Merge tag 'isci-for-3.5' into misc
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / reada.c
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
26 #include "ctree.h"
27 #include "volumes.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30
31 #undef DEBUG
32
33 /*
34  * This is the implementation for the generic read ahead framework.
35  *
36  * To trigger a readahead, btrfs_reada_add must be called. It will start
37  * a read ahead for the given range [start, end) on tree root. The returned
38  * handle can either be used to wait on the readahead to finish
39  * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
40  *
41  * The read ahead works as follows:
42  * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
43  * reada_start_machine will then search for extents to prefetch and trigger
44  * some reads. When a read finishes for a node, all contained node/leaf
45  * pointers that lie in the given range will also be enqueued. The reads will
46  * be triggered in sequential order, thus giving a big win over a naive
47  * enumeration. It will also make use of multi-device layouts. Each disk
48  * will have its on read pointer and all disks will by utilized in parallel.
49  * Also will no two disks read both sides of a mirror simultaneously, as this
50  * would waste seeking capacity. Instead both disks will read different parts
51  * of the filesystem.
52  * Any number of readaheads can be started in parallel. The read order will be
53  * determined globally, i.e. 2 parallel readaheads will normally finish faster
54  * than the 2 started one after another.
55  */
56
57 #define MAX_IN_FLIGHT 6
58
59 struct reada_extctl {
60         struct list_head        list;
61         struct reada_control    *rc;
62         u64                     generation;
63 };
64
65 struct reada_extent {
66         u64                     logical;
67         struct btrfs_key        top;
68         u32                     blocksize;
69         int                     err;
70         struct list_head        extctl;
71         struct kref             refcnt;
72         spinlock_t              lock;
73         struct reada_zone       *zones[BTRFS_MAX_MIRRORS];
74         int                     nzones;
75         struct btrfs_device     *scheduled_for;
76 };
77
78 struct reada_zone {
79         u64                     start;
80         u64                     end;
81         u64                     elems;
82         struct list_head        list;
83         spinlock_t              lock;
84         int                     locked;
85         struct btrfs_device     *device;
86         struct btrfs_device     *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
87                                                            * self */
88         int                     ndevs;
89         struct kref             refcnt;
90 };
91
92 struct reada_machine_work {
93         struct btrfs_work       work;
94         struct btrfs_fs_info    *fs_info;
95 };
96
97 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
98 static void reada_control_release(struct kref *kref);
99 static void reada_zone_release(struct kref *kref);
100 static void reada_start_machine(struct btrfs_fs_info *fs_info);
101 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
102
103 static int reada_add_block(struct reada_control *rc, u64 logical,
104                            struct btrfs_key *top, int level, u64 generation);
105
106 /* recurses */
107 /* in case of err, eb might be NULL */
108 static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
109                             u64 start, int err)
110 {
111         int level = 0;
112         int nritems;
113         int i;
114         u64 bytenr;
115         u64 generation;
116         struct reada_extent *re;
117         struct btrfs_fs_info *fs_info = root->fs_info;
118         struct list_head list;
119         unsigned long index = start >> PAGE_CACHE_SHIFT;
120         struct btrfs_device *for_dev;
121
122         if (eb)
123                 level = btrfs_header_level(eb);
124
125         /* find extent */
126         spin_lock(&fs_info->reada_lock);
127         re = radix_tree_lookup(&fs_info->reada_tree, index);
128         if (re)
129                 kref_get(&re->refcnt);
130         spin_unlock(&fs_info->reada_lock);
131
132         if (!re)
133                 return -1;
134
135         spin_lock(&re->lock);
136         /*
137          * just take the full list from the extent. afterwards we
138          * don't need the lock anymore
139          */
140         list_replace_init(&re->extctl, &list);
141         for_dev = re->scheduled_for;
142         re->scheduled_for = NULL;
143         spin_unlock(&re->lock);
144
145         if (err == 0) {
146                 nritems = level ? btrfs_header_nritems(eb) : 0;
147                 generation = btrfs_header_generation(eb);
148                 /*
149                  * FIXME: currently we just set nritems to 0 if this is a leaf,
150                  * effectively ignoring the content. In a next step we could
151                  * trigger more readahead depending from the content, e.g.
152                  * fetch the checksums for the extents in the leaf.
153                  */
154         } else {
155                 /*
156                  * this is the error case, the extent buffer has not been
157                  * read correctly. We won't access anything from it and
158                  * just cleanup our data structures. Effectively this will
159                  * cut the branch below this node from read ahead.
160                  */
161                 nritems = 0;
162                 generation = 0;
163         }
164
165         for (i = 0; i < nritems; i++) {
166                 struct reada_extctl *rec;
167                 u64 n_gen;
168                 struct btrfs_key key;
169                 struct btrfs_key next_key;
170
171                 btrfs_node_key_to_cpu(eb, &key, i);
172                 if (i + 1 < nritems)
173                         btrfs_node_key_to_cpu(eb, &next_key, i + 1);
174                 else
175                         next_key = re->top;
176                 bytenr = btrfs_node_blockptr(eb, i);
177                 n_gen = btrfs_node_ptr_generation(eb, i);
178
179                 list_for_each_entry(rec, &list, list) {
180                         struct reada_control *rc = rec->rc;
181
182                         /*
183                          * if the generation doesn't match, just ignore this
184                          * extctl. This will probably cut off a branch from
185                          * prefetch. Alternatively one could start a new (sub-)
186                          * prefetch for this branch, starting again from root.
187                          * FIXME: move the generation check out of this loop
188                          */
189 #ifdef DEBUG
190                         if (rec->generation != generation) {
191                                 printk(KERN_DEBUG "generation mismatch for "
192                                                 "(%llu,%d,%llu) %llu != %llu\n",
193                                        key.objectid, key.type, key.offset,
194                                        rec->generation, generation);
195                         }
196 #endif
197                         if (rec->generation == generation &&
198                             btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
199                             btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
200                                 reada_add_block(rc, bytenr, &next_key,
201                                                 level - 1, n_gen);
202                 }
203         }
204         /*
205          * free extctl records
206          */
207         while (!list_empty(&list)) {
208                 struct reada_control *rc;
209                 struct reada_extctl *rec;
210
211                 rec = list_first_entry(&list, struct reada_extctl, list);
212                 list_del(&rec->list);
213                 rc = rec->rc;
214                 kfree(rec);
215
216                 kref_get(&rc->refcnt);
217                 if (atomic_dec_and_test(&rc->elems)) {
218                         kref_put(&rc->refcnt, reada_control_release);
219                         wake_up(&rc->wait);
220                 }
221                 kref_put(&rc->refcnt, reada_control_release);
222
223                 reada_extent_put(fs_info, re);  /* one ref for each entry */
224         }
225         reada_extent_put(fs_info, re);  /* our ref */
226         if (for_dev)
227                 atomic_dec(&for_dev->reada_in_flight);
228
229         return 0;
230 }
231
232 /*
233  * start is passed separately in case eb in NULL, which may be the case with
234  * failed I/O
235  */
236 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
237                          u64 start, int err)
238 {
239         int ret;
240
241         ret = __readahead_hook(root, eb, start, err);
242
243         reada_start_machine(root->fs_info);
244
245         return ret;
246 }
247
248 static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
249                                           struct btrfs_device *dev, u64 logical,
250                                           struct btrfs_bio *bbio)
251 {
252         int ret;
253         struct reada_zone *zone;
254         struct btrfs_block_group_cache *cache = NULL;
255         u64 start;
256         u64 end;
257         int i;
258
259         zone = NULL;
260         spin_lock(&fs_info->reada_lock);
261         ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
262                                      logical >> PAGE_CACHE_SHIFT, 1);
263         if (ret == 1)
264                 kref_get(&zone->refcnt);
265         spin_unlock(&fs_info->reada_lock);
266
267         if (ret == 1) {
268                 if (logical >= zone->start && logical < zone->end)
269                         return zone;
270                 spin_lock(&fs_info->reada_lock);
271                 kref_put(&zone->refcnt, reada_zone_release);
272                 spin_unlock(&fs_info->reada_lock);
273         }
274
275         cache = btrfs_lookup_block_group(fs_info, logical);
276         if (!cache)
277                 return NULL;
278
279         start = cache->key.objectid;
280         end = start + cache->key.offset - 1;
281         btrfs_put_block_group(cache);
282
283         zone = kzalloc(sizeof(*zone), GFP_NOFS);
284         if (!zone)
285                 return NULL;
286
287         zone->start = start;
288         zone->end = end;
289         INIT_LIST_HEAD(&zone->list);
290         spin_lock_init(&zone->lock);
291         zone->locked = 0;
292         kref_init(&zone->refcnt);
293         zone->elems = 0;
294         zone->device = dev; /* our device always sits at index 0 */
295         for (i = 0; i < bbio->num_stripes; ++i) {
296                 /* bounds have already been checked */
297                 zone->devs[i] = bbio->stripes[i].dev;
298         }
299         zone->ndevs = bbio->num_stripes;
300
301         spin_lock(&fs_info->reada_lock);
302         ret = radix_tree_insert(&dev->reada_zones,
303                                 (unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
304                                 zone);
305
306         if (ret == -EEXIST) {
307                 kfree(zone);
308                 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
309                                              logical >> PAGE_CACHE_SHIFT, 1);
310                 if (ret == 1)
311                         kref_get(&zone->refcnt);
312         }
313         spin_unlock(&fs_info->reada_lock);
314
315         return zone;
316 }
317
318 static struct reada_extent *reada_find_extent(struct btrfs_root *root,
319                                               u64 logical,
320                                               struct btrfs_key *top, int level)
321 {
322         int ret;
323         struct reada_extent *re = NULL;
324         struct reada_extent *re_exist = NULL;
325         struct btrfs_fs_info *fs_info = root->fs_info;
326         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
327         struct btrfs_bio *bbio = NULL;
328         struct btrfs_device *dev;
329         struct btrfs_device *prev_dev;
330         u32 blocksize;
331         u64 length;
332         int nzones = 0;
333         int i;
334         unsigned long index = logical >> PAGE_CACHE_SHIFT;
335
336         spin_lock(&fs_info->reada_lock);
337         re = radix_tree_lookup(&fs_info->reada_tree, index);
338         if (re)
339                 kref_get(&re->refcnt);
340         spin_unlock(&fs_info->reada_lock);
341
342         if (re)
343                 return re;
344
345         re = kzalloc(sizeof(*re), GFP_NOFS);
346         if (!re)
347                 return NULL;
348
349         blocksize = btrfs_level_size(root, level);
350         re->logical = logical;
351         re->blocksize = blocksize;
352         re->top = *top;
353         INIT_LIST_HEAD(&re->extctl);
354         spin_lock_init(&re->lock);
355         kref_init(&re->refcnt);
356
357         /*
358          * map block
359          */
360         length = blocksize;
361         ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length, &bbio, 0);
362         if (ret || !bbio || length < blocksize)
363                 goto error;
364
365         if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
366                 printk(KERN_ERR "btrfs readahead: more than %d copies not "
367                                 "supported", BTRFS_MAX_MIRRORS);
368                 goto error;
369         }
370
371         for (nzones = 0; nzones < bbio->num_stripes; ++nzones) {
372                 struct reada_zone *zone;
373
374                 dev = bbio->stripes[nzones].dev;
375                 zone = reada_find_zone(fs_info, dev, logical, bbio);
376                 if (!zone)
377                         break;
378
379                 re->zones[nzones] = zone;
380                 spin_lock(&zone->lock);
381                 if (!zone->elems)
382                         kref_get(&zone->refcnt);
383                 ++zone->elems;
384                 spin_unlock(&zone->lock);
385                 spin_lock(&fs_info->reada_lock);
386                 kref_put(&zone->refcnt, reada_zone_release);
387                 spin_unlock(&fs_info->reada_lock);
388         }
389         re->nzones = nzones;
390         if (nzones == 0) {
391                 /* not a single zone found, error and out */
392                 goto error;
393         }
394
395         /* insert extent in reada_tree + all per-device trees, all or nothing */
396         spin_lock(&fs_info->reada_lock);
397         ret = radix_tree_insert(&fs_info->reada_tree, index, re);
398         if (ret == -EEXIST) {
399                 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
400                 BUG_ON(!re_exist);
401                 kref_get(&re_exist->refcnt);
402                 spin_unlock(&fs_info->reada_lock);
403                 goto error;
404         }
405         if (ret) {
406                 spin_unlock(&fs_info->reada_lock);
407                 goto error;
408         }
409         prev_dev = NULL;
410         for (i = 0; i < nzones; ++i) {
411                 dev = bbio->stripes[i].dev;
412                 if (dev == prev_dev) {
413                         /*
414                          * in case of DUP, just add the first zone. As both
415                          * are on the same device, there's nothing to gain
416                          * from adding both.
417                          * Also, it wouldn't work, as the tree is per device
418                          * and adding would fail with EEXIST
419                          */
420                         continue;
421                 }
422                 prev_dev = dev;
423                 ret = radix_tree_insert(&dev->reada_extents, index, re);
424                 if (ret) {
425                         while (--i >= 0) {
426                                 dev = bbio->stripes[i].dev;
427                                 BUG_ON(dev == NULL);
428                                 radix_tree_delete(&dev->reada_extents, index);
429                         }
430                         BUG_ON(fs_info == NULL);
431                         radix_tree_delete(&fs_info->reada_tree, index);
432                         spin_unlock(&fs_info->reada_lock);
433                         goto error;
434                 }
435         }
436         spin_unlock(&fs_info->reada_lock);
437
438         kfree(bbio);
439         return re;
440
441 error:
442         while (nzones) {
443                 struct reada_zone *zone;
444
445                 --nzones;
446                 zone = re->zones[nzones];
447                 kref_get(&zone->refcnt);
448                 spin_lock(&zone->lock);
449                 --zone->elems;
450                 if (zone->elems == 0) {
451                         /*
452                          * no fs_info->reada_lock needed, as this can't be
453                          * the last ref
454                          */
455                         kref_put(&zone->refcnt, reada_zone_release);
456                 }
457                 spin_unlock(&zone->lock);
458
459                 spin_lock(&fs_info->reada_lock);
460                 kref_put(&zone->refcnt, reada_zone_release);
461                 spin_unlock(&fs_info->reada_lock);
462         }
463         kfree(bbio);
464         kfree(re);
465         return re_exist;
466 }
467
468 static void reada_kref_dummy(struct kref *kr)
469 {
470 }
471
472 static void reada_extent_put(struct btrfs_fs_info *fs_info,
473                              struct reada_extent *re)
474 {
475         int i;
476         unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
477
478         spin_lock(&fs_info->reada_lock);
479         if (!kref_put(&re->refcnt, reada_kref_dummy)) {
480                 spin_unlock(&fs_info->reada_lock);
481                 return;
482         }
483
484         radix_tree_delete(&fs_info->reada_tree, index);
485         for (i = 0; i < re->nzones; ++i) {
486                 struct reada_zone *zone = re->zones[i];
487
488                 radix_tree_delete(&zone->device->reada_extents, index);
489         }
490
491         spin_unlock(&fs_info->reada_lock);
492
493         for (i = 0; i < re->nzones; ++i) {
494                 struct reada_zone *zone = re->zones[i];
495
496                 kref_get(&zone->refcnt);
497                 spin_lock(&zone->lock);
498                 --zone->elems;
499                 if (zone->elems == 0) {
500                         /* no fs_info->reada_lock needed, as this can't be
501                          * the last ref */
502                         kref_put(&zone->refcnt, reada_zone_release);
503                 }
504                 spin_unlock(&zone->lock);
505
506                 spin_lock(&fs_info->reada_lock);
507                 kref_put(&zone->refcnt, reada_zone_release);
508                 spin_unlock(&fs_info->reada_lock);
509         }
510         if (re->scheduled_for)
511                 atomic_dec(&re->scheduled_for->reada_in_flight);
512
513         kfree(re);
514 }
515
516 static void reada_zone_release(struct kref *kref)
517 {
518         struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
519
520         radix_tree_delete(&zone->device->reada_zones,
521                           zone->end >> PAGE_CACHE_SHIFT);
522
523         kfree(zone);
524 }
525
526 static void reada_control_release(struct kref *kref)
527 {
528         struct reada_control *rc = container_of(kref, struct reada_control,
529                                                 refcnt);
530
531         kfree(rc);
532 }
533
534 static int reada_add_block(struct reada_control *rc, u64 logical,
535                            struct btrfs_key *top, int level, u64 generation)
536 {
537         struct btrfs_root *root = rc->root;
538         struct reada_extent *re;
539         struct reada_extctl *rec;
540
541         re = reada_find_extent(root, logical, top, level); /* takes one ref */
542         if (!re)
543                 return -1;
544
545         rec = kzalloc(sizeof(*rec), GFP_NOFS);
546         if (!rec) {
547                 reada_extent_put(root->fs_info, re);
548                 return -1;
549         }
550
551         rec->rc = rc;
552         rec->generation = generation;
553         atomic_inc(&rc->elems);
554
555         spin_lock(&re->lock);
556         list_add_tail(&rec->list, &re->extctl);
557         spin_unlock(&re->lock);
558
559         /* leave the ref on the extent */
560
561         return 0;
562 }
563
564 /*
565  * called with fs_info->reada_lock held
566  */
567 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
568 {
569         int i;
570         unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
571
572         for (i = 0; i < zone->ndevs; ++i) {
573                 struct reada_zone *peer;
574                 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
575                 if (peer && peer->device != zone->device)
576                         peer->locked = lock;
577         }
578 }
579
580 /*
581  * called with fs_info->reada_lock held
582  */
583 static int reada_pick_zone(struct btrfs_device *dev)
584 {
585         struct reada_zone *top_zone = NULL;
586         struct reada_zone *top_locked_zone = NULL;
587         u64 top_elems = 0;
588         u64 top_locked_elems = 0;
589         unsigned long index = 0;
590         int ret;
591
592         if (dev->reada_curr_zone) {
593                 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
594                 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
595                 dev->reada_curr_zone = NULL;
596         }
597         /* pick the zone with the most elements */
598         while (1) {
599                 struct reada_zone *zone;
600
601                 ret = radix_tree_gang_lookup(&dev->reada_zones,
602                                              (void **)&zone, index, 1);
603                 if (ret == 0)
604                         break;
605                 index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
606                 if (zone->locked) {
607                         if (zone->elems > top_locked_elems) {
608                                 top_locked_elems = zone->elems;
609                                 top_locked_zone = zone;
610                         }
611                 } else {
612                         if (zone->elems > top_elems) {
613                                 top_elems = zone->elems;
614                                 top_zone = zone;
615                         }
616                 }
617         }
618         if (top_zone)
619                 dev->reada_curr_zone = top_zone;
620         else if (top_locked_zone)
621                 dev->reada_curr_zone = top_locked_zone;
622         else
623                 return 0;
624
625         dev->reada_next = dev->reada_curr_zone->start;
626         kref_get(&dev->reada_curr_zone->refcnt);
627         reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
628
629         return 1;
630 }
631
632 static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
633                                    struct btrfs_device *dev)
634 {
635         struct reada_extent *re = NULL;
636         int mirror_num = 0;
637         struct extent_buffer *eb = NULL;
638         u64 logical;
639         u32 blocksize;
640         int ret;
641         int i;
642         int need_kick = 0;
643
644         spin_lock(&fs_info->reada_lock);
645         if (dev->reada_curr_zone == NULL) {
646                 ret = reada_pick_zone(dev);
647                 if (!ret) {
648                         spin_unlock(&fs_info->reada_lock);
649                         return 0;
650                 }
651         }
652         /*
653          * FIXME currently we issue the reads one extent at a time. If we have
654          * a contiguous block of extents, we could also coagulate them or use
655          * plugging to speed things up
656          */
657         ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
658                                      dev->reada_next >> PAGE_CACHE_SHIFT, 1);
659         if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
660                 ret = reada_pick_zone(dev);
661                 if (!ret) {
662                         spin_unlock(&fs_info->reada_lock);
663                         return 0;
664                 }
665                 re = NULL;
666                 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
667                                         dev->reada_next >> PAGE_CACHE_SHIFT, 1);
668         }
669         if (ret == 0) {
670                 spin_unlock(&fs_info->reada_lock);
671                 return 0;
672         }
673         dev->reada_next = re->logical + re->blocksize;
674         kref_get(&re->refcnt);
675
676         spin_unlock(&fs_info->reada_lock);
677
678         /*
679          * find mirror num
680          */
681         for (i = 0; i < re->nzones; ++i) {
682                 if (re->zones[i]->device == dev) {
683                         mirror_num = i + 1;
684                         break;
685                 }
686         }
687         logical = re->logical;
688         blocksize = re->blocksize;
689
690         spin_lock(&re->lock);
691         if (re->scheduled_for == NULL) {
692                 re->scheduled_for = dev;
693                 need_kick = 1;
694         }
695         spin_unlock(&re->lock);
696
697         reada_extent_put(fs_info, re);
698
699         if (!need_kick)
700                 return 0;
701
702         atomic_inc(&dev->reada_in_flight);
703         ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize,
704                          mirror_num, &eb);
705         if (ret)
706                 __readahead_hook(fs_info->extent_root, NULL, logical, ret);
707         else if (eb)
708                 __readahead_hook(fs_info->extent_root, eb, eb->start, ret);
709
710         if (eb)
711                 free_extent_buffer(eb);
712
713         return 1;
714
715 }
716
717 static void reada_start_machine_worker(struct btrfs_work *work)
718 {
719         struct reada_machine_work *rmw;
720         struct btrfs_fs_info *fs_info;
721
722         rmw = container_of(work, struct reada_machine_work, work);
723         fs_info = rmw->fs_info;
724
725         kfree(rmw);
726
727         __reada_start_machine(fs_info);
728 }
729
730 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
731 {
732         struct btrfs_device *device;
733         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
734         u64 enqueued;
735         u64 total = 0;
736         int i;
737
738         do {
739                 enqueued = 0;
740                 list_for_each_entry(device, &fs_devices->devices, dev_list) {
741                         if (atomic_read(&device->reada_in_flight) <
742                             MAX_IN_FLIGHT)
743                                 enqueued += reada_start_machine_dev(fs_info,
744                                                                     device);
745                 }
746                 total += enqueued;
747         } while (enqueued && total < 10000);
748
749         if (enqueued == 0)
750                 return;
751
752         /*
753          * If everything is already in the cache, this is effectively single
754          * threaded. To a) not hold the caller for too long and b) to utilize
755          * more cores, we broke the loop above after 10000 iterations and now
756          * enqueue to workers to finish it. This will distribute the load to
757          * the cores.
758          */
759         for (i = 0; i < 2; ++i)
760                 reada_start_machine(fs_info);
761 }
762
763 static void reada_start_machine(struct btrfs_fs_info *fs_info)
764 {
765         struct reada_machine_work *rmw;
766
767         rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
768         if (!rmw) {
769                 /* FIXME we cannot handle this properly right now */
770                 BUG();
771         }
772         rmw->work.func = reada_start_machine_worker;
773         rmw->fs_info = fs_info;
774
775         btrfs_queue_worker(&fs_info->readahead_workers, &rmw->work);
776 }
777
778 #ifdef DEBUG
779 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
780 {
781         struct btrfs_device *device;
782         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
783         unsigned long index;
784         int ret;
785         int i;
786         int j;
787         int cnt;
788
789         spin_lock(&fs_info->reada_lock);
790         list_for_each_entry(device, &fs_devices->devices, dev_list) {
791                 printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
792                         atomic_read(&device->reada_in_flight));
793                 index = 0;
794                 while (1) {
795                         struct reada_zone *zone;
796                         ret = radix_tree_gang_lookup(&device->reada_zones,
797                                                      (void **)&zone, index, 1);
798                         if (ret == 0)
799                                 break;
800                         printk(KERN_DEBUG "  zone %llu-%llu elems %llu locked "
801                                 "%d devs", zone->start, zone->end, zone->elems,
802                                 zone->locked);
803                         for (j = 0; j < zone->ndevs; ++j) {
804                                 printk(KERN_CONT " %lld",
805                                         zone->devs[j]->devid);
806                         }
807                         if (device->reada_curr_zone == zone)
808                                 printk(KERN_CONT " curr off %llu",
809                                         device->reada_next - zone->start);
810                         printk(KERN_CONT "\n");
811                         index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
812                 }
813                 cnt = 0;
814                 index = 0;
815                 while (all) {
816                         struct reada_extent *re = NULL;
817
818                         ret = radix_tree_gang_lookup(&device->reada_extents,
819                                                      (void **)&re, index, 1);
820                         if (ret == 0)
821                                 break;
822                         printk(KERN_DEBUG
823                                 "  re: logical %llu size %u empty %d for %lld",
824                                 re->logical, re->blocksize,
825                                 list_empty(&re->extctl), re->scheduled_for ?
826                                 re->scheduled_for->devid : -1);
827
828                         for (i = 0; i < re->nzones; ++i) {
829                                 printk(KERN_CONT " zone %llu-%llu devs",
830                                         re->zones[i]->start,
831                                         re->zones[i]->end);
832                                 for (j = 0; j < re->zones[i]->ndevs; ++j) {
833                                         printk(KERN_CONT " %lld",
834                                                 re->zones[i]->devs[j]->devid);
835                                 }
836                         }
837                         printk(KERN_CONT "\n");
838                         index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
839                         if (++cnt > 15)
840                                 break;
841                 }
842         }
843
844         index = 0;
845         cnt = 0;
846         while (all) {
847                 struct reada_extent *re = NULL;
848
849                 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
850                                              index, 1);
851                 if (ret == 0)
852                         break;
853                 if (!re->scheduled_for) {
854                         index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
855                         continue;
856                 }
857                 printk(KERN_DEBUG
858                         "re: logical %llu size %u list empty %d for %lld",
859                         re->logical, re->blocksize, list_empty(&re->extctl),
860                         re->scheduled_for ? re->scheduled_for->devid : -1);
861                 for (i = 0; i < re->nzones; ++i) {
862                         printk(KERN_CONT " zone %llu-%llu devs",
863                                 re->zones[i]->start,
864                                 re->zones[i]->end);
865                         for (i = 0; i < re->nzones; ++i) {
866                                 printk(KERN_CONT " zone %llu-%llu devs",
867                                         re->zones[i]->start,
868                                         re->zones[i]->end);
869                                 for (j = 0; j < re->zones[i]->ndevs; ++j) {
870                                         printk(KERN_CONT " %lld",
871                                                 re->zones[i]->devs[j]->devid);
872                                 }
873                         }
874                 }
875                 printk(KERN_CONT "\n");
876                 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
877         }
878         spin_unlock(&fs_info->reada_lock);
879 }
880 #endif
881
882 /*
883  * interface
884  */
885 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
886                         struct btrfs_key *key_start, struct btrfs_key *key_end)
887 {
888         struct reada_control *rc;
889         u64 start;
890         u64 generation;
891         int level;
892         struct extent_buffer *node;
893         static struct btrfs_key max_key = {
894                 .objectid = (u64)-1,
895                 .type = (u8)-1,
896                 .offset = (u64)-1
897         };
898
899         rc = kzalloc(sizeof(*rc), GFP_NOFS);
900         if (!rc)
901                 return ERR_PTR(-ENOMEM);
902
903         rc->root = root;
904         rc->key_start = *key_start;
905         rc->key_end = *key_end;
906         atomic_set(&rc->elems, 0);
907         init_waitqueue_head(&rc->wait);
908         kref_init(&rc->refcnt);
909         kref_get(&rc->refcnt); /* one ref for having elements */
910
911         node = btrfs_root_node(root);
912         start = node->start;
913         level = btrfs_header_level(node);
914         generation = btrfs_header_generation(node);
915         free_extent_buffer(node);
916
917         reada_add_block(rc, start, &max_key, level, generation);
918
919         reada_start_machine(root->fs_info);
920
921         return rc;
922 }
923
924 #ifdef DEBUG
925 int btrfs_reada_wait(void *handle)
926 {
927         struct reada_control *rc = handle;
928
929         while (atomic_read(&rc->elems)) {
930                 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
931                                    5 * HZ);
932                 dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
933         }
934
935         dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
936
937         kref_put(&rc->refcnt, reada_control_release);
938
939         return 0;
940 }
941 #else
942 int btrfs_reada_wait(void *handle)
943 {
944         struct reada_control *rc = handle;
945
946         while (atomic_read(&rc->elems)) {
947                 wait_event(rc->wait, atomic_read(&rc->elems) == 0);
948         }
949
950         kref_put(&rc->refcnt, reada_control_release);
951
952         return 0;
953 }
954 #endif
955
956 void btrfs_reada_detach(void *handle)
957 {
958         struct reada_control *rc = handle;
959
960         kref_put(&rc->refcnt, reada_control_release);
961 }