drm/rockchip: vop: enable iommu when we actually need it
[firefly-linux-kernel-4.4.55.git] / fs / coredump.c
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/mm.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35 #include <linux/sched.h>
36 #include <linux/fs.h>
37 #include <linux/path.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/mmu_context.h>
41 #include <asm/tlb.h>
42 #include <asm/exec.h>
43
44 #include <trace/events/task.h>
45 #include "internal.h"
46
47 #include <trace/events/sched.h>
48
49 int core_uses_pid;
50 unsigned int core_pipe_limit;
51 char core_pattern[CORENAME_MAX_SIZE] = "core";
52 static int core_name_size = CORENAME_MAX_SIZE;
53
54 struct core_name {
55         char *corename;
56         int used, size;
57 };
58
59 /* The maximal length of core_pattern is also specified in sysctl.c */
60
61 static int expand_corename(struct core_name *cn, int size)
62 {
63         char *corename = krealloc(cn->corename, size, GFP_KERNEL);
64
65         if (!corename)
66                 return -ENOMEM;
67
68         if (size > core_name_size) /* racy but harmless */
69                 core_name_size = size;
70
71         cn->size = ksize(corename);
72         cn->corename = corename;
73         return 0;
74 }
75
76 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
77                                      va_list arg)
78 {
79         int free, need;
80         va_list arg_copy;
81
82 again:
83         free = cn->size - cn->used;
84
85         va_copy(arg_copy, arg);
86         need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
87         va_end(arg_copy);
88
89         if (need < free) {
90                 cn->used += need;
91                 return 0;
92         }
93
94         if (!expand_corename(cn, cn->size + need - free + 1))
95                 goto again;
96
97         return -ENOMEM;
98 }
99
100 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
101 {
102         va_list arg;
103         int ret;
104
105         va_start(arg, fmt);
106         ret = cn_vprintf(cn, fmt, arg);
107         va_end(arg);
108
109         return ret;
110 }
111
112 static __printf(2, 3)
113 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
114 {
115         int cur = cn->used;
116         va_list arg;
117         int ret;
118
119         va_start(arg, fmt);
120         ret = cn_vprintf(cn, fmt, arg);
121         va_end(arg);
122
123         for (; cur < cn->used; ++cur) {
124                 if (cn->corename[cur] == '/')
125                         cn->corename[cur] = '!';
126         }
127         return ret;
128 }
129
130 static int cn_print_exe_file(struct core_name *cn)
131 {
132         struct file *exe_file;
133         char *pathbuf, *path;
134         int ret;
135
136         exe_file = get_mm_exe_file(current->mm);
137         if (!exe_file)
138                 return cn_esc_printf(cn, "%s (path unknown)", current->comm);
139
140         pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
141         if (!pathbuf) {
142                 ret = -ENOMEM;
143                 goto put_exe_file;
144         }
145
146         path = file_path(exe_file, pathbuf, PATH_MAX);
147         if (IS_ERR(path)) {
148                 ret = PTR_ERR(path);
149                 goto free_buf;
150         }
151
152         ret = cn_esc_printf(cn, "%s", path);
153
154 free_buf:
155         kfree(pathbuf);
156 put_exe_file:
157         fput(exe_file);
158         return ret;
159 }
160
161 /* format_corename will inspect the pattern parameter, and output a
162  * name into corename, which must have space for at least
163  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
164  */
165 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
166 {
167         const struct cred *cred = current_cred();
168         const char *pat_ptr = core_pattern;
169         int ispipe = (*pat_ptr == '|');
170         int pid_in_pattern = 0;
171         int err = 0;
172
173         cn->used = 0;
174         cn->corename = NULL;
175         if (expand_corename(cn, core_name_size))
176                 return -ENOMEM;
177         cn->corename[0] = '\0';
178
179         if (ispipe)
180                 ++pat_ptr;
181
182         /* Repeat as long as we have more pattern to process and more output
183            space */
184         while (*pat_ptr) {
185                 if (*pat_ptr != '%') {
186                         err = cn_printf(cn, "%c", *pat_ptr++);
187                 } else {
188                         switch (*++pat_ptr) {
189                         /* single % at the end, drop that */
190                         case 0:
191                                 goto out;
192                         /* Double percent, output one percent */
193                         case '%':
194                                 err = cn_printf(cn, "%c", '%');
195                                 break;
196                         /* pid */
197                         case 'p':
198                                 pid_in_pattern = 1;
199                                 err = cn_printf(cn, "%d",
200                                               task_tgid_vnr(current));
201                                 break;
202                         /* global pid */
203                         case 'P':
204                                 err = cn_printf(cn, "%d",
205                                               task_tgid_nr(current));
206                                 break;
207                         case 'i':
208                                 err = cn_printf(cn, "%d",
209                                               task_pid_vnr(current));
210                                 break;
211                         case 'I':
212                                 err = cn_printf(cn, "%d",
213                                               task_pid_nr(current));
214                                 break;
215                         /* uid */
216                         case 'u':
217                                 err = cn_printf(cn, "%u",
218                                                 from_kuid(&init_user_ns,
219                                                           cred->uid));
220                                 break;
221                         /* gid */
222                         case 'g':
223                                 err = cn_printf(cn, "%u",
224                                                 from_kgid(&init_user_ns,
225                                                           cred->gid));
226                                 break;
227                         case 'd':
228                                 err = cn_printf(cn, "%d",
229                                         __get_dumpable(cprm->mm_flags));
230                                 break;
231                         /* signal that caused the coredump */
232                         case 's':
233                                 err = cn_printf(cn, "%d",
234                                                 cprm->siginfo->si_signo);
235                                 break;
236                         /* UNIX time of coredump */
237                         case 't': {
238                                 struct timeval tv;
239                                 do_gettimeofday(&tv);
240                                 err = cn_printf(cn, "%lu", tv.tv_sec);
241                                 break;
242                         }
243                         /* hostname */
244                         case 'h':
245                                 down_read(&uts_sem);
246                                 err = cn_esc_printf(cn, "%s",
247                                               utsname()->nodename);
248                                 up_read(&uts_sem);
249                                 break;
250                         /* executable */
251                         case 'e':
252                                 err = cn_esc_printf(cn, "%s", current->comm);
253                                 break;
254                         case 'E':
255                                 err = cn_print_exe_file(cn);
256                                 break;
257                         /* core limit size */
258                         case 'c':
259                                 err = cn_printf(cn, "%lu",
260                                               rlimit(RLIMIT_CORE));
261                                 break;
262                         default:
263                                 break;
264                         }
265                         ++pat_ptr;
266                 }
267
268                 if (err)
269                         return err;
270         }
271
272 out:
273         /* Backward compatibility with core_uses_pid:
274          *
275          * If core_pattern does not include a %p (as is the default)
276          * and core_uses_pid is set, then .%pid will be appended to
277          * the filename. Do not do this for piped commands. */
278         if (!ispipe && !pid_in_pattern && core_uses_pid) {
279                 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
280                 if (err)
281                         return err;
282         }
283         return ispipe;
284 }
285
286 static int zap_process(struct task_struct *start, int exit_code, int flags)
287 {
288         struct task_struct *t;
289         int nr = 0;
290
291         /* ignore all signals except SIGKILL, see prepare_signal() */
292         start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
293         start->signal->group_exit_code = exit_code;
294         start->signal->group_stop_count = 0;
295
296         for_each_thread(start, t) {
297                 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
298                 if (t != current && t->mm) {
299                         sigaddset(&t->pending.signal, SIGKILL);
300                         signal_wake_up(t, 1);
301                         nr++;
302                 }
303         }
304
305         return nr;
306 }
307
308 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
309                         struct core_state *core_state, int exit_code)
310 {
311         struct task_struct *g, *p;
312         unsigned long flags;
313         int nr = -EAGAIN;
314
315         spin_lock_irq(&tsk->sighand->siglock);
316         if (!signal_group_exit(tsk->signal)) {
317                 mm->core_state = core_state;
318                 tsk->signal->group_exit_task = tsk;
319                 nr = zap_process(tsk, exit_code, 0);
320                 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
321         }
322         spin_unlock_irq(&tsk->sighand->siglock);
323         if (unlikely(nr < 0))
324                 return nr;
325
326         tsk->flags |= PF_DUMPCORE;
327         if (atomic_read(&mm->mm_users) == nr + 1)
328                 goto done;
329         /*
330          * We should find and kill all tasks which use this mm, and we should
331          * count them correctly into ->nr_threads. We don't take tasklist
332          * lock, but this is safe wrt:
333          *
334          * fork:
335          *      None of sub-threads can fork after zap_process(leader). All
336          *      processes which were created before this point should be
337          *      visible to zap_threads() because copy_process() adds the new
338          *      process to the tail of init_task.tasks list, and lock/unlock
339          *      of ->siglock provides a memory barrier.
340          *
341          * do_exit:
342          *      The caller holds mm->mmap_sem. This means that the task which
343          *      uses this mm can't pass exit_mm(), so it can't exit or clear
344          *      its ->mm.
345          *
346          * de_thread:
347          *      It does list_replace_rcu(&leader->tasks, &current->tasks),
348          *      we must see either old or new leader, this does not matter.
349          *      However, it can change p->sighand, so lock_task_sighand(p)
350          *      must be used. Since p->mm != NULL and we hold ->mmap_sem
351          *      it can't fail.
352          *
353          *      Note also that "g" can be the old leader with ->mm == NULL
354          *      and already unhashed and thus removed from ->thread_group.
355          *      This is OK, __unhash_process()->list_del_rcu() does not
356          *      clear the ->next pointer, we will find the new leader via
357          *      next_thread().
358          */
359         rcu_read_lock();
360         for_each_process(g) {
361                 if (g == tsk->group_leader)
362                         continue;
363                 if (g->flags & PF_KTHREAD)
364                         continue;
365
366                 for_each_thread(g, p) {
367                         if (unlikely(!p->mm))
368                                 continue;
369                         if (unlikely(p->mm == mm)) {
370                                 lock_task_sighand(p, &flags);
371                                 nr += zap_process(p, exit_code,
372                                                         SIGNAL_GROUP_EXIT);
373                                 unlock_task_sighand(p, &flags);
374                         }
375                         break;
376                 }
377         }
378         rcu_read_unlock();
379 done:
380         atomic_set(&core_state->nr_threads, nr);
381         return nr;
382 }
383
384 static int coredump_wait(int exit_code, struct core_state *core_state)
385 {
386         struct task_struct *tsk = current;
387         struct mm_struct *mm = tsk->mm;
388         int core_waiters = -EBUSY;
389
390         init_completion(&core_state->startup);
391         core_state->dumper.task = tsk;
392         core_state->dumper.next = NULL;
393
394         down_write(&mm->mmap_sem);
395         if (!mm->core_state)
396                 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
397         up_write(&mm->mmap_sem);
398
399         if (core_waiters > 0) {
400                 struct core_thread *ptr;
401
402                 wait_for_completion(&core_state->startup);
403                 /*
404                  * Wait for all the threads to become inactive, so that
405                  * all the thread context (extended register state, like
406                  * fpu etc) gets copied to the memory.
407                  */
408                 ptr = core_state->dumper.next;
409                 while (ptr != NULL) {
410                         wait_task_inactive(ptr->task, 0);
411                         ptr = ptr->next;
412                 }
413         }
414
415         return core_waiters;
416 }
417
418 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
419 {
420         struct core_thread *curr, *next;
421         struct task_struct *task;
422
423         spin_lock_irq(&current->sighand->siglock);
424         if (core_dumped && !__fatal_signal_pending(current))
425                 current->signal->group_exit_code |= 0x80;
426         current->signal->group_exit_task = NULL;
427         current->signal->flags = SIGNAL_GROUP_EXIT;
428         spin_unlock_irq(&current->sighand->siglock);
429
430         next = mm->core_state->dumper.next;
431         while ((curr = next) != NULL) {
432                 next = curr->next;
433                 task = curr->task;
434                 /*
435                  * see exit_mm(), curr->task must not see
436                  * ->task == NULL before we read ->next.
437                  */
438                 smp_mb();
439                 curr->task = NULL;
440                 wake_up_process(task);
441         }
442
443         mm->core_state = NULL;
444 }
445
446 static bool dump_interrupted(void)
447 {
448         /*
449          * SIGKILL or freezing() interrupt the coredumping. Perhaps we
450          * can do try_to_freeze() and check __fatal_signal_pending(),
451          * but then we need to teach dump_write() to restart and clear
452          * TIF_SIGPENDING.
453          */
454         return signal_pending(current);
455 }
456
457 static void wait_for_dump_helpers(struct file *file)
458 {
459         struct pipe_inode_info *pipe = file->private_data;
460
461         pipe_lock(pipe);
462         pipe->readers++;
463         pipe->writers--;
464         wake_up_interruptible_sync(&pipe->wait);
465         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
466         pipe_unlock(pipe);
467
468         /*
469          * We actually want wait_event_freezable() but then we need
470          * to clear TIF_SIGPENDING and improve dump_interrupted().
471          */
472         wait_event_interruptible(pipe->wait, pipe->readers == 1);
473
474         pipe_lock(pipe);
475         pipe->readers--;
476         pipe->writers++;
477         pipe_unlock(pipe);
478 }
479
480 /*
481  * umh_pipe_setup
482  * helper function to customize the process used
483  * to collect the core in userspace.  Specifically
484  * it sets up a pipe and installs it as fd 0 (stdin)
485  * for the process.  Returns 0 on success, or
486  * PTR_ERR on failure.
487  * Note that it also sets the core limit to 1.  This
488  * is a special value that we use to trap recursive
489  * core dumps
490  */
491 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
492 {
493         struct file *files[2];
494         struct coredump_params *cp = (struct coredump_params *)info->data;
495         int err = create_pipe_files(files, 0);
496         if (err)
497                 return err;
498
499         cp->file = files[1];
500
501         err = replace_fd(0, files[0], 0);
502         fput(files[0]);
503         /* and disallow core files too */
504         current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
505
506         return err;
507 }
508
509 void do_coredump(const siginfo_t *siginfo)
510 {
511         struct core_state core_state;
512         struct core_name cn;
513         struct mm_struct *mm = current->mm;
514         struct linux_binfmt * binfmt;
515         const struct cred *old_cred;
516         struct cred *cred;
517         int retval = 0;
518         int ispipe;
519         struct files_struct *displaced;
520         /* require nonrelative corefile path and be extra careful */
521         bool need_suid_safe = false;
522         bool core_dumped = false;
523         static atomic_t core_dump_count = ATOMIC_INIT(0);
524         struct coredump_params cprm = {
525                 .siginfo = siginfo,
526                 .regs = signal_pt_regs(),
527                 .limit = rlimit(RLIMIT_CORE),
528                 /*
529                  * We must use the same mm->flags while dumping core to avoid
530                  * inconsistency of bit flags, since this flag is not protected
531                  * by any locks.
532                  */
533                 .mm_flags = mm->flags,
534         };
535
536         audit_core_dumps(siginfo->si_signo);
537
538         binfmt = mm->binfmt;
539         if (!binfmt || !binfmt->core_dump)
540                 goto fail;
541         if (!__get_dumpable(cprm.mm_flags))
542                 goto fail;
543
544         cred = prepare_creds();
545         if (!cred)
546                 goto fail;
547         /*
548          * We cannot trust fsuid as being the "true" uid of the process
549          * nor do we know its entire history. We only know it was tainted
550          * so we dump it as root in mode 2, and only into a controlled
551          * environment (pipe handler or fully qualified path).
552          */
553         if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
554                 /* Setuid core dump mode */
555                 cred->fsuid = GLOBAL_ROOT_UID;  /* Dump root private */
556                 need_suid_safe = true;
557         }
558
559         retval = coredump_wait(siginfo->si_signo, &core_state);
560         if (retval < 0)
561                 goto fail_creds;
562
563         old_cred = override_creds(cred);
564
565         ispipe = format_corename(&cn, &cprm);
566
567         if (ispipe) {
568                 int dump_count;
569                 char **helper_argv;
570                 struct subprocess_info *sub_info;
571
572                 if (ispipe < 0) {
573                         printk(KERN_WARNING "format_corename failed\n");
574                         printk(KERN_WARNING "Aborting core\n");
575                         goto fail_unlock;
576                 }
577
578                 if (cprm.limit == 1) {
579                         /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
580                          *
581                          * Normally core limits are irrelevant to pipes, since
582                          * we're not writing to the file system, but we use
583                          * cprm.limit of 1 here as a special value, this is a
584                          * consistent way to catch recursive crashes.
585                          * We can still crash if the core_pattern binary sets
586                          * RLIM_CORE = !1, but it runs as root, and can do
587                          * lots of stupid things.
588                          *
589                          * Note that we use task_tgid_vnr here to grab the pid
590                          * of the process group leader.  That way we get the
591                          * right pid if a thread in a multi-threaded
592                          * core_pattern process dies.
593                          */
594                         printk(KERN_WARNING
595                                 "Process %d(%s) has RLIMIT_CORE set to 1\n",
596                                 task_tgid_vnr(current), current->comm);
597                         printk(KERN_WARNING "Aborting core\n");
598                         goto fail_unlock;
599                 }
600                 cprm.limit = RLIM_INFINITY;
601
602                 dump_count = atomic_inc_return(&core_dump_count);
603                 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
604                         printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
605                                task_tgid_vnr(current), current->comm);
606                         printk(KERN_WARNING "Skipping core dump\n");
607                         goto fail_dropcount;
608                 }
609
610                 helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
611                 if (!helper_argv) {
612                         printk(KERN_WARNING "%s failed to allocate memory\n",
613                                __func__);
614                         goto fail_dropcount;
615                 }
616
617                 retval = -ENOMEM;
618                 sub_info = call_usermodehelper_setup(helper_argv[0],
619                                                 helper_argv, NULL, GFP_KERNEL,
620                                                 umh_pipe_setup, NULL, &cprm);
621                 if (sub_info)
622                         retval = call_usermodehelper_exec(sub_info,
623                                                           UMH_WAIT_EXEC);
624
625                 argv_free(helper_argv);
626                 if (retval) {
627                         printk(KERN_INFO "Core dump to |%s pipe failed\n",
628                                cn.corename);
629                         goto close_fail;
630                 }
631         } else {
632                 struct inode *inode;
633                 int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
634                                  O_LARGEFILE | O_EXCL;
635
636                 if (cprm.limit < binfmt->min_coredump)
637                         goto fail_unlock;
638
639                 if (need_suid_safe && cn.corename[0] != '/') {
640                         printk(KERN_WARNING "Pid %d(%s) can only dump core "\
641                                 "to fully qualified path!\n",
642                                 task_tgid_vnr(current), current->comm);
643                         printk(KERN_WARNING "Skipping core dump\n");
644                         goto fail_unlock;
645                 }
646
647                 /*
648                  * Unlink the file if it exists unless this is a SUID
649                  * binary - in that case, we're running around with root
650                  * privs and don't want to unlink another user's coredump.
651                  */
652                 if (!need_suid_safe) {
653                         mm_segment_t old_fs;
654
655                         old_fs = get_fs();
656                         set_fs(KERNEL_DS);
657                         /*
658                          * If it doesn't exist, that's fine. If there's some
659                          * other problem, we'll catch it at the filp_open().
660                          */
661                         (void) sys_unlink((const char __user *)cn.corename);
662                         set_fs(old_fs);
663                 }
664
665                 /*
666                  * There is a race between unlinking and creating the
667                  * file, but if that causes an EEXIST here, that's
668                  * fine - another process raced with us while creating
669                  * the corefile, and the other process won. To userspace,
670                  * what matters is that at least one of the two processes
671                  * writes its coredump successfully, not which one.
672                  */
673                 if (need_suid_safe) {
674                         /*
675                          * Using user namespaces, normal user tasks can change
676                          * their current->fs->root to point to arbitrary
677                          * directories. Since the intention of the "only dump
678                          * with a fully qualified path" rule is to control where
679                          * coredumps may be placed using root privileges,
680                          * current->fs->root must not be used. Instead, use the
681                          * root directory of init_task.
682                          */
683                         struct path root;
684
685                         task_lock(&init_task);
686                         get_fs_root(init_task.fs, &root);
687                         task_unlock(&init_task);
688                         cprm.file = file_open_root(root.dentry, root.mnt,
689                                 cn.corename, open_flags, 0600);
690                         path_put(&root);
691                 } else {
692                         cprm.file = filp_open(cn.corename, open_flags, 0600);
693                 }
694                 if (IS_ERR(cprm.file))
695                         goto fail_unlock;
696
697                 inode = file_inode(cprm.file);
698                 if (inode->i_nlink > 1)
699                         goto close_fail;
700                 if (d_unhashed(cprm.file->f_path.dentry))
701                         goto close_fail;
702                 /*
703                  * AK: actually i see no reason to not allow this for named
704                  * pipes etc, but keep the previous behaviour for now.
705                  */
706                 if (!S_ISREG(inode->i_mode))
707                         goto close_fail;
708                 /*
709                  * Don't dump core if the filesystem changed owner or mode
710                  * of the file during file creation. This is an issue when
711                  * a process dumps core while its cwd is e.g. on a vfat
712                  * filesystem.
713                  */
714                 if (!uid_eq(inode->i_uid, current_fsuid()))
715                         goto close_fail;
716                 if ((inode->i_mode & 0677) != 0600)
717                         goto close_fail;
718                 if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
719                         goto close_fail;
720                 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
721                         goto close_fail;
722         }
723
724         /* get us an unshared descriptor table; almost always a no-op */
725         retval = unshare_files(&displaced);
726         if (retval)
727                 goto close_fail;
728         if (displaced)
729                 put_files_struct(displaced);
730         if (!dump_interrupted()) {
731                 file_start_write(cprm.file);
732                 core_dumped = binfmt->core_dump(&cprm);
733                 file_end_write(cprm.file);
734         }
735         if (ispipe && core_pipe_limit)
736                 wait_for_dump_helpers(cprm.file);
737 close_fail:
738         if (cprm.file)
739                 filp_close(cprm.file, NULL);
740 fail_dropcount:
741         if (ispipe)
742                 atomic_dec(&core_dump_count);
743 fail_unlock:
744         kfree(cn.corename);
745         coredump_finish(mm, core_dumped);
746         revert_creds(old_cred);
747 fail_creds:
748         put_cred(cred);
749 fail:
750         return;
751 }
752
753 /*
754  * Core dumping helper functions.  These are the only things you should
755  * do on a core-file: use only these functions to write out all the
756  * necessary info.
757  */
758 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
759 {
760         struct file *file = cprm->file;
761         loff_t pos = file->f_pos;
762         ssize_t n;
763         if (cprm->written + nr > cprm->limit)
764                 return 0;
765         while (nr) {
766                 if (dump_interrupted())
767                         return 0;
768                 n = __kernel_write(file, addr, nr, &pos);
769                 if (n <= 0)
770                         return 0;
771                 file->f_pos = pos;
772                 cprm->written += n;
773                 nr -= n;
774         }
775         return 1;
776 }
777 EXPORT_SYMBOL(dump_emit);
778
779 int dump_skip(struct coredump_params *cprm, size_t nr)
780 {
781         static char zeroes[PAGE_SIZE];
782         struct file *file = cprm->file;
783         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
784                 if (cprm->written + nr > cprm->limit)
785                         return 0;
786                 if (dump_interrupted() ||
787                     file->f_op->llseek(file, nr, SEEK_CUR) < 0)
788                         return 0;
789                 cprm->written += nr;
790                 return 1;
791         } else {
792                 while (nr > PAGE_SIZE) {
793                         if (!dump_emit(cprm, zeroes, PAGE_SIZE))
794                                 return 0;
795                         nr -= PAGE_SIZE;
796                 }
797                 return dump_emit(cprm, zeroes, nr);
798         }
799 }
800 EXPORT_SYMBOL(dump_skip);
801
802 int dump_align(struct coredump_params *cprm, int align)
803 {
804         unsigned mod = cprm->written & (align - 1);
805         if (align & (align - 1))
806                 return 0;
807         return mod ? dump_skip(cprm, align - mod) : 1;
808 }
809 EXPORT_SYMBOL(dump_align);