret = PTR_ERR(handle);
2115                 goto out;
2116         }
2117
2118         BUG_ON(!ext4_handle_valid(handle));
2119
2120         if (inline_data) {
2121                 ret = ext4_journal_get_write_access(handle, inode_bh);
2122
2123                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2124
2125         } else {
2126                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2127                                              do_journal_get_write_access);
2128
2129                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2130                                              write_end_fn);
2131         }
2132         if (ret == 0)
2133                 ret = err;
2134         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2135         err = ext4_journal_stop(handle);
2136         if (!ret)
2137                 ret = err;
2138
2139         if (!ext4_has_inline_data(inode))
2140                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2141                                        NULL, bput_one);
2142         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2143 out:
2144         brelse(inode_bh);
2145         return ret;
2146 }
2147
2148 /*
2149  * Note that we don't need to start a transaction unless we're journaling data
2150  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2151  * need to file the inode to the transaction's list in ordered mode because if
2152  * we are writing back data added by write(), the inode is already there and if
2153  * we are writing back data modified via mmap(), no one guarantees in which
2154  * transaction the data will hit the disk. In case we are journaling data, we
2155  * cannot start transaction directly because transaction start ranks above page
2156  * lock so we have to do some magic.
2157  *
2158  * This function can get called via...
2159  *   - ext4_da_writepages after taking page lock (have journal handle)
2160  *   - journal_submit_inode_data_buffers (no journal handle)
2161  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2162  *   - grab_page_cache when doing write_begin (have journal handle)
2163  *
2164  * We don't do any block allocation in this function. If we have page with
2165  * multiple blocks we need to write those buffer_heads that are mapped. This
2166  * is important for mmaped based write. So if we do with blocksize 1K
2167  * truncate(f, 1024);
2168  * a = mmap(f, 0, 4096);
2169  * a[0] = 'a';
2170  * truncate(f, 4096);
2171  * we have in the page first buffer_head mapped via page_mkwrite call back
2172  * but other buffer_heads would be unmapped but dirty (dirty done via the
2173  * do_wp_page). So writepage should write the first block. If we modify
2174  * the mmap area beyond 1024 we will again get a page_fault and the
2175  * page_mkwrite callback will do the block allocation and mark the
2176  * buffer_heads mapped.
2177  *
2178  * We redirty the page if we have any buffer_heads that is either delay or
2179  * unwritten in the page.
2180  *
2181  * We can get recursively called as show below.
2182  *
2183  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2184  *              ext4_writepage()
2185  *
2186  * But since we don't do any block allocation we should not deadlock.
2187  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2188  */
2189 static int ext4_writepage(struct page *page,
2190                           struct writeback_control *wbc)
2191 {
2192         int ret = 0;
2193         loff_t size;
2194         unsigned int len;
2195         struct buffer_head *page_bufs = NULL;
2196         struct inode *inode = page->mapping->host;
2197         struct ext4_io_submit io_submit;
2198
2199         trace_ext4_writepage(page);
2200         size = i_size_read(inode);
2201         if (page->index == size >> PAGE_CACHE_SHIFT)
2202                 len = size & ~PAGE_CACHE_MASK;
2203         else
2204                 len = PAGE_CACHE_SIZE;
2205
2206         page_bufs = page_buffers(page);
2207         /*
2208          * We cannot do block allocation or other extent handling in this
2209          * function. If there are buffers needing that, we have to redirty
2210          * the page. But we may reach here when we do a journal commit via
2211          * journal_submit_inode_data_buffers() and in that case we must write
2212          * allocated buffers to achieve data=ordered mode guarantees.
2213          */
2214         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2215                                    ext4_bh_delay_or_unwritten)) {
2216                 redirty_page_for_writepage(wbc, page);
2217                 if (current->flags & PF_MEMALLOC) {
2218                         /*
2219                          * For memory cleaning there's no point in writing only
2220                          * some buffers. So just bail out. Warn if we came here
2221                          * from direct reclaim.
2222                          */
2223                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2224                                                         == PF_MEMALLOC);
2225                         unlock_page(page);
2226                         return 0;
2227                 }
2228         }
2229
2230         if (PageChecked(page) && ext4_should_journal_data(inode))
2231                 /*
2232                  * It's mmapped pagecache.  Add buffers and journal it.  There
2233                  * doesn't seem much point in redirtying the page here.
2234                  */
2235                 return __ext4_journalled_writepage(page, len);
2236
2237         memset(&io_submit, 0, sizeof(io_submit));
2238         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2239         ext4_io_submit(&io_submit);
2240         return ret;
2241 }
2242
2243 /*
2244  * This is called via ext4_da_writepages() to
2245  * calculate the total number of credits to reserve to fit
2246  * a single extent allocation into a single transaction,
2247  * ext4_da_writpeages() will loop calling this before
2248  * the block allocation.
2249  */
2250
2251 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2252 {
2253         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2254
2255         /*
2256          * With non-extent format the journal credit needed to
2257          * insert nrblocks contiguous block is dependent on
2258          * number of contiguous block. So we will limit
2259          * number of contiguous block to a sane value
2260          */
2261         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2262             (max_blocks > EXT4_MAX_TRANS_DATA))
2263                 max_blocks = EXT4_MAX_TRANS_DATA;
2264
2265         return ext4_chunk_trans_blocks(inode, max_blocks);
2266 }
2267
2268 /*
2269  * write_cache_pages_da - walk the list of dirty pages of the given
2270  * address space and accumulate pages that need writing, and call
2271  * mpage_da_map_and_submit to map a single contiguous memory region
2272  * and then write them.
2273  */
2274 static int write_cache_pages_da(handle_t *handle,
2275                                 struct address_space *mapping,
2276                                 struct writeback_control *wbc,
2277                                 struct mpage_da_data *mpd,
2278                                 pgoff_t *done_index)
2279 {
2280         struct buffer_head      *bh, *head;
2281         struct inode            *inode = mapping->host;
2282         struct pagevec          pvec;
2283         unsigned int            nr_pages;
2284         sector_t                logical;
2285         pgoff_t                 index, end;
2286         long                    nr_to_write = wbc->nr_to_write;
2287         int                     i, tag, ret = 0;
2288
2289         memset(mpd, 0, sizeof(struct mpage_da_data));
2290         mpd->wbc = wbc;
2291         mpd->inode = inode;
2292         pagevec_init(&pvec, 0);
2293         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2294         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2295
2296         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2297                 tag = PAGECACHE_TAG_TOWRITE;
2298         else
2299                 tag = PAGECACHE_TAG_DIRTY;
2300
2301         *done_index = index;
2302         while (index <= end) {
2303                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2304                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2305                 if (nr_pages == 0)
2306                         return 0;
2307
2308                 for (i = 0; i < nr_pages; i++) {
2309                         struct page *page = pvec.pages[i];
2310
2311                         /*
2312                          * At this point, the page may be truncated or
2313                          * invalidated (changing page->mapping to NULL), or
2314                          * even swizzled back from swapper_space to tmpfs file
2315                          * mapping. However, page->index will not change
2316                          * because we have a reference on the page.
2317                          */
2318                         if (page->index > end)
2319                                 goto out;
2320
2321                         *done_index = page->index + 1;
2322
2323                         /*
2324                          * If we can't merge this page, and we have
2325                          * accumulated an contiguous region, write it
2326                          */
2327                         if ((mpd->next_page != page->index) &&
2328                             (mpd->next_page != mpd->first_page)) {
2329                                 mpage_da_map_and_submit(mpd);
2330                                 goto ret_extent_tail;
2331                         }
2332
2333                         lock_page(page);
2334
2335                         /*
2336                          * If the page is no longer dirty, or its
2337                          * mapping no longer corresponds to inode we
2338                          * are writing (which means it has been
2339                          * truncated or invalidated), or the page is
2340                          * already under writeback and we are not
2341                          * doing a data integrity writeback, skip the page
2342                          */
2343                         if (!PageDirty(page) ||
2344                             (PageWriteback(page) &&
2345                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2346                             unlikely(page->mapping != mapping)) {
2347                                 unlock_page(page);
2348                                 continue;
2349                         }
2350
2351                         wait_on_page_writeback(page);
2352                         BUG_ON(PageWriteback(page));
2353
2354                         /*
2355                          * If we have inline data and arrive here, it means that
2356                          * we will soon create the block for the 1st page, so
2357                          * we'd better clear the inline data here.
2358                          */
2359                         if (ext4_has_inline_data(inode)) {
2360                                 BUG_ON(ext4_test_inode_state(inode,
2361                                                 EXT4_STATE_MAY_INLINE_DATA));
2362                                 ext4_destroy_inline_data(handle, inode);
2363                         }
2364
2365                         if (mpd->next_page != page->index)
2366                                 mpd->first_page = page->index;
2367                         mpd->next_page = page->index + 1;
2368                         logical = (sector_t) page->index <<
2369                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2370
2371                         /* Add all dirty buffers to mpd */
2372                         head = page_buffers(page);
2373                         bh = head;
2374                         do {
2375                                 BUG_ON(buffer_locked(bh));
2376                                 /*
2377                                  * We need to try to allocate unmapped blocks
2378                                  * in the same page.  Otherwise we won't make
2379                                  * progress with the page in ext4_writepage
2380                                  */
2381                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2382                                         mpage_add_bh_to_extent(mpd, logical,
2383                                                                bh->b_state);
2384                                         if (mpd->io_done)
2385                                                 goto ret_extent_tail;
2386                                 } else if (buffer_dirty(bh) &&
2387                                            buffer_mapped(bh)) {
2388                                         /*
2389                                          * mapped dirty buffer. We need to
2390                                          * update the b_state because we look
2391                                          * at b_state in mpage_da_map_blocks.
2392                                          * We don't update b_size because if we
2393                                          * find an unmapped buffer_head later
2394                                          * we need to use the b_state flag of
2395                                          * that buffer_head.
2396                                          */
2397                                         if (mpd->b_size == 0)
2398                                                 mpd->b_state =
2399                                                         bh->b_state & BH_FLAGS;
2400                                 }
2401                                 logical++;
2402                         } while ((bh = bh->b_this_page) != head);
2403
2404                         if (nr_to_write > 0) {
2405                                 nr_to_write--;
2406                                 if (nr_to_write == 0 &&
2407                                     wbc->sync_mode == WB_SYNC_NONE)
2408                                         /*
2409                                          * We stop writing back only if we are
2410                                          * not doing integrity sync. In case of
2411                                          * integrity sync we have to keep going
2412                                          * because someone may be concurrently
2413                                          * dirtying pages, and we might have
2414                                          * synced a lot of newly appeared dirty
2415                                          * pages, but have not synced all of the
2416                                          * old dirty pages.
2417                                          */
2418                                         goto out;
2419                         }
2420                 }
2421                 pagevec_release(&pvec);
2422                 cond_resched();
2423         }
2424         return 0;
2425 ret_extent_tail:
2426         ret = MPAGE_DA_EXTENT_TAIL;
2427 out:
2428         pagevec_release(&pvec);
2429         cond_resched();
2430         return ret;
2431 }
2432
2433
2434 static int ext4_da_writepages(struct address_space *mapping,
2435                               struct writeback_control *wbc)
2436 {
2437         pgoff_t index;
2438         int range_whole = 0;
2439         handle_t *handle = NULL;
2440         struct mpage_da_data mpd;
2441         struct inode *inode = mapping->host;
2442         int pages_written = 0;
2443         unsigned int max_pages;
2444         int range_cyclic, cycled = 1, io_done = 0;
2445         int needed_blocks, ret = 0;
2446         long desired_nr_to_write, nr_to_writebump = 0;
2447         loff_t range_start = wbc->range_start;
2448         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2449         pgoff_t done_index = 0;
2450         pgoff_t end;
2451         struct blk_plug plug;
2452
2453         trace_ext4_da_writepages(inode, wbc);
2454
2455         /*
2456          * No pages to write? This is mainly a kludge to avoid starting
2457          * a transaction for special inodes like journal inode on last iput()
2458          * because that could violate lock ordering on umount
2459          */
2460         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2461                 return 0;
2462
2463         /*
2464          * If the filesystem has aborted, it is read-only, so return
2465          * right away instead of dumping stack traces later on that
2466          * will obscure the real source of the problem.  We test
2467          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2468          * the latter could be true if the filesystem is mounted
2469          * read-only, and in that case, ext4_da_writepages should
2470          * *never* be called, so if that ever happens, we would want
2471          * the stack trace.
2472          */
2473         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2474                 return -EROFS;
2475
2476         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2477                 range_whole = 1;
2478
2479         range_cyclic = wbc->range_cyclic;
2480         if (wbc->range_cyclic) {
2481                 index = mapping->writeback_index;
2482                 if (index)
2483                         cycled = 0;
2484                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2485                 wbc->range_end  = LLONG_MAX;
2486                 wbc->range_cyclic = 0;
2487                 end = -1;
2488         } else {
2489                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2490                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2491         }
2492
2493         /*
2494          * This works around two forms of stupidity.  The first is in
2495          * the writeback code, which caps the maximum number of pages
2496          * written to be 1024 pages.  This is wrong on multiple
2497          * levels; different architectues have a different page size,
2498          * which changes the maximum amount of data which gets
2499          * written.  Secondly, 4 megabytes is way too small.  XFS
2500          * forces this value to be 16 megabytes by multiplying
2501          * nr_to_write parameter by four, and then relies on its
2502          * allocator to allocate larger extents to make them
2503          * contiguous.  Unfortunately this brings us to the second
2504          * stupidity, which is that ext4's mballoc code only allocates
2505          * at most 2048 blocks.  So we force contiguous writes up to
2506          * the number of dirty blocks in the inode, or
2507          * sbi->max_writeback_mb_bump whichever is smaller.
2508          */
2509         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2510         if (!range_cyclic && range_whole) {
2511                 if (wbc->nr_to_write == LONG_MAX)
2512                         desired_nr_to_write = wbc->nr_to_write;
2513                 else
2514                         desired_nr_to_write = wbc->nr_to_write * 8;
2515         } else
2516                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2517                                                            max_pages);
2518         if (desired_nr_to_write > max_pages)
2519                 desired_nr_to_write = max_pages;
2520
2521         if (wbc->nr_to_write < desired_nr_to_write) {
2522                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2523                 wbc->nr_to_write = desired_nr_to_write;
2524         }
2525
2526 retry:
2527         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2528                 tag_pages_for_writeback(mapping, index, end);
2529
2530         blk_start_plug(&plug);
2531         while (!ret && wbc->nr_to_write > 0) {
2532
2533                 /*
2534                  * we  insert one extent at a time. So we need
2535                  * credit needed for single extent allocation.
2536                  * journalled mode is currently not supported
2537                  * by delalloc
2538                  */
2539                 BUG_ON(ext4_should_journal_data(inode));
2540                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2541
2542                 /* start a new transaction*/
2543                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2544                                             needed_blocks);
2545                 if (IS_ERR(handle)) {
2546                         ret = PTR_ERR(handle);
2547                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2548                                "%ld pages, ino %lu; err %d", __func__,
2549                                 wbc->nr_to_write, inode->i_ino, ret);
2550                         blk_finish_plug(&plug);
2551                         goto out_writepages;
2552                 }
2553
2554                 /*
2555                  * Now call write_cache_pages_da() to find the next
2556                  * contiguous region of logical blocks that need
2557                  * blocks to be allocated by ext4 and submit them.
2558                  */
2559                 ret = write_cache_pages_da(handle, mapping,
2560                                            wbc, &mpd, &done_index);
2561                 /*
2562                  * If we have a contiguous extent of pages and we
2563                  * haven't done the I/O yet, map the blocks and submit
2564                  * them for I/O.
2565                  */
2566                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2567                         mpage_da_map_and_submit(&mpd);
2568                         ret = MPAGE_DA_EXTENT_TAIL;
2569                 }
2570                 trace_ext4_da_write_pages(inode, &mpd);
2571                 wbc->nr_to_write -= mpd.pages_written;
2572
2573                 ext4_journal_stop(handle);
2574
2575                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2576                         /* commit the transaction which would
2577                          * free blocks released in the transaction
2578                          * and try again
2579                          */
2580                         jbd2_journal_force_commit_nested(sbi->s_journal);
2581                         ret = 0;
2582                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2583                         /*
2584                          * Got one extent now try with rest of the pages.
2585                          * If mpd.retval is set -EIO, journal is aborted.
2586                          * So we don't need to write any more.
2587                          */
2588                         pages_written += mpd.pages_written;
2589                         ret = mpd.retval;
2590                         io_done = 1;
2591                 } else if (wbc->nr_to_write)
2592                         /*
2593                          * There is no more writeout needed
2594                          * or we requested for a noblocking writeout
2595                          * and we found the device congested
2596                          */
2597                         break;
2598         }
2599         blk_finish_plug(&plug);
2600         if (!io_done && !cycled) {
2601                 cycled = 1;
2602                 index = 0;
2603                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2604                 wbc->range_end  = mapping->writeback_index - 1;
2605                 goto retry;
2606         }
2607
2608         /* Update index */
2609         wbc->range_cyclic = range_cyclic;
2610         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2611                 /*
2612                  * set the writeback_index so that range_cyclic
2613                  * mode will write it back later
2614                  */
2615                 mapping->writeback_index = done_index;
2616
2617 out_writepages:
2618         wbc->nr_to_write -= nr_to_writebump;
2619         wbc->range_start = range_start;
2620         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2621         return ret;
2622 }
2623
2624 static int ext4_nonda_switch(struct super_block *sb)
2625 {
2626         s64 free_clusters, dirty_clusters;
2627         struct ext4_sb_info *sbi = EXT4_SB(sb);
2628
2629         /*
2630          * switch to non delalloc mode if we are running low
2631          * on free block. The free block accounting via percpu
2632          * counters can get slightly wrong with percpu_counter_batch getting
2633          * accumulated on each CPU without updating global counters
2634          * Delalloc need an accurate free block accounting. So switch
2635          * to non delalloc when we are near to error range.
2636          */
2637         free_clusters =
2638                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2639         dirty_clusters =
2640                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2641         /*
2642          * Start pushing delalloc when 1/2 of free blocks are dirty.
2643          */
2644         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2645                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2646
2647         if (2 * free_clusters < 3 * dirty_clusters ||
2648             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2649                 /*
2650                  * free block count is less than 150% of dirty blocks
2651                  * or free blocks is less than watermark
2652                  */
2653                 return 1;
2654         }
2655         return 0;
2656 }
2657
2658 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2659                                loff_t pos, unsigned len, unsigned flags,
2660                                struct page **pagep, void **fsdata)
2661 {
2662         int ret, retries = 0;
2663         struct page *page;
2664         pgoff_t index;
2665         struct inode *inode = mapping->host;
2666         handle_t *handle;
2667
2668         index = pos >> PAGE_CACHE_SHIFT;
2669
2670         if (ext4_nonda_switch(inode->i_sb)) {
2671                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2672                 return ext4_write_begin(file, mapping, pos,
2673                                         len, flags, pagep, fsdata);
2674         }
2675         *fsdata = (void *)0;
2676         trace_ext4_da_write_begin(inode, pos, len, flags);
2677
2678         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2679                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2680                                                       pos, len, flags,
2681                                                       pagep, fsdata);
2682                 if (ret < 0)
2683                         return ret;
2684                 if (ret == 1)
2685                         return 0;
2686         }
2687
2688         /*
2689          * grab_cache_page_write_begin() can take a long time if the
2690          * system is thrashing due to memory pressure, or if the page
2691          * is being written back.  So grab it first before we start
2692          * the transaction handle.  This also allows us to allocate
2693          * the page (if needed) without using GFP_NOFS.
2694          */
2695 retry_grab:
2696         page = grab_cache_page_write_begin(mapping, index, flags);
2697         if (!page)
2698                 return -ENOMEM;
2699         unlock_page(page);
2700
2701         /*
2702          * With delayed allocation, we don't log the i_disksize update
2703          * if there is delayed block allocation. But we still need
2704          * to journalling the i_disksize update if writes to the end
2705          * of file which has an already mapped buffer.
2706          */
2707 retry_journal:
2708         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2709         if (IS_ERR(handle)) {
2710                 page_cache_release(page);
2711                 return PTR_ERR(handle);
2712         }
2713
2714         lock_page(page);
2715         if (page->mapping != mapping) {
2716                 /* The page got truncated from under us */
2717                 unlock_page(page);
2718                 page_cache_release(page);
2719                 ext4_journal_stop(handle);
2720                 goto retry_grab;
2721         }
2722         /* In case writeback began while the page was unlocked */
2723         wait_on_page_writeback(page);
2724
2725         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2726         if (ret < 0) {
2727                 unlock_page(page);
2728                 ext4_journal_stop(handle);
2729                 /*
2730                  * block_write_begin may have instantiated a few blocks
2731                  * outside i_size.  Trim these off again. Don't need
2732                  * i_size_read because we hold i_mutex.
2733                  */
2734                 if (pos + len > inode->i_size)
2735                         ext4_truncate_failed_write(inode);
2736
2737                 if (ret == -ENOSPC &&
2738                     ext4_should_retry_alloc(inode->i_sb, &retries))
2739                         goto retry_journal;
2740
2741                 page_cache_release(page);
2742                 return ret;
2743         }
2744
2745         *pagep = page;
2746         return ret;
2747 }
2748
2749 /*
2750  * Check if we should update i_disksize
2751  * when write to the end of file but not require block allocation
2752  */
2753 static int ext4_da_should_update_i_disksize(struct page *page,
2754                                             unsigned long offset)
2755 {
2756         struct buffer_head *bh;
2757         struct inode *inode = page->mapping->host;
2758         unsigned int idx;
2759         int i;
2760
2761         bh = page_buffers(page);
2762         idx = offset >> inode->i_blkbits;
2763
2764         for (i = 0; i < idx; i++)
2765                 bh = bh->b_this_page;
2766
2767         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2768                 return 0;
2769         return 1;
2770 }
2771
2772 static int ext4_da_write_end(struct file *file,
2773                              struct address_space *mapping,
2774                              loff_t pos, unsigned len, unsigned copied,
2775                              struct page *page, void *fsdata)
2776 {
2777         struct inode *inode = mapping->host;
2778         int ret = 0, ret2;
2779         handle_t *handle = ext4_journal_current_handle();
2780         loff_t new_i_size;
2781         unsigned long start, end;
2782         int write_mode = (int)(unsigned long)fsdata;
2783
2784         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2785                 return ext4_write_end(file, mapping, pos,
2786                                       len, copied, page, fsdata);
2787
2788         trace_ext4_da_write_end(inode, pos, len, copied);
2789         start = pos & (PAGE_CACHE_SIZE - 1);
2790         end = start + copied - 1;
2791
2792         /*
2793          * generic_write_end() will run mark_inode_dirty() if i_size
2794          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2795          * into that.
2796          */
2797         new_i_size = pos + copied;
2798         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2799                 if (ext4_has_inline_data(inode) ||
2800                     ext4_da_should_update_i_disksize(page, end)) {
2801                         down_write(&EXT4_I(inode)->i_data_sem);
2802                         if (new_i_size > EXT4_I(inode)->i_disksize)
2803                                 EXT4_I(inode)->i_disksize = new_i_size;
2804                         up_write(&EXT4_I(inode)->i_data_sem);
2805                         /* We need to mark inode dirty even if
2806                          * new_i_size is less that inode->i_size
2807                          * bu greater than i_disksize.(hint delalloc)
2808                          */
2809                         ext4_mark_inode_dirty(handle, inode);
2810                 }
2811         }
2812
2813         if (write_mode != CONVERT_INLINE_DATA &&
2814             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2815             ext4_has_inline_data(inode))
2816                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2817                                                      page);
2818         else
2819                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2820                                                         page, fsdata);
2821
2822         copied = ret2;
2823         if (ret2 < 0)
2824                 ret = ret2;
2825         ret2 = ext4_journal_stop(handle);
2826         if (!ret)
2827                 ret = ret2;
2828
2829         return ret ? ret : copied;
2830 }
2831
2832 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2833 {
2834         /*
2835          * Drop reserved blocks
2836          */
2837         BUG_ON(!PageLocked(page));
2838         if (!page_has_buffers(page))
2839                 goto out;
2840
2841         ext4_da_page_release_reservation(page, offset);
2842
2843 out:
2844         ext4_invalidatepage(page, offset);
2845
2846         return;
2847 }
2848
2849 /*
2850  * Force all delayed allocation blocks to be allocated for a given inode.
2851  */
2852 int ext4_alloc_da_blocks(struct inode *inode)
2853 {
2854         trace_ext4_alloc_da_blocks(inode);
2855
2856         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2857             !EXT4_I(inode)->i_reserved_meta_blocks)
2858                 return 0;
2859
2860         /*
2861          * We do something simple for now.  The filemap_flush() will
2862          * also start triggering a write of the data blocks, which is
2863          * not strictly speaking necessary (and for users of
2864          * laptop_mode, not even desirable).  However, to do otherwise
2865          * would require replicating code paths in:
2866          *
2867          * ext4_da_writepages() ->
2868          *    write_cache_pages() ---> (via passed in callback function)
2869          *        __mpage_da_writepage() -->
2870          *           mpage_add_bh_to_extent()
2871          *           mpage_da_map_blocks()
2872          *
2873          * The problem is that write_cache_pages(), located in
2874          * mm/page-writeback.c, marks pages clean in preparation for
2875          * doing I/O, which is not desirable if we're not planning on
2876          * doing I/O at all.
2877          *
2878          * We could call write_cache_pages(), and then redirty all of
2879          * the pages by calling redirty_page_for_writepage() but that
2880          * would be ugly in the extreme.  So instead we would need to
2881          * replicate parts of the code in the above functions,
2882          * simplifying them because we wouldn't actually intend to
2883          * write out the pages, but rather only collect contiguous
2884          * logical block extents, call the multi-block allocator, and
2885          * then update the buffer heads with the block allocations.
2886          *
2887          * For now, though, we'll cheat by calling filemap_flush(),
2888          * which will map the blocks, and start the I/O, but not
2889          * actually wait for the I/O to complete.
2890          */
2891         return filemap_flush(inode->i_mapping);
2892 }
2893
2894 /*
2895  * bmap() is special.  It gets used by applications such as lilo and by
2896  * the swapper to find the on-disk block of a specific piece of data.
2897  *
2898  * Naturally, this is dangerous if the block concerned is still in the
2899  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2900  * filesystem and enables swap, then they may get a nasty shock when the
2901  * data getting swapped to that swapfile suddenly gets overwritten by
2902  * the original zero's written out previously to the journal and
2903  * awaiting writeback in the kernel's buffer cache.
2904  *
2905  * So, if we see any bmap calls here on a modified, data-journaled file,
2906  * take extra steps to flush any blocks which might be in the cache.
2907  */
2908 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2909 {
2910         struct inode *inode = mapping->host;
2911         journal_t *journal;
2912         int err;
2913
2914         /*
2915          * We can get here for an inline file via the FIBMAP ioctl
2916          */
2917         if (ext4_has_inline_data(inode))
2918                 return 0;
2919
2920         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2921                         test_opt(inode->i_sb, DELALLOC)) {
2922                 /*
2923                  * With delalloc we want to sync the file
2924                  * so that we can make sure we allocate
2925                  * blocks for file
2926                  */
2927                 filemap_write_and_wait(mapping);
2928         }
2929
2930         if (EXT4_JOURNAL(inode) &&
2931             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2932                 /*
2933                  * This is a REALLY heavyweight approach, but the use of
2934                  * bmap on dirty files is expected to be extremely rare:
2935                  * only if we run lilo or swapon on a freshly made file
2936                  * do we expect this to happen.
2937                  *
2938                  * (bmap requires CAP_SYS_RAWIO so this does not
2939                  * represent an unprivileged user DOS attack --- we'd be
2940                  * in trouble if mortal users could trigger this path at
2941                  * will.)
2942                  *
2943                  * NB. EXT4_STATE_JDATA is not set on files other than
2944                  * regular files.  If somebody wants to bmap a directory
2945                  * or symlink and gets confused because the buffer
2946                  * hasn't yet been flushed to disk, they deserve
2947                  * everything they get.
2948                  */
2949
2950                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2951                 journal = EXT4_JOURNAL(inode);
2952                 jbd2_journal_lock_updates(journal);
2953                 err = jbd2_journal_flush(journal);
2954                 jbd2_journal_unlock_updates(journal);
2955
2956                 if (err)
2957                         return 0;
2958         }
2959
2960         return generic_block_bmap(mapping, block, ext4_get_block);
2961 }
2962
2963 static int ext4_readpage(struct file *file, struct page *page)
2964 {
2965         int ret = -EAGAIN;
2966         struct inode *inode = page->mapping->host;
2967
2968         trace_ext4_readpage(page);
2969
2970         if (ext4_has_inline_data(inode))
2971                 ret = ext4_readpage_inline(inode, page);
2972
2973         if (ret == -EAGAIN)
2974                 return mpage_readpage(page, ext4_get_block);
2975
2976         return ret;
2977 }
2978
2979 static int
2980 ext4_readpages(struct file *file, struct address_space *mapping,
2981                 struct list_head *pages, unsigned nr_pages)
2982 {
2983         struct inode *inode = mapping->host;
2984
2985         /* If the file has inline data, no need to do readpages. */
2986         if (ext4_has_inline_data(inode))
2987                 return 0;
2988
2989         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2990 }
2991
2992 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2993 {
2994         trace_ext4_invalidatepage(page, offset);
2995
2996         /* No journalling happens on data buffers when this function is used */
2997         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2998
2999         block_invalidatepage(page, offset);
3000 }
3001
3002 static int __ext4_journalled_invalidatepage(struct page *page,
3003                                             unsigned long offset)
3004 {
3005         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3006
3007         trace_ext4_journalled_invalidatepage(page, offset);
3008
3009         /*
3010          * If it's a full truncate we just forget about the pending dirtying
3011          */
3012         if (offset == 0)
3013                 ClearPageChecked(page);
3014
3015         return jbd2_journal_invalidatepage(journal, page, offset);
3016 }
3017
3018 /* Wrapper for aops... */
3019 static void ext4_journalled_invalidatepage(struct page *page,
3020                                            unsigned long offset)
3021 {
3022         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3023 }
3024
3025 static int ext4_releasepage(struct page *page, gfp_t wait)
3026 {
3027         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3028
3029         trace_ext4_releasepage(page);
3030
3031         /* Page has dirty journalled data -> cannot release */
3032         if (PageChecked(page))
3033                 return 0;
3034         if (journal)
3035                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3036         else
3037                 return try_to_free_buffers(page);
3038 }
3039
3040 /*
3041  * ext4_get_block used when preparing for a DIO write or buffer write.
3042  * We allocate an uinitialized extent if blocks haven't been allocated.
3043  * The extent will be converted to initialized after the IO is complete.
3044  */
3045 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3046                    struct buffer_head *bh_result, int create)
3047 {
3048         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3049                    inode->i_ino, create);
3050         return _ext4_get_block(inode, iblock, bh_result,
3051                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3052 }
3053
3054 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3055                    struct buffer_head *bh_result, int create)
3056 {
3057         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3058                    inode->i_ino, create);
3059         return _ext4_get_block(inode, iblock, bh_result,
3060                                EXT4_GET_BLOCKS_NO_LOCK);
3061 }
3062
3063 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3064                             ssize_t size, void *private, int ret,
3065                             bool is_async)
3066 {
3067         struct inode *inode = file_inode(iocb->ki_filp);
3068         ext4_io_end_t *io_end = iocb->private;
3069
3070         /* if not async direct IO or dio with 0 bytes write, just return */
3071         if (!io_end || !size)
3072                 goto out;
3073
3074         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3075                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3076                   iocb->private, io_end->inode->i_ino, iocb, offset,
3077                   size);
3078
3079         iocb->private = NULL;
3080
3081         /* if not aio dio with unwritten extents, just free io and return */
3082         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3083                 ext4_free_io_end(io_end);
3084 out:
3085                 inode_dio_done(inode);
3086                 if (is_async)
3087                         aio_complete(iocb, ret, 0);
3088                 return;
3089         }
3090
3091         io_end->offset = offset;
3092         io_end->size = size;
3093         if (is_async) {
3094                 io_end->iocb = iocb;
3095                 io_end->result = ret;
3096         }
3097
3098         ext4_add_complete_io(io_end);
3099 }
3100
3101 /*
3102  * For ext4 extent files, ext4 will do direct-io write to holes,
3103  * preallocated extents, and those write extend the file, no need to
3104  * fall back to buffered IO.
3105  *
3106  * For holes, we fallocate those blocks, mark them as uninitialized
3107  * If those blocks were preallocated, we mark sure they are split, but
3108  * still keep the range to write as uninitialized.
3109  *
3110  * The unwritten extents will be converted to written when DIO is completed.
3111  * For async direct IO, since the IO may still pending when return, we
3112  * set up an end_io call back function, which will do the conversion
3113  * when async direct IO completed.
3114  *
3115  * If the O_DIRECT write will extend the file then add this inode to the
3116  * orphan list.  So recovery will truncate it back to the original size
3117  * if the machine crashes during the write.
3118  *
3119  */
3120 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3121                               const struct iovec *iov, loff_t offset,
3122                               unsigned long nr_segs)
3123 {
3124         struct file *file = iocb->ki_filp;
3125         struct inode *inode = file->f_mapping->host;
3126         ssize_t ret;
3127         size_t count = iov_length(iov, nr_segs);
3128         int overwrite = 0;
3129         get_block_t *get_block_func = NULL;
3130         int dio_flags = 0;
3131         loff_t final_size = offset + count;
3132
3133         /* Use the old path for reads and writes beyond i_size. */
3134         if (rw != WRITE || final_size > inode->i_size)
3135                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3136
3137         BUG_ON(iocb->private == NULL);
3138
3139         /* If we do a overwrite dio, i_mutex locking can be released */
3140         overwrite = *((int *)iocb->private);
3141
3142         if (overwrite) {
3143                 atomic_inc(&inode->i_dio_count);
3144                 down_read(&EXT4_I(inode)->i_data_sem);
3145                 mutex_unlock(&inode->i_mutex);
3146         }
3147
3148         /*
3149          * We could direct write to holes and fallocate.
3150          *
3151          * Allocated blocks to fill the hole are marked as
3152          * uninitialized to prevent parallel buffered read to expose
3153          * the stale data before DIO complete the data IO.
3154          *
3155          * As to previously fallocated extents, ext4 get_block will
3156          * just simply mark the buffer mapped but still keep the
3157          * extents uninitialized.
3158          *
3159          * For non AIO case, we will convert those unwritten extents
3160          * to written after return back from blockdev_direct_IO.
3161          *
3162          * For async DIO, the conversion needs to be deferred when the
3163          * IO is completed. The ext4 end_io callback function will be
3164          * called to take care of the conversion work.  Here for async
3165          * case, we allocate an io_end structure to hook to the iocb.
3166          */
3167         iocb->private = NULL;
3168         ext4_inode_aio_set(inode, NULL);
3169         if (!is_sync_kiocb(iocb)) {
3170                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3171                 if (!io_end) {
3172                         ret = -ENOMEM;
3173                         goto retake_lock;
3174                 }
3175                 io_end->flag |= EXT4_IO_END_DIRECT;
3176                 iocb->private = io_end;
3177                 /*
3178                  * we save the io structure for current async direct
3179                  * IO, so that later ext4_map_blocks() could flag the
3180                  * io structure whether there is a unwritten extents
3181                  * needs to be converted when IO is completed.
3182                  */
3183                 ext4_inode_aio_set(inode, io_end);
3184         }
3185
3186         if (overwrite) {
3187                 get_block_func = ext4_get_block_write_nolock;
3188         } else {
3189                 get_block_func = ext4_get_block_write;
3190                 dio_flags = DIO_LOCKING;
3191         }
3192         ret = __blockdev_direct_IO(rw, iocb, inode,
3193                                    inode->i_sb->s_bdev, iov,
3194                                    offset, nr_segs,
3195                                    get_block_func,
3196                                    ext4_end_io_dio,
3197                                    NULL,
3198                                    dio_flags);
3199
3200         if (iocb->private)
3201                 ext4_inode_aio_set(inode, NULL);
3202         /*
3203          * The io_end structure takes a reference to the inode, that
3204          * structure needs to be destroyed and the reference to the
3205          * inode need to be dropped, when IO is complete, even with 0
3206          * byte write, or failed.
3207          *
3208          * In the successful AIO DIO case, the io_end structure will
3209          * be destroyed and the reference to the inode will be dropped
3210          * after the end_io call back function is called.
3211          *
3212          * In the case there is 0 byte write, or error case, since VFS
3213          * direct IO won't invoke the end_io call back function, we
3214          * need to free the end_io structure here.
3215          */
3216         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3217                 ext4_free_io_end(iocb->private);
3218                 iocb->private = NULL;
3219         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3220                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3221                 int err;
3222                 /*
3223                  * for non AIO case, since the IO is already
3224                  * completed, we could do the conversion right here
3225                  */
3226                 err = ext4_convert_unwritten_extents(inode,
3227                                                      offset, ret);
3228                 if (err < 0)
3229                         ret = err;
3230                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3231         }
3232
3233 retake_lock:
3234         /* take i_mutex locking again if we do a ovewrite dio */
3235         if (overwrite) {
3236                 inode_dio_done(inode);
3237                 up_read(&EXT4_I(inode)->i_data_sem);
3238                 mutex_lock(&inode->i_mutex);
3239         }
3240
3241         return ret;
3242 }
3243
3244 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3245                               const struct iovec *iov, loff_t offset,
3246                               unsigned long nr_segs)
3247 {
3248         struct file *file = iocb->ki_filp;
3249         struct inode *inode = file->f_mapping->host;
3250         ssize_t ret;
3251
3252         /*
3253          * If we are doing data journalling we don't support O_DIRECT
3254          */
3255         if (ext4_should_journal_data(inode))
3256                 return 0;
3257
3258         /* Let buffer I/O handle the inline data case. */
3259         if (ext4_has_inline_data(inode))
3260                 return 0;
3261
3262         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3263         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3264                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3265         else
3266                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3267         trace_ext4_direct_IO_exit(inode, offset,
3268                                 iov_length(iov, nr_segs), rw, ret);
3269         return ret;
3270 }
3271
3272 /*
3273  * Pages can be marked dirty completely asynchronously from ext4's journalling
3274  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3275  * much here because ->set_page_dirty is called under VFS locks.  The page is
3276  * not necessarily locked.
3277  *
3278  * We cannot just dirty the page and leave attached buffers clean, because the
3279  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3280  * or jbddirty because all the journalling code will explode.
3281  *
3282  * So what we do is to mark the page "pending dirty" and next time writepage
3283  * is called, propagate that into the buffers appropriately.
3284  */
3285 static int ext4_journalled_set_page_dirty(struct page *page)
3286 {
3287         SetPageChecked(page);
3288         return __set_page_dirty_nobuffers(page);
3289 }
3290
3291 static const struct address_space_operations ext4_aops = {
3292         .readpage               = ext4_readpage,
3293         .readpages              = ext4_readpages,
3294         .writepage              = ext4_writepage,
3295         .write_begin            = ext4_write_begin,
3296         .write_end              = ext4_write_end,
3297         .bmap                   = ext4_bmap,
3298         .invalidatepage         = ext4_invalidatepage,
3299         .releasepage            = ext4_releasepage,
3300         .direct_IO              = ext4_direct_IO,
3301         .migratepage            = buffer_migrate_page,
3302         .is_partially_uptodate  = block_is_partially_uptodate,
3303         .error_remove_page      = generic_error_remove_page,
3304 };
3305
3306 static const struct address_space_operations ext4_journalled_aops = {
3307         .readpage               = ext4_readpage,
3308         .readpages              = ext4_readpages,
3309         .writepage              = ext4_writepage,
3310         .write_begin            = ext4_write_begin,
3311         .write_end              = ext4_journalled_write_end,
3312         .set_page_dirty         = ext4_journalled_set_page_dirty,
3313         .bmap                   = ext4_bmap,
3314         .invalidatepage         = ext4_journalled_invalidatepage,
3315         .releasepage            = ext4_releasepage,
3316         .direct_IO              = ext4_direct_IO,
3317         .is_partially_uptodate  = block_is_partially_uptodate,
3318         .error_remove_page      = generic_error_remove_page,
3319 };
3320
3321 static const struct address_space_operations ext4_da_aops = {
3322         .readpage               = ext4_readpage,
3323         .readpages              = ext4_readpages,
3324         .writepage              = ext4_writepage,
3325         .writepages             = ext4_da_writepages,
3326         .write_begin            = ext4_da_write_begin,
3327         .write_end              = ext4_da_write_end,
3328         .bmap                   = ext4_bmap,
3329         .invalidatepage         = ext4_da_invalidatepage,
3330         .releasepage            = ext4_releasepage,
3331         .direct_IO              = ext4_direct_IO,
3332         .migratepage            = buffer_migrate_page,
3333         .is_partially_uptodate  = block_is_partially_uptodate,
3334         .error_remove_page      = generic_error_remove_page,
3335 };
3336
3337 void ext4_set_aops(struct inode *inode)
3338 {
3339         switch (ext4_inode_journal_mode(inode)) {
3340         case EXT4_INODE_ORDERED_DATA_MODE:
3341                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3342                 break;
3343         case EXT4_INODE_WRITEBACK_DATA_MODE:
3344                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3345                 break;
3346         case EXT4_INODE_JOURNAL_DATA_MODE:
3347                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3348                 return;
3349         default:
3350                 BUG();
3351         }
3352         if (test_opt(inode->i_sb, DELALLOC))
3353                 inode->i_mapping->a_ops = &ext4_da_aops;
3354         else
3355                 inode->i_mapping->a_ops = &ext4_aops;
3356 }
3357
3358
3359 /*
3360  * ext4_discard_partial_page_buffers()
3361  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3362  * This function finds and locks the page containing the offset
3363  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3364  * Calling functions that already have the page locked should call
3365  * ext4_discard_partial_page_buffers_no_lock directly.
3366  */
3367 int ext4_discard_partial_page_buffers(handle_t *handle,
3368                 struct address_space *mapping, loff_t from,
3369                 loff_t length, int flags)
3370 {
3371         struct inode *inode = mapping->host;
3372         struct page *page;
3373         int err = 0;
3374
3375         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3376                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3377         if (!page)
3378                 return -ENOMEM;
3379
3380         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3381                 from, length, flags);
3382
3383         unlock_page(page);
3384         page_cache_release(page);
3385         return err;
3386 }
3387
3388 /*
3389  * ext4_discard_partial_page_buffers_no_lock()
3390  * Zeros a page range of length 'length' starting from offset 'from'.
3391  * Buffer heads that correspond to the block aligned regions of the
3392  * zeroed range will be unmapped.  Unblock aligned regions
3393  * will have the corresponding buffer head mapped if needed so that
3394  * that region of the page can be updated with the partial zero out.
3395  *
3396  * This function assumes that the page has already been  locked.  The
3397  * The range to be discarded must be contained with in the given page.
3398  * If the specified range exceeds the end of the page it will be shortened
3399  * to the end of the page that corresponds to 'from'.  This function is
3400  * appropriate for updating a page and it buffer heads to be unmapped and
3401  * zeroed for blocks that have been either released, or are going to be
3402  * released.
3403  *
3404  * handle: The journal handle
3405  * inode:  The files inode
3406  * page:   A locked page that contains the offset "from"
3407  * from:   The starting byte offset (from the beginning of the file)
3408  *         to begin discarding
3409  * len:    The length of bytes to discard
3410  * flags:  Optional flags that may be used:
3411  *
3412  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3413  *         Only zero the regions of the page whose buffer heads
3414  *         have already been unmapped.  This flag is appropriate
3415  *         for updating the contents of a page whose blocks may
3416  *         have already been released, and we only want to zero
3417  *         out the regions that correspond to those released blocks.
3418  *
3419  * Returns zero on success or negative on failure.
3420  */
3421 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3422                 struct inode *inode, struct page *page, loff_t from,
3423                 loff_t length, int flags)
3424 {
3425         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3426         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3427         unsigned int blocksize, max, pos;
3428         ext4_lblk_t iblock;
3429         struct buffer_head *bh;
3430         int err = 0;
3431
3432         blocksize = inode->i_sb->s_blocksize;
3433         max = PAGE_CACHE_SIZE - offset;
3434
3435         if (index != page->index)
3436                 return -EINVAL;
3437
3438         /*
3439          * correct length if it does not fall between
3440          * 'from' and the end of the page
3441          */
3442         if (length > max || length < 0)
3443                 length = max;
3444
3445         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3446
3447         if (!page_has_buffers(page))
3448                 create_empty_buffers(page, blocksize, 0);
3449
3450         /* Find the buffer that contains "offset" */
3451         bh = page_buffers(page);
3452         pos = blocksize;
3453         while (offset >= pos) {
3454                 bh = bh->b_this_page;
3455                 iblock++;
3456                 pos += blocksize;
3457         }
3458
3459         pos = offset;
3460         while (pos < offset + length) {
3461                 unsigned int end_of_block, range_to_discard;
3462
3463                 err = 0;
3464
3465                 /* The length of space left to zero and unmap */
3466                 range_to_discard = offset + length - pos;
3467
3468                 /* The length of space until the end of the block */
3469                 end_of_block = blocksize - (pos & (blocksize-1));
3470
3471                 /*
3472                  * Do not unmap or zero past end of block
3473                  * for this buffer head
3474                  */
3475                 if (range_to_discard > end_of_block)
3476                         range_to_discard = end_of_block;
3477
3478
3479                 /*
3480                  * Skip this buffer head if we are only zeroing unampped
3481                  * regions of the page
3482                  */
3483                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3484                         buffer_mapped(bh))
3485                                 goto next;
3486
3487                 /* If the range is block aligned, unmap */
3488                 if (range_to_discard == blocksize) {
3489                         clear_buffer_dirty(bh);
3490                         bh->b_bdev = NULL;
3491                         clear_buffer_mapped(bh);
3492                         clear_buffer_req(bh);
3493                         clear_buffer_new(bh);
3494                         clear_buffer_delay(bh);
3495                         clear_buffer_unwritten(bh);
3496                         clear_buffer_uptodate(bh);
3497                         zero_user(page, pos, range_to_discard);
3498                         BUFFER_TRACE(bh, "Buffer discarded");
3499                         goto next;
3500                 }
3501
3502                 /*
3503                  * If this block is not completely contained in the range
3504                  * to be discarded, then it is not going to be released. Because
3505                  * we need to keep this block, we need to make sure this part
3506                  * of the page is uptodate before we modify it by writeing
3507                  * partial zeros on it.
3508                  */
3509                 if (!buffer_mapped(bh)) {
3510                         /*
3511                          * Buffer head must be mapped before we can read
3512                          * from the block
3513                          */
3514                         BUFFER_TRACE(bh, "unmapped");
3515                         ext4_get_block(inode, iblock, bh, 0);
3516                         /* unmapped? It's a hole - nothing to do */
3517                         if (!buffer_mapped(bh)) {
3518                                 BUFFER_TRACE(bh, "still unmapped");
3519                                 goto next;
3520                         }
3521                 }
3522
3523                 /* Ok, it's mapped. Make sure it's up-to-date */
3524                 if (PageUptodate(page))
3525                         set_buffer_uptodate(bh);
3526
3527                 if (!buffer_uptodate(bh)) {
3528                         err = -EIO;
3529                         ll_rw_block(READ, 1, &bh);
3530                         wait_on_buffer(bh);
3531                         /* Uhhuh. Read error. Complain and punt.*/
3532                         if (!buffer_uptodate(bh))
3533                                 goto next;
3534                 }
3535
3536                 if (ext4_should_journal_data(inode)) {
3537                         BUFFER_TRACE(bh, "get write access");
3538                         err = ext4_journal_get_write_access(handle, bh);
3539                         if (err)
3540                                 goto next;
3541                 }
3542
3543                 zero_user(page, pos, range_to_discard);
3544
3545                 err = 0;
3546                 if (ext4_should_journal_data(inode)) {
3547                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3548                 } else
3549                         mark_buffer_dirty(bh);
3550
3551                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3552 next:
3553                 bh = bh->b_this_page;
3554                 iblock++;
3555                 pos += range_to_discard;
3556         }
3557
3558         return err;
3559 }
3560
3561 int ext4_can_truncate(struct inode *inode)
3562 {
3563         if (S_ISREG(inode->i_mode))
3564                 return 1;
3565         if (S_ISDIR(inode->i_mode))
3566                 return 1;
3567         if (S_ISLNK(inode->i_mode))
3568                 return !ext4_inode_is_fast_symlink(inode);
3569         return 0;
3570 }
3571
3572 /*
3573  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3574  * associated with the given offset and length
3575  *
3576  * @inode:  File inode
3577  * @offset: The offset where the hole will begin
3578  * @len:    The length of the hole
3579  *
3580  * Returns: 0 on success or negative on failure
3581  */
3582
3583 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3584 {
3585         struct inode *inode = file_inode(file);
3586         struct super_block *sb = inode->i_sb;
3587         ext4_lblk_t first_block, stop_block;
3588         struct address_space *mapping = inode->i_mapping;
3589         loff_t first_page, last_page, page_len;
3590         loff_t first_page_offset, last_page_offset;
3591         handle_t *handle;
3592         unsigned int credits;
3593         int ret = 0;
3594
3595         if (!S_ISREG(inode->i_mode))
3596                 return -EOPNOTSUPP;
3597
3598         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3599                 /* TODO: Add support for bigalloc file systems */
3600                 return -EOPNOTSUPP;
3601         }
3602
3603         trace_ext4_punch_hole(inode, offset, length);
3604
3605         /*
3606          * Write out all dirty pages to avoid race conditions
3607          * Then release them.
3608          */
3609         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3610                 ret = filemap_write_and_wait_range(mapping, offset,
3611                                                    offset + length - 1);
3612                 if (ret)
3613                         return ret;
3614         }
3615
3616         mutex_lock(&inode->i_mutex);
3617         /* It's not possible punch hole on append only file */
3618         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3619                 ret = -EPERM;
3620                 goto out_mutex;
3621         }
3622         if (IS_SWAPFILE(inode)) {
3623                 ret = -ETXTBSY;
3624                 goto out_mutex;
3625         }
3626
3627         /* No need to punch hole beyond i_size */
3628         if (offset >= inode->i_size)
3629                 goto out_mutex;
3630
3631         /*
3632          * If the hole extends beyond i_size, set the hole
3633          * to end after the page that contains i_size
3634          */
3635         if (offset + length > inode->i_size) {
3636                 length = inode->i_size +
3637                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3638                    offset;
3639         }
3640
3641         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3642         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3643
3644         first_page_offset = first_page << PAGE_CACHE_SHIFT;
3645         last_page_offset = last_page << PAGE_CACHE_SHIFT;
3646
3647         /* Now release the pages */
3648         if (last_page_offset > first_page_offset) {
3649                 truncate_pagecache_range(inode, first_page_offset,
3650                                          last_page_offset - 1);
3651         }
3652
3653         /* Wait all existing dio workers, newcomers will block on i_mutex */
3654         ext4_inode_block_unlocked_dio(inode);
3655         ret = ext4_flush_unwritten_io(inode);
3656         if (ret)
3657                 goto out_dio;
3658         inode_dio_wait(inode);
3659
3660         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3661                 credits = ext4_writepage_trans_blocks(inode);
3662         else
3663                 credits = ext4_blocks_for_truncate(inode);
3664         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3665         if (IS_ERR(handle)) {
3666                 ret = PTR_ERR(handle);
3667                 ext4_std_error(sb, ret);
3668                 goto out_dio;
3669         }
3670
3671         /*
3672          * Now we need to zero out the non-page-aligned data in the
3673          * pages at the start and tail of the hole, and unmap the
3674          * buffer heads for the block aligned regions of the page that
3675          * were completely zeroed.
3676          */
3677         if (first_page > last_page) {
3678                 /*
3679                  * If the file space being truncated is contained
3680                  * within a page just zero out and unmap the middle of
3681                  * that page
3682                  */
3683                 ret = ext4_discard_partial_page_buffers(handle,
3684                         mapping, offset, length, 0);
3685
3686                 if (ret)
3687                         goto out_stop;
3688         } else {
3689                 /*
3690                  * zero out and unmap the partial page that contains
3691                  * the start of the hole
3692                  */
3693                 page_len = first_page_offset - offset;
3694                 if (page_len > 0) {
3695                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3696                                                 offset, page_len, 0);
3697                         if (ret)
3698                                 goto out_stop;
3699                 }
3700
3701                 /*
3702                  * zero out and unmap the partial page that contains
3703                  * the end of the hole
3704                  */
3705                 page_len = offset + length - last_page_offset;
3706                 if (page_len > 0) {
3707                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3708                                         last_page_offset, page_len, 0);
3709                         if (ret)
3710                                 goto out_stop;
3711                 }
3712         }
3713
3714         /*
3715          * If i_size is contained in the last page, we need to
3716          * unmap and zero the partial page after i_size
3717          */
3718         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3719            inode->i_size % PAGE_CACHE_SIZE != 0) {
3720                 page_len = PAGE_CACHE_SIZE -
3721                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3722
3723                 if (page_len > 0) {
3724                         ret = ext4_discard_partial_page_buffers(handle,
3725                                         mapping, inode->i_size, page_len, 0);
3726
3727                         if (ret)
3728                                 goto out_stop;
3729                 }
3730         }
3731
3732         first_block = (offset + sb->s_blocksize - 1) >>
3733                 EXT4_BLOCK_SIZE_BITS(sb);
3734         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3735
3736         /* If there are no blocks to remove, return now */
3737         if (first_block >= stop_block)
3738                 goto out_stop;
3739
3740         down_write(&EXT4_I(inode)->i_data_sem);
3741         ext4_discard_preallocations(inode);
3742
3743         ret = ext4_es_remove_extent(inode, first_block,
3744                                     stop_block - first_block);
3745         if (ret) {
3746                 up_write(&EXT4_I(inode)->i_data_sem);
3747                 goto out_stop;
3748         }
3749
3750         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3751                 ret = ext4_ext_remove_space(inode, first_block,
3752                                             stop_block - 1);
3753         else
3754                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3755                                             stop_block);
3756
3757         ext4_discard_preallocations(inode);
3758         up_write(&EXT4_I(inode)->i_data_sem);
3759         if (IS_SYNC(inode))
3760                 ext4_handle_sync(handle);
3761         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3762         ext4_mark_inode_dirty(handle, inode);
3763 out_stop:
3764         ext4_journal_stop(handle);
3765 out_dio:
3766         ext4_inode_resume_unlocked_dio(inode);
3767 out_mutex:
3768         mutex_unlock(&inode->i_mutex);
3769         return ret;
3770 }
3771
3772 /*
3773  * ext4_truncate()
3774  *
3775  * We block out ext4_get_block() block instantiations across the entire
3776  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3777  * simultaneously on behalf of the same inode.
3778  *
3779  * As we work through the truncate and commit bits of it to the journal there
3780  * is one core, guiding principle: the file's tree must always be consistent on
3781  * disk.  We must be able to restart the truncate after a crash.
3782  *
3783  * The file's tree may be transiently inconsistent in memory (although it
3784  * probably isn't), but whenever we close off and commit a journal transaction,
3785  * the contents of (the filesystem + the journal) must be consistent and
3786  * restartable.  It's pretty simple, really: bottom up, right to left (although
3787  * left-to-right works OK too).
3788  *
3789  * Note that at recovery time, journal replay occurs *before* the restart of
3790  * truncate against the orphan inode list.
3791  *
3792  * The committed inode has the new, desired i_size (which is the same as
3793  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3794  * that this inode's truncate did not complete and it will again call
3795  * ext4_truncate() to have another go.  So there will be instantiated blocks
3796  * to the right of the truncation point in a crashed ext4 filesystem.  But
3797  * that's fine - as long as they are linked from the inode, the post-crash
3798  * ext4_truncate() run will find them and release them.
3799  */
3800 void ext4_truncate(struct inode *inode)
3801 {
3802         struct ext4_inode_info *ei = EXT4_I(inode);
3803         unsigned int credits;
3804         handle_t *handle;
3805         struct address_space *mapping = inode->i_mapping;
3806         loff_t page_len;
3807
3808         /*
3809          * There is a possibility that we're either freeing the inode
3810          * or it completely new indode. In those cases we might not
3811          * have i_mutex locked because it's not necessary.
3812          */
3813         if (!(inode->i_state & (I_NEW|I_FREEING)))
3814                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3815         trace_ext4_truncate_enter(inode);
3816
3817         if (!ext4_can_truncate(inode))
3818                 return;
3819
3820         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3821
3822         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3823                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3824
3825         if (ext4_has_inline_data(inode)) {
3826                 int has_inline = 1;
3827
3828                 ext4_inline_data_truncate(inode, &has_inline);
3829                 if (has_inline)
3830                         return;
3831         }
3832
3833         /*
3834          * finish any pending end_io work so we won't run the risk of
3835          * converting any truncated blocks to initialized later
3836          */
3837         ext4_flush_unwritten_io(inode);
3838
3839         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3840                 credits = ext4_writepage_trans_blocks(inode);
3841         else
3842                 credits = ext4_blocks_for_truncate(inode);
3843
3844         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3845         if (IS_ERR(handle)) {
3846                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3847                 return;
3848         }
3849
3850         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3851                 page_len = PAGE_CACHE_SIZE -
3852                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3853
3854                 if (ext4_discard_partial_page_buffers(handle,
3855                                 mapping, inode->i_size, page_len, 0))
3856                         goto out_stop;
3857         }
3858
3859         /*
3860          * We add the inode to the orphan list, so that if this
3861          * truncate spans multiple transactions, and we crash, we will
3862          * resume the truncate when the filesystem recovers.  It also
3863          * marks the inode dirty, to catch the new size.
3864          *
3865          * Implication: the file must always be in a sane, consistent
3866          * truncatable state while each transaction commits.
3867          */
3868         if (ext4_orphan_add(handle, inode))
3869                 goto out_stop;
3870
3871         down_write(&EXT4_I(inode)->i_data_sem);
3872
3873         ext4_discard_preallocations(inode);
3874
3875         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3876                 ext4_ext_truncate(handle, inode);
3877         else
3878                 ext4_ind_truncate(handle, inode);
3879
3880         up_write(&ei->i_data_sem);
3881
3882         if (IS_SYNC(inode))
3883                 ext4_handle_sync(handle);
3884
3885 out_stop:
3886         /*
3887          * If this was a simple ftruncate() and the file will remain alive,
3888          * then we need to clear up the orphan record which we created above.
3889          * However, if this was a real unlink then we were called by
3890          * ext4_delete_inode(), and we allow that function to clean up the
3891          * orphan info for us.
3892          */
3893         if (inode->i_nlink)
3894                 ext4_orphan_del(handle, inode);
3895
3896         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3897         ext4_mark_inode_dirty(handle, inode);
3898         ext4_journal_stop(handle);
3899
3900         trace_ext4_truncate_exit(inode);
3901 }
3902
3903 /*
3904  * ext4_get_inode_loc returns with an extra refcount against the inode's
3905  * underlying buffer_head on success. If 'in_mem' is true, we have all
3906  * data in memory that is needed to recreate the on-disk version of this
3907  * inode.
3908  */
3909 static int __ext4_get_inode_loc(struct inode *inode,
3910                                 struct ext4_iloc *iloc, int in_mem)
3911 {
3912         struct ext4_group_desc  *gdp;
3913         struct buffer_head      *bh;
3914         struct super_block      *sb = inode->i_sb;
3915         ext4_fsblk_t            block;
3916         int                     inodes_per_block, inode_offset;
3917
3918         iloc->bh = NULL;
3919         if (!ext4_valid_inum(sb, inode->i_ino))
3920                 return -EIO;
3921
3922         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3923         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3924         if (!gdp)
3925                 return -EIO;
3926
3927         /*
3928          * Figure out the offset within the block group inode table
3929          */
3930         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3931         inode_offset = ((inode->i_ino - 1) %
3932                         EXT4_INODES_PER_GROUP(sb));
3933         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3934         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3935
3936         bh = sb_getblk(sb, block);
3937         if (unlikely(!bh))
3938                 return -ENOMEM;
3939         if (!buffer_uptodate(bh)) {
3940                 lock_buffer(bh);
3941
3942                 /*
3943                  * If the buffer has the write error flag, we have failed
3944                  * to write out another inode in the same block.  In this
3945                  * case, we don't have to read the block because we may
3946                  * read the old inode data successfully.
3947                  */
3948                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3949                         set_buffer_uptodate(bh);
3950
3951                 if (buffer_uptodate(bh)) {
3952                         /* someone brought it uptodate while we waited */
3953                         unlock_buffer(bh);
3954                         goto has_buffer;
3955                 }
3956
3957                 /*
3958                  * If we have all information of the inode in memory and this
3959                  * is the only valid inode in the block, we need not read the
3960                  * block.
3961                  */
3962                 if (in_mem) {
3963                         struct buffer_head *bitmap_bh;
3964                         int i, start;
3965
3966                         start = inode_offset & ~(inodes_per_block - 1);
3967
3968                         /* Is the inode bitmap in cache? */
3969                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3970                         if (unlikely(!bitmap_bh))
3971                                 goto make_io;
3972
3973                         /*
3974                          * If the inode bitmap isn't in cache then the
3975                          * optimisation may end up performing two reads instead
3976                          * of one, so skip it.
3977                          */
3978                         if (!buffer_uptodate(bitmap_bh)) {
3979                                 brelse(bitmap_bh);
3980                                 goto make_io;
3981                         }
3982                         for (i = start; i < start + inodes_per_block; i++) {
3983                                 if (i == inode_offset)
3984                                         continue;
3985                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3986                                         break;
3987                         }
3988                         brelse(bitmap_bh);
3989                         if (i == start + inodes_per_block) {
3990                                 /* all other inodes are free, so skip I/O */
3991                                 memset(bh->b_data, 0, bh->b_size);
3992                                 set_buffer_uptodate(bh);
3993                                 unlock_buffer(bh);
3994                                 goto has_buffer;
3995                         }
3996                 }
3997
3998 make_io:
3999                 /*
4000                  * If we need to do any I/O, try to pre-readahead extra
4001                  * blocks from the inode table.
4002                  */
4003                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4004                         ext4_fsblk_t b, end, table;
4005                         unsigned num;
4006                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4007
4008                         table = ext4_inode_table(sb, gdp);
4009                         /* s_inode_readahead_blks is always a power of 2 */
4010                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4011                         if (table > b)
4012                                 b = table;
4013                         end = b + ra_blks;
4014                         num = EXT4_INODES_PER_GROUP(sb);
4015                         if (ext4_has_group_desc_csum(sb))
4016                                 num -= ext4_itable_unused_count(sb, gdp);
4017                         table += num / inodes_per_block;
4018                         if (end > table)
4019                                 end = table;
4020                         while (b <= end)
4021                                 sb_breadahead(sb, b++);
4022                 }
4023
4024                 /*
4025                  * There are other valid inodes in the buffer, this inode
4026                  * has in-inode xattrs, or we don't have this inode in memory.
4027                  * Read the block from disk.
4028                  */
4029                 trace_ext4_load_inode(inode);
4030                 get_bh(bh);
4031                 bh->b_end_io = end_buffer_read_sync;
4032                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4033                 wait_on_buffer(bh);
4034                 if (!buffer_uptodate(bh)) {
4035                         EXT4_ERROR_INODE_BLOCK(inode, block,
4036                                                "unable to read itable block");
4037                         brelse(bh);
4038                         return -EIO;
4039                 }
4040         }
4041 has_buffer:
4042         iloc->bh = bh;
4043         return 0;
4044 }
4045
4046 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4047 {
4048         /* We have all inode data except xattrs in memory here. */
4049         return __ext4_get_inode_loc(inode, iloc,
4050                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4051 }
4052
4053 void ext4_set_inode_flags(struct inode *inode)
4054 {
4055         unsigned int flags = EXT4_I(inode)->i_flags;
4056
4057         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4058         if (flags & EXT4_SYNC_FL)
4059                 inode->i_flags |= S_SYNC;
4060         if (flags & EXT4_APPEND_FL)
4061                 inode->i_flags |= S_APPEND;
4062         if (flags & EXT4_IMMUTABLE_FL)
4063                 inode->i_flags |= S_IMMUTABLE;
4064         if (flags & EXT4_NOATIME_FL)
4065                 inode->i_flags |= S_NOATIME;
4066         if (flags & EXT4_DIRSYNC_FL)
4067                 inode->i_flags |= S_DIRSYNC;
4068 }
4069
4070 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4071 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4072 {
4073         unsigned int vfs_fl;
4074         unsigned long old_fl, new_fl;
4075
4076         do {
4077                 vfs_fl = ei->vfs_inode.i_flags;
4078                 old_fl = ei->i_flags;
4079                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4080                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4081                                 EXT4_DIRSYNC_FL);
4082                 if (vfs_fl & S_SYNC)
4083                         new_fl |= EXT4_SYNC_FL;
4084                 if (vfs_fl & S_APPEND)
4085                         new_fl |= EXT4_APPEND_FL;
4086                 if (vfs_fl & S_IMMUTABLE)
4087                         new_fl |= EXT4_IMMUTABLE_FL;
4088                 if (vfs_fl & S_NOATIME)
4089                         new_fl |= EXT4_NOATIME_FL;
4090                 if (vfs_fl & S_DIRSYNC)
4091                         new_fl |= EXT4_DIRSYNC_FL;
4092         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4093 }
4094
4095 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4096                                   struct ext4_inode_info *ei)
4097 {
4098         blkcnt_t i_blocks ;
4099         struct inode *inode = &(ei->vfs_inode);
4100         struct super_block *sb = inode->i_sb;
4101
4102         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4103                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4104                 /* we are using combined 48 bit field */
4105                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4106                                         le32_to_cpu(raw_inode->i_blocks_lo);
4107                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4108                         /* i_blocks represent file system block size */
4109                         return i_blocks  << (inode->i_blkbits - 9);
4110                 } else {
4111                         return i_blocks;
4112                 }
4113         } else {
4114                 return le32_to_cpu(raw_inode->i_blocks_lo);
4115         }
4116 }
4117
4118 static inline void ext4_iget_extra_inode(struct inode *inode,
4119                                          struct ext4_inode *raw_inode,
4120                                          struct ext4_inode_info *ei)
4121 {
4122         __le32 *magic = (void *)raw_inode +
4123                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4124         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4125                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4126                 ext4_find_inline_data_nolock(inode);
4127         } else
4128                 EXT4_I(inode)->i_inline_off = 0;
4129 }
4130
4131 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4132 {
4133         struct ext4_iloc iloc;
4134         struct ext4_inode *raw_inode;
4135         struct ext4_inode_info *ei;
4136         struct inode *inode;
4137         journal_t *journal = EXT4_SB(sb)->s_journal;
4138         long ret;
4139         int block;
4140         uid_t i_uid;
4141         gid_t i_gid;
4142
4143         inode = iget_locked(sb, ino);
4144         if (!inode)
4145                 return ERR_PTR(-ENOMEM);
4146         if (!(inode->i_state & I_NEW))
4147                 return inode;
4148
4149         ei = EXT4_I(inode);
4150         iloc.bh = NULL;
4151
4152         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4153         if (ret < 0)
4154                 goto bad_inode;
4155         raw_inode = ext4_raw_inode(&iloc);
4156
4157         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4158                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4159                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4160                     EXT4_INODE_SIZE(inode->i_sb)) {
4161                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4162                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4163                                 EXT4_INODE_SIZE(inode->i_sb));
4164                         ret = -EIO;
4165                         goto bad_inode;
4166                 }
4167         } else
4168                 ei->i_extra_isize = 0;
4169
4170         /* Precompute checksum seed for inode metadata */
4171         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4172                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4173                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4174                 __u32 csum;
4175                 __le32 inum = cpu_to_le32(inode->i_ino);
4176                 __le32 gen = raw_inode->i_generation;
4177                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4178                                    sizeof(inum));
4179                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4180                                               sizeof(gen));
4181         }
4182
4183         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4184                 EXT4_ERROR_INODE(inode, "checksum invalid");
4185                 ret = -EIO;
4186                 goto bad_inode;
4187         }
4188
4189         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4190         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4191         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4192         if (!(test_opt(inode->i_sb, NO_UID32))) {
4193                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4194                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4195         }
4196         i_uid_write(inode, i_uid);
4197         i_gid_write(inode, i_gid);
4198         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4199
4200         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4201         ei->i_inline_off = 0;
4202         ei->i_dir_start_lookup = 0;
4203         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4204         /* We now have enough fields to check if the inode was active or not.
4205          * This is needed because nfsd might try to access dead inodes
4206          * the test is that same one that e2fsck uses
4207          * NeilBrown 1999oct15
4208          */
4209         if (inode->i_nlink == 0) {
4210                 if ((inode->i_mode == 0 ||
4211                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4212                     ino != EXT4_BOOT_LOADER_INO) {
4213                         /* this inode is deleted */
4214                         ret = -ESTALE;
4215                         goto bad_inode;
4216                 }
4217                 /* The only unlinked inodes we let through here have
4218                  * valid i_mode and are being read by the orphan
4219                  * recovery code: that's fine, we're about to complete
4220                  * the process of deleting those.
4221                  * OR it is the EXT4_BOOT_LOADER_INO which is
4222                  * not initialized on a new filesystem. */
4223         }
4224         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4225         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4226         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4227         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4228                 ei->i_file_acl |=
4229                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4230         inode->i_size = ext4_isize(raw_inode);
4231         ei->i_disksize = inode->i_size;
4232 #ifdef CONFIG_QUOTA
4233         ei->i_reserved_quota = 0;
4234 #endif
4235         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4236         ei->i_block_group = iloc.block_group;
4237         ei->i_last_alloc_group = ~0;
4238         /*
4239          * NOTE! The in-memory inode i_data array is in little-endian order
4240          * even on big-endian machines: we do NOT byteswap the block numbers!
4241          */
4242         for (block = 0; block < EXT4_N_BLOCKS; block++)
4243                 ei->i_data[block] = raw_inode->i_block[block];
4244         INIT_LIST_HEAD(&ei->i_orphan);
4245
4246         /*
4247          * Set transaction id's of transactions that have to be committed
4248          * to finish f[data]sync. We set them to currently running transaction
4249          * as we cannot be sure that the inode or some of its metadata isn't
4250          * part of the transaction - the inode could have been reclaimed and
4251          * now it is reread from disk.
4252          */
4253         if (journal) {
4254                 transaction_t *transaction;
4255                 tid_t tid;
4256
4257                 read_lock(&journal->j_state_lock);
4258                 if (journal->j_running_transaction)
4259                         transaction = journal->j_running_transaction;
4260                 else
4261                         transaction = journal->j_committing_transaction;
4262                 if (transaction)
4263                         tid = transaction->t_tid;
4264                 else
4265                         tid = journal->j_commit_sequence;
4266                 read_unlock(&journal->j_state_lock);
4267                 ei->i_sync_tid = tid;
4268                 ei->i_datasync_tid = tid;
4269         }
4270
4271         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4272                 if (ei->i_extra_isize == 0) {
4273                         /* The extra space is currently unused. Use it. */
4274                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4275                                             EXT4_GOOD_OLD_INODE_SIZE;
4276                 } else {
4277                         ext4_iget_extra_inode(inode, raw_inode, ei);
4278                 }
4279         }
4280
4281         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4282         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4283         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4284         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4285
4286         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4287         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4288                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4289                         inode->i_version |=
4290                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4291         }
4292
4293         ret = 0;
4294         if (ei->i_file_acl &&
4295             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4296                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4297                                  ei->i_file_acl);
4298                 ret = -EIO;
4299                 goto bad_inode;
4300         } else if (!ext4_has_inline_data(inode)) {
4301                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4302                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4303                             (S_ISLNK(inode->i_mode) &&
4304                              !ext4_inode_is_fast_symlink(inode))))
4305                                 /* Validate extent which is part of inode */
4306                                 ret = ext4_ext_check_inode(inode);
4307                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4308                            (S_ISLNK(inode->i_mode) &&
4309                             !ext4_inode_is_fast_symlink(inode))) {
4310                         /* Validate block references which are part of inode */
4311                         ret = ext4_ind_check_inode(inode);
4312                 }
4313         }
4314         if (ret)
4315                 goto bad_inode;
4316
4317         if (S_ISREG(inode->i_mode)) {
4318                 inode->i_op = &ext4_file_inode_operations;
4319                 inode->i_fop = &ext4_file_operations;
4320                 ext4_set_aops(inode);
4321         } else if (S_ISDIR(inode->i_mode)) {
4322                 inode->i_op = &ext4_dir_inode_operations;
4323                 inode->i_fop = &ext4_dir_operations;
4324         } else if (S_ISLNK(inode->i_mode)) {
4325                 if (ext4_inode_is_fast_symlink(inode)) {
4326                         inode->i_op = &ext4_fast_symlink_inode_operations;
4327                         nd_terminate_link(ei->i_data, inode->i_size,
4328                                 sizeof(ei->i_data) - 1);
4329                 } else {
4330                         inode->i_op = &ext4_symlink_inode_operations;
4331                         ext4_set_aops(inode);
4332                 }
4333         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4334               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4335                 inode->i_op = &ext4_special_inode_operations;
4336                 if (raw_inode->i_block[0])
4337                         init_special_inode(inode, inode->i_mode,
4338                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4339                 else
4340                         init_special_inode(inode, inode->i_mode,
4341                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4342         } else if (ino == EXT4_BOOT_LOADER_INO) {
4343                 make_bad_inode(inode);
4344         } else {
4345                 ret = -EIO;
4346                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4347                 goto bad_inode;
4348         }
4349         brelse(iloc.bh);
4350         ext4_set_inode_flags(inode);
4351         unlock_new_inode(inode);
4352         return inode;
4353
4354 bad_inode:
4355         brelse(iloc.bh);
4356         iget_failed(inode);
4357         return ERR_PTR(ret);
4358 }
4359
4360 static int ext4_inode_blocks_set(handle_t *handle,
4361                                 struct ext4_inode *raw_inode,
4362                                 struct ext4_inode_info *ei)
4363 {
4364         struct inode *inode = &(ei->vfs_inode);
4365         u64 i_blocks = inode->i_blocks;
4366         struct super_block *sb = inode->i_sb;
4367
4368         if (i_blocks <= ~0U) {
4369                 /*
4370                  * i_blocks can be represented in a 32 bit variable
4371                  * as multiple of 512 bytes
4372                  */
4373                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4374                 raw_inode->i_blocks_high = 0;
4375                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4376                 return 0;
4377         }
4378         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4379                 return -EFBIG;
4380
4381         if (i_blocks <= 0xffffffffffffULL) {
4382                 /*
4383                  * i_blocks can be represented in a 48 bit variable
4384                  * as multiple of 512 bytes
4385                  */
4386                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4387                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4388                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4389         } else {
4390                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4391                 /* i_block is stored in file system block size */
4392                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4393                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4394                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4395         }
4396         return 0;
4397 }
4398
4399 /*
4400  * Post the struct inode info into an on-disk inode location in the
4401  * buffer-cache.  This gobbles the caller's reference to the
4402  * buffer_head in the inode location struct.
4403  *
4404  * The caller must have write access to iloc->bh.
4405  */
4406 static int ext4_do_update_inode(handle_t *handle,
4407                                 struct inode *inode,
4408                                 struct ext4_iloc *iloc)
4409 {
4410         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4411         struct ext4_inode_info *ei = EXT4_I(inode);
4412         struct buffer_head *bh = iloc->bh;
4413         int err = 0, rc, block;
4414         int need_datasync = 0;
4415         uid_t i_uid;
4416         gid_t i_gid;
4417
4418         /* For fields not not tracking in the in-memory inode,
4419          * initialise them to zero for new inodes. */
4420         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4421                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4422
4423         ext4_get_inode_flags(ei);
4424         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4425         i_uid = i_uid_read(inode);
4426         i_gid = i_gid_read(inode);
4427         if (!(test_opt(inode->i_sb, NO_UID32))) {
4428                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4429                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4430 /*
4431  * Fix up interoperability with old kernels. Otherwise, old inodes get
4432  * re-used with the upper 16 bits of the uid/gid intact
4433  */
4434                 if (!ei->i_dtime) {
4435                         raw_inode->i_uid_high =
4436                                 cpu_to_le16(high_16_bits(i_uid));
4437                         raw_inode->i_gid_high =
4438                                 cpu_to_le16(high_16_bits(i_gid));
4439                 } else {
4440                         raw_inode->i_uid_high = 0;
4441                         raw_inode->i_gid_high = 0;
4442                 }
4443         } else {
4444                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4445                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4446                 raw_inode->i_uid_high = 0;
4447                 raw_inode->i_gid_high = 0;
4448         }
4449         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4450
4451         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4452         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4453         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4454         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4455
4456         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4457                 goto out_brelse;
4458         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4459         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4460         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4461             cpu_to_le32(EXT4_OS_HURD))
4462                 raw_inode->i_file_acl_high =
4463                         cpu_to_le16(ei->i_file_acl >> 32);
4464         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4465         if (ei->i_disksize != ext4_isize(raw_inode)) {
4466                 ext4_isize_set(raw_inode, ei->i_disksize);
4467                 need_datasync = 1;
4468         }
4469         if (ei->i_disksize > 0x7fffffffULL) {
4470                 struct super_block *sb = inode->i_sb;
4471                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4472                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4473                                 EXT4_SB(sb)->s_es->s_rev_level ==
4474                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4475                         /* If this is the first large file
4476                          * created, add a flag to the superblock.
4477                          */
4478                         err = ext4_journal_get_write_access(handle,
4479                                         EXT4_SB(sb)->s_sbh);
4480                         if (err)
4481                                 goto out_brelse;
4482                         ext4_update_dynamic_rev(sb);
4483                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4484                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4485                         ext4_handle_sync(handle);
4486                         err = ext4_handle_dirty_super(handle, sb);
4487                 }
4488         }
4489         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4490         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4491                 if (old_valid_dev(inode->i_rdev)) {
4492                         raw_inode->i_block[0] =
4493                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4494                         raw_inode->i_block[1] = 0;
4495                 } else {
4496                         raw_inode->i_block[0] = 0;
4497                         raw_inode->i_block[1] =
4498                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4499                         raw_inode->i_block[2] = 0;
4500                 }
4501         } else if (!ext4_has_inline_data(inode)) {
4502                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4503                         raw_inode->i_block[block] = ei->i_data[block];
4504         }
4505
4506         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4507         if (ei->i_extra_isize) {
4508                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4509                         raw_inode->i_version_hi =
4510                         cpu_to_le32(inode->i_version >> 32);
4511                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4512         }
4513
4514         ext4_inode_csum_set(inode, raw_inode, ei);
4515
4516         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4517         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4518         if (!err)
4519                 err = rc;
4520         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4521
4522         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4523 out_brelse:
4524         brelse(bh);
4525         ext4_std_error(inode->i_sb, err);
4526         return err;
4527 }
4528
4529 /*
4530  * ext4_write_inode()
4531  *
4532  * We are called from a few places:
4533  *
4534  * - Within generic_file_write() for O_SYNC files.
4535  *   Here, there will be no transaction running. We wait for any running
4536  *   transaction to commit.
4537  *
4538  * - Within sys_sync(), kupdate and such.
4539  *   We wait on commit, if tol to.
4540  *
4541  * - Within prune_icache() (PF_MEMALLOC == true)
4542  *   Here we simply return.  We can't afford to block kswapd on the
4543  *   journal commit.
4544  *
4545  * In all cases it is actually safe for us to return without doing anything,
4546  * because the inode has been copied into a raw inode buffer in
4547  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4548  * knfsd.
4549  *
4550  * Note that we are absolutely dependent upon all inode dirtiers doing the
4551  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4552  * which we are interested.
4553  *
4554  * It would be a bug for them to not do this.  The code:
4555  *
4556  *      mark_inode_dirty(inode)
4557  *      stuff();
4558  *      inode->i_size = expr;
4559  *
4560  * is in error because a kswapd-driven write_inode() could occur while
4561  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4562  * will no longer be on the superblock's dirty inode list.
4563  */
4564 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4565 {
4566         int err;
4567
4568         if (current->flags & PF_MEMALLOC)
4569                 return 0;
4570
4571         if (EXT4_SB(inode->i_sb)->s_journal) {
4572                 if (ext4_journal_current_handle()) {
4573                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4574                         dump_stack();
4575                         return -EIO;
4576                 }
4577
4578                 if (wbc->sync_mode != WB_SYNC_ALL)
4579                         return 0;
4580
4581                 err = ext4_force_commit(inode->i_sb);
4582         } else {
4583                 struct ext4_iloc iloc;
4584
4585                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4586                 if (err)
4587                         return err;
4588                 if (wbc->sync_mode == WB_SYNC_ALL)
4589                         sync_dirty_buffer(iloc.bh);
4590                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4591                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4592                                          "IO error syncing inode");
4593                         err = -EIO;
4594                 }
4595                 brelse(iloc.bh);
4596         }
4597         return err;
4598 }
4599
4600 /*
4601  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4602  * buffers that are attached to a page stradding i_size and are undergoing
4603  * commit. In that case we have to wait for commit to finish and try again.
4604  */
4605 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4606 {
4607         struct page *page;
4608         unsigned offset;
4609         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4610         tid_t commit_tid = 0;
4611         int ret;
4612
4613         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4614         /*
4615          * All buffers in the last page remain valid? Then there's nothing to
4616          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4617          * blocksize case
4618          */
4619         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4620                 return;
4621         while (1) {
4622                 page = find_lock_page(inode->i_mapping,
4623                                       inode->i_size >> PAGE_CACHE_SHIFT);
4624                 if (!page)
4625                         return;
4626                 ret = __ext4_journalled_invalidatepage(page, offset);
4627                 unlock_page(page);
4628                 page_cache_release(page);
4629                 if (ret != -EBUSY)
4630                         return;
4631                 commit_tid = 0;
4632                 read_lock(&journal->j_state_lock);
4633                 if (journal->j_committing_transaction)
4634                         commit_tid = journal->j_committing_transaction->t_tid;
4635                 read_unlock(&journal->j_state_lock);
4636                 if (commit_tid)
4637                         jbd2_log_wait_commit(journal, commit_tid);
4638         }
4639 }
4640
4641 /*
4642  * ext4_setattr()
4643  *
4644  * Called from notify_change.
4645  *
4646  * We want to trap VFS attempts to truncate the file as soon as
4647  * possible.  In particular, we want to make sure that when the VFS
4648  * shrinks i_size, we put the inode on the orphan list and modify
4649  * i_disksize immediately, so that during the subsequent flushing of
4650  * dirty pages and freeing of disk blocks, we can guarantee that any
4651  * commit will leave the blocks being flushed in an unused state on
4652  * disk.  (On recovery, the inode will get truncated and the blocks will
4653  * be freed, so we have a strong guarantee that no future commit will
4654  * leave these blocks visible to the user.)
4655  *
4656  * Another thing we have to assure is that if we are in ordered mode
4657  * and inode is still attached to the committing transaction, we must
4658  * we start writeout of all the dirty pages which are being truncated.
4659  * This way we are sure that all the data written in the previous
4660  * transaction are already on disk (truncate waits for pages under
4661  * writeback).
4662  *
4663  * Called with inode->i_mutex down.
4664  */
4665 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4666 {
4667         struct inode *inode = dentry->d_inode;
4668         int error, rc = 0;
4669         int orphan = 0;
4670         const unsigned int ia_valid = attr->ia_valid;
4671
4672         error = inode_change_ok(inode, attr);
4673         if (error)
4674                 return error;
4675
4676         if (is_quota_modification(inode, attr))
4677                 dquot_initialize(inode);
4678         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4679             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4680                 handle_t *handle;
4681
4682                 /* (user+group)*(old+new) structure, inode write (sb,
4683                  * inode block, ? - but truncate inode update has it) */
4684                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4685                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4686                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4687                 if (IS_ERR(handle)) {
4688                         error = PTR_ERR(handle);
4689                         goto err_out;
4690                 }
4691                 error = dquot_transfer(inode, attr);
4692                 if (error) {
4693                         ext4_journal_stop(handle);
4694                         return error;
4695                 }
4696                 /* Update corresponding info in inode so that everything is in
4697                  * one transaction */
4698                 if (attr->ia_valid & ATTR_UID)
4699                         inode->i_uid = attr->ia_uid;
4700                 if (attr->ia_valid & ATTR_GID)
4701                         inode->i_gid = attr->ia_gid;
4702                 error = ext4_mark_inode_dirty(handle, inode);
4703                 ext4_journal_stop(handle);
4704         }
4705
4706         if (attr->ia_valid & ATTR_SIZE) {
4707
4708                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4709                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4710
4711                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4712                                 return -EFBIG;
4713                 }
4714         }
4715
4716         if (S_ISREG(inode->i_mode) &&
4717             attr->ia_valid & ATTR_SIZE &&
4718             (attr->ia_size < inode->i_size)) {
4719                 handle_t *handle;
4720
4721                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4722                 if (IS_ERR(handle)) {
4723                         error = PTR_ERR(handle);
4724                         goto err_out;
4725                 }
4726                 if (ext4_handle_valid(handle)) {
4727                         error = ext4_orphan_add(handle, inode);
4728                         orphan = 1;
4729                 }
4730                 EXT4_I(inode)->i_disksize = attr->ia_size;
4731                 rc = ext4_mark_inode_dirty(handle, inode);
4732                 if (!error)
4733                         error = rc;
4734                 ext4_journal_stop(handle);
4735
4736                 if (ext4_should_order_data(inode)) {
4737                         error = ext4_begin_ordered_truncate(inode,
4738                                                             attr->ia_size);
4739                         if (error) {
4740                                 /* Do as much error cleanup as possible */
4741                                 handle = ext4_journal_start(inode,
4742                                                             EXT4_HT_INODE, 3);
4743                                 if (IS_ERR(handle)) {
4744                                         ext4_orphan_del(NULL, inode);
4745                                         goto err_out;
4746                                 }
4747                                 ext4_orphan_del(handle, inode);
4748                                 orphan = 0;
4749                                 ext4_journal_stop(handle);
4750                                 goto err_out;
4751                         }
4752                 }
4753         }
4754
4755         if (attr->ia_valid & ATTR_SIZE) {
4756                 if (attr->ia_size != inode->i_size) {
4757                         loff_t oldsize = inode->i_size;
4758
4759                         i_size_write(inode, attr->ia_size);
4760                         /*
4761                          * Blocks are going to be removed from the inode. Wait
4762                          * for dio in flight.  Temporarily disable
4763                          * dioread_nolock to prevent livelock.
4764                          */
4765                         if (orphan) {
4766                                 if (!ext4_should_journal_data(inode)) {
4767                                         ext4_inode_block_unlocked_dio(inode);
4768                                         inode_dio_wait(inode);
4769                                         ext4_inode_resume_unlocked_dio(inode);
4770                                 } else
4771                                         ext4_wait_for_tail_page_commit(inode);
4772                         }
4773                         /*
4774                          * Truncate pagecache after we've waited for commit
4775                          * in data=journal mode to make pages freeable.
4776                          */
4777                         truncate_pagecache(inode, oldsize, inode->i_size);
4778                 }
4779                 ext4_truncate(inode);
4780         }
4781
4782         if (!rc) {
4783                 setattr_copy(inode, attr);
4784                 mark_inode_dirty(inode);
4785         }
4786
4787         /*
4788          * If the call to ext4_truncate failed to get a transaction handle at
4789          * all, we need to clean up the in-core orphan list manually.
4790          */
4791         if (orphan && inode->i_nlink)
4792                 ext4_orphan_del(NULL, inode);
4793
4794         if (!rc && (ia_valid & ATTR_MODE))
4795                 rc = ext4_acl_chmod(inode);
4796
4797 err_out:
4798         ext4_std_error(inode->i_sb, error);
4799         if (!error)
4800                 error = rc;
4801         return error;
4802 }
4803
4804 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4805                  struct kstat *stat)
4806 {
4807         struct inode *inode;
4808         unsigned long delalloc_blocks;
4809
4810         inode = dentry->d_inode;
4811         generic_fillattr(inode, stat);
4812
4813         /*
4814          * We can't update i_blocks if the block allocation is delayed
4815          * otherwise in the case of system crash before the real block
4816          * allocation is done, we will have i_blocks inconsistent with
4817          * on-disk file blocks.
4818          * We always keep i_blocks updated together with real
4819          * allocation. But to not confuse with user, stat
4820          * will return the blocks that include the delayed allocation
4821          * blocks for this file.
4822          */
4823         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4824                                 EXT4_I(inode)->i_reserved_data_blocks);
4825
4826         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4827         return 0;
4828 }
4829
4830 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4831 {
4832         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4833                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4834         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4835 }
4836
4837 /*
4838  * Account for index blocks, block groups bitmaps and block group
4839  * descriptor blocks if modify datablocks and index blocks
4840  * worse case, the indexs blocks spread over different block groups
4841  *
4842  * If datablocks are discontiguous, they are possible to spread over
4843  * different block groups too. If they are contiguous, with flexbg,
4844  * they could still across block group boundary.
4845  *
4846  * Also account for superblock, inode, quota and xattr blocks
4847  */
4848 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4849 {
4850         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4851         int gdpblocks;
4852         int idxblocks;
4853         int ret = 0;
4854
4855         /*
4856          * How many index blocks need to touch to modify nrblocks?
4857          * The "Chunk" flag indicating whether the nrblocks is
4858          * physically contiguous on disk
4859          *
4860          * For Direct IO and fallocate, they calls get_block to allocate
4861          * one single extent at a time, so they could set the "Chunk" flag
4862          */
4863         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4864
4865         ret = idxblocks;
4866
4867         /*
4868          * Now let's see how many group bitmaps and group descriptors need
4869          * to account
4870          */
4871         groups = idxblocks;
4872         if (chunk)
4873                 groups += 1;
4874         else
4875                 groups += nrblocks;
4876
4877         gdpblocks = groups;
4878         if (groups > ngroups)
4879                 groups = ngroups;
4880         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4881                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4882
4883         /* bitmaps and block group descriptor blocks */
4884         ret += groups + gdpblocks;
4885
4886         /* Blocks for super block, inode, quota and xattr blocks */
4887         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4888
4889         return ret;
4890 }
4891
4892 /*
4893  * Calculate the total number of credits to reserve to fit
4894  * the modification of a single pages into a single transaction,
4895  * which may include multiple chunks of block allocations.
4896  *
4897  * This could be called via ext4_write_begin()
4898  *
4899  * We need to consider the worse case, when
4900  * one new block per extent.
4901  */
4902 int ext4_writepage_trans_blocks(struct inode *inode)
4903 {
4904         int bpp = ext4_journal_blocks_per_page(inode);
4905         int ret;
4906
4907         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4908
4909         /* Account for data blocks for journalled mode */
4910         if (ext4_should_journal_data(inode))
4911                 ret += bpp;
4912         return ret;
4913 }
4914
4915 /*
4916  * Calculate the journal credits for a chunk of data modification.
4917  *
4918  * This is called from DIO, fallocate or whoever calling
4919  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4920  *
4921  * journal buffers for data blocks are not included here, as DIO
4922  * and fallocate do no need to journal data buffers.
4923  */
4924 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4925 {
4926         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4927 }
4928
4929 /*
4930  * The caller must have previously called ext4_reserve_inode_write().
4931  * Give this, we know that the caller already has write access to iloc->bh.
4932  */
4933 int ext4_mark_iloc_dirty(handle_t *handle,
4934                          struct inode *inode, struct ext4_iloc *iloc)
4935 {
4936         int err = 0;
4937
4938         if (IS_I_VERSION(inode))
4939                 inode_inc_iversion(inode);
4940
4941         /* the do_update_inode consumes one bh->b_count */
4942         get_bh(iloc->bh);
4943
4944         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4945         err = ext4_do_update_inode(handle, inode, iloc);
4946         put_bh(iloc->bh);
4947         return err;
4948 }
4949
4950 /*
4951  * On success, We end up with an outstanding reference count against
4952  * iloc->bh.  This _must_ be cleaned up later.
4953  */
4954
4955 int
4956 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4957                          struct ext4_iloc *iloc)
4958 {
4959         int err;
4960
4961         err = ext4_get_inode_loc(inode, iloc);
4962         if (!err) {
4963                 BUFFER_TRACE(iloc->bh, "get_write_access");
4964                 err = ext4_journal_get_write_access(handle, iloc->bh);
4965                 if (err) {
4966                         brelse(iloc->bh);
4967                         iloc->bh = NULL;
4968                 }
4969         }
4970         ext4_std_error(inode->i_sb, err);
4971         return err;
4972 }
4973
4974 /*
4975  * Expand an inode by new_extra_isize bytes.
4976  * Returns 0 on success or negative error number on failure.
4977  */
4978 static int ext4_expand_extra_isize(struct inode *inode,
4979                                    unsigned int new_extra_isize,
4980                                    struct ext4_iloc iloc,
4981                                    handle_t *handle)
4982 {
4983         struct ext4_inode *raw_inode;
4984         struct ext4_xattr_ibody_header *header;
4985
4986         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4987                 return 0;
4988
4989         raw_inode = ext4_raw_inode(&iloc);
4990
4991         header = IHDR(inode, raw_inode);
4992
4993         /* No extended attributes present */
4994         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4995             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4996                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4997                         new_extra_isize);
4998                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4999                 return 0;
5000         }
5001
5002         /* try to expand with EAs present */
5003         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5004                                           raw_inode, handle);
5005 }
5006
5007 /*
5008  * What we do here is to mark the in-core inode as clean with respect to inode
5009  * dirtiness (it may still be data-dirty).
5010  * This means that the in-core inode may be reaped by prune_icache
5011  * without having to perform any I/O.  This is a very good thing,
5012  * because *any* task may call prune_icache - even ones which
5013  * have a transaction open against a different journal.
5014  *
5015  * Is this cheating?  Not really.  Sure, we haven't written the
5016  * inode out, but prune_icache isn't a user-visible syncing function.
5017  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5018  * we start and wait on commits.
5019  */
5020 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5021 {
5022         struct ext4_iloc iloc;
5023         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5024         static unsigned int mnt_count;
5025         int err, ret;
5026
5027         might_sleep();
5028         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5029         err = ext4_reserve_inode_write(handle, inode, &iloc);
5030         if (ext4_handle_valid(handle) &&
5031             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5032             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5033                 /*
5034                  * We need extra buffer credits since we may write into EA block
5035                  * with this same handle. If journal_extend fails, then it will
5036                  * only result in a minor loss of functionality for that inode.
5037                  * If this is felt to be critical, then e2fsck should be run to
5038                  * force a large enough s_min_extra_isize.
5039                  */
5040                 if ((jbd2_journal_extend(handle,
5041                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5042                         ret = ext4_expand_extra_isize(inode,
5043                                                       sbi->s_want_extra_isize,
5044                                                       iloc, handle);
5045                         if (ret) {
5046                                 ext4_set_inode_state(inode,
5047                                                      EXT4_STATE_NO_EXPAND);
5048                                 if (mnt_count !=
5049                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5050                                         ext4_warning(inode->i_sb,
5051                                         "Unable to expand inode %lu. Delete"
5052                                         " some EAs or run e2fsck.",
5053                                         inode->i_ino);
5054                                         mnt_count =
5055                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5056                                 }
5057                         }
5058                 }
5059         }
5060         if (!err)
5061                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5062         return err;
5063 }
5064
5065 /*
5066  * ext4_dirty_inode() is called from __mark_inode_dirty()
5067  *
5068  * We're really interested in the case where a file is being extended.
5069  * i_size has been changed by generic_commit_write() and we thus need
5070  * to include the updated inode in the current transaction.
5071  *
5072  * Also, dquot_alloc_block() will always dirty the inode when blocks
5073  * are allocated to the file.
5074  *
5075  * If the inode is marked synchronous, we don't honour that here - doing
5076  * so would cause a commit on atime updates, which we don't bother doing.
5077  * We handle synchronous inodes at the highest possible level.
5078  */
5079 void ext4_dirty_inode(struct inode *inode, int flags)
5080 {
5081         handle_t *handle;
5082
5083         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5084         if (IS_ERR(handle))
5085                 goto out;
5086
5087         ext4_mark_inode_dirty(handle, inode);
5088
5089         ext4_journal_stop(handle);
5090 out:
5091         return;
5092 }
5093
5094 #if 0
5095 /*
5096  * Bind an inode's backing buffer_head into this transaction, to prevent
5097  * it from being flushed to disk early.  Unlike
5098  * ext4_reserve_inode_write, this leaves behind no bh reference and
5099  * returns no iloc structure, so the caller needs to repeat the iloc
5100  * lookup to mark the inode dirty later.
5101  */
5102 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5103 {
5104         struct ext4_iloc iloc;
5105
5106         int err = 0;
5107         if (handle) {
5108                 err = ext4_get_inode_loc(inode, &iloc);
5109                 if (!err) {
5110                         BUFFER_TRACE(iloc.bh, "get_write_access");
5111                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5112                         if (!err)
5113                                 err = ext4_handle_dirty_metadata(handle,
5114                                                                  NULL,
5115                                                                  iloc.bh);
5116                         brelse(iloc.bh);
5117                 }
5118         }
5119         ext4_std_error(inode->i_sb, err);
5120         return err;
5121 }
5122 #endif
5123
5124 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5125 {
5126         journal_t *journal;
5127         handle_t *handle;
5128         int err;
5129
5130         /*
5131          * We have to be very careful here: changing a data block's
5132          * journaling status dynamically is dangerous.  If we write a
5133          * data block to the journal, change the status and then delete
5134          * that block, we risk forgetting to revoke the old log record
5135          * from the journal and so a subsequent replay can corrupt data.
5136          * So, first we make sure that the journal is empty and that
5137          * nobody is changing anything.
5138          */
5139
5140         journal = EXT4_JOURNAL(inode);
5141         if (!journal)
5142                 return 0;
5143         if (is_journal_aborted(journal))
5144                 return -EROFS;
5145         /* We have to allocate physical blocks for delalloc blocks
5146          * before flushing journal. otherwise delalloc blocks can not
5147          * be allocated any more. even more truncate on delalloc blocks
5148          * could trigger BUG by flushing delalloc blocks in journal.
5149          * There is no delalloc block in non-journal data mode.
5150          */
5151         if (val && test_opt(inode->i_sb, DELALLOC)) {
5152                 err = ext4_alloc_da_blocks(inode);
5153                 if (err < 0)
5154                         return err;
5155         }
5156
5157         /* Wait for all existing dio workers */
5158         ext4_inode_block_unlocked_dio(inode);
5159         inode_dio_wait(inode);
5160
5161         jbd2_journal_lock_updates(journal);
5162
5163         /*
5164          * OK, there are no updates running now, and all cached data is
5165          * synced to disk.  We are now in a completely consistent state
5166          * which doesn't have anything in the journal, and we know that
5167          * no filesystem updates are running, so it is safe to modify
5168          * the inode's in-core data-journaling state flag now.
5169          */
5170
5171         if (val)
5172                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5173         else {
5174                 jbd2_journal_flush(journal);
5175                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5176         }
5177         ext4_set_aops(inode);
5178
5179         jbd2_journal_unlock_updates(journal);
5180         ext4_inode_resume_unlocked_dio(inode);
5181
5182         /* Finally we can mark the inode as dirty. */
5183
5184         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5185         if (IS_ERR(handle))
5186                 return PTR_ERR(handle);
5187
5188         err = ext4_mark_inode_dirty(handle, inode);
5189         ext4_handle_sync(handle);
5190         ext4_journal_stop(handle);
5191         ext4_std_error(inode->i_sb, err);
5192
5193         return err;
5194 }
5195
5196 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5197 {
5198         return !buffer_mapped(bh);
5199 }
5200
5201 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5202 {
5203         struct page *page = vmf->page;
5204         loff_t size;
5205         unsigned long len;
5206         int ret;
5207         struct file *file = vma->vm_file;
5208         struct inode *inode = file_inode(file);
5209         struct address_space *mapping = inode->i_mapping;
5210         handle_t *handle;
5211         get_block_t *get_block;
5212         int retries = 0;
5213
5214         sb_start_pagefault(inode->i_sb);
5215         file_update_time(vma->vm_file);
5216         /* Delalloc case is easy... */
5217         if (test_opt(inode->i_sb, DELALLOC) &&
5218             !ext4_should_journal_data(inode) &&
5219             !ext4_nonda_switch(inode->i_sb)) {
5220                 do {
5221                         ret = __block_page_mkwrite(vma, vmf,
5222                                                    ext4_da_get_block_prep);
5223                 } while (ret == -ENOSPC &&
5224                        ext4_should_retry_alloc(inode->i_sb, &retries));
5225                 goto out_ret;
5226         }
5227
5228         lock_page(page);
5229         size = i_size_read(inode);
5230         /* Page got truncated from under us? */
5231         if (page->mapping != mapping || page_offset(page) > size) {
5232                 unlock_page(page);
5233                 ret = VM_FAULT_NOPAGE;
5234                 goto out;
5235         }
5236
5237         if (page->index == size >> PAGE_CACHE_SHIFT)
5238                 len = size & ~PAGE_CACHE_MASK;
5239         else
5240                 len = PAGE_CACHE_SIZE;
5241         /*
5242          * Return if we have all the buffers mapped. This avoids the need to do
5243          * journal_start/journal_stop which can block and take a long time
5244          */
5245         if (page_has_buffers(page)) {
5246                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5247                                             0, len, NULL,
5248                                             ext4_bh_unmapped)) {
5249                         /* Wait so that we don't change page under IO */
5250                         wait_for_stable_page(page);
5251                         ret = VM_FAULT_LOCKED;
5252                         goto out;
5253                 }
5254         }
5255         unlock_page(page);
5256         /* OK, we need to fill the hole... */
5257         if (ext4_should_dioread_nolock(inode))
5258                 get_block = ext4_get_block_write;
5259         else
5260                 get_block = ext4_get_block;
5261 retry_alloc:
5262         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5263                                     ext4_writepage_trans_blocks(inode));
5264         if (IS_ERR(handle)) {
5265                 ret = VM_FAULT_SIGBUS;
5266                 goto out;
5267         }
5268         ret = __block_page_mkwrite(vma, vmf, get_block);
5269         if (!ret && ext4_should_journal_data(inode)) {
5270                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5271                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5272                         unlock_page(page);
5273                         ret = VM_FAULT_SIGBUS;
5274                         ext4_journal_stop(handle);
5275                         goto out;
5276                 }
5277                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5278         }
5279         ext4_journal_stop(handle);
5280         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5281                 goto retry_alloc;
5282 out_ret:
5283         ret = block_page_mkwrite_return(ret);
5284 out:
5285         sb_end_pagefault(inode->i_sb);
5286         return ret;
5287 }