tty: serial: samsung: drop uart_port->lock before calling tty_flip_buffer_push()
[firefly-linux-kernel-4.4.55.git] / fs / ceph / mds_client.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
9
10 #include "super.h"
11 #include "mds_client.h"
12
13 #include <linux/ceph/ceph_features.h>
14 #include <linux/ceph/messenger.h>
15 #include <linux/ceph/decode.h>
16 #include <linux/ceph/pagelist.h>
17 #include <linux/ceph/auth.h>
18 #include <linux/ceph/debugfs.h>
19
20 /*
21  * A cluster of MDS (metadata server) daemons is responsible for
22  * managing the file system namespace (the directory hierarchy and
23  * inodes) and for coordinating shared access to storage.  Metadata is
24  * partitioning hierarchically across a number of servers, and that
25  * partition varies over time as the cluster adjusts the distribution
26  * in order to balance load.
27  *
28  * The MDS client is primarily responsible to managing synchronous
29  * metadata requests for operations like open, unlink, and so forth.
30  * If there is a MDS failure, we find out about it when we (possibly
31  * request and) receive a new MDS map, and can resubmit affected
32  * requests.
33  *
34  * For the most part, though, we take advantage of a lossless
35  * communications channel to the MDS, and do not need to worry about
36  * timing out or resubmitting requests.
37  *
38  * We maintain a stateful "session" with each MDS we interact with.
39  * Within each session, we sent periodic heartbeat messages to ensure
40  * any capabilities or leases we have been issues remain valid.  If
41  * the session times out and goes stale, our leases and capabilities
42  * are no longer valid.
43  */
44
45 struct ceph_reconnect_state {
46         struct ceph_pagelist *pagelist;
47         bool flock;
48 };
49
50 static void __wake_requests(struct ceph_mds_client *mdsc,
51                             struct list_head *head);
52
53 static const struct ceph_connection_operations mds_con_ops;
54
55
56 /*
57  * mds reply parsing
58  */
59
60 /*
61  * parse individual inode info
62  */
63 static int parse_reply_info_in(void **p, void *end,
64                                struct ceph_mds_reply_info_in *info,
65                                int features)
66 {
67         int err = -EIO;
68
69         info->in = *p;
70         *p += sizeof(struct ceph_mds_reply_inode) +
71                 sizeof(*info->in->fragtree.splits) *
72                 le32_to_cpu(info->in->fragtree.nsplits);
73
74         ceph_decode_32_safe(p, end, info->symlink_len, bad);
75         ceph_decode_need(p, end, info->symlink_len, bad);
76         info->symlink = *p;
77         *p += info->symlink_len;
78
79         if (features & CEPH_FEATURE_DIRLAYOUTHASH)
80                 ceph_decode_copy_safe(p, end, &info->dir_layout,
81                                       sizeof(info->dir_layout), bad);
82         else
83                 memset(&info->dir_layout, 0, sizeof(info->dir_layout));
84
85         ceph_decode_32_safe(p, end, info->xattr_len, bad);
86         ceph_decode_need(p, end, info->xattr_len, bad);
87         info->xattr_data = *p;
88         *p += info->xattr_len;
89         return 0;
90 bad:
91         return err;
92 }
93
94 /*
95  * parse a normal reply, which may contain a (dir+)dentry and/or a
96  * target inode.
97  */
98 static int parse_reply_info_trace(void **p, void *end,
99                                   struct ceph_mds_reply_info_parsed *info,
100                                   int features)
101 {
102         int err;
103
104         if (info->head->is_dentry) {
105                 err = parse_reply_info_in(p, end, &info->diri, features);
106                 if (err < 0)
107                         goto out_bad;
108
109                 if (unlikely(*p + sizeof(*info->dirfrag) > end))
110                         goto bad;
111                 info->dirfrag = *p;
112                 *p += sizeof(*info->dirfrag) +
113                         sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
114                 if (unlikely(*p > end))
115                         goto bad;
116
117                 ceph_decode_32_safe(p, end, info->dname_len, bad);
118                 ceph_decode_need(p, end, info->dname_len, bad);
119                 info->dname = *p;
120                 *p += info->dname_len;
121                 info->dlease = *p;
122                 *p += sizeof(*info->dlease);
123         }
124
125         if (info->head->is_target) {
126                 err = parse_reply_info_in(p, end, &info->targeti, features);
127                 if (err < 0)
128                         goto out_bad;
129         }
130
131         if (unlikely(*p != end))
132                 goto bad;
133         return 0;
134
135 bad:
136         err = -EIO;
137 out_bad:
138         pr_err("problem parsing mds trace %d\n", err);
139         return err;
140 }
141
142 /*
143  * parse readdir results
144  */
145 static int parse_reply_info_dir(void **p, void *end,
146                                 struct ceph_mds_reply_info_parsed *info,
147                                 int features)
148 {
149         u32 num, i = 0;
150         int err;
151
152         info->dir_dir = *p;
153         if (*p + sizeof(*info->dir_dir) > end)
154                 goto bad;
155         *p += sizeof(*info->dir_dir) +
156                 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
157         if (*p > end)
158                 goto bad;
159
160         ceph_decode_need(p, end, sizeof(num) + 2, bad);
161         num = ceph_decode_32(p);
162         info->dir_end = ceph_decode_8(p);
163         info->dir_complete = ceph_decode_8(p);
164         if (num == 0)
165                 goto done;
166
167         /* alloc large array */
168         info->dir_nr = num;
169         info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
170                                sizeof(*info->dir_dname) +
171                                sizeof(*info->dir_dname_len) +
172                                sizeof(*info->dir_dlease),
173                                GFP_NOFS);
174         if (info->dir_in == NULL) {
175                 err = -ENOMEM;
176                 goto out_bad;
177         }
178         info->dir_dname = (void *)(info->dir_in + num);
179         info->dir_dname_len = (void *)(info->dir_dname + num);
180         info->dir_dlease = (void *)(info->dir_dname_len + num);
181
182         while (num) {
183                 /* dentry */
184                 ceph_decode_need(p, end, sizeof(u32)*2, bad);
185                 info->dir_dname_len[i] = ceph_decode_32(p);
186                 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
187                 info->dir_dname[i] = *p;
188                 *p += info->dir_dname_len[i];
189                 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
190                      info->dir_dname[i]);
191                 info->dir_dlease[i] = *p;
192                 *p += sizeof(struct ceph_mds_reply_lease);
193
194                 /* inode */
195                 err = parse_reply_info_in(p, end, &info->dir_in[i], features);
196                 if (err < 0)
197                         goto out_bad;
198                 i++;
199                 num--;
200         }
201
202 done:
203         if (*p != end)
204                 goto bad;
205         return 0;
206
207 bad:
208         err = -EIO;
209 out_bad:
210         pr_err("problem parsing dir contents %d\n", err);
211         return err;
212 }
213
214 /*
215  * parse fcntl F_GETLK results
216  */
217 static int parse_reply_info_filelock(void **p, void *end,
218                                      struct ceph_mds_reply_info_parsed *info,
219                                      int features)
220 {
221         if (*p + sizeof(*info->filelock_reply) > end)
222                 goto bad;
223
224         info->filelock_reply = *p;
225         *p += sizeof(*info->filelock_reply);
226
227         if (unlikely(*p != end))
228                 goto bad;
229         return 0;
230
231 bad:
232         return -EIO;
233 }
234
235 /*
236  * parse create results
237  */
238 static int parse_reply_info_create(void **p, void *end,
239                                   struct ceph_mds_reply_info_parsed *info,
240                                   int features)
241 {
242         if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
243                 if (*p == end) {
244                         info->has_create_ino = false;
245                 } else {
246                         info->has_create_ino = true;
247                         info->ino = ceph_decode_64(p);
248                 }
249         }
250
251         if (unlikely(*p != end))
252                 goto bad;
253         return 0;
254
255 bad:
256         return -EIO;
257 }
258
259 /*
260  * parse extra results
261  */
262 static int parse_reply_info_extra(void **p, void *end,
263                                   struct ceph_mds_reply_info_parsed *info,
264                                   int features)
265 {
266         if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
267                 return parse_reply_info_filelock(p, end, info, features);
268         else if (info->head->op == CEPH_MDS_OP_READDIR ||
269                  info->head->op == CEPH_MDS_OP_LSSNAP)
270                 return parse_reply_info_dir(p, end, info, features);
271         else if (info->head->op == CEPH_MDS_OP_CREATE)
272                 return parse_reply_info_create(p, end, info, features);
273         else
274                 return -EIO;
275 }
276
277 /*
278  * parse entire mds reply
279  */
280 static int parse_reply_info(struct ceph_msg *msg,
281                             struct ceph_mds_reply_info_parsed *info,
282                             int features)
283 {
284         void *p, *end;
285         u32 len;
286         int err;
287
288         info->head = msg->front.iov_base;
289         p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
290         end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
291
292         /* trace */
293         ceph_decode_32_safe(&p, end, len, bad);
294         if (len > 0) {
295                 ceph_decode_need(&p, end, len, bad);
296                 err = parse_reply_info_trace(&p, p+len, info, features);
297                 if (err < 0)
298                         goto out_bad;
299         }
300
301         /* extra */
302         ceph_decode_32_safe(&p, end, len, bad);
303         if (len > 0) {
304                 ceph_decode_need(&p, end, len, bad);
305                 err = parse_reply_info_extra(&p, p+len, info, features);
306                 if (err < 0)
307                         goto out_bad;
308         }
309
310         /* snap blob */
311         ceph_decode_32_safe(&p, end, len, bad);
312         info->snapblob_len = len;
313         info->snapblob = p;
314         p += len;
315
316         if (p != end)
317                 goto bad;
318         return 0;
319
320 bad:
321         err = -EIO;
322 out_bad:
323         pr_err("mds parse_reply err %d\n", err);
324         return err;
325 }
326
327 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
328 {
329         kfree(info->dir_in);
330 }
331
332
333 /*
334  * sessions
335  */
336 static const char *session_state_name(int s)
337 {
338         switch (s) {
339         case CEPH_MDS_SESSION_NEW: return "new";
340         case CEPH_MDS_SESSION_OPENING: return "opening";
341         case CEPH_MDS_SESSION_OPEN: return "open";
342         case CEPH_MDS_SESSION_HUNG: return "hung";
343         case CEPH_MDS_SESSION_CLOSING: return "closing";
344         case CEPH_MDS_SESSION_RESTARTING: return "restarting";
345         case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
346         default: return "???";
347         }
348 }
349
350 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
351 {
352         if (atomic_inc_not_zero(&s->s_ref)) {
353                 dout("mdsc get_session %p %d -> %d\n", s,
354                      atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
355                 return s;
356         } else {
357                 dout("mdsc get_session %p 0 -- FAIL", s);
358                 return NULL;
359         }
360 }
361
362 void ceph_put_mds_session(struct ceph_mds_session *s)
363 {
364         dout("mdsc put_session %p %d -> %d\n", s,
365              atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
366         if (atomic_dec_and_test(&s->s_ref)) {
367                 if (s->s_auth.authorizer)
368                         ceph_auth_destroy_authorizer(
369                                 s->s_mdsc->fsc->client->monc.auth,
370                                 s->s_auth.authorizer);
371                 kfree(s);
372         }
373 }
374
375 /*
376  * called under mdsc->mutex
377  */
378 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
379                                                    int mds)
380 {
381         struct ceph_mds_session *session;
382
383         if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
384                 return NULL;
385         session = mdsc->sessions[mds];
386         dout("lookup_mds_session %p %d\n", session,
387              atomic_read(&session->s_ref));
388         get_session(session);
389         return session;
390 }
391
392 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
393 {
394         if (mds >= mdsc->max_sessions)
395                 return false;
396         return mdsc->sessions[mds];
397 }
398
399 static int __verify_registered_session(struct ceph_mds_client *mdsc,
400                                        struct ceph_mds_session *s)
401 {
402         if (s->s_mds >= mdsc->max_sessions ||
403             mdsc->sessions[s->s_mds] != s)
404                 return -ENOENT;
405         return 0;
406 }
407
408 /*
409  * create+register a new session for given mds.
410  * called under mdsc->mutex.
411  */
412 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
413                                                  int mds)
414 {
415         struct ceph_mds_session *s;
416
417         s = kzalloc(sizeof(*s), GFP_NOFS);
418         if (!s)
419                 return ERR_PTR(-ENOMEM);
420         s->s_mdsc = mdsc;
421         s->s_mds = mds;
422         s->s_state = CEPH_MDS_SESSION_NEW;
423         s->s_ttl = 0;
424         s->s_seq = 0;
425         mutex_init(&s->s_mutex);
426
427         ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
428
429         spin_lock_init(&s->s_gen_ttl_lock);
430         s->s_cap_gen = 0;
431         s->s_cap_ttl = jiffies - 1;
432
433         spin_lock_init(&s->s_cap_lock);
434         s->s_renew_requested = 0;
435         s->s_renew_seq = 0;
436         INIT_LIST_HEAD(&s->s_caps);
437         s->s_nr_caps = 0;
438         s->s_trim_caps = 0;
439         atomic_set(&s->s_ref, 1);
440         INIT_LIST_HEAD(&s->s_waiting);
441         INIT_LIST_HEAD(&s->s_unsafe);
442         s->s_num_cap_releases = 0;
443         s->s_cap_iterator = NULL;
444         INIT_LIST_HEAD(&s->s_cap_releases);
445         INIT_LIST_HEAD(&s->s_cap_releases_done);
446         INIT_LIST_HEAD(&s->s_cap_flushing);
447         INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
448
449         dout("register_session mds%d\n", mds);
450         if (mds >= mdsc->max_sessions) {
451                 int newmax = 1 << get_count_order(mds+1);
452                 struct ceph_mds_session **sa;
453
454                 dout("register_session realloc to %d\n", newmax);
455                 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
456                 if (sa == NULL)
457                         goto fail_realloc;
458                 if (mdsc->sessions) {
459                         memcpy(sa, mdsc->sessions,
460                                mdsc->max_sessions * sizeof(void *));
461                         kfree(mdsc->sessions);
462                 }
463                 mdsc->sessions = sa;
464                 mdsc->max_sessions = newmax;
465         }
466         mdsc->sessions[mds] = s;
467         atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
468
469         ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
470                       ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
471
472         return s;
473
474 fail_realloc:
475         kfree(s);
476         return ERR_PTR(-ENOMEM);
477 }
478
479 /*
480  * called under mdsc->mutex
481  */
482 static void __unregister_session(struct ceph_mds_client *mdsc,
483                                struct ceph_mds_session *s)
484 {
485         dout("__unregister_session mds%d %p\n", s->s_mds, s);
486         BUG_ON(mdsc->sessions[s->s_mds] != s);
487         mdsc->sessions[s->s_mds] = NULL;
488         ceph_con_close(&s->s_con);
489         ceph_put_mds_session(s);
490 }
491
492 /*
493  * drop session refs in request.
494  *
495  * should be last request ref, or hold mdsc->mutex
496  */
497 static void put_request_session(struct ceph_mds_request *req)
498 {
499         if (req->r_session) {
500                 ceph_put_mds_session(req->r_session);
501                 req->r_session = NULL;
502         }
503 }
504
505 void ceph_mdsc_release_request(struct kref *kref)
506 {
507         struct ceph_mds_request *req = container_of(kref,
508                                                     struct ceph_mds_request,
509                                                     r_kref);
510         if (req->r_request)
511                 ceph_msg_put(req->r_request);
512         if (req->r_reply) {
513                 ceph_msg_put(req->r_reply);
514                 destroy_reply_info(&req->r_reply_info);
515         }
516         if (req->r_inode) {
517                 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
518                 iput(req->r_inode);
519         }
520         if (req->r_locked_dir)
521                 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
522         if (req->r_target_inode)
523                 iput(req->r_target_inode);
524         if (req->r_dentry)
525                 dput(req->r_dentry);
526         if (req->r_old_dentry) {
527                 /*
528                  * track (and drop pins for) r_old_dentry_dir
529                  * separately, since r_old_dentry's d_parent may have
530                  * changed between the dir mutex being dropped and
531                  * this request being freed.
532                  */
533                 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
534                                   CEPH_CAP_PIN);
535                 dput(req->r_old_dentry);
536                 iput(req->r_old_dentry_dir);
537         }
538         kfree(req->r_path1);
539         kfree(req->r_path2);
540         put_request_session(req);
541         ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
542         kfree(req);
543 }
544
545 /*
546  * lookup session, bump ref if found.
547  *
548  * called under mdsc->mutex.
549  */
550 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
551                                              u64 tid)
552 {
553         struct ceph_mds_request *req;
554         struct rb_node *n = mdsc->request_tree.rb_node;
555
556         while (n) {
557                 req = rb_entry(n, struct ceph_mds_request, r_node);
558                 if (tid < req->r_tid)
559                         n = n->rb_left;
560                 else if (tid > req->r_tid)
561                         n = n->rb_right;
562                 else {
563                         ceph_mdsc_get_request(req);
564                         return req;
565                 }
566         }
567         return NULL;
568 }
569
570 static void __insert_request(struct ceph_mds_client *mdsc,
571                              struct ceph_mds_request *new)
572 {
573         struct rb_node **p = &mdsc->request_tree.rb_node;
574         struct rb_node *parent = NULL;
575         struct ceph_mds_request *req = NULL;
576
577         while (*p) {
578                 parent = *p;
579                 req = rb_entry(parent, struct ceph_mds_request, r_node);
580                 if (new->r_tid < req->r_tid)
581                         p = &(*p)->rb_left;
582                 else if (new->r_tid > req->r_tid)
583                         p = &(*p)->rb_right;
584                 else
585                         BUG();
586         }
587
588         rb_link_node(&new->r_node, parent, p);
589         rb_insert_color(&new->r_node, &mdsc->request_tree);
590 }
591
592 /*
593  * Register an in-flight request, and assign a tid.  Link to directory
594  * are modifying (if any).
595  *
596  * Called under mdsc->mutex.
597  */
598 static void __register_request(struct ceph_mds_client *mdsc,
599                                struct ceph_mds_request *req,
600                                struct inode *dir)
601 {
602         req->r_tid = ++mdsc->last_tid;
603         if (req->r_num_caps)
604                 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
605                                   req->r_num_caps);
606         dout("__register_request %p tid %lld\n", req, req->r_tid);
607         ceph_mdsc_get_request(req);
608         __insert_request(mdsc, req);
609
610         req->r_uid = current_fsuid();
611         req->r_gid = current_fsgid();
612
613         if (dir) {
614                 struct ceph_inode_info *ci = ceph_inode(dir);
615
616                 ihold(dir);
617                 spin_lock(&ci->i_unsafe_lock);
618                 req->r_unsafe_dir = dir;
619                 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
620                 spin_unlock(&ci->i_unsafe_lock);
621         }
622 }
623
624 static void __unregister_request(struct ceph_mds_client *mdsc,
625                                  struct ceph_mds_request *req)
626 {
627         dout("__unregister_request %p tid %lld\n", req, req->r_tid);
628         rb_erase(&req->r_node, &mdsc->request_tree);
629         RB_CLEAR_NODE(&req->r_node);
630
631         if (req->r_unsafe_dir) {
632                 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
633
634                 spin_lock(&ci->i_unsafe_lock);
635                 list_del_init(&req->r_unsafe_dir_item);
636                 spin_unlock(&ci->i_unsafe_lock);
637
638                 iput(req->r_unsafe_dir);
639                 req->r_unsafe_dir = NULL;
640         }
641
642         ceph_mdsc_put_request(req);
643 }
644
645 /*
646  * Choose mds to send request to next.  If there is a hint set in the
647  * request (e.g., due to a prior forward hint from the mds), use that.
648  * Otherwise, consult frag tree and/or caps to identify the
649  * appropriate mds.  If all else fails, choose randomly.
650  *
651  * Called under mdsc->mutex.
652  */
653 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
654 {
655         /*
656          * we don't need to worry about protecting the d_parent access
657          * here because we never renaming inside the snapped namespace
658          * except to resplice to another snapdir, and either the old or new
659          * result is a valid result.
660          */
661         while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
662                 dentry = dentry->d_parent;
663         return dentry;
664 }
665
666 static int __choose_mds(struct ceph_mds_client *mdsc,
667                         struct ceph_mds_request *req)
668 {
669         struct inode *inode;
670         struct ceph_inode_info *ci;
671         struct ceph_cap *cap;
672         int mode = req->r_direct_mode;
673         int mds = -1;
674         u32 hash = req->r_direct_hash;
675         bool is_hash = req->r_direct_is_hash;
676
677         /*
678          * is there a specific mds we should try?  ignore hint if we have
679          * no session and the mds is not up (active or recovering).
680          */
681         if (req->r_resend_mds >= 0 &&
682             (__have_session(mdsc, req->r_resend_mds) ||
683              ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
684                 dout("choose_mds using resend_mds mds%d\n",
685                      req->r_resend_mds);
686                 return req->r_resend_mds;
687         }
688
689         if (mode == USE_RANDOM_MDS)
690                 goto random;
691
692         inode = NULL;
693         if (req->r_inode) {
694                 inode = req->r_inode;
695         } else if (req->r_dentry) {
696                 /* ignore race with rename; old or new d_parent is okay */
697                 struct dentry *parent = req->r_dentry->d_parent;
698                 struct inode *dir = parent->d_inode;
699
700                 if (dir->i_sb != mdsc->fsc->sb) {
701                         /* not this fs! */
702                         inode = req->r_dentry->d_inode;
703                 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
704                         /* direct snapped/virtual snapdir requests
705                          * based on parent dir inode */
706                         struct dentry *dn = get_nonsnap_parent(parent);
707                         inode = dn->d_inode;
708                         dout("__choose_mds using nonsnap parent %p\n", inode);
709                 } else if (req->r_dentry->d_inode) {
710                         /* dentry target */
711                         inode = req->r_dentry->d_inode;
712                 } else {
713                         /* dir + name */
714                         inode = dir;
715                         hash = ceph_dentry_hash(dir, req->r_dentry);
716                         is_hash = true;
717                 }
718         }
719
720         dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
721              (int)hash, mode);
722         if (!inode)
723                 goto random;
724         ci = ceph_inode(inode);
725
726         if (is_hash && S_ISDIR(inode->i_mode)) {
727                 struct ceph_inode_frag frag;
728                 int found;
729
730                 ceph_choose_frag(ci, hash, &frag, &found);
731                 if (found) {
732                         if (mode == USE_ANY_MDS && frag.ndist > 0) {
733                                 u8 r;
734
735                                 /* choose a random replica */
736                                 get_random_bytes(&r, 1);
737                                 r %= frag.ndist;
738                                 mds = frag.dist[r];
739                                 dout("choose_mds %p %llx.%llx "
740                                      "frag %u mds%d (%d/%d)\n",
741                                      inode, ceph_vinop(inode),
742                                      frag.frag, mds,
743                                      (int)r, frag.ndist);
744                                 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
745                                     CEPH_MDS_STATE_ACTIVE)
746                                         return mds;
747                         }
748
749                         /* since this file/dir wasn't known to be
750                          * replicated, then we want to look for the
751                          * authoritative mds. */
752                         mode = USE_AUTH_MDS;
753                         if (frag.mds >= 0) {
754                                 /* choose auth mds */
755                                 mds = frag.mds;
756                                 dout("choose_mds %p %llx.%llx "
757                                      "frag %u mds%d (auth)\n",
758                                      inode, ceph_vinop(inode), frag.frag, mds);
759                                 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
760                                     CEPH_MDS_STATE_ACTIVE)
761                                         return mds;
762                         }
763                 }
764         }
765
766         spin_lock(&ci->i_ceph_lock);
767         cap = NULL;
768         if (mode == USE_AUTH_MDS)
769                 cap = ci->i_auth_cap;
770         if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
771                 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
772         if (!cap) {
773                 spin_unlock(&ci->i_ceph_lock);
774                 goto random;
775         }
776         mds = cap->session->s_mds;
777         dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
778              inode, ceph_vinop(inode), mds,
779              cap == ci->i_auth_cap ? "auth " : "", cap);
780         spin_unlock(&ci->i_ceph_lock);
781         return mds;
782
783 random:
784         mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
785         dout("choose_mds chose random mds%d\n", mds);
786         return mds;
787 }
788
789
790 /*
791  * session messages
792  */
793 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
794 {
795         struct ceph_msg *msg;
796         struct ceph_mds_session_head *h;
797
798         msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
799                            false);
800         if (!msg) {
801                 pr_err("create_session_msg ENOMEM creating msg\n");
802                 return NULL;
803         }
804         h = msg->front.iov_base;
805         h->op = cpu_to_le32(op);
806         h->seq = cpu_to_le64(seq);
807         return msg;
808 }
809
810 /*
811  * send session open request.
812  *
813  * called under mdsc->mutex
814  */
815 static int __open_session(struct ceph_mds_client *mdsc,
816                           struct ceph_mds_session *session)
817 {
818         struct ceph_msg *msg;
819         int mstate;
820         int mds = session->s_mds;
821
822         /* wait for mds to go active? */
823         mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
824         dout("open_session to mds%d (%s)\n", mds,
825              ceph_mds_state_name(mstate));
826         session->s_state = CEPH_MDS_SESSION_OPENING;
827         session->s_renew_requested = jiffies;
828
829         /* send connect message */
830         msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
831         if (!msg)
832                 return -ENOMEM;
833         ceph_con_send(&session->s_con, msg);
834         return 0;
835 }
836
837 /*
838  * open sessions for any export targets for the given mds
839  *
840  * called under mdsc->mutex
841  */
842 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
843                                           struct ceph_mds_session *session)
844 {
845         struct ceph_mds_info *mi;
846         struct ceph_mds_session *ts;
847         int i, mds = session->s_mds;
848         int target;
849
850         if (mds >= mdsc->mdsmap->m_max_mds)
851                 return;
852         mi = &mdsc->mdsmap->m_info[mds];
853         dout("open_export_target_sessions for mds%d (%d targets)\n",
854              session->s_mds, mi->num_export_targets);
855
856         for (i = 0; i < mi->num_export_targets; i++) {
857                 target = mi->export_targets[i];
858                 ts = __ceph_lookup_mds_session(mdsc, target);
859                 if (!ts) {
860                         ts = register_session(mdsc, target);
861                         if (IS_ERR(ts))
862                                 return;
863                 }
864                 if (session->s_state == CEPH_MDS_SESSION_NEW ||
865                     session->s_state == CEPH_MDS_SESSION_CLOSING)
866                         __open_session(mdsc, session);
867                 else
868                         dout(" mds%d target mds%d %p is %s\n", session->s_mds,
869                              i, ts, session_state_name(ts->s_state));
870                 ceph_put_mds_session(ts);
871         }
872 }
873
874 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
875                                            struct ceph_mds_session *session)
876 {
877         mutex_lock(&mdsc->mutex);
878         __open_export_target_sessions(mdsc, session);
879         mutex_unlock(&mdsc->mutex);
880 }
881
882 /*
883  * session caps
884  */
885
886 /*
887  * Free preallocated cap messages assigned to this session
888  */
889 static void cleanup_cap_releases(struct ceph_mds_session *session)
890 {
891         struct ceph_msg *msg;
892
893         spin_lock(&session->s_cap_lock);
894         while (!list_empty(&session->s_cap_releases)) {
895                 msg = list_first_entry(&session->s_cap_releases,
896                                        struct ceph_msg, list_head);
897                 list_del_init(&msg->list_head);
898                 ceph_msg_put(msg);
899         }
900         while (!list_empty(&session->s_cap_releases_done)) {
901                 msg = list_first_entry(&session->s_cap_releases_done,
902                                        struct ceph_msg, list_head);
903                 list_del_init(&msg->list_head);
904                 ceph_msg_put(msg);
905         }
906         spin_unlock(&session->s_cap_lock);
907 }
908
909 /*
910  * Helper to safely iterate over all caps associated with a session, with
911  * special care taken to handle a racing __ceph_remove_cap().
912  *
913  * Caller must hold session s_mutex.
914  */
915 static int iterate_session_caps(struct ceph_mds_session *session,
916                                  int (*cb)(struct inode *, struct ceph_cap *,
917                                             void *), void *arg)
918 {
919         struct list_head *p;
920         struct ceph_cap *cap;
921         struct inode *inode, *last_inode = NULL;
922         struct ceph_cap *old_cap = NULL;
923         int ret;
924
925         dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
926         spin_lock(&session->s_cap_lock);
927         p = session->s_caps.next;
928         while (p != &session->s_caps) {
929                 cap = list_entry(p, struct ceph_cap, session_caps);
930                 inode = igrab(&cap->ci->vfs_inode);
931                 if (!inode) {
932                         p = p->next;
933                         continue;
934                 }
935                 session->s_cap_iterator = cap;
936                 spin_unlock(&session->s_cap_lock);
937
938                 if (last_inode) {
939                         iput(last_inode);
940                         last_inode = NULL;
941                 }
942                 if (old_cap) {
943                         ceph_put_cap(session->s_mdsc, old_cap);
944                         old_cap = NULL;
945                 }
946
947                 ret = cb(inode, cap, arg);
948                 last_inode = inode;
949
950                 spin_lock(&session->s_cap_lock);
951                 p = p->next;
952                 if (cap->ci == NULL) {
953                         dout("iterate_session_caps  finishing cap %p removal\n",
954                              cap);
955                         BUG_ON(cap->session != session);
956                         list_del_init(&cap->session_caps);
957                         session->s_nr_caps--;
958                         cap->session = NULL;
959                         old_cap = cap;  /* put_cap it w/o locks held */
960                 }
961                 if (ret < 0)
962                         goto out;
963         }
964         ret = 0;
965 out:
966         session->s_cap_iterator = NULL;
967         spin_unlock(&session->s_cap_lock);
968
969         if (last_inode)
970                 iput(last_inode);
971         if (old_cap)
972                 ceph_put_cap(session->s_mdsc, old_cap);
973
974         return ret;
975 }
976
977 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
978                                   void *arg)
979 {
980         struct ceph_inode_info *ci = ceph_inode(inode);
981         int drop = 0;
982
983         dout("removing cap %p, ci is %p, inode is %p\n",
984              cap, ci, &ci->vfs_inode);
985         spin_lock(&ci->i_ceph_lock);
986         __ceph_remove_cap(cap);
987         if (!__ceph_is_any_real_caps(ci)) {
988                 struct ceph_mds_client *mdsc =
989                         ceph_sb_to_client(inode->i_sb)->mdsc;
990
991                 spin_lock(&mdsc->cap_dirty_lock);
992                 if (!list_empty(&ci->i_dirty_item)) {
993                         pr_info(" dropping dirty %s state for %p %lld\n",
994                                 ceph_cap_string(ci->i_dirty_caps),
995                                 inode, ceph_ino(inode));
996                         ci->i_dirty_caps = 0;
997                         list_del_init(&ci->i_dirty_item);
998                         drop = 1;
999                 }
1000                 if (!list_empty(&ci->i_flushing_item)) {
1001                         pr_info(" dropping dirty+flushing %s state for %p %lld\n",
1002                                 ceph_cap_string(ci->i_flushing_caps),
1003                                 inode, ceph_ino(inode));
1004                         ci->i_flushing_caps = 0;
1005                         list_del_init(&ci->i_flushing_item);
1006                         mdsc->num_cap_flushing--;
1007                         drop = 1;
1008                 }
1009                 if (drop && ci->i_wrbuffer_ref) {
1010                         pr_info(" dropping dirty data for %p %lld\n",
1011                                 inode, ceph_ino(inode));
1012                         ci->i_wrbuffer_ref = 0;
1013                         ci->i_wrbuffer_ref_head = 0;
1014                         drop++;
1015                 }
1016                 spin_unlock(&mdsc->cap_dirty_lock);
1017         }
1018         spin_unlock(&ci->i_ceph_lock);
1019         while (drop--)
1020                 iput(inode);
1021         return 0;
1022 }
1023
1024 /*
1025  * caller must hold session s_mutex
1026  */
1027 static void remove_session_caps(struct ceph_mds_session *session)
1028 {
1029         dout("remove_session_caps on %p\n", session);
1030         iterate_session_caps(session, remove_session_caps_cb, NULL);
1031         BUG_ON(session->s_nr_caps > 0);
1032         BUG_ON(!list_empty(&session->s_cap_flushing));
1033         cleanup_cap_releases(session);
1034 }
1035
1036 /*
1037  * wake up any threads waiting on this session's caps.  if the cap is
1038  * old (didn't get renewed on the client reconnect), remove it now.
1039  *
1040  * caller must hold s_mutex.
1041  */
1042 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1043                               void *arg)
1044 {
1045         struct ceph_inode_info *ci = ceph_inode(inode);
1046
1047         wake_up_all(&ci->i_cap_wq);
1048         if (arg) {
1049                 spin_lock(&ci->i_ceph_lock);
1050                 ci->i_wanted_max_size = 0;
1051                 ci->i_requested_max_size = 0;
1052                 spin_unlock(&ci->i_ceph_lock);
1053         }
1054         return 0;
1055 }
1056
1057 static void wake_up_session_caps(struct ceph_mds_session *session,
1058                                  int reconnect)
1059 {
1060         dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1061         iterate_session_caps(session, wake_up_session_cb,
1062                              (void *)(unsigned long)reconnect);
1063 }
1064
1065 /*
1066  * Send periodic message to MDS renewing all currently held caps.  The
1067  * ack will reset the expiration for all caps from this session.
1068  *
1069  * caller holds s_mutex
1070  */
1071 static int send_renew_caps(struct ceph_mds_client *mdsc,
1072                            struct ceph_mds_session *session)
1073 {
1074         struct ceph_msg *msg;
1075         int state;
1076
1077         if (time_after_eq(jiffies, session->s_cap_ttl) &&
1078             time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1079                 pr_info("mds%d caps stale\n", session->s_mds);
1080         session->s_renew_requested = jiffies;
1081
1082         /* do not try to renew caps until a recovering mds has reconnected
1083          * with its clients. */
1084         state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1085         if (state < CEPH_MDS_STATE_RECONNECT) {
1086                 dout("send_renew_caps ignoring mds%d (%s)\n",
1087                      session->s_mds, ceph_mds_state_name(state));
1088                 return 0;
1089         }
1090
1091         dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1092                 ceph_mds_state_name(state));
1093         msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1094                                  ++session->s_renew_seq);
1095         if (!msg)
1096                 return -ENOMEM;
1097         ceph_con_send(&session->s_con, msg);
1098         return 0;
1099 }
1100
1101 /*
1102  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1103  *
1104  * Called under session->s_mutex
1105  */
1106 static void renewed_caps(struct ceph_mds_client *mdsc,
1107                          struct ceph_mds_session *session, int is_renew)
1108 {
1109         int was_stale;
1110         int wake = 0;
1111
1112         spin_lock(&session->s_cap_lock);
1113         was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1114
1115         session->s_cap_ttl = session->s_renew_requested +
1116                 mdsc->mdsmap->m_session_timeout*HZ;
1117
1118         if (was_stale) {
1119                 if (time_before(jiffies, session->s_cap_ttl)) {
1120                         pr_info("mds%d caps renewed\n", session->s_mds);
1121                         wake = 1;
1122                 } else {
1123                         pr_info("mds%d caps still stale\n", session->s_mds);
1124                 }
1125         }
1126         dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1127              session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1128              time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1129         spin_unlock(&session->s_cap_lock);
1130
1131         if (wake)
1132                 wake_up_session_caps(session, 0);
1133 }
1134
1135 /*
1136  * send a session close request
1137  */
1138 static int request_close_session(struct ceph_mds_client *mdsc,
1139                                  struct ceph_mds_session *session)
1140 {
1141         struct ceph_msg *msg;
1142
1143         dout("request_close_session mds%d state %s seq %lld\n",
1144              session->s_mds, session_state_name(session->s_state),
1145              session->s_seq);
1146         msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1147         if (!msg)
1148                 return -ENOMEM;
1149         ceph_con_send(&session->s_con, msg);
1150         return 0;
1151 }
1152
1153 /*
1154  * Called with s_mutex held.
1155  */
1156 static int __close_session(struct ceph_mds_client *mdsc,
1157                          struct ceph_mds_session *session)
1158 {
1159         if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1160                 return 0;
1161         session->s_state = CEPH_MDS_SESSION_CLOSING;
1162         return request_close_session(mdsc, session);
1163 }
1164
1165 /*
1166  * Trim old(er) caps.
1167  *
1168  * Because we can't cache an inode without one or more caps, we do
1169  * this indirectly: if a cap is unused, we prune its aliases, at which
1170  * point the inode will hopefully get dropped to.
1171  *
1172  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1173  * memory pressure from the MDS, though, so it needn't be perfect.
1174  */
1175 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1176 {
1177         struct ceph_mds_session *session = arg;
1178         struct ceph_inode_info *ci = ceph_inode(inode);
1179         int used, oissued, mine;
1180
1181         if (session->s_trim_caps <= 0)
1182                 return -1;
1183
1184         spin_lock(&ci->i_ceph_lock);
1185         mine = cap->issued | cap->implemented;
1186         used = __ceph_caps_used(ci);
1187         oissued = __ceph_caps_issued_other(ci, cap);
1188
1189         dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1190              inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1191              ceph_cap_string(used));
1192         if (ci->i_dirty_caps)
1193                 goto out;   /* dirty caps */
1194         if ((used & ~oissued) & mine)
1195                 goto out;   /* we need these caps */
1196
1197         session->s_trim_caps--;
1198         if (oissued) {
1199                 /* we aren't the only cap.. just remove us */
1200                 __queue_cap_release(session, ceph_ino(inode), cap->cap_id,
1201                                     cap->mseq, cap->issue_seq);
1202                 __ceph_remove_cap(cap);
1203         } else {
1204                 /* try to drop referring dentries */
1205                 spin_unlock(&ci->i_ceph_lock);
1206                 d_prune_aliases(inode);
1207                 dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1208                      inode, cap, atomic_read(&inode->i_count));
1209                 return 0;
1210         }
1211
1212 out:
1213         spin_unlock(&ci->i_ceph_lock);
1214         return 0;
1215 }
1216
1217 /*
1218  * Trim session cap count down to some max number.
1219  */
1220 static int trim_caps(struct ceph_mds_client *mdsc,
1221                      struct ceph_mds_session *session,
1222                      int max_caps)
1223 {
1224         int trim_caps = session->s_nr_caps - max_caps;
1225
1226         dout("trim_caps mds%d start: %d / %d, trim %d\n",
1227              session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1228         if (trim_caps > 0) {
1229                 session->s_trim_caps = trim_caps;
1230                 iterate_session_caps(session, trim_caps_cb, session);
1231                 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1232                      session->s_mds, session->s_nr_caps, max_caps,
1233                         trim_caps - session->s_trim_caps);
1234                 session->s_trim_caps = 0;
1235         }
1236         return 0;
1237 }
1238
1239 /*
1240  * Allocate cap_release messages.  If there is a partially full message
1241  * in the queue, try to allocate enough to cover it's remainder, so that
1242  * we can send it immediately.
1243  *
1244  * Called under s_mutex.
1245  */
1246 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1247                           struct ceph_mds_session *session)
1248 {
1249         struct ceph_msg *msg, *partial = NULL;
1250         struct ceph_mds_cap_release *head;
1251         int err = -ENOMEM;
1252         int extra = mdsc->fsc->mount_options->cap_release_safety;
1253         int num;
1254
1255         dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1256              extra);
1257
1258         spin_lock(&session->s_cap_lock);
1259
1260         if (!list_empty(&session->s_cap_releases)) {
1261                 msg = list_first_entry(&session->s_cap_releases,
1262                                        struct ceph_msg,
1263                                  list_head);
1264                 head = msg->front.iov_base;
1265                 num = le32_to_cpu(head->num);
1266                 if (num) {
1267                         dout(" partial %p with (%d/%d)\n", msg, num,
1268                              (int)CEPH_CAPS_PER_RELEASE);
1269                         extra += CEPH_CAPS_PER_RELEASE - num;
1270                         partial = msg;
1271                 }
1272         }
1273         while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1274                 spin_unlock(&session->s_cap_lock);
1275                 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1276                                    GFP_NOFS, false);
1277                 if (!msg)
1278                         goto out_unlocked;
1279                 dout("add_cap_releases %p msg %p now %d\n", session, msg,
1280                      (int)msg->front.iov_len);
1281                 head = msg->front.iov_base;
1282                 head->num = cpu_to_le32(0);
1283                 msg->front.iov_len = sizeof(*head);
1284                 spin_lock(&session->s_cap_lock);
1285                 list_add(&msg->list_head, &session->s_cap_releases);
1286                 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1287         }
1288
1289         if (partial) {
1290                 head = partial->front.iov_base;
1291                 num = le32_to_cpu(head->num);
1292                 dout(" queueing partial %p with %d/%d\n", partial, num,
1293                      (int)CEPH_CAPS_PER_RELEASE);
1294                 list_move_tail(&partial->list_head,
1295                                &session->s_cap_releases_done);
1296                 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1297         }
1298         err = 0;
1299         spin_unlock(&session->s_cap_lock);
1300 out_unlocked:
1301         return err;
1302 }
1303
1304 /*
1305  * flush all dirty inode data to disk.
1306  *
1307  * returns true if we've flushed through want_flush_seq
1308  */
1309 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1310 {
1311         int mds, ret = 1;
1312
1313         dout("check_cap_flush want %lld\n", want_flush_seq);
1314         mutex_lock(&mdsc->mutex);
1315         for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1316                 struct ceph_mds_session *session = mdsc->sessions[mds];
1317
1318                 if (!session)
1319                         continue;
1320                 get_session(session);
1321                 mutex_unlock(&mdsc->mutex);
1322
1323                 mutex_lock(&session->s_mutex);
1324                 if (!list_empty(&session->s_cap_flushing)) {
1325                         struct ceph_inode_info *ci =
1326                                 list_entry(session->s_cap_flushing.next,
1327                                            struct ceph_inode_info,
1328                                            i_flushing_item);
1329                         struct inode *inode = &ci->vfs_inode;
1330
1331                         spin_lock(&ci->i_ceph_lock);
1332                         if (ci->i_cap_flush_seq <= want_flush_seq) {
1333                                 dout("check_cap_flush still flushing %p "
1334                                      "seq %lld <= %lld to mds%d\n", inode,
1335                                      ci->i_cap_flush_seq, want_flush_seq,
1336                                      session->s_mds);
1337                                 ret = 0;
1338                         }
1339                         spin_unlock(&ci->i_ceph_lock);
1340                 }
1341                 mutex_unlock(&session->s_mutex);
1342                 ceph_put_mds_session(session);
1343
1344                 if (!ret)
1345                         return ret;
1346                 mutex_lock(&mdsc->mutex);
1347         }
1348
1349         mutex_unlock(&mdsc->mutex);
1350         dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1351         return ret;
1352 }
1353
1354 /*
1355  * called under s_mutex
1356  */
1357 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1358                             struct ceph_mds_session *session)
1359 {
1360         struct ceph_msg *msg;
1361
1362         dout("send_cap_releases mds%d\n", session->s_mds);
1363         spin_lock(&session->s_cap_lock);
1364         while (!list_empty(&session->s_cap_releases_done)) {
1365                 msg = list_first_entry(&session->s_cap_releases_done,
1366                                  struct ceph_msg, list_head);
1367                 list_del_init(&msg->list_head);
1368                 spin_unlock(&session->s_cap_lock);
1369                 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1370                 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1371                 ceph_con_send(&session->s_con, msg);
1372                 spin_lock(&session->s_cap_lock);
1373         }
1374         spin_unlock(&session->s_cap_lock);
1375 }
1376
1377 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1378                                  struct ceph_mds_session *session)
1379 {
1380         struct ceph_msg *msg;
1381         struct ceph_mds_cap_release *head;
1382         unsigned num;
1383
1384         dout("discard_cap_releases mds%d\n", session->s_mds);
1385         spin_lock(&session->s_cap_lock);
1386
1387         /* zero out the in-progress message */
1388         msg = list_first_entry(&session->s_cap_releases,
1389                                struct ceph_msg, list_head);
1390         head = msg->front.iov_base;
1391         num = le32_to_cpu(head->num);
1392         dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1393         head->num = cpu_to_le32(0);
1394         session->s_num_cap_releases += num;
1395
1396         /* requeue completed messages */
1397         while (!list_empty(&session->s_cap_releases_done)) {
1398                 msg = list_first_entry(&session->s_cap_releases_done,
1399                                  struct ceph_msg, list_head);
1400                 list_del_init(&msg->list_head);
1401
1402                 head = msg->front.iov_base;
1403                 num = le32_to_cpu(head->num);
1404                 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1405                      num);
1406                 session->s_num_cap_releases += num;
1407                 head->num = cpu_to_le32(0);
1408                 msg->front.iov_len = sizeof(*head);
1409                 list_add(&msg->list_head, &session->s_cap_releases);
1410         }
1411
1412         spin_unlock(&session->s_cap_lock);
1413 }
1414
1415 /*
1416  * requests
1417  */
1418
1419 /*
1420  * Create an mds request.
1421  */
1422 struct ceph_mds_request *
1423 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1424 {
1425         struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1426
1427         if (!req)
1428                 return ERR_PTR(-ENOMEM);
1429
1430         mutex_init(&req->r_fill_mutex);
1431         req->r_mdsc = mdsc;
1432         req->r_started = jiffies;
1433         req->r_resend_mds = -1;
1434         INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1435         req->r_fmode = -1;
1436         kref_init(&req->r_kref);
1437         INIT_LIST_HEAD(&req->r_wait);
1438         init_completion(&req->r_completion);
1439         init_completion(&req->r_safe_completion);
1440         INIT_LIST_HEAD(&req->r_unsafe_item);
1441
1442         req->r_op = op;
1443         req->r_direct_mode = mode;
1444         return req;
1445 }
1446
1447 /*
1448  * return oldest (lowest) request, tid in request tree, 0 if none.
1449  *
1450  * called under mdsc->mutex.
1451  */
1452 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1453 {
1454         if (RB_EMPTY_ROOT(&mdsc->request_tree))
1455                 return NULL;
1456         return rb_entry(rb_first(&mdsc->request_tree),
1457                         struct ceph_mds_request, r_node);
1458 }
1459
1460 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1461 {
1462         struct ceph_mds_request *req = __get_oldest_req(mdsc);
1463
1464         if (req)
1465                 return req->r_tid;
1466         return 0;
1467 }
1468
1469 /*
1470  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1471  * on build_path_from_dentry in fs/cifs/dir.c.
1472  *
1473  * If @stop_on_nosnap, generate path relative to the first non-snapped
1474  * inode.
1475  *
1476  * Encode hidden .snap dirs as a double /, i.e.
1477  *   foo/.snap/bar -> foo//bar
1478  */
1479 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1480                            int stop_on_nosnap)
1481 {
1482         struct dentry *temp;
1483         char *path;
1484         int len, pos;
1485         unsigned seq;
1486
1487         if (dentry == NULL)
1488                 return ERR_PTR(-EINVAL);
1489
1490 retry:
1491         len = 0;
1492         seq = read_seqbegin(&rename_lock);
1493         rcu_read_lock();
1494         for (temp = dentry; !IS_ROOT(temp);) {
1495                 struct inode *inode = temp->d_inode;
1496                 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1497                         len++;  /* slash only */
1498                 else if (stop_on_nosnap && inode &&
1499                          ceph_snap(inode) == CEPH_NOSNAP)
1500                         break;
1501                 else
1502                         len += 1 + temp->d_name.len;
1503                 temp = temp->d_parent;
1504         }
1505         rcu_read_unlock();
1506         if (len)
1507                 len--;  /* no leading '/' */
1508
1509         path = kmalloc(len+1, GFP_NOFS);
1510         if (path == NULL)
1511                 return ERR_PTR(-ENOMEM);
1512         pos = len;
1513         path[pos] = 0;  /* trailing null */
1514         rcu_read_lock();
1515         for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1516                 struct inode *inode;
1517
1518                 spin_lock(&temp->d_lock);
1519                 inode = temp->d_inode;
1520                 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1521                         dout("build_path path+%d: %p SNAPDIR\n",
1522                              pos, temp);
1523                 } else if (stop_on_nosnap && inode &&
1524                            ceph_snap(inode) == CEPH_NOSNAP) {
1525                         spin_unlock(&temp->d_lock);
1526                         break;
1527                 } else {
1528                         pos -= temp->d_name.len;
1529                         if (pos < 0) {
1530                                 spin_unlock(&temp->d_lock);
1531                                 break;
1532                         }
1533                         strncpy(path + pos, temp->d_name.name,
1534                                 temp->d_name.len);
1535                 }
1536                 spin_unlock(&temp->d_lock);
1537                 if (pos)
1538                         path[--pos] = '/';
1539                 temp = temp->d_parent;
1540         }
1541         rcu_read_unlock();
1542         if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1543                 pr_err("build_path did not end path lookup where "
1544                        "expected, namelen is %d, pos is %d\n", len, pos);
1545                 /* presumably this is only possible if racing with a
1546                    rename of one of the parent directories (we can not
1547                    lock the dentries above us to prevent this, but
1548                    retrying should be harmless) */
1549                 kfree(path);
1550                 goto retry;
1551         }
1552
1553         *base = ceph_ino(temp->d_inode);
1554         *plen = len;
1555         dout("build_path on %p %d built %llx '%.*s'\n",
1556              dentry, dentry->d_count, *base, len, path);
1557         return path;
1558 }
1559
1560 static int build_dentry_path(struct dentry *dentry,
1561                              const char **ppath, int *ppathlen, u64 *pino,
1562                              int *pfreepath)
1563 {
1564         char *path;
1565
1566         if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1567                 *pino = ceph_ino(dentry->d_parent->d_inode);
1568                 *ppath = dentry->d_name.name;
1569                 *ppathlen = dentry->d_name.len;
1570                 return 0;
1571         }
1572         path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1573         if (IS_ERR(path))
1574                 return PTR_ERR(path);
1575         *ppath = path;
1576         *pfreepath = 1;
1577         return 0;
1578 }
1579
1580 static int build_inode_path(struct inode *inode,
1581                             const char **ppath, int *ppathlen, u64 *pino,
1582                             int *pfreepath)
1583 {
1584         struct dentry *dentry;
1585         char *path;
1586
1587         if (ceph_snap(inode) == CEPH_NOSNAP) {
1588                 *pino = ceph_ino(inode);
1589                 *ppathlen = 0;
1590                 return 0;
1591         }
1592         dentry = d_find_alias(inode);
1593         path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1594         dput(dentry);
1595         if (IS_ERR(path))
1596                 return PTR_ERR(path);
1597         *ppath = path;
1598         *pfreepath = 1;
1599         return 0;
1600 }
1601
1602 /*
1603  * request arguments may be specified via an inode *, a dentry *, or
1604  * an explicit ino+path.
1605  */
1606 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1607                                   const char *rpath, u64 rino,
1608                                   const char **ppath, int *pathlen,
1609                                   u64 *ino, int *freepath)
1610 {
1611         int r = 0;
1612
1613         if (rinode) {
1614                 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1615                 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1616                      ceph_snap(rinode));
1617         } else if (rdentry) {
1618                 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1619                 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1620                      *ppath);
1621         } else if (rpath || rino) {
1622                 *ino = rino;
1623                 *ppath = rpath;
1624                 *pathlen = rpath ? strlen(rpath) : 0;
1625                 dout(" path %.*s\n", *pathlen, rpath);
1626         }
1627
1628         return r;
1629 }
1630
1631 /*
1632  * called under mdsc->mutex
1633  */
1634 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1635                                                struct ceph_mds_request *req,
1636                                                int mds)
1637 {
1638         struct ceph_msg *msg;
1639         struct ceph_mds_request_head *head;
1640         const char *path1 = NULL;
1641         const char *path2 = NULL;
1642         u64 ino1 = 0, ino2 = 0;
1643         int pathlen1 = 0, pathlen2 = 0;
1644         int freepath1 = 0, freepath2 = 0;
1645         int len;
1646         u16 releases;
1647         void *p, *end;
1648         int ret;
1649
1650         ret = set_request_path_attr(req->r_inode, req->r_dentry,
1651                               req->r_path1, req->r_ino1.ino,
1652                               &path1, &pathlen1, &ino1, &freepath1);
1653         if (ret < 0) {
1654                 msg = ERR_PTR(ret);
1655                 goto out;
1656         }
1657
1658         ret = set_request_path_attr(NULL, req->r_old_dentry,
1659                               req->r_path2, req->r_ino2.ino,
1660                               &path2, &pathlen2, &ino2, &freepath2);
1661         if (ret < 0) {
1662                 msg = ERR_PTR(ret);
1663                 goto out_free1;
1664         }
1665
1666         len = sizeof(*head) +
1667                 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1668
1669         /* calculate (max) length for cap releases */
1670         len += sizeof(struct ceph_mds_request_release) *
1671                 (!!req->r_inode_drop + !!req->r_dentry_drop +
1672                  !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1673         if (req->r_dentry_drop)
1674                 len += req->r_dentry->d_name.len;
1675         if (req->r_old_dentry_drop)
1676                 len += req->r_old_dentry->d_name.len;
1677
1678         msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1679         if (!msg) {
1680                 msg = ERR_PTR(-ENOMEM);
1681                 goto out_free2;
1682         }
1683
1684         msg->hdr.tid = cpu_to_le64(req->r_tid);
1685
1686         head = msg->front.iov_base;
1687         p = msg->front.iov_base + sizeof(*head);
1688         end = msg->front.iov_base + msg->front.iov_len;
1689
1690         head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1691         head->op = cpu_to_le32(req->r_op);
1692         head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1693         head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1694         head->args = req->r_args;
1695
1696         ceph_encode_filepath(&p, end, ino1, path1);
1697         ceph_encode_filepath(&p, end, ino2, path2);
1698
1699         /* make note of release offset, in case we need to replay */
1700         req->r_request_release_offset = p - msg->front.iov_base;
1701
1702         /* cap releases */
1703         releases = 0;
1704         if (req->r_inode_drop)
1705                 releases += ceph_encode_inode_release(&p,
1706                       req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1707                       mds, req->r_inode_drop, req->r_inode_unless, 0);
1708         if (req->r_dentry_drop)
1709                 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1710                        mds, req->r_dentry_drop, req->r_dentry_unless);
1711         if (req->r_old_dentry_drop)
1712                 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1713                        mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1714         if (req->r_old_inode_drop)
1715                 releases += ceph_encode_inode_release(&p,
1716                       req->r_old_dentry->d_inode,
1717                       mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1718         head->num_releases = cpu_to_le16(releases);
1719
1720         BUG_ON(p > end);
1721         msg->front.iov_len = p - msg->front.iov_base;
1722         msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1723
1724         if (req->r_data_len) {
1725                 /* outbound data set only by ceph_sync_setxattr() */
1726                 BUG_ON(!req->r_pages);
1727                 ceph_msg_data_add_pages(msg, req->r_pages, req->r_data_len, 0);
1728         }
1729
1730         msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1731         msg->hdr.data_off = cpu_to_le16(0);
1732
1733 out_free2:
1734         if (freepath2)
1735                 kfree((char *)path2);
1736 out_free1:
1737         if (freepath1)
1738                 kfree((char *)path1);
1739 out:
1740         return msg;
1741 }
1742
1743 /*
1744  * called under mdsc->mutex if error, under no mutex if
1745  * success.
1746  */
1747 static void complete_request(struct ceph_mds_client *mdsc,
1748                              struct ceph_mds_request *req)
1749 {
1750         if (req->r_callback)
1751                 req->r_callback(mdsc, req);
1752         else
1753                 complete_all(&req->r_completion);
1754 }
1755
1756 /*
1757  * called under mdsc->mutex
1758  */
1759 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1760                                   struct ceph_mds_request *req,
1761                                   int mds)
1762 {
1763         struct ceph_mds_request_head *rhead;
1764         struct ceph_msg *msg;
1765         int flags = 0;
1766
1767         req->r_attempts++;
1768         if (req->r_inode) {
1769                 struct ceph_cap *cap =
1770                         ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1771
1772                 if (cap)
1773                         req->r_sent_on_mseq = cap->mseq;
1774                 else
1775                         req->r_sent_on_mseq = -1;
1776         }
1777         dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1778              req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1779
1780         if (req->r_got_unsafe) {
1781                 /*
1782                  * Replay.  Do not regenerate message (and rebuild
1783                  * paths, etc.); just use the original message.
1784                  * Rebuilding paths will break for renames because
1785                  * d_move mangles the src name.
1786                  */
1787                 msg = req->r_request;
1788                 rhead = msg->front.iov_base;
1789
1790                 flags = le32_to_cpu(rhead->flags);
1791                 flags |= CEPH_MDS_FLAG_REPLAY;
1792                 rhead->flags = cpu_to_le32(flags);
1793
1794                 if (req->r_target_inode)
1795                         rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1796
1797                 rhead->num_retry = req->r_attempts - 1;
1798
1799                 /* remove cap/dentry releases from message */
1800                 rhead->num_releases = 0;
1801                 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1802                 msg->front.iov_len = req->r_request_release_offset;
1803                 return 0;
1804         }
1805
1806         if (req->r_request) {
1807                 ceph_msg_put(req->r_request);
1808                 req->r_request = NULL;
1809         }
1810         msg = create_request_message(mdsc, req, mds);
1811         if (IS_ERR(msg)) {
1812                 req->r_err = PTR_ERR(msg);
1813                 complete_request(mdsc, req);
1814                 return PTR_ERR(msg);
1815         }
1816         req->r_request = msg;
1817
1818         rhead = msg->front.iov_base;
1819         rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1820         if (req->r_got_unsafe)
1821                 flags |= CEPH_MDS_FLAG_REPLAY;
1822         if (req->r_locked_dir)
1823                 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1824         rhead->flags = cpu_to_le32(flags);
1825         rhead->num_fwd = req->r_num_fwd;
1826         rhead->num_retry = req->r_attempts - 1;
1827         rhead->ino = 0;
1828
1829         dout(" r_locked_dir = %p\n", req->r_locked_dir);
1830         return 0;
1831 }
1832
1833 /*
1834  * send request, or put it on the appropriate wait list.
1835  */
1836 static int __do_request(struct ceph_mds_client *mdsc,
1837                         struct ceph_mds_request *req)
1838 {
1839         struct ceph_mds_session *session = NULL;
1840         int mds = -1;
1841         int err = -EAGAIN;
1842
1843         if (req->r_err || req->r_got_result)
1844                 goto out;
1845
1846         if (req->r_timeout &&
1847             time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1848                 dout("do_request timed out\n");
1849                 err = -EIO;
1850                 goto finish;
1851         }
1852
1853         put_request_session(req);
1854
1855         mds = __choose_mds(mdsc, req);
1856         if (mds < 0 ||
1857             ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1858                 dout("do_request no mds or not active, waiting for map\n");
1859                 list_add(&req->r_wait, &mdsc->waiting_for_map);
1860                 goto out;
1861         }
1862
1863         /* get, open session */
1864         session = __ceph_lookup_mds_session(mdsc, mds);
1865         if (!session) {
1866                 session = register_session(mdsc, mds);
1867                 if (IS_ERR(session)) {
1868                         err = PTR_ERR(session);
1869                         goto finish;
1870                 }
1871         }
1872         req->r_session = get_session(session);
1873
1874         dout("do_request mds%d session %p state %s\n", mds, session,
1875              session_state_name(session->s_state));
1876         if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1877             session->s_state != CEPH_MDS_SESSION_HUNG) {
1878                 if (session->s_state == CEPH_MDS_SESSION_NEW ||
1879                     session->s_state == CEPH_MDS_SESSION_CLOSING)
1880                         __open_session(mdsc, session);
1881                 list_add(&req->r_wait, &session->s_waiting);
1882                 goto out_session;
1883         }
1884
1885         /* send request */
1886         req->r_resend_mds = -1;   /* forget any previous mds hint */
1887
1888         if (req->r_request_started == 0)   /* note request start time */
1889                 req->r_request_started = jiffies;
1890
1891         err = __prepare_send_request(mdsc, req, mds);
1892         if (!err) {
1893                 ceph_msg_get(req->r_request);
1894                 ceph_con_send(&session->s_con, req->r_request);
1895         }
1896
1897 out_session:
1898         ceph_put_mds_session(session);
1899 out:
1900         return err;
1901
1902 finish:
1903         req->r_err = err;
1904         complete_request(mdsc, req);
1905         goto out;
1906 }
1907
1908 /*
1909  * called under mdsc->mutex
1910  */
1911 static void __wake_requests(struct ceph_mds_client *mdsc,
1912                             struct list_head *head)
1913 {
1914         struct ceph_mds_request *req;
1915         LIST_HEAD(tmp_list);
1916
1917         list_splice_init(head, &tmp_list);
1918
1919         while (!list_empty(&tmp_list)) {
1920                 req = list_entry(tmp_list.next,
1921                                  struct ceph_mds_request, r_wait);
1922                 list_del_init(&req->r_wait);
1923                 dout(" wake request %p tid %llu\n", req, req->r_tid);
1924                 __do_request(mdsc, req);
1925         }
1926 }
1927
1928 /*
1929  * Wake up threads with requests pending for @mds, so that they can
1930  * resubmit their requests to a possibly different mds.
1931  */
1932 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1933 {
1934         struct ceph_mds_request *req;
1935         struct rb_node *p;
1936
1937         dout("kick_requests mds%d\n", mds);
1938         for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1939                 req = rb_entry(p, struct ceph_mds_request, r_node);
1940                 if (req->r_got_unsafe)
1941                         continue;
1942                 if (req->r_session &&
1943                     req->r_session->s_mds == mds) {
1944                         dout(" kicking tid %llu\n", req->r_tid);
1945                         __do_request(mdsc, req);
1946                 }
1947         }
1948 }
1949
1950 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1951                               struct ceph_mds_request *req)
1952 {
1953         dout("submit_request on %p\n", req);
1954         mutex_lock(&mdsc->mutex);
1955         __register_request(mdsc, req, NULL);
1956         __do_request(mdsc, req);
1957         mutex_unlock(&mdsc->mutex);
1958 }
1959
1960 /*
1961  * Synchrously perform an mds request.  Take care of all of the
1962  * session setup, forwarding, retry details.
1963  */
1964 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1965                          struct inode *dir,
1966                          struct ceph_mds_request *req)
1967 {
1968         int err;
1969
1970         dout("do_request on %p\n", req);
1971
1972         /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1973         if (req->r_inode)
1974                 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1975         if (req->r_locked_dir)
1976                 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1977         if (req->r_old_dentry)
1978                 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
1979                                   CEPH_CAP_PIN);
1980
1981         /* issue */
1982         mutex_lock(&mdsc->mutex);
1983         __register_request(mdsc, req, dir);
1984         __do_request(mdsc, req);
1985
1986         if (req->r_err) {
1987                 err = req->r_err;
1988                 __unregister_request(mdsc, req);
1989                 dout("do_request early error %d\n", err);
1990                 goto out;
1991         }
1992
1993         /* wait */
1994         mutex_unlock(&mdsc->mutex);
1995         dout("do_request waiting\n");
1996         if (req->r_timeout) {
1997                 err = (long)wait_for_completion_killable_timeout(
1998                         &req->r_completion, req->r_timeout);
1999                 if (err == 0)
2000                         err = -EIO;
2001         } else {
2002                 err = wait_for_completion_killable(&req->r_completion);
2003         }
2004         dout("do_request waited, got %d\n", err);
2005         mutex_lock(&mdsc->mutex);
2006
2007         /* only abort if we didn't race with a real reply */
2008         if (req->r_got_result) {
2009                 err = le32_to_cpu(req->r_reply_info.head->result);
2010         } else if (err < 0) {
2011                 dout("aborted request %lld with %d\n", req->r_tid, err);
2012
2013                 /*
2014                  * ensure we aren't running concurrently with
2015                  * ceph_fill_trace or ceph_readdir_prepopulate, which
2016                  * rely on locks (dir mutex) held by our caller.
2017                  */
2018                 mutex_lock(&req->r_fill_mutex);
2019                 req->r_err = err;
2020                 req->r_aborted = true;
2021                 mutex_unlock(&req->r_fill_mutex);
2022
2023                 if (req->r_locked_dir &&
2024                     (req->r_op & CEPH_MDS_OP_WRITE))
2025                         ceph_invalidate_dir_request(req);
2026         } else {
2027                 err = req->r_err;
2028         }
2029
2030 out:
2031         mutex_unlock(&mdsc->mutex);
2032         dout("do_request %p done, result %d\n", req, err);
2033         return err;
2034 }
2035
2036 /*
2037  * Invalidate dir's completeness, dentry lease state on an aborted MDS
2038  * namespace request.
2039  */
2040 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2041 {
2042         struct inode *inode = req->r_locked_dir;
2043
2044         dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2045
2046         ceph_dir_clear_complete(inode);
2047         if (req->r_dentry)
2048                 ceph_invalidate_dentry_lease(req->r_dentry);
2049         if (req->r_old_dentry)
2050                 ceph_invalidate_dentry_lease(req->r_old_dentry);
2051 }
2052
2053 /*
2054  * Handle mds reply.
2055  *
2056  * We take the session mutex and parse and process the reply immediately.
2057  * This preserves the logical ordering of replies, capabilities, etc., sent
2058  * by the MDS as they are applied to our local cache.
2059  */
2060 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2061 {
2062         struct ceph_mds_client *mdsc = session->s_mdsc;
2063         struct ceph_mds_request *req;
2064         struct ceph_mds_reply_head *head = msg->front.iov_base;
2065         struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2066         u64 tid;
2067         int err, result;
2068         int mds = session->s_mds;
2069
2070         if (msg->front.iov_len < sizeof(*head)) {
2071                 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2072                 ceph_msg_dump(msg);
2073                 return;
2074         }
2075
2076         /* get request, session */
2077         tid = le64_to_cpu(msg->hdr.tid);
2078         mutex_lock(&mdsc->mutex);
2079         req = __lookup_request(mdsc, tid);
2080         if (!req) {
2081                 dout("handle_reply on unknown tid %llu\n", tid);
2082                 mutex_unlock(&mdsc->mutex);
2083                 return;
2084         }
2085         dout("handle_reply %p\n", req);
2086
2087         /* correct session? */
2088         if (req->r_session != session) {
2089                 pr_err("mdsc_handle_reply got %llu on session mds%d"
2090                        " not mds%d\n", tid, session->s_mds,
2091                        req->r_session ? req->r_session->s_mds : -1);
2092                 mutex_unlock(&mdsc->mutex);
2093                 goto out;
2094         }
2095
2096         /* dup? */
2097         if ((req->r_got_unsafe && !head->safe) ||
2098             (req->r_got_safe && head->safe)) {
2099                 pr_warning("got a dup %s reply on %llu from mds%d\n",
2100                            head->safe ? "safe" : "unsafe", tid, mds);
2101                 mutex_unlock(&mdsc->mutex);
2102                 goto out;
2103         }
2104         if (req->r_got_safe && !head->safe) {
2105                 pr_warning("got unsafe after safe on %llu from mds%d\n",
2106                            tid, mds);
2107                 mutex_unlock(&mdsc->mutex);
2108                 goto out;
2109         }
2110
2111         result = le32_to_cpu(head->result);
2112
2113         /*
2114          * Handle an ESTALE
2115          * if we're not talking to the authority, send to them
2116          * if the authority has changed while we weren't looking,
2117          * send to new authority
2118          * Otherwise we just have to return an ESTALE
2119          */
2120         if (result == -ESTALE) {
2121                 dout("got ESTALE on request %llu", req->r_tid);
2122                 if (!req->r_inode) {
2123                         /* do nothing; not an authority problem */
2124                 } else if (req->r_direct_mode != USE_AUTH_MDS) {
2125                         dout("not using auth, setting for that now");
2126                         req->r_direct_mode = USE_AUTH_MDS;
2127                         __do_request(mdsc, req);
2128                         mutex_unlock(&mdsc->mutex);
2129                         goto out;
2130                 } else  {
2131                         struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2132                         struct ceph_cap *cap = NULL;
2133
2134                         if (req->r_session)
2135                                 cap = ceph_get_cap_for_mds(ci,
2136                                                    req->r_session->s_mds);
2137
2138                         dout("already using auth");
2139                         if ((!cap || cap != ci->i_auth_cap) ||
2140                             (cap->mseq != req->r_sent_on_mseq)) {
2141                                 dout("but cap changed, so resending");
2142                                 __do_request(mdsc, req);
2143                                 mutex_unlock(&mdsc->mutex);
2144                                 goto out;
2145                         }
2146                 }
2147                 dout("have to return ESTALE on request %llu", req->r_tid);
2148         }
2149
2150
2151         if (head->safe) {
2152                 req->r_got_safe = true;
2153                 __unregister_request(mdsc, req);
2154                 complete_all(&req->r_safe_completion);
2155
2156                 if (req->r_got_unsafe) {
2157                         /*
2158                          * We already handled the unsafe response, now do the
2159                          * cleanup.  No need to examine the response; the MDS
2160                          * doesn't include any result info in the safe
2161                          * response.  And even if it did, there is nothing
2162                          * useful we could do with a revised return value.
2163                          */
2164                         dout("got safe reply %llu, mds%d\n", tid, mds);
2165                         list_del_init(&req->r_unsafe_item);
2166
2167                         /* last unsafe request during umount? */
2168                         if (mdsc->stopping && !__get_oldest_req(mdsc))
2169                                 complete_all(&mdsc->safe_umount_waiters);
2170                         mutex_unlock(&mdsc->mutex);
2171                         goto out;
2172                 }
2173         } else {
2174                 req->r_got_unsafe = true;
2175                 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2176         }
2177
2178         dout("handle_reply tid %lld result %d\n", tid, result);
2179         rinfo = &req->r_reply_info;
2180         err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2181         mutex_unlock(&mdsc->mutex);
2182
2183         mutex_lock(&session->s_mutex);
2184         if (err < 0) {
2185                 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2186                 ceph_msg_dump(msg);
2187                 goto out_err;
2188         }
2189
2190         /* snap trace */
2191         if (rinfo->snapblob_len) {
2192                 down_write(&mdsc->snap_rwsem);
2193                 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2194                                rinfo->snapblob + rinfo->snapblob_len,
2195                                le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2196                 downgrade_write(&mdsc->snap_rwsem);
2197         } else {
2198                 down_read(&mdsc->snap_rwsem);
2199         }
2200
2201         /* insert trace into our cache */
2202         mutex_lock(&req->r_fill_mutex);
2203         err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2204         if (err == 0) {
2205                 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2206                                     req->r_op == CEPH_MDS_OP_LSSNAP) &&
2207                     rinfo->dir_nr)
2208                         ceph_readdir_prepopulate(req, req->r_session);
2209                 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2210         }
2211         mutex_unlock(&req->r_fill_mutex);
2212
2213         up_read(&mdsc->snap_rwsem);
2214 out_err:
2215         mutex_lock(&mdsc->mutex);
2216         if (!req->r_aborted) {
2217                 if (err) {
2218                         req->r_err = err;
2219                 } else {
2220                         req->r_reply = msg;
2221                         ceph_msg_get(msg);
2222                         req->r_got_result = true;
2223                 }
2224         } else {
2225                 dout("reply arrived after request %lld was aborted\n", tid);
2226         }
2227         mutex_unlock(&mdsc->mutex);
2228
2229         ceph_add_cap_releases(mdsc, req->r_session);
2230         mutex_unlock(&session->s_mutex);
2231
2232         /* kick calling process */
2233         complete_request(mdsc, req);
2234 out:
2235         ceph_mdsc_put_request(req);
2236         return;
2237 }
2238
2239
2240
2241 /*
2242  * handle mds notification that our request has been forwarded.
2243  */
2244 static void handle_forward(struct ceph_mds_client *mdsc,
2245                            struct ceph_mds_session *session,
2246                            struct ceph_msg *msg)
2247 {
2248         struct ceph_mds_request *req;
2249         u64 tid = le64_to_cpu(msg->hdr.tid);
2250         u32 next_mds;
2251         u32 fwd_seq;
2252         int err = -EINVAL;
2253         void *p = msg->front.iov_base;
2254         void *end = p + msg->front.iov_len;
2255
2256         ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2257         next_mds = ceph_decode_32(&p);
2258         fwd_seq = ceph_decode_32(&p);
2259
2260         mutex_lock(&mdsc->mutex);
2261         req = __lookup_request(mdsc, tid);
2262         if (!req) {
2263                 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2264                 goto out;  /* dup reply? */
2265         }
2266
2267         if (req->r_aborted) {
2268                 dout("forward tid %llu aborted, unregistering\n", tid);
2269                 __unregister_request(mdsc, req);
2270         } else if (fwd_seq <= req->r_num_fwd) {
2271                 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2272                      tid, next_mds, req->r_num_fwd, fwd_seq);
2273         } else {
2274                 /* resend. forward race not possible; mds would drop */
2275                 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2276                 BUG_ON(req->r_err);
2277                 BUG_ON(req->r_got_result);
2278                 req->r_num_fwd = fwd_seq;
2279                 req->r_resend_mds = next_mds;
2280                 put_request_session(req);
2281                 __do_request(mdsc, req);
2282         }
2283         ceph_mdsc_put_request(req);
2284 out:
2285         mutex_unlock(&mdsc->mutex);
2286         return;
2287
2288 bad:
2289         pr_err("mdsc_handle_forward decode error err=%d\n", err);
2290 }
2291
2292 /*
2293  * handle a mds session control message
2294  */
2295 static void handle_session(struct ceph_mds_session *session,
2296                            struct ceph_msg *msg)
2297 {
2298         struct ceph_mds_client *mdsc = session->s_mdsc;
2299         u32 op;
2300         u64 seq;
2301         int mds = session->s_mds;
2302         struct ceph_mds_session_head *h = msg->front.iov_base;
2303         int wake = 0;
2304
2305         /* decode */
2306         if (msg->front.iov_len != sizeof(*h))
2307                 goto bad;
2308         op = le32_to_cpu(h->op);
2309         seq = le64_to_cpu(h->seq);
2310
2311         mutex_lock(&mdsc->mutex);
2312         if (op == CEPH_SESSION_CLOSE)
2313                 __unregister_session(mdsc, session);
2314         /* FIXME: this ttl calculation is generous */
2315         session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2316         mutex_unlock(&mdsc->mutex);
2317
2318         mutex_lock(&session->s_mutex);
2319
2320         dout("handle_session mds%d %s %p state %s seq %llu\n",
2321              mds, ceph_session_op_name(op), session,
2322              session_state_name(session->s_state), seq);
2323
2324         if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2325                 session->s_state = CEPH_MDS_SESSION_OPEN;
2326                 pr_info("mds%d came back\n", session->s_mds);
2327         }
2328
2329         switch (op) {
2330         case CEPH_SESSION_OPEN:
2331                 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2332                         pr_info("mds%d reconnect success\n", session->s_mds);
2333                 session->s_state = CEPH_MDS_SESSION_OPEN;
2334                 renewed_caps(mdsc, session, 0);
2335                 wake = 1;
2336                 if (mdsc->stopping)
2337                         __close_session(mdsc, session);
2338                 break;
2339
2340         case CEPH_SESSION_RENEWCAPS:
2341                 if (session->s_renew_seq == seq)
2342                         renewed_caps(mdsc, session, 1);
2343                 break;
2344
2345         case CEPH_SESSION_CLOSE:
2346                 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2347                         pr_info("mds%d reconnect denied\n", session->s_mds);
2348                 remove_session_caps(session);
2349                 wake = 1; /* for good measure */
2350                 wake_up_all(&mdsc->session_close_wq);
2351                 kick_requests(mdsc, mds);
2352                 break;
2353
2354         case CEPH_SESSION_STALE:
2355                 pr_info("mds%d caps went stale, renewing\n",
2356                         session->s_mds);
2357                 spin_lock(&session->s_gen_ttl_lock);
2358                 session->s_cap_gen++;
2359                 session->s_cap_ttl = jiffies - 1;
2360                 spin_unlock(&session->s_gen_ttl_lock);
2361                 send_renew_caps(mdsc, session);
2362                 break;
2363
2364         case CEPH_SESSION_RECALL_STATE:
2365                 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2366                 break;
2367
2368         default:
2369                 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2370                 WARN_ON(1);
2371         }
2372
2373         mutex_unlock(&session->s_mutex);
2374         if (wake) {
2375                 mutex_lock(&mdsc->mutex);
2376                 __wake_requests(mdsc, &session->s_waiting);
2377                 mutex_unlock(&mdsc->mutex);
2378         }
2379         return;
2380
2381 bad:
2382         pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2383                (int)msg->front.iov_len);
2384         ceph_msg_dump(msg);
2385         return;
2386 }
2387
2388
2389 /*
2390  * called under session->mutex.
2391  */
2392 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2393                                    struct ceph_mds_session *session)
2394 {
2395         struct ceph_mds_request *req, *nreq;
2396         int err;
2397
2398         dout("replay_unsafe_requests mds%d\n", session->s_mds);
2399
2400         mutex_lock(&mdsc->mutex);
2401         list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2402                 err = __prepare_send_request(mdsc, req, session->s_mds);
2403                 if (!err) {
2404                         ceph_msg_get(req->r_request);
2405                         ceph_con_send(&session->s_con, req->r_request);
2406                 }
2407         }
2408         mutex_unlock(&mdsc->mutex);
2409 }
2410
2411 /*
2412  * Encode information about a cap for a reconnect with the MDS.
2413  */
2414 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2415                           void *arg)
2416 {
2417         union {
2418                 struct ceph_mds_cap_reconnect v2;
2419                 struct ceph_mds_cap_reconnect_v1 v1;
2420         } rec;
2421         size_t reclen;
2422         struct ceph_inode_info *ci;
2423         struct ceph_reconnect_state *recon_state = arg;
2424         struct ceph_pagelist *pagelist = recon_state->pagelist;
2425         char *path;
2426         int pathlen, err;
2427         u64 pathbase;
2428         struct dentry *dentry;
2429
2430         ci = cap->ci;
2431
2432         dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2433              inode, ceph_vinop(inode), cap, cap->cap_id,
2434              ceph_cap_string(cap->issued));
2435         err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2436         if (err)
2437                 return err;
2438
2439         dentry = d_find_alias(inode);
2440         if (dentry) {
2441                 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2442                 if (IS_ERR(path)) {
2443                         err = PTR_ERR(path);
2444                         goto out_dput;
2445                 }
2446         } else {
2447                 path = NULL;
2448                 pathlen = 0;
2449         }
2450         err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2451         if (err)
2452                 goto out_free;
2453
2454         spin_lock(&ci->i_ceph_lock);
2455         cap->seq = 0;        /* reset cap seq */
2456         cap->issue_seq = 0;  /* and issue_seq */
2457
2458         if (recon_state->flock) {
2459                 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2460                 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2461                 rec.v2.issued = cpu_to_le32(cap->issued);
2462                 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2463                 rec.v2.pathbase = cpu_to_le64(pathbase);
2464                 rec.v2.flock_len = 0;
2465                 reclen = sizeof(rec.v2);
2466         } else {
2467                 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2468                 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2469                 rec.v1.issued = cpu_to_le32(cap->issued);
2470                 rec.v1.size = cpu_to_le64(inode->i_size);
2471                 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2472                 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2473                 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2474                 rec.v1.pathbase = cpu_to_le64(pathbase);
2475                 reclen = sizeof(rec.v1);
2476         }
2477         spin_unlock(&ci->i_ceph_lock);
2478
2479         if (recon_state->flock) {
2480                 int num_fcntl_locks, num_flock_locks;
2481                 struct ceph_filelock *flocks;
2482
2483 encode_again:
2484                 lock_flocks();
2485                 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2486                 unlock_flocks();
2487                 flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2488                                  sizeof(struct ceph_filelock), GFP_NOFS);
2489                 if (!flocks) {
2490                         err = -ENOMEM;
2491                         goto out_free;
2492                 }
2493                 lock_flocks();
2494                 err = ceph_encode_locks_to_buffer(inode, flocks,
2495                                                   num_fcntl_locks,
2496                                                   num_flock_locks);
2497                 unlock_flocks();
2498                 if (err) {
2499                         kfree(flocks);
2500                         if (err == -ENOSPC)
2501                                 goto encode_again;
2502                         goto out_free;
2503                 }
2504                 /*
2505                  * number of encoded locks is stable, so copy to pagelist
2506                  */
2507                 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
2508                                     (num_fcntl_locks+num_flock_locks) *
2509                                     sizeof(struct ceph_filelock));
2510                 err = ceph_pagelist_append(pagelist, &rec, reclen);
2511                 if (!err)
2512                         err = ceph_locks_to_pagelist(flocks, pagelist,
2513                                                      num_fcntl_locks,
2514                                                      num_flock_locks);
2515                 kfree(flocks);
2516         } else {
2517                 err = ceph_pagelist_append(pagelist, &rec, reclen);
2518         }
2519 out_free:
2520         kfree(path);
2521 out_dput:
2522         dput(dentry);
2523         return err;
2524 }
2525
2526
2527 /*
2528  * If an MDS fails and recovers, clients need to reconnect in order to
2529  * reestablish shared state.  This includes all caps issued through
2530  * this session _and_ the snap_realm hierarchy.  Because it's not
2531  * clear which snap realms the mds cares about, we send everything we
2532  * know about.. that ensures we'll then get any new info the
2533  * recovering MDS might have.
2534  *
2535  * This is a relatively heavyweight operation, but it's rare.
2536  *
2537  * called with mdsc->mutex held.
2538  */
2539 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2540                                struct ceph_mds_session *session)
2541 {
2542         struct ceph_msg *reply;
2543         struct rb_node *p;
2544         int mds = session->s_mds;
2545         int err = -ENOMEM;
2546         struct ceph_pagelist *pagelist;
2547         struct ceph_reconnect_state recon_state;
2548
2549         pr_info("mds%d reconnect start\n", mds);
2550
2551         pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2552         if (!pagelist)
2553                 goto fail_nopagelist;
2554         ceph_pagelist_init(pagelist);
2555
2556         reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2557         if (!reply)
2558                 goto fail_nomsg;
2559
2560         mutex_lock(&session->s_mutex);
2561         session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2562         session->s_seq = 0;
2563
2564         ceph_con_close(&session->s_con);
2565         ceph_con_open(&session->s_con,
2566                       CEPH_ENTITY_TYPE_MDS, mds,
2567                       ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2568
2569         /* replay unsafe requests */
2570         replay_unsafe_requests(mdsc, session);
2571
2572         down_read(&mdsc->snap_rwsem);
2573
2574         dout("session %p state %s\n", session,
2575              session_state_name(session->s_state));
2576
2577         /* drop old cap expires; we're about to reestablish that state */
2578         discard_cap_releases(mdsc, session);
2579
2580         /* traverse this session's caps */
2581         err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2582         if (err)
2583                 goto fail;
2584
2585         recon_state.pagelist = pagelist;
2586         recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2587         err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2588         if (err < 0)
2589                 goto fail;
2590
2591         /*
2592          * snaprealms.  we provide mds with the ino, seq (version), and
2593          * parent for all of our realms.  If the mds has any newer info,
2594          * it will tell us.
2595          */
2596         for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2597                 struct ceph_snap_realm *realm =
2598                         rb_entry(p, struct ceph_snap_realm, node);
2599                 struct ceph_mds_snaprealm_reconnect sr_rec;
2600
2601                 dout(" adding snap realm %llx seq %lld parent %llx\n",
2602                      realm->ino, realm->seq, realm->parent_ino);
2603                 sr_rec.ino = cpu_to_le64(realm->ino);
2604                 sr_rec.seq = cpu_to_le64(realm->seq);
2605                 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2606                 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2607                 if (err)
2608                         goto fail;
2609         }
2610
2611         if (recon_state.flock)
2612                 reply->hdr.version = cpu_to_le16(2);
2613         if (pagelist->length) {
2614                 /* set up outbound data if we have any */
2615                 reply->hdr.data_len = cpu_to_le32(pagelist->length);
2616                 ceph_msg_data_add_pagelist(reply, pagelist);
2617         }
2618         ceph_con_send(&session->s_con, reply);
2619
2620         mutex_unlock(&session->s_mutex);
2621
2622         mutex_lock(&mdsc->mutex);
2623         __wake_requests(mdsc, &session->s_waiting);
2624         mutex_unlock(&mdsc->mutex);
2625
2626         up_read(&mdsc->snap_rwsem);
2627         return;
2628
2629 fail:
2630         ceph_msg_put(reply);
2631         up_read(&mdsc->snap_rwsem);
2632         mutex_unlock(&session->s_mutex);
2633 fail_nomsg:
2634         ceph_pagelist_release(pagelist);
2635         kfree(pagelist);
2636 fail_nopagelist:
2637         pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2638         return;
2639 }
2640
2641
2642 /*
2643  * compare old and new mdsmaps, kicking requests
2644  * and closing out old connections as necessary
2645  *
2646  * called under mdsc->mutex.
2647  */
2648 static void check_new_map(struct ceph_mds_client *mdsc,
2649                           struct ceph_mdsmap *newmap,
2650                           struct ceph_mdsmap *oldmap)
2651 {
2652         int i;
2653         int oldstate, newstate;
2654         struct ceph_mds_session *s;
2655
2656         dout("check_new_map new %u old %u\n",
2657              newmap->m_epoch, oldmap->m_epoch);
2658
2659         for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2660                 if (mdsc->sessions[i] == NULL)
2661                         continue;
2662                 s = mdsc->sessions[i];
2663                 oldstate = ceph_mdsmap_get_state(oldmap, i);
2664                 newstate = ceph_mdsmap_get_state(newmap, i);
2665
2666                 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2667                      i, ceph_mds_state_name(oldstate),
2668                      ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2669                      ceph_mds_state_name(newstate),
2670                      ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2671                      session_state_name(s->s_state));
2672
2673                 if (i >= newmap->m_max_mds ||
2674                     memcmp(ceph_mdsmap_get_addr(oldmap, i),
2675                            ceph_mdsmap_get_addr(newmap, i),
2676                            sizeof(struct ceph_entity_addr))) {
2677                         if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2678                                 /* the session never opened, just close it
2679                                  * out now */
2680                                 __wake_requests(mdsc, &s->s_waiting);
2681                                 __unregister_session(mdsc, s);
2682                         } else {
2683                                 /* just close it */
2684                                 mutex_unlock(&mdsc->mutex);
2685                                 mutex_lock(&s->s_mutex);
2686                                 mutex_lock(&mdsc->mutex);
2687                                 ceph_con_close(&s->s_con);
2688                                 mutex_unlock(&s->s_mutex);
2689                                 s->s_state = CEPH_MDS_SESSION_RESTARTING;
2690                         }
2691
2692                         /* kick any requests waiting on the recovering mds */
2693                         kick_requests(mdsc, i);
2694                 } else if (oldstate == newstate) {
2695                         continue;  /* nothing new with this mds */
2696                 }
2697
2698                 /*
2699                  * send reconnect?
2700                  */
2701                 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2702                     newstate >= CEPH_MDS_STATE_RECONNECT) {
2703                         mutex_unlock(&mdsc->mutex);
2704                         send_mds_reconnect(mdsc, s);
2705                         mutex_lock(&mdsc->mutex);
2706                 }
2707
2708                 /*
2709                  * kick request on any mds that has gone active.
2710                  */
2711                 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2712                     newstate >= CEPH_MDS_STATE_ACTIVE) {
2713                         if (oldstate != CEPH_MDS_STATE_CREATING &&
2714                             oldstate != CEPH_MDS_STATE_STARTING)
2715                                 pr_info("mds%d recovery completed\n", s->s_mds);
2716                         kick_requests(mdsc, i);
2717                         ceph_kick_flushing_caps(mdsc, s);
2718                         wake_up_session_caps(s, 1);
2719                 }
2720         }
2721
2722         for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2723                 s = mdsc->sessions[i];
2724                 if (!s)
2725                         continue;
2726                 if (!ceph_mdsmap_is_laggy(newmap, i))
2727                         continue;
2728                 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2729                     s->s_state == CEPH_MDS_SESSION_HUNG ||
2730                     s->s_state == CEPH_MDS_SESSION_CLOSING) {
2731                         dout(" connecting to export targets of laggy mds%d\n",
2732                              i);
2733                         __open_export_target_sessions(mdsc, s);
2734                 }
2735         }
2736 }
2737
2738
2739
2740 /*
2741  * leases
2742  */
2743
2744 /*
2745  * caller must hold session s_mutex, dentry->d_lock
2746  */
2747 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2748 {
2749         struct ceph_dentry_info *di = ceph_dentry(dentry);
2750
2751         ceph_put_mds_session(di->lease_session);
2752         di->lease_session = NULL;
2753 }
2754
2755 static void handle_lease(struct ceph_mds_client *mdsc,
2756                          struct ceph_mds_session *session,
2757                          struct ceph_msg *msg)
2758 {
2759         struct super_block *sb = mdsc->fsc->sb;
2760         struct inode *inode;
2761         struct dentry *parent, *dentry;
2762         struct ceph_dentry_info *di;
2763         int mds = session->s_mds;
2764         struct ceph_mds_lease *h = msg->front.iov_base;
2765         u32 seq;
2766         struct ceph_vino vino;
2767         struct qstr dname;
2768         int release = 0;
2769
2770         dout("handle_lease from mds%d\n", mds);
2771
2772         /* decode */
2773         if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2774                 goto bad;
2775         vino.ino = le64_to_cpu(h->ino);
2776         vino.snap = CEPH_NOSNAP;
2777         seq = le32_to_cpu(h->seq);
2778         dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2779         dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2780         if (dname.len != get_unaligned_le32(h+1))
2781                 goto bad;
2782
2783         mutex_lock(&session->s_mutex);
2784         session->s_seq++;
2785
2786         /* lookup inode */
2787         inode = ceph_find_inode(sb, vino);
2788         dout("handle_lease %s, ino %llx %p %.*s\n",
2789              ceph_lease_op_name(h->action), vino.ino, inode,
2790              dname.len, dname.name);
2791         if (inode == NULL) {
2792                 dout("handle_lease no inode %llx\n", vino.ino);
2793                 goto release;
2794         }
2795
2796         /* dentry */
2797         parent = d_find_alias(inode);
2798         if (!parent) {
2799                 dout("no parent dentry on inode %p\n", inode);
2800                 WARN_ON(1);
2801                 goto release;  /* hrm... */
2802         }
2803         dname.hash = full_name_hash(dname.name, dname.len);
2804         dentry = d_lookup(parent, &dname);
2805         dput(parent);
2806         if (!dentry)
2807                 goto release;
2808
2809         spin_lock(&dentry->d_lock);
2810         di = ceph_dentry(dentry);
2811         switch (h->action) {
2812         case CEPH_MDS_LEASE_REVOKE:
2813                 if (di->lease_session == session) {
2814                         if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2815                                 h->seq = cpu_to_le32(di->lease_seq);
2816                         __ceph_mdsc_drop_dentry_lease(dentry);
2817                 }
2818                 release = 1;
2819                 break;
2820
2821         case CEPH_MDS_LEASE_RENEW:
2822                 if (di->lease_session == session &&
2823                     di->lease_gen == session->s_cap_gen &&
2824                     di->lease_renew_from &&
2825                     di->lease_renew_after == 0) {
2826                         unsigned long duration =
2827                                 le32_to_cpu(h->duration_ms) * HZ / 1000;
2828
2829                         di->lease_seq = seq;
2830                         dentry->d_time = di->lease_renew_from + duration;
2831                         di->lease_renew_after = di->lease_renew_from +
2832                                 (duration >> 1);
2833                         di->lease_renew_from = 0;
2834                 }
2835                 break;
2836         }
2837         spin_unlock(&dentry->d_lock);
2838         dput(dentry);
2839
2840         if (!release)
2841                 goto out;
2842
2843 release:
2844         /* let's just reuse the same message */
2845         h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2846         ceph_msg_get(msg);
2847         ceph_con_send(&session->s_con, msg);
2848
2849 out:
2850         iput(inode);
2851         mutex_unlock(&session->s_mutex);
2852         return;
2853
2854 bad:
2855         pr_err("corrupt lease message\n");
2856         ceph_msg_dump(msg);
2857 }
2858
2859 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2860                               struct inode *inode,
2861                               struct dentry *dentry, char action,
2862                               u32 seq)
2863 {
2864         struct ceph_msg *msg;
2865         struct ceph_mds_lease *lease;
2866         int len = sizeof(*lease) + sizeof(u32);
2867         int dnamelen = 0;
2868
2869         dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2870              inode, dentry, ceph_lease_op_name(action), session->s_mds);
2871         dnamelen = dentry->d_name.len;
2872         len += dnamelen;
2873
2874         msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
2875         if (!msg)
2876                 return;
2877         lease = msg->front.iov_base;
2878         lease->action = action;
2879         lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2880         lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2881         lease->seq = cpu_to_le32(seq);
2882         put_unaligned_le32(dnamelen, lease + 1);
2883         memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2884
2885         /*
2886          * if this is a preemptive lease RELEASE, no need to
2887          * flush request stream, since the actual request will
2888          * soon follow.
2889          */
2890         msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2891
2892         ceph_con_send(&session->s_con, msg);
2893 }
2894
2895 /*
2896  * Preemptively release a lease we expect to invalidate anyway.
2897  * Pass @inode always, @dentry is optional.
2898  */
2899 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2900                              struct dentry *dentry)
2901 {
2902         struct ceph_dentry_info *di;
2903         struct ceph_mds_session *session;
2904         u32 seq;
2905
2906         BUG_ON(inode == NULL);
2907         BUG_ON(dentry == NULL);
2908
2909         /* is dentry lease valid? */
2910         spin_lock(&dentry->d_lock);
2911         di = ceph_dentry(dentry);
2912         if (!di || !di->lease_session ||
2913             di->lease_session->s_mds < 0 ||
2914             di->lease_gen != di->lease_session->s_cap_gen ||
2915             !time_before(jiffies, dentry->d_time)) {
2916                 dout("lease_release inode %p dentry %p -- "
2917                      "no lease\n",
2918                      inode, dentry);
2919                 spin_unlock(&dentry->d_lock);
2920                 return;
2921         }
2922
2923         /* we do have a lease on this dentry; note mds and seq */
2924         session = ceph_get_mds_session(di->lease_session);
2925         seq = di->lease_seq;
2926         __ceph_mdsc_drop_dentry_lease(dentry);
2927         spin_unlock(&dentry->d_lock);
2928
2929         dout("lease_release inode %p dentry %p to mds%d\n",
2930              inode, dentry, session->s_mds);
2931         ceph_mdsc_lease_send_msg(session, inode, dentry,
2932                                  CEPH_MDS_LEASE_RELEASE, seq);
2933         ceph_put_mds_session(session);
2934 }
2935
2936 /*
2937  * drop all leases (and dentry refs) in preparation for umount
2938  */
2939 static void drop_leases(struct ceph_mds_client *mdsc)
2940 {
2941         int i;
2942
2943         dout("drop_leases\n");
2944         mutex_lock(&mdsc->mutex);
2945         for (i = 0; i < mdsc->max_sessions; i++) {
2946                 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2947                 if (!s)
2948                         continue;
2949                 mutex_unlock(&mdsc->mutex);
2950                 mutex_lock(&s->s_mutex);
2951                 mutex_unlock(&s->s_mutex);
2952                 ceph_put_mds_session(s);
2953                 mutex_lock(&mdsc->mutex);
2954         }
2955         mutex_unlock(&mdsc->mutex);
2956 }
2957
2958
2959
2960 /*
2961  * delayed work -- periodically trim expired leases, renew caps with mds
2962  */
2963 static void schedule_delayed(struct ceph_mds_client *mdsc)
2964 {
2965         int delay = 5;
2966         unsigned hz = round_jiffies_relative(HZ * delay);
2967         schedule_delayed_work(&mdsc->delayed_work, hz);
2968 }
2969
2970 static void delayed_work(struct work_struct *work)
2971 {
2972         int i;
2973         struct ceph_mds_client *mdsc =
2974                 container_of(work, struct ceph_mds_client, delayed_work.work);
2975         int renew_interval;
2976         int renew_caps;
2977
2978         dout("mdsc delayed_work\n");
2979         ceph_check_delayed_caps(mdsc);
2980
2981         mutex_lock(&mdsc->mutex);
2982         renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2983         renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2984                                    mdsc->last_renew_caps);
2985         if (renew_caps)
2986                 mdsc->last_renew_caps = jiffies;
2987
2988         for (i = 0; i < mdsc->max_sessions; i++) {
2989                 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2990                 if (s == NULL)
2991                         continue;
2992                 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2993                         dout("resending session close request for mds%d\n",
2994                              s->s_mds);
2995                         request_close_session(mdsc, s);
2996                         ceph_put_mds_session(s);
2997                         continue;
2998                 }
2999                 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3000                         if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3001                                 s->s_state = CEPH_MDS_SESSION_HUNG;
3002                                 pr_info("mds%d hung\n", s->s_mds);
3003                         }
3004                 }
3005                 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3006                         /* this mds is failed or recovering, just wait */
3007                         ceph_put_mds_session(s);
3008                         continue;
3009                 }
3010                 mutex_unlock(&mdsc->mutex);
3011
3012                 mutex_lock(&s->s_mutex);
3013                 if (renew_caps)
3014                         send_renew_caps(mdsc, s);
3015                 else
3016                         ceph_con_keepalive(&s->s_con);
3017                 ceph_add_cap_releases(mdsc, s);
3018                 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3019                     s->s_state == CEPH_MDS_SESSION_HUNG)
3020                         ceph_send_cap_releases(mdsc, s);
3021                 mutex_unlock(&s->s_mutex);
3022                 ceph_put_mds_session(s);
3023
3024                 mutex_lock(&mdsc->mutex);
3025         }
3026         mutex_unlock(&mdsc->mutex);
3027
3028         schedule_delayed(mdsc);
3029 }
3030
3031 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3032
3033 {
3034         struct ceph_mds_client *mdsc;
3035
3036         mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3037         if (!mdsc)
3038                 return -ENOMEM;
3039         mdsc->fsc = fsc;
3040         fsc->mdsc = mdsc;
3041         mutex_init(&mdsc->mutex);
3042         mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3043         if (mdsc->mdsmap == NULL)
3044                 return -ENOMEM;
3045
3046         init_completion(&mdsc->safe_umount_waiters);
3047         init_waitqueue_head(&mdsc->session_close_wq);
3048         INIT_LIST_HEAD(&mdsc->waiting_for_map);
3049         mdsc->sessions = NULL;
3050         mdsc->max_sessions = 0;
3051         mdsc->stopping = 0;
3052         init_rwsem(&mdsc->snap_rwsem);
3053         mdsc->snap_realms = RB_ROOT;
3054         INIT_LIST_HEAD(&mdsc->snap_empty);
3055         spin_lock_init(&mdsc->snap_empty_lock);
3056         mdsc->last_tid = 0;
3057         mdsc->request_tree = RB_ROOT;
3058         INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3059         mdsc->last_renew_caps = jiffies;
3060         INIT_LIST_HEAD(&mdsc->cap_delay_list);
3061         spin_lock_init(&mdsc->cap_delay_lock);
3062         INIT_LIST_HEAD(&mdsc->snap_flush_list);
3063         spin_lock_init(&mdsc->snap_flush_lock);
3064         mdsc->cap_flush_seq = 0;
3065         INIT_LIST_HEAD(&mdsc->cap_dirty);
3066         INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3067         mdsc->num_cap_flushing = 0;
3068         spin_lock_init(&mdsc->cap_dirty_lock);
3069         init_waitqueue_head(&mdsc->cap_flushing_wq);
3070         spin_lock_init(&mdsc->dentry_lru_lock);
3071         INIT_LIST_HEAD(&mdsc->dentry_lru);
3072
3073         ceph_caps_init(mdsc);
3074         ceph_adjust_min_caps(mdsc, fsc->min_caps);
3075
3076         return 0;
3077 }
3078
3079 /*
3080  * Wait for safe replies on open mds requests.  If we time out, drop
3081  * all requests from the tree to avoid dangling dentry refs.
3082  */
3083 static void wait_requests(struct ceph_mds_client *mdsc)
3084 {
3085         struct ceph_mds_request *req;
3086         struct ceph_fs_client *fsc = mdsc->fsc;
3087
3088         mutex_lock(&mdsc->mutex);
3089         if (__get_oldest_req(mdsc)) {
3090                 mutex_unlock(&mdsc->mutex);
3091
3092                 dout("wait_requests waiting for requests\n");
3093                 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3094                                     fsc->client->options->mount_timeout * HZ);
3095
3096                 /* tear down remaining requests */
3097                 mutex_lock(&mdsc->mutex);
3098                 while ((req = __get_oldest_req(mdsc))) {
3099                         dout("wait_requests timed out on tid %llu\n",
3100                              req->r_tid);
3101                         __unregister_request(mdsc, req);
3102                 }
3103         }
3104         mutex_unlock(&mdsc->mutex);
3105         dout("wait_requests done\n");
3106 }
3107
3108 /*
3109  * called before mount is ro, and before dentries are torn down.
3110  * (hmm, does this still race with new lookups?)
3111  */
3112 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3113 {
3114         dout("pre_umount\n");
3115         mdsc->stopping = 1;
3116
3117         drop_leases(mdsc);
3118         ceph_flush_dirty_caps(mdsc);
3119         wait_requests(mdsc);
3120
3121         /*
3122          * wait for reply handlers to drop their request refs and
3123          * their inode/dcache refs
3124          */
3125         ceph_msgr_flush();
3126 }
3127
3128 /*
3129  * wait for all write mds requests to flush.
3130  */
3131 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3132 {
3133         struct ceph_mds_request *req = NULL, *nextreq;
3134         struct rb_node *n;
3135
3136         mutex_lock(&mdsc->mutex);
3137         dout("wait_unsafe_requests want %lld\n", want_tid);
3138 restart:
3139         req = __get_oldest_req(mdsc);
3140         while (req && req->r_tid <= want_tid) {
3141                 /* find next request */
3142                 n = rb_next(&req->r_node);
3143                 if (n)
3144                         nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3145                 else
3146                         nextreq = NULL;
3147                 if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3148                         /* write op */
3149                         ceph_mdsc_get_request(req);
3150                         if (nextreq)
3151                                 ceph_mdsc_get_request(nextreq);
3152                         mutex_unlock(&mdsc->mutex);
3153                         dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3154                              req->r_tid, want_tid);
3155                         wait_for_completion(&req->r_safe_completion);
3156                         mutex_lock(&mdsc->mutex);
3157                         ceph_mdsc_put_request(req);
3158                         if (!nextreq)
3159                                 break;  /* next dne before, so we're done! */
3160                         if (RB_EMPTY_NODE(&nextreq->r_node)) {
3161                                 /* next request was removed from tree */
3162                                 ceph_mdsc_put_request(nextreq);
3163                                 goto restart;
3164                         }
3165                         ceph_mdsc_put_request(nextreq);  /* won't go away */
3166                 }
3167                 req = nextreq;
3168         }
3169         mutex_unlock(&mdsc->mutex);
3170         dout("wait_unsafe_requests done\n");
3171 }
3172
3173 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3174 {
3175         u64 want_tid, want_flush;
3176
3177         if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3178                 return;
3179
3180         dout("sync\n");
3181         mutex_lock(&mdsc->mutex);
3182         want_tid = mdsc->last_tid;
3183         want_flush = mdsc->cap_flush_seq;
3184         mutex_unlock(&mdsc->mutex);
3185         dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3186
3187         ceph_flush_dirty_caps(mdsc);
3188
3189         wait_unsafe_requests(mdsc, want_tid);
3190         wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3191 }
3192
3193 /*
3194  * true if all sessions are closed, or we force unmount
3195  */
3196 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3197 {
3198         int i, n = 0;
3199
3200         if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3201                 return true;
3202
3203         mutex_lock(&mdsc->mutex);
3204         for (i = 0; i < mdsc->max_sessions; i++)
3205                 if (mdsc->sessions[i])
3206                         n++;
3207         mutex_unlock(&mdsc->mutex);
3208         return n == 0;
3209 }
3210
3211 /*
3212  * called after sb is ro.
3213  */
3214 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3215 {
3216         struct ceph_mds_session *session;
3217         int i;
3218         struct ceph_fs_client *fsc = mdsc->fsc;
3219         unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3220
3221         dout("close_sessions\n");
3222
3223         /* close sessions */
3224         mutex_lock(&mdsc->mutex);
3225         for (i = 0; i < mdsc->max_sessions; i++) {
3226                 session = __ceph_lookup_mds_session(mdsc, i);
3227                 if (!session)
3228                         continue;
3229                 mutex_unlock(&mdsc->mutex);
3230                 mutex_lock(&session->s_mutex);
3231                 __close_session(mdsc, session);
3232                 mutex_unlock(&session->s_mutex);
3233                 ceph_put_mds_session(session);
3234                 mutex_lock(&mdsc->mutex);
3235         }
3236         mutex_unlock(&mdsc->mutex);
3237
3238         dout("waiting for sessions to close\n");
3239         wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3240                            timeout);
3241
3242         /* tear down remaining sessions */
3243         mutex_lock(&mdsc->mutex);
3244         for (i = 0; i < mdsc->max_sessions; i++) {
3245                 if (mdsc->sessions[i]) {
3246                         session = get_session(mdsc->sessions[i]);
3247                         __unregister_session(mdsc, session);
3248                         mutex_unlock(&mdsc->mutex);
3249                         mutex_lock(&session->s_mutex);
3250                         remove_session_caps(session);
3251                         mutex_unlock(&session->s_mutex);
3252                         ceph_put_mds_session(session);
3253                         mutex_lock(&mdsc->mutex);
3254                 }
3255         }
3256         WARN_ON(!list_empty(&mdsc->cap_delay_list));
3257         mutex_unlock(&mdsc->mutex);
3258
3259         ceph_cleanup_empty_realms(mdsc);
3260
3261         cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3262
3263         dout("stopped\n");
3264 }
3265
3266 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3267 {
3268         dout("stop\n");
3269         cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3270         if (mdsc->mdsmap)
3271                 ceph_mdsmap_destroy(mdsc->mdsmap);
3272         kfree(mdsc->sessions);
3273         ceph_caps_finalize(mdsc);
3274 }
3275
3276 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3277 {
3278         struct ceph_mds_client *mdsc = fsc->mdsc;
3279
3280         dout("mdsc_destroy %p\n", mdsc);
3281         ceph_mdsc_stop(mdsc);
3282
3283         /* flush out any connection work with references to us */
3284         ceph_msgr_flush();
3285
3286         fsc->mdsc = NULL;
3287         kfree(mdsc);
3288         dout("mdsc_destroy %p done\n", mdsc);
3289 }
3290
3291
3292 /*
3293  * handle mds map update.
3294  */
3295 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3296 {
3297         u32 epoch;
3298         u32 maplen;
3299         void *p = msg->front.iov_base;
3300         void *end = p + msg->front.iov_len;
3301         struct ceph_mdsmap *newmap, *oldmap;
3302         struct ceph_fsid fsid;
3303         int err = -EINVAL;
3304
3305         ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3306         ceph_decode_copy(&p, &fsid, sizeof(fsid));
3307         if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3308                 return;
3309         epoch = ceph_decode_32(&p);
3310         maplen = ceph_decode_32(&p);
3311         dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3312
3313         /* do we need it? */
3314         ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3315         mutex_lock(&mdsc->mutex);
3316         if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3317                 dout("handle_map epoch %u <= our %u\n",
3318                      epoch, mdsc->mdsmap->m_epoch);
3319                 mutex_unlock(&mdsc->mutex);
3320                 return;
3321         }
3322
3323         newmap = ceph_mdsmap_decode(&p, end);
3324         if (IS_ERR(newmap)) {
3325                 err = PTR_ERR(newmap);
3326                 goto bad_unlock;
3327         }
3328
3329         /* swap into place */
3330         if (mdsc->mdsmap) {
3331                 oldmap = mdsc->mdsmap;
3332                 mdsc->mdsmap = newmap;
3333                 check_new_map(mdsc, newmap, oldmap);
3334                 ceph_mdsmap_destroy(oldmap);
3335         } else {
3336                 mdsc->mdsmap = newmap;  /* first mds map */
3337         }
3338         mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3339
3340         __wake_requests(mdsc, &mdsc->waiting_for_map);
3341
3342         mutex_unlock(&mdsc->mutex);
3343         schedule_delayed(mdsc);
3344         return;
3345
3346 bad_unlock:
3347         mutex_unlock(&mdsc->mutex);
3348 bad:
3349         pr_err("error decoding mdsmap %d\n", err);
3350         return;
3351 }
3352
3353 static struct ceph_connection *con_get(struct ceph_connection *con)
3354 {
3355         struct ceph_mds_session *s = con->private;
3356
3357         if (get_session(s)) {
3358                 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3359                 return con;
3360         }
3361         dout("mdsc con_get %p FAIL\n", s);
3362         return NULL;
3363 }
3364
3365 static void con_put(struct ceph_connection *con)
3366 {
3367         struct ceph_mds_session *s = con->private;
3368
3369         dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3370         ceph_put_mds_session(s);
3371 }
3372
3373 /*
3374  * if the client is unresponsive for long enough, the mds will kill
3375  * the session entirely.
3376  */
3377 static void peer_reset(struct ceph_connection *con)
3378 {
3379         struct ceph_mds_session *s = con->private;
3380         struct ceph_mds_client *mdsc = s->s_mdsc;
3381
3382         pr_warning("mds%d closed our session\n", s->s_mds);
3383         send_mds_reconnect(mdsc, s);
3384 }
3385
3386 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3387 {
3388         struct ceph_mds_session *s = con->private;
3389         struct ceph_mds_client *mdsc = s->s_mdsc;
3390         int type = le16_to_cpu(msg->hdr.type);
3391
3392         mutex_lock(&mdsc->mutex);
3393         if (__verify_registered_session(mdsc, s) < 0) {
3394                 mutex_unlock(&mdsc->mutex);
3395                 goto out;
3396         }
3397         mutex_unlock(&mdsc->mutex);
3398
3399         switch (type) {
3400         case CEPH_MSG_MDS_MAP:
3401                 ceph_mdsc_handle_map(mdsc, msg);
3402                 break;
3403         case CEPH_MSG_CLIENT_SESSION:
3404                 handle_session(s, msg);
3405                 break;
3406         case CEPH_MSG_CLIENT_REPLY:
3407                 handle_reply(s, msg);
3408                 break;
3409         case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3410                 handle_forward(mdsc, s, msg);
3411                 break;
3412         case CEPH_MSG_CLIENT_CAPS:
3413                 ceph_handle_caps(s, msg);
3414                 break;
3415         case CEPH_MSG_CLIENT_SNAP:
3416                 ceph_handle_snap(mdsc, s, msg);
3417                 break;
3418         case CEPH_MSG_CLIENT_LEASE:
3419                 handle_lease(mdsc, s, msg);
3420                 break;
3421
3422         default:
3423                 pr_err("received unknown message type %d %s\n", type,
3424                        ceph_msg_type_name(type));
3425         }
3426 out:
3427         ceph_msg_put(msg);
3428 }
3429
3430 /*
3431  * authentication
3432  */
3433
3434 /*
3435  * Note: returned pointer is the address of a structure that's
3436  * managed separately.  Caller must *not* attempt to free it.
3437  */
3438 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3439                                         int *proto, int force_new)
3440 {
3441         struct ceph_mds_session *s = con->private;
3442         struct ceph_mds_client *mdsc = s->s_mdsc;
3443         struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3444         struct ceph_auth_handshake *auth = &s->s_auth;
3445
3446         if (force_new && auth->authorizer) {
3447                 ceph_auth_destroy_authorizer(ac, auth->authorizer);
3448                 auth->authorizer = NULL;
3449         }
3450         if (!auth->authorizer) {
3451                 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3452                                                       auth);
3453                 if (ret)
3454                         return ERR_PTR(ret);
3455         } else {
3456                 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3457                                                       auth);
3458                 if (ret)
3459                         return ERR_PTR(ret);
3460         }
3461         *proto = ac->protocol;
3462
3463         return auth;
3464 }
3465
3466
3467 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3468 {
3469         struct ceph_mds_session *s = con->private;
3470         struct ceph_mds_client *mdsc = s->s_mdsc;
3471         struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3472
3473         return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3474 }
3475
3476 static int invalidate_authorizer(struct ceph_connection *con)
3477 {
3478         struct ceph_mds_session *s = con->private;
3479         struct ceph_mds_client *mdsc = s->s_mdsc;
3480         struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3481
3482         ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3483
3484         return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3485 }
3486
3487 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
3488                                 struct ceph_msg_header *hdr, int *skip)
3489 {
3490         struct ceph_msg *msg;
3491         int type = (int) le16_to_cpu(hdr->type);
3492         int front_len = (int) le32_to_cpu(hdr->front_len);
3493
3494         if (con->in_msg)
3495                 return con->in_msg;
3496
3497         *skip = 0;
3498         msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
3499         if (!msg) {
3500                 pr_err("unable to allocate msg type %d len %d\n",
3501                        type, front_len);
3502                 return NULL;
3503         }
3504
3505         return msg;
3506 }
3507
3508 static const struct ceph_connection_operations mds_con_ops = {
3509         .get = con_get,
3510         .put = con_put,
3511         .dispatch = dispatch,
3512         .get_authorizer = get_authorizer,
3513         .verify_authorizer_reply = verify_authorizer_reply,
3514         .invalidate_authorizer = invalidate_authorizer,
3515         .peer_reset = peer_reset,
3516         .alloc_msg = mds_alloc_msg,
3517 };
3518
3519 /* eof */