Merge branch 'linux-linaro-lsk-v4.4' into linux-linaro-lsk-v4.4-android
[firefly-linux-kernel-4.4.55.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
39
40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
41 static int link_quirk;
42 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
44
45 static unsigned int quirks;
46 module_param(quirks, uint, S_IRUGO);
47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
48
49 /* TODO: copied from ehci-hcd.c - can this be refactored? */
50 /*
51  * xhci_handshake - spin reading hc until handshake completes or fails
52  * @ptr: address of hc register to be read
53  * @mask: bits to look at in result of read
54  * @done: value of those bits when handshake succeeds
55  * @usec: timeout in microseconds
56  *
57  * Returns negative errno, or zero on success
58  *
59  * Success happens when the "mask" bits have the specified value (hardware
60  * handshake done).  There are two failure modes:  "usec" have passed (major
61  * hardware flakeout), or the register reads as all-ones (hardware removed).
62  */
63 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
64 {
65         u32     result;
66
67         do {
68                 result = readl(ptr);
69                 if (result == ~(u32)0)          /* card removed */
70                         return -ENODEV;
71                 result &= mask;
72                 if (result == done)
73                         return 0;
74                 udelay(1);
75                 usec--;
76         } while (usec > 0);
77         return -ETIMEDOUT;
78 }
79
80 /*
81  * Disable interrupts and begin the xHCI halting process.
82  */
83 void xhci_quiesce(struct xhci_hcd *xhci)
84 {
85         u32 halted;
86         u32 cmd;
87         u32 mask;
88
89         mask = ~(XHCI_IRQS);
90         halted = readl(&xhci->op_regs->status) & STS_HALT;
91         if (!halted)
92                 mask &= ~CMD_RUN;
93
94         cmd = readl(&xhci->op_regs->command);
95         cmd &= mask;
96         writel(cmd, &xhci->op_regs->command);
97 }
98
99 /*
100  * Force HC into halt state.
101  *
102  * Disable any IRQs and clear the run/stop bit.
103  * HC will complete any current and actively pipelined transactions, and
104  * should halt within 16 ms of the run/stop bit being cleared.
105  * Read HC Halted bit in the status register to see when the HC is finished.
106  */
107 int xhci_halt(struct xhci_hcd *xhci)
108 {
109         int ret;
110         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
111         xhci_quiesce(xhci);
112
113         ret = xhci_handshake(&xhci->op_regs->status,
114                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
115         if (!ret) {
116                 xhci->xhc_state |= XHCI_STATE_HALTED;
117                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
118         } else
119                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
120                                 XHCI_MAX_HALT_USEC);
121         return ret;
122 }
123
124 /*
125  * Set the run bit and wait for the host to be running.
126  */
127 static int xhci_start(struct xhci_hcd *xhci)
128 {
129         u32 temp;
130         int ret;
131
132         temp = readl(&xhci->op_regs->command);
133         temp |= (CMD_RUN);
134         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
135                         temp);
136         writel(temp, &xhci->op_regs->command);
137
138         /*
139          * Wait for the HCHalted Status bit to be 0 to indicate the host is
140          * running.
141          */
142         ret = xhci_handshake(&xhci->op_regs->status,
143                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
144         if (ret == -ETIMEDOUT)
145                 xhci_err(xhci, "Host took too long to start, "
146                                 "waited %u microseconds.\n",
147                                 XHCI_MAX_HALT_USEC);
148         if (!ret)
149                 /* clear state flags. Including dying, halted or removing */
150                 xhci->xhc_state = 0;
151
152         return ret;
153 }
154
155 /*
156  * Reset a halted HC.
157  *
158  * This resets pipelines, timers, counters, state machines, etc.
159  * Transactions will be terminated immediately, and operational registers
160  * will be set to their defaults.
161  */
162 int xhci_reset(struct xhci_hcd *xhci)
163 {
164         u32 command;
165         u32 state;
166         int ret, i;
167
168         state = readl(&xhci->op_regs->status);
169         if ((state & STS_HALT) == 0) {
170                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
171                 return 0;
172         }
173
174         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
175         command = readl(&xhci->op_regs->command);
176         command |= CMD_RESET;
177         writel(command, &xhci->op_regs->command);
178
179         /* Existing Intel xHCI controllers require a delay of 1 mS,
180          * after setting the CMD_RESET bit, and before accessing any
181          * HC registers. This allows the HC to complete the
182          * reset operation and be ready for HC register access.
183          * Without this delay, the subsequent HC register access,
184          * may result in a system hang very rarely.
185          */
186         if (xhci->quirks & XHCI_INTEL_HOST)
187                 udelay(1000);
188
189         ret = xhci_handshake(&xhci->op_regs->command,
190                         CMD_RESET, 0, 10 * 1000 * 1000);
191         if (ret)
192                 return ret;
193
194         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195                          "Wait for controller to be ready for doorbell rings");
196         /*
197          * xHCI cannot write to any doorbells or operational registers other
198          * than status until the "Controller Not Ready" flag is cleared.
199          */
200         ret = xhci_handshake(&xhci->op_regs->status,
201                         STS_CNR, 0, 10 * 1000 * 1000);
202
203         for (i = 0; i < 2; ++i) {
204                 xhci->bus_state[i].port_c_suspend = 0;
205                 xhci->bus_state[i].suspended_ports = 0;
206                 xhci->bus_state[i].resuming_ports = 0;
207         }
208
209         return ret;
210 }
211
212 #ifdef CONFIG_PCI
213 static int xhci_free_msi(struct xhci_hcd *xhci)
214 {
215         int i;
216
217         if (!xhci->msix_entries)
218                 return -EINVAL;
219
220         for (i = 0; i < xhci->msix_count; i++)
221                 if (xhci->msix_entries[i].vector)
222                         free_irq(xhci->msix_entries[i].vector,
223                                         xhci_to_hcd(xhci));
224         return 0;
225 }
226
227 /*
228  * Set up MSI
229  */
230 static int xhci_setup_msi(struct xhci_hcd *xhci)
231 {
232         int ret;
233         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
234
235         ret = pci_enable_msi(pdev);
236         if (ret) {
237                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238                                 "failed to allocate MSI entry");
239                 return ret;
240         }
241
242         ret = request_irq(pdev->irq, xhci_msi_irq,
243                                 0, "xhci_hcd", xhci_to_hcd(xhci));
244         if (ret) {
245                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
246                                 "disable MSI interrupt");
247                 pci_disable_msi(pdev);
248         }
249
250         return ret;
251 }
252
253 /*
254  * Free IRQs
255  * free all IRQs request
256  */
257 static void xhci_free_irq(struct xhci_hcd *xhci)
258 {
259         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
260         int ret;
261
262         /* return if using legacy interrupt */
263         if (xhci_to_hcd(xhci)->irq > 0)
264                 return;
265
266         ret = xhci_free_msi(xhci);
267         if (!ret)
268                 return;
269         if (pdev->irq > 0)
270                 free_irq(pdev->irq, xhci_to_hcd(xhci));
271
272         return;
273 }
274
275 /*
276  * Set up MSI-X
277  */
278 static int xhci_setup_msix(struct xhci_hcd *xhci)
279 {
280         int i, ret = 0;
281         struct usb_hcd *hcd = xhci_to_hcd(xhci);
282         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
283
284         /*
285          * calculate number of msi-x vectors supported.
286          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
287          *   with max number of interrupters based on the xhci HCSPARAMS1.
288          * - num_online_cpus: maximum msi-x vectors per CPUs core.
289          *   Add additional 1 vector to ensure always available interrupt.
290          */
291         xhci->msix_count = min(num_online_cpus() + 1,
292                                 HCS_MAX_INTRS(xhci->hcs_params1));
293
294         xhci->msix_entries =
295                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
296                                 GFP_KERNEL);
297         if (!xhci->msix_entries) {
298                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
299                 return -ENOMEM;
300         }
301
302         for (i = 0; i < xhci->msix_count; i++) {
303                 xhci->msix_entries[i].entry = i;
304                 xhci->msix_entries[i].vector = 0;
305         }
306
307         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
308         if (ret) {
309                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310                                 "Failed to enable MSI-X");
311                 goto free_entries;
312         }
313
314         for (i = 0; i < xhci->msix_count; i++) {
315                 ret = request_irq(xhci->msix_entries[i].vector,
316                                 xhci_msi_irq,
317                                 0, "xhci_hcd", xhci_to_hcd(xhci));
318                 if (ret)
319                         goto disable_msix;
320         }
321
322         hcd->msix_enabled = 1;
323         return ret;
324
325 disable_msix:
326         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
327         xhci_free_irq(xhci);
328         pci_disable_msix(pdev);
329 free_entries:
330         kfree(xhci->msix_entries);
331         xhci->msix_entries = NULL;
332         return ret;
333 }
334
335 /* Free any IRQs and disable MSI-X */
336 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
337 {
338         struct usb_hcd *hcd = xhci_to_hcd(xhci);
339         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
340
341         if (xhci->quirks & XHCI_PLAT)
342                 return;
343
344         xhci_free_irq(xhci);
345
346         if (xhci->msix_entries) {
347                 pci_disable_msix(pdev);
348                 kfree(xhci->msix_entries);
349                 xhci->msix_entries = NULL;
350         } else {
351                 pci_disable_msi(pdev);
352         }
353
354         hcd->msix_enabled = 0;
355         return;
356 }
357
358 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
359 {
360         int i;
361
362         if (xhci->msix_entries) {
363                 for (i = 0; i < xhci->msix_count; i++)
364                         synchronize_irq(xhci->msix_entries[i].vector);
365         }
366 }
367
368 static int xhci_try_enable_msi(struct usb_hcd *hcd)
369 {
370         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
371         struct pci_dev  *pdev;
372         int ret;
373
374         /* The xhci platform device has set up IRQs through usb_add_hcd. */
375         if (xhci->quirks & XHCI_PLAT)
376                 return 0;
377
378         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
379         /*
380          * Some Fresco Logic host controllers advertise MSI, but fail to
381          * generate interrupts.  Don't even try to enable MSI.
382          */
383         if (xhci->quirks & XHCI_BROKEN_MSI)
384                 goto legacy_irq;
385
386         /* unregister the legacy interrupt */
387         if (hcd->irq)
388                 free_irq(hcd->irq, hcd);
389         hcd->irq = 0;
390
391         ret = xhci_setup_msix(xhci);
392         if (ret)
393                 /* fall back to msi*/
394                 ret = xhci_setup_msi(xhci);
395
396         if (!ret)
397                 /* hcd->irq is 0, we have MSI */
398                 return 0;
399
400         if (!pdev->irq) {
401                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
402                 return -EINVAL;
403         }
404
405  legacy_irq:
406         if (!strlen(hcd->irq_descr))
407                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
408                          hcd->driver->description, hcd->self.busnum);
409
410         /* fall back to legacy interrupt*/
411         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
412                         hcd->irq_descr, hcd);
413         if (ret) {
414                 xhci_err(xhci, "request interrupt %d failed\n",
415                                 pdev->irq);
416                 return ret;
417         }
418         hcd->irq = pdev->irq;
419         return 0;
420 }
421
422 #else
423
424 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
425 {
426         return 0;
427 }
428
429 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
430 {
431 }
432
433 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
434 {
435 }
436
437 #endif
438
439 static void compliance_mode_recovery(unsigned long arg)
440 {
441         struct xhci_hcd *xhci;
442         struct usb_hcd *hcd;
443         u32 temp;
444         int i;
445
446         xhci = (struct xhci_hcd *)arg;
447
448         for (i = 0; i < xhci->num_usb3_ports; i++) {
449                 temp = readl(xhci->usb3_ports[i]);
450                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
451                         /*
452                          * Compliance Mode Detected. Letting USB Core
453                          * handle the Warm Reset
454                          */
455                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
456                                         "Compliance mode detected->port %d",
457                                         i + 1);
458                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
459                                         "Attempting compliance mode recovery");
460                         hcd = xhci->shared_hcd;
461
462                         if (hcd->state == HC_STATE_SUSPENDED)
463                                 usb_hcd_resume_root_hub(hcd);
464
465                         usb_hcd_poll_rh_status(hcd);
466                 }
467         }
468
469         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
470                 mod_timer(&xhci->comp_mode_recovery_timer,
471                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 }
473
474 /*
475  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
476  * that causes ports behind that hardware to enter compliance mode sometimes.
477  * The quirk creates a timer that polls every 2 seconds the link state of
478  * each host controller's port and recovers it by issuing a Warm reset
479  * if Compliance mode is detected, otherwise the port will become "dead" (no
480  * device connections or disconnections will be detected anymore). Becasue no
481  * status event is generated when entering compliance mode (per xhci spec),
482  * this quirk is needed on systems that have the failing hardware installed.
483  */
484 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
485 {
486         xhci->port_status_u0 = 0;
487         setup_timer(&xhci->comp_mode_recovery_timer,
488                     compliance_mode_recovery, (unsigned long)xhci);
489         xhci->comp_mode_recovery_timer.expires = jiffies +
490                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
491
492         set_timer_slack(&xhci->comp_mode_recovery_timer,
493                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
494         add_timer(&xhci->comp_mode_recovery_timer);
495         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496                         "Compliance mode recovery timer initialized");
497 }
498
499 /*
500  * This function identifies the systems that have installed the SN65LVPE502CP
501  * USB3.0 re-driver and that need the Compliance Mode Quirk.
502  * Systems:
503  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
504  */
505 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
506 {
507         const char *dmi_product_name, *dmi_sys_vendor;
508
509         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
510         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
511         if (!dmi_product_name || !dmi_sys_vendor)
512                 return false;
513
514         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
515                 return false;
516
517         if (strstr(dmi_product_name, "Z420") ||
518                         strstr(dmi_product_name, "Z620") ||
519                         strstr(dmi_product_name, "Z820") ||
520                         strstr(dmi_product_name, "Z1 Workstation"))
521                 return true;
522
523         return false;
524 }
525
526 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
527 {
528         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
529 }
530
531
532 /*
533  * Initialize memory for HCD and xHC (one-time init).
534  *
535  * Program the PAGESIZE register, initialize the device context array, create
536  * device contexts (?), set up a command ring segment (or two?), create event
537  * ring (one for now).
538  */
539 int xhci_init(struct usb_hcd *hcd)
540 {
541         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
542         int retval = 0;
543
544         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
545         spin_lock_init(&xhci->lock);
546         if (xhci->hci_version == 0x95 && link_quirk) {
547                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
548                                 "QUIRK: Not clearing Link TRB chain bits.");
549                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
550         } else {
551                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552                                 "xHCI doesn't need link TRB QUIRK");
553         }
554         retval = xhci_mem_init(xhci, GFP_KERNEL);
555         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
556
557         /* Initializing Compliance Mode Recovery Data If Needed */
558         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
559                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
560                 compliance_mode_recovery_timer_init(xhci);
561         }
562
563         return retval;
564 }
565
566 /*-------------------------------------------------------------------------*/
567
568
569 static int xhci_run_finished(struct xhci_hcd *xhci)
570 {
571         if (xhci_start(xhci)) {
572                 xhci_halt(xhci);
573                 return -ENODEV;
574         }
575         xhci->shared_hcd->state = HC_STATE_RUNNING;
576         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
577
578         if (xhci->quirks & XHCI_NEC_HOST)
579                 xhci_ring_cmd_db(xhci);
580
581         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
582                         "Finished xhci_run for USB3 roothub");
583         return 0;
584 }
585
586 /*
587  * Start the HC after it was halted.
588  *
589  * This function is called by the USB core when the HC driver is added.
590  * Its opposite is xhci_stop().
591  *
592  * xhci_init() must be called once before this function can be called.
593  * Reset the HC, enable device slot contexts, program DCBAAP, and
594  * set command ring pointer and event ring pointer.
595  *
596  * Setup MSI-X vectors and enable interrupts.
597  */
598 int xhci_run(struct usb_hcd *hcd)
599 {
600         u32 temp;
601         u64 temp_64;
602         int ret;
603         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
604
605         /* Start the xHCI host controller running only after the USB 2.0 roothub
606          * is setup.
607          */
608
609         hcd->uses_new_polling = 1;
610         if (!usb_hcd_is_primary_hcd(hcd))
611                 return xhci_run_finished(xhci);
612
613         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
614
615         ret = xhci_try_enable_msi(hcd);
616         if (ret)
617                 return ret;
618
619         xhci_dbg(xhci, "Command ring memory map follows:\n");
620         xhci_debug_ring(xhci, xhci->cmd_ring);
621         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
622         xhci_dbg_cmd_ptrs(xhci);
623
624         xhci_dbg(xhci, "ERST memory map follows:\n");
625         xhci_dbg_erst(xhci, &xhci->erst);
626         xhci_dbg(xhci, "Event ring:\n");
627         xhci_debug_ring(xhci, xhci->event_ring);
628         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
629         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
630         temp_64 &= ~ERST_PTR_MASK;
631         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
632                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
633
634         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635                         "// Set the interrupt modulation register");
636         temp = readl(&xhci->ir_set->irq_control);
637         temp &= ~ER_IRQ_INTERVAL_MASK;
638         temp |= (u32) 160;
639         writel(temp, &xhci->ir_set->irq_control);
640
641         /* Set the HCD state before we enable the irqs */
642         temp = readl(&xhci->op_regs->command);
643         temp |= (CMD_EIE);
644         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
645                         "// Enable interrupts, cmd = 0x%x.", temp);
646         writel(temp, &xhci->op_regs->command);
647
648         temp = readl(&xhci->ir_set->irq_pending);
649         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
650                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
651                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
652         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
653         xhci_print_ir_set(xhci, 0);
654
655         if (xhci->quirks & XHCI_NEC_HOST) {
656                 struct xhci_command *command;
657                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
658                 if (!command)
659                         return -ENOMEM;
660                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
661                                 TRB_TYPE(TRB_NEC_GET_FW));
662         }
663         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664                         "Finished xhci_run for USB2 roothub");
665         return 0;
666 }
667 EXPORT_SYMBOL_GPL(xhci_run);
668
669 /*
670  * Stop xHCI driver.
671  *
672  * This function is called by the USB core when the HC driver is removed.
673  * Its opposite is xhci_run().
674  *
675  * Disable device contexts, disable IRQs, and quiesce the HC.
676  * Reset the HC, finish any completed transactions, and cleanup memory.
677  */
678 void xhci_stop(struct usb_hcd *hcd)
679 {
680         u32 temp;
681         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
682
683         mutex_lock(&xhci->mutex);
684
685         if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
686                 spin_lock_irq(&xhci->lock);
687
688                 xhci->xhc_state |= XHCI_STATE_HALTED;
689                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
690                 xhci_halt(xhci);
691                 xhci_reset(xhci);
692
693                 spin_unlock_irq(&xhci->lock);
694         }
695
696         if (!usb_hcd_is_primary_hcd(hcd)) {
697                 mutex_unlock(&xhci->mutex);
698                 return;
699         }
700
701         xhci_cleanup_msix(xhci);
702
703         /* Deleting Compliance Mode Recovery Timer */
704         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
705                         (!(xhci_all_ports_seen_u0(xhci)))) {
706                 del_timer_sync(&xhci->comp_mode_recovery_timer);
707                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
708                                 "%s: compliance mode recovery timer deleted",
709                                 __func__);
710         }
711
712         if (xhci->quirks & XHCI_AMD_PLL_FIX)
713                 usb_amd_dev_put();
714
715         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
716                         "// Disabling event ring interrupts");
717         temp = readl(&xhci->op_regs->status);
718         writel(temp & ~STS_EINT, &xhci->op_regs->status);
719         temp = readl(&xhci->ir_set->irq_pending);
720         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
721         xhci_print_ir_set(xhci, 0);
722
723         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
724         xhci_mem_cleanup(xhci);
725         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
726                         "xhci_stop completed - status = %x",
727                         readl(&xhci->op_regs->status));
728         mutex_unlock(&xhci->mutex);
729 }
730
731 /*
732  * Shutdown HC (not bus-specific)
733  *
734  * This is called when the machine is rebooting or halting.  We assume that the
735  * machine will be powered off, and the HC's internal state will be reset.
736  * Don't bother to free memory.
737  *
738  * This will only ever be called with the main usb_hcd (the USB3 roothub).
739  */
740 void xhci_shutdown(struct usb_hcd *hcd)
741 {
742         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
743
744         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
745                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
746
747         spin_lock_irq(&xhci->lock);
748         xhci_halt(xhci);
749         /* Workaround for spurious wakeups at shutdown with HSW */
750         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
751                 xhci_reset(xhci);
752         spin_unlock_irq(&xhci->lock);
753
754         xhci_cleanup_msix(xhci);
755
756         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
757                         "xhci_shutdown completed - status = %x",
758                         readl(&xhci->op_regs->status));
759
760         /* Yet another workaround for spurious wakeups at shutdown with HSW */
761         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
762                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
763 }
764
765 #ifdef CONFIG_PM
766 static void xhci_save_registers(struct xhci_hcd *xhci)
767 {
768         xhci->s3.command = readl(&xhci->op_regs->command);
769         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
770         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
771         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
772         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
773         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
774         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
775         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
776         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
777 }
778
779 static void xhci_restore_registers(struct xhci_hcd *xhci)
780 {
781         writel(xhci->s3.command, &xhci->op_regs->command);
782         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
783         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
784         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
785         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
786         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
787         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
788         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
789         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
790 }
791
792 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
793 {
794         u64     val_64;
795
796         /* step 2: initialize command ring buffer */
797         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
798         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
799                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
800                                       xhci->cmd_ring->dequeue) &
801                  (u64) ~CMD_RING_RSVD_BITS) |
802                 xhci->cmd_ring->cycle_state;
803         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
804                         "// Setting command ring address to 0x%llx",
805                         (long unsigned long) val_64);
806         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
807 }
808
809 /*
810  * The whole command ring must be cleared to zero when we suspend the host.
811  *
812  * The host doesn't save the command ring pointer in the suspend well, so we
813  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
814  * aligned, because of the reserved bits in the command ring dequeue pointer
815  * register.  Therefore, we can't just set the dequeue pointer back in the
816  * middle of the ring (TRBs are 16-byte aligned).
817  */
818 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
819 {
820         struct xhci_ring *ring;
821         struct xhci_segment *seg;
822
823         ring = xhci->cmd_ring;
824         seg = ring->deq_seg;
825         do {
826                 memset(seg->trbs, 0,
827                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
828                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
829                         cpu_to_le32(~TRB_CYCLE);
830                 seg = seg->next;
831         } while (seg != ring->deq_seg);
832
833         /* Reset the software enqueue and dequeue pointers */
834         ring->deq_seg = ring->first_seg;
835         ring->dequeue = ring->first_seg->trbs;
836         ring->enq_seg = ring->deq_seg;
837         ring->enqueue = ring->dequeue;
838
839         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
840         /*
841          * Ring is now zeroed, so the HW should look for change of ownership
842          * when the cycle bit is set to 1.
843          */
844         ring->cycle_state = 1;
845
846         /*
847          * Reset the hardware dequeue pointer.
848          * Yes, this will need to be re-written after resume, but we're paranoid
849          * and want to make sure the hardware doesn't access bogus memory
850          * because, say, the BIOS or an SMI started the host without changing
851          * the command ring pointers.
852          */
853         xhci_set_cmd_ring_deq(xhci);
854 }
855
856 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
857 {
858         int port_index;
859         __le32 __iomem **port_array;
860         unsigned long flags;
861         u32 t1, t2;
862
863         spin_lock_irqsave(&xhci->lock, flags);
864
865         /* disble usb3 ports Wake bits*/
866         port_index = xhci->num_usb3_ports;
867         port_array = xhci->usb3_ports;
868         while (port_index--) {
869                 t1 = readl(port_array[port_index]);
870                 t1 = xhci_port_state_to_neutral(t1);
871                 t2 = t1 & ~PORT_WAKE_BITS;
872                 if (t1 != t2)
873                         writel(t2, port_array[port_index]);
874         }
875
876         /* disble usb2 ports Wake bits*/
877         port_index = xhci->num_usb2_ports;
878         port_array = xhci->usb2_ports;
879         while (port_index--) {
880                 t1 = readl(port_array[port_index]);
881                 t1 = xhci_port_state_to_neutral(t1);
882                 t2 = t1 & ~PORT_WAKE_BITS;
883                 if (t1 != t2)
884                         writel(t2, port_array[port_index]);
885         }
886
887         spin_unlock_irqrestore(&xhci->lock, flags);
888 }
889
890 /*
891  * Stop HC (not bus-specific)
892  *
893  * This is called when the machine transition into S3/S4 mode.
894  *
895  */
896 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
897 {
898         int                     rc = 0;
899         unsigned int            delay = XHCI_MAX_HALT_USEC;
900         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
901         u32                     command;
902
903         if (!hcd->state)
904                 return 0;
905
906         if (hcd->state != HC_STATE_SUSPENDED ||
907                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
908                 return -EINVAL;
909
910         /* Clear root port wake on bits if wakeup not allowed. */
911         if (!do_wakeup)
912                 xhci_disable_port_wake_on_bits(xhci);
913
914         /* Don't poll the roothubs on bus suspend. */
915         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
916         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
917         del_timer_sync(&hcd->rh_timer);
918         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
919         del_timer_sync(&xhci->shared_hcd->rh_timer);
920
921         spin_lock_irq(&xhci->lock);
922         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
923         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
924         /* step 1: stop endpoint */
925         /* skipped assuming that port suspend has done */
926
927         /* step 2: clear Run/Stop bit */
928         command = readl(&xhci->op_regs->command);
929         command &= ~CMD_RUN;
930         writel(command, &xhci->op_regs->command);
931
932         /* Some chips from Fresco Logic need an extraordinary delay */
933         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
934
935         if (xhci_handshake(&xhci->op_regs->status,
936                       STS_HALT, STS_HALT, delay)) {
937                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
938                 spin_unlock_irq(&xhci->lock);
939                 return -ETIMEDOUT;
940         }
941         xhci_clear_command_ring(xhci);
942
943         /* step 3: save registers */
944         xhci_save_registers(xhci);
945
946         /* step 4: set CSS flag */
947         command = readl(&xhci->op_regs->command);
948         command |= CMD_CSS;
949         writel(command, &xhci->op_regs->command);
950         if (xhci_handshake(&xhci->op_regs->status,
951                                 STS_SAVE, 0, 10 * 1000)) {
952                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
953                 spin_unlock_irq(&xhci->lock);
954                 return -ETIMEDOUT;
955         }
956         spin_unlock_irq(&xhci->lock);
957
958         /*
959          * Deleting Compliance Mode Recovery Timer because the xHCI Host
960          * is about to be suspended.
961          */
962         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
963                         (!(xhci_all_ports_seen_u0(xhci)))) {
964                 del_timer_sync(&xhci->comp_mode_recovery_timer);
965                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
966                                 "%s: compliance mode recovery timer deleted",
967                                 __func__);
968         }
969
970         /* step 5: remove core well power */
971         /* synchronize irq when using MSI-X */
972         xhci_msix_sync_irqs(xhci);
973
974         return rc;
975 }
976 EXPORT_SYMBOL_GPL(xhci_suspend);
977
978 /*
979  * start xHC (not bus-specific)
980  *
981  * This is called when the machine transition from S3/S4 mode.
982  *
983  */
984 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
985 {
986         u32                     command, temp = 0, status;
987         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
988         struct usb_hcd          *secondary_hcd;
989         int                     retval = 0;
990         bool                    comp_timer_running = false;
991
992         if (!hcd->state)
993                 return 0;
994
995         /* Wait a bit if either of the roothubs need to settle from the
996          * transition into bus suspend.
997          */
998         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
999                         time_before(jiffies,
1000                                 xhci->bus_state[1].next_statechange))
1001                 msleep(100);
1002
1003         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1004         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1005
1006         spin_lock_irq(&xhci->lock);
1007         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1008                 hibernated = true;
1009
1010         if (!hibernated) {
1011                 /* step 1: restore register */
1012                 xhci_restore_registers(xhci);
1013                 /* step 2: initialize command ring buffer */
1014                 xhci_set_cmd_ring_deq(xhci);
1015                 /* step 3: restore state and start state*/
1016                 /* step 3: set CRS flag */
1017                 command = readl(&xhci->op_regs->command);
1018                 command |= CMD_CRS;
1019                 writel(command, &xhci->op_regs->command);
1020                 if (xhci_handshake(&xhci->op_regs->status,
1021                               STS_RESTORE, 0, 10 * 1000)) {
1022                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1023                         spin_unlock_irq(&xhci->lock);
1024                         return -ETIMEDOUT;
1025                 }
1026                 temp = readl(&xhci->op_regs->status);
1027         }
1028
1029         /* If restore operation fails, re-initialize the HC during resume */
1030         if ((temp & STS_SRE) || hibernated) {
1031
1032                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1033                                 !(xhci_all_ports_seen_u0(xhci))) {
1034                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1035                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1036                                 "Compliance Mode Recovery Timer deleted!");
1037                 }
1038
1039                 /* Let the USB core know _both_ roothubs lost power. */
1040                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1041                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1042
1043                 xhci_dbg(xhci, "Stop HCD\n");
1044                 xhci_halt(xhci);
1045                 xhci_reset(xhci);
1046                 spin_unlock_irq(&xhci->lock);
1047                 xhci_cleanup_msix(xhci);
1048
1049                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1050                 temp = readl(&xhci->op_regs->status);
1051                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1052                 temp = readl(&xhci->ir_set->irq_pending);
1053                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1054                 xhci_print_ir_set(xhci, 0);
1055
1056                 xhci_dbg(xhci, "cleaning up memory\n");
1057                 xhci_mem_cleanup(xhci);
1058                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1059                             readl(&xhci->op_regs->status));
1060
1061                 /* USB core calls the PCI reinit and start functions twice:
1062                  * first with the primary HCD, and then with the secondary HCD.
1063                  * If we don't do the same, the host will never be started.
1064                  */
1065                 if (!usb_hcd_is_primary_hcd(hcd))
1066                         secondary_hcd = hcd;
1067                 else
1068                         secondary_hcd = xhci->shared_hcd;
1069
1070                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1071                 retval = xhci_init(hcd->primary_hcd);
1072                 if (retval)
1073                         return retval;
1074                 comp_timer_running = true;
1075
1076                 xhci_dbg(xhci, "Start the primary HCD\n");
1077                 retval = xhci_run(hcd->primary_hcd);
1078                 if (!retval) {
1079                         xhci_dbg(xhci, "Start the secondary HCD\n");
1080                         retval = xhci_run(secondary_hcd);
1081                 }
1082                 hcd->state = HC_STATE_SUSPENDED;
1083                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1084                 goto done;
1085         }
1086
1087         /* step 4: set Run/Stop bit */
1088         command = readl(&xhci->op_regs->command);
1089         command |= CMD_RUN;
1090         writel(command, &xhci->op_regs->command);
1091         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1092                   0, 250 * 1000);
1093
1094         /* step 5: walk topology and initialize portsc,
1095          * portpmsc and portli
1096          */
1097         /* this is done in bus_resume */
1098
1099         /* step 6: restart each of the previously
1100          * Running endpoints by ringing their doorbells
1101          */
1102
1103         spin_unlock_irq(&xhci->lock);
1104
1105  done:
1106         if (retval == 0) {
1107                 /* Resume root hubs only when have pending events. */
1108                 status = readl(&xhci->op_regs->status);
1109                 if (status & STS_EINT) {
1110                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1111                         usb_hcd_resume_root_hub(hcd);
1112                 }
1113         }
1114
1115         /*
1116          * If system is subject to the Quirk, Compliance Mode Timer needs to
1117          * be re-initialized Always after a system resume. Ports are subject
1118          * to suffer the Compliance Mode issue again. It doesn't matter if
1119          * ports have entered previously to U0 before system's suspension.
1120          */
1121         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1122                 compliance_mode_recovery_timer_init(xhci);
1123
1124         /* Re-enable port polling. */
1125         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1126         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1127         usb_hcd_poll_rh_status(xhci->shared_hcd);
1128         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1129         usb_hcd_poll_rh_status(hcd);
1130
1131         return retval;
1132 }
1133 EXPORT_SYMBOL_GPL(xhci_resume);
1134 #endif  /* CONFIG_PM */
1135
1136 /*-------------------------------------------------------------------------*/
1137
1138 /**
1139  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1140  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1141  * value to right shift 1 for the bitmask.
1142  *
1143  * Index  = (epnum * 2) + direction - 1,
1144  * where direction = 0 for OUT, 1 for IN.
1145  * For control endpoints, the IN index is used (OUT index is unused), so
1146  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1147  */
1148 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1149 {
1150         unsigned int index;
1151         if (usb_endpoint_xfer_control(desc))
1152                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1153         else
1154                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1155                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1156         return index;
1157 }
1158
1159 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1160  * address from the XHCI endpoint index.
1161  */
1162 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1163 {
1164         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1165         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1166         return direction | number;
1167 }
1168
1169 /* Find the flag for this endpoint (for use in the control context).  Use the
1170  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1171  * bit 1, etc.
1172  */
1173 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1174 {
1175         return 1 << (xhci_get_endpoint_index(desc) + 1);
1176 }
1177
1178 /* Find the flag for this endpoint (for use in the control context).  Use the
1179  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1180  * bit 1, etc.
1181  */
1182 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1183 {
1184         return 1 << (ep_index + 1);
1185 }
1186
1187 /* Compute the last valid endpoint context index.  Basically, this is the
1188  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1189  * we find the most significant bit set in the added contexts flags.
1190  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1191  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1192  */
1193 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1194 {
1195         return fls(added_ctxs) - 1;
1196 }
1197
1198 /* Returns 1 if the arguments are OK;
1199  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1200  */
1201 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1202                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1203                 const char *func) {
1204         struct xhci_hcd *xhci;
1205         struct xhci_virt_device *virt_dev;
1206
1207         if (!hcd || (check_ep && !ep) || !udev) {
1208                 pr_debug("xHCI %s called with invalid args\n", func);
1209                 return -EINVAL;
1210         }
1211         if (!udev->parent) {
1212                 pr_debug("xHCI %s called for root hub\n", func);
1213                 return 0;
1214         }
1215
1216         xhci = hcd_to_xhci(hcd);
1217         if (check_virt_dev) {
1218                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1219                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1220                                         func);
1221                         return -EINVAL;
1222                 }
1223
1224                 virt_dev = xhci->devs[udev->slot_id];
1225                 if (virt_dev->udev != udev) {
1226                         xhci_dbg(xhci, "xHCI %s called with udev and "
1227                                           "virt_dev does not match\n", func);
1228                         return -EINVAL;
1229                 }
1230         }
1231
1232         if (xhci->xhc_state & XHCI_STATE_HALTED)
1233                 return -ENODEV;
1234
1235         return 1;
1236 }
1237
1238 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1239                 struct usb_device *udev, struct xhci_command *command,
1240                 bool ctx_change, bool must_succeed);
1241
1242 /*
1243  * Full speed devices may have a max packet size greater than 8 bytes, but the
1244  * USB core doesn't know that until it reads the first 8 bytes of the
1245  * descriptor.  If the usb_device's max packet size changes after that point,
1246  * we need to issue an evaluate context command and wait on it.
1247  */
1248 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1249                 unsigned int ep_index, struct urb *urb)
1250 {
1251         struct xhci_container_ctx *out_ctx;
1252         struct xhci_input_control_ctx *ctrl_ctx;
1253         struct xhci_ep_ctx *ep_ctx;
1254         struct xhci_command *command;
1255         int max_packet_size;
1256         int hw_max_packet_size;
1257         int ret = 0;
1258
1259         out_ctx = xhci->devs[slot_id]->out_ctx;
1260         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1261         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1262         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1263         if (hw_max_packet_size != max_packet_size) {
1264                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1265                                 "Max Packet Size for ep 0 changed.");
1266                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1267                                 "Max packet size in usb_device = %d",
1268                                 max_packet_size);
1269                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1270                                 "Max packet size in xHCI HW = %d",
1271                                 hw_max_packet_size);
1272                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1273                                 "Issuing evaluate context command.");
1274
1275                 /* Set up the input context flags for the command */
1276                 /* FIXME: This won't work if a non-default control endpoint
1277                  * changes max packet sizes.
1278                  */
1279
1280                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1281                 if (!command)
1282                         return -ENOMEM;
1283
1284                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1285                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1286                 if (!ctrl_ctx) {
1287                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1288                                         __func__);
1289                         ret = -ENOMEM;
1290                         goto command_cleanup;
1291                 }
1292                 /* Set up the modified control endpoint 0 */
1293                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1294                                 xhci->devs[slot_id]->out_ctx, ep_index);
1295
1296                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1297                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1298                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1299
1300                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1301                 ctrl_ctx->drop_flags = 0;
1302
1303                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1304                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1305                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1306                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1307
1308                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1309                                 true, false);
1310
1311                 /* Clean up the input context for later use by bandwidth
1312                  * functions.
1313                  */
1314                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1315 command_cleanup:
1316                 kfree(command->completion);
1317                 kfree(command);
1318         }
1319         return ret;
1320 }
1321
1322 /*
1323  * non-error returns are a promise to giveback() the urb later
1324  * we drop ownership so next owner (or urb unlink) can get it
1325  */
1326 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1327 {
1328         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1329         struct xhci_td *buffer;
1330         unsigned long flags;
1331         int ret = 0;
1332         unsigned int slot_id, ep_index;
1333         struct urb_priv *urb_priv;
1334         int size, i;
1335
1336         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1337                                         true, true, __func__) <= 0)
1338                 return -EINVAL;
1339
1340         slot_id = urb->dev->slot_id;
1341         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1342
1343         if (!HCD_HW_ACCESSIBLE(hcd)) {
1344                 if (!in_interrupt())
1345                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1346                 ret = -ESHUTDOWN;
1347                 goto exit;
1348         }
1349
1350         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1351                 size = urb->number_of_packets;
1352         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1353             urb->transfer_buffer_length > 0 &&
1354             urb->transfer_flags & URB_ZERO_PACKET &&
1355             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1356                 size = 2;
1357         else
1358                 size = 1;
1359
1360         urb_priv = kzalloc(sizeof(struct urb_priv) +
1361                                   size * sizeof(struct xhci_td *), mem_flags);
1362         if (!urb_priv)
1363                 return -ENOMEM;
1364
1365         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1366         if (!buffer) {
1367                 kfree(urb_priv);
1368                 return -ENOMEM;
1369         }
1370
1371         for (i = 0; i < size; i++) {
1372                 urb_priv->td[i] = buffer;
1373                 buffer++;
1374         }
1375
1376         urb_priv->length = size;
1377         urb_priv->td_cnt = 0;
1378         urb->hcpriv = urb_priv;
1379
1380         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1381                 /* Check to see if the max packet size for the default control
1382                  * endpoint changed during FS device enumeration
1383                  */
1384                 if (urb->dev->speed == USB_SPEED_FULL) {
1385                         ret = xhci_check_maxpacket(xhci, slot_id,
1386                                         ep_index, urb);
1387                         if (ret < 0) {
1388                                 xhci_urb_free_priv(urb_priv);
1389                                 urb->hcpriv = NULL;
1390                                 return ret;
1391                         }
1392                 }
1393
1394                 /* We have a spinlock and interrupts disabled, so we must pass
1395                  * atomic context to this function, which may allocate memory.
1396                  */
1397                 spin_lock_irqsave(&xhci->lock, flags);
1398                 if (xhci->xhc_state & XHCI_STATE_DYING)
1399                         goto dying;
1400                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1401                                 slot_id, ep_index);
1402                 if (ret)
1403                         goto free_priv;
1404                 spin_unlock_irqrestore(&xhci->lock, flags);
1405         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1406                 spin_lock_irqsave(&xhci->lock, flags);
1407                 if (xhci->xhc_state & XHCI_STATE_DYING)
1408                         goto dying;
1409                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1410                                 EP_GETTING_STREAMS) {
1411                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1412                                         "is transitioning to using streams.\n");
1413                         ret = -EINVAL;
1414                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1415                                 EP_GETTING_NO_STREAMS) {
1416                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1417                                         "is transitioning to "
1418                                         "not having streams.\n");
1419                         ret = -EINVAL;
1420                 } else {
1421                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1422                                         slot_id, ep_index);
1423                 }
1424                 if (ret)
1425                         goto free_priv;
1426                 spin_unlock_irqrestore(&xhci->lock, flags);
1427         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1428                 spin_lock_irqsave(&xhci->lock, flags);
1429                 if (xhci->xhc_state & XHCI_STATE_DYING)
1430                         goto dying;
1431                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1432                                 slot_id, ep_index);
1433                 if (ret)
1434                         goto free_priv;
1435                 spin_unlock_irqrestore(&xhci->lock, flags);
1436         } else {
1437                 spin_lock_irqsave(&xhci->lock, flags);
1438                 if (xhci->xhc_state & XHCI_STATE_DYING)
1439                         goto dying;
1440                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1441                                 slot_id, ep_index);
1442                 if (ret)
1443                         goto free_priv;
1444                 spin_unlock_irqrestore(&xhci->lock, flags);
1445         }
1446 exit:
1447         return ret;
1448 dying:
1449         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1450                         "non-responsive xHCI host.\n",
1451                         urb->ep->desc.bEndpointAddress, urb);
1452         ret = -ESHUTDOWN;
1453 free_priv:
1454         xhci_urb_free_priv(urb_priv);
1455         urb->hcpriv = NULL;
1456         spin_unlock_irqrestore(&xhci->lock, flags);
1457         return ret;
1458 }
1459
1460 /* Get the right ring for the given URB.
1461  * If the endpoint supports streams, boundary check the URB's stream ID.
1462  * If the endpoint doesn't support streams, return the singular endpoint ring.
1463  */
1464 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1465                 struct urb *urb)
1466 {
1467         unsigned int slot_id;
1468         unsigned int ep_index;
1469         unsigned int stream_id;
1470         struct xhci_virt_ep *ep;
1471
1472         slot_id = urb->dev->slot_id;
1473         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1474         stream_id = urb->stream_id;
1475         ep = &xhci->devs[slot_id]->eps[ep_index];
1476         /* Common case: no streams */
1477         if (!(ep->ep_state & EP_HAS_STREAMS))
1478                 return ep->ring;
1479
1480         if (stream_id == 0) {
1481                 xhci_warn(xhci,
1482                                 "WARN: Slot ID %u, ep index %u has streams, "
1483                                 "but URB has no stream ID.\n",
1484                                 slot_id, ep_index);
1485                 return NULL;
1486         }
1487
1488         if (stream_id < ep->stream_info->num_streams)
1489                 return ep->stream_info->stream_rings[stream_id];
1490
1491         xhci_warn(xhci,
1492                         "WARN: Slot ID %u, ep index %u has "
1493                         "stream IDs 1 to %u allocated, "
1494                         "but stream ID %u is requested.\n",
1495                         slot_id, ep_index,
1496                         ep->stream_info->num_streams - 1,
1497                         stream_id);
1498         return NULL;
1499 }
1500
1501 /*
1502  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1503  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1504  * should pick up where it left off in the TD, unless a Set Transfer Ring
1505  * Dequeue Pointer is issued.
1506  *
1507  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1508  * the ring.  Since the ring is a contiguous structure, they can't be physically
1509  * removed.  Instead, there are two options:
1510  *
1511  *  1) If the HC is in the middle of processing the URB to be canceled, we
1512  *     simply move the ring's dequeue pointer past those TRBs using the Set
1513  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1514  *     when drivers timeout on the last submitted URB and attempt to cancel.
1515  *
1516  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1517  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1518  *     HC will need to invalidate the any TRBs it has cached after the stop
1519  *     endpoint command, as noted in the xHCI 0.95 errata.
1520  *
1521  *  3) The TD may have completed by the time the Stop Endpoint Command
1522  *     completes, so software needs to handle that case too.
1523  *
1524  * This function should protect against the TD enqueueing code ringing the
1525  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1526  * It also needs to account for multiple cancellations on happening at the same
1527  * time for the same endpoint.
1528  *
1529  * Note that this function can be called in any context, or so says
1530  * usb_hcd_unlink_urb()
1531  */
1532 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1533 {
1534         unsigned long flags;
1535         int ret, i;
1536         u32 temp;
1537         struct xhci_hcd *xhci;
1538         struct urb_priv *urb_priv;
1539         struct xhci_td *td;
1540         unsigned int ep_index;
1541         struct xhci_ring *ep_ring;
1542         struct xhci_virt_ep *ep;
1543         struct xhci_command *command;
1544
1545         xhci = hcd_to_xhci(hcd);
1546         spin_lock_irqsave(&xhci->lock, flags);
1547         /* Make sure the URB hasn't completed or been unlinked already */
1548         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1549         if (ret || !urb->hcpriv)
1550                 goto done;
1551         temp = readl(&xhci->op_regs->status);
1552         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1553                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1554                                 "HW died, freeing TD.");
1555                 urb_priv = urb->hcpriv;
1556                 for (i = urb_priv->td_cnt;
1557                      i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1558                      i++) {
1559                         td = urb_priv->td[i];
1560                         if (!list_empty(&td->td_list))
1561                                 list_del_init(&td->td_list);
1562                         if (!list_empty(&td->cancelled_td_list))
1563                                 list_del_init(&td->cancelled_td_list);
1564                 }
1565
1566                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1567                 spin_unlock_irqrestore(&xhci->lock, flags);
1568                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1569                 xhci_urb_free_priv(urb_priv);
1570                 return ret;
1571         }
1572
1573         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1574         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1575         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1576         if (!ep_ring) {
1577                 ret = -EINVAL;
1578                 goto done;
1579         }
1580
1581         urb_priv = urb->hcpriv;
1582         i = urb_priv->td_cnt;
1583         if (i < urb_priv->length)
1584                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1585                                 "Cancel URB %p, dev %s, ep 0x%x, "
1586                                 "starting at offset 0x%llx",
1587                                 urb, urb->dev->devpath,
1588                                 urb->ep->desc.bEndpointAddress,
1589                                 (unsigned long long) xhci_trb_virt_to_dma(
1590                                         urb_priv->td[i]->start_seg,
1591                                         urb_priv->td[i]->first_trb));
1592
1593         for (; i < urb_priv->length; i++) {
1594                 td = urb_priv->td[i];
1595                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1596         }
1597
1598         /* Queue a stop endpoint command, but only if this is
1599          * the first cancellation to be handled.
1600          */
1601         if (!(ep->ep_state & EP_HALT_PENDING)) {
1602                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1603                 if (!command) {
1604                         ret = -ENOMEM;
1605                         goto done;
1606                 }
1607                 ep->ep_state |= EP_HALT_PENDING;
1608                 ep->stop_cmds_pending++;
1609                 ep->stop_cmd_timer.expires = jiffies +
1610                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1611                 add_timer(&ep->stop_cmd_timer);
1612                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1613                                          ep_index, 0);
1614                 xhci_ring_cmd_db(xhci);
1615         }
1616 done:
1617         spin_unlock_irqrestore(&xhci->lock, flags);
1618         return ret;
1619 }
1620
1621 /* Drop an endpoint from a new bandwidth configuration for this device.
1622  * Only one call to this function is allowed per endpoint before
1623  * check_bandwidth() or reset_bandwidth() must be called.
1624  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1625  * add the endpoint to the schedule with possibly new parameters denoted by a
1626  * different endpoint descriptor in usb_host_endpoint.
1627  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1628  * not allowed.
1629  *
1630  * The USB core will not allow URBs to be queued to an endpoint that is being
1631  * disabled, so there's no need for mutual exclusion to protect
1632  * the xhci->devs[slot_id] structure.
1633  */
1634 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1635                 struct usb_host_endpoint *ep)
1636 {
1637         struct xhci_hcd *xhci;
1638         struct xhci_container_ctx *in_ctx, *out_ctx;
1639         struct xhci_input_control_ctx *ctrl_ctx;
1640         unsigned int ep_index;
1641         struct xhci_ep_ctx *ep_ctx;
1642         u32 drop_flag;
1643         u32 new_add_flags, new_drop_flags;
1644         int ret;
1645
1646         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1647         if (ret <= 0)
1648                 return ret;
1649         xhci = hcd_to_xhci(hcd);
1650         if (xhci->xhc_state & XHCI_STATE_DYING)
1651                 return -ENODEV;
1652
1653         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1654         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1655         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1656                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1657                                 __func__, drop_flag);
1658                 return 0;
1659         }
1660
1661         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1662         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1663         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1664         if (!ctrl_ctx) {
1665                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1666                                 __func__);
1667                 return 0;
1668         }
1669
1670         ep_index = xhci_get_endpoint_index(&ep->desc);
1671         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1672         /* If the HC already knows the endpoint is disabled,
1673          * or the HCD has noted it is disabled, ignore this request
1674          */
1675         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1676              cpu_to_le32(EP_STATE_DISABLED)) ||
1677             le32_to_cpu(ctrl_ctx->drop_flags) &
1678             xhci_get_endpoint_flag(&ep->desc)) {
1679                 /* Do not warn when called after a usb_device_reset */
1680                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1681                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1682                                   __func__, ep);
1683                 return 0;
1684         }
1685
1686         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1687         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1688
1689         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1690         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1691
1692         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1693
1694         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1695                         (unsigned int) ep->desc.bEndpointAddress,
1696                         udev->slot_id,
1697                         (unsigned int) new_drop_flags,
1698                         (unsigned int) new_add_flags);
1699         return 0;
1700 }
1701
1702 /* Add an endpoint to a new possible bandwidth configuration for this device.
1703  * Only one call to this function is allowed per endpoint before
1704  * check_bandwidth() or reset_bandwidth() must be called.
1705  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1706  * add the endpoint to the schedule with possibly new parameters denoted by a
1707  * different endpoint descriptor in usb_host_endpoint.
1708  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1709  * not allowed.
1710  *
1711  * The USB core will not allow URBs to be queued to an endpoint until the
1712  * configuration or alt setting is installed in the device, so there's no need
1713  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1714  */
1715 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1716                 struct usb_host_endpoint *ep)
1717 {
1718         struct xhci_hcd *xhci;
1719         struct xhci_container_ctx *in_ctx;
1720         unsigned int ep_index;
1721         struct xhci_input_control_ctx *ctrl_ctx;
1722         u32 added_ctxs;
1723         u32 new_add_flags, new_drop_flags;
1724         struct xhci_virt_device *virt_dev;
1725         int ret = 0;
1726
1727         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1728         if (ret <= 0) {
1729                 /* So we won't queue a reset ep command for a root hub */
1730                 ep->hcpriv = NULL;
1731                 return ret;
1732         }
1733         xhci = hcd_to_xhci(hcd);
1734         if (xhci->xhc_state & XHCI_STATE_DYING)
1735                 return -ENODEV;
1736
1737         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1738         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1739                 /* FIXME when we have to issue an evaluate endpoint command to
1740                  * deal with ep0 max packet size changing once we get the
1741                  * descriptors
1742                  */
1743                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1744                                 __func__, added_ctxs);
1745                 return 0;
1746         }
1747
1748         virt_dev = xhci->devs[udev->slot_id];
1749         in_ctx = virt_dev->in_ctx;
1750         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1751         if (!ctrl_ctx) {
1752                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1753                                 __func__);
1754                 return 0;
1755         }
1756
1757         ep_index = xhci_get_endpoint_index(&ep->desc);
1758         /* If this endpoint is already in use, and the upper layers are trying
1759          * to add it again without dropping it, reject the addition.
1760          */
1761         if (virt_dev->eps[ep_index].ring &&
1762                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1763                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1764                                 "without dropping it.\n",
1765                                 (unsigned int) ep->desc.bEndpointAddress);
1766                 return -EINVAL;
1767         }
1768
1769         /* If the HCD has already noted the endpoint is enabled,
1770          * ignore this request.
1771          */
1772         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1773                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1774                                 __func__, ep);
1775                 return 0;
1776         }
1777
1778         /*
1779          * Configuration and alternate setting changes must be done in
1780          * process context, not interrupt context (or so documenation
1781          * for usb_set_interface() and usb_set_configuration() claim).
1782          */
1783         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1784                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1785                                 __func__, ep->desc.bEndpointAddress);
1786                 return -ENOMEM;
1787         }
1788
1789         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1790         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1791
1792         /* If xhci_endpoint_disable() was called for this endpoint, but the
1793          * xHC hasn't been notified yet through the check_bandwidth() call,
1794          * this re-adds a new state for the endpoint from the new endpoint
1795          * descriptors.  We must drop and re-add this endpoint, so we leave the
1796          * drop flags alone.
1797          */
1798         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1799
1800         /* Store the usb_device pointer for later use */
1801         ep->hcpriv = udev;
1802
1803         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1804                         (unsigned int) ep->desc.bEndpointAddress,
1805                         udev->slot_id,
1806                         (unsigned int) new_drop_flags,
1807                         (unsigned int) new_add_flags);
1808         return 0;
1809 }
1810
1811 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1812 {
1813         struct xhci_input_control_ctx *ctrl_ctx;
1814         struct xhci_ep_ctx *ep_ctx;
1815         struct xhci_slot_ctx *slot_ctx;
1816         int i;
1817
1818         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1819         if (!ctrl_ctx) {
1820                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1821                                 __func__);
1822                 return;
1823         }
1824
1825         /* When a device's add flag and drop flag are zero, any subsequent
1826          * configure endpoint command will leave that endpoint's state
1827          * untouched.  Make sure we don't leave any old state in the input
1828          * endpoint contexts.
1829          */
1830         ctrl_ctx->drop_flags = 0;
1831         ctrl_ctx->add_flags = 0;
1832         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1833         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1834         /* Endpoint 0 is always valid */
1835         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1836         for (i = 1; i < 31; ++i) {
1837                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1838                 ep_ctx->ep_info = 0;
1839                 ep_ctx->ep_info2 = 0;
1840                 ep_ctx->deq = 0;
1841                 ep_ctx->tx_info = 0;
1842         }
1843 }
1844
1845 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1846                 struct usb_device *udev, u32 *cmd_status)
1847 {
1848         int ret;
1849
1850         switch (*cmd_status) {
1851         case COMP_CMD_ABORT:
1852         case COMP_CMD_STOP:
1853                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1854                 ret = -ETIME;
1855                 break;
1856         case COMP_ENOMEM:
1857                 dev_warn(&udev->dev,
1858                          "Not enough host controller resources for new device state.\n");
1859                 ret = -ENOMEM;
1860                 /* FIXME: can we allocate more resources for the HC? */
1861                 break;
1862         case COMP_BW_ERR:
1863         case COMP_2ND_BW_ERR:
1864                 dev_warn(&udev->dev,
1865                          "Not enough bandwidth for new device state.\n");
1866                 ret = -ENOSPC;
1867                 /* FIXME: can we go back to the old state? */
1868                 break;
1869         case COMP_TRB_ERR:
1870                 /* the HCD set up something wrong */
1871                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1872                                 "add flag = 1, "
1873                                 "and endpoint is not disabled.\n");
1874                 ret = -EINVAL;
1875                 break;
1876         case COMP_DEV_ERR:
1877                 dev_warn(&udev->dev,
1878                          "ERROR: Incompatible device for endpoint configure command.\n");
1879                 ret = -ENODEV;
1880                 break;
1881         case COMP_SUCCESS:
1882                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1883                                 "Successful Endpoint Configure command");
1884                 ret = 0;
1885                 break;
1886         default:
1887                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1888                                 *cmd_status);
1889                 ret = -EINVAL;
1890                 break;
1891         }
1892         return ret;
1893 }
1894
1895 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1896                 struct usb_device *udev, u32 *cmd_status)
1897 {
1898         int ret;
1899         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1900
1901         switch (*cmd_status) {
1902         case COMP_CMD_ABORT:
1903         case COMP_CMD_STOP:
1904                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1905                 ret = -ETIME;
1906                 break;
1907         case COMP_EINVAL:
1908                 dev_warn(&udev->dev,
1909                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1910                 ret = -EINVAL;
1911                 break;
1912         case COMP_EBADSLT:
1913                 dev_warn(&udev->dev,
1914                         "WARN: slot not enabled for evaluate context command.\n");
1915                 ret = -EINVAL;
1916                 break;
1917         case COMP_CTX_STATE:
1918                 dev_warn(&udev->dev,
1919                         "WARN: invalid context state for evaluate context command.\n");
1920                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1921                 ret = -EINVAL;
1922                 break;
1923         case COMP_DEV_ERR:
1924                 dev_warn(&udev->dev,
1925                         "ERROR: Incompatible device for evaluate context command.\n");
1926                 ret = -ENODEV;
1927                 break;
1928         case COMP_MEL_ERR:
1929                 /* Max Exit Latency too large error */
1930                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1931                 ret = -EINVAL;
1932                 break;
1933         case COMP_SUCCESS:
1934                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1935                                 "Successful evaluate context command");
1936                 ret = 0;
1937                 break;
1938         default:
1939                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1940                         *cmd_status);
1941                 ret = -EINVAL;
1942                 break;
1943         }
1944         return ret;
1945 }
1946
1947 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1948                 struct xhci_input_control_ctx *ctrl_ctx)
1949 {
1950         u32 valid_add_flags;
1951         u32 valid_drop_flags;
1952
1953         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1954          * (bit 1).  The default control endpoint is added during the Address
1955          * Device command and is never removed until the slot is disabled.
1956          */
1957         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1958         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1959
1960         /* Use hweight32 to count the number of ones in the add flags, or
1961          * number of endpoints added.  Don't count endpoints that are changed
1962          * (both added and dropped).
1963          */
1964         return hweight32(valid_add_flags) -
1965                 hweight32(valid_add_flags & valid_drop_flags);
1966 }
1967
1968 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1969                 struct xhci_input_control_ctx *ctrl_ctx)
1970 {
1971         u32 valid_add_flags;
1972         u32 valid_drop_flags;
1973
1974         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1975         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1976
1977         return hweight32(valid_drop_flags) -
1978                 hweight32(valid_add_flags & valid_drop_flags);
1979 }
1980
1981 /*
1982  * We need to reserve the new number of endpoints before the configure endpoint
1983  * command completes.  We can't subtract the dropped endpoints from the number
1984  * of active endpoints until the command completes because we can oversubscribe
1985  * the host in this case:
1986  *
1987  *  - the first configure endpoint command drops more endpoints than it adds
1988  *  - a second configure endpoint command that adds more endpoints is queued
1989  *  - the first configure endpoint command fails, so the config is unchanged
1990  *  - the second command may succeed, even though there isn't enough resources
1991  *
1992  * Must be called with xhci->lock held.
1993  */
1994 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1995                 struct xhci_input_control_ctx *ctrl_ctx)
1996 {
1997         u32 added_eps;
1998
1999         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2000         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2001                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2002                                 "Not enough ep ctxs: "
2003                                 "%u active, need to add %u, limit is %u.",
2004                                 xhci->num_active_eps, added_eps,
2005                                 xhci->limit_active_eps);
2006                 return -ENOMEM;
2007         }
2008         xhci->num_active_eps += added_eps;
2009         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2010                         "Adding %u ep ctxs, %u now active.", added_eps,
2011                         xhci->num_active_eps);
2012         return 0;
2013 }
2014
2015 /*
2016  * The configure endpoint was failed by the xHC for some other reason, so we
2017  * need to revert the resources that failed configuration would have used.
2018  *
2019  * Must be called with xhci->lock held.
2020  */
2021 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2022                 struct xhci_input_control_ctx *ctrl_ctx)
2023 {
2024         u32 num_failed_eps;
2025
2026         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2027         xhci->num_active_eps -= num_failed_eps;
2028         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2029                         "Removing %u failed ep ctxs, %u now active.",
2030                         num_failed_eps,
2031                         xhci->num_active_eps);
2032 }
2033
2034 /*
2035  * Now that the command has completed, clean up the active endpoint count by
2036  * subtracting out the endpoints that were dropped (but not changed).
2037  *
2038  * Must be called with xhci->lock held.
2039  */
2040 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2041                 struct xhci_input_control_ctx *ctrl_ctx)
2042 {
2043         u32 num_dropped_eps;
2044
2045         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2046         xhci->num_active_eps -= num_dropped_eps;
2047         if (num_dropped_eps)
2048                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2049                                 "Removing %u dropped ep ctxs, %u now active.",
2050                                 num_dropped_eps,
2051                                 xhci->num_active_eps);
2052 }
2053
2054 static unsigned int xhci_get_block_size(struct usb_device *udev)
2055 {
2056         switch (udev->speed) {
2057         case USB_SPEED_LOW:
2058         case USB_SPEED_FULL:
2059                 return FS_BLOCK;
2060         case USB_SPEED_HIGH:
2061                 return HS_BLOCK;
2062         case USB_SPEED_SUPER:
2063         case USB_SPEED_SUPER_PLUS:
2064                 return SS_BLOCK;
2065         case USB_SPEED_UNKNOWN:
2066         case USB_SPEED_WIRELESS:
2067         default:
2068                 /* Should never happen */
2069                 return 1;
2070         }
2071 }
2072
2073 static unsigned int
2074 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2075 {
2076         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2077                 return LS_OVERHEAD;
2078         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2079                 return FS_OVERHEAD;
2080         return HS_OVERHEAD;
2081 }
2082
2083 /* If we are changing a LS/FS device under a HS hub,
2084  * make sure (if we are activating a new TT) that the HS bus has enough
2085  * bandwidth for this new TT.
2086  */
2087 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2088                 struct xhci_virt_device *virt_dev,
2089                 int old_active_eps)
2090 {
2091         struct xhci_interval_bw_table *bw_table;
2092         struct xhci_tt_bw_info *tt_info;
2093
2094         /* Find the bandwidth table for the root port this TT is attached to. */
2095         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2096         tt_info = virt_dev->tt_info;
2097         /* If this TT already had active endpoints, the bandwidth for this TT
2098          * has already been added.  Removing all periodic endpoints (and thus
2099          * making the TT enactive) will only decrease the bandwidth used.
2100          */
2101         if (old_active_eps)
2102                 return 0;
2103         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2104                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2105                         return -ENOMEM;
2106                 return 0;
2107         }
2108         /* Not sure why we would have no new active endpoints...
2109          *
2110          * Maybe because of an Evaluate Context change for a hub update or a
2111          * control endpoint 0 max packet size change?
2112          * FIXME: skip the bandwidth calculation in that case.
2113          */
2114         return 0;
2115 }
2116
2117 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2118                 struct xhci_virt_device *virt_dev)
2119 {
2120         unsigned int bw_reserved;
2121
2122         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2123         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2124                 return -ENOMEM;
2125
2126         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2127         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2128                 return -ENOMEM;
2129
2130         return 0;
2131 }
2132
2133 /*
2134  * This algorithm is a very conservative estimate of the worst-case scheduling
2135  * scenario for any one interval.  The hardware dynamically schedules the
2136  * packets, so we can't tell which microframe could be the limiting factor in
2137  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2138  *
2139  * Obviously, we can't solve an NP complete problem to find the minimum worst
2140  * case scenario.  Instead, we come up with an estimate that is no less than
2141  * the worst case bandwidth used for any one microframe, but may be an
2142  * over-estimate.
2143  *
2144  * We walk the requirements for each endpoint by interval, starting with the
2145  * smallest interval, and place packets in the schedule where there is only one
2146  * possible way to schedule packets for that interval.  In order to simplify
2147  * this algorithm, we record the largest max packet size for each interval, and
2148  * assume all packets will be that size.
2149  *
2150  * For interval 0, we obviously must schedule all packets for each interval.
2151  * The bandwidth for interval 0 is just the amount of data to be transmitted
2152  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2153  * the number of packets).
2154  *
2155  * For interval 1, we have two possible microframes to schedule those packets
2156  * in.  For this algorithm, if we can schedule the same number of packets for
2157  * each possible scheduling opportunity (each microframe), we will do so.  The
2158  * remaining number of packets will be saved to be transmitted in the gaps in
2159  * the next interval's scheduling sequence.
2160  *
2161  * As we move those remaining packets to be scheduled with interval 2 packets,
2162  * we have to double the number of remaining packets to transmit.  This is
2163  * because the intervals are actually powers of 2, and we would be transmitting
2164  * the previous interval's packets twice in this interval.  We also have to be
2165  * sure that when we look at the largest max packet size for this interval, we
2166  * also look at the largest max packet size for the remaining packets and take
2167  * the greater of the two.
2168  *
2169  * The algorithm continues to evenly distribute packets in each scheduling
2170  * opportunity, and push the remaining packets out, until we get to the last
2171  * interval.  Then those packets and their associated overhead are just added
2172  * to the bandwidth used.
2173  */
2174 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2175                 struct xhci_virt_device *virt_dev,
2176                 int old_active_eps)
2177 {
2178         unsigned int bw_reserved;
2179         unsigned int max_bandwidth;
2180         unsigned int bw_used;
2181         unsigned int block_size;
2182         struct xhci_interval_bw_table *bw_table;
2183         unsigned int packet_size = 0;
2184         unsigned int overhead = 0;
2185         unsigned int packets_transmitted = 0;
2186         unsigned int packets_remaining = 0;
2187         unsigned int i;
2188
2189         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2190                 return xhci_check_ss_bw(xhci, virt_dev);
2191
2192         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2193                 max_bandwidth = HS_BW_LIMIT;
2194                 /* Convert percent of bus BW reserved to blocks reserved */
2195                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2196         } else {
2197                 max_bandwidth = FS_BW_LIMIT;
2198                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2199         }
2200
2201         bw_table = virt_dev->bw_table;
2202         /* We need to translate the max packet size and max ESIT payloads into
2203          * the units the hardware uses.
2204          */
2205         block_size = xhci_get_block_size(virt_dev->udev);
2206
2207         /* If we are manipulating a LS/FS device under a HS hub, double check
2208          * that the HS bus has enough bandwidth if we are activing a new TT.
2209          */
2210         if (virt_dev->tt_info) {
2211                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2212                                 "Recalculating BW for rootport %u",
2213                                 virt_dev->real_port);
2214                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2215                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2216                                         "newly activated TT.\n");
2217                         return -ENOMEM;
2218                 }
2219                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2220                                 "Recalculating BW for TT slot %u port %u",
2221                                 virt_dev->tt_info->slot_id,
2222                                 virt_dev->tt_info->ttport);
2223         } else {
2224                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2225                                 "Recalculating BW for rootport %u",
2226                                 virt_dev->real_port);
2227         }
2228
2229         /* Add in how much bandwidth will be used for interval zero, or the
2230          * rounded max ESIT payload + number of packets * largest overhead.
2231          */
2232         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2233                 bw_table->interval_bw[0].num_packets *
2234                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2235
2236         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2237                 unsigned int bw_added;
2238                 unsigned int largest_mps;
2239                 unsigned int interval_overhead;
2240
2241                 /*
2242                  * How many packets could we transmit in this interval?
2243                  * If packets didn't fit in the previous interval, we will need
2244                  * to transmit that many packets twice within this interval.
2245                  */
2246                 packets_remaining = 2 * packets_remaining +
2247                         bw_table->interval_bw[i].num_packets;
2248
2249                 /* Find the largest max packet size of this or the previous
2250                  * interval.
2251                  */
2252                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2253                         largest_mps = 0;
2254                 else {
2255                         struct xhci_virt_ep *virt_ep;
2256                         struct list_head *ep_entry;
2257
2258                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2259                         virt_ep = list_entry(ep_entry,
2260                                         struct xhci_virt_ep, bw_endpoint_list);
2261                         /* Convert to blocks, rounding up */
2262                         largest_mps = DIV_ROUND_UP(
2263                                         virt_ep->bw_info.max_packet_size,
2264                                         block_size);
2265                 }
2266                 if (largest_mps > packet_size)
2267                         packet_size = largest_mps;
2268
2269                 /* Use the larger overhead of this or the previous interval. */
2270                 interval_overhead = xhci_get_largest_overhead(
2271                                 &bw_table->interval_bw[i]);
2272                 if (interval_overhead > overhead)
2273                         overhead = interval_overhead;
2274
2275                 /* How many packets can we evenly distribute across
2276                  * (1 << (i + 1)) possible scheduling opportunities?
2277                  */
2278                 packets_transmitted = packets_remaining >> (i + 1);
2279
2280                 /* Add in the bandwidth used for those scheduled packets */
2281                 bw_added = packets_transmitted * (overhead + packet_size);
2282
2283                 /* How many packets do we have remaining to transmit? */
2284                 packets_remaining = packets_remaining % (1 << (i + 1));
2285
2286                 /* What largest max packet size should those packets have? */
2287                 /* If we've transmitted all packets, don't carry over the
2288                  * largest packet size.
2289                  */
2290                 if (packets_remaining == 0) {
2291                         packet_size = 0;
2292                         overhead = 0;
2293                 } else if (packets_transmitted > 0) {
2294                         /* Otherwise if we do have remaining packets, and we've
2295                          * scheduled some packets in this interval, take the
2296                          * largest max packet size from endpoints with this
2297                          * interval.
2298                          */
2299                         packet_size = largest_mps;
2300                         overhead = interval_overhead;
2301                 }
2302                 /* Otherwise carry over packet_size and overhead from the last
2303                  * time we had a remainder.
2304                  */
2305                 bw_used += bw_added;
2306                 if (bw_used > max_bandwidth) {
2307                         xhci_warn(xhci, "Not enough bandwidth. "
2308                                         "Proposed: %u, Max: %u\n",
2309                                 bw_used, max_bandwidth);
2310                         return -ENOMEM;
2311                 }
2312         }
2313         /*
2314          * Ok, we know we have some packets left over after even-handedly
2315          * scheduling interval 15.  We don't know which microframes they will
2316          * fit into, so we over-schedule and say they will be scheduled every
2317          * microframe.
2318          */
2319         if (packets_remaining > 0)
2320                 bw_used += overhead + packet_size;
2321
2322         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2323                 unsigned int port_index = virt_dev->real_port - 1;
2324
2325                 /* OK, we're manipulating a HS device attached to a
2326                  * root port bandwidth domain.  Include the number of active TTs
2327                  * in the bandwidth used.
2328                  */
2329                 bw_used += TT_HS_OVERHEAD *
2330                         xhci->rh_bw[port_index].num_active_tts;
2331         }
2332
2333         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2334                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2335                 "Available: %u " "percent",
2336                 bw_used, max_bandwidth, bw_reserved,
2337                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2338                 max_bandwidth);
2339
2340         bw_used += bw_reserved;
2341         if (bw_used > max_bandwidth) {
2342                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2343                                 bw_used, max_bandwidth);
2344                 return -ENOMEM;
2345         }
2346
2347         bw_table->bw_used = bw_used;
2348         return 0;
2349 }
2350
2351 static bool xhci_is_async_ep(unsigned int ep_type)
2352 {
2353         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2354                                         ep_type != ISOC_IN_EP &&
2355                                         ep_type != INT_IN_EP);
2356 }
2357
2358 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2359 {
2360         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2361 }
2362
2363 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2364 {
2365         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2366
2367         if (ep_bw->ep_interval == 0)
2368                 return SS_OVERHEAD_BURST +
2369                         (ep_bw->mult * ep_bw->num_packets *
2370                                         (SS_OVERHEAD + mps));
2371         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2372                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2373                                 1 << ep_bw->ep_interval);
2374
2375 }
2376
2377 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2378                 struct xhci_bw_info *ep_bw,
2379                 struct xhci_interval_bw_table *bw_table,
2380                 struct usb_device *udev,
2381                 struct xhci_virt_ep *virt_ep,
2382                 struct xhci_tt_bw_info *tt_info)
2383 {
2384         struct xhci_interval_bw *interval_bw;
2385         int normalized_interval;
2386
2387         if (xhci_is_async_ep(ep_bw->type))
2388                 return;
2389
2390         if (udev->speed >= USB_SPEED_SUPER) {
2391                 if (xhci_is_sync_in_ep(ep_bw->type))
2392                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2393                                 xhci_get_ss_bw_consumed(ep_bw);
2394                 else
2395                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2396                                 xhci_get_ss_bw_consumed(ep_bw);
2397                 return;
2398         }
2399
2400         /* SuperSpeed endpoints never get added to intervals in the table, so
2401          * this check is only valid for HS/FS/LS devices.
2402          */
2403         if (list_empty(&virt_ep->bw_endpoint_list))
2404                 return;
2405         /* For LS/FS devices, we need to translate the interval expressed in
2406          * microframes to frames.
2407          */
2408         if (udev->speed == USB_SPEED_HIGH)
2409                 normalized_interval = ep_bw->ep_interval;
2410         else
2411                 normalized_interval = ep_bw->ep_interval - 3;
2412
2413         if (normalized_interval == 0)
2414                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2415         interval_bw = &bw_table->interval_bw[normalized_interval];
2416         interval_bw->num_packets -= ep_bw->num_packets;
2417         switch (udev->speed) {
2418         case USB_SPEED_LOW:
2419                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2420                 break;
2421         case USB_SPEED_FULL:
2422                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2423                 break;
2424         case USB_SPEED_HIGH:
2425                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2426                 break;
2427         case USB_SPEED_SUPER:
2428         case USB_SPEED_SUPER_PLUS:
2429         case USB_SPEED_UNKNOWN:
2430         case USB_SPEED_WIRELESS:
2431                 /* Should never happen because only LS/FS/HS endpoints will get
2432                  * added to the endpoint list.
2433                  */
2434                 return;
2435         }
2436         if (tt_info)
2437                 tt_info->active_eps -= 1;
2438         list_del_init(&virt_ep->bw_endpoint_list);
2439 }
2440
2441 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2442                 struct xhci_bw_info *ep_bw,
2443                 struct xhci_interval_bw_table *bw_table,
2444                 struct usb_device *udev,
2445                 struct xhci_virt_ep *virt_ep,
2446                 struct xhci_tt_bw_info *tt_info)
2447 {
2448         struct xhci_interval_bw *interval_bw;
2449         struct xhci_virt_ep *smaller_ep;
2450         int normalized_interval;
2451
2452         if (xhci_is_async_ep(ep_bw->type))
2453                 return;
2454
2455         if (udev->speed == USB_SPEED_SUPER) {
2456                 if (xhci_is_sync_in_ep(ep_bw->type))
2457                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2458                                 xhci_get_ss_bw_consumed(ep_bw);
2459                 else
2460                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2461                                 xhci_get_ss_bw_consumed(ep_bw);
2462                 return;
2463         }
2464
2465         /* For LS/FS devices, we need to translate the interval expressed in
2466          * microframes to frames.
2467          */
2468         if (udev->speed == USB_SPEED_HIGH)
2469                 normalized_interval = ep_bw->ep_interval;
2470         else
2471                 normalized_interval = ep_bw->ep_interval - 3;
2472
2473         if (normalized_interval == 0)
2474                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2475         interval_bw = &bw_table->interval_bw[normalized_interval];
2476         interval_bw->num_packets += ep_bw->num_packets;
2477         switch (udev->speed) {
2478         case USB_SPEED_LOW:
2479                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2480                 break;
2481         case USB_SPEED_FULL:
2482                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2483                 break;
2484         case USB_SPEED_HIGH:
2485                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2486                 break;
2487         case USB_SPEED_SUPER:
2488         case USB_SPEED_SUPER_PLUS:
2489         case USB_SPEED_UNKNOWN:
2490         case USB_SPEED_WIRELESS:
2491                 /* Should never happen because only LS/FS/HS endpoints will get
2492                  * added to the endpoint list.
2493                  */
2494                 return;
2495         }
2496
2497         if (tt_info)
2498                 tt_info->active_eps += 1;
2499         /* Insert the endpoint into the list, largest max packet size first. */
2500         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2501                         bw_endpoint_list) {
2502                 if (ep_bw->max_packet_size >=
2503                                 smaller_ep->bw_info.max_packet_size) {
2504                         /* Add the new ep before the smaller endpoint */
2505                         list_add_tail(&virt_ep->bw_endpoint_list,
2506                                         &smaller_ep->bw_endpoint_list);
2507                         return;
2508                 }
2509         }
2510         /* Add the new endpoint at the end of the list. */
2511         list_add_tail(&virt_ep->bw_endpoint_list,
2512                         &interval_bw->endpoints);
2513 }
2514
2515 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2516                 struct xhci_virt_device *virt_dev,
2517                 int old_active_eps)
2518 {
2519         struct xhci_root_port_bw_info *rh_bw_info;
2520         if (!virt_dev->tt_info)
2521                 return;
2522
2523         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2524         if (old_active_eps == 0 &&
2525                                 virt_dev->tt_info->active_eps != 0) {
2526                 rh_bw_info->num_active_tts += 1;
2527                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2528         } else if (old_active_eps != 0 &&
2529                                 virt_dev->tt_info->active_eps == 0) {
2530                 rh_bw_info->num_active_tts -= 1;
2531                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2532         }
2533 }
2534
2535 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2536                 struct xhci_virt_device *virt_dev,
2537                 struct xhci_container_ctx *in_ctx)
2538 {
2539         struct xhci_bw_info ep_bw_info[31];
2540         int i;
2541         struct xhci_input_control_ctx *ctrl_ctx;
2542         int old_active_eps = 0;
2543
2544         if (virt_dev->tt_info)
2545                 old_active_eps = virt_dev->tt_info->active_eps;
2546
2547         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2548         if (!ctrl_ctx) {
2549                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2550                                 __func__);
2551                 return -ENOMEM;
2552         }
2553
2554         for (i = 0; i < 31; i++) {
2555                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2556                         continue;
2557
2558                 /* Make a copy of the BW info in case we need to revert this */
2559                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2560                                 sizeof(ep_bw_info[i]));
2561                 /* Drop the endpoint from the interval table if the endpoint is
2562                  * being dropped or changed.
2563                  */
2564                 if (EP_IS_DROPPED(ctrl_ctx, i))
2565                         xhci_drop_ep_from_interval_table(xhci,
2566                                         &virt_dev->eps[i].bw_info,
2567                                         virt_dev->bw_table,
2568                                         virt_dev->udev,
2569                                         &virt_dev->eps[i],
2570                                         virt_dev->tt_info);
2571         }
2572         /* Overwrite the information stored in the endpoints' bw_info */
2573         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2574         for (i = 0; i < 31; i++) {
2575                 /* Add any changed or added endpoints to the interval table */
2576                 if (EP_IS_ADDED(ctrl_ctx, i))
2577                         xhci_add_ep_to_interval_table(xhci,
2578                                         &virt_dev->eps[i].bw_info,
2579                                         virt_dev->bw_table,
2580                                         virt_dev->udev,
2581                                         &virt_dev->eps[i],
2582                                         virt_dev->tt_info);
2583         }
2584
2585         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2586                 /* Ok, this fits in the bandwidth we have.
2587                  * Update the number of active TTs.
2588                  */
2589                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2590                 return 0;
2591         }
2592
2593         /* We don't have enough bandwidth for this, revert the stored info. */
2594         for (i = 0; i < 31; i++) {
2595                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2596                         continue;
2597
2598                 /* Drop the new copies of any added or changed endpoints from
2599                  * the interval table.
2600                  */
2601                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2602                         xhci_drop_ep_from_interval_table(xhci,
2603                                         &virt_dev->eps[i].bw_info,
2604                                         virt_dev->bw_table,
2605                                         virt_dev->udev,
2606                                         &virt_dev->eps[i],
2607                                         virt_dev->tt_info);
2608                 }
2609                 /* Revert the endpoint back to its old information */
2610                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2611                                 sizeof(ep_bw_info[i]));
2612                 /* Add any changed or dropped endpoints back into the table */
2613                 if (EP_IS_DROPPED(ctrl_ctx, i))
2614                         xhci_add_ep_to_interval_table(xhci,
2615                                         &virt_dev->eps[i].bw_info,
2616                                         virt_dev->bw_table,
2617                                         virt_dev->udev,
2618                                         &virt_dev->eps[i],
2619                                         virt_dev->tt_info);
2620         }
2621         return -ENOMEM;
2622 }
2623
2624
2625 /* Issue a configure endpoint command or evaluate context command
2626  * and wait for it to finish.
2627  */
2628 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2629                 struct usb_device *udev,
2630                 struct xhci_command *command,
2631                 bool ctx_change, bool must_succeed)
2632 {
2633         int ret;
2634         unsigned long flags;
2635         struct xhci_input_control_ctx *ctrl_ctx;
2636         struct xhci_virt_device *virt_dev;
2637
2638         if (!command)
2639                 return -EINVAL;
2640
2641         spin_lock_irqsave(&xhci->lock, flags);
2642         virt_dev = xhci->devs[udev->slot_id];
2643
2644         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2645         if (!ctrl_ctx) {
2646                 spin_unlock_irqrestore(&xhci->lock, flags);
2647                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2648                                 __func__);
2649                 return -ENOMEM;
2650         }
2651
2652         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2653                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2654                 spin_unlock_irqrestore(&xhci->lock, flags);
2655                 xhci_warn(xhci, "Not enough host resources, "
2656                                 "active endpoint contexts = %u\n",
2657                                 xhci->num_active_eps);
2658                 return -ENOMEM;
2659         }
2660         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2661             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2662                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2663                         xhci_free_host_resources(xhci, ctrl_ctx);
2664                 spin_unlock_irqrestore(&xhci->lock, flags);
2665                 xhci_warn(xhci, "Not enough bandwidth\n");
2666                 return -ENOMEM;
2667         }
2668
2669         if (!ctx_change)
2670                 ret = xhci_queue_configure_endpoint(xhci, command,
2671                                 command->in_ctx->dma,
2672                                 udev->slot_id, must_succeed);
2673         else
2674                 ret = xhci_queue_evaluate_context(xhci, command,
2675                                 command->in_ctx->dma,
2676                                 udev->slot_id, must_succeed);
2677         if (ret < 0) {
2678                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2679                         xhci_free_host_resources(xhci, ctrl_ctx);
2680                 spin_unlock_irqrestore(&xhci->lock, flags);
2681                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2682                                 "FIXME allocate a new ring segment");
2683                 return -ENOMEM;
2684         }
2685         xhci_ring_cmd_db(xhci);
2686         spin_unlock_irqrestore(&xhci->lock, flags);
2687
2688         /* Wait for the configure endpoint command to complete */
2689         wait_for_completion(command->completion);
2690
2691         if (!ctx_change)
2692                 ret = xhci_configure_endpoint_result(xhci, udev,
2693                                                      &command->status);
2694         else
2695                 ret = xhci_evaluate_context_result(xhci, udev,
2696                                                    &command->status);
2697
2698         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2699                 spin_lock_irqsave(&xhci->lock, flags);
2700                 /* If the command failed, remove the reserved resources.
2701                  * Otherwise, clean up the estimate to include dropped eps.
2702                  */
2703                 if (ret)
2704                         xhci_free_host_resources(xhci, ctrl_ctx);
2705                 else
2706                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2707                 spin_unlock_irqrestore(&xhci->lock, flags);
2708         }
2709         return ret;
2710 }
2711
2712 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2713         struct xhci_virt_device *vdev, int i)
2714 {
2715         struct xhci_virt_ep *ep = &vdev->eps[i];
2716
2717         if (ep->ep_state & EP_HAS_STREAMS) {
2718                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2719                                 xhci_get_endpoint_address(i));
2720                 xhci_free_stream_info(xhci, ep->stream_info);
2721                 ep->stream_info = NULL;
2722                 ep->ep_state &= ~EP_HAS_STREAMS;
2723         }
2724 }
2725
2726 /* Called after one or more calls to xhci_add_endpoint() or
2727  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2728  * to call xhci_reset_bandwidth().
2729  *
2730  * Since we are in the middle of changing either configuration or
2731  * installing a new alt setting, the USB core won't allow URBs to be
2732  * enqueued for any endpoint on the old config or interface.  Nothing
2733  * else should be touching the xhci->devs[slot_id] structure, so we
2734  * don't need to take the xhci->lock for manipulating that.
2735  */
2736 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2737 {
2738         int i;
2739         int ret = 0;
2740         struct xhci_hcd *xhci;
2741         struct xhci_virt_device *virt_dev;
2742         struct xhci_input_control_ctx *ctrl_ctx;
2743         struct xhci_slot_ctx *slot_ctx;
2744         struct xhci_command *command;
2745
2746         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2747         if (ret <= 0)
2748                 return ret;
2749         xhci = hcd_to_xhci(hcd);
2750         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2751                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2752                 return -ENODEV;
2753
2754         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2755         virt_dev = xhci->devs[udev->slot_id];
2756
2757         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2758         if (!command)
2759                 return -ENOMEM;
2760
2761         command->in_ctx = virt_dev->in_ctx;
2762
2763         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2764         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2765         if (!ctrl_ctx) {
2766                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2767                                 __func__);
2768                 ret = -ENOMEM;
2769                 goto command_cleanup;
2770         }
2771         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2772         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2773         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2774
2775         /* Don't issue the command if there's no endpoints to update. */
2776         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2777             ctrl_ctx->drop_flags == 0) {
2778                 ret = 0;
2779                 goto command_cleanup;
2780         }
2781         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2782         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2783         for (i = 31; i >= 1; i--) {
2784                 __le32 le32 = cpu_to_le32(BIT(i));
2785
2786                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2787                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2788                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2789                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2790                         break;
2791                 }
2792         }
2793         xhci_dbg(xhci, "New Input Control Context:\n");
2794         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2795                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2796
2797         ret = xhci_configure_endpoint(xhci, udev, command,
2798                         false, false);
2799         if (ret)
2800                 /* Callee should call reset_bandwidth() */
2801                 goto command_cleanup;
2802
2803         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2804         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2805                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2806
2807         /* Free any rings that were dropped, but not changed. */
2808         for (i = 1; i < 31; ++i) {
2809                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2810                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2811                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2812                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2813                 }
2814         }
2815         xhci_zero_in_ctx(xhci, virt_dev);
2816         /*
2817          * Install any rings for completely new endpoints or changed endpoints,
2818          * and free or cache any old rings from changed endpoints.
2819          */
2820         for (i = 1; i < 31; ++i) {
2821                 if (!virt_dev->eps[i].new_ring)
2822                         continue;
2823                 /* Only cache or free the old ring if it exists.
2824                  * It may not if this is the first add of an endpoint.
2825                  */
2826                 if (virt_dev->eps[i].ring) {
2827                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2828                 }
2829                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2830                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2831                 virt_dev->eps[i].new_ring = NULL;
2832         }
2833 command_cleanup:
2834         kfree(command->completion);
2835         kfree(command);
2836
2837         return ret;
2838 }
2839
2840 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2841 {
2842         struct xhci_hcd *xhci;
2843         struct xhci_virt_device *virt_dev;
2844         int i, ret;
2845
2846         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2847         if (ret <= 0)
2848                 return;
2849         xhci = hcd_to_xhci(hcd);
2850
2851         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2852         virt_dev = xhci->devs[udev->slot_id];
2853         /* Free any rings allocated for added endpoints */
2854         for (i = 0; i < 31; ++i) {
2855                 if (virt_dev->eps[i].new_ring) {
2856                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2857                         virt_dev->eps[i].new_ring = NULL;
2858                 }
2859         }
2860         xhci_zero_in_ctx(xhci, virt_dev);
2861 }
2862
2863 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2864                 struct xhci_container_ctx *in_ctx,
2865                 struct xhci_container_ctx *out_ctx,
2866                 struct xhci_input_control_ctx *ctrl_ctx,
2867                 u32 add_flags, u32 drop_flags)
2868 {
2869         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2870         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2871         xhci_slot_copy(xhci, in_ctx, out_ctx);
2872         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2873
2874         xhci_dbg(xhci, "Input Context:\n");
2875         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2876 }
2877
2878 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2879                 unsigned int slot_id, unsigned int ep_index,
2880                 struct xhci_dequeue_state *deq_state)
2881 {
2882         struct xhci_input_control_ctx *ctrl_ctx;
2883         struct xhci_container_ctx *in_ctx;
2884         struct xhci_ep_ctx *ep_ctx;
2885         u32 added_ctxs;
2886         dma_addr_t addr;
2887
2888         in_ctx = xhci->devs[slot_id]->in_ctx;
2889         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2890         if (!ctrl_ctx) {
2891                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2892                                 __func__);
2893                 return;
2894         }
2895
2896         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2897                         xhci->devs[slot_id]->out_ctx, ep_index);
2898         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2899         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2900                         deq_state->new_deq_ptr);
2901         if (addr == 0) {
2902                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2903                                 "reset ep command\n");
2904                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2905                                 deq_state->new_deq_seg,
2906                                 deq_state->new_deq_ptr);
2907                 return;
2908         }
2909         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2910
2911         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2912         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2913                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2914                         added_ctxs, added_ctxs);
2915 }
2916
2917 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2918                         unsigned int ep_index, struct xhci_td *td)
2919 {
2920         struct xhci_dequeue_state deq_state;
2921         struct xhci_virt_ep *ep;
2922         struct usb_device *udev = td->urb->dev;
2923
2924         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2925                         "Cleaning up stalled endpoint ring");
2926         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2927         /* We need to move the HW's dequeue pointer past this TD,
2928          * or it will attempt to resend it on the next doorbell ring.
2929          */
2930         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2931                         ep_index, ep->stopped_stream, td, &deq_state);
2932
2933         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2934                 return;
2935
2936         /* HW with the reset endpoint quirk will use the saved dequeue state to
2937          * issue a configure endpoint command later.
2938          */
2939         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2940                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2941                                 "Queueing new dequeue state");
2942                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2943                                 ep_index, ep->stopped_stream, &deq_state);
2944         } else {
2945                 /* Better hope no one uses the input context between now and the
2946                  * reset endpoint completion!
2947                  * XXX: No idea how this hardware will react when stream rings
2948                  * are enabled.
2949                  */
2950                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2951                                 "Setting up input context for "
2952                                 "configure endpoint command");
2953                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2954                                 ep_index, &deq_state);
2955         }
2956 }
2957
2958 /* Called when clearing halted device. The core should have sent the control
2959  * message to clear the device halt condition. The host side of the halt should
2960  * already be cleared with a reset endpoint command issued when the STALL tx
2961  * event was received.
2962  *
2963  * Context: in_interrupt
2964  */
2965
2966 void xhci_endpoint_reset(struct usb_hcd *hcd,
2967                 struct usb_host_endpoint *ep)
2968 {
2969         struct xhci_hcd *xhci;
2970
2971         xhci = hcd_to_xhci(hcd);
2972
2973         /*
2974          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2975          * The Reset Endpoint Command may only be issued to endpoints in the
2976          * Halted state. If software wishes reset the Data Toggle or Sequence
2977          * Number of an endpoint that isn't in the Halted state, then software
2978          * may issue a Configure Endpoint Command with the Drop and Add bits set
2979          * for the target endpoint. that is in the Stopped state.
2980          */
2981
2982         /* For now just print debug to follow the situation */
2983         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2984                  ep->desc.bEndpointAddress);
2985 }
2986
2987 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2988                 struct usb_device *udev, struct usb_host_endpoint *ep,
2989                 unsigned int slot_id)
2990 {
2991         int ret;
2992         unsigned int ep_index;
2993         unsigned int ep_state;
2994
2995         if (!ep)
2996                 return -EINVAL;
2997         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2998         if (ret <= 0)
2999                 return -EINVAL;
3000         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3001                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3002                                 " descriptor for ep 0x%x does not support streams\n",
3003                                 ep->desc.bEndpointAddress);
3004                 return -EINVAL;
3005         }
3006
3007         ep_index = xhci_get_endpoint_index(&ep->desc);
3008         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3009         if (ep_state & EP_HAS_STREAMS ||
3010                         ep_state & EP_GETTING_STREAMS) {
3011                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3012                                 "already has streams set up.\n",
3013                                 ep->desc.bEndpointAddress);
3014                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3015                                 "dynamic stream context array reallocation.\n");
3016                 return -EINVAL;
3017         }
3018         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3019                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3020                                 "endpoint 0x%x; URBs are pending.\n",
3021                                 ep->desc.bEndpointAddress);
3022                 return -EINVAL;
3023         }
3024         return 0;
3025 }
3026
3027 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3028                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3029 {
3030         unsigned int max_streams;
3031
3032         /* The stream context array size must be a power of two */
3033         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3034         /*
3035          * Find out how many primary stream array entries the host controller
3036          * supports.  Later we may use secondary stream arrays (similar to 2nd
3037          * level page entries), but that's an optional feature for xHCI host
3038          * controllers. xHCs must support at least 4 stream IDs.
3039          */
3040         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3041         if (*num_stream_ctxs > max_streams) {
3042                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3043                                 max_streams);
3044                 *num_stream_ctxs = max_streams;
3045                 *num_streams = max_streams;
3046         }
3047 }
3048
3049 /* Returns an error code if one of the endpoint already has streams.
3050  * This does not change any data structures, it only checks and gathers
3051  * information.
3052  */
3053 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3054                 struct usb_device *udev,
3055                 struct usb_host_endpoint **eps, unsigned int num_eps,
3056                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3057 {
3058         unsigned int max_streams;
3059         unsigned int endpoint_flag;
3060         int i;
3061         int ret;
3062
3063         for (i = 0; i < num_eps; i++) {
3064                 ret = xhci_check_streams_endpoint(xhci, udev,
3065                                 eps[i], udev->slot_id);
3066                 if (ret < 0)
3067                         return ret;
3068
3069                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3070                 if (max_streams < (*num_streams - 1)) {
3071                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3072                                         eps[i]->desc.bEndpointAddress,
3073                                         max_streams);
3074                         *num_streams = max_streams+1;
3075                 }
3076
3077                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3078                 if (*changed_ep_bitmask & endpoint_flag)
3079                         return -EINVAL;
3080                 *changed_ep_bitmask |= endpoint_flag;
3081         }
3082         return 0;
3083 }
3084
3085 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3086                 struct usb_device *udev,
3087                 struct usb_host_endpoint **eps, unsigned int num_eps)
3088 {
3089         u32 changed_ep_bitmask = 0;
3090         unsigned int slot_id;
3091         unsigned int ep_index;
3092         unsigned int ep_state;
3093         int i;
3094
3095         slot_id = udev->slot_id;
3096         if (!xhci->devs[slot_id])
3097                 return 0;
3098
3099         for (i = 0; i < num_eps; i++) {
3100                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3101                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3102                 /* Are streams already being freed for the endpoint? */
3103                 if (ep_state & EP_GETTING_NO_STREAMS) {
3104                         xhci_warn(xhci, "WARN Can't disable streams for "
3105                                         "endpoint 0x%x, "
3106                                         "streams are being disabled already\n",
3107                                         eps[i]->desc.bEndpointAddress);
3108                         return 0;
3109                 }
3110                 /* Are there actually any streams to free? */
3111                 if (!(ep_state & EP_HAS_STREAMS) &&
3112                                 !(ep_state & EP_GETTING_STREAMS)) {
3113                         xhci_warn(xhci, "WARN Can't disable streams for "
3114                                         "endpoint 0x%x, "
3115                                         "streams are already disabled!\n",
3116                                         eps[i]->desc.bEndpointAddress);
3117                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3118                                         "with non-streams endpoint\n");
3119                         return 0;
3120                 }
3121                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3122         }
3123         return changed_ep_bitmask;
3124 }
3125
3126 /*
3127  * The USB device drivers use this function (through the HCD interface in USB
3128  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3129  * coordinate mass storage command queueing across multiple endpoints (basically
3130  * a stream ID == a task ID).
3131  *
3132  * Setting up streams involves allocating the same size stream context array
3133  * for each endpoint and issuing a configure endpoint command for all endpoints.
3134  *
3135  * Don't allow the call to succeed if one endpoint only supports one stream
3136  * (which means it doesn't support streams at all).
3137  *
3138  * Drivers may get less stream IDs than they asked for, if the host controller
3139  * hardware or endpoints claim they can't support the number of requested
3140  * stream IDs.
3141  */
3142 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3143                 struct usb_host_endpoint **eps, unsigned int num_eps,
3144                 unsigned int num_streams, gfp_t mem_flags)
3145 {
3146         int i, ret;
3147         struct xhci_hcd *xhci;
3148         struct xhci_virt_device *vdev;
3149         struct xhci_command *config_cmd;
3150         struct xhci_input_control_ctx *ctrl_ctx;
3151         unsigned int ep_index;
3152         unsigned int num_stream_ctxs;
3153         unsigned long flags;
3154         u32 changed_ep_bitmask = 0;
3155
3156         if (!eps)
3157                 return -EINVAL;
3158
3159         /* Add one to the number of streams requested to account for
3160          * stream 0 that is reserved for xHCI usage.
3161          */
3162         num_streams += 1;
3163         xhci = hcd_to_xhci(hcd);
3164         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3165                         num_streams);
3166
3167         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3168         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3169                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3170                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3171                 return -ENOSYS;
3172         }
3173
3174         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3175         if (!config_cmd) {
3176                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3177                 return -ENOMEM;
3178         }
3179         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3180         if (!ctrl_ctx) {
3181                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3182                                 __func__);
3183                 xhci_free_command(xhci, config_cmd);
3184                 return -ENOMEM;
3185         }
3186
3187         /* Check to make sure all endpoints are not already configured for
3188          * streams.  While we're at it, find the maximum number of streams that
3189          * all the endpoints will support and check for duplicate endpoints.
3190          */
3191         spin_lock_irqsave(&xhci->lock, flags);
3192         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3193                         num_eps, &num_streams, &changed_ep_bitmask);
3194         if (ret < 0) {
3195                 xhci_free_command(xhci, config_cmd);
3196                 spin_unlock_irqrestore(&xhci->lock, flags);
3197                 return ret;
3198         }
3199         if (num_streams <= 1) {
3200                 xhci_warn(xhci, "WARN: endpoints can't handle "
3201                                 "more than one stream.\n");
3202                 xhci_free_command(xhci, config_cmd);
3203                 spin_unlock_irqrestore(&xhci->lock, flags);
3204                 return -EINVAL;
3205         }
3206         vdev = xhci->devs[udev->slot_id];
3207         /* Mark each endpoint as being in transition, so
3208          * xhci_urb_enqueue() will reject all URBs.
3209          */
3210         for (i = 0; i < num_eps; i++) {
3211                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3212                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3213         }
3214         spin_unlock_irqrestore(&xhci->lock, flags);
3215
3216         /* Setup internal data structures and allocate HW data structures for
3217          * streams (but don't install the HW structures in the input context
3218          * until we're sure all memory allocation succeeded).
3219          */
3220         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3221         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3222                         num_stream_ctxs, num_streams);
3223
3224         for (i = 0; i < num_eps; i++) {
3225                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3226                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3227                                 num_stream_ctxs,
3228                                 num_streams, mem_flags);
3229                 if (!vdev->eps[ep_index].stream_info)
3230                         goto cleanup;
3231                 /* Set maxPstreams in endpoint context and update deq ptr to
3232                  * point to stream context array. FIXME
3233                  */
3234         }
3235
3236         /* Set up the input context for a configure endpoint command. */
3237         for (i = 0; i < num_eps; i++) {
3238                 struct xhci_ep_ctx *ep_ctx;
3239
3240                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3241                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3242
3243                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3244                                 vdev->out_ctx, ep_index);
3245                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3246                                 vdev->eps[ep_index].stream_info);
3247         }
3248         /* Tell the HW to drop its old copy of the endpoint context info
3249          * and add the updated copy from the input context.
3250          */
3251         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3252                         vdev->out_ctx, ctrl_ctx,
3253                         changed_ep_bitmask, changed_ep_bitmask);
3254
3255         /* Issue and wait for the configure endpoint command */
3256         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3257                         false, false);
3258
3259         /* xHC rejected the configure endpoint command for some reason, so we
3260          * leave the old ring intact and free our internal streams data
3261          * structure.
3262          */
3263         if (ret < 0)
3264                 goto cleanup;
3265
3266         spin_lock_irqsave(&xhci->lock, flags);
3267         for (i = 0; i < num_eps; i++) {
3268                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3269                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3270                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3271                          udev->slot_id, ep_index);
3272                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3273         }
3274         xhci_free_command(xhci, config_cmd);
3275         spin_unlock_irqrestore(&xhci->lock, flags);
3276
3277         /* Subtract 1 for stream 0, which drivers can't use */
3278         return num_streams - 1;
3279
3280 cleanup:
3281         /* If it didn't work, free the streams! */
3282         for (i = 0; i < num_eps; i++) {
3283                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3284                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3285                 vdev->eps[ep_index].stream_info = NULL;
3286                 /* FIXME Unset maxPstreams in endpoint context and
3287                  * update deq ptr to point to normal string ring.
3288                  */
3289                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3290                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3291                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3292         }
3293         xhci_free_command(xhci, config_cmd);
3294         return -ENOMEM;
3295 }
3296
3297 /* Transition the endpoint from using streams to being a "normal" endpoint
3298  * without streams.
3299  *
3300  * Modify the endpoint context state, submit a configure endpoint command,
3301  * and free all endpoint rings for streams if that completes successfully.
3302  */
3303 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3304                 struct usb_host_endpoint **eps, unsigned int num_eps,
3305                 gfp_t mem_flags)
3306 {
3307         int i, ret;
3308         struct xhci_hcd *xhci;
3309         struct xhci_virt_device *vdev;
3310         struct xhci_command *command;
3311         struct xhci_input_control_ctx *ctrl_ctx;
3312         unsigned int ep_index;
3313         unsigned long flags;
3314         u32 changed_ep_bitmask;
3315
3316         xhci = hcd_to_xhci(hcd);
3317         vdev = xhci->devs[udev->slot_id];
3318
3319         /* Set up a configure endpoint command to remove the streams rings */
3320         spin_lock_irqsave(&xhci->lock, flags);
3321         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3322                         udev, eps, num_eps);
3323         if (changed_ep_bitmask == 0) {
3324                 spin_unlock_irqrestore(&xhci->lock, flags);
3325                 return -EINVAL;
3326         }
3327
3328         /* Use the xhci_command structure from the first endpoint.  We may have
3329          * allocated too many, but the driver may call xhci_free_streams() for
3330          * each endpoint it grouped into one call to xhci_alloc_streams().
3331          */
3332         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3333         command = vdev->eps[ep_index].stream_info->free_streams_command;
3334         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3335         if (!ctrl_ctx) {
3336                 spin_unlock_irqrestore(&xhci->lock, flags);
3337                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3338                                 __func__);
3339                 return -EINVAL;
3340         }
3341
3342         for (i = 0; i < num_eps; i++) {
3343                 struct xhci_ep_ctx *ep_ctx;
3344
3345                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3346                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3347                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3348                         EP_GETTING_NO_STREAMS;
3349
3350                 xhci_endpoint_copy(xhci, command->in_ctx,
3351                                 vdev->out_ctx, ep_index);
3352                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3353                                 &vdev->eps[ep_index]);
3354         }
3355         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3356                         vdev->out_ctx, ctrl_ctx,
3357                         changed_ep_bitmask, changed_ep_bitmask);
3358         spin_unlock_irqrestore(&xhci->lock, flags);
3359
3360         /* Issue and wait for the configure endpoint command,
3361          * which must succeed.
3362          */
3363         ret = xhci_configure_endpoint(xhci, udev, command,
3364                         false, true);
3365
3366         /* xHC rejected the configure endpoint command for some reason, so we
3367          * leave the streams rings intact.
3368          */
3369         if (ret < 0)
3370                 return ret;
3371
3372         spin_lock_irqsave(&xhci->lock, flags);
3373         for (i = 0; i < num_eps; i++) {
3374                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3375                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3376                 vdev->eps[ep_index].stream_info = NULL;
3377                 /* FIXME Unset maxPstreams in endpoint context and
3378                  * update deq ptr to point to normal string ring.
3379                  */
3380                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3381                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3382         }
3383         spin_unlock_irqrestore(&xhci->lock, flags);
3384
3385         return 0;
3386 }
3387
3388 /*
3389  * Deletes endpoint resources for endpoints that were active before a Reset
3390  * Device command, or a Disable Slot command.  The Reset Device command leaves
3391  * the control endpoint intact, whereas the Disable Slot command deletes it.
3392  *
3393  * Must be called with xhci->lock held.
3394  */
3395 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3396         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3397 {
3398         int i;
3399         unsigned int num_dropped_eps = 0;
3400         unsigned int drop_flags = 0;
3401
3402         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3403                 if (virt_dev->eps[i].ring) {
3404                         drop_flags |= 1 << i;
3405                         num_dropped_eps++;
3406                 }
3407         }
3408         xhci->num_active_eps -= num_dropped_eps;
3409         if (num_dropped_eps)
3410                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3411                                 "Dropped %u ep ctxs, flags = 0x%x, "
3412                                 "%u now active.",
3413                                 num_dropped_eps, drop_flags,
3414                                 xhci->num_active_eps);
3415 }
3416
3417 /*
3418  * This submits a Reset Device Command, which will set the device state to 0,
3419  * set the device address to 0, and disable all the endpoints except the default
3420  * control endpoint.  The USB core should come back and call
3421  * xhci_address_device(), and then re-set up the configuration.  If this is
3422  * called because of a usb_reset_and_verify_device(), then the old alternate
3423  * settings will be re-installed through the normal bandwidth allocation
3424  * functions.
3425  *
3426  * Wait for the Reset Device command to finish.  Remove all structures
3427  * associated with the endpoints that were disabled.  Clear the input device
3428  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3429  *
3430  * If the virt_dev to be reset does not exist or does not match the udev,
3431  * it means the device is lost, possibly due to the xHC restore error and
3432  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3433  * re-allocate the device.
3434  */
3435 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3436 {
3437         int ret, i;
3438         unsigned long flags;
3439         struct xhci_hcd *xhci;
3440         unsigned int slot_id;
3441         struct xhci_virt_device *virt_dev;
3442         struct xhci_command *reset_device_cmd;
3443         int last_freed_endpoint;
3444         struct xhci_slot_ctx *slot_ctx;
3445         int old_active_eps = 0;
3446
3447         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3448         if (ret <= 0)
3449                 return ret;
3450         xhci = hcd_to_xhci(hcd);
3451         slot_id = udev->slot_id;
3452         virt_dev = xhci->devs[slot_id];
3453         if (!virt_dev) {
3454                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3455                                 "not exist. Re-allocate the device\n", slot_id);
3456                 ret = xhci_alloc_dev(hcd, udev);
3457                 if (ret == 1)
3458                         return 0;
3459                 else
3460                         return -EINVAL;
3461         }
3462
3463         if (virt_dev->tt_info)
3464                 old_active_eps = virt_dev->tt_info->active_eps;
3465
3466         if (virt_dev->udev != udev) {
3467                 /* If the virt_dev and the udev does not match, this virt_dev
3468                  * may belong to another udev.
3469                  * Re-allocate the device.
3470                  */
3471                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3472                                 "not match the udev. Re-allocate the device\n",
3473                                 slot_id);
3474                 ret = xhci_alloc_dev(hcd, udev);
3475                 if (ret == 1)
3476                         return 0;
3477                 else
3478                         return -EINVAL;
3479         }
3480
3481         /* If device is not setup, there is no point in resetting it */
3482         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3483         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3484                                                 SLOT_STATE_DISABLED)
3485                 return 0;
3486
3487         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3488         /* Allocate the command structure that holds the struct completion.
3489          * Assume we're in process context, since the normal device reset
3490          * process has to wait for the device anyway.  Storage devices are
3491          * reset as part of error handling, so use GFP_NOIO instead of
3492          * GFP_KERNEL.
3493          */
3494         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3495         if (!reset_device_cmd) {
3496                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3497                 return -ENOMEM;
3498         }
3499
3500         /* Attempt to submit the Reset Device command to the command ring */
3501         spin_lock_irqsave(&xhci->lock, flags);
3502
3503         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3504         if (ret) {
3505                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3506                 spin_unlock_irqrestore(&xhci->lock, flags);
3507                 goto command_cleanup;
3508         }
3509         xhci_ring_cmd_db(xhci);
3510         spin_unlock_irqrestore(&xhci->lock, flags);
3511
3512         /* Wait for the Reset Device command to finish */
3513         wait_for_completion(reset_device_cmd->completion);
3514
3515         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3516          * unless we tried to reset a slot ID that wasn't enabled,
3517          * or the device wasn't in the addressed or configured state.
3518          */
3519         ret = reset_device_cmd->status;
3520         switch (ret) {
3521         case COMP_CMD_ABORT:
3522         case COMP_CMD_STOP:
3523                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3524                 ret = -ETIME;
3525                 goto command_cleanup;
3526         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3527         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3528                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3529                                 slot_id,
3530                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3531                 xhci_dbg(xhci, "Not freeing device rings.\n");
3532                 /* Don't treat this as an error.  May change my mind later. */
3533                 ret = 0;
3534                 goto command_cleanup;
3535         case COMP_SUCCESS:
3536                 xhci_dbg(xhci, "Successful reset device command.\n");
3537                 break;
3538         default:
3539                 if (xhci_is_vendor_info_code(xhci, ret))
3540                         break;
3541                 xhci_warn(xhci, "Unknown completion code %u for "
3542                                 "reset device command.\n", ret);
3543                 ret = -EINVAL;
3544                 goto command_cleanup;
3545         }
3546
3547         /* Free up host controller endpoint resources */
3548         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3549                 spin_lock_irqsave(&xhci->lock, flags);
3550                 /* Don't delete the default control endpoint resources */
3551                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3552                 spin_unlock_irqrestore(&xhci->lock, flags);
3553         }
3554
3555         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3556         last_freed_endpoint = 1;
3557         for (i = 1; i < 31; ++i) {
3558                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3559
3560                 if (ep->ep_state & EP_HAS_STREAMS) {
3561                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3562                                         xhci_get_endpoint_address(i));
3563                         xhci_free_stream_info(xhci, ep->stream_info);
3564                         ep->stream_info = NULL;
3565                         ep->ep_state &= ~EP_HAS_STREAMS;
3566                 }
3567
3568                 if (ep->ring) {
3569                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3570                         last_freed_endpoint = i;
3571                 }
3572                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3573                         xhci_drop_ep_from_interval_table(xhci,
3574                                         &virt_dev->eps[i].bw_info,
3575                                         virt_dev->bw_table,
3576                                         udev,
3577                                         &virt_dev->eps[i],
3578                                         virt_dev->tt_info);
3579                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3580         }
3581         /* If necessary, update the number of active TTs on this root port */
3582         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3583
3584         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3585         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3586         ret = 0;
3587
3588 command_cleanup:
3589         xhci_free_command(xhci, reset_device_cmd);
3590         return ret;
3591 }
3592
3593 /*
3594  * At this point, the struct usb_device is about to go away, the device has
3595  * disconnected, and all traffic has been stopped and the endpoints have been
3596  * disabled.  Free any HC data structures associated with that device.
3597  */
3598 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3599 {
3600         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3601         struct xhci_virt_device *virt_dev;
3602         unsigned long flags;
3603         u32 state;
3604         int i, ret;
3605         struct xhci_command *command;
3606
3607         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3608         if (!command)
3609                 return;
3610
3611 #ifndef CONFIG_USB_DEFAULT_PERSIST
3612         /*
3613          * We called pm_runtime_get_noresume when the device was attached.
3614          * Decrement the counter here to allow controller to runtime suspend
3615          * if no devices remain.
3616          */
3617         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3618                 pm_runtime_put_noidle(hcd->self.controller);
3619 #endif
3620
3621         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3622         /* If the host is halted due to driver unload, we still need to free the
3623          * device.
3624          */
3625         if (ret <= 0 && ret != -ENODEV) {
3626                 kfree(command);
3627                 return;
3628         }
3629
3630         virt_dev = xhci->devs[udev->slot_id];
3631
3632         /* Stop any wayward timer functions (which may grab the lock) */
3633         for (i = 0; i < 31; ++i) {
3634                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3635                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3636         }
3637
3638         spin_lock_irqsave(&xhci->lock, flags);
3639         /* Don't disable the slot if the host controller is dead. */
3640         state = readl(&xhci->op_regs->status);
3641         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3642                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3643                 xhci_free_virt_device(xhci, udev->slot_id);
3644                 spin_unlock_irqrestore(&xhci->lock, flags);
3645                 kfree(command);
3646                 return;
3647         }
3648
3649         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3650                                     udev->slot_id)) {
3651                 spin_unlock_irqrestore(&xhci->lock, flags);
3652                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3653                 return;
3654         }
3655         xhci_ring_cmd_db(xhci);
3656         spin_unlock_irqrestore(&xhci->lock, flags);
3657
3658         /*
3659          * Event command completion handler will free any data structures
3660          * associated with the slot.  XXX Can free sleep?
3661          */
3662 }
3663
3664 /*
3665  * Checks if we have enough host controller resources for the default control
3666  * endpoint.
3667  *
3668  * Must be called with xhci->lock held.
3669  */
3670 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3671 {
3672         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3673                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3674                                 "Not enough ep ctxs: "
3675                                 "%u active, need to add 1, limit is %u.",
3676                                 xhci->num_active_eps, xhci->limit_active_eps);
3677                 return -ENOMEM;
3678         }
3679         xhci->num_active_eps += 1;
3680         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3681                         "Adding 1 ep ctx, %u now active.",
3682                         xhci->num_active_eps);
3683         return 0;
3684 }
3685
3686
3687 /*
3688  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3689  * timed out, or allocating memory failed.  Returns 1 on success.
3690  */
3691 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3692 {
3693         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3694         unsigned long flags;
3695         int ret, slot_id;
3696         struct xhci_command *command;
3697
3698         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3699         if (!command)
3700                 return 0;
3701
3702         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3703         mutex_lock(&xhci->mutex);
3704         spin_lock_irqsave(&xhci->lock, flags);
3705         command->completion = &xhci->addr_dev;
3706         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3707         if (ret) {
3708                 spin_unlock_irqrestore(&xhci->lock, flags);
3709                 mutex_unlock(&xhci->mutex);
3710                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3711                 kfree(command);
3712                 return 0;
3713         }
3714         xhci_ring_cmd_db(xhci);
3715         spin_unlock_irqrestore(&xhci->lock, flags);
3716
3717         wait_for_completion(command->completion);
3718         slot_id = xhci->slot_id;
3719         mutex_unlock(&xhci->mutex);
3720
3721         if (!slot_id || command->status != COMP_SUCCESS) {
3722                 xhci_err(xhci, "Error while assigning device slot ID\n");
3723                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3724                                 HCS_MAX_SLOTS(
3725                                         readl(&xhci->cap_regs->hcs_params1)));
3726                 kfree(command);
3727                 return 0;
3728         }
3729
3730         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3731                 spin_lock_irqsave(&xhci->lock, flags);
3732                 ret = xhci_reserve_host_control_ep_resources(xhci);
3733                 if (ret) {
3734                         spin_unlock_irqrestore(&xhci->lock, flags);
3735                         xhci_warn(xhci, "Not enough host resources, "
3736                                         "active endpoint contexts = %u\n",
3737                                         xhci->num_active_eps);
3738                         goto disable_slot;
3739                 }
3740                 spin_unlock_irqrestore(&xhci->lock, flags);
3741         }
3742         /* Use GFP_NOIO, since this function can be called from
3743          * xhci_discover_or_reset_device(), which may be called as part of
3744          * mass storage driver error handling.
3745          */
3746         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3747                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3748                 goto disable_slot;
3749         }
3750         udev->slot_id = slot_id;
3751
3752 #ifndef CONFIG_USB_DEFAULT_PERSIST
3753         /*
3754          * If resetting upon resume, we can't put the controller into runtime
3755          * suspend if there is a device attached.
3756          */
3757         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3758                 pm_runtime_get_noresume(hcd->self.controller);
3759 #endif
3760
3761
3762         kfree(command);
3763         /* Is this a LS or FS device under a HS hub? */
3764         /* Hub or peripherial? */
3765         return 1;
3766
3767 disable_slot:
3768         /* Disable slot, if we can do it without mem alloc */
3769         spin_lock_irqsave(&xhci->lock, flags);
3770         command->completion = NULL;
3771         command->status = 0;
3772         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3773                                      udev->slot_id))
3774                 xhci_ring_cmd_db(xhci);
3775         spin_unlock_irqrestore(&xhci->lock, flags);
3776         return 0;
3777 }
3778
3779 /*
3780  * Issue an Address Device command and optionally send a corresponding
3781  * SetAddress request to the device.
3782  */
3783 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3784                              enum xhci_setup_dev setup)
3785 {
3786         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3787         unsigned long flags;
3788         struct xhci_virt_device *virt_dev;
3789         int ret = 0;
3790         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3791         struct xhci_slot_ctx *slot_ctx;
3792         struct xhci_input_control_ctx *ctrl_ctx;
3793         u64 temp_64;
3794         struct xhci_command *command = NULL;
3795
3796         mutex_lock(&xhci->mutex);
3797
3798         if (xhci->xhc_state) {  /* dying, removing or halted */
3799                 ret = -ESHUTDOWN;
3800                 goto out;
3801         }
3802
3803         if (!udev->slot_id) {
3804                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3805                                 "Bad Slot ID %d", udev->slot_id);
3806                 ret = -EINVAL;
3807                 goto out;
3808         }
3809
3810         virt_dev = xhci->devs[udev->slot_id];
3811
3812         if (WARN_ON(!virt_dev)) {
3813                 /*
3814                  * In plug/unplug torture test with an NEC controller,
3815                  * a zero-dereference was observed once due to virt_dev = 0.
3816                  * Print useful debug rather than crash if it is observed again!
3817                  */
3818                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3819                         udev->slot_id);
3820                 ret = -EINVAL;
3821                 goto out;
3822         }
3823
3824         if (setup == SETUP_CONTEXT_ONLY) {
3825                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3826                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3827                     SLOT_STATE_DEFAULT) {
3828                         xhci_dbg(xhci, "Slot already in default state\n");
3829                         goto out;
3830                 }
3831         }
3832
3833         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3834         if (!command) {
3835                 ret = -ENOMEM;
3836                 goto out;
3837         }
3838
3839         command->in_ctx = virt_dev->in_ctx;
3840         command->completion = &xhci->addr_dev;
3841
3842         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3843         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3844         if (!ctrl_ctx) {
3845                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3846                                 __func__);
3847                 ret = -EINVAL;
3848                 goto out;
3849         }
3850         /*
3851          * If this is the first Set Address since device plug-in or
3852          * virt_device realloaction after a resume with an xHCI power loss,
3853          * then set up the slot context.
3854          */
3855         if (!slot_ctx->dev_info)
3856                 xhci_setup_addressable_virt_dev(xhci, udev);
3857         /* Otherwise, update the control endpoint ring enqueue pointer. */
3858         else
3859                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3860         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3861         ctrl_ctx->drop_flags = 0;
3862
3863         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3864         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3865         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3866                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3867
3868         spin_lock_irqsave(&xhci->lock, flags);
3869         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3870                                         udev->slot_id, setup);
3871         if (ret) {
3872                 spin_unlock_irqrestore(&xhci->lock, flags);
3873                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3874                                 "FIXME: allocate a command ring segment");
3875                 goto out;
3876         }
3877         xhci_ring_cmd_db(xhci);
3878         spin_unlock_irqrestore(&xhci->lock, flags);
3879
3880         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3881         wait_for_completion(command->completion);
3882
3883         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3884          * the SetAddress() "recovery interval" required by USB and aborting the
3885          * command on a timeout.
3886          */
3887         switch (command->status) {
3888         case COMP_CMD_ABORT:
3889         case COMP_CMD_STOP:
3890                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3891                 ret = -ETIME;
3892                 break;
3893         case COMP_CTX_STATE:
3894         case COMP_EBADSLT:
3895                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3896                          act, udev->slot_id);
3897                 ret = -EINVAL;
3898                 break;
3899         case COMP_TX_ERR:
3900                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3901                 ret = -EPROTO;
3902                 break;
3903         case COMP_DEV_ERR:
3904                 dev_warn(&udev->dev,
3905                          "ERROR: Incompatible device for setup %s command\n", act);
3906                 ret = -ENODEV;
3907                 break;
3908         case COMP_SUCCESS:
3909                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3910                                "Successful setup %s command", act);
3911                 break;
3912         default:
3913                 xhci_err(xhci,
3914                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3915                          act, command->status);
3916                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3917                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3918                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3919                 ret = -EINVAL;
3920                 break;
3921         }
3922         if (ret)
3923                 goto out;
3924         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3925         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3926                         "Op regs DCBAA ptr = %#016llx", temp_64);
3927         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3928                 "Slot ID %d dcbaa entry @%p = %#016llx",
3929                 udev->slot_id,
3930                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3931                 (unsigned long long)
3932                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3933         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3934                         "Output Context DMA address = %#08llx",
3935                         (unsigned long long)virt_dev->out_ctx->dma);
3936         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3937         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3938         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3939                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3940         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3941         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3942         /*
3943          * USB core uses address 1 for the roothubs, so we add one to the
3944          * address given back to us by the HC.
3945          */
3946         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3947         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3948                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3949         /* Zero the input context control for later use */
3950         ctrl_ctx->add_flags = 0;
3951         ctrl_ctx->drop_flags = 0;
3952
3953         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3954                        "Internal device address = %d",
3955                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3956 out:
3957         mutex_unlock(&xhci->mutex);
3958         kfree(command);
3959         return ret;
3960 }
3961
3962 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3963 {
3964         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3965 }
3966
3967 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3968 {
3969         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3970 }
3971
3972 /*
3973  * Transfer the port index into real index in the HW port status
3974  * registers. Caculate offset between the port's PORTSC register
3975  * and port status base. Divide the number of per port register
3976  * to get the real index. The raw port number bases 1.
3977  */
3978 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3979 {
3980         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3981         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3982         __le32 __iomem *addr;
3983         int raw_port;
3984
3985         if (hcd->speed < HCD_USB3)
3986                 addr = xhci->usb2_ports[port1 - 1];
3987         else
3988                 addr = xhci->usb3_ports[port1 - 1];
3989
3990         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3991         return raw_port;
3992 }
3993
3994 /*
3995  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3996  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3997  */
3998 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3999                         struct usb_device *udev, u16 max_exit_latency)
4000 {
4001         struct xhci_virt_device *virt_dev;
4002         struct xhci_command *command;
4003         struct xhci_input_control_ctx *ctrl_ctx;
4004         struct xhci_slot_ctx *slot_ctx;
4005         unsigned long flags;
4006         int ret;
4007
4008         spin_lock_irqsave(&xhci->lock, flags);
4009
4010         virt_dev = xhci->devs[udev->slot_id];
4011
4012         /*
4013          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4014          * xHC was re-initialized. Exit latency will be set later after
4015          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4016          */
4017
4018         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4019                 spin_unlock_irqrestore(&xhci->lock, flags);
4020                 return 0;
4021         }
4022
4023         /* Attempt to issue an Evaluate Context command to change the MEL. */
4024         command = xhci->lpm_command;
4025         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4026         if (!ctrl_ctx) {
4027                 spin_unlock_irqrestore(&xhci->lock, flags);
4028                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4029                                 __func__);
4030                 return -ENOMEM;
4031         }
4032
4033         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4034         spin_unlock_irqrestore(&xhci->lock, flags);
4035
4036         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4037         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4038         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4039         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4040         slot_ctx->dev_state = 0;
4041
4042         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4043                         "Set up evaluate context for LPM MEL change.");
4044         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4045         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4046
4047         /* Issue and wait for the evaluate context command. */
4048         ret = xhci_configure_endpoint(xhci, udev, command,
4049                         true, true);
4050         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4051         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4052
4053         if (!ret) {
4054                 spin_lock_irqsave(&xhci->lock, flags);
4055                 virt_dev->current_mel = max_exit_latency;
4056                 spin_unlock_irqrestore(&xhci->lock, flags);
4057         }
4058         return ret;
4059 }
4060
4061 #ifdef CONFIG_PM
4062
4063 /* BESL to HIRD Encoding array for USB2 LPM */
4064 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4065         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4066
4067 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4068 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4069                                         struct usb_device *udev)
4070 {
4071         int u2del, besl, besl_host;
4072         int besl_device = 0;
4073         u32 field;
4074
4075         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4076         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4077
4078         if (field & USB_BESL_SUPPORT) {
4079                 for (besl_host = 0; besl_host < 16; besl_host++) {
4080                         if (xhci_besl_encoding[besl_host] >= u2del)
4081                                 break;
4082                 }
4083                 /* Use baseline BESL value as default */
4084                 if (field & USB_BESL_BASELINE_VALID)
4085                         besl_device = USB_GET_BESL_BASELINE(field);
4086                 else if (field & USB_BESL_DEEP_VALID)
4087                         besl_device = USB_GET_BESL_DEEP(field);
4088         } else {
4089                 if (u2del <= 50)
4090                         besl_host = 0;
4091                 else
4092                         besl_host = (u2del - 51) / 75 + 1;
4093         }
4094
4095         besl = besl_host + besl_device;
4096         if (besl > 15)
4097                 besl = 15;
4098
4099         return besl;
4100 }
4101
4102 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4103 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4104 {
4105         u32 field;
4106         int l1;
4107         int besld = 0;
4108         int hirdm = 0;
4109
4110         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4111
4112         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4113         l1 = udev->l1_params.timeout / 256;
4114
4115         /* device has preferred BESLD */
4116         if (field & USB_BESL_DEEP_VALID) {
4117                 besld = USB_GET_BESL_DEEP(field);
4118                 hirdm = 1;
4119         }
4120
4121         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4122 }
4123
4124 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4125                         struct usb_device *udev, int enable)
4126 {
4127         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4128         __le32 __iomem  **port_array;
4129         __le32 __iomem  *pm_addr, *hlpm_addr;
4130         u32             pm_val, hlpm_val, field;
4131         unsigned int    port_num;
4132         unsigned long   flags;
4133         int             hird, exit_latency;
4134         int             ret;
4135
4136         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4137                         !udev->lpm_capable)
4138                 return -EPERM;
4139
4140         if (!udev->parent || udev->parent->parent ||
4141                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4142                 return -EPERM;
4143
4144         if (udev->usb2_hw_lpm_capable != 1)
4145                 return -EPERM;
4146
4147         spin_lock_irqsave(&xhci->lock, flags);
4148
4149         port_array = xhci->usb2_ports;
4150         port_num = udev->portnum - 1;
4151         pm_addr = port_array[port_num] + PORTPMSC;
4152         pm_val = readl(pm_addr);
4153         hlpm_addr = port_array[port_num] + PORTHLPMC;
4154         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4155
4156         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4157                         enable ? "enable" : "disable", port_num + 1);
4158
4159         if (enable) {
4160                 /* Host supports BESL timeout instead of HIRD */
4161                 if (udev->usb2_hw_lpm_besl_capable) {
4162                         /* if device doesn't have a preferred BESL value use a
4163                          * default one which works with mixed HIRD and BESL
4164                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4165                          */
4166                         if ((field & USB_BESL_SUPPORT) &&
4167                             (field & USB_BESL_BASELINE_VALID))
4168                                 hird = USB_GET_BESL_BASELINE(field);
4169                         else
4170                                 hird = udev->l1_params.besl;
4171
4172                         exit_latency = xhci_besl_encoding[hird];
4173                         spin_unlock_irqrestore(&xhci->lock, flags);
4174
4175                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4176                          * input context for link powermanagement evaluate
4177                          * context commands. It is protected by hcd->bandwidth
4178                          * mutex and is shared by all devices. We need to set
4179                          * the max ext latency in USB 2 BESL LPM as well, so
4180                          * use the same mutex and xhci_change_max_exit_latency()
4181                          */
4182                         mutex_lock(hcd->bandwidth_mutex);
4183                         ret = xhci_change_max_exit_latency(xhci, udev,
4184                                                            exit_latency);
4185                         mutex_unlock(hcd->bandwidth_mutex);
4186
4187                         if (ret < 0)
4188                                 return ret;
4189                         spin_lock_irqsave(&xhci->lock, flags);
4190
4191                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4192                         writel(hlpm_val, hlpm_addr);
4193                         /* flush write */
4194                         readl(hlpm_addr);
4195                 } else {
4196                         hird = xhci_calculate_hird_besl(xhci, udev);
4197                 }
4198
4199                 pm_val &= ~PORT_HIRD_MASK;
4200                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4201                 writel(pm_val, pm_addr);
4202                 pm_val = readl(pm_addr);
4203                 pm_val |= PORT_HLE;
4204                 writel(pm_val, pm_addr);
4205                 /* flush write */
4206                 readl(pm_addr);
4207         } else {
4208                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4209                 writel(pm_val, pm_addr);
4210                 /* flush write */
4211                 readl(pm_addr);
4212                 if (udev->usb2_hw_lpm_besl_capable) {
4213                         spin_unlock_irqrestore(&xhci->lock, flags);
4214                         mutex_lock(hcd->bandwidth_mutex);
4215                         xhci_change_max_exit_latency(xhci, udev, 0);
4216                         mutex_unlock(hcd->bandwidth_mutex);
4217                         return 0;
4218                 }
4219         }
4220
4221         spin_unlock_irqrestore(&xhci->lock, flags);
4222         return 0;
4223 }
4224
4225 /* check if a usb2 port supports a given extened capability protocol
4226  * only USB2 ports extended protocol capability values are cached.
4227  * Return 1 if capability is supported
4228  */
4229 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4230                                            unsigned capability)
4231 {
4232         u32 port_offset, port_count;
4233         int i;
4234
4235         for (i = 0; i < xhci->num_ext_caps; i++) {
4236                 if (xhci->ext_caps[i] & capability) {
4237                         /* port offsets starts at 1 */
4238                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4239                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4240                         if (port >= port_offset &&
4241                             port < port_offset + port_count)
4242                                 return 1;
4243                 }
4244         }
4245         return 0;
4246 }
4247
4248 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4249 {
4250         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4251         int             portnum = udev->portnum - 1;
4252
4253         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4254                         !udev->lpm_capable)
4255                 return 0;
4256
4257         /* we only support lpm for non-hub device connected to root hub yet */
4258         if (!udev->parent || udev->parent->parent ||
4259                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4260                 return 0;
4261
4262         if (xhci->hw_lpm_support == 1 &&
4263                         xhci_check_usb2_port_capability(
4264                                 xhci, portnum, XHCI_HLC)) {
4265                 udev->usb2_hw_lpm_capable = 1;
4266                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4267                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4268                 if (xhci_check_usb2_port_capability(xhci, portnum,
4269                                         XHCI_BLC))
4270                         udev->usb2_hw_lpm_besl_capable = 1;
4271         }
4272
4273         return 0;
4274 }
4275
4276 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4277
4278 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4279 static unsigned long long xhci_service_interval_to_ns(
4280                 struct usb_endpoint_descriptor *desc)
4281 {
4282         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4283 }
4284
4285 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4286                 enum usb3_link_state state)
4287 {
4288         unsigned long long sel;
4289         unsigned long long pel;
4290         unsigned int max_sel_pel;
4291         char *state_name;
4292
4293         switch (state) {
4294         case USB3_LPM_U1:
4295                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4296                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4297                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4298                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4299                 state_name = "U1";
4300                 break;
4301         case USB3_LPM_U2:
4302                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4303                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4304                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4305                 state_name = "U2";
4306                 break;
4307         default:
4308                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4309                                 __func__);
4310                 return USB3_LPM_DISABLED;
4311         }
4312
4313         if (sel <= max_sel_pel && pel <= max_sel_pel)
4314                 return USB3_LPM_DEVICE_INITIATED;
4315
4316         if (sel > max_sel_pel)
4317                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4318                                 "due to long SEL %llu ms\n",
4319                                 state_name, sel);
4320         else
4321                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4322                                 "due to long PEL %llu ms\n",
4323                                 state_name, pel);
4324         return USB3_LPM_DISABLED;
4325 }
4326
4327 /* The U1 timeout should be the maximum of the following values:
4328  *  - For control endpoints, U1 system exit latency (SEL) * 3
4329  *  - For bulk endpoints, U1 SEL * 5
4330  *  - For interrupt endpoints:
4331  *    - Notification EPs, U1 SEL * 3
4332  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4333  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4334  */
4335 static unsigned long long xhci_calculate_intel_u1_timeout(
4336                 struct usb_device *udev,
4337                 struct usb_endpoint_descriptor *desc)
4338 {
4339         unsigned long long timeout_ns;
4340         int ep_type;
4341         int intr_type;
4342
4343         ep_type = usb_endpoint_type(desc);
4344         switch (ep_type) {
4345         case USB_ENDPOINT_XFER_CONTROL:
4346                 timeout_ns = udev->u1_params.sel * 3;
4347                 break;
4348         case USB_ENDPOINT_XFER_BULK:
4349                 timeout_ns = udev->u1_params.sel * 5;
4350                 break;
4351         case USB_ENDPOINT_XFER_INT:
4352                 intr_type = usb_endpoint_interrupt_type(desc);
4353                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4354                         timeout_ns = udev->u1_params.sel * 3;
4355                         break;
4356                 }
4357                 /* Otherwise the calculation is the same as isoc eps */
4358         case USB_ENDPOINT_XFER_ISOC:
4359                 timeout_ns = xhci_service_interval_to_ns(desc);
4360                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4361                 if (timeout_ns < udev->u1_params.sel * 2)
4362                         timeout_ns = udev->u1_params.sel * 2;
4363                 break;
4364         default:
4365                 return 0;
4366         }
4367
4368         return timeout_ns;
4369 }
4370
4371 /* Returns the hub-encoded U1 timeout value. */
4372 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4373                 struct usb_device *udev,
4374                 struct usb_endpoint_descriptor *desc)
4375 {
4376         unsigned long long timeout_ns;
4377
4378         if (xhci->quirks & XHCI_INTEL_HOST)
4379                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4380         else
4381                 timeout_ns = udev->u1_params.sel;
4382
4383         /* The U1 timeout is encoded in 1us intervals.
4384          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4385          */
4386         if (timeout_ns == USB3_LPM_DISABLED)
4387                 timeout_ns = 1;
4388         else
4389                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4390
4391         /* If the necessary timeout value is bigger than what we can set in the
4392          * USB 3.0 hub, we have to disable hub-initiated U1.
4393          */
4394         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4395                 return timeout_ns;
4396         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4397                         "due to long timeout %llu ms\n", timeout_ns);
4398         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4399 }
4400
4401 /* The U2 timeout should be the maximum of:
4402  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4403  *  - largest bInterval of any active periodic endpoint (to avoid going
4404  *    into lower power link states between intervals).
4405  *  - the U2 Exit Latency of the device
4406  */
4407 static unsigned long long xhci_calculate_intel_u2_timeout(
4408                 struct usb_device *udev,
4409                 struct usb_endpoint_descriptor *desc)
4410 {
4411         unsigned long long timeout_ns;
4412         unsigned long long u2_del_ns;
4413
4414         timeout_ns = 10 * 1000 * 1000;
4415
4416         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4417                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4418                 timeout_ns = xhci_service_interval_to_ns(desc);
4419
4420         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4421         if (u2_del_ns > timeout_ns)
4422                 timeout_ns = u2_del_ns;
4423
4424         return timeout_ns;
4425 }
4426
4427 /* Returns the hub-encoded U2 timeout value. */
4428 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4429                 struct usb_device *udev,
4430                 struct usb_endpoint_descriptor *desc)
4431 {
4432         unsigned long long timeout_ns;
4433
4434         if (xhci->quirks & XHCI_INTEL_HOST)
4435                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4436         else
4437                 timeout_ns = udev->u2_params.sel;
4438
4439         /* The U2 timeout is encoded in 256us intervals */
4440         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4441         /* If the necessary timeout value is bigger than what we can set in the
4442          * USB 3.0 hub, we have to disable hub-initiated U2.
4443          */
4444         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4445                 return timeout_ns;
4446         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4447                         "due to long timeout %llu ms\n", timeout_ns);
4448         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4449 }
4450
4451 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4452                 struct usb_device *udev,
4453                 struct usb_endpoint_descriptor *desc,
4454                 enum usb3_link_state state,
4455                 u16 *timeout)
4456 {
4457         if (state == USB3_LPM_U1)
4458                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4459         else if (state == USB3_LPM_U2)
4460                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4461
4462         return USB3_LPM_DISABLED;
4463 }
4464
4465 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4466                 struct usb_device *udev,
4467                 struct usb_endpoint_descriptor *desc,
4468                 enum usb3_link_state state,
4469                 u16 *timeout)
4470 {
4471         u16 alt_timeout;
4472
4473         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4474                 desc, state, timeout);
4475
4476         /* If we found we can't enable hub-initiated LPM, or
4477          * the U1 or U2 exit latency was too high to allow
4478          * device-initiated LPM as well, just stop searching.
4479          */
4480         if (alt_timeout == USB3_LPM_DISABLED ||
4481                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4482                 *timeout = alt_timeout;
4483                 return -E2BIG;
4484         }
4485         if (alt_timeout > *timeout)
4486                 *timeout = alt_timeout;
4487         return 0;
4488 }
4489
4490 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4491                 struct usb_device *udev,
4492                 struct usb_host_interface *alt,
4493                 enum usb3_link_state state,
4494                 u16 *timeout)
4495 {
4496         int j;
4497
4498         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4499                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4500                                         &alt->endpoint[j].desc, state, timeout))
4501                         return -E2BIG;
4502                 continue;
4503         }
4504         return 0;
4505 }
4506
4507 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4508                 enum usb3_link_state state)
4509 {
4510         struct usb_device *parent;
4511         unsigned int num_hubs;
4512
4513         if (state == USB3_LPM_U2)
4514                 return 0;
4515
4516         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4517         for (parent = udev->parent, num_hubs = 0; parent->parent;
4518                         parent = parent->parent)
4519                 num_hubs++;
4520
4521         if (num_hubs < 2)
4522                 return 0;
4523
4524         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4525                         " below second-tier hub.\n");
4526         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4527                         "to decrease power consumption.\n");
4528         return -E2BIG;
4529 }
4530
4531 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4532                 struct usb_device *udev,
4533                 enum usb3_link_state state)
4534 {
4535         if (xhci->quirks & XHCI_INTEL_HOST)
4536                 return xhci_check_intel_tier_policy(udev, state);
4537         else
4538                 return 0;
4539 }
4540
4541 /* Returns the U1 or U2 timeout that should be enabled.
4542  * If the tier check or timeout setting functions return with a non-zero exit
4543  * code, that means the timeout value has been finalized and we shouldn't look
4544  * at any more endpoints.
4545  */
4546 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4547                         struct usb_device *udev, enum usb3_link_state state)
4548 {
4549         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4550         struct usb_host_config *config;
4551         char *state_name;
4552         int i;
4553         u16 timeout = USB3_LPM_DISABLED;
4554
4555         if (state == USB3_LPM_U1)
4556                 state_name = "U1";
4557         else if (state == USB3_LPM_U2)
4558                 state_name = "U2";
4559         else {
4560                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4561                                 state);
4562                 return timeout;
4563         }
4564
4565         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4566                 return timeout;
4567
4568         /* Gather some information about the currently installed configuration
4569          * and alternate interface settings.
4570          */
4571         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4572                         state, &timeout))
4573                 return timeout;
4574
4575         config = udev->actconfig;
4576         if (!config)
4577                 return timeout;
4578
4579         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4580                 struct usb_driver *driver;
4581                 struct usb_interface *intf = config->interface[i];
4582
4583                 if (!intf)
4584                         continue;
4585
4586                 /* Check if any currently bound drivers want hub-initiated LPM
4587                  * disabled.
4588                  */
4589                 if (intf->dev.driver) {
4590                         driver = to_usb_driver(intf->dev.driver);
4591                         if (driver && driver->disable_hub_initiated_lpm) {
4592                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4593                                                 "at request of driver %s\n",
4594                                                 state_name, driver->name);
4595                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4596                         }
4597                 }
4598
4599                 /* Not sure how this could happen... */
4600                 if (!intf->cur_altsetting)
4601                         continue;
4602
4603                 if (xhci_update_timeout_for_interface(xhci, udev,
4604                                         intf->cur_altsetting,
4605                                         state, &timeout))
4606                         return timeout;
4607         }
4608         return timeout;
4609 }
4610
4611 static int calculate_max_exit_latency(struct usb_device *udev,
4612                 enum usb3_link_state state_changed,
4613                 u16 hub_encoded_timeout)
4614 {
4615         unsigned long long u1_mel_us = 0;
4616         unsigned long long u2_mel_us = 0;
4617         unsigned long long mel_us = 0;
4618         bool disabling_u1;
4619         bool disabling_u2;
4620         bool enabling_u1;
4621         bool enabling_u2;
4622
4623         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4624                         hub_encoded_timeout == USB3_LPM_DISABLED);
4625         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4626                         hub_encoded_timeout == USB3_LPM_DISABLED);
4627
4628         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4629                         hub_encoded_timeout != USB3_LPM_DISABLED);
4630         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4631                         hub_encoded_timeout != USB3_LPM_DISABLED);
4632
4633         /* If U1 was already enabled and we're not disabling it,
4634          * or we're going to enable U1, account for the U1 max exit latency.
4635          */
4636         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4637                         enabling_u1)
4638                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4639         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4640                         enabling_u2)
4641                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4642
4643         if (u1_mel_us > u2_mel_us)
4644                 mel_us = u1_mel_us;
4645         else
4646                 mel_us = u2_mel_us;
4647         /* xHCI host controller max exit latency field is only 16 bits wide. */
4648         if (mel_us > MAX_EXIT) {
4649                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4650                                 "is too big.\n", mel_us);
4651                 return -E2BIG;
4652         }
4653         return mel_us;
4654 }
4655
4656 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4657 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4658                         struct usb_device *udev, enum usb3_link_state state)
4659 {
4660         struct xhci_hcd *xhci;
4661         u16 hub_encoded_timeout;
4662         int mel;
4663         int ret;
4664
4665         xhci = hcd_to_xhci(hcd);
4666         /* The LPM timeout values are pretty host-controller specific, so don't
4667          * enable hub-initiated timeouts unless the vendor has provided
4668          * information about their timeout algorithm.
4669          */
4670         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4671                         !xhci->devs[udev->slot_id])
4672                 return USB3_LPM_DISABLED;
4673
4674         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4675         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4676         if (mel < 0) {
4677                 /* Max Exit Latency is too big, disable LPM. */
4678                 hub_encoded_timeout = USB3_LPM_DISABLED;
4679                 mel = 0;
4680         }
4681
4682         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4683         if (ret)
4684                 return ret;
4685         return hub_encoded_timeout;
4686 }
4687
4688 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4689                         struct usb_device *udev, enum usb3_link_state state)
4690 {
4691         struct xhci_hcd *xhci;
4692         u16 mel;
4693
4694         xhci = hcd_to_xhci(hcd);
4695         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4696                         !xhci->devs[udev->slot_id])
4697                 return 0;
4698
4699         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4700         return xhci_change_max_exit_latency(xhci, udev, mel);
4701 }
4702 #else /* CONFIG_PM */
4703
4704 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4705                                 struct usb_device *udev, int enable)
4706 {
4707         return 0;
4708 }
4709
4710 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4711 {
4712         return 0;
4713 }
4714
4715 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4716                         struct usb_device *udev, enum usb3_link_state state)
4717 {
4718         return USB3_LPM_DISABLED;
4719 }
4720
4721 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4722                         struct usb_device *udev, enum usb3_link_state state)
4723 {
4724         return 0;
4725 }
4726 #endif  /* CONFIG_PM */
4727
4728 /*-------------------------------------------------------------------------*/
4729
4730 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4731  * internal data structures for the device.
4732  */
4733 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4734                         struct usb_tt *tt, gfp_t mem_flags)
4735 {
4736         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4737         struct xhci_virt_device *vdev;
4738         struct xhci_command *config_cmd;
4739         struct xhci_input_control_ctx *ctrl_ctx;
4740         struct xhci_slot_ctx *slot_ctx;
4741         unsigned long flags;
4742         unsigned think_time;
4743         int ret;
4744
4745         /* Ignore root hubs */
4746         if (!hdev->parent)
4747                 return 0;
4748
4749         vdev = xhci->devs[hdev->slot_id];
4750         if (!vdev) {
4751                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4752                 return -EINVAL;
4753         }
4754         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4755         if (!config_cmd) {
4756                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4757                 return -ENOMEM;
4758         }
4759         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4760         if (!ctrl_ctx) {
4761                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4762                                 __func__);
4763                 xhci_free_command(xhci, config_cmd);
4764                 return -ENOMEM;
4765         }
4766
4767         spin_lock_irqsave(&xhci->lock, flags);
4768         if (hdev->speed == USB_SPEED_HIGH &&
4769                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4770                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4771                 xhci_free_command(xhci, config_cmd);
4772                 spin_unlock_irqrestore(&xhci->lock, flags);
4773                 return -ENOMEM;
4774         }
4775
4776         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4777         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4778         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4779         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4780         /*
4781          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4782          * but it may be already set to 1 when setup an xHCI virtual
4783          * device, so clear it anyway.
4784          */
4785         if (tt->multi)
4786                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4787         else if (hdev->speed == USB_SPEED_FULL)
4788                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4789
4790         if (xhci->hci_version > 0x95) {
4791                 xhci_dbg(xhci, "xHCI version %x needs hub "
4792                                 "TT think time and number of ports\n",
4793                                 (unsigned int) xhci->hci_version);
4794                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4795                 /* Set TT think time - convert from ns to FS bit times.
4796                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4797                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4798                  *
4799                  * xHCI 1.0: this field shall be 0 if the device is not a
4800                  * High-spped hub.
4801                  */
4802                 think_time = tt->think_time;
4803                 if (think_time != 0)
4804                         think_time = (think_time / 666) - 1;
4805                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4806                         slot_ctx->tt_info |=
4807                                 cpu_to_le32(TT_THINK_TIME(think_time));
4808         } else {
4809                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4810                                 "TT think time or number of ports\n",
4811                                 (unsigned int) xhci->hci_version);
4812         }
4813         slot_ctx->dev_state = 0;
4814         spin_unlock_irqrestore(&xhci->lock, flags);
4815
4816         xhci_dbg(xhci, "Set up %s for hub device.\n",
4817                         (xhci->hci_version > 0x95) ?
4818                         "configure endpoint" : "evaluate context");
4819         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4820         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4821
4822         /* Issue and wait for the configure endpoint or
4823          * evaluate context command.
4824          */
4825         if (xhci->hci_version > 0x95)
4826                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4827                                 false, false);
4828         else
4829                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4830                                 true, false);
4831
4832         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4833         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4834
4835         xhci_free_command(xhci, config_cmd);
4836         return ret;
4837 }
4838
4839 int xhci_get_frame(struct usb_hcd *hcd)
4840 {
4841         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4842         /* EHCI mods by the periodic size.  Why? */
4843         return readl(&xhci->run_regs->microframe_index) >> 3;
4844 }
4845
4846 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4847 {
4848         struct xhci_hcd         *xhci;
4849         struct device           *dev = hcd->self.controller;
4850         int                     retval;
4851
4852         /* Accept arbitrarily long scatter-gather lists */
4853         hcd->self.sg_tablesize = ~0;
4854
4855         /* support to build packet from discontinuous buffers */
4856         hcd->self.no_sg_constraint = 1;
4857
4858         /* XHCI controllers don't stop the ep queue on short packets :| */
4859         hcd->self.no_stop_on_short = 1;
4860
4861         xhci = hcd_to_xhci(hcd);
4862
4863         if (usb_hcd_is_primary_hcd(hcd)) {
4864                 xhci->main_hcd = hcd;
4865                 /* Mark the first roothub as being USB 2.0.
4866                  * The xHCI driver will register the USB 3.0 roothub.
4867                  */
4868                 hcd->speed = HCD_USB2;
4869                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4870                 /*
4871                  * USB 2.0 roothub under xHCI has an integrated TT,
4872                  * (rate matching hub) as opposed to having an OHCI/UHCI
4873                  * companion controller.
4874                  */
4875                 hcd->has_tt = 1;
4876         } else {
4877                 if (xhci->sbrn == 0x31) {
4878                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4879                         hcd->speed = HCD_USB31;
4880                 }
4881                 /* xHCI private pointer was set in xhci_pci_probe for the second
4882                  * registered roothub.
4883                  */
4884                 return 0;
4885         }
4886
4887         mutex_init(&xhci->mutex);
4888         xhci->cap_regs = hcd->regs;
4889         xhci->op_regs = hcd->regs +
4890                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4891         xhci->run_regs = hcd->regs +
4892                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4893         /* Cache read-only capability registers */
4894         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4895         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4896         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4897         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4898         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4899         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4900         if (xhci->hci_version > 0x100)
4901                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4902         xhci_print_registers(xhci);
4903
4904         xhci->quirks = quirks;
4905
4906         get_quirks(dev, xhci);
4907
4908         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4909          * success event after a short transfer. This quirk will ignore such
4910          * spurious event.
4911          */
4912         if (xhci->hci_version > 0x96)
4913                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4914
4915         /* Make sure the HC is halted. */
4916         retval = xhci_halt(xhci);
4917         if (retval)
4918                 return retval;
4919
4920         xhci_dbg(xhci, "Resetting HCD\n");
4921         /* Reset the internal HC memory state and registers. */
4922         retval = xhci_reset(xhci);
4923         if (retval)
4924                 return retval;
4925         xhci_dbg(xhci, "Reset complete\n");
4926
4927         /* Set dma_mask and coherent_dma_mask to 64-bits,
4928          * if xHC supports 64-bit addressing */
4929         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4930                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4931                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4932                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4933         } else {
4934                 /*
4935                  * This is to avoid error in cases where a 32-bit USB
4936                  * controller is used on a 64-bit capable system.
4937                  */
4938                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4939                 if (retval)
4940                         return retval;
4941                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4942                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4943         }
4944
4945         xhci_dbg(xhci, "Calling HCD init\n");
4946         /* Initialize HCD and host controller data structures. */
4947         retval = xhci_init(hcd);
4948         if (retval)
4949                 return retval;
4950         xhci_dbg(xhci, "Called HCD init\n");
4951
4952         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4953                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4954
4955         return 0;
4956 }
4957 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4958
4959 static const struct hc_driver xhci_hc_driver = {
4960         .description =          "xhci-hcd",
4961         .product_desc =         "xHCI Host Controller",
4962         .hcd_priv_size =        sizeof(struct xhci_hcd *),
4963
4964         /*
4965          * generic hardware linkage
4966          */
4967         .irq =                  xhci_irq,
4968         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4969
4970         /*
4971          * basic lifecycle operations
4972          */
4973         .reset =                NULL, /* set in xhci_init_driver() */
4974         .start =                xhci_run,
4975         .stop =                 xhci_stop,
4976         .shutdown =             xhci_shutdown,
4977
4978         /*
4979          * managing i/o requests and associated device resources
4980          */
4981         .urb_enqueue =          xhci_urb_enqueue,
4982         .urb_dequeue =          xhci_urb_dequeue,
4983         .alloc_dev =            xhci_alloc_dev,
4984         .free_dev =             xhci_free_dev,
4985         .alloc_streams =        xhci_alloc_streams,
4986         .free_streams =         xhci_free_streams,
4987         .add_endpoint =         xhci_add_endpoint,
4988         .drop_endpoint =        xhci_drop_endpoint,
4989         .endpoint_reset =       xhci_endpoint_reset,
4990         .check_bandwidth =      xhci_check_bandwidth,
4991         .reset_bandwidth =      xhci_reset_bandwidth,
4992         .address_device =       xhci_address_device,
4993         .enable_device =        xhci_enable_device,
4994         .update_hub_device =    xhci_update_hub_device,
4995         .reset_device =         xhci_discover_or_reset_device,
4996
4997         /*
4998          * scheduling support
4999          */
5000         .get_frame_number =     xhci_get_frame,
5001
5002         /*
5003          * root hub support
5004          */
5005         .hub_control =          xhci_hub_control,
5006         .hub_status_data =      xhci_hub_status_data,
5007         .bus_suspend =          xhci_bus_suspend,
5008         .bus_resume =           xhci_bus_resume,
5009
5010         /*
5011          * call back when device connected and addressed
5012          */
5013         .update_device =        xhci_update_device,
5014         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5015         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5016         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5017         .find_raw_port_number = xhci_find_raw_port_number,
5018 };
5019
5020 void xhci_init_driver(struct hc_driver *drv,
5021                       const struct xhci_driver_overrides *over)
5022 {
5023         BUG_ON(!over);
5024
5025         /* Copy the generic table to drv then apply the overrides */
5026         *drv = xhci_hc_driver;
5027
5028         if (over) {
5029                 drv->hcd_priv_size += over->extra_priv_size;
5030                 if (over->reset)
5031                         drv->reset = over->reset;
5032                 if (over->start)
5033                         drv->start = over->start;
5034         }
5035 }
5036 EXPORT_SYMBOL_GPL(xhci_init_driver);
5037
5038 MODULE_DESCRIPTION(DRIVER_DESC);
5039 MODULE_AUTHOR(DRIVER_AUTHOR);
5040 MODULE_LICENSE("GPL");
5041
5042 static int __init xhci_hcd_init(void)
5043 {
5044         /*
5045          * Check the compiler generated sizes of structures that must be laid
5046          * out in specific ways for hardware access.
5047          */
5048         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5049         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5050         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5051         /* xhci_device_control has eight fields, and also
5052          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5053          */
5054         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5055         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5056         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5057         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5058         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5059         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5060         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5061
5062         if (usb_disabled())
5063                 return -ENODEV;
5064
5065         return 0;
5066 }
5067
5068 /*
5069  * If an init function is provided, an exit function must also be provided
5070  * to allow module unload.
5071  */
5072 static void __exit xhci_hcd_fini(void) { }
5073
5074 module_init(xhci_hcd_init);
5075 module_exit(xhci_hcd_fini);