tty: serial: samsung: drop uart_port->lock before calling tty_flip_buffer_push()
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / compression.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
45
46 struct compressed_bio {
47         /* number of bios pending for this compressed extent */
48         atomic_t pending_bios;
49
50         /* the pages with the compressed data on them */
51         struct page **compressed_pages;
52
53         /* inode that owns this data */
54         struct inode *inode;
55
56         /* starting offset in the inode for our pages */
57         u64 start;
58
59         /* number of bytes in the inode we're working on */
60         unsigned long len;
61
62         /* number of bytes on disk */
63         unsigned long compressed_len;
64
65         /* the compression algorithm for this bio */
66         int compress_type;
67
68         /* number of compressed pages in the array */
69         unsigned long nr_pages;
70
71         /* IO errors */
72         int errors;
73         int mirror_num;
74
75         /* for reads, this is the bio we are copying the data into */
76         struct bio *orig_bio;
77
78         /*
79          * the start of a variable length array of checksums only
80          * used by reads
81          */
82         u32 sums;
83 };
84
85 static int btrfs_decompress_biovec(int type, struct page **pages_in,
86                                    u64 disk_start, struct bio_vec *bvec,
87                                    int vcnt, size_t srclen);
88
89 static inline int compressed_bio_size(struct btrfs_root *root,
90                                       unsigned long disk_size)
91 {
92         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
93
94         return sizeof(struct compressed_bio) +
95                 ((disk_size + root->sectorsize - 1) / root->sectorsize) *
96                 csum_size;
97 }
98
99 static struct bio *compressed_bio_alloc(struct block_device *bdev,
100                                         u64 first_byte, gfp_t gfp_flags)
101 {
102         int nr_vecs;
103
104         nr_vecs = bio_get_nr_vecs(bdev);
105         return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
106 }
107
108 static int check_compressed_csum(struct inode *inode,
109                                  struct compressed_bio *cb,
110                                  u64 disk_start)
111 {
112         int ret;
113         struct page *page;
114         unsigned long i;
115         char *kaddr;
116         u32 csum;
117         u32 *cb_sum = &cb->sums;
118
119         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
120                 return 0;
121
122         for (i = 0; i < cb->nr_pages; i++) {
123                 page = cb->compressed_pages[i];
124                 csum = ~(u32)0;
125
126                 kaddr = kmap_atomic(page);
127                 csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
128                 btrfs_csum_final(csum, (char *)&csum);
129                 kunmap_atomic(kaddr);
130
131                 if (csum != *cb_sum) {
132                         printk(KERN_INFO "btrfs csum failed ino %llu "
133                                "extent %llu csum %u "
134                                "wanted %u mirror %d\n",
135                                (unsigned long long)btrfs_ino(inode),
136                                (unsigned long long)disk_start,
137                                csum, *cb_sum, cb->mirror_num);
138                         ret = -EIO;
139                         goto fail;
140                 }
141                 cb_sum++;
142
143         }
144         ret = 0;
145 fail:
146         return ret;
147 }
148
149 /* when we finish reading compressed pages from the disk, we
150  * decompress them and then run the bio end_io routines on the
151  * decompressed pages (in the inode address space).
152  *
153  * This allows the checksumming and other IO error handling routines
154  * to work normally
155  *
156  * The compressed pages are freed here, and it must be run
157  * in process context
158  */
159 static void end_compressed_bio_read(struct bio *bio, int err)
160 {
161         struct compressed_bio *cb = bio->bi_private;
162         struct inode *inode;
163         struct page *page;
164         unsigned long index;
165         int ret;
166
167         if (err)
168                 cb->errors = 1;
169
170         /* if there are more bios still pending for this compressed
171          * extent, just exit
172          */
173         if (!atomic_dec_and_test(&cb->pending_bios))
174                 goto out;
175
176         inode = cb->inode;
177         ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
178         if (ret)
179                 goto csum_failed;
180
181         /* ok, we're the last bio for this extent, lets start
182          * the decompression.
183          */
184         ret = btrfs_decompress_biovec(cb->compress_type,
185                                       cb->compressed_pages,
186                                       cb->start,
187                                       cb->orig_bio->bi_io_vec,
188                                       cb->orig_bio->bi_vcnt,
189                                       cb->compressed_len);
190 csum_failed:
191         if (ret)
192                 cb->errors = 1;
193
194         /* release the compressed pages */
195         index = 0;
196         for (index = 0; index < cb->nr_pages; index++) {
197                 page = cb->compressed_pages[index];
198                 page->mapping = NULL;
199                 page_cache_release(page);
200         }
201
202         /* do io completion on the original bio */
203         if (cb->errors) {
204                 bio_io_error(cb->orig_bio);
205         } else {
206                 int bio_index = 0;
207                 struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
208
209                 /*
210                  * we have verified the checksum already, set page
211                  * checked so the end_io handlers know about it
212                  */
213                 while (bio_index < cb->orig_bio->bi_vcnt) {
214                         SetPageChecked(bvec->bv_page);
215                         bvec++;
216                         bio_index++;
217                 }
218                 bio_endio(cb->orig_bio, 0);
219         }
220
221         /* finally free the cb struct */
222         kfree(cb->compressed_pages);
223         kfree(cb);
224 out:
225         bio_put(bio);
226 }
227
228 /*
229  * Clear the writeback bits on all of the file
230  * pages for a compressed write
231  */
232 static noinline void end_compressed_writeback(struct inode *inode, u64 start,
233                                               unsigned long ram_size)
234 {
235         unsigned long index = start >> PAGE_CACHE_SHIFT;
236         unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
237         struct page *pages[16];
238         unsigned long nr_pages = end_index - index + 1;
239         int i;
240         int ret;
241
242         while (nr_pages > 0) {
243                 ret = find_get_pages_contig(inode->i_mapping, index,
244                                      min_t(unsigned long,
245                                      nr_pages, ARRAY_SIZE(pages)), pages);
246                 if (ret == 0) {
247                         nr_pages -= 1;
248                         index += 1;
249                         continue;
250                 }
251                 for (i = 0; i < ret; i++) {
252                         end_page_writeback(pages[i]);
253                         page_cache_release(pages[i]);
254                 }
255                 nr_pages -= ret;
256                 index += ret;
257         }
258         /* the inode may be gone now */
259 }
260
261 /*
262  * do the cleanup once all the compressed pages hit the disk.
263  * This will clear writeback on the file pages and free the compressed
264  * pages.
265  *
266  * This also calls the writeback end hooks for the file pages so that
267  * metadata and checksums can be updated in the file.
268  */
269 static void end_compressed_bio_write(struct bio *bio, int err)
270 {
271         struct extent_io_tree *tree;
272         struct compressed_bio *cb = bio->bi_private;
273         struct inode *inode;
274         struct page *page;
275         unsigned long index;
276
277         if (err)
278                 cb->errors = 1;
279
280         /* if there are more bios still pending for this compressed
281          * extent, just exit
282          */
283         if (!atomic_dec_and_test(&cb->pending_bios))
284                 goto out;
285
286         /* ok, we're the last bio for this extent, step one is to
287          * call back into the FS and do all the end_io operations
288          */
289         inode = cb->inode;
290         tree = &BTRFS_I(inode)->io_tree;
291         cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
292         tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
293                                          cb->start,
294                                          cb->start + cb->len - 1,
295                                          NULL, 1);
296         cb->compressed_pages[0]->mapping = NULL;
297
298         end_compressed_writeback(inode, cb->start, cb->len);
299         /* note, our inode could be gone now */
300
301         /*
302          * release the compressed pages, these came from alloc_page and
303          * are not attached to the inode at all
304          */
305         index = 0;
306         for (index = 0; index < cb->nr_pages; index++) {
307                 page = cb->compressed_pages[index];
308                 page->mapping = NULL;
309                 page_cache_release(page);
310         }
311
312         /* finally free the cb struct */
313         kfree(cb->compressed_pages);
314         kfree(cb);
315 out:
316         bio_put(bio);
317 }
318
319 /*
320  * worker function to build and submit bios for previously compressed pages.
321  * The corresponding pages in the inode should be marked for writeback
322  * and the compressed pages should have a reference on them for dropping
323  * when the IO is complete.
324  *
325  * This also checksums the file bytes and gets things ready for
326  * the end io hooks.
327  */
328 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
329                                  unsigned long len, u64 disk_start,
330                                  unsigned long compressed_len,
331                                  struct page **compressed_pages,
332                                  unsigned long nr_pages)
333 {
334         struct bio *bio = NULL;
335         struct btrfs_root *root = BTRFS_I(inode)->root;
336         struct compressed_bio *cb;
337         unsigned long bytes_left;
338         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
339         int pg_index = 0;
340         struct page *page;
341         u64 first_byte = disk_start;
342         struct block_device *bdev;
343         int ret;
344         int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
345
346         WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
347         cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
348         if (!cb)
349                 return -ENOMEM;
350         atomic_set(&cb->pending_bios, 0);
351         cb->errors = 0;
352         cb->inode = inode;
353         cb->start = start;
354         cb->len = len;
355         cb->mirror_num = 0;
356         cb->compressed_pages = compressed_pages;
357         cb->compressed_len = compressed_len;
358         cb->orig_bio = NULL;
359         cb->nr_pages = nr_pages;
360
361         bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
362
363         bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
364         if(!bio) {
365                 kfree(cb);
366                 return -ENOMEM;
367         }
368         bio->bi_private = cb;
369         bio->bi_end_io = end_compressed_bio_write;
370         atomic_inc(&cb->pending_bios);
371
372         /* create and submit bios for the compressed pages */
373         bytes_left = compressed_len;
374         for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
375                 page = compressed_pages[pg_index];
376                 page->mapping = inode->i_mapping;
377                 if (bio->bi_size)
378                         ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
379                                                            PAGE_CACHE_SIZE,
380                                                            bio, 0);
381                 else
382                         ret = 0;
383
384                 page->mapping = NULL;
385                 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
386                     PAGE_CACHE_SIZE) {
387                         bio_get(bio);
388
389                         /*
390                          * inc the count before we submit the bio so
391                          * we know the end IO handler won't happen before
392                          * we inc the count.  Otherwise, the cb might get
393                          * freed before we're done setting it up
394                          */
395                         atomic_inc(&cb->pending_bios);
396                         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
397                         BUG_ON(ret); /* -ENOMEM */
398
399                         if (!skip_sum) {
400                                 ret = btrfs_csum_one_bio(root, inode, bio,
401                                                          start, 1);
402                                 BUG_ON(ret); /* -ENOMEM */
403                         }
404
405                         ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
406                         BUG_ON(ret); /* -ENOMEM */
407
408                         bio_put(bio);
409
410                         bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
411                         BUG_ON(!bio);
412                         bio->bi_private = cb;
413                         bio->bi_end_io = end_compressed_bio_write;
414                         bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
415                 }
416                 if (bytes_left < PAGE_CACHE_SIZE) {
417                         printk("bytes left %lu compress len %lu nr %lu\n",
418                                bytes_left, cb->compressed_len, cb->nr_pages);
419                 }
420                 bytes_left -= PAGE_CACHE_SIZE;
421                 first_byte += PAGE_CACHE_SIZE;
422                 cond_resched();
423         }
424         bio_get(bio);
425
426         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
427         BUG_ON(ret); /* -ENOMEM */
428
429         if (!skip_sum) {
430                 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
431                 BUG_ON(ret); /* -ENOMEM */
432         }
433
434         ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
435         BUG_ON(ret); /* -ENOMEM */
436
437         bio_put(bio);
438         return 0;
439 }
440
441 static noinline int add_ra_bio_pages(struct inode *inode,
442                                      u64 compressed_end,
443                                      struct compressed_bio *cb)
444 {
445         unsigned long end_index;
446         unsigned long pg_index;
447         u64 last_offset;
448         u64 isize = i_size_read(inode);
449         int ret;
450         struct page *page;
451         unsigned long nr_pages = 0;
452         struct extent_map *em;
453         struct address_space *mapping = inode->i_mapping;
454         struct extent_map_tree *em_tree;
455         struct extent_io_tree *tree;
456         u64 end;
457         int misses = 0;
458
459         page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
460         last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
461         em_tree = &BTRFS_I(inode)->extent_tree;
462         tree = &BTRFS_I(inode)->io_tree;
463
464         if (isize == 0)
465                 return 0;
466
467         end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
468
469         while (last_offset < compressed_end) {
470                 pg_index = last_offset >> PAGE_CACHE_SHIFT;
471
472                 if (pg_index > end_index)
473                         break;
474
475                 rcu_read_lock();
476                 page = radix_tree_lookup(&mapping->page_tree, pg_index);
477                 rcu_read_unlock();
478                 if (page) {
479                         misses++;
480                         if (misses > 4)
481                                 break;
482                         goto next;
483                 }
484
485                 page = __page_cache_alloc(mapping_gfp_mask(mapping) &
486                                                                 ~__GFP_FS);
487                 if (!page)
488                         break;
489
490                 if (add_to_page_cache_lru(page, mapping, pg_index,
491                                                                 GFP_NOFS)) {
492                         page_cache_release(page);
493                         goto next;
494                 }
495
496                 end = last_offset + PAGE_CACHE_SIZE - 1;
497                 /*
498                  * at this point, we have a locked page in the page cache
499                  * for these bytes in the file.  But, we have to make
500                  * sure they map to this compressed extent on disk.
501                  */
502                 set_page_extent_mapped(page);
503                 lock_extent(tree, last_offset, end);
504                 read_lock(&em_tree->lock);
505                 em = lookup_extent_mapping(em_tree, last_offset,
506                                            PAGE_CACHE_SIZE);
507                 read_unlock(&em_tree->lock);
508
509                 if (!em || last_offset < em->start ||
510                     (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
511                     (em->block_start >> 9) != cb->orig_bio->bi_sector) {
512                         free_extent_map(em);
513                         unlock_extent(tree, last_offset, end);
514                         unlock_page(page);
515                         page_cache_release(page);
516                         break;
517                 }
518                 free_extent_map(em);
519
520                 if (page->index == end_index) {
521                         char *userpage;
522                         size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
523
524                         if (zero_offset) {
525                                 int zeros;
526                                 zeros = PAGE_CACHE_SIZE - zero_offset;
527                                 userpage = kmap_atomic(page);
528                                 memset(userpage + zero_offset, 0, zeros);
529                                 flush_dcache_page(page);
530                                 kunmap_atomic(userpage);
531                         }
532                 }
533
534                 ret = bio_add_page(cb->orig_bio, page,
535                                    PAGE_CACHE_SIZE, 0);
536
537                 if (ret == PAGE_CACHE_SIZE) {
538                         nr_pages++;
539                         page_cache_release(page);
540                 } else {
541                         unlock_extent(tree, last_offset, end);
542                         unlock_page(page);
543                         page_cache_release(page);
544                         break;
545                 }
546 next:
547                 last_offset += PAGE_CACHE_SIZE;
548         }
549         return 0;
550 }
551
552 /*
553  * for a compressed read, the bio we get passed has all the inode pages
554  * in it.  We don't actually do IO on those pages but allocate new ones
555  * to hold the compressed pages on disk.
556  *
557  * bio->bi_sector points to the compressed extent on disk
558  * bio->bi_io_vec points to all of the inode pages
559  * bio->bi_vcnt is a count of pages
560  *
561  * After the compressed pages are read, we copy the bytes into the
562  * bio we were passed and then call the bio end_io calls
563  */
564 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
565                                  int mirror_num, unsigned long bio_flags)
566 {
567         struct extent_io_tree *tree;
568         struct extent_map_tree *em_tree;
569         struct compressed_bio *cb;
570         struct btrfs_root *root = BTRFS_I(inode)->root;
571         unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
572         unsigned long compressed_len;
573         unsigned long nr_pages;
574         unsigned long pg_index;
575         struct page *page;
576         struct block_device *bdev;
577         struct bio *comp_bio;
578         u64 cur_disk_byte = (u64)bio->bi_sector << 9;
579         u64 em_len;
580         u64 em_start;
581         struct extent_map *em;
582         int ret = -ENOMEM;
583         int faili = 0;
584         u32 *sums;
585
586         tree = &BTRFS_I(inode)->io_tree;
587         em_tree = &BTRFS_I(inode)->extent_tree;
588
589         /* we need the actual starting offset of this extent in the file */
590         read_lock(&em_tree->lock);
591         em = lookup_extent_mapping(em_tree,
592                                    page_offset(bio->bi_io_vec->bv_page),
593                                    PAGE_CACHE_SIZE);
594         read_unlock(&em_tree->lock);
595         if (!em)
596                 return -EIO;
597
598         compressed_len = em->block_len;
599         cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
600         if (!cb)
601                 goto out;
602
603         atomic_set(&cb->pending_bios, 0);
604         cb->errors = 0;
605         cb->inode = inode;
606         cb->mirror_num = mirror_num;
607         sums = &cb->sums;
608
609         cb->start = em->orig_start;
610         em_len = em->len;
611         em_start = em->start;
612
613         free_extent_map(em);
614         em = NULL;
615
616         cb->len = uncompressed_len;
617         cb->compressed_len = compressed_len;
618         cb->compress_type = extent_compress_type(bio_flags);
619         cb->orig_bio = bio;
620
621         nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
622                                  PAGE_CACHE_SIZE;
623         cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
624                                        GFP_NOFS);
625         if (!cb->compressed_pages)
626                 goto fail1;
627
628         bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
629
630         for (pg_index = 0; pg_index < nr_pages; pg_index++) {
631                 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
632                                                               __GFP_HIGHMEM);
633                 if (!cb->compressed_pages[pg_index]) {
634                         faili = pg_index - 1;
635                         ret = -ENOMEM;
636                         goto fail2;
637                 }
638         }
639         faili = nr_pages - 1;
640         cb->nr_pages = nr_pages;
641
642         add_ra_bio_pages(inode, em_start + em_len, cb);
643
644         /* include any pages we added in add_ra-bio_pages */
645         uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
646         cb->len = uncompressed_len;
647
648         comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
649         if (!comp_bio)
650                 goto fail2;
651         comp_bio->bi_private = cb;
652         comp_bio->bi_end_io = end_compressed_bio_read;
653         atomic_inc(&cb->pending_bios);
654
655         for (pg_index = 0; pg_index < nr_pages; pg_index++) {
656                 page = cb->compressed_pages[pg_index];
657                 page->mapping = inode->i_mapping;
658                 page->index = em_start >> PAGE_CACHE_SHIFT;
659
660                 if (comp_bio->bi_size)
661                         ret = tree->ops->merge_bio_hook(READ, page, 0,
662                                                         PAGE_CACHE_SIZE,
663                                                         comp_bio, 0);
664                 else
665                         ret = 0;
666
667                 page->mapping = NULL;
668                 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
669                     PAGE_CACHE_SIZE) {
670                         bio_get(comp_bio);
671
672                         ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
673                         BUG_ON(ret); /* -ENOMEM */
674
675                         /*
676                          * inc the count before we submit the bio so
677                          * we know the end IO handler won't happen before
678                          * we inc the count.  Otherwise, the cb might get
679                          * freed before we're done setting it up
680                          */
681                         atomic_inc(&cb->pending_bios);
682
683                         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
684                                 ret = btrfs_lookup_bio_sums(root, inode,
685                                                         comp_bio, sums);
686                                 BUG_ON(ret); /* -ENOMEM */
687                         }
688                         sums += (comp_bio->bi_size + root->sectorsize - 1) /
689                                 root->sectorsize;
690
691                         ret = btrfs_map_bio(root, READ, comp_bio,
692                                             mirror_num, 0);
693                         if (ret)
694                                 bio_endio(comp_bio, ret);
695
696                         bio_put(comp_bio);
697
698                         comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
699                                                         GFP_NOFS);
700                         BUG_ON(!comp_bio);
701                         comp_bio->bi_private = cb;
702                         comp_bio->bi_end_io = end_compressed_bio_read;
703
704                         bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
705                 }
706                 cur_disk_byte += PAGE_CACHE_SIZE;
707         }
708         bio_get(comp_bio);
709
710         ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
711         BUG_ON(ret); /* -ENOMEM */
712
713         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
714                 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
715                 BUG_ON(ret); /* -ENOMEM */
716         }
717
718         ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
719         if (ret)
720                 bio_endio(comp_bio, ret);
721
722         bio_put(comp_bio);
723         return 0;
724
725 fail2:
726         while (faili >= 0) {
727                 __free_page(cb->compressed_pages[faili]);
728                 faili--;
729         }
730
731         kfree(cb->compressed_pages);
732 fail1:
733         kfree(cb);
734 out:
735         free_extent_map(em);
736         return ret;
737 }
738
739 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
740 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
741 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
742 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
743 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
744
745 static struct btrfs_compress_op *btrfs_compress_op[] = {
746         &btrfs_zlib_compress,
747         &btrfs_lzo_compress,
748 };
749
750 void __init btrfs_init_compress(void)
751 {
752         int i;
753
754         for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
755                 INIT_LIST_HEAD(&comp_idle_workspace[i]);
756                 spin_lock_init(&comp_workspace_lock[i]);
757                 atomic_set(&comp_alloc_workspace[i], 0);
758                 init_waitqueue_head(&comp_workspace_wait[i]);
759         }
760 }
761
762 /*
763  * this finds an available workspace or allocates a new one
764  * ERR_PTR is returned if things go bad.
765  */
766 static struct list_head *find_workspace(int type)
767 {
768         struct list_head *workspace;
769         int cpus = num_online_cpus();
770         int idx = type - 1;
771
772         struct list_head *idle_workspace        = &comp_idle_workspace[idx];
773         spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
774         atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
775         wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
776         int *num_workspace                      = &comp_num_workspace[idx];
777 again:
778         spin_lock(workspace_lock);
779         if (!list_empty(idle_workspace)) {
780                 workspace = idle_workspace->next;
781                 list_del(workspace);
782                 (*num_workspace)--;
783                 spin_unlock(workspace_lock);
784                 return workspace;
785
786         }
787         if (atomic_read(alloc_workspace) > cpus) {
788                 DEFINE_WAIT(wait);
789
790                 spin_unlock(workspace_lock);
791                 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
792                 if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
793                         schedule();
794                 finish_wait(workspace_wait, &wait);
795                 goto again;
796         }
797         atomic_inc(alloc_workspace);
798         spin_unlock(workspace_lock);
799
800         workspace = btrfs_compress_op[idx]->alloc_workspace();
801         if (IS_ERR(workspace)) {
802                 atomic_dec(alloc_workspace);
803                 wake_up(workspace_wait);
804         }
805         return workspace;
806 }
807
808 /*
809  * put a workspace struct back on the list or free it if we have enough
810  * idle ones sitting around
811  */
812 static void free_workspace(int type, struct list_head *workspace)
813 {
814         int idx = type - 1;
815         struct list_head *idle_workspace        = &comp_idle_workspace[idx];
816         spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
817         atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
818         wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
819         int *num_workspace                      = &comp_num_workspace[idx];
820
821         spin_lock(workspace_lock);
822         if (*num_workspace < num_online_cpus()) {
823                 list_add_tail(workspace, idle_workspace);
824                 (*num_workspace)++;
825                 spin_unlock(workspace_lock);
826                 goto wake;
827         }
828         spin_unlock(workspace_lock);
829
830         btrfs_compress_op[idx]->free_workspace(workspace);
831         atomic_dec(alloc_workspace);
832 wake:
833         smp_mb();
834         if (waitqueue_active(workspace_wait))
835                 wake_up(workspace_wait);
836 }
837
838 /*
839  * cleanup function for module exit
840  */
841 static void free_workspaces(void)
842 {
843         struct list_head *workspace;
844         int i;
845
846         for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
847                 while (!list_empty(&comp_idle_workspace[i])) {
848                         workspace = comp_idle_workspace[i].next;
849                         list_del(workspace);
850                         btrfs_compress_op[i]->free_workspace(workspace);
851                         atomic_dec(&comp_alloc_workspace[i]);
852                 }
853         }
854 }
855
856 /*
857  * given an address space and start/len, compress the bytes.
858  *
859  * pages are allocated to hold the compressed result and stored
860  * in 'pages'
861  *
862  * out_pages is used to return the number of pages allocated.  There
863  * may be pages allocated even if we return an error
864  *
865  * total_in is used to return the number of bytes actually read.  It
866  * may be smaller then len if we had to exit early because we
867  * ran out of room in the pages array or because we cross the
868  * max_out threshold.
869  *
870  * total_out is used to return the total number of compressed bytes
871  *
872  * max_out tells us the max number of bytes that we're allowed to
873  * stuff into pages
874  */
875 int btrfs_compress_pages(int type, struct address_space *mapping,
876                          u64 start, unsigned long len,
877                          struct page **pages,
878                          unsigned long nr_dest_pages,
879                          unsigned long *out_pages,
880                          unsigned long *total_in,
881                          unsigned long *total_out,
882                          unsigned long max_out)
883 {
884         struct list_head *workspace;
885         int ret;
886
887         workspace = find_workspace(type);
888         if (IS_ERR(workspace))
889                 return -1;
890
891         ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
892                                                       start, len, pages,
893                                                       nr_dest_pages, out_pages,
894                                                       total_in, total_out,
895                                                       max_out);
896         free_workspace(type, workspace);
897         return ret;
898 }
899
900 /*
901  * pages_in is an array of pages with compressed data.
902  *
903  * disk_start is the starting logical offset of this array in the file
904  *
905  * bvec is a bio_vec of pages from the file that we want to decompress into
906  *
907  * vcnt is the count of pages in the biovec
908  *
909  * srclen is the number of bytes in pages_in
910  *
911  * The basic idea is that we have a bio that was created by readpages.
912  * The pages in the bio are for the uncompressed data, and they may not
913  * be contiguous.  They all correspond to the range of bytes covered by
914  * the compressed extent.
915  */
916 static int btrfs_decompress_biovec(int type, struct page **pages_in,
917                                    u64 disk_start, struct bio_vec *bvec,
918                                    int vcnt, size_t srclen)
919 {
920         struct list_head *workspace;
921         int ret;
922
923         workspace = find_workspace(type);
924         if (IS_ERR(workspace))
925                 return -ENOMEM;
926
927         ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
928                                                          disk_start,
929                                                          bvec, vcnt, srclen);
930         free_workspace(type, workspace);
931         return ret;
932 }
933
934 /*
935  * a less complex decompression routine.  Our compressed data fits in a
936  * single page, and we want to read a single page out of it.
937  * start_byte tells us the offset into the compressed data we're interested in
938  */
939 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
940                      unsigned long start_byte, size_t srclen, size_t destlen)
941 {
942         struct list_head *workspace;
943         int ret;
944
945         workspace = find_workspace(type);
946         if (IS_ERR(workspace))
947                 return -ENOMEM;
948
949         ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
950                                                   dest_page, start_byte,
951                                                   srclen, destlen);
952
953         free_workspace(type, workspace);
954         return ret;
955 }
956
957 void btrfs_exit_compress(void)
958 {
959         free_workspaces();
960 }
961
962 /*
963  * Copy uncompressed data from working buffer to pages.
964  *
965  * buf_start is the byte offset we're of the start of our workspace buffer.
966  *
967  * total_out is the last byte of the buffer
968  */
969 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
970                               unsigned long total_out, u64 disk_start,
971                               struct bio_vec *bvec, int vcnt,
972                               unsigned long *pg_index,
973                               unsigned long *pg_offset)
974 {
975         unsigned long buf_offset;
976         unsigned long current_buf_start;
977         unsigned long start_byte;
978         unsigned long working_bytes = total_out - buf_start;
979         unsigned long bytes;
980         char *kaddr;
981         struct page *page_out = bvec[*pg_index].bv_page;
982
983         /*
984          * start byte is the first byte of the page we're currently
985          * copying into relative to the start of the compressed data.
986          */
987         start_byte = page_offset(page_out) - disk_start;
988
989         /* we haven't yet hit data corresponding to this page */
990         if (total_out <= start_byte)
991                 return 1;
992
993         /*
994          * the start of the data we care about is offset into
995          * the middle of our working buffer
996          */
997         if (total_out > start_byte && buf_start < start_byte) {
998                 buf_offset = start_byte - buf_start;
999                 working_bytes -= buf_offset;
1000         } else {
1001                 buf_offset = 0;
1002         }
1003         current_buf_start = buf_start;
1004
1005         /* copy bytes from the working buffer into the pages */
1006         while (working_bytes > 0) {
1007                 bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1008                             PAGE_CACHE_SIZE - buf_offset);
1009                 bytes = min(bytes, working_bytes);
1010                 kaddr = kmap_atomic(page_out);
1011                 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1012                 kunmap_atomic(kaddr);
1013                 flush_dcache_page(page_out);
1014
1015                 *pg_offset += bytes;
1016                 buf_offset += bytes;
1017                 working_bytes -= bytes;
1018                 current_buf_start += bytes;
1019
1020                 /* check if we need to pick another page */
1021                 if (*pg_offset == PAGE_CACHE_SIZE) {
1022                         (*pg_index)++;
1023                         if (*pg_index >= vcnt)
1024                                 return 0;
1025
1026                         page_out = bvec[*pg_index].bv_page;
1027                         *pg_offset = 0;
1028                         start_byte = page_offset(page_out) - disk_start;
1029
1030                         /*
1031                          * make sure our new page is covered by this
1032                          * working buffer
1033                          */
1034                         if (total_out <= start_byte)
1035                                 return 1;
1036
1037                         /*
1038                          * the next page in the biovec might not be adjacent
1039                          * to the last page, but it might still be found
1040                          * inside this working buffer. bump our offset pointer
1041                          */
1042                         if (total_out > start_byte &&
1043                             current_buf_start < start_byte) {
1044                                 buf_offset = start_byte - buf_start;
1045                                 working_bytes = total_out - start_byte;
1046                                 current_buf_start = buf_start + buf_offset;
1047                         }
1048                 }
1049         }
1050
1051         return 1;
1052 }