video/rockchip: rga2: use axi safe reset
[firefly-linux-kernel-4.4.55.git] / drivers / video / fbdev / sa1100fb.c
1 /*
2  *  linux/drivers/video/sa1100fb.c
3  *
4  *  Copyright (C) 1999 Eric A. Thomas
5  *   Based on acornfb.c Copyright (C) Russell King.
6  *
7  * This file is subject to the terms and conditions of the GNU General Public
8  * License.  See the file COPYING in the main directory of this archive for
9  * more details.
10  *
11  *              StrongARM 1100 LCD Controller Frame Buffer Driver
12  *
13  * Please direct your questions and comments on this driver to the following
14  * email address:
15  *
16  *      linux-arm-kernel@lists.arm.linux.org.uk
17  *
18  * Clean patches should be sent to the ARM Linux Patch System.  Please see the
19  * following web page for more information:
20  *
21  *      http://www.arm.linux.org.uk/developer/patches/info.shtml
22  *
23  * Thank you.
24  *
25  * Known problems:
26  *      - With the Neponset plugged into an Assabet, LCD powerdown
27  *        doesn't work (LCD stays powered up).  Therefore we shouldn't
28  *        blank the screen.
29  *      - We don't limit the CPU clock rate nor the mode selection
30  *        according to the available SDRAM bandwidth.
31  *
32  * Other notes:
33  *      - Linear grayscale palettes and the kernel.
34  *        Such code does not belong in the kernel.  The kernel frame buffer
35  *        drivers do not expect a linear colourmap, but a colourmap based on
36  *        the VT100 standard mapping.
37  *
38  *        If your _userspace_ requires a linear colourmap, then the setup of
39  *        such a colourmap belongs _in userspace_, not in the kernel.  Code
40  *        to set the colourmap correctly from user space has been sent to
41  *        David Neuer.  It's around 8 lines of C code, plus another 4 to
42  *        detect if we are using grayscale.
43  *
44  *      - The following must never be specified in a panel definition:
45  *           LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
46  *
47  *      - The following should be specified:
48  *           either LCCR0_Color or LCCR0_Mono
49  *           either LCCR0_Sngl or LCCR0_Dual
50  *           either LCCR0_Act or LCCR0_Pas
51  *           either LCCR3_OutEnH or LCCD3_OutEnL
52  *           either LCCR3_PixRsEdg or LCCR3_PixFlEdg
53  *           either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
54  *
55  * Code Status:
56  * 1999/04/01:
57  *      - Driver appears to be working for Brutus 320x200x8bpp mode.  Other
58  *        resolutions are working, but only the 8bpp mode is supported.
59  *        Changes need to be made to the palette encode and decode routines
60  *        to support 4 and 16 bpp modes.  
61  *        Driver is not designed to be a module.  The FrameBuffer is statically
62  *        allocated since dynamic allocation of a 300k buffer cannot be 
63  *        guaranteed. 
64  *
65  * 1999/06/17:
66  *      - FrameBuffer memory is now allocated at run-time when the
67  *        driver is initialized.    
68  *
69  * 2000/04/10: Nicolas Pitre <nico@fluxnic.net>
70  *      - Big cleanup for dynamic selection of machine type at run time.
71  *
72  * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
73  *      - Support for Bitsy aka Compaq iPAQ H3600 added.
74  *
75  * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
76  *             Jeff Sutherland <jsutherland@accelent.com>
77  *      - Resolved an issue caused by a change made to the Assabet's PLD 
78  *        earlier this year which broke the framebuffer driver for newer 
79  *        Phase 4 Assabets.  Some other parameters were changed to optimize
80  *        for the Sharp display.
81  *
82  * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
83  *      - XP860 support added
84  *
85  * 2000/08/19: Mark Huang <mhuang@livetoy.com>
86  *      - Allows standard options to be passed on the kernel command line
87  *        for most common passive displays.
88  *
89  * 2000/08/29:
90  *      - s/save_flags_cli/local_irq_save/
91  *      - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
92  *
93  * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
94  *      - Updated LART stuff. Fixed some minor bugs.
95  *
96  * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
97  *      - Pangolin support added
98  *
99  * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
100  *      - Huw Webpanel support added
101  *
102  * 2000/11/23: Eric Peng <ericpeng@coventive.com>
103  *      - Freebird add
104  *
105  * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com> 
106  *             Cliff Brake <cbrake@accelent.com>
107  *      - Added PM callback
108  *
109  * 2001/05/26: <rmk@arm.linux.org.uk>
110  *      - Fix 16bpp so that (a) we use the right colours rather than some
111  *        totally random colour depending on what was in page 0, and (b)
112  *        we don't de-reference a NULL pointer.
113  *      - remove duplicated implementation of consistent_alloc()
114  *      - convert dma address types to dma_addr_t
115  *      - remove unused 'montype' stuff
116  *      - remove redundant zero inits of init_var after the initial
117  *        memset.
118  *      - remove allow_modeset (acornfb idea does not belong here)
119  *
120  * 2001/05/28: <rmk@arm.linux.org.uk>
121  *      - massive cleanup - move machine dependent data into structures
122  *      - I've left various #warnings in - if you see one, and know
123  *        the hardware concerned, please get in contact with me.
124  *
125  * 2001/05/31: <rmk@arm.linux.org.uk>
126  *      - Fix LCCR1 HSW value, fix all machine type specifications to
127  *        keep values in line.  (Please check your machine type specs)
128  *
129  * 2001/06/10: <rmk@arm.linux.org.uk>
130  *      - Fiddle with the LCD controller from task context only; mainly
131  *        so that we can run with interrupts on, and sleep.
132  *      - Convert #warnings into #errors.  No pain, no gain. ;)
133  *
134  * 2001/06/14: <rmk@arm.linux.org.uk>
135  *      - Make the palette BPS value for 12bpp come out correctly.
136  *      - Take notice of "greyscale" on any colour depth.
137  *      - Make truecolor visuals use the RGB channel encoding information.
138  *
139  * 2001/07/02: <rmk@arm.linux.org.uk>
140  *      - Fix colourmap problems.
141  *
142  * 2001/07/13: <abraham@2d3d.co.za>
143  *      - Added support for the ICP LCD-Kit01 on LART. This LCD is
144  *        manufactured by Prime View, model no V16C6448AB
145  *
146  * 2001/07/23: <rmk@arm.linux.org.uk>
147  *      - Hand merge version from handhelds.org CVS tree.  See patch
148  *        notes for 595/1 for more information.
149  *      - Drop 12bpp (it's 16bpp with different colour register mappings).
150  *      - This hardware can not do direct colour.  Therefore we don't
151  *        support it.
152  *
153  * 2001/07/27: <rmk@arm.linux.org.uk>
154  *      - Halve YRES on dual scan LCDs.
155  *
156  * 2001/08/22: <rmk@arm.linux.org.uk>
157  *      - Add b/w iPAQ pixclock value.
158  *
159  * 2001/10/12: <rmk@arm.linux.org.uk>
160  *      - Add patch 681/1 and clean up stork definitions.
161  */
162
163 #include <linux/module.h>
164 #include <linux/kernel.h>
165 #include <linux/sched.h>
166 #include <linux/errno.h>
167 #include <linux/string.h>
168 #include <linux/interrupt.h>
169 #include <linux/slab.h>
170 #include <linux/mm.h>
171 #include <linux/fb.h>
172 #include <linux/delay.h>
173 #include <linux/init.h>
174 #include <linux/ioport.h>
175 #include <linux/cpufreq.h>
176 #include <linux/gpio.h>
177 #include <linux/platform_device.h>
178 #include <linux/dma-mapping.h>
179 #include <linux/mutex.h>
180 #include <linux/io.h>
181 #include <linux/clk.h>
182
183 #include <video/sa1100fb.h>
184
185 #include <mach/hardware.h>
186 #include <asm/mach-types.h>
187 #include <mach/shannon.h>
188
189 /*
190  * Complain if VAR is out of range.
191  */
192 #define DEBUG_VAR 1
193
194 #include "sa1100fb.h"
195
196 static const struct sa1100fb_rgb rgb_4 = {
197         .red    = { .offset = 0,  .length = 4, },
198         .green  = { .offset = 0,  .length = 4, },
199         .blue   = { .offset = 0,  .length = 4, },
200         .transp = { .offset = 0,  .length = 0, },
201 };
202
203 static const struct sa1100fb_rgb rgb_8 = {
204         .red    = { .offset = 0,  .length = 8, },
205         .green  = { .offset = 0,  .length = 8, },
206         .blue   = { .offset = 0,  .length = 8, },
207         .transp = { .offset = 0,  .length = 0, },
208 };
209
210 static const struct sa1100fb_rgb def_rgb_16 = {
211         .red    = { .offset = 11, .length = 5, },
212         .green  = { .offset = 5,  .length = 6, },
213         .blue   = { .offset = 0,  .length = 5, },
214         .transp = { .offset = 0,  .length = 0, },
215 };
216
217
218
219 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
220 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
221
222 static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
223 {
224         unsigned long flags;
225
226         local_irq_save(flags);
227         /*
228          * We need to handle two requests being made at the same time.
229          * There are two important cases:
230          *  1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
231          *     We must perform the unblanking, which will do our REENABLE for us.
232          *  2. When we are blanking, but immediately unblank before we have
233          *     blanked.  We do the "REENABLE" thing here as well, just to be sure.
234          */
235         if (fbi->task_state == C_ENABLE && state == C_REENABLE)
236                 state = (u_int) -1;
237         if (fbi->task_state == C_DISABLE && state == C_ENABLE)
238                 state = C_REENABLE;
239
240         if (state != (u_int)-1) {
241                 fbi->task_state = state;
242                 schedule_work(&fbi->task);
243         }
244         local_irq_restore(flags);
245 }
246
247 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
248 {
249         chan &= 0xffff;
250         chan >>= 16 - bf->length;
251         return chan << bf->offset;
252 }
253
254 /*
255  * Convert bits-per-pixel to a hardware palette PBS value.
256  */
257 static inline u_int palette_pbs(struct fb_var_screeninfo *var)
258 {
259         int ret = 0;
260         switch (var->bits_per_pixel) {
261         case 4:  ret = 0 << 12; break;
262         case 8:  ret = 1 << 12; break;
263         case 16: ret = 2 << 12; break;
264         }
265         return ret;
266 }
267
268 static int
269 sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
270                        u_int trans, struct fb_info *info)
271 {
272         struct sa1100fb_info *fbi =
273                 container_of(info, struct sa1100fb_info, fb);
274         u_int val, ret = 1;
275
276         if (regno < fbi->palette_size) {
277                 val = ((red >> 4) & 0xf00);
278                 val |= ((green >> 8) & 0x0f0);
279                 val |= ((blue >> 12) & 0x00f);
280
281                 if (regno == 0)
282                         val |= palette_pbs(&fbi->fb.var);
283
284                 fbi->palette_cpu[regno] = val;
285                 ret = 0;
286         }
287         return ret;
288 }
289
290 static int
291 sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
292                    u_int trans, struct fb_info *info)
293 {
294         struct sa1100fb_info *fbi =
295                 container_of(info, struct sa1100fb_info, fb);
296         unsigned int val;
297         int ret = 1;
298
299         /*
300          * If inverse mode was selected, invert all the colours
301          * rather than the register number.  The register number
302          * is what you poke into the framebuffer to produce the
303          * colour you requested.
304          */
305         if (fbi->inf->cmap_inverse) {
306                 red   = 0xffff - red;
307                 green = 0xffff - green;
308                 blue  = 0xffff - blue;
309         }
310
311         /*
312          * If greyscale is true, then we convert the RGB value
313          * to greyscale no mater what visual we are using.
314          */
315         if (fbi->fb.var.grayscale)
316                 red = green = blue = (19595 * red + 38470 * green +
317                                         7471 * blue) >> 16;
318
319         switch (fbi->fb.fix.visual) {
320         case FB_VISUAL_TRUECOLOR:
321                 /*
322                  * 12 or 16-bit True Colour.  We encode the RGB value
323                  * according to the RGB bitfield information.
324                  */
325                 if (regno < 16) {
326                         u32 *pal = fbi->fb.pseudo_palette;
327
328                         val  = chan_to_field(red, &fbi->fb.var.red);
329                         val |= chan_to_field(green, &fbi->fb.var.green);
330                         val |= chan_to_field(blue, &fbi->fb.var.blue);
331
332                         pal[regno] = val;
333                         ret = 0;
334                 }
335                 break;
336
337         case FB_VISUAL_STATIC_PSEUDOCOLOR:
338         case FB_VISUAL_PSEUDOCOLOR:
339                 ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
340                 break;
341         }
342
343         return ret;
344 }
345
346 #ifdef CONFIG_CPU_FREQ
347 /*
348  *  sa1100fb_display_dma_period()
349  *    Calculate the minimum period (in picoseconds) between two DMA
350  *    requests for the LCD controller.  If we hit this, it means we're
351  *    doing nothing but LCD DMA.
352  */
353 static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
354 {
355         /*
356          * Period = pixclock * bits_per_byte * bytes_per_transfer
357          *              / memory_bits_per_pixel;
358          */
359         return var->pixclock * 8 * 16 / var->bits_per_pixel;
360 }
361 #endif
362
363 /*
364  *  sa1100fb_check_var():
365  *    Round up in the following order: bits_per_pixel, xres,
366  *    yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
367  *    bitfields, horizontal timing, vertical timing.
368  */
369 static int
370 sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
371 {
372         struct sa1100fb_info *fbi =
373                 container_of(info, struct sa1100fb_info, fb);
374         int rgbidx;
375
376         if (var->xres < MIN_XRES)
377                 var->xres = MIN_XRES;
378         if (var->yres < MIN_YRES)
379                 var->yres = MIN_YRES;
380         if (var->xres > fbi->inf->xres)
381                 var->xres = fbi->inf->xres;
382         if (var->yres > fbi->inf->yres)
383                 var->yres = fbi->inf->yres;
384         var->xres_virtual = max(var->xres_virtual, var->xres);
385         var->yres_virtual = max(var->yres_virtual, var->yres);
386
387         dev_dbg(fbi->dev, "var->bits_per_pixel=%d\n", var->bits_per_pixel);
388         switch (var->bits_per_pixel) {
389         case 4:
390                 rgbidx = RGB_4;
391                 break;
392         case 8:
393                 rgbidx = RGB_8;
394                 break;
395         case 16:
396                 rgbidx = RGB_16;
397                 break;
398         default:
399                 return -EINVAL;
400         }
401
402         /*
403          * Copy the RGB parameters for this display
404          * from the machine specific parameters.
405          */
406         var->red    = fbi->rgb[rgbidx]->red;
407         var->green  = fbi->rgb[rgbidx]->green;
408         var->blue   = fbi->rgb[rgbidx]->blue;
409         var->transp = fbi->rgb[rgbidx]->transp;
410
411         dev_dbg(fbi->dev, "RGBT length = %d:%d:%d:%d\n",
412                 var->red.length, var->green.length, var->blue.length,
413                 var->transp.length);
414
415         dev_dbg(fbi->dev, "RGBT offset = %d:%d:%d:%d\n",
416                 var->red.offset, var->green.offset, var->blue.offset,
417                 var->transp.offset);
418
419 #ifdef CONFIG_CPU_FREQ
420         dev_dbg(fbi->dev, "dma period = %d ps, clock = %ld kHz\n",
421                 sa1100fb_display_dma_period(var),
422                 clk_get_rate(fbi->clk) / 1000);
423 #endif
424
425         return 0;
426 }
427
428 static void sa1100fb_set_visual(struct sa1100fb_info *fbi, u32 visual)
429 {
430         if (fbi->inf->set_visual)
431                 fbi->inf->set_visual(visual);
432 }
433
434 /*
435  * sa1100fb_set_par():
436  *      Set the user defined part of the display for the specified console
437  */
438 static int sa1100fb_set_par(struct fb_info *info)
439 {
440         struct sa1100fb_info *fbi =
441                 container_of(info, struct sa1100fb_info, fb);
442         struct fb_var_screeninfo *var = &info->var;
443         unsigned long palette_mem_size;
444
445         dev_dbg(fbi->dev, "set_par\n");
446
447         if (var->bits_per_pixel == 16)
448                 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
449         else if (!fbi->inf->cmap_static)
450                 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
451         else {
452                 /*
453                  * Some people have weird ideas about wanting static
454                  * pseudocolor maps.  I suspect their user space
455                  * applications are broken.
456                  */
457                 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
458         }
459
460         fbi->fb.fix.line_length = var->xres_virtual *
461                                   var->bits_per_pixel / 8;
462         fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
463
464         palette_mem_size = fbi->palette_size * sizeof(u16);
465
466         dev_dbg(fbi->dev, "palette_mem_size = 0x%08lx\n", palette_mem_size);
467
468         fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
469         fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
470
471         /*
472          * Set (any) board control register to handle new color depth
473          */
474         sa1100fb_set_visual(fbi, fbi->fb.fix.visual);
475         sa1100fb_activate_var(var, fbi);
476
477         return 0;
478 }
479
480 #if 0
481 static int
482 sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
483                   struct fb_info *info)
484 {
485         struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
486
487         /*
488          * Make sure the user isn't doing something stupid.
489          */
490         if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->inf->cmap_static))
491                 return -EINVAL;
492
493         return gen_set_cmap(cmap, kspc, con, info);
494 }
495 #endif
496
497 /*
498  * Formal definition of the VESA spec:
499  *  On
500  *      This refers to the state of the display when it is in full operation
501  *  Stand-By
502  *      This defines an optional operating state of minimal power reduction with
503  *      the shortest recovery time
504  *  Suspend
505  *      This refers to a level of power management in which substantial power
506  *      reduction is achieved by the display.  The display can have a longer 
507  *      recovery time from this state than from the Stand-by state
508  *  Off
509  *      This indicates that the display is consuming the lowest level of power
510  *      and is non-operational. Recovery from this state may optionally require
511  *      the user to manually power on the monitor
512  *
513  *  Now, the fbdev driver adds an additional state, (blank), where they
514  *  turn off the video (maybe by colormap tricks), but don't mess with the
515  *  video itself: think of it semantically between on and Stand-By.
516  *
517  *  So here's what we should do in our fbdev blank routine:
518  *
519  *      VESA_NO_BLANKING (mode 0)       Video on,  front/back light on
520  *      VESA_VSYNC_SUSPEND (mode 1)     Video on,  front/back light off
521  *      VESA_HSYNC_SUSPEND (mode 2)     Video on,  front/back light off
522  *      VESA_POWERDOWN (mode 3)         Video off, front/back light off
523  *
524  *  This will match the matrox implementation.
525  */
526 /*
527  * sa1100fb_blank():
528  *      Blank the display by setting all palette values to zero.  Note, the 
529  *      12 and 16 bpp modes don't really use the palette, so this will not
530  *      blank the display in all modes.  
531  */
532 static int sa1100fb_blank(int blank, struct fb_info *info)
533 {
534         struct sa1100fb_info *fbi =
535                 container_of(info, struct sa1100fb_info, fb);
536         int i;
537
538         dev_dbg(fbi->dev, "sa1100fb_blank: blank=%d\n", blank);
539
540         switch (blank) {
541         case FB_BLANK_POWERDOWN:
542         case FB_BLANK_VSYNC_SUSPEND:
543         case FB_BLANK_HSYNC_SUSPEND:
544         case FB_BLANK_NORMAL:
545                 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
546                     fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
547                         for (i = 0; i < fbi->palette_size; i++)
548                                 sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
549                 sa1100fb_schedule_work(fbi, C_DISABLE);
550                 break;
551
552         case FB_BLANK_UNBLANK:
553                 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
554                     fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
555                         fb_set_cmap(&fbi->fb.cmap, info);
556                 sa1100fb_schedule_work(fbi, C_ENABLE);
557         }
558         return 0;
559 }
560
561 static int sa1100fb_mmap(struct fb_info *info,
562                          struct vm_area_struct *vma)
563 {
564         struct sa1100fb_info *fbi =
565                 container_of(info, struct sa1100fb_info, fb);
566         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
567
568         if (off < info->fix.smem_len) {
569                 vma->vm_pgoff += 1; /* skip over the palette */
570                 return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
571                                              fbi->map_dma, fbi->map_size);
572         }
573
574         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
575
576         return vm_iomap_memory(vma, info->fix.mmio_start, info->fix.mmio_len);
577 }
578
579 static struct fb_ops sa1100fb_ops = {
580         .owner          = THIS_MODULE,
581         .fb_check_var   = sa1100fb_check_var,
582         .fb_set_par     = sa1100fb_set_par,
583 //      .fb_set_cmap    = sa1100fb_set_cmap,
584         .fb_setcolreg   = sa1100fb_setcolreg,
585         .fb_fillrect    = cfb_fillrect,
586         .fb_copyarea    = cfb_copyarea,
587         .fb_imageblit   = cfb_imageblit,
588         .fb_blank       = sa1100fb_blank,
589         .fb_mmap        = sa1100fb_mmap,
590 };
591
592 /*
593  * Calculate the PCD value from the clock rate (in picoseconds).
594  * We take account of the PPCR clock setting.
595  */
596 static inline unsigned int get_pcd(struct sa1100fb_info *fbi,
597                 unsigned int pixclock)
598 {
599         unsigned int pcd = clk_get_rate(fbi->clk) / 100 / 1000;
600
601         pcd *= pixclock;
602         pcd /= 10000000;
603
604         return pcd + 1; /* make up for integer math truncations */
605 }
606
607 /*
608  * sa1100fb_activate_var():
609  *      Configures LCD Controller based on entries in var parameter.  Settings are      
610  *      only written to the controller if changes were made.  
611  */
612 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
613 {
614         struct sa1100fb_lcd_reg new_regs;
615         u_int half_screen_size, yres, pcd;
616         u_long flags;
617
618         dev_dbg(fbi->dev, "Configuring SA1100 LCD\n");
619
620         dev_dbg(fbi->dev, "var: xres=%d hslen=%d lm=%d rm=%d\n",
621                 var->xres, var->hsync_len,
622                 var->left_margin, var->right_margin);
623         dev_dbg(fbi->dev, "var: yres=%d vslen=%d um=%d bm=%d\n",
624                 var->yres, var->vsync_len,
625                 var->upper_margin, var->lower_margin);
626
627 #if DEBUG_VAR
628         if (var->xres < 16        || var->xres > 1024)
629                 dev_err(fbi->dev, "%s: invalid xres %d\n",
630                         fbi->fb.fix.id, var->xres);
631         if (var->hsync_len < 1    || var->hsync_len > 64)
632                 dev_err(fbi->dev, "%s: invalid hsync_len %d\n",
633                         fbi->fb.fix.id, var->hsync_len);
634         if (var->left_margin < 1  || var->left_margin > 255)
635                 dev_err(fbi->dev, "%s: invalid left_margin %d\n",
636                         fbi->fb.fix.id, var->left_margin);
637         if (var->right_margin < 1 || var->right_margin > 255)
638                 dev_err(fbi->dev, "%s: invalid right_margin %d\n",
639                         fbi->fb.fix.id, var->right_margin);
640         if (var->yres < 1         || var->yres > 1024)
641                 dev_err(fbi->dev, "%s: invalid yres %d\n",
642                         fbi->fb.fix.id, var->yres);
643         if (var->vsync_len < 1    || var->vsync_len > 64)
644                 dev_err(fbi->dev, "%s: invalid vsync_len %d\n",
645                         fbi->fb.fix.id, var->vsync_len);
646         if (var->upper_margin < 0 || var->upper_margin > 255)
647                 dev_err(fbi->dev, "%s: invalid upper_margin %d\n",
648                         fbi->fb.fix.id, var->upper_margin);
649         if (var->lower_margin < 0 || var->lower_margin > 255)
650                 dev_err(fbi->dev, "%s: invalid lower_margin %d\n",
651                         fbi->fb.fix.id, var->lower_margin);
652 #endif
653
654         new_regs.lccr0 = fbi->inf->lccr0 |
655                 LCCR0_LEN | LCCR0_LDM | LCCR0_BAM |
656                 LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0);
657
658         new_regs.lccr1 =
659                 LCCR1_DisWdth(var->xres) +
660                 LCCR1_HorSnchWdth(var->hsync_len) +
661                 LCCR1_BegLnDel(var->left_margin) +
662                 LCCR1_EndLnDel(var->right_margin);
663
664         /*
665          * If we have a dual scan LCD, then we need to halve
666          * the YRES parameter.
667          */
668         yres = var->yres;
669         if (fbi->inf->lccr0 & LCCR0_Dual)
670                 yres /= 2;
671
672         new_regs.lccr2 =
673                 LCCR2_DisHght(yres) +
674                 LCCR2_VrtSnchWdth(var->vsync_len) +
675                 LCCR2_BegFrmDel(var->upper_margin) +
676                 LCCR2_EndFrmDel(var->lower_margin);
677
678         pcd = get_pcd(fbi, var->pixclock);
679         new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->inf->lccr3 |
680                 (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
681                 (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
682
683         dev_dbg(fbi->dev, "nlccr0 = 0x%08lx\n", new_regs.lccr0);
684         dev_dbg(fbi->dev, "nlccr1 = 0x%08lx\n", new_regs.lccr1);
685         dev_dbg(fbi->dev, "nlccr2 = 0x%08lx\n", new_regs.lccr2);
686         dev_dbg(fbi->dev, "nlccr3 = 0x%08lx\n", new_regs.lccr3);
687
688         half_screen_size = var->bits_per_pixel;
689         half_screen_size = half_screen_size * var->xres * var->yres / 16;
690
691         /* Update shadow copy atomically */
692         local_irq_save(flags);
693         fbi->dbar1 = fbi->palette_dma;
694         fbi->dbar2 = fbi->screen_dma + half_screen_size;
695
696         fbi->reg_lccr0 = new_regs.lccr0;
697         fbi->reg_lccr1 = new_regs.lccr1;
698         fbi->reg_lccr2 = new_regs.lccr2;
699         fbi->reg_lccr3 = new_regs.lccr3;
700         local_irq_restore(flags);
701
702         /*
703          * Only update the registers if the controller is enabled
704          * and something has changed.
705          */
706         if (readl_relaxed(fbi->base + LCCR0) != fbi->reg_lccr0 ||
707             readl_relaxed(fbi->base + LCCR1) != fbi->reg_lccr1 ||
708             readl_relaxed(fbi->base + LCCR2) != fbi->reg_lccr2 ||
709             readl_relaxed(fbi->base + LCCR3) != fbi->reg_lccr3 ||
710             readl_relaxed(fbi->base + DBAR1) != fbi->dbar1 ||
711             readl_relaxed(fbi->base + DBAR2) != fbi->dbar2)
712                 sa1100fb_schedule_work(fbi, C_REENABLE);
713
714         return 0;
715 }
716
717 /*
718  * NOTE!  The following functions are purely helpers for set_ctrlr_state.
719  * Do not call them directly; set_ctrlr_state does the correct serialisation
720  * to ensure that things happen in the right way 100% of time time.
721  *      -- rmk
722  */
723 static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
724 {
725         dev_dbg(fbi->dev, "backlight o%s\n", on ? "n" : "ff");
726
727         if (fbi->inf->backlight_power)
728                 fbi->inf->backlight_power(on);
729 }
730
731 static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
732 {
733         dev_dbg(fbi->dev, "LCD power o%s\n", on ? "n" : "ff");
734
735         if (fbi->inf->lcd_power)
736                 fbi->inf->lcd_power(on);
737 }
738
739 static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
740 {
741         u_int mask = 0;
742
743         /*
744          * Enable GPIO<9:2> for LCD use if:
745          *  1. Active display, or
746          *  2. Color Dual Passive display
747          *
748          * see table 11.8 on page 11-27 in the SA1100 manual
749          *   -- Erik.
750          *
751          * SA1110 spec update nr. 25 says we can and should
752          * clear LDD15 to 12 for 4 or 8bpp modes with active
753          * panels.  
754          */
755         if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
756             (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
757                 mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9  | GPIO_LDD8;
758
759                 if (fbi->fb.var.bits_per_pixel > 8 ||
760                     (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual)
761                         mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12;
762
763         }
764
765         if (mask) {
766                 unsigned long flags;
767
768                 /*
769                  * SA-1100 requires the GPIO direction register set
770                  * appropriately for the alternate function.  Hence
771                  * we set it here via bitmask rather than excessive
772                  * fiddling via the GPIO subsystem - and even then
773                  * we'll still have to deal with GAFR.
774                  */
775                 local_irq_save(flags);
776                 GPDR |= mask;
777                 GAFR |= mask;
778                 local_irq_restore(flags);
779         }
780 }
781
782 static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
783 {
784         dev_dbg(fbi->dev, "Enabling LCD controller\n");
785
786         /*
787          * Make sure the mode bits are present in the first palette entry
788          */
789         fbi->palette_cpu[0] &= 0xcfff;
790         fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
791
792         /* enable LCD controller clock */
793         clk_prepare_enable(fbi->clk);
794
795         /* Sequence from 11.7.10 */
796         writel_relaxed(fbi->reg_lccr3, fbi->base + LCCR3);
797         writel_relaxed(fbi->reg_lccr2, fbi->base + LCCR2);
798         writel_relaxed(fbi->reg_lccr1, fbi->base + LCCR1);
799         writel_relaxed(fbi->reg_lccr0 & ~LCCR0_LEN, fbi->base + LCCR0);
800         writel_relaxed(fbi->dbar1, fbi->base + DBAR1);
801         writel_relaxed(fbi->dbar2, fbi->base + DBAR2);
802         writel_relaxed(fbi->reg_lccr0 | LCCR0_LEN, fbi->base + LCCR0);
803
804         if (machine_is_shannon())
805                 gpio_set_value(SHANNON_GPIO_DISP_EN, 1);
806
807         dev_dbg(fbi->dev, "DBAR1: 0x%08x\n", readl_relaxed(fbi->base + DBAR1));
808         dev_dbg(fbi->dev, "DBAR2: 0x%08x\n", readl_relaxed(fbi->base + DBAR2));
809         dev_dbg(fbi->dev, "LCCR0: 0x%08x\n", readl_relaxed(fbi->base + LCCR0));
810         dev_dbg(fbi->dev, "LCCR1: 0x%08x\n", readl_relaxed(fbi->base + LCCR1));
811         dev_dbg(fbi->dev, "LCCR2: 0x%08x\n", readl_relaxed(fbi->base + LCCR2));
812         dev_dbg(fbi->dev, "LCCR3: 0x%08x\n", readl_relaxed(fbi->base + LCCR3));
813 }
814
815 static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
816 {
817         DECLARE_WAITQUEUE(wait, current);
818         u32 lccr0;
819
820         dev_dbg(fbi->dev, "Disabling LCD controller\n");
821
822         if (machine_is_shannon())
823                 gpio_set_value(SHANNON_GPIO_DISP_EN, 0);
824
825         set_current_state(TASK_UNINTERRUPTIBLE);
826         add_wait_queue(&fbi->ctrlr_wait, &wait);
827
828         /* Clear LCD Status Register */
829         writel_relaxed(~0, fbi->base + LCSR);
830
831         lccr0 = readl_relaxed(fbi->base + LCCR0);
832         lccr0 &= ~LCCR0_LDM;    /* Enable LCD Disable Done Interrupt */
833         writel_relaxed(lccr0, fbi->base + LCCR0);
834         lccr0 &= ~LCCR0_LEN;    /* Disable LCD Controller */
835         writel_relaxed(lccr0, fbi->base + LCCR0);
836
837         schedule_timeout(20 * HZ / 1000);
838         remove_wait_queue(&fbi->ctrlr_wait, &wait);
839
840         /* disable LCD controller clock */
841         clk_disable_unprepare(fbi->clk);
842 }
843
844 /*
845  *  sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
846  */
847 static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id)
848 {
849         struct sa1100fb_info *fbi = dev_id;
850         unsigned int lcsr = readl_relaxed(fbi->base + LCSR);
851
852         if (lcsr & LCSR_LDD) {
853                 u32 lccr0 = readl_relaxed(fbi->base + LCCR0) | LCCR0_LDM;
854                 writel_relaxed(lccr0, fbi->base + LCCR0);
855                 wake_up(&fbi->ctrlr_wait);
856         }
857
858         writel_relaxed(lcsr, fbi->base + LCSR);
859         return IRQ_HANDLED;
860 }
861
862 /*
863  * This function must be called from task context only, since it will
864  * sleep when disabling the LCD controller, or if we get two contending
865  * processes trying to alter state.
866  */
867 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
868 {
869         u_int old_state;
870
871         mutex_lock(&fbi->ctrlr_lock);
872
873         old_state = fbi->state;
874
875         /*
876          * Hack around fbcon initialisation.
877          */
878         if (old_state == C_STARTUP && state == C_REENABLE)
879                 state = C_ENABLE;
880
881         switch (state) {
882         case C_DISABLE_CLKCHANGE:
883                 /*
884                  * Disable controller for clock change.  If the
885                  * controller is already disabled, then do nothing.
886                  */
887                 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
888                         fbi->state = state;
889                         sa1100fb_disable_controller(fbi);
890                 }
891                 break;
892
893         case C_DISABLE_PM:
894         case C_DISABLE:
895                 /*
896                  * Disable controller
897                  */
898                 if (old_state != C_DISABLE) {
899                         fbi->state = state;
900
901                         __sa1100fb_backlight_power(fbi, 0);
902                         if (old_state != C_DISABLE_CLKCHANGE)
903                                 sa1100fb_disable_controller(fbi);
904                         __sa1100fb_lcd_power(fbi, 0);
905                 }
906                 break;
907
908         case C_ENABLE_CLKCHANGE:
909                 /*
910                  * Enable the controller after clock change.  Only
911                  * do this if we were disabled for the clock change.
912                  */
913                 if (old_state == C_DISABLE_CLKCHANGE) {
914                         fbi->state = C_ENABLE;
915                         sa1100fb_enable_controller(fbi);
916                 }
917                 break;
918
919         case C_REENABLE:
920                 /*
921                  * Re-enable the controller only if it was already
922                  * enabled.  This is so we reprogram the control
923                  * registers.
924                  */
925                 if (old_state == C_ENABLE) {
926                         sa1100fb_disable_controller(fbi);
927                         sa1100fb_setup_gpio(fbi);
928                         sa1100fb_enable_controller(fbi);
929                 }
930                 break;
931
932         case C_ENABLE_PM:
933                 /*
934                  * Re-enable the controller after PM.  This is not
935                  * perfect - think about the case where we were doing
936                  * a clock change, and we suspended half-way through.
937                  */
938                 if (old_state != C_DISABLE_PM)
939                         break;
940                 /* fall through */
941
942         case C_ENABLE:
943                 /*
944                  * Power up the LCD screen, enable controller, and
945                  * turn on the backlight.
946                  */
947                 if (old_state != C_ENABLE) {
948                         fbi->state = C_ENABLE;
949                         sa1100fb_setup_gpio(fbi);
950                         __sa1100fb_lcd_power(fbi, 1);
951                         sa1100fb_enable_controller(fbi);
952                         __sa1100fb_backlight_power(fbi, 1);
953                 }
954                 break;
955         }
956         mutex_unlock(&fbi->ctrlr_lock);
957 }
958
959 /*
960  * Our LCD controller task (which is called when we blank or unblank)
961  * via keventd.
962  */
963 static void sa1100fb_task(struct work_struct *w)
964 {
965         struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task);
966         u_int state = xchg(&fbi->task_state, -1);
967
968         set_ctrlr_state(fbi, state);
969 }
970
971 #ifdef CONFIG_CPU_FREQ
972 /*
973  * Calculate the minimum DMA period over all displays that we own.
974  * This, together with the SDRAM bandwidth defines the slowest CPU
975  * frequency that can be selected.
976  */
977 static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi)
978 {
979 #if 0
980         unsigned int min_period = (unsigned int)-1;
981         int i;
982
983         for (i = 0; i < MAX_NR_CONSOLES; i++) {
984                 struct display *disp = &fb_display[i];
985                 unsigned int period;
986
987                 /*
988                  * Do we own this display?
989                  */
990                 if (disp->fb_info != &fbi->fb)
991                         continue;
992
993                 /*
994                  * Ok, calculate its DMA period
995                  */
996                 period = sa1100fb_display_dma_period(&disp->var);
997                 if (period < min_period)
998                         min_period = period;
999         }
1000
1001         return min_period;
1002 #else
1003         /*
1004          * FIXME: we need to verify _all_ consoles.
1005          */
1006         return sa1100fb_display_dma_period(&fbi->fb.var);
1007 #endif
1008 }
1009
1010 /*
1011  * CPU clock speed change handler.  We need to adjust the LCD timing
1012  * parameters when the CPU clock is adjusted by the power management
1013  * subsystem.
1014  */
1015 static int
1016 sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
1017                          void *data)
1018 {
1019         struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
1020         u_int pcd;
1021
1022         switch (val) {
1023         case CPUFREQ_PRECHANGE:
1024                 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1025                 break;
1026
1027         case CPUFREQ_POSTCHANGE:
1028                 pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1029                 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
1030                 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1031                 break;
1032         }
1033         return 0;
1034 }
1035
1036 static int
1037 sa1100fb_freq_policy(struct notifier_block *nb, unsigned long val,
1038                      void *data)
1039 {
1040         struct sa1100fb_info *fbi = TO_INF(nb, freq_policy);
1041         struct cpufreq_policy *policy = data;
1042
1043         switch (val) {
1044         case CPUFREQ_ADJUST:
1045                 dev_dbg(fbi->dev, "min dma period: %d ps, "
1046                         "new clock %d kHz\n", sa1100fb_min_dma_period(fbi),
1047                         policy->max);
1048                 /* todo: fill in min/max values */
1049                 break;
1050         case CPUFREQ_NOTIFY:
1051                 do {} while(0);
1052                 /* todo: panic if min/max values aren't fulfilled 
1053                  * [can't really happen unless there's a bug in the
1054                  * CPU policy verififcation process *
1055                  */
1056                 break;
1057         }
1058         return 0;
1059 }
1060 #endif
1061
1062 #ifdef CONFIG_PM
1063 /*
1064  * Power management hooks.  Note that we won't be called from IRQ context,
1065  * unlike the blank functions above, so we may sleep.
1066  */
1067 static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state)
1068 {
1069         struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1070
1071         set_ctrlr_state(fbi, C_DISABLE_PM);
1072         return 0;
1073 }
1074
1075 static int sa1100fb_resume(struct platform_device *dev)
1076 {
1077         struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1078
1079         set_ctrlr_state(fbi, C_ENABLE_PM);
1080         return 0;
1081 }
1082 #else
1083 #define sa1100fb_suspend        NULL
1084 #define sa1100fb_resume         NULL
1085 #endif
1086
1087 /*
1088  * sa1100fb_map_video_memory():
1089  *      Allocates the DRAM memory for the frame buffer.  This buffer is  
1090  *      remapped into a non-cached, non-buffered, memory region to  
1091  *      allow palette and pixel writes to occur without flushing the 
1092  *      cache.  Once this area is remapped, all virtual memory
1093  *      access to the video memory should occur at the new region.
1094  */
1095 static int sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
1096 {
1097         /*
1098          * We reserve one page for the palette, plus the size
1099          * of the framebuffer.
1100          */
1101         fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1102         fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
1103                                               &fbi->map_dma, GFP_KERNEL);
1104
1105         if (fbi->map_cpu) {
1106                 fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1107                 fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1108                 /*
1109                  * FIXME: this is actually the wrong thing to place in
1110                  * smem_start.  But fbdev suffers from the problem that
1111                  * it needs an API which doesn't exist (in this case,
1112                  * dma_writecombine_mmap)
1113                  */
1114                 fbi->fb.fix.smem_start = fbi->screen_dma;
1115         }
1116
1117         return fbi->map_cpu ? 0 : -ENOMEM;
1118 }
1119
1120 /* Fake monspecs to fill in fbinfo structure */
1121 static struct fb_monspecs monspecs = {
1122         .hfmin  = 30000,
1123         .hfmax  = 70000,
1124         .vfmin  = 50,
1125         .vfmax  = 65,
1126 };
1127
1128
1129 static struct sa1100fb_info *sa1100fb_init_fbinfo(struct device *dev)
1130 {
1131         struct sa1100fb_mach_info *inf = dev_get_platdata(dev);
1132         struct sa1100fb_info *fbi;
1133         unsigned i;
1134
1135         fbi = kmalloc(sizeof(struct sa1100fb_info) + sizeof(u32) * 16,
1136                       GFP_KERNEL);
1137         if (!fbi)
1138                 return NULL;
1139
1140         memset(fbi, 0, sizeof(struct sa1100fb_info));
1141         fbi->dev = dev;
1142
1143         strcpy(fbi->fb.fix.id, SA1100_NAME);
1144
1145         fbi->fb.fix.type        = FB_TYPE_PACKED_PIXELS;
1146         fbi->fb.fix.type_aux    = 0;
1147         fbi->fb.fix.xpanstep    = 0;
1148         fbi->fb.fix.ypanstep    = 0;
1149         fbi->fb.fix.ywrapstep   = 0;
1150         fbi->fb.fix.accel       = FB_ACCEL_NONE;
1151
1152         fbi->fb.var.nonstd      = 0;
1153         fbi->fb.var.activate    = FB_ACTIVATE_NOW;
1154         fbi->fb.var.height      = -1;
1155         fbi->fb.var.width       = -1;
1156         fbi->fb.var.accel_flags = 0;
1157         fbi->fb.var.vmode       = FB_VMODE_NONINTERLACED;
1158
1159         fbi->fb.fbops           = &sa1100fb_ops;
1160         fbi->fb.flags           = FBINFO_DEFAULT;
1161         fbi->fb.monspecs        = monspecs;
1162         fbi->fb.pseudo_palette  = (fbi + 1);
1163
1164         fbi->rgb[RGB_4]         = &rgb_4;
1165         fbi->rgb[RGB_8]         = &rgb_8;
1166         fbi->rgb[RGB_16]        = &def_rgb_16;
1167
1168         /*
1169          * People just don't seem to get this.  We don't support
1170          * anything but correct entries now, so panic if someone
1171          * does something stupid.
1172          */
1173         if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
1174             inf->pixclock == 0)
1175                 panic("sa1100fb error: invalid LCCR3 fields set or zero "
1176                         "pixclock.");
1177
1178         fbi->fb.var.xres                = inf->xres;
1179         fbi->fb.var.xres_virtual        = inf->xres;
1180         fbi->fb.var.yres                = inf->yres;
1181         fbi->fb.var.yres_virtual        = inf->yres;
1182         fbi->fb.var.bits_per_pixel      = inf->bpp;
1183         fbi->fb.var.pixclock            = inf->pixclock;
1184         fbi->fb.var.hsync_len           = inf->hsync_len;
1185         fbi->fb.var.left_margin         = inf->left_margin;
1186         fbi->fb.var.right_margin        = inf->right_margin;
1187         fbi->fb.var.vsync_len           = inf->vsync_len;
1188         fbi->fb.var.upper_margin        = inf->upper_margin;
1189         fbi->fb.var.lower_margin        = inf->lower_margin;
1190         fbi->fb.var.sync                = inf->sync;
1191         fbi->fb.var.grayscale           = inf->cmap_greyscale;
1192         fbi->state                      = C_STARTUP;
1193         fbi->task_state                 = (u_char)-1;
1194         fbi->fb.fix.smem_len            = inf->xres * inf->yres *
1195                                           inf->bpp / 8;
1196         fbi->inf                        = inf;
1197
1198         /* Copy the RGB bitfield overrides */
1199         for (i = 0; i < NR_RGB; i++)
1200                 if (inf->rgb[i])
1201                         fbi->rgb[i] = inf->rgb[i];
1202
1203         init_waitqueue_head(&fbi->ctrlr_wait);
1204         INIT_WORK(&fbi->task, sa1100fb_task);
1205         mutex_init(&fbi->ctrlr_lock);
1206
1207         return fbi;
1208 }
1209
1210 static int sa1100fb_probe(struct platform_device *pdev)
1211 {
1212         struct sa1100fb_info *fbi;
1213         struct resource *res;
1214         int ret, irq;
1215
1216         if (!dev_get_platdata(&pdev->dev)) {
1217                 dev_err(&pdev->dev, "no platform LCD data\n");
1218                 return -EINVAL;
1219         }
1220
1221         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1222         irq = platform_get_irq(pdev, 0);
1223         if (irq < 0 || !res)
1224                 return -EINVAL;
1225
1226         if (!request_mem_region(res->start, resource_size(res), "LCD"))
1227                 return -EBUSY;
1228
1229         fbi = sa1100fb_init_fbinfo(&pdev->dev);
1230         ret = -ENOMEM;
1231         if (!fbi)
1232                 goto failed;
1233
1234         fbi->clk = clk_get(&pdev->dev, NULL);
1235         if (IS_ERR(fbi->clk)) {
1236                 ret = PTR_ERR(fbi->clk);
1237                 fbi->clk = NULL;
1238                 goto failed;
1239         }
1240
1241         fbi->base = ioremap(res->start, resource_size(res));
1242         if (!fbi->base)
1243                 goto failed;
1244
1245         /* Initialize video memory */
1246         ret = sa1100fb_map_video_memory(fbi);
1247         if (ret)
1248                 goto failed;
1249
1250         ret = request_irq(irq, sa1100fb_handle_irq, 0, "LCD", fbi);
1251         if (ret) {
1252                 dev_err(&pdev->dev, "request_irq failed: %d\n", ret);
1253                 goto failed;
1254         }
1255
1256         if (machine_is_shannon()) {
1257                 ret = gpio_request_one(SHANNON_GPIO_DISP_EN,
1258                         GPIOF_OUT_INIT_LOW, "display enable");
1259                 if (ret)
1260                         goto err_free_irq;
1261         }
1262
1263         /*
1264          * This makes sure that our colour bitfield
1265          * descriptors are correctly initialised.
1266          */
1267         sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
1268
1269         platform_set_drvdata(pdev, fbi);
1270
1271         ret = register_framebuffer(&fbi->fb);
1272         if (ret < 0)
1273                 goto err_reg_fb;
1274
1275 #ifdef CONFIG_CPU_FREQ
1276         fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
1277         fbi->freq_policy.notifier_call = sa1100fb_freq_policy;
1278         cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1279         cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
1280 #endif
1281
1282         /* This driver cannot be unloaded at the moment */
1283         return 0;
1284
1285  err_reg_fb:
1286         if (machine_is_shannon())
1287                 gpio_free(SHANNON_GPIO_DISP_EN);
1288  err_free_irq:
1289         free_irq(irq, fbi);
1290  failed:
1291         if (fbi)
1292                 iounmap(fbi->base);
1293         if (fbi->clk)
1294                 clk_put(fbi->clk);
1295         kfree(fbi);
1296         release_mem_region(res->start, resource_size(res));
1297         return ret;
1298 }
1299
1300 static struct platform_driver sa1100fb_driver = {
1301         .probe          = sa1100fb_probe,
1302         .suspend        = sa1100fb_suspend,
1303         .resume         = sa1100fb_resume,
1304         .driver         = {
1305                 .name   = "sa11x0-fb",
1306         },
1307 };
1308
1309 int __init sa1100fb_init(void)
1310 {
1311         if (fb_get_options("sa1100fb", NULL))
1312                 return -ENODEV;
1313
1314         return platform_driver_register(&sa1100fb_driver);
1315 }
1316
1317 int __init sa1100fb_setup(char *options)
1318 {
1319 #if 0
1320         char *this_opt;
1321
1322         if (!options || !*options)
1323                 return 0;
1324
1325         while ((this_opt = strsep(&options, ",")) != NULL) {
1326
1327                 if (!strncmp(this_opt, "bpp:", 4))
1328                         current_par.max_bpp =
1329                             simple_strtoul(this_opt + 4, NULL, 0);
1330
1331                 if (!strncmp(this_opt, "lccr0:", 6))
1332                         lcd_shadow.lccr0 =
1333                             simple_strtoul(this_opt + 6, NULL, 0);
1334                 if (!strncmp(this_opt, "lccr1:", 6)) {
1335                         lcd_shadow.lccr1 =
1336                             simple_strtoul(this_opt + 6, NULL, 0);
1337                         current_par.max_xres =
1338                             (lcd_shadow.lccr1 & 0x3ff) + 16;
1339                 }
1340                 if (!strncmp(this_opt, "lccr2:", 6)) {
1341                         lcd_shadow.lccr2 =
1342                             simple_strtoul(this_opt + 6, NULL, 0);
1343                         current_par.max_yres =
1344                             (lcd_shadow.
1345                              lccr0 & LCCR0_SDS) ? ((lcd_shadow.
1346                                                     lccr2 & 0x3ff) +
1347                                                    1) *
1348                             2 : ((lcd_shadow.lccr2 & 0x3ff) + 1);
1349                 }
1350                 if (!strncmp(this_opt, "lccr3:", 6))
1351                         lcd_shadow.lccr3 =
1352                             simple_strtoul(this_opt + 6, NULL, 0);
1353         }
1354 #endif
1355         return 0;
1356 }
1357
1358 module_init(sa1100fb_init);
1359 MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1360 MODULE_LICENSE("GPL");