RK3368 DDR: fix HDMI display abnormal when ddr change freq
[firefly-linux-kernel-4.4.55.git] / drivers / video / sa1100fb.c
1 /*
2  *  linux/drivers/video/sa1100fb.c
3  *
4  *  Copyright (C) 1999 Eric A. Thomas
5  *   Based on acornfb.c Copyright (C) Russell King.
6  *
7  * This file is subject to the terms and conditions of the GNU General Public
8  * License.  See the file COPYING in the main directory of this archive for
9  * more details.
10  *
11  *              StrongARM 1100 LCD Controller Frame Buffer Driver
12  *
13  * Please direct your questions and comments on this driver to the following
14  * email address:
15  *
16  *      linux-arm-kernel@lists.arm.linux.org.uk
17  *
18  * Clean patches should be sent to the ARM Linux Patch System.  Please see the
19  * following web page for more information:
20  *
21  *      http://www.arm.linux.org.uk/developer/patches/info.shtml
22  *
23  * Thank you.
24  *
25  * Known problems:
26  *      - With the Neponset plugged into an Assabet, LCD powerdown
27  *        doesn't work (LCD stays powered up).  Therefore we shouldn't
28  *        blank the screen.
29  *      - We don't limit the CPU clock rate nor the mode selection
30  *        according to the available SDRAM bandwidth.
31  *
32  * Other notes:
33  *      - Linear grayscale palettes and the kernel.
34  *        Such code does not belong in the kernel.  The kernel frame buffer
35  *        drivers do not expect a linear colourmap, but a colourmap based on
36  *        the VT100 standard mapping.
37  *
38  *        If your _userspace_ requires a linear colourmap, then the setup of
39  *        such a colourmap belongs _in userspace_, not in the kernel.  Code
40  *        to set the colourmap correctly from user space has been sent to
41  *        David Neuer.  It's around 8 lines of C code, plus another 4 to
42  *        detect if we are using grayscale.
43  *
44  *      - The following must never be specified in a panel definition:
45  *           LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
46  *
47  *      - The following should be specified:
48  *           either LCCR0_Color or LCCR0_Mono
49  *           either LCCR0_Sngl or LCCR0_Dual
50  *           either LCCR0_Act or LCCR0_Pas
51  *           either LCCR3_OutEnH or LCCD3_OutEnL
52  *           either LCCR3_PixRsEdg or LCCR3_PixFlEdg
53  *           either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
54  *
55  * Code Status:
56  * 1999/04/01:
57  *      - Driver appears to be working for Brutus 320x200x8bpp mode.  Other
58  *        resolutions are working, but only the 8bpp mode is supported.
59  *        Changes need to be made to the palette encode and decode routines
60  *        to support 4 and 16 bpp modes.  
61  *        Driver is not designed to be a module.  The FrameBuffer is statically
62  *        allocated since dynamic allocation of a 300k buffer cannot be 
63  *        guaranteed. 
64  *
65  * 1999/06/17:
66  *      - FrameBuffer memory is now allocated at run-time when the
67  *        driver is initialized.    
68  *
69  * 2000/04/10: Nicolas Pitre <nico@fluxnic.net>
70  *      - Big cleanup for dynamic selection of machine type at run time.
71  *
72  * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
73  *      - Support for Bitsy aka Compaq iPAQ H3600 added.
74  *
75  * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
76  *             Jeff Sutherland <jsutherland@accelent.com>
77  *      - Resolved an issue caused by a change made to the Assabet's PLD 
78  *        earlier this year which broke the framebuffer driver for newer 
79  *        Phase 4 Assabets.  Some other parameters were changed to optimize
80  *        for the Sharp display.
81  *
82  * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
83  *      - XP860 support added
84  *
85  * 2000/08/19: Mark Huang <mhuang@livetoy.com>
86  *      - Allows standard options to be passed on the kernel command line
87  *        for most common passive displays.
88  *
89  * 2000/08/29:
90  *      - s/save_flags_cli/local_irq_save/
91  *      - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
92  *
93  * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
94  *      - Updated LART stuff. Fixed some minor bugs.
95  *
96  * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
97  *      - Pangolin support added
98  *
99  * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
100  *      - Huw Webpanel support added
101  *
102  * 2000/11/23: Eric Peng <ericpeng@coventive.com>
103  *      - Freebird add
104  *
105  * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com> 
106  *             Cliff Brake <cbrake@accelent.com>
107  *      - Added PM callback
108  *
109  * 2001/05/26: <rmk@arm.linux.org.uk>
110  *      - Fix 16bpp so that (a) we use the right colours rather than some
111  *        totally random colour depending on what was in page 0, and (b)
112  *        we don't de-reference a NULL pointer.
113  *      - remove duplicated implementation of consistent_alloc()
114  *      - convert dma address types to dma_addr_t
115  *      - remove unused 'montype' stuff
116  *      - remove redundant zero inits of init_var after the initial
117  *        memset.
118  *      - remove allow_modeset (acornfb idea does not belong here)
119  *
120  * 2001/05/28: <rmk@arm.linux.org.uk>
121  *      - massive cleanup - move machine dependent data into structures
122  *      - I've left various #warnings in - if you see one, and know
123  *        the hardware concerned, please get in contact with me.
124  *
125  * 2001/05/31: <rmk@arm.linux.org.uk>
126  *      - Fix LCCR1 HSW value, fix all machine type specifications to
127  *        keep values in line.  (Please check your machine type specs)
128  *
129  * 2001/06/10: <rmk@arm.linux.org.uk>
130  *      - Fiddle with the LCD controller from task context only; mainly
131  *        so that we can run with interrupts on, and sleep.
132  *      - Convert #warnings into #errors.  No pain, no gain. ;)
133  *
134  * 2001/06/14: <rmk@arm.linux.org.uk>
135  *      - Make the palette BPS value for 12bpp come out correctly.
136  *      - Take notice of "greyscale" on any colour depth.
137  *      - Make truecolor visuals use the RGB channel encoding information.
138  *
139  * 2001/07/02: <rmk@arm.linux.org.uk>
140  *      - Fix colourmap problems.
141  *
142  * 2001/07/13: <abraham@2d3d.co.za>
143  *      - Added support for the ICP LCD-Kit01 on LART. This LCD is
144  *        manufactured by Prime View, model no V16C6448AB
145  *
146  * 2001/07/23: <rmk@arm.linux.org.uk>
147  *      - Hand merge version from handhelds.org CVS tree.  See patch
148  *        notes for 595/1 for more information.
149  *      - Drop 12bpp (it's 16bpp with different colour register mappings).
150  *      - This hardware can not do direct colour.  Therefore we don't
151  *        support it.
152  *
153  * 2001/07/27: <rmk@arm.linux.org.uk>
154  *      - Halve YRES on dual scan LCDs.
155  *
156  * 2001/08/22: <rmk@arm.linux.org.uk>
157  *      - Add b/w iPAQ pixclock value.
158  *
159  * 2001/10/12: <rmk@arm.linux.org.uk>
160  *      - Add patch 681/1 and clean up stork definitions.
161  */
162
163 #include <linux/module.h>
164 #include <linux/kernel.h>
165 #include <linux/sched.h>
166 #include <linux/errno.h>
167 #include <linux/string.h>
168 #include <linux/interrupt.h>
169 #include <linux/slab.h>
170 #include <linux/mm.h>
171 #include <linux/fb.h>
172 #include <linux/delay.h>
173 #include <linux/init.h>
174 #include <linux/ioport.h>
175 #include <linux/cpufreq.h>
176 #include <linux/gpio.h>
177 #include <linux/platform_device.h>
178 #include <linux/dma-mapping.h>
179 #include <linux/mutex.h>
180 #include <linux/io.h>
181
182 #include <video/sa1100fb.h>
183
184 #include <mach/hardware.h>
185 #include <asm/mach-types.h>
186 #include <mach/shannon.h>
187
188 /*
189  * Complain if VAR is out of range.
190  */
191 #define DEBUG_VAR 1
192
193 #include "sa1100fb.h"
194
195 static const struct sa1100fb_rgb rgb_4 = {
196         .red    = { .offset = 0,  .length = 4, },
197         .green  = { .offset = 0,  .length = 4, },
198         .blue   = { .offset = 0,  .length = 4, },
199         .transp = { .offset = 0,  .length = 0, },
200 };
201
202 static const struct sa1100fb_rgb rgb_8 = {
203         .red    = { .offset = 0,  .length = 8, },
204         .green  = { .offset = 0,  .length = 8, },
205         .blue   = { .offset = 0,  .length = 8, },
206         .transp = { .offset = 0,  .length = 0, },
207 };
208
209 static const struct sa1100fb_rgb def_rgb_16 = {
210         .red    = { .offset = 11, .length = 5, },
211         .green  = { .offset = 5,  .length = 6, },
212         .blue   = { .offset = 0,  .length = 5, },
213         .transp = { .offset = 0,  .length = 0, },
214 };
215
216
217
218 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
219 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
220
221 static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
222 {
223         unsigned long flags;
224
225         local_irq_save(flags);
226         /*
227          * We need to handle two requests being made at the same time.
228          * There are two important cases:
229          *  1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
230          *     We must perform the unblanking, which will do our REENABLE for us.
231          *  2. When we are blanking, but immediately unblank before we have
232          *     blanked.  We do the "REENABLE" thing here as well, just to be sure.
233          */
234         if (fbi->task_state == C_ENABLE && state == C_REENABLE)
235                 state = (u_int) -1;
236         if (fbi->task_state == C_DISABLE && state == C_ENABLE)
237                 state = C_REENABLE;
238
239         if (state != (u_int)-1) {
240                 fbi->task_state = state;
241                 schedule_work(&fbi->task);
242         }
243         local_irq_restore(flags);
244 }
245
246 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
247 {
248         chan &= 0xffff;
249         chan >>= 16 - bf->length;
250         return chan << bf->offset;
251 }
252
253 /*
254  * Convert bits-per-pixel to a hardware palette PBS value.
255  */
256 static inline u_int palette_pbs(struct fb_var_screeninfo *var)
257 {
258         int ret = 0;
259         switch (var->bits_per_pixel) {
260         case 4:  ret = 0 << 12; break;
261         case 8:  ret = 1 << 12; break;
262         case 16: ret = 2 << 12; break;
263         }
264         return ret;
265 }
266
267 static int
268 sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
269                        u_int trans, struct fb_info *info)
270 {
271         struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
272         u_int val, ret = 1;
273
274         if (regno < fbi->palette_size) {
275                 val = ((red >> 4) & 0xf00);
276                 val |= ((green >> 8) & 0x0f0);
277                 val |= ((blue >> 12) & 0x00f);
278
279                 if (regno == 0)
280                         val |= palette_pbs(&fbi->fb.var);
281
282                 fbi->palette_cpu[regno] = val;
283                 ret = 0;
284         }
285         return ret;
286 }
287
288 static int
289 sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
290                    u_int trans, struct fb_info *info)
291 {
292         struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
293         unsigned int val;
294         int ret = 1;
295
296         /*
297          * If inverse mode was selected, invert all the colours
298          * rather than the register number.  The register number
299          * is what you poke into the framebuffer to produce the
300          * colour you requested.
301          */
302         if (fbi->inf->cmap_inverse) {
303                 red   = 0xffff - red;
304                 green = 0xffff - green;
305                 blue  = 0xffff - blue;
306         }
307
308         /*
309          * If greyscale is true, then we convert the RGB value
310          * to greyscale no mater what visual we are using.
311          */
312         if (fbi->fb.var.grayscale)
313                 red = green = blue = (19595 * red + 38470 * green +
314                                         7471 * blue) >> 16;
315
316         switch (fbi->fb.fix.visual) {
317         case FB_VISUAL_TRUECOLOR:
318                 /*
319                  * 12 or 16-bit True Colour.  We encode the RGB value
320                  * according to the RGB bitfield information.
321                  */
322                 if (regno < 16) {
323                         u32 *pal = fbi->fb.pseudo_palette;
324
325                         val  = chan_to_field(red, &fbi->fb.var.red);
326                         val |= chan_to_field(green, &fbi->fb.var.green);
327                         val |= chan_to_field(blue, &fbi->fb.var.blue);
328
329                         pal[regno] = val;
330                         ret = 0;
331                 }
332                 break;
333
334         case FB_VISUAL_STATIC_PSEUDOCOLOR:
335         case FB_VISUAL_PSEUDOCOLOR:
336                 ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
337                 break;
338         }
339
340         return ret;
341 }
342
343 #ifdef CONFIG_CPU_FREQ
344 /*
345  *  sa1100fb_display_dma_period()
346  *    Calculate the minimum period (in picoseconds) between two DMA
347  *    requests for the LCD controller.  If we hit this, it means we're
348  *    doing nothing but LCD DMA.
349  */
350 static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
351 {
352         /*
353          * Period = pixclock * bits_per_byte * bytes_per_transfer
354          *              / memory_bits_per_pixel;
355          */
356         return var->pixclock * 8 * 16 / var->bits_per_pixel;
357 }
358 #endif
359
360 /*
361  *  sa1100fb_check_var():
362  *    Round up in the following order: bits_per_pixel, xres,
363  *    yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
364  *    bitfields, horizontal timing, vertical timing.
365  */
366 static int
367 sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
368 {
369         struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
370         int rgbidx;
371
372         if (var->xres < MIN_XRES)
373                 var->xres = MIN_XRES;
374         if (var->yres < MIN_YRES)
375                 var->yres = MIN_YRES;
376         if (var->xres > fbi->inf->xres)
377                 var->xres = fbi->inf->xres;
378         if (var->yres > fbi->inf->yres)
379                 var->yres = fbi->inf->yres;
380         var->xres_virtual = max(var->xres_virtual, var->xres);
381         var->yres_virtual = max(var->yres_virtual, var->yres);
382
383         dev_dbg(fbi->dev, "var->bits_per_pixel=%d\n", var->bits_per_pixel);
384         switch (var->bits_per_pixel) {
385         case 4:
386                 rgbidx = RGB_4;
387                 break;
388         case 8:
389                 rgbidx = RGB_8;
390                 break;
391         case 16:
392                 rgbidx = RGB_16;
393                 break;
394         default:
395                 return -EINVAL;
396         }
397
398         /*
399          * Copy the RGB parameters for this display
400          * from the machine specific parameters.
401          */
402         var->red    = fbi->rgb[rgbidx]->red;
403         var->green  = fbi->rgb[rgbidx]->green;
404         var->blue   = fbi->rgb[rgbidx]->blue;
405         var->transp = fbi->rgb[rgbidx]->transp;
406
407         dev_dbg(fbi->dev, "RGBT length = %d:%d:%d:%d\n",
408                 var->red.length, var->green.length, var->blue.length,
409                 var->transp.length);
410
411         dev_dbg(fbi->dev, "RGBT offset = %d:%d:%d:%d\n",
412                 var->red.offset, var->green.offset, var->blue.offset,
413                 var->transp.offset);
414
415 #ifdef CONFIG_CPU_FREQ
416         dev_dbg(fbi->dev, "dma period = %d ps, clock = %d kHz\n",
417                 sa1100fb_display_dma_period(var),
418                 cpufreq_get(smp_processor_id()));
419 #endif
420
421         return 0;
422 }
423
424 static void sa1100fb_set_visual(struct sa1100fb_info *fbi, u32 visual)
425 {
426         if (fbi->inf->set_visual)
427                 fbi->inf->set_visual(visual);
428 }
429
430 /*
431  * sa1100fb_set_par():
432  *      Set the user defined part of the display for the specified console
433  */
434 static int sa1100fb_set_par(struct fb_info *info)
435 {
436         struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
437         struct fb_var_screeninfo *var = &info->var;
438         unsigned long palette_mem_size;
439
440         dev_dbg(fbi->dev, "set_par\n");
441
442         if (var->bits_per_pixel == 16)
443                 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
444         else if (!fbi->inf->cmap_static)
445                 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
446         else {
447                 /*
448                  * Some people have weird ideas about wanting static
449                  * pseudocolor maps.  I suspect their user space
450                  * applications are broken.
451                  */
452                 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
453         }
454
455         fbi->fb.fix.line_length = var->xres_virtual *
456                                   var->bits_per_pixel / 8;
457         fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
458
459         palette_mem_size = fbi->palette_size * sizeof(u16);
460
461         dev_dbg(fbi->dev, "palette_mem_size = 0x%08lx\n", palette_mem_size);
462
463         fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
464         fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
465
466         /*
467          * Set (any) board control register to handle new color depth
468          */
469         sa1100fb_set_visual(fbi, fbi->fb.fix.visual);
470         sa1100fb_activate_var(var, fbi);
471
472         return 0;
473 }
474
475 #if 0
476 static int
477 sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
478                   struct fb_info *info)
479 {
480         struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
481
482         /*
483          * Make sure the user isn't doing something stupid.
484          */
485         if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->inf->cmap_static))
486                 return -EINVAL;
487
488         return gen_set_cmap(cmap, kspc, con, info);
489 }
490 #endif
491
492 /*
493  * Formal definition of the VESA spec:
494  *  On
495  *      This refers to the state of the display when it is in full operation
496  *  Stand-By
497  *      This defines an optional operating state of minimal power reduction with
498  *      the shortest recovery time
499  *  Suspend
500  *      This refers to a level of power management in which substantial power
501  *      reduction is achieved by the display.  The display can have a longer 
502  *      recovery time from this state than from the Stand-by state
503  *  Off
504  *      This indicates that the display is consuming the lowest level of power
505  *      and is non-operational. Recovery from this state may optionally require
506  *      the user to manually power on the monitor
507  *
508  *  Now, the fbdev driver adds an additional state, (blank), where they
509  *  turn off the video (maybe by colormap tricks), but don't mess with the
510  *  video itself: think of it semantically between on and Stand-By.
511  *
512  *  So here's what we should do in our fbdev blank routine:
513  *
514  *      VESA_NO_BLANKING (mode 0)       Video on,  front/back light on
515  *      VESA_VSYNC_SUSPEND (mode 1)     Video on,  front/back light off
516  *      VESA_HSYNC_SUSPEND (mode 2)     Video on,  front/back light off
517  *      VESA_POWERDOWN (mode 3)         Video off, front/back light off
518  *
519  *  This will match the matrox implementation.
520  */
521 /*
522  * sa1100fb_blank():
523  *      Blank the display by setting all palette values to zero.  Note, the 
524  *      12 and 16 bpp modes don't really use the palette, so this will not
525  *      blank the display in all modes.  
526  */
527 static int sa1100fb_blank(int blank, struct fb_info *info)
528 {
529         struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
530         int i;
531
532         dev_dbg(fbi->dev, "sa1100fb_blank: blank=%d\n", blank);
533
534         switch (blank) {
535         case FB_BLANK_POWERDOWN:
536         case FB_BLANK_VSYNC_SUSPEND:
537         case FB_BLANK_HSYNC_SUSPEND:
538         case FB_BLANK_NORMAL:
539                 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
540                     fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
541                         for (i = 0; i < fbi->palette_size; i++)
542                                 sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
543                 sa1100fb_schedule_work(fbi, C_DISABLE);
544                 break;
545
546         case FB_BLANK_UNBLANK:
547                 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
548                     fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
549                         fb_set_cmap(&fbi->fb.cmap, info);
550                 sa1100fb_schedule_work(fbi, C_ENABLE);
551         }
552         return 0;
553 }
554
555 static int sa1100fb_mmap(struct fb_info *info,
556                          struct vm_area_struct *vma)
557 {
558         struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
559         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
560
561         if (off < info->fix.smem_len) {
562                 vma->vm_pgoff += 1; /* skip over the palette */
563                 return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
564                                              fbi->map_dma, fbi->map_size);
565         }
566
567         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
568
569         return vm_iomap_memory(vma, info->fix.mmio_start, info->fix.mmio_len);
570 }
571
572 static struct fb_ops sa1100fb_ops = {
573         .owner          = THIS_MODULE,
574         .fb_check_var   = sa1100fb_check_var,
575         .fb_set_par     = sa1100fb_set_par,
576 //      .fb_set_cmap    = sa1100fb_set_cmap,
577         .fb_setcolreg   = sa1100fb_setcolreg,
578         .fb_fillrect    = cfb_fillrect,
579         .fb_copyarea    = cfb_copyarea,
580         .fb_imageblit   = cfb_imageblit,
581         .fb_blank       = sa1100fb_blank,
582         .fb_mmap        = sa1100fb_mmap,
583 };
584
585 /*
586  * Calculate the PCD value from the clock rate (in picoseconds).
587  * We take account of the PPCR clock setting.
588  */
589 static inline unsigned int get_pcd(unsigned int pixclock, unsigned int cpuclock)
590 {
591         unsigned int pcd = cpuclock / 100;
592
593         pcd *= pixclock;
594         pcd /= 10000000;
595
596         return pcd + 1; /* make up for integer math truncations */
597 }
598
599 /*
600  * sa1100fb_activate_var():
601  *      Configures LCD Controller based on entries in var parameter.  Settings are      
602  *      only written to the controller if changes were made.  
603  */
604 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
605 {
606         struct sa1100fb_lcd_reg new_regs;
607         u_int half_screen_size, yres, pcd;
608         u_long flags;
609
610         dev_dbg(fbi->dev, "Configuring SA1100 LCD\n");
611
612         dev_dbg(fbi->dev, "var: xres=%d hslen=%d lm=%d rm=%d\n",
613                 var->xres, var->hsync_len,
614                 var->left_margin, var->right_margin);
615         dev_dbg(fbi->dev, "var: yres=%d vslen=%d um=%d bm=%d\n",
616                 var->yres, var->vsync_len,
617                 var->upper_margin, var->lower_margin);
618
619 #if DEBUG_VAR
620         if (var->xres < 16        || var->xres > 1024)
621                 dev_err(fbi->dev, "%s: invalid xres %d\n",
622                         fbi->fb.fix.id, var->xres);
623         if (var->hsync_len < 1    || var->hsync_len > 64)
624                 dev_err(fbi->dev, "%s: invalid hsync_len %d\n",
625                         fbi->fb.fix.id, var->hsync_len);
626         if (var->left_margin < 1  || var->left_margin > 255)
627                 dev_err(fbi->dev, "%s: invalid left_margin %d\n",
628                         fbi->fb.fix.id, var->left_margin);
629         if (var->right_margin < 1 || var->right_margin > 255)
630                 dev_err(fbi->dev, "%s: invalid right_margin %d\n",
631                         fbi->fb.fix.id, var->right_margin);
632         if (var->yres < 1         || var->yres > 1024)
633                 dev_err(fbi->dev, "%s: invalid yres %d\n",
634                         fbi->fb.fix.id, var->yres);
635         if (var->vsync_len < 1    || var->vsync_len > 64)
636                 dev_err(fbi->dev, "%s: invalid vsync_len %d\n",
637                         fbi->fb.fix.id, var->vsync_len);
638         if (var->upper_margin < 0 || var->upper_margin > 255)
639                 dev_err(fbi->dev, "%s: invalid upper_margin %d\n",
640                         fbi->fb.fix.id, var->upper_margin);
641         if (var->lower_margin < 0 || var->lower_margin > 255)
642                 dev_err(fbi->dev, "%s: invalid lower_margin %d\n",
643                         fbi->fb.fix.id, var->lower_margin);
644 #endif
645
646         new_regs.lccr0 = fbi->inf->lccr0 |
647                 LCCR0_LEN | LCCR0_LDM | LCCR0_BAM |
648                 LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0);
649
650         new_regs.lccr1 =
651                 LCCR1_DisWdth(var->xres) +
652                 LCCR1_HorSnchWdth(var->hsync_len) +
653                 LCCR1_BegLnDel(var->left_margin) +
654                 LCCR1_EndLnDel(var->right_margin);
655
656         /*
657          * If we have a dual scan LCD, then we need to halve
658          * the YRES parameter.
659          */
660         yres = var->yres;
661         if (fbi->inf->lccr0 & LCCR0_Dual)
662                 yres /= 2;
663
664         new_regs.lccr2 =
665                 LCCR2_DisHght(yres) +
666                 LCCR2_VrtSnchWdth(var->vsync_len) +
667                 LCCR2_BegFrmDel(var->upper_margin) +
668                 LCCR2_EndFrmDel(var->lower_margin);
669
670         pcd = get_pcd(var->pixclock, cpufreq_get(0));
671         new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->inf->lccr3 |
672                 (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
673                 (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
674
675         dev_dbg(fbi->dev, "nlccr0 = 0x%08lx\n", new_regs.lccr0);
676         dev_dbg(fbi->dev, "nlccr1 = 0x%08lx\n", new_regs.lccr1);
677         dev_dbg(fbi->dev, "nlccr2 = 0x%08lx\n", new_regs.lccr2);
678         dev_dbg(fbi->dev, "nlccr3 = 0x%08lx\n", new_regs.lccr3);
679
680         half_screen_size = var->bits_per_pixel;
681         half_screen_size = half_screen_size * var->xres * var->yres / 16;
682
683         /* Update shadow copy atomically */
684         local_irq_save(flags);
685         fbi->dbar1 = fbi->palette_dma;
686         fbi->dbar2 = fbi->screen_dma + half_screen_size;
687
688         fbi->reg_lccr0 = new_regs.lccr0;
689         fbi->reg_lccr1 = new_regs.lccr1;
690         fbi->reg_lccr2 = new_regs.lccr2;
691         fbi->reg_lccr3 = new_regs.lccr3;
692         local_irq_restore(flags);
693
694         /*
695          * Only update the registers if the controller is enabled
696          * and something has changed.
697          */
698         if (readl_relaxed(fbi->base + LCCR0) != fbi->reg_lccr0 ||
699             readl_relaxed(fbi->base + LCCR1) != fbi->reg_lccr1 ||
700             readl_relaxed(fbi->base + LCCR2) != fbi->reg_lccr2 ||
701             readl_relaxed(fbi->base + LCCR3) != fbi->reg_lccr3 ||
702             readl_relaxed(fbi->base + DBAR1) != fbi->dbar1 ||
703             readl_relaxed(fbi->base + DBAR2) != fbi->dbar2)
704                 sa1100fb_schedule_work(fbi, C_REENABLE);
705
706         return 0;
707 }
708
709 /*
710  * NOTE!  The following functions are purely helpers for set_ctrlr_state.
711  * Do not call them directly; set_ctrlr_state does the correct serialisation
712  * to ensure that things happen in the right way 100% of time time.
713  *      -- rmk
714  */
715 static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
716 {
717         dev_dbg(fbi->dev, "backlight o%s\n", on ? "n" : "ff");
718
719         if (fbi->inf->backlight_power)
720                 fbi->inf->backlight_power(on);
721 }
722
723 static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
724 {
725         dev_dbg(fbi->dev, "LCD power o%s\n", on ? "n" : "ff");
726
727         if (fbi->inf->lcd_power)
728                 fbi->inf->lcd_power(on);
729 }
730
731 static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
732 {
733         u_int mask = 0;
734
735         /*
736          * Enable GPIO<9:2> for LCD use if:
737          *  1. Active display, or
738          *  2. Color Dual Passive display
739          *
740          * see table 11.8 on page 11-27 in the SA1100 manual
741          *   -- Erik.
742          *
743          * SA1110 spec update nr. 25 says we can and should
744          * clear LDD15 to 12 for 4 or 8bpp modes with active
745          * panels.  
746          */
747         if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
748             (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
749                 mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9  | GPIO_LDD8;
750
751                 if (fbi->fb.var.bits_per_pixel > 8 ||
752                     (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual)
753                         mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12;
754
755         }
756
757         if (mask) {
758                 unsigned long flags;
759
760                 /*
761                  * SA-1100 requires the GPIO direction register set
762                  * appropriately for the alternate function.  Hence
763                  * we set it here via bitmask rather than excessive
764                  * fiddling via the GPIO subsystem - and even then
765                  * we'll still have to deal with GAFR.
766                  */
767                 local_irq_save(flags);
768                 GPDR |= mask;
769                 GAFR |= mask;
770                 local_irq_restore(flags);
771         }
772 }
773
774 static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
775 {
776         dev_dbg(fbi->dev, "Enabling LCD controller\n");
777
778         /*
779          * Make sure the mode bits are present in the first palette entry
780          */
781         fbi->palette_cpu[0] &= 0xcfff;
782         fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
783
784         /* Sequence from 11.7.10 */
785         writel_relaxed(fbi->reg_lccr3, fbi->base + LCCR3);
786         writel_relaxed(fbi->reg_lccr2, fbi->base + LCCR2);
787         writel_relaxed(fbi->reg_lccr1, fbi->base + LCCR1);
788         writel_relaxed(fbi->reg_lccr0 & ~LCCR0_LEN, fbi->base + LCCR0);
789         writel_relaxed(fbi->dbar1, fbi->base + DBAR1);
790         writel_relaxed(fbi->dbar2, fbi->base + DBAR2);
791         writel_relaxed(fbi->reg_lccr0 | LCCR0_LEN, fbi->base + LCCR0);
792
793         if (machine_is_shannon())
794                 gpio_set_value(SHANNON_GPIO_DISP_EN, 1);
795
796         dev_dbg(fbi->dev, "DBAR1: 0x%08x\n", readl_relaxed(fbi->base + DBAR1));
797         dev_dbg(fbi->dev, "DBAR2: 0x%08x\n", readl_relaxed(fbi->base + DBAR2));
798         dev_dbg(fbi->dev, "LCCR0: 0x%08x\n", readl_relaxed(fbi->base + LCCR0));
799         dev_dbg(fbi->dev, "LCCR1: 0x%08x\n", readl_relaxed(fbi->base + LCCR1));
800         dev_dbg(fbi->dev, "LCCR2: 0x%08x\n", readl_relaxed(fbi->base + LCCR2));
801         dev_dbg(fbi->dev, "LCCR3: 0x%08x\n", readl_relaxed(fbi->base + LCCR3));
802 }
803
804 static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
805 {
806         DECLARE_WAITQUEUE(wait, current);
807         u32 lccr0;
808
809         dev_dbg(fbi->dev, "Disabling LCD controller\n");
810
811         if (machine_is_shannon())
812                 gpio_set_value(SHANNON_GPIO_DISP_EN, 0);
813
814         set_current_state(TASK_UNINTERRUPTIBLE);
815         add_wait_queue(&fbi->ctrlr_wait, &wait);
816
817         /* Clear LCD Status Register */
818         writel_relaxed(~0, fbi->base + LCSR);
819
820         lccr0 = readl_relaxed(fbi->base + LCCR0);
821         lccr0 &= ~LCCR0_LDM;    /* Enable LCD Disable Done Interrupt */
822         writel_relaxed(lccr0, fbi->base + LCCR0);
823         lccr0 &= ~LCCR0_LEN;    /* Disable LCD Controller */
824         writel_relaxed(lccr0, fbi->base + LCCR0);
825
826         schedule_timeout(20 * HZ / 1000);
827         remove_wait_queue(&fbi->ctrlr_wait, &wait);
828 }
829
830 /*
831  *  sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
832  */
833 static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id)
834 {
835         struct sa1100fb_info *fbi = dev_id;
836         unsigned int lcsr = readl_relaxed(fbi->base + LCSR);
837
838         if (lcsr & LCSR_LDD) {
839                 u32 lccr0 = readl_relaxed(fbi->base + LCCR0) | LCCR0_LDM;
840                 writel_relaxed(lccr0, fbi->base + LCCR0);
841                 wake_up(&fbi->ctrlr_wait);
842         }
843
844         writel_relaxed(lcsr, fbi->base + LCSR);
845         return IRQ_HANDLED;
846 }
847
848 /*
849  * This function must be called from task context only, since it will
850  * sleep when disabling the LCD controller, or if we get two contending
851  * processes trying to alter state.
852  */
853 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
854 {
855         u_int old_state;
856
857         mutex_lock(&fbi->ctrlr_lock);
858
859         old_state = fbi->state;
860
861         /*
862          * Hack around fbcon initialisation.
863          */
864         if (old_state == C_STARTUP && state == C_REENABLE)
865                 state = C_ENABLE;
866
867         switch (state) {
868         case C_DISABLE_CLKCHANGE:
869                 /*
870                  * Disable controller for clock change.  If the
871                  * controller is already disabled, then do nothing.
872                  */
873                 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
874                         fbi->state = state;
875                         sa1100fb_disable_controller(fbi);
876                 }
877                 break;
878
879         case C_DISABLE_PM:
880         case C_DISABLE:
881                 /*
882                  * Disable controller
883                  */
884                 if (old_state != C_DISABLE) {
885                         fbi->state = state;
886
887                         __sa1100fb_backlight_power(fbi, 0);
888                         if (old_state != C_DISABLE_CLKCHANGE)
889                                 sa1100fb_disable_controller(fbi);
890                         __sa1100fb_lcd_power(fbi, 0);
891                 }
892                 break;
893
894         case C_ENABLE_CLKCHANGE:
895                 /*
896                  * Enable the controller after clock change.  Only
897                  * do this if we were disabled for the clock change.
898                  */
899                 if (old_state == C_DISABLE_CLKCHANGE) {
900                         fbi->state = C_ENABLE;
901                         sa1100fb_enable_controller(fbi);
902                 }
903                 break;
904
905         case C_REENABLE:
906                 /*
907                  * Re-enable the controller only if it was already
908                  * enabled.  This is so we reprogram the control
909                  * registers.
910                  */
911                 if (old_state == C_ENABLE) {
912                         sa1100fb_disable_controller(fbi);
913                         sa1100fb_setup_gpio(fbi);
914                         sa1100fb_enable_controller(fbi);
915                 }
916                 break;
917
918         case C_ENABLE_PM:
919                 /*
920                  * Re-enable the controller after PM.  This is not
921                  * perfect - think about the case where we were doing
922                  * a clock change, and we suspended half-way through.
923                  */
924                 if (old_state != C_DISABLE_PM)
925                         break;
926                 /* fall through */
927
928         case C_ENABLE:
929                 /*
930                  * Power up the LCD screen, enable controller, and
931                  * turn on the backlight.
932                  */
933                 if (old_state != C_ENABLE) {
934                         fbi->state = C_ENABLE;
935                         sa1100fb_setup_gpio(fbi);
936                         __sa1100fb_lcd_power(fbi, 1);
937                         sa1100fb_enable_controller(fbi);
938                         __sa1100fb_backlight_power(fbi, 1);
939                 }
940                 break;
941         }
942         mutex_unlock(&fbi->ctrlr_lock);
943 }
944
945 /*
946  * Our LCD controller task (which is called when we blank or unblank)
947  * via keventd.
948  */
949 static void sa1100fb_task(struct work_struct *w)
950 {
951         struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task);
952         u_int state = xchg(&fbi->task_state, -1);
953
954         set_ctrlr_state(fbi, state);
955 }
956
957 #ifdef CONFIG_CPU_FREQ
958 /*
959  * Calculate the minimum DMA period over all displays that we own.
960  * This, together with the SDRAM bandwidth defines the slowest CPU
961  * frequency that can be selected.
962  */
963 static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi)
964 {
965 #if 0
966         unsigned int min_period = (unsigned int)-1;
967         int i;
968
969         for (i = 0; i < MAX_NR_CONSOLES; i++) {
970                 struct display *disp = &fb_display[i];
971                 unsigned int period;
972
973                 /*
974                  * Do we own this display?
975                  */
976                 if (disp->fb_info != &fbi->fb)
977                         continue;
978
979                 /*
980                  * Ok, calculate its DMA period
981                  */
982                 period = sa1100fb_display_dma_period(&disp->var);
983                 if (period < min_period)
984                         min_period = period;
985         }
986
987         return min_period;
988 #else
989         /*
990          * FIXME: we need to verify _all_ consoles.
991          */
992         return sa1100fb_display_dma_period(&fbi->fb.var);
993 #endif
994 }
995
996 /*
997  * CPU clock speed change handler.  We need to adjust the LCD timing
998  * parameters when the CPU clock is adjusted by the power management
999  * subsystem.
1000  */
1001 static int
1002 sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
1003                          void *data)
1004 {
1005         struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
1006         struct cpufreq_freqs *f = data;
1007         u_int pcd;
1008
1009         switch (val) {
1010         case CPUFREQ_PRECHANGE:
1011                 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1012                 break;
1013
1014         case CPUFREQ_POSTCHANGE:
1015                 pcd = get_pcd(fbi->fb.var.pixclock, f->new);
1016                 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
1017                 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1018                 break;
1019         }
1020         return 0;
1021 }
1022
1023 static int
1024 sa1100fb_freq_policy(struct notifier_block *nb, unsigned long val,
1025                      void *data)
1026 {
1027         struct sa1100fb_info *fbi = TO_INF(nb, freq_policy);
1028         struct cpufreq_policy *policy = data;
1029
1030         switch (val) {
1031         case CPUFREQ_ADJUST:
1032         case CPUFREQ_INCOMPATIBLE:
1033                 dev_dbg(fbi->dev, "min dma period: %d ps, "
1034                         "new clock %d kHz\n", sa1100fb_min_dma_period(fbi),
1035                         policy->max);
1036                 /* todo: fill in min/max values */
1037                 break;
1038         case CPUFREQ_NOTIFY:
1039                 do {} while(0);
1040                 /* todo: panic if min/max values aren't fulfilled 
1041                  * [can't really happen unless there's a bug in the
1042                  * CPU policy verififcation process *
1043                  */
1044                 break;
1045         }
1046         return 0;
1047 }
1048 #endif
1049
1050 #ifdef CONFIG_PM
1051 /*
1052  * Power management hooks.  Note that we won't be called from IRQ context,
1053  * unlike the blank functions above, so we may sleep.
1054  */
1055 static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state)
1056 {
1057         struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1058
1059         set_ctrlr_state(fbi, C_DISABLE_PM);
1060         return 0;
1061 }
1062
1063 static int sa1100fb_resume(struct platform_device *dev)
1064 {
1065         struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1066
1067         set_ctrlr_state(fbi, C_ENABLE_PM);
1068         return 0;
1069 }
1070 #else
1071 #define sa1100fb_suspend        NULL
1072 #define sa1100fb_resume         NULL
1073 #endif
1074
1075 /*
1076  * sa1100fb_map_video_memory():
1077  *      Allocates the DRAM memory for the frame buffer.  This buffer is  
1078  *      remapped into a non-cached, non-buffered, memory region to  
1079  *      allow palette and pixel writes to occur without flushing the 
1080  *      cache.  Once this area is remapped, all virtual memory
1081  *      access to the video memory should occur at the new region.
1082  */
1083 static int sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
1084 {
1085         /*
1086          * We reserve one page for the palette, plus the size
1087          * of the framebuffer.
1088          */
1089         fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1090         fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
1091                                               &fbi->map_dma, GFP_KERNEL);
1092
1093         if (fbi->map_cpu) {
1094                 fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1095                 fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1096                 /*
1097                  * FIXME: this is actually the wrong thing to place in
1098                  * smem_start.  But fbdev suffers from the problem that
1099                  * it needs an API which doesn't exist (in this case,
1100                  * dma_writecombine_mmap)
1101                  */
1102                 fbi->fb.fix.smem_start = fbi->screen_dma;
1103         }
1104
1105         return fbi->map_cpu ? 0 : -ENOMEM;
1106 }
1107
1108 /* Fake monspecs to fill in fbinfo structure */
1109 static struct fb_monspecs monspecs = {
1110         .hfmin  = 30000,
1111         .hfmax  = 70000,
1112         .vfmin  = 50,
1113         .vfmax  = 65,
1114 };
1115
1116
1117 static struct sa1100fb_info *sa1100fb_init_fbinfo(struct device *dev)
1118 {
1119         struct sa1100fb_mach_info *inf = dev->platform_data;
1120         struct sa1100fb_info *fbi;
1121         unsigned i;
1122
1123         fbi = kmalloc(sizeof(struct sa1100fb_info) + sizeof(u32) * 16,
1124                       GFP_KERNEL);
1125         if (!fbi)
1126                 return NULL;
1127
1128         memset(fbi, 0, sizeof(struct sa1100fb_info));
1129         fbi->dev = dev;
1130
1131         strcpy(fbi->fb.fix.id, SA1100_NAME);
1132
1133         fbi->fb.fix.type        = FB_TYPE_PACKED_PIXELS;
1134         fbi->fb.fix.type_aux    = 0;
1135         fbi->fb.fix.xpanstep    = 0;
1136         fbi->fb.fix.ypanstep    = 0;
1137         fbi->fb.fix.ywrapstep   = 0;
1138         fbi->fb.fix.accel       = FB_ACCEL_NONE;
1139
1140         fbi->fb.var.nonstd      = 0;
1141         fbi->fb.var.activate    = FB_ACTIVATE_NOW;
1142         fbi->fb.var.height      = -1;
1143         fbi->fb.var.width       = -1;
1144         fbi->fb.var.accel_flags = 0;
1145         fbi->fb.var.vmode       = FB_VMODE_NONINTERLACED;
1146
1147         fbi->fb.fbops           = &sa1100fb_ops;
1148         fbi->fb.flags           = FBINFO_DEFAULT;
1149         fbi->fb.monspecs        = monspecs;
1150         fbi->fb.pseudo_palette  = (fbi + 1);
1151
1152         fbi->rgb[RGB_4]         = &rgb_4;
1153         fbi->rgb[RGB_8]         = &rgb_8;
1154         fbi->rgb[RGB_16]        = &def_rgb_16;
1155
1156         /*
1157          * People just don't seem to get this.  We don't support
1158          * anything but correct entries now, so panic if someone
1159          * does something stupid.
1160          */
1161         if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
1162             inf->pixclock == 0)
1163                 panic("sa1100fb error: invalid LCCR3 fields set or zero "
1164                         "pixclock.");
1165
1166         fbi->fb.var.xres                = inf->xres;
1167         fbi->fb.var.xres_virtual        = inf->xres;
1168         fbi->fb.var.yres                = inf->yres;
1169         fbi->fb.var.yres_virtual        = inf->yres;
1170         fbi->fb.var.bits_per_pixel      = inf->bpp;
1171         fbi->fb.var.pixclock            = inf->pixclock;
1172         fbi->fb.var.hsync_len           = inf->hsync_len;
1173         fbi->fb.var.left_margin         = inf->left_margin;
1174         fbi->fb.var.right_margin        = inf->right_margin;
1175         fbi->fb.var.vsync_len           = inf->vsync_len;
1176         fbi->fb.var.upper_margin        = inf->upper_margin;
1177         fbi->fb.var.lower_margin        = inf->lower_margin;
1178         fbi->fb.var.sync                = inf->sync;
1179         fbi->fb.var.grayscale           = inf->cmap_greyscale;
1180         fbi->state                      = C_STARTUP;
1181         fbi->task_state                 = (u_char)-1;
1182         fbi->fb.fix.smem_len            = inf->xres * inf->yres *
1183                                           inf->bpp / 8;
1184         fbi->inf                        = inf;
1185
1186         /* Copy the RGB bitfield overrides */
1187         for (i = 0; i < NR_RGB; i++)
1188                 if (inf->rgb[i])
1189                         fbi->rgb[i] = inf->rgb[i];
1190
1191         init_waitqueue_head(&fbi->ctrlr_wait);
1192         INIT_WORK(&fbi->task, sa1100fb_task);
1193         mutex_init(&fbi->ctrlr_lock);
1194
1195         return fbi;
1196 }
1197
1198 static int sa1100fb_probe(struct platform_device *pdev)
1199 {
1200         struct sa1100fb_info *fbi;
1201         struct resource *res;
1202         int ret, irq;
1203
1204         if (!pdev->dev.platform_data) {
1205                 dev_err(&pdev->dev, "no platform LCD data\n");
1206                 return -EINVAL;
1207         }
1208
1209         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1210         irq = platform_get_irq(pdev, 0);
1211         if (irq < 0 || !res)
1212                 return -EINVAL;
1213
1214         if (!request_mem_region(res->start, resource_size(res), "LCD"))
1215                 return -EBUSY;
1216
1217         fbi = sa1100fb_init_fbinfo(&pdev->dev);
1218         ret = -ENOMEM;
1219         if (!fbi)
1220                 goto failed;
1221
1222         fbi->base = ioremap(res->start, resource_size(res));
1223         if (!fbi->base)
1224                 goto failed;
1225
1226         /* Initialize video memory */
1227         ret = sa1100fb_map_video_memory(fbi);
1228         if (ret)
1229                 goto failed;
1230
1231         ret = request_irq(irq, sa1100fb_handle_irq, 0, "LCD", fbi);
1232         if (ret) {
1233                 dev_err(&pdev->dev, "request_irq failed: %d\n", ret);
1234                 goto failed;
1235         }
1236
1237         if (machine_is_shannon()) {
1238                 ret = gpio_request_one(SHANNON_GPIO_DISP_EN,
1239                         GPIOF_OUT_INIT_LOW, "display enable");
1240                 if (ret)
1241                         goto err_free_irq;
1242         }
1243
1244         /*
1245          * This makes sure that our colour bitfield
1246          * descriptors are correctly initialised.
1247          */
1248         sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
1249
1250         platform_set_drvdata(pdev, fbi);
1251
1252         ret = register_framebuffer(&fbi->fb);
1253         if (ret < 0)
1254                 goto err_reg_fb;
1255
1256 #ifdef CONFIG_CPU_FREQ
1257         fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
1258         fbi->freq_policy.notifier_call = sa1100fb_freq_policy;
1259         cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1260         cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
1261 #endif
1262
1263         /* This driver cannot be unloaded at the moment */
1264         return 0;
1265
1266  err_reg_fb:
1267         if (machine_is_shannon())
1268                 gpio_free(SHANNON_GPIO_DISP_EN);
1269  err_free_irq:
1270         free_irq(irq, fbi);
1271  failed:
1272         if (fbi)
1273                 iounmap(fbi->base);
1274         platform_set_drvdata(pdev, NULL);
1275         kfree(fbi);
1276         release_mem_region(res->start, resource_size(res));
1277         return ret;
1278 }
1279
1280 static struct platform_driver sa1100fb_driver = {
1281         .probe          = sa1100fb_probe,
1282         .suspend        = sa1100fb_suspend,
1283         .resume         = sa1100fb_resume,
1284         .driver         = {
1285                 .name   = "sa11x0-fb",
1286                 .owner  = THIS_MODULE,
1287         },
1288 };
1289
1290 int __init sa1100fb_init(void)
1291 {
1292         if (fb_get_options("sa1100fb", NULL))
1293                 return -ENODEV;
1294
1295         return platform_driver_register(&sa1100fb_driver);
1296 }
1297
1298 int __init sa1100fb_setup(char *options)
1299 {
1300 #if 0
1301         char *this_opt;
1302
1303         if (!options || !*options)
1304                 return 0;
1305
1306         while ((this_opt = strsep(&options, ",")) != NULL) {
1307
1308                 if (!strncmp(this_opt, "bpp:", 4))
1309                         current_par.max_bpp =
1310                             simple_strtoul(this_opt + 4, NULL, 0);
1311
1312                 if (!strncmp(this_opt, "lccr0:", 6))
1313                         lcd_shadow.lccr0 =
1314                             simple_strtoul(this_opt + 6, NULL, 0);
1315                 if (!strncmp(this_opt, "lccr1:", 6)) {
1316                         lcd_shadow.lccr1 =
1317                             simple_strtoul(this_opt + 6, NULL, 0);
1318                         current_par.max_xres =
1319                             (lcd_shadow.lccr1 & 0x3ff) + 16;
1320                 }
1321                 if (!strncmp(this_opt, "lccr2:", 6)) {
1322                         lcd_shadow.lccr2 =
1323                             simple_strtoul(this_opt + 6, NULL, 0);
1324                         current_par.max_yres =
1325                             (lcd_shadow.
1326                              lccr0 & LCCR0_SDS) ? ((lcd_shadow.
1327                                                     lccr2 & 0x3ff) +
1328                                                    1) *
1329                             2 : ((lcd_shadow.lccr2 & 0x3ff) + 1);
1330                 }
1331                 if (!strncmp(this_opt, "lccr3:", 6))
1332                         lcd_shadow.lccr3 =
1333                             simple_strtoul(this_opt + 6, NULL, 0);
1334         }
1335 #endif
1336         return 0;
1337 }
1338
1339 module_init(sa1100fb_init);
1340 MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1341 MODULE_LICENSE("GPL");