usb: ehci: add rockchip relinquishing port quirk support
[firefly-linux-kernel-4.4.55.git] / drivers / vme / vme.c
1 /*
2  * VME Bridge Framework
3  *
4  * Author: Martyn Welch <martyn.welch@ge.com>
5  * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
6  *
7  * Based on work by Tom Armistead and Ajit Prem
8  * Copyright 2004 Motorola Inc.
9  *
10  * This program is free software; you can redistribute  it and/or modify it
11  * under  the terms of  the GNU General  Public License as published by the
12  * Free Software Foundation;  either version 2 of the  License, or (at your
13  * option) any later version.
14  */
15
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/mm.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/pci.h>
23 #include <linux/poll.h>
24 #include <linux/highmem.h>
25 #include <linux/interrupt.h>
26 #include <linux/pagemap.h>
27 #include <linux/device.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/syscalls.h>
30 #include <linux/mutex.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/vme.h>
34
35 #include "vme_bridge.h"
36
37 /* Bitmask and list of registered buses both protected by common mutex */
38 static unsigned int vme_bus_numbers;
39 static LIST_HEAD(vme_bus_list);
40 static DEFINE_MUTEX(vme_buses_lock);
41
42 static void __exit vme_exit(void);
43 static int __init vme_init(void);
44
45 static struct vme_dev *dev_to_vme_dev(struct device *dev)
46 {
47         return container_of(dev, struct vme_dev, dev);
48 }
49
50 /*
51  * Find the bridge that the resource is associated with.
52  */
53 static struct vme_bridge *find_bridge(struct vme_resource *resource)
54 {
55         /* Get list to search */
56         switch (resource->type) {
57         case VME_MASTER:
58                 return list_entry(resource->entry, struct vme_master_resource,
59                         list)->parent;
60                 break;
61         case VME_SLAVE:
62                 return list_entry(resource->entry, struct vme_slave_resource,
63                         list)->parent;
64                 break;
65         case VME_DMA:
66                 return list_entry(resource->entry, struct vme_dma_resource,
67                         list)->parent;
68                 break;
69         case VME_LM:
70                 return list_entry(resource->entry, struct vme_lm_resource,
71                         list)->parent;
72                 break;
73         default:
74                 printk(KERN_ERR "Unknown resource type\n");
75                 return NULL;
76                 break;
77         }
78 }
79
80 /*
81  * Allocate a contiguous block of memory for use by the driver. This is used to
82  * create the buffers for the slave windows.
83  */
84 void *vme_alloc_consistent(struct vme_resource *resource, size_t size,
85         dma_addr_t *dma)
86 {
87         struct vme_bridge *bridge;
88
89         if (resource == NULL) {
90                 printk(KERN_ERR "No resource\n");
91                 return NULL;
92         }
93
94         bridge = find_bridge(resource);
95         if (bridge == NULL) {
96                 printk(KERN_ERR "Can't find bridge\n");
97                 return NULL;
98         }
99
100         if (bridge->parent == NULL) {
101                 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
102                 return NULL;
103         }
104
105         if (bridge->alloc_consistent == NULL) {
106                 printk(KERN_ERR "alloc_consistent not supported by bridge %s\n",
107                        bridge->name);
108                 return NULL;
109         }
110
111         return bridge->alloc_consistent(bridge->parent, size, dma);
112 }
113 EXPORT_SYMBOL(vme_alloc_consistent);
114
115 /*
116  * Free previously allocated contiguous block of memory.
117  */
118 void vme_free_consistent(struct vme_resource *resource, size_t size,
119         void *vaddr, dma_addr_t dma)
120 {
121         struct vme_bridge *bridge;
122
123         if (resource == NULL) {
124                 printk(KERN_ERR "No resource\n");
125                 return;
126         }
127
128         bridge = find_bridge(resource);
129         if (bridge == NULL) {
130                 printk(KERN_ERR "Can't find bridge\n");
131                 return;
132         }
133
134         if (bridge->parent == NULL) {
135                 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
136                 return;
137         }
138
139         if (bridge->free_consistent == NULL) {
140                 printk(KERN_ERR "free_consistent not supported by bridge %s\n",
141                        bridge->name);
142                 return;
143         }
144
145         bridge->free_consistent(bridge->parent, size, vaddr, dma);
146 }
147 EXPORT_SYMBOL(vme_free_consistent);
148
149 size_t vme_get_size(struct vme_resource *resource)
150 {
151         int enabled, retval;
152         unsigned long long base, size;
153         dma_addr_t buf_base;
154         u32 aspace, cycle, dwidth;
155
156         switch (resource->type) {
157         case VME_MASTER:
158                 retval = vme_master_get(resource, &enabled, &base, &size,
159                         &aspace, &cycle, &dwidth);
160
161                 return size;
162                 break;
163         case VME_SLAVE:
164                 retval = vme_slave_get(resource, &enabled, &base, &size,
165                         &buf_base, &aspace, &cycle);
166
167                 return size;
168                 break;
169         case VME_DMA:
170                 return 0;
171                 break;
172         default:
173                 printk(KERN_ERR "Unknown resource type\n");
174                 return 0;
175                 break;
176         }
177 }
178 EXPORT_SYMBOL(vme_get_size);
179
180 int vme_check_window(u32 aspace, unsigned long long vme_base,
181                      unsigned long long size)
182 {
183         int retval = 0;
184
185         switch (aspace) {
186         case VME_A16:
187                 if (((vme_base + size) > VME_A16_MAX) ||
188                                 (vme_base > VME_A16_MAX))
189                         retval = -EFAULT;
190                 break;
191         case VME_A24:
192                 if (((vme_base + size) > VME_A24_MAX) ||
193                                 (vme_base > VME_A24_MAX))
194                         retval = -EFAULT;
195                 break;
196         case VME_A32:
197                 if (((vme_base + size) > VME_A32_MAX) ||
198                                 (vme_base > VME_A32_MAX))
199                         retval = -EFAULT;
200                 break;
201         case VME_A64:
202                 if ((size != 0) && (vme_base > U64_MAX + 1 - size))
203                         retval = -EFAULT;
204                 break;
205         case VME_CRCSR:
206                 if (((vme_base + size) > VME_CRCSR_MAX) ||
207                                 (vme_base > VME_CRCSR_MAX))
208                         retval = -EFAULT;
209                 break;
210         case VME_USER1:
211         case VME_USER2:
212         case VME_USER3:
213         case VME_USER4:
214                 /* User Defined */
215                 break;
216         default:
217                 printk(KERN_ERR "Invalid address space\n");
218                 retval = -EINVAL;
219                 break;
220         }
221
222         return retval;
223 }
224 EXPORT_SYMBOL(vme_check_window);
225
226 static u32 vme_get_aspace(int am)
227 {
228         switch (am) {
229         case 0x29:
230         case 0x2D:
231                 return VME_A16;
232         case 0x38:
233         case 0x39:
234         case 0x3A:
235         case 0x3B:
236         case 0x3C:
237         case 0x3D:
238         case 0x3E:
239         case 0x3F:
240                 return VME_A24;
241         case 0x8:
242         case 0x9:
243         case 0xA:
244         case 0xB:
245         case 0xC:
246         case 0xD:
247         case 0xE:
248         case 0xF:
249                 return VME_A32;
250         case 0x0:
251         case 0x1:
252         case 0x3:
253                 return VME_A64;
254         }
255
256         return 0;
257 }
258
259 /*
260  * Request a slave image with specific attributes, return some unique
261  * identifier.
262  */
263 struct vme_resource *vme_slave_request(struct vme_dev *vdev, u32 address,
264         u32 cycle)
265 {
266         struct vme_bridge *bridge;
267         struct list_head *slave_pos = NULL;
268         struct vme_slave_resource *allocated_image = NULL;
269         struct vme_slave_resource *slave_image = NULL;
270         struct vme_resource *resource = NULL;
271
272         bridge = vdev->bridge;
273         if (bridge == NULL) {
274                 printk(KERN_ERR "Can't find VME bus\n");
275                 goto err_bus;
276         }
277
278         /* Loop through slave resources */
279         list_for_each(slave_pos, &bridge->slave_resources) {
280                 slave_image = list_entry(slave_pos,
281                         struct vme_slave_resource, list);
282
283                 if (slave_image == NULL) {
284                         printk(KERN_ERR "Registered NULL Slave resource\n");
285                         continue;
286                 }
287
288                 /* Find an unlocked and compatible image */
289                 mutex_lock(&slave_image->mtx);
290                 if (((slave_image->address_attr & address) == address) &&
291                         ((slave_image->cycle_attr & cycle) == cycle) &&
292                         (slave_image->locked == 0)) {
293
294                         slave_image->locked = 1;
295                         mutex_unlock(&slave_image->mtx);
296                         allocated_image = slave_image;
297                         break;
298                 }
299                 mutex_unlock(&slave_image->mtx);
300         }
301
302         /* No free image */
303         if (allocated_image == NULL)
304                 goto err_image;
305
306         resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
307         if (resource == NULL) {
308                 printk(KERN_WARNING "Unable to allocate resource structure\n");
309                 goto err_alloc;
310         }
311         resource->type = VME_SLAVE;
312         resource->entry = &allocated_image->list;
313
314         return resource;
315
316 err_alloc:
317         /* Unlock image */
318         mutex_lock(&slave_image->mtx);
319         slave_image->locked = 0;
320         mutex_unlock(&slave_image->mtx);
321 err_image:
322 err_bus:
323         return NULL;
324 }
325 EXPORT_SYMBOL(vme_slave_request);
326
327 int vme_slave_set(struct vme_resource *resource, int enabled,
328         unsigned long long vme_base, unsigned long long size,
329         dma_addr_t buf_base, u32 aspace, u32 cycle)
330 {
331         struct vme_bridge *bridge = find_bridge(resource);
332         struct vme_slave_resource *image;
333         int retval;
334
335         if (resource->type != VME_SLAVE) {
336                 printk(KERN_ERR "Not a slave resource\n");
337                 return -EINVAL;
338         }
339
340         image = list_entry(resource->entry, struct vme_slave_resource, list);
341
342         if (bridge->slave_set == NULL) {
343                 printk(KERN_ERR "Function not supported\n");
344                 return -ENOSYS;
345         }
346
347         if (!(((image->address_attr & aspace) == aspace) &&
348                 ((image->cycle_attr & cycle) == cycle))) {
349                 printk(KERN_ERR "Invalid attributes\n");
350                 return -EINVAL;
351         }
352
353         retval = vme_check_window(aspace, vme_base, size);
354         if (retval)
355                 return retval;
356
357         return bridge->slave_set(image, enabled, vme_base, size, buf_base,
358                 aspace, cycle);
359 }
360 EXPORT_SYMBOL(vme_slave_set);
361
362 int vme_slave_get(struct vme_resource *resource, int *enabled,
363         unsigned long long *vme_base, unsigned long long *size,
364         dma_addr_t *buf_base, u32 *aspace, u32 *cycle)
365 {
366         struct vme_bridge *bridge = find_bridge(resource);
367         struct vme_slave_resource *image;
368
369         if (resource->type != VME_SLAVE) {
370                 printk(KERN_ERR "Not a slave resource\n");
371                 return -EINVAL;
372         }
373
374         image = list_entry(resource->entry, struct vme_slave_resource, list);
375
376         if (bridge->slave_get == NULL) {
377                 printk(KERN_ERR "vme_slave_get not supported\n");
378                 return -EINVAL;
379         }
380
381         return bridge->slave_get(image, enabled, vme_base, size, buf_base,
382                 aspace, cycle);
383 }
384 EXPORT_SYMBOL(vme_slave_get);
385
386 void vme_slave_free(struct vme_resource *resource)
387 {
388         struct vme_slave_resource *slave_image;
389
390         if (resource->type != VME_SLAVE) {
391                 printk(KERN_ERR "Not a slave resource\n");
392                 return;
393         }
394
395         slave_image = list_entry(resource->entry, struct vme_slave_resource,
396                 list);
397         if (slave_image == NULL) {
398                 printk(KERN_ERR "Can't find slave resource\n");
399                 return;
400         }
401
402         /* Unlock image */
403         mutex_lock(&slave_image->mtx);
404         if (slave_image->locked == 0)
405                 printk(KERN_ERR "Image is already free\n");
406
407         slave_image->locked = 0;
408         mutex_unlock(&slave_image->mtx);
409
410         /* Free up resource memory */
411         kfree(resource);
412 }
413 EXPORT_SYMBOL(vme_slave_free);
414
415 /*
416  * Request a master image with specific attributes, return some unique
417  * identifier.
418  */
419 struct vme_resource *vme_master_request(struct vme_dev *vdev, u32 address,
420         u32 cycle, u32 dwidth)
421 {
422         struct vme_bridge *bridge;
423         struct list_head *master_pos = NULL;
424         struct vme_master_resource *allocated_image = NULL;
425         struct vme_master_resource *master_image = NULL;
426         struct vme_resource *resource = NULL;
427
428         bridge = vdev->bridge;
429         if (bridge == NULL) {
430                 printk(KERN_ERR "Can't find VME bus\n");
431                 goto err_bus;
432         }
433
434         /* Loop through master resources */
435         list_for_each(master_pos, &bridge->master_resources) {
436                 master_image = list_entry(master_pos,
437                         struct vme_master_resource, list);
438
439                 if (master_image == NULL) {
440                         printk(KERN_WARNING "Registered NULL master resource\n");
441                         continue;
442                 }
443
444                 /* Find an unlocked and compatible image */
445                 spin_lock(&master_image->lock);
446                 if (((master_image->address_attr & address) == address) &&
447                         ((master_image->cycle_attr & cycle) == cycle) &&
448                         ((master_image->width_attr & dwidth) == dwidth) &&
449                         (master_image->locked == 0)) {
450
451                         master_image->locked = 1;
452                         spin_unlock(&master_image->lock);
453                         allocated_image = master_image;
454                         break;
455                 }
456                 spin_unlock(&master_image->lock);
457         }
458
459         /* Check to see if we found a resource */
460         if (allocated_image == NULL) {
461                 printk(KERN_ERR "Can't find a suitable resource\n");
462                 goto err_image;
463         }
464
465         resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
466         if (resource == NULL) {
467                 printk(KERN_ERR "Unable to allocate resource structure\n");
468                 goto err_alloc;
469         }
470         resource->type = VME_MASTER;
471         resource->entry = &allocated_image->list;
472
473         return resource;
474
475 err_alloc:
476         /* Unlock image */
477         spin_lock(&master_image->lock);
478         master_image->locked = 0;
479         spin_unlock(&master_image->lock);
480 err_image:
481 err_bus:
482         return NULL;
483 }
484 EXPORT_SYMBOL(vme_master_request);
485
486 int vme_master_set(struct vme_resource *resource, int enabled,
487         unsigned long long vme_base, unsigned long long size, u32 aspace,
488         u32 cycle, u32 dwidth)
489 {
490         struct vme_bridge *bridge = find_bridge(resource);
491         struct vme_master_resource *image;
492         int retval;
493
494         if (resource->type != VME_MASTER) {
495                 printk(KERN_ERR "Not a master resource\n");
496                 return -EINVAL;
497         }
498
499         image = list_entry(resource->entry, struct vme_master_resource, list);
500
501         if (bridge->master_set == NULL) {
502                 printk(KERN_WARNING "vme_master_set not supported\n");
503                 return -EINVAL;
504         }
505
506         if (!(((image->address_attr & aspace) == aspace) &&
507                 ((image->cycle_attr & cycle) == cycle) &&
508                 ((image->width_attr & dwidth) == dwidth))) {
509                 printk(KERN_WARNING "Invalid attributes\n");
510                 return -EINVAL;
511         }
512
513         retval = vme_check_window(aspace, vme_base, size);
514         if (retval)
515                 return retval;
516
517         return bridge->master_set(image, enabled, vme_base, size, aspace,
518                 cycle, dwidth);
519 }
520 EXPORT_SYMBOL(vme_master_set);
521
522 int vme_master_get(struct vme_resource *resource, int *enabled,
523         unsigned long long *vme_base, unsigned long long *size, u32 *aspace,
524         u32 *cycle, u32 *dwidth)
525 {
526         struct vme_bridge *bridge = find_bridge(resource);
527         struct vme_master_resource *image;
528
529         if (resource->type != VME_MASTER) {
530                 printk(KERN_ERR "Not a master resource\n");
531                 return -EINVAL;
532         }
533
534         image = list_entry(resource->entry, struct vme_master_resource, list);
535
536         if (bridge->master_get == NULL) {
537                 printk(KERN_WARNING "%s not supported\n", __func__);
538                 return -EINVAL;
539         }
540
541         return bridge->master_get(image, enabled, vme_base, size, aspace,
542                 cycle, dwidth);
543 }
544 EXPORT_SYMBOL(vme_master_get);
545
546 /*
547  * Read data out of VME space into a buffer.
548  */
549 ssize_t vme_master_read(struct vme_resource *resource, void *buf, size_t count,
550         loff_t offset)
551 {
552         struct vme_bridge *bridge = find_bridge(resource);
553         struct vme_master_resource *image;
554         size_t length;
555
556         if (bridge->master_read == NULL) {
557                 printk(KERN_WARNING "Reading from resource not supported\n");
558                 return -EINVAL;
559         }
560
561         if (resource->type != VME_MASTER) {
562                 printk(KERN_ERR "Not a master resource\n");
563                 return -EINVAL;
564         }
565
566         image = list_entry(resource->entry, struct vme_master_resource, list);
567
568         length = vme_get_size(resource);
569
570         if (offset > length) {
571                 printk(KERN_WARNING "Invalid Offset\n");
572                 return -EFAULT;
573         }
574
575         if ((offset + count) > length)
576                 count = length - offset;
577
578         return bridge->master_read(image, buf, count, offset);
579
580 }
581 EXPORT_SYMBOL(vme_master_read);
582
583 /*
584  * Write data out to VME space from a buffer.
585  */
586 ssize_t vme_master_write(struct vme_resource *resource, void *buf,
587         size_t count, loff_t offset)
588 {
589         struct vme_bridge *bridge = find_bridge(resource);
590         struct vme_master_resource *image;
591         size_t length;
592
593         if (bridge->master_write == NULL) {
594                 printk(KERN_WARNING "Writing to resource not supported\n");
595                 return -EINVAL;
596         }
597
598         if (resource->type != VME_MASTER) {
599                 printk(KERN_ERR "Not a master resource\n");
600                 return -EINVAL;
601         }
602
603         image = list_entry(resource->entry, struct vme_master_resource, list);
604
605         length = vme_get_size(resource);
606
607         if (offset > length) {
608                 printk(KERN_WARNING "Invalid Offset\n");
609                 return -EFAULT;
610         }
611
612         if ((offset + count) > length)
613                 count = length - offset;
614
615         return bridge->master_write(image, buf, count, offset);
616 }
617 EXPORT_SYMBOL(vme_master_write);
618
619 /*
620  * Perform RMW cycle to provided location.
621  */
622 unsigned int vme_master_rmw(struct vme_resource *resource, unsigned int mask,
623         unsigned int compare, unsigned int swap, loff_t offset)
624 {
625         struct vme_bridge *bridge = find_bridge(resource);
626         struct vme_master_resource *image;
627
628         if (bridge->master_rmw == NULL) {
629                 printk(KERN_WARNING "Writing to resource not supported\n");
630                 return -EINVAL;
631         }
632
633         if (resource->type != VME_MASTER) {
634                 printk(KERN_ERR "Not a master resource\n");
635                 return -EINVAL;
636         }
637
638         image = list_entry(resource->entry, struct vme_master_resource, list);
639
640         return bridge->master_rmw(image, mask, compare, swap, offset);
641 }
642 EXPORT_SYMBOL(vme_master_rmw);
643
644 int vme_master_mmap(struct vme_resource *resource, struct vm_area_struct *vma)
645 {
646         struct vme_master_resource *image;
647         phys_addr_t phys_addr;
648         unsigned long vma_size;
649
650         if (resource->type != VME_MASTER) {
651                 pr_err("Not a master resource\n");
652                 return -EINVAL;
653         }
654
655         image = list_entry(resource->entry, struct vme_master_resource, list);
656         phys_addr = image->bus_resource.start + (vma->vm_pgoff << PAGE_SHIFT);
657         vma_size = vma->vm_end - vma->vm_start;
658
659         if (phys_addr + vma_size > image->bus_resource.end + 1) {
660                 pr_err("Map size cannot exceed the window size\n");
661                 return -EFAULT;
662         }
663
664         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
665
666         return vm_iomap_memory(vma, phys_addr, vma->vm_end - vma->vm_start);
667 }
668 EXPORT_SYMBOL(vme_master_mmap);
669
670 void vme_master_free(struct vme_resource *resource)
671 {
672         struct vme_master_resource *master_image;
673
674         if (resource->type != VME_MASTER) {
675                 printk(KERN_ERR "Not a master resource\n");
676                 return;
677         }
678
679         master_image = list_entry(resource->entry, struct vme_master_resource,
680                 list);
681         if (master_image == NULL) {
682                 printk(KERN_ERR "Can't find master resource\n");
683                 return;
684         }
685
686         /* Unlock image */
687         spin_lock(&master_image->lock);
688         if (master_image->locked == 0)
689                 printk(KERN_ERR "Image is already free\n");
690
691         master_image->locked = 0;
692         spin_unlock(&master_image->lock);
693
694         /* Free up resource memory */
695         kfree(resource);
696 }
697 EXPORT_SYMBOL(vme_master_free);
698
699 /*
700  * Request a DMA controller with specific attributes, return some unique
701  * identifier.
702  */
703 struct vme_resource *vme_dma_request(struct vme_dev *vdev, u32 route)
704 {
705         struct vme_bridge *bridge;
706         struct list_head *dma_pos = NULL;
707         struct vme_dma_resource *allocated_ctrlr = NULL;
708         struct vme_dma_resource *dma_ctrlr = NULL;
709         struct vme_resource *resource = NULL;
710
711         /* XXX Not checking resource attributes */
712         printk(KERN_ERR "No VME resource Attribute tests done\n");
713
714         bridge = vdev->bridge;
715         if (bridge == NULL) {
716                 printk(KERN_ERR "Can't find VME bus\n");
717                 goto err_bus;
718         }
719
720         /* Loop through DMA resources */
721         list_for_each(dma_pos, &bridge->dma_resources) {
722                 dma_ctrlr = list_entry(dma_pos,
723                         struct vme_dma_resource, list);
724
725                 if (dma_ctrlr == NULL) {
726                         printk(KERN_ERR "Registered NULL DMA resource\n");
727                         continue;
728                 }
729
730                 /* Find an unlocked and compatible controller */
731                 mutex_lock(&dma_ctrlr->mtx);
732                 if (((dma_ctrlr->route_attr & route) == route) &&
733                         (dma_ctrlr->locked == 0)) {
734
735                         dma_ctrlr->locked = 1;
736                         mutex_unlock(&dma_ctrlr->mtx);
737                         allocated_ctrlr = dma_ctrlr;
738                         break;
739                 }
740                 mutex_unlock(&dma_ctrlr->mtx);
741         }
742
743         /* Check to see if we found a resource */
744         if (allocated_ctrlr == NULL)
745                 goto err_ctrlr;
746
747         resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
748         if (resource == NULL) {
749                 printk(KERN_WARNING "Unable to allocate resource structure\n");
750                 goto err_alloc;
751         }
752         resource->type = VME_DMA;
753         resource->entry = &allocated_ctrlr->list;
754
755         return resource;
756
757 err_alloc:
758         /* Unlock image */
759         mutex_lock(&dma_ctrlr->mtx);
760         dma_ctrlr->locked = 0;
761         mutex_unlock(&dma_ctrlr->mtx);
762 err_ctrlr:
763 err_bus:
764         return NULL;
765 }
766 EXPORT_SYMBOL(vme_dma_request);
767
768 /*
769  * Start new list
770  */
771 struct vme_dma_list *vme_new_dma_list(struct vme_resource *resource)
772 {
773         struct vme_dma_resource *ctrlr;
774         struct vme_dma_list *dma_list;
775
776         if (resource->type != VME_DMA) {
777                 printk(KERN_ERR "Not a DMA resource\n");
778                 return NULL;
779         }
780
781         ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
782
783         dma_list = kmalloc(sizeof(struct vme_dma_list), GFP_KERNEL);
784         if (dma_list == NULL) {
785                 printk(KERN_ERR "Unable to allocate memory for new dma list\n");
786                 return NULL;
787         }
788         INIT_LIST_HEAD(&dma_list->entries);
789         dma_list->parent = ctrlr;
790         mutex_init(&dma_list->mtx);
791
792         return dma_list;
793 }
794 EXPORT_SYMBOL(vme_new_dma_list);
795
796 /*
797  * Create "Pattern" type attributes
798  */
799 struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern, u32 type)
800 {
801         struct vme_dma_attr *attributes;
802         struct vme_dma_pattern *pattern_attr;
803
804         attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
805         if (attributes == NULL) {
806                 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
807                 goto err_attr;
808         }
809
810         pattern_attr = kmalloc(sizeof(struct vme_dma_pattern), GFP_KERNEL);
811         if (pattern_attr == NULL) {
812                 printk(KERN_ERR "Unable to allocate memory for pattern attributes\n");
813                 goto err_pat;
814         }
815
816         attributes->type = VME_DMA_PATTERN;
817         attributes->private = (void *)pattern_attr;
818
819         pattern_attr->pattern = pattern;
820         pattern_attr->type = type;
821
822         return attributes;
823
824 err_pat:
825         kfree(attributes);
826 err_attr:
827         return NULL;
828 }
829 EXPORT_SYMBOL(vme_dma_pattern_attribute);
830
831 /*
832  * Create "PCI" type attributes
833  */
834 struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t address)
835 {
836         struct vme_dma_attr *attributes;
837         struct vme_dma_pci *pci_attr;
838
839         /* XXX Run some sanity checks here */
840
841         attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
842         if (attributes == NULL) {
843                 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
844                 goto err_attr;
845         }
846
847         pci_attr = kmalloc(sizeof(struct vme_dma_pci), GFP_KERNEL);
848         if (pci_attr == NULL) {
849                 printk(KERN_ERR "Unable to allocate memory for pci attributes\n");
850                 goto err_pci;
851         }
852
853
854
855         attributes->type = VME_DMA_PCI;
856         attributes->private = (void *)pci_attr;
857
858         pci_attr->address = address;
859
860         return attributes;
861
862 err_pci:
863         kfree(attributes);
864 err_attr:
865         return NULL;
866 }
867 EXPORT_SYMBOL(vme_dma_pci_attribute);
868
869 /*
870  * Create "VME" type attributes
871  */
872 struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long address,
873         u32 aspace, u32 cycle, u32 dwidth)
874 {
875         struct vme_dma_attr *attributes;
876         struct vme_dma_vme *vme_attr;
877
878         attributes = kmalloc(
879                 sizeof(struct vme_dma_attr), GFP_KERNEL);
880         if (attributes == NULL) {
881                 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
882                 goto err_attr;
883         }
884
885         vme_attr = kmalloc(sizeof(struct vme_dma_vme), GFP_KERNEL);
886         if (vme_attr == NULL) {
887                 printk(KERN_ERR "Unable to allocate memory for vme attributes\n");
888                 goto err_vme;
889         }
890
891         attributes->type = VME_DMA_VME;
892         attributes->private = (void *)vme_attr;
893
894         vme_attr->address = address;
895         vme_attr->aspace = aspace;
896         vme_attr->cycle = cycle;
897         vme_attr->dwidth = dwidth;
898
899         return attributes;
900
901 err_vme:
902         kfree(attributes);
903 err_attr:
904         return NULL;
905 }
906 EXPORT_SYMBOL(vme_dma_vme_attribute);
907
908 /*
909  * Free attribute
910  */
911 void vme_dma_free_attribute(struct vme_dma_attr *attributes)
912 {
913         kfree(attributes->private);
914         kfree(attributes);
915 }
916 EXPORT_SYMBOL(vme_dma_free_attribute);
917
918 int vme_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src,
919         struct vme_dma_attr *dest, size_t count)
920 {
921         struct vme_bridge *bridge = list->parent->parent;
922         int retval;
923
924         if (bridge->dma_list_add == NULL) {
925                 printk(KERN_WARNING "Link List DMA generation not supported\n");
926                 return -EINVAL;
927         }
928
929         if (!mutex_trylock(&list->mtx)) {
930                 printk(KERN_ERR "Link List already submitted\n");
931                 return -EINVAL;
932         }
933
934         retval = bridge->dma_list_add(list, src, dest, count);
935
936         mutex_unlock(&list->mtx);
937
938         return retval;
939 }
940 EXPORT_SYMBOL(vme_dma_list_add);
941
942 int vme_dma_list_exec(struct vme_dma_list *list)
943 {
944         struct vme_bridge *bridge = list->parent->parent;
945         int retval;
946
947         if (bridge->dma_list_exec == NULL) {
948                 printk(KERN_ERR "Link List DMA execution not supported\n");
949                 return -EINVAL;
950         }
951
952         mutex_lock(&list->mtx);
953
954         retval = bridge->dma_list_exec(list);
955
956         mutex_unlock(&list->mtx);
957
958         return retval;
959 }
960 EXPORT_SYMBOL(vme_dma_list_exec);
961
962 int vme_dma_list_free(struct vme_dma_list *list)
963 {
964         struct vme_bridge *bridge = list->parent->parent;
965         int retval;
966
967         if (bridge->dma_list_empty == NULL) {
968                 printk(KERN_WARNING "Emptying of Link Lists not supported\n");
969                 return -EINVAL;
970         }
971
972         if (!mutex_trylock(&list->mtx)) {
973                 printk(KERN_ERR "Link List in use\n");
974                 return -EINVAL;
975         }
976
977         /*
978          * Empty out all of the entries from the dma list. We need to go to the
979          * low level driver as dma entries are driver specific.
980          */
981         retval = bridge->dma_list_empty(list);
982         if (retval) {
983                 printk(KERN_ERR "Unable to empty link-list entries\n");
984                 mutex_unlock(&list->mtx);
985                 return retval;
986         }
987         mutex_unlock(&list->mtx);
988         kfree(list);
989
990         return retval;
991 }
992 EXPORT_SYMBOL(vme_dma_list_free);
993
994 int vme_dma_free(struct vme_resource *resource)
995 {
996         struct vme_dma_resource *ctrlr;
997
998         if (resource->type != VME_DMA) {
999                 printk(KERN_ERR "Not a DMA resource\n");
1000                 return -EINVAL;
1001         }
1002
1003         ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
1004
1005         if (!mutex_trylock(&ctrlr->mtx)) {
1006                 printk(KERN_ERR "Resource busy, can't free\n");
1007                 return -EBUSY;
1008         }
1009
1010         if (!(list_empty(&ctrlr->pending) && list_empty(&ctrlr->running))) {
1011                 printk(KERN_WARNING "Resource still processing transfers\n");
1012                 mutex_unlock(&ctrlr->mtx);
1013                 return -EBUSY;
1014         }
1015
1016         ctrlr->locked = 0;
1017
1018         mutex_unlock(&ctrlr->mtx);
1019
1020         kfree(resource);
1021
1022         return 0;
1023 }
1024 EXPORT_SYMBOL(vme_dma_free);
1025
1026 void vme_bus_error_handler(struct vme_bridge *bridge,
1027                            unsigned long long address, int am)
1028 {
1029         struct list_head *handler_pos = NULL;
1030         struct vme_error_handler *handler;
1031         int handler_triggered = 0;
1032         u32 aspace = vme_get_aspace(am);
1033
1034         list_for_each(handler_pos, &bridge->vme_error_handlers) {
1035                 handler = list_entry(handler_pos, struct vme_error_handler,
1036                                      list);
1037                 if ((aspace == handler->aspace) &&
1038                     (address >= handler->start) &&
1039                     (address < handler->end)) {
1040                         if (!handler->num_errors)
1041                                 handler->first_error = address;
1042                         if (handler->num_errors != UINT_MAX)
1043                                 handler->num_errors++;
1044                         handler_triggered = 1;
1045                 }
1046         }
1047
1048         if (!handler_triggered)
1049                 dev_err(bridge->parent,
1050                         "Unhandled VME access error at address 0x%llx\n",
1051                         address);
1052 }
1053 EXPORT_SYMBOL(vme_bus_error_handler);
1054
1055 struct vme_error_handler *vme_register_error_handler(
1056         struct vme_bridge *bridge, u32 aspace,
1057         unsigned long long address, size_t len)
1058 {
1059         struct vme_error_handler *handler;
1060
1061         handler = kmalloc(sizeof(*handler), GFP_KERNEL);
1062         if (!handler)
1063                 return NULL;
1064
1065         handler->aspace = aspace;
1066         handler->start = address;
1067         handler->end = address + len;
1068         handler->num_errors = 0;
1069         handler->first_error = 0;
1070         list_add_tail(&handler->list, &bridge->vme_error_handlers);
1071
1072         return handler;
1073 }
1074 EXPORT_SYMBOL(vme_register_error_handler);
1075
1076 void vme_unregister_error_handler(struct vme_error_handler *handler)
1077 {
1078         list_del(&handler->list);
1079         kfree(handler);
1080 }
1081 EXPORT_SYMBOL(vme_unregister_error_handler);
1082
1083 void vme_irq_handler(struct vme_bridge *bridge, int level, int statid)
1084 {
1085         void (*call)(int, int, void *);
1086         void *priv_data;
1087
1088         call = bridge->irq[level - 1].callback[statid].func;
1089         priv_data = bridge->irq[level - 1].callback[statid].priv_data;
1090
1091         if (call != NULL)
1092                 call(level, statid, priv_data);
1093         else
1094                 printk(KERN_WARNING "Spurilous VME interrupt, level:%x, vector:%x\n",
1095                        level, statid);
1096 }
1097 EXPORT_SYMBOL(vme_irq_handler);
1098
1099 int vme_irq_request(struct vme_dev *vdev, int level, int statid,
1100         void (*callback)(int, int, void *),
1101         void *priv_data)
1102 {
1103         struct vme_bridge *bridge;
1104
1105         bridge = vdev->bridge;
1106         if (bridge == NULL) {
1107                 printk(KERN_ERR "Can't find VME bus\n");
1108                 return -EINVAL;
1109         }
1110
1111         if ((level < 1) || (level > 7)) {
1112                 printk(KERN_ERR "Invalid interrupt level\n");
1113                 return -EINVAL;
1114         }
1115
1116         if (bridge->irq_set == NULL) {
1117                 printk(KERN_ERR "Configuring interrupts not supported\n");
1118                 return -EINVAL;
1119         }
1120
1121         mutex_lock(&bridge->irq_mtx);
1122
1123         if (bridge->irq[level - 1].callback[statid].func) {
1124                 mutex_unlock(&bridge->irq_mtx);
1125                 printk(KERN_WARNING "VME Interrupt already taken\n");
1126                 return -EBUSY;
1127         }
1128
1129         bridge->irq[level - 1].count++;
1130         bridge->irq[level - 1].callback[statid].priv_data = priv_data;
1131         bridge->irq[level - 1].callback[statid].func = callback;
1132
1133         /* Enable IRQ level */
1134         bridge->irq_set(bridge, level, 1, 1);
1135
1136         mutex_unlock(&bridge->irq_mtx);
1137
1138         return 0;
1139 }
1140 EXPORT_SYMBOL(vme_irq_request);
1141
1142 void vme_irq_free(struct vme_dev *vdev, int level, int statid)
1143 {
1144         struct vme_bridge *bridge;
1145
1146         bridge = vdev->bridge;
1147         if (bridge == NULL) {
1148                 printk(KERN_ERR "Can't find VME bus\n");
1149                 return;
1150         }
1151
1152         if ((level < 1) || (level > 7)) {
1153                 printk(KERN_ERR "Invalid interrupt level\n");
1154                 return;
1155         }
1156
1157         if (bridge->irq_set == NULL) {
1158                 printk(KERN_ERR "Configuring interrupts not supported\n");
1159                 return;
1160         }
1161
1162         mutex_lock(&bridge->irq_mtx);
1163
1164         bridge->irq[level - 1].count--;
1165
1166         /* Disable IRQ level if no more interrupts attached at this level*/
1167         if (bridge->irq[level - 1].count == 0)
1168                 bridge->irq_set(bridge, level, 0, 1);
1169
1170         bridge->irq[level - 1].callback[statid].func = NULL;
1171         bridge->irq[level - 1].callback[statid].priv_data = NULL;
1172
1173         mutex_unlock(&bridge->irq_mtx);
1174 }
1175 EXPORT_SYMBOL(vme_irq_free);
1176
1177 int vme_irq_generate(struct vme_dev *vdev, int level, int statid)
1178 {
1179         struct vme_bridge *bridge;
1180
1181         bridge = vdev->bridge;
1182         if (bridge == NULL) {
1183                 printk(KERN_ERR "Can't find VME bus\n");
1184                 return -EINVAL;
1185         }
1186
1187         if ((level < 1) || (level > 7)) {
1188                 printk(KERN_WARNING "Invalid interrupt level\n");
1189                 return -EINVAL;
1190         }
1191
1192         if (bridge->irq_generate == NULL) {
1193                 printk(KERN_WARNING "Interrupt generation not supported\n");
1194                 return -EINVAL;
1195         }
1196
1197         return bridge->irq_generate(bridge, level, statid);
1198 }
1199 EXPORT_SYMBOL(vme_irq_generate);
1200
1201 /*
1202  * Request the location monitor, return resource or NULL
1203  */
1204 struct vme_resource *vme_lm_request(struct vme_dev *vdev)
1205 {
1206         struct vme_bridge *bridge;
1207         struct list_head *lm_pos = NULL;
1208         struct vme_lm_resource *allocated_lm = NULL;
1209         struct vme_lm_resource *lm = NULL;
1210         struct vme_resource *resource = NULL;
1211
1212         bridge = vdev->bridge;
1213         if (bridge == NULL) {
1214                 printk(KERN_ERR "Can't find VME bus\n");
1215                 goto err_bus;
1216         }
1217
1218         /* Loop through DMA resources */
1219         list_for_each(lm_pos, &bridge->lm_resources) {
1220                 lm = list_entry(lm_pos,
1221                         struct vme_lm_resource, list);
1222
1223                 if (lm == NULL) {
1224                         printk(KERN_ERR "Registered NULL Location Monitor resource\n");
1225                         continue;
1226                 }
1227
1228                 /* Find an unlocked controller */
1229                 mutex_lock(&lm->mtx);
1230                 if (lm->locked == 0) {
1231                         lm->locked = 1;
1232                         mutex_unlock(&lm->mtx);
1233                         allocated_lm = lm;
1234                         break;
1235                 }
1236                 mutex_unlock(&lm->mtx);
1237         }
1238
1239         /* Check to see if we found a resource */
1240         if (allocated_lm == NULL)
1241                 goto err_lm;
1242
1243         resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
1244         if (resource == NULL) {
1245                 printk(KERN_ERR "Unable to allocate resource structure\n");
1246                 goto err_alloc;
1247         }
1248         resource->type = VME_LM;
1249         resource->entry = &allocated_lm->list;
1250
1251         return resource;
1252
1253 err_alloc:
1254         /* Unlock image */
1255         mutex_lock(&lm->mtx);
1256         lm->locked = 0;
1257         mutex_unlock(&lm->mtx);
1258 err_lm:
1259 err_bus:
1260         return NULL;
1261 }
1262 EXPORT_SYMBOL(vme_lm_request);
1263
1264 int vme_lm_count(struct vme_resource *resource)
1265 {
1266         struct vme_lm_resource *lm;
1267
1268         if (resource->type != VME_LM) {
1269                 printk(KERN_ERR "Not a Location Monitor resource\n");
1270                 return -EINVAL;
1271         }
1272
1273         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1274
1275         return lm->monitors;
1276 }
1277 EXPORT_SYMBOL(vme_lm_count);
1278
1279 int vme_lm_set(struct vme_resource *resource, unsigned long long lm_base,
1280         u32 aspace, u32 cycle)
1281 {
1282         struct vme_bridge *bridge = find_bridge(resource);
1283         struct vme_lm_resource *lm;
1284
1285         if (resource->type != VME_LM) {
1286                 printk(KERN_ERR "Not a Location Monitor resource\n");
1287                 return -EINVAL;
1288         }
1289
1290         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1291
1292         if (bridge->lm_set == NULL) {
1293                 printk(KERN_ERR "vme_lm_set not supported\n");
1294                 return -EINVAL;
1295         }
1296
1297         return bridge->lm_set(lm, lm_base, aspace, cycle);
1298 }
1299 EXPORT_SYMBOL(vme_lm_set);
1300
1301 int vme_lm_get(struct vme_resource *resource, unsigned long long *lm_base,
1302         u32 *aspace, u32 *cycle)
1303 {
1304         struct vme_bridge *bridge = find_bridge(resource);
1305         struct vme_lm_resource *lm;
1306
1307         if (resource->type != VME_LM) {
1308                 printk(KERN_ERR "Not a Location Monitor resource\n");
1309                 return -EINVAL;
1310         }
1311
1312         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1313
1314         if (bridge->lm_get == NULL) {
1315                 printk(KERN_ERR "vme_lm_get not supported\n");
1316                 return -EINVAL;
1317         }
1318
1319         return bridge->lm_get(lm, lm_base, aspace, cycle);
1320 }
1321 EXPORT_SYMBOL(vme_lm_get);
1322
1323 int vme_lm_attach(struct vme_resource *resource, int monitor,
1324         void (*callback)(int))
1325 {
1326         struct vme_bridge *bridge = find_bridge(resource);
1327         struct vme_lm_resource *lm;
1328
1329         if (resource->type != VME_LM) {
1330                 printk(KERN_ERR "Not a Location Monitor resource\n");
1331                 return -EINVAL;
1332         }
1333
1334         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1335
1336         if (bridge->lm_attach == NULL) {
1337                 printk(KERN_ERR "vme_lm_attach not supported\n");
1338                 return -EINVAL;
1339         }
1340
1341         return bridge->lm_attach(lm, monitor, callback);
1342 }
1343 EXPORT_SYMBOL(vme_lm_attach);
1344
1345 int vme_lm_detach(struct vme_resource *resource, int monitor)
1346 {
1347         struct vme_bridge *bridge = find_bridge(resource);
1348         struct vme_lm_resource *lm;
1349
1350         if (resource->type != VME_LM) {
1351                 printk(KERN_ERR "Not a Location Monitor resource\n");
1352                 return -EINVAL;
1353         }
1354
1355         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1356
1357         if (bridge->lm_detach == NULL) {
1358                 printk(KERN_ERR "vme_lm_detach not supported\n");
1359                 return -EINVAL;
1360         }
1361
1362         return bridge->lm_detach(lm, monitor);
1363 }
1364 EXPORT_SYMBOL(vme_lm_detach);
1365
1366 void vme_lm_free(struct vme_resource *resource)
1367 {
1368         struct vme_lm_resource *lm;
1369
1370         if (resource->type != VME_LM) {
1371                 printk(KERN_ERR "Not a Location Monitor resource\n");
1372                 return;
1373         }
1374
1375         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1376
1377         mutex_lock(&lm->mtx);
1378
1379         /* XXX
1380          * Check to see that there aren't any callbacks still attached, if
1381          * there are we should probably be detaching them!
1382          */
1383
1384         lm->locked = 0;
1385
1386         mutex_unlock(&lm->mtx);
1387
1388         kfree(resource);
1389 }
1390 EXPORT_SYMBOL(vme_lm_free);
1391
1392 int vme_slot_num(struct vme_dev *vdev)
1393 {
1394         struct vme_bridge *bridge;
1395
1396         bridge = vdev->bridge;
1397         if (bridge == NULL) {
1398                 printk(KERN_ERR "Can't find VME bus\n");
1399                 return -EINVAL;
1400         }
1401
1402         if (bridge->slot_get == NULL) {
1403                 printk(KERN_WARNING "vme_slot_num not supported\n");
1404                 return -EINVAL;
1405         }
1406
1407         return bridge->slot_get(bridge);
1408 }
1409 EXPORT_SYMBOL(vme_slot_num);
1410
1411 int vme_bus_num(struct vme_dev *vdev)
1412 {
1413         struct vme_bridge *bridge;
1414
1415         bridge = vdev->bridge;
1416         if (bridge == NULL) {
1417                 pr_err("Can't find VME bus\n");
1418                 return -EINVAL;
1419         }
1420
1421         return bridge->num;
1422 }
1423 EXPORT_SYMBOL(vme_bus_num);
1424
1425 /* - Bridge Registration --------------------------------------------------- */
1426
1427 static void vme_dev_release(struct device *dev)
1428 {
1429         kfree(dev_to_vme_dev(dev));
1430 }
1431
1432 int vme_register_bridge(struct vme_bridge *bridge)
1433 {
1434         int i;
1435         int ret = -1;
1436
1437         mutex_lock(&vme_buses_lock);
1438         for (i = 0; i < sizeof(vme_bus_numbers) * 8; i++) {
1439                 if ((vme_bus_numbers & (1 << i)) == 0) {
1440                         vme_bus_numbers |= (1 << i);
1441                         bridge->num = i;
1442                         INIT_LIST_HEAD(&bridge->devices);
1443                         list_add_tail(&bridge->bus_list, &vme_bus_list);
1444                         ret = 0;
1445                         break;
1446                 }
1447         }
1448         mutex_unlock(&vme_buses_lock);
1449
1450         return ret;
1451 }
1452 EXPORT_SYMBOL(vme_register_bridge);
1453
1454 void vme_unregister_bridge(struct vme_bridge *bridge)
1455 {
1456         struct vme_dev *vdev;
1457         struct vme_dev *tmp;
1458
1459         mutex_lock(&vme_buses_lock);
1460         vme_bus_numbers &= ~(1 << bridge->num);
1461         list_for_each_entry_safe(vdev, tmp, &bridge->devices, bridge_list) {
1462                 list_del(&vdev->drv_list);
1463                 list_del(&vdev->bridge_list);
1464                 device_unregister(&vdev->dev);
1465         }
1466         list_del(&bridge->bus_list);
1467         mutex_unlock(&vme_buses_lock);
1468 }
1469 EXPORT_SYMBOL(vme_unregister_bridge);
1470
1471 /* - Driver Registration --------------------------------------------------- */
1472
1473 static int __vme_register_driver_bus(struct vme_driver *drv,
1474         struct vme_bridge *bridge, unsigned int ndevs)
1475 {
1476         int err;
1477         unsigned int i;
1478         struct vme_dev *vdev;
1479         struct vme_dev *tmp;
1480
1481         for (i = 0; i < ndevs; i++) {
1482                 vdev = kzalloc(sizeof(struct vme_dev), GFP_KERNEL);
1483                 if (!vdev) {
1484                         err = -ENOMEM;
1485                         goto err_devalloc;
1486                 }
1487                 vdev->num = i;
1488                 vdev->bridge = bridge;
1489                 vdev->dev.platform_data = drv;
1490                 vdev->dev.release = vme_dev_release;
1491                 vdev->dev.parent = bridge->parent;
1492                 vdev->dev.bus = &vme_bus_type;
1493                 dev_set_name(&vdev->dev, "%s.%u-%u", drv->name, bridge->num,
1494                         vdev->num);
1495
1496                 err = device_register(&vdev->dev);
1497                 if (err)
1498                         goto err_reg;
1499
1500                 if (vdev->dev.platform_data) {
1501                         list_add_tail(&vdev->drv_list, &drv->devices);
1502                         list_add_tail(&vdev->bridge_list, &bridge->devices);
1503                 } else
1504                         device_unregister(&vdev->dev);
1505         }
1506         return 0;
1507
1508 err_reg:
1509         put_device(&vdev->dev);
1510         kfree(vdev);
1511 err_devalloc:
1512         list_for_each_entry_safe(vdev, tmp, &drv->devices, drv_list) {
1513                 list_del(&vdev->drv_list);
1514                 list_del(&vdev->bridge_list);
1515                 device_unregister(&vdev->dev);
1516         }
1517         return err;
1518 }
1519
1520 static int __vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1521 {
1522         struct vme_bridge *bridge;
1523         int err = 0;
1524
1525         mutex_lock(&vme_buses_lock);
1526         list_for_each_entry(bridge, &vme_bus_list, bus_list) {
1527                 /*
1528                  * This cannot cause trouble as we already have vme_buses_lock
1529                  * and if the bridge is removed, it will have to go through
1530                  * vme_unregister_bridge() to do it (which calls remove() on
1531                  * the bridge which in turn tries to acquire vme_buses_lock and
1532                  * will have to wait).
1533                  */
1534                 err = __vme_register_driver_bus(drv, bridge, ndevs);
1535                 if (err)
1536                         break;
1537         }
1538         mutex_unlock(&vme_buses_lock);
1539         return err;
1540 }
1541
1542 int vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1543 {
1544         int err;
1545
1546         drv->driver.name = drv->name;
1547         drv->driver.bus = &vme_bus_type;
1548         INIT_LIST_HEAD(&drv->devices);
1549
1550         err = driver_register(&drv->driver);
1551         if (err)
1552                 return err;
1553
1554         err = __vme_register_driver(drv, ndevs);
1555         if (err)
1556                 driver_unregister(&drv->driver);
1557
1558         return err;
1559 }
1560 EXPORT_SYMBOL(vme_register_driver);
1561
1562 void vme_unregister_driver(struct vme_driver *drv)
1563 {
1564         struct vme_dev *dev, *dev_tmp;
1565
1566         mutex_lock(&vme_buses_lock);
1567         list_for_each_entry_safe(dev, dev_tmp, &drv->devices, drv_list) {
1568                 list_del(&dev->drv_list);
1569                 list_del(&dev->bridge_list);
1570                 device_unregister(&dev->dev);
1571         }
1572         mutex_unlock(&vme_buses_lock);
1573
1574         driver_unregister(&drv->driver);
1575 }
1576 EXPORT_SYMBOL(vme_unregister_driver);
1577
1578 /* - Bus Registration ------------------------------------------------------ */
1579
1580 static int vme_bus_match(struct device *dev, struct device_driver *drv)
1581 {
1582         struct vme_driver *vme_drv;
1583
1584         vme_drv = container_of(drv, struct vme_driver, driver);
1585
1586         if (dev->platform_data == vme_drv) {
1587                 struct vme_dev *vdev = dev_to_vme_dev(dev);
1588
1589                 if (vme_drv->match && vme_drv->match(vdev))
1590                         return 1;
1591
1592                 dev->platform_data = NULL;
1593         }
1594         return 0;
1595 }
1596
1597 static int vme_bus_probe(struct device *dev)
1598 {
1599         int retval = -ENODEV;
1600         struct vme_driver *driver;
1601         struct vme_dev *vdev = dev_to_vme_dev(dev);
1602
1603         driver = dev->platform_data;
1604
1605         if (driver->probe != NULL)
1606                 retval = driver->probe(vdev);
1607
1608         return retval;
1609 }
1610
1611 static int vme_bus_remove(struct device *dev)
1612 {
1613         int retval = -ENODEV;
1614         struct vme_driver *driver;
1615         struct vme_dev *vdev = dev_to_vme_dev(dev);
1616
1617         driver = dev->platform_data;
1618
1619         if (driver->remove != NULL)
1620                 retval = driver->remove(vdev);
1621
1622         return retval;
1623 }
1624
1625 struct bus_type vme_bus_type = {
1626         .name = "vme",
1627         .match = vme_bus_match,
1628         .probe = vme_bus_probe,
1629         .remove = vme_bus_remove,
1630 };
1631 EXPORT_SYMBOL(vme_bus_type);
1632
1633 static int __init vme_init(void)
1634 {
1635         return bus_register(&vme_bus_type);
1636 }
1637
1638 static void __exit vme_exit(void)
1639 {
1640         bus_unregister(&vme_bus_type);
1641 }
1642
1643 subsys_initcall(vme_init);
1644 module_exit(vme_exit);