Merge remote-tracking branch 'lsk/v4.4/topic/mm-kaslr' into linux-linaro-lsk-v4.4
[firefly-linux-kernel-4.4.55.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
39
40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
41 static int link_quirk;
42 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
44
45 static unsigned int quirks;
46 module_param(quirks, uint, S_IRUGO);
47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
48
49 /* TODO: copied from ehci-hcd.c - can this be refactored? */
50 /*
51  * xhci_handshake - spin reading hc until handshake completes or fails
52  * @ptr: address of hc register to be read
53  * @mask: bits to look at in result of read
54  * @done: value of those bits when handshake succeeds
55  * @usec: timeout in microseconds
56  *
57  * Returns negative errno, or zero on success
58  *
59  * Success happens when the "mask" bits have the specified value (hardware
60  * handshake done).  There are two failure modes:  "usec" have passed (major
61  * hardware flakeout), or the register reads as all-ones (hardware removed).
62  */
63 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
64 {
65         u32     result;
66
67         do {
68                 result = readl(ptr);
69                 if (result == ~(u32)0)          /* card removed */
70                         return -ENODEV;
71                 result &= mask;
72                 if (result == done)
73                         return 0;
74                 udelay(1);
75                 usec--;
76         } while (usec > 0);
77         return -ETIMEDOUT;
78 }
79
80 /*
81  * Disable interrupts and begin the xHCI halting process.
82  */
83 void xhci_quiesce(struct xhci_hcd *xhci)
84 {
85         u32 halted;
86         u32 cmd;
87         u32 mask;
88
89         mask = ~(XHCI_IRQS);
90         halted = readl(&xhci->op_regs->status) & STS_HALT;
91         if (!halted)
92                 mask &= ~CMD_RUN;
93
94         cmd = readl(&xhci->op_regs->command);
95         cmd &= mask;
96         writel(cmd, &xhci->op_regs->command);
97 }
98
99 /*
100  * Force HC into halt state.
101  *
102  * Disable any IRQs and clear the run/stop bit.
103  * HC will complete any current and actively pipelined transactions, and
104  * should halt within 16 ms of the run/stop bit being cleared.
105  * Read HC Halted bit in the status register to see when the HC is finished.
106  */
107 int xhci_halt(struct xhci_hcd *xhci)
108 {
109         int ret;
110         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
111         xhci_quiesce(xhci);
112
113         ret = xhci_handshake(&xhci->op_regs->status,
114                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
115         if (!ret) {
116                 xhci->xhc_state |= XHCI_STATE_HALTED;
117                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
118         } else
119                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
120                                 XHCI_MAX_HALT_USEC);
121         return ret;
122 }
123
124 /*
125  * Set the run bit and wait for the host to be running.
126  */
127 static int xhci_start(struct xhci_hcd *xhci)
128 {
129         u32 temp;
130         int ret;
131
132         temp = readl(&xhci->op_regs->command);
133         temp |= (CMD_RUN);
134         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
135                         temp);
136         writel(temp, &xhci->op_regs->command);
137
138         /*
139          * Wait for the HCHalted Status bit to be 0 to indicate the host is
140          * running.
141          */
142         ret = xhci_handshake(&xhci->op_regs->status,
143                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
144         if (ret == -ETIMEDOUT)
145                 xhci_err(xhci, "Host took too long to start, "
146                                 "waited %u microseconds.\n",
147                                 XHCI_MAX_HALT_USEC);
148         if (!ret)
149                 /* clear state flags. Including dying, halted or removing */
150                 xhci->xhc_state = 0;
151
152         return ret;
153 }
154
155 /*
156  * Reset a halted HC.
157  *
158  * This resets pipelines, timers, counters, state machines, etc.
159  * Transactions will be terminated immediately, and operational registers
160  * will be set to their defaults.
161  */
162 int xhci_reset(struct xhci_hcd *xhci)
163 {
164         u32 command;
165         u32 state;
166         int ret, i;
167
168         state = readl(&xhci->op_regs->status);
169         if ((state & STS_HALT) == 0) {
170                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
171                 return 0;
172         }
173
174         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
175         command = readl(&xhci->op_regs->command);
176         command |= CMD_RESET;
177         writel(command, &xhci->op_regs->command);
178
179         /* Existing Intel xHCI controllers require a delay of 1 mS,
180          * after setting the CMD_RESET bit, and before accessing any
181          * HC registers. This allows the HC to complete the
182          * reset operation and be ready for HC register access.
183          * Without this delay, the subsequent HC register access,
184          * may result in a system hang very rarely.
185          */
186         if (xhci->quirks & XHCI_INTEL_HOST)
187                 udelay(1000);
188
189         ret = xhci_handshake(&xhci->op_regs->command,
190                         CMD_RESET, 0, 10 * 1000 * 1000);
191         if (ret)
192                 return ret;
193
194         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195                          "Wait for controller to be ready for doorbell rings");
196         /*
197          * xHCI cannot write to any doorbells or operational registers other
198          * than status until the "Controller Not Ready" flag is cleared.
199          */
200         ret = xhci_handshake(&xhci->op_regs->status,
201                         STS_CNR, 0, 10 * 1000 * 1000);
202
203         for (i = 0; i < 2; ++i) {
204                 xhci->bus_state[i].port_c_suspend = 0;
205                 xhci->bus_state[i].suspended_ports = 0;
206                 xhci->bus_state[i].resuming_ports = 0;
207         }
208
209         return ret;
210 }
211
212 #ifdef CONFIG_PCI
213 static int xhci_free_msi(struct xhci_hcd *xhci)
214 {
215         int i;
216
217         if (!xhci->msix_entries)
218                 return -EINVAL;
219
220         for (i = 0; i < xhci->msix_count; i++)
221                 if (xhci->msix_entries[i].vector)
222                         free_irq(xhci->msix_entries[i].vector,
223                                         xhci_to_hcd(xhci));
224         return 0;
225 }
226
227 /*
228  * Set up MSI
229  */
230 static int xhci_setup_msi(struct xhci_hcd *xhci)
231 {
232         int ret;
233         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
234
235         ret = pci_enable_msi(pdev);
236         if (ret) {
237                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238                                 "failed to allocate MSI entry");
239                 return ret;
240         }
241
242         ret = request_irq(pdev->irq, xhci_msi_irq,
243                                 0, "xhci_hcd", xhci_to_hcd(xhci));
244         if (ret) {
245                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
246                                 "disable MSI interrupt");
247                 pci_disable_msi(pdev);
248         }
249
250         return ret;
251 }
252
253 /*
254  * Free IRQs
255  * free all IRQs request
256  */
257 static void xhci_free_irq(struct xhci_hcd *xhci)
258 {
259         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
260         int ret;
261
262         /* return if using legacy interrupt */
263         if (xhci_to_hcd(xhci)->irq > 0)
264                 return;
265
266         ret = xhci_free_msi(xhci);
267         if (!ret)
268                 return;
269         if (pdev->irq > 0)
270                 free_irq(pdev->irq, xhci_to_hcd(xhci));
271
272         return;
273 }
274
275 /*
276  * Set up MSI-X
277  */
278 static int xhci_setup_msix(struct xhci_hcd *xhci)
279 {
280         int i, ret = 0;
281         struct usb_hcd *hcd = xhci_to_hcd(xhci);
282         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
283
284         /*
285          * calculate number of msi-x vectors supported.
286          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
287          *   with max number of interrupters based on the xhci HCSPARAMS1.
288          * - num_online_cpus: maximum msi-x vectors per CPUs core.
289          *   Add additional 1 vector to ensure always available interrupt.
290          */
291         xhci->msix_count = min(num_online_cpus() + 1,
292                                 HCS_MAX_INTRS(xhci->hcs_params1));
293
294         xhci->msix_entries =
295                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
296                                 GFP_KERNEL);
297         if (!xhci->msix_entries) {
298                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
299                 return -ENOMEM;
300         }
301
302         for (i = 0; i < xhci->msix_count; i++) {
303                 xhci->msix_entries[i].entry = i;
304                 xhci->msix_entries[i].vector = 0;
305         }
306
307         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
308         if (ret) {
309                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310                                 "Failed to enable MSI-X");
311                 goto free_entries;
312         }
313
314         for (i = 0; i < xhci->msix_count; i++) {
315                 ret = request_irq(xhci->msix_entries[i].vector,
316                                 xhci_msi_irq,
317                                 0, "xhci_hcd", xhci_to_hcd(xhci));
318                 if (ret)
319                         goto disable_msix;
320         }
321
322         hcd->msix_enabled = 1;
323         return ret;
324
325 disable_msix:
326         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
327         xhci_free_irq(xhci);
328         pci_disable_msix(pdev);
329 free_entries:
330         kfree(xhci->msix_entries);
331         xhci->msix_entries = NULL;
332         return ret;
333 }
334
335 /* Free any IRQs and disable MSI-X */
336 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
337 {
338         struct usb_hcd *hcd = xhci_to_hcd(xhci);
339         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
340
341         if (xhci->quirks & XHCI_PLAT)
342                 return;
343
344         xhci_free_irq(xhci);
345
346         if (xhci->msix_entries) {
347                 pci_disable_msix(pdev);
348                 kfree(xhci->msix_entries);
349                 xhci->msix_entries = NULL;
350         } else {
351                 pci_disable_msi(pdev);
352         }
353
354         hcd->msix_enabled = 0;
355         return;
356 }
357
358 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
359 {
360         int i;
361
362         if (xhci->msix_entries) {
363                 for (i = 0; i < xhci->msix_count; i++)
364                         synchronize_irq(xhci->msix_entries[i].vector);
365         }
366 }
367
368 static int xhci_try_enable_msi(struct usb_hcd *hcd)
369 {
370         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
371         struct pci_dev  *pdev;
372         int ret;
373
374         /* The xhci platform device has set up IRQs through usb_add_hcd. */
375         if (xhci->quirks & XHCI_PLAT)
376                 return 0;
377
378         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
379         /*
380          * Some Fresco Logic host controllers advertise MSI, but fail to
381          * generate interrupts.  Don't even try to enable MSI.
382          */
383         if (xhci->quirks & XHCI_BROKEN_MSI)
384                 goto legacy_irq;
385
386         /* unregister the legacy interrupt */
387         if (hcd->irq)
388                 free_irq(hcd->irq, hcd);
389         hcd->irq = 0;
390
391         ret = xhci_setup_msix(xhci);
392         if (ret)
393                 /* fall back to msi*/
394                 ret = xhci_setup_msi(xhci);
395
396         if (!ret)
397                 /* hcd->irq is 0, we have MSI */
398                 return 0;
399
400         if (!pdev->irq) {
401                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
402                 return -EINVAL;
403         }
404
405  legacy_irq:
406         if (!strlen(hcd->irq_descr))
407                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
408                          hcd->driver->description, hcd->self.busnum);
409
410         /* fall back to legacy interrupt*/
411         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
412                         hcd->irq_descr, hcd);
413         if (ret) {
414                 xhci_err(xhci, "request interrupt %d failed\n",
415                                 pdev->irq);
416                 return ret;
417         }
418         hcd->irq = pdev->irq;
419         return 0;
420 }
421
422 #else
423
424 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
425 {
426         return 0;
427 }
428
429 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
430 {
431 }
432
433 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
434 {
435 }
436
437 #endif
438
439 static void compliance_mode_recovery(unsigned long arg)
440 {
441         struct xhci_hcd *xhci;
442         struct usb_hcd *hcd;
443         u32 temp;
444         int i;
445
446         xhci = (struct xhci_hcd *)arg;
447
448         for (i = 0; i < xhci->num_usb3_ports; i++) {
449                 temp = readl(xhci->usb3_ports[i]);
450                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
451                         /*
452                          * Compliance Mode Detected. Letting USB Core
453                          * handle the Warm Reset
454                          */
455                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
456                                         "Compliance mode detected->port %d",
457                                         i + 1);
458                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
459                                         "Attempting compliance mode recovery");
460                         hcd = xhci->shared_hcd;
461
462                         if (hcd->state == HC_STATE_SUSPENDED)
463                                 usb_hcd_resume_root_hub(hcd);
464
465                         usb_hcd_poll_rh_status(hcd);
466                 }
467         }
468
469         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
470                 mod_timer(&xhci->comp_mode_recovery_timer,
471                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 }
473
474 /*
475  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
476  * that causes ports behind that hardware to enter compliance mode sometimes.
477  * The quirk creates a timer that polls every 2 seconds the link state of
478  * each host controller's port and recovers it by issuing a Warm reset
479  * if Compliance mode is detected, otherwise the port will become "dead" (no
480  * device connections or disconnections will be detected anymore). Becasue no
481  * status event is generated when entering compliance mode (per xhci spec),
482  * this quirk is needed on systems that have the failing hardware installed.
483  */
484 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
485 {
486         xhci->port_status_u0 = 0;
487         setup_timer(&xhci->comp_mode_recovery_timer,
488                     compliance_mode_recovery, (unsigned long)xhci);
489         xhci->comp_mode_recovery_timer.expires = jiffies +
490                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
491
492         set_timer_slack(&xhci->comp_mode_recovery_timer,
493                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
494         add_timer(&xhci->comp_mode_recovery_timer);
495         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496                         "Compliance mode recovery timer initialized");
497 }
498
499 /*
500  * This function identifies the systems that have installed the SN65LVPE502CP
501  * USB3.0 re-driver and that need the Compliance Mode Quirk.
502  * Systems:
503  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
504  */
505 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
506 {
507         const char *dmi_product_name, *dmi_sys_vendor;
508
509         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
510         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
511         if (!dmi_product_name || !dmi_sys_vendor)
512                 return false;
513
514         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
515                 return false;
516
517         if (strstr(dmi_product_name, "Z420") ||
518                         strstr(dmi_product_name, "Z620") ||
519                         strstr(dmi_product_name, "Z820") ||
520                         strstr(dmi_product_name, "Z1 Workstation"))
521                 return true;
522
523         return false;
524 }
525
526 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
527 {
528         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
529 }
530
531
532 /*
533  * Initialize memory for HCD and xHC (one-time init).
534  *
535  * Program the PAGESIZE register, initialize the device context array, create
536  * device contexts (?), set up a command ring segment (or two?), create event
537  * ring (one for now).
538  */
539 int xhci_init(struct usb_hcd *hcd)
540 {
541         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
542         int retval = 0;
543
544         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
545         spin_lock_init(&xhci->lock);
546         if (xhci->hci_version == 0x95 && link_quirk) {
547                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
548                                 "QUIRK: Not clearing Link TRB chain bits.");
549                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
550         } else {
551                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552                                 "xHCI doesn't need link TRB QUIRK");
553         }
554         retval = xhci_mem_init(xhci, GFP_KERNEL);
555         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
556
557         /* Initializing Compliance Mode Recovery Data If Needed */
558         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
559                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
560                 compliance_mode_recovery_timer_init(xhci);
561         }
562
563         return retval;
564 }
565
566 /*-------------------------------------------------------------------------*/
567
568
569 static int xhci_run_finished(struct xhci_hcd *xhci)
570 {
571         if (xhci_start(xhci)) {
572                 xhci_halt(xhci);
573                 return -ENODEV;
574         }
575         xhci->shared_hcd->state = HC_STATE_RUNNING;
576         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
577
578         if (xhci->quirks & XHCI_NEC_HOST)
579                 xhci_ring_cmd_db(xhci);
580
581         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
582                         "Finished xhci_run for USB3 roothub");
583         return 0;
584 }
585
586 /*
587  * Start the HC after it was halted.
588  *
589  * This function is called by the USB core when the HC driver is added.
590  * Its opposite is xhci_stop().
591  *
592  * xhci_init() must be called once before this function can be called.
593  * Reset the HC, enable device slot contexts, program DCBAAP, and
594  * set command ring pointer and event ring pointer.
595  *
596  * Setup MSI-X vectors and enable interrupts.
597  */
598 int xhci_run(struct usb_hcd *hcd)
599 {
600         u32 temp;
601         u64 temp_64;
602         int ret;
603         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
604
605         /* Start the xHCI host controller running only after the USB 2.0 roothub
606          * is setup.
607          */
608
609         hcd->uses_new_polling = 1;
610         if (!usb_hcd_is_primary_hcd(hcd))
611                 return xhci_run_finished(xhci);
612
613         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
614
615         ret = xhci_try_enable_msi(hcd);
616         if (ret)
617                 return ret;
618
619         xhci_dbg(xhci, "Command ring memory map follows:\n");
620         xhci_debug_ring(xhci, xhci->cmd_ring);
621         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
622         xhci_dbg_cmd_ptrs(xhci);
623
624         xhci_dbg(xhci, "ERST memory map follows:\n");
625         xhci_dbg_erst(xhci, &xhci->erst);
626         xhci_dbg(xhci, "Event ring:\n");
627         xhci_debug_ring(xhci, xhci->event_ring);
628         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
629         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
630         temp_64 &= ~ERST_PTR_MASK;
631         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
632                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
633
634         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635                         "// Set the interrupt modulation register");
636         temp = readl(&xhci->ir_set->irq_control);
637         temp &= ~ER_IRQ_INTERVAL_MASK;
638         temp |= (u32) 160;
639         writel(temp, &xhci->ir_set->irq_control);
640
641         /* Set the HCD state before we enable the irqs */
642         temp = readl(&xhci->op_regs->command);
643         temp |= (CMD_EIE);
644         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
645                         "// Enable interrupts, cmd = 0x%x.", temp);
646         writel(temp, &xhci->op_regs->command);
647
648         temp = readl(&xhci->ir_set->irq_pending);
649         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
650                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
651                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
652         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
653         xhci_print_ir_set(xhci, 0);
654
655         if (xhci->quirks & XHCI_NEC_HOST) {
656                 struct xhci_command *command;
657                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
658                 if (!command)
659                         return -ENOMEM;
660                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
661                                 TRB_TYPE(TRB_NEC_GET_FW));
662         }
663         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664                         "Finished xhci_run for USB2 roothub");
665         return 0;
666 }
667 EXPORT_SYMBOL_GPL(xhci_run);
668
669 /*
670  * Stop xHCI driver.
671  *
672  * This function is called by the USB core when the HC driver is removed.
673  * Its opposite is xhci_run().
674  *
675  * Disable device contexts, disable IRQs, and quiesce the HC.
676  * Reset the HC, finish any completed transactions, and cleanup memory.
677  */
678 void xhci_stop(struct usb_hcd *hcd)
679 {
680         u32 temp;
681         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
682
683         mutex_lock(&xhci->mutex);
684
685         if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
686                 spin_lock_irq(&xhci->lock);
687
688                 xhci->xhc_state |= XHCI_STATE_HALTED;
689                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
690                 xhci_halt(xhci);
691                 xhci_reset(xhci);
692
693                 spin_unlock_irq(&xhci->lock);
694         }
695
696         if (!usb_hcd_is_primary_hcd(hcd)) {
697                 mutex_unlock(&xhci->mutex);
698                 return;
699         }
700
701         xhci_cleanup_msix(xhci);
702
703         /* Deleting Compliance Mode Recovery Timer */
704         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
705                         (!(xhci_all_ports_seen_u0(xhci)))) {
706                 del_timer_sync(&xhci->comp_mode_recovery_timer);
707                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
708                                 "%s: compliance mode recovery timer deleted",
709                                 __func__);
710         }
711
712         if (xhci->quirks & XHCI_AMD_PLL_FIX)
713                 usb_amd_dev_put();
714
715         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
716                         "// Disabling event ring interrupts");
717         temp = readl(&xhci->op_regs->status);
718         writel(temp & ~STS_EINT, &xhci->op_regs->status);
719         temp = readl(&xhci->ir_set->irq_pending);
720         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
721         xhci_print_ir_set(xhci, 0);
722
723         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
724         xhci_mem_cleanup(xhci);
725         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
726                         "xhci_stop completed - status = %x",
727                         readl(&xhci->op_regs->status));
728         mutex_unlock(&xhci->mutex);
729 }
730
731 /*
732  * Shutdown HC (not bus-specific)
733  *
734  * This is called when the machine is rebooting or halting.  We assume that the
735  * machine will be powered off, and the HC's internal state will be reset.
736  * Don't bother to free memory.
737  *
738  * This will only ever be called with the main usb_hcd (the USB3 roothub).
739  */
740 void xhci_shutdown(struct usb_hcd *hcd)
741 {
742         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
743
744         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
745                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
746
747         spin_lock_irq(&xhci->lock);
748         xhci_halt(xhci);
749         /* Workaround for spurious wakeups at shutdown with HSW */
750         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
751                 xhci_reset(xhci);
752         spin_unlock_irq(&xhci->lock);
753
754         xhci_cleanup_msix(xhci);
755
756         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
757                         "xhci_shutdown completed - status = %x",
758                         readl(&xhci->op_regs->status));
759
760         /* Yet another workaround for spurious wakeups at shutdown with HSW */
761         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
762                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
763 }
764
765 #ifdef CONFIG_PM
766 static void xhci_save_registers(struct xhci_hcd *xhci)
767 {
768         xhci->s3.command = readl(&xhci->op_regs->command);
769         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
770         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
771         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
772         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
773         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
774         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
775         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
776         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
777 }
778
779 static void xhci_restore_registers(struct xhci_hcd *xhci)
780 {
781         writel(xhci->s3.command, &xhci->op_regs->command);
782         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
783         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
784         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
785         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
786         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
787         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
788         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
789         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
790 }
791
792 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
793 {
794         u64     val_64;
795
796         /* step 2: initialize command ring buffer */
797         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
798         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
799                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
800                                       xhci->cmd_ring->dequeue) &
801                  (u64) ~CMD_RING_RSVD_BITS) |
802                 xhci->cmd_ring->cycle_state;
803         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
804                         "// Setting command ring address to 0x%llx",
805                         (long unsigned long) val_64);
806         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
807 }
808
809 /*
810  * The whole command ring must be cleared to zero when we suspend the host.
811  *
812  * The host doesn't save the command ring pointer in the suspend well, so we
813  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
814  * aligned, because of the reserved bits in the command ring dequeue pointer
815  * register.  Therefore, we can't just set the dequeue pointer back in the
816  * middle of the ring (TRBs are 16-byte aligned).
817  */
818 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
819 {
820         struct xhci_ring *ring;
821         struct xhci_segment *seg;
822
823         ring = xhci->cmd_ring;
824         seg = ring->deq_seg;
825         do {
826                 memset(seg->trbs, 0,
827                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
828                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
829                         cpu_to_le32(~TRB_CYCLE);
830                 seg = seg->next;
831         } while (seg != ring->deq_seg);
832
833         /* Reset the software enqueue and dequeue pointers */
834         ring->deq_seg = ring->first_seg;
835         ring->dequeue = ring->first_seg->trbs;
836         ring->enq_seg = ring->deq_seg;
837         ring->enqueue = ring->dequeue;
838
839         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
840         /*
841          * Ring is now zeroed, so the HW should look for change of ownership
842          * when the cycle bit is set to 1.
843          */
844         ring->cycle_state = 1;
845
846         /*
847          * Reset the hardware dequeue pointer.
848          * Yes, this will need to be re-written after resume, but we're paranoid
849          * and want to make sure the hardware doesn't access bogus memory
850          * because, say, the BIOS or an SMI started the host without changing
851          * the command ring pointers.
852          */
853         xhci_set_cmd_ring_deq(xhci);
854 }
855
856 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
857 {
858         int port_index;
859         __le32 __iomem **port_array;
860         unsigned long flags;
861         u32 t1, t2;
862
863         spin_lock_irqsave(&xhci->lock, flags);
864
865         /* disble usb3 ports Wake bits*/
866         port_index = xhci->num_usb3_ports;
867         port_array = xhci->usb3_ports;
868         while (port_index--) {
869                 t1 = readl(port_array[port_index]);
870                 t1 = xhci_port_state_to_neutral(t1);
871                 t2 = t1 & ~PORT_WAKE_BITS;
872                 if (t1 != t2)
873                         writel(t2, port_array[port_index]);
874         }
875
876         /* disble usb2 ports Wake bits*/
877         port_index = xhci->num_usb2_ports;
878         port_array = xhci->usb2_ports;
879         while (port_index--) {
880                 t1 = readl(port_array[port_index]);
881                 t1 = xhci_port_state_to_neutral(t1);
882                 t2 = t1 & ~PORT_WAKE_BITS;
883                 if (t1 != t2)
884                         writel(t2, port_array[port_index]);
885         }
886
887         spin_unlock_irqrestore(&xhci->lock, flags);
888 }
889
890 /*
891  * Stop HC (not bus-specific)
892  *
893  * This is called when the machine transition into S3/S4 mode.
894  *
895  */
896 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
897 {
898         int                     rc = 0;
899         unsigned int            delay = XHCI_MAX_HALT_USEC;
900         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
901         u32                     command;
902
903         if (!hcd->state)
904                 return 0;
905
906         if (hcd->state != HC_STATE_SUSPENDED ||
907                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
908                 return -EINVAL;
909
910         /* Clear root port wake on bits if wakeup not allowed. */
911         if (!do_wakeup)
912                 xhci_disable_port_wake_on_bits(xhci);
913
914         /* Don't poll the roothubs on bus suspend. */
915         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
916         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
917         del_timer_sync(&hcd->rh_timer);
918         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
919         del_timer_sync(&xhci->shared_hcd->rh_timer);
920
921         spin_lock_irq(&xhci->lock);
922         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
923         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
924         /* step 1: stop endpoint */
925         /* skipped assuming that port suspend has done */
926
927         /* step 2: clear Run/Stop bit */
928         command = readl(&xhci->op_regs->command);
929         command &= ~CMD_RUN;
930         writel(command, &xhci->op_regs->command);
931
932         /* Some chips from Fresco Logic need an extraordinary delay */
933         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
934
935         if (xhci_handshake(&xhci->op_regs->status,
936                       STS_HALT, STS_HALT, delay)) {
937                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
938                 spin_unlock_irq(&xhci->lock);
939                 return -ETIMEDOUT;
940         }
941         xhci_clear_command_ring(xhci);
942
943         /* step 3: save registers */
944         xhci_save_registers(xhci);
945
946         /* step 4: set CSS flag */
947         command = readl(&xhci->op_regs->command);
948         command |= CMD_CSS;
949         writel(command, &xhci->op_regs->command);
950         if (xhci_handshake(&xhci->op_regs->status,
951                                 STS_SAVE, 0, 10 * 1000)) {
952                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
953                 spin_unlock_irq(&xhci->lock);
954                 return -ETIMEDOUT;
955         }
956         spin_unlock_irq(&xhci->lock);
957
958         /*
959          * Deleting Compliance Mode Recovery Timer because the xHCI Host
960          * is about to be suspended.
961          */
962         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
963                         (!(xhci_all_ports_seen_u0(xhci)))) {
964                 del_timer_sync(&xhci->comp_mode_recovery_timer);
965                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
966                                 "%s: compliance mode recovery timer deleted",
967                                 __func__);
968         }
969
970         /* step 5: remove core well power */
971         /* synchronize irq when using MSI-X */
972         xhci_msix_sync_irqs(xhci);
973
974         return rc;
975 }
976 EXPORT_SYMBOL_GPL(xhci_suspend);
977
978 /*
979  * start xHC (not bus-specific)
980  *
981  * This is called when the machine transition from S3/S4 mode.
982  *
983  */
984 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
985 {
986         u32                     command, temp = 0, status;
987         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
988         struct usb_hcd          *secondary_hcd;
989         int                     retval = 0;
990         bool                    comp_timer_running = false;
991
992         if (!hcd->state)
993                 return 0;
994
995         /* Wait a bit if either of the roothubs need to settle from the
996          * transition into bus suspend.
997          */
998         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
999                         time_before(jiffies,
1000                                 xhci->bus_state[1].next_statechange))
1001                 msleep(100);
1002
1003         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1004         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1005
1006         spin_lock_irq(&xhci->lock);
1007         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1008                 hibernated = true;
1009
1010         if (!hibernated) {
1011                 /* step 1: restore register */
1012                 xhci_restore_registers(xhci);
1013                 /* step 2: initialize command ring buffer */
1014                 xhci_set_cmd_ring_deq(xhci);
1015                 /* step 3: restore state and start state*/
1016                 /* step 3: set CRS flag */
1017                 command = readl(&xhci->op_regs->command);
1018                 command |= CMD_CRS;
1019                 writel(command, &xhci->op_regs->command);
1020                 if (xhci_handshake(&xhci->op_regs->status,
1021                               STS_RESTORE, 0, 10 * 1000)) {
1022                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1023                         spin_unlock_irq(&xhci->lock);
1024                         return -ETIMEDOUT;
1025                 }
1026                 temp = readl(&xhci->op_regs->status);
1027         }
1028
1029         /* If restore operation fails, re-initialize the HC during resume */
1030         if ((temp & STS_SRE) || hibernated) {
1031
1032                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1033                                 !(xhci_all_ports_seen_u0(xhci))) {
1034                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1035                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1036                                 "Compliance Mode Recovery Timer deleted!");
1037                 }
1038
1039                 /* Let the USB core know _both_ roothubs lost power. */
1040                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1041                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1042
1043                 xhci_dbg(xhci, "Stop HCD\n");
1044                 xhci_halt(xhci);
1045                 xhci_reset(xhci);
1046                 spin_unlock_irq(&xhci->lock);
1047                 xhci_cleanup_msix(xhci);
1048
1049                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1050                 temp = readl(&xhci->op_regs->status);
1051                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1052                 temp = readl(&xhci->ir_set->irq_pending);
1053                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1054                 xhci_print_ir_set(xhci, 0);
1055
1056                 xhci_dbg(xhci, "cleaning up memory\n");
1057                 xhci_mem_cleanup(xhci);
1058                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1059                             readl(&xhci->op_regs->status));
1060
1061                 /* USB core calls the PCI reinit and start functions twice:
1062                  * first with the primary HCD, and then with the secondary HCD.
1063                  * If we don't do the same, the host will never be started.
1064                  */
1065                 if (!usb_hcd_is_primary_hcd(hcd))
1066                         secondary_hcd = hcd;
1067                 else
1068                         secondary_hcd = xhci->shared_hcd;
1069
1070                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1071                 retval = xhci_init(hcd->primary_hcd);
1072                 if (retval)
1073                         return retval;
1074                 comp_timer_running = true;
1075
1076                 xhci_dbg(xhci, "Start the primary HCD\n");
1077                 retval = xhci_run(hcd->primary_hcd);
1078                 if (!retval) {
1079                         xhci_dbg(xhci, "Start the secondary HCD\n");
1080                         retval = xhci_run(secondary_hcd);
1081                 }
1082                 hcd->state = HC_STATE_SUSPENDED;
1083                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1084                 goto done;
1085         }
1086
1087         /* step 4: set Run/Stop bit */
1088         command = readl(&xhci->op_regs->command);
1089         command |= CMD_RUN;
1090         writel(command, &xhci->op_regs->command);
1091         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1092                   0, 250 * 1000);
1093
1094         /* step 5: walk topology and initialize portsc,
1095          * portpmsc and portli
1096          */
1097         /* this is done in bus_resume */
1098
1099         /* step 6: restart each of the previously
1100          * Running endpoints by ringing their doorbells
1101          */
1102
1103         spin_unlock_irq(&xhci->lock);
1104
1105  done:
1106         if (retval == 0) {
1107                 /* Resume root hubs only when have pending events. */
1108                 status = readl(&xhci->op_regs->status);
1109                 if (status & STS_EINT) {
1110                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1111                         usb_hcd_resume_root_hub(hcd);
1112                 }
1113         }
1114
1115         /*
1116          * If system is subject to the Quirk, Compliance Mode Timer needs to
1117          * be re-initialized Always after a system resume. Ports are subject
1118          * to suffer the Compliance Mode issue again. It doesn't matter if
1119          * ports have entered previously to U0 before system's suspension.
1120          */
1121         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1122                 compliance_mode_recovery_timer_init(xhci);
1123
1124         /* Re-enable port polling. */
1125         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1126         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1127         usb_hcd_poll_rh_status(xhci->shared_hcd);
1128         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1129         usb_hcd_poll_rh_status(hcd);
1130
1131         return retval;
1132 }
1133 EXPORT_SYMBOL_GPL(xhci_resume);
1134 #endif  /* CONFIG_PM */
1135
1136 /*-------------------------------------------------------------------------*/
1137
1138 /**
1139  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1140  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1141  * value to right shift 1 for the bitmask.
1142  *
1143  * Index  = (epnum * 2) + direction - 1,
1144  * where direction = 0 for OUT, 1 for IN.
1145  * For control endpoints, the IN index is used (OUT index is unused), so
1146  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1147  */
1148 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1149 {
1150         unsigned int index;
1151         if (usb_endpoint_xfer_control(desc))
1152                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1153         else
1154                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1155                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1156         return index;
1157 }
1158
1159 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1160  * address from the XHCI endpoint index.
1161  */
1162 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1163 {
1164         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1165         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1166         return direction | number;
1167 }
1168
1169 /* Find the flag for this endpoint (for use in the control context).  Use the
1170  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1171  * bit 1, etc.
1172  */
1173 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1174 {
1175         return 1 << (xhci_get_endpoint_index(desc) + 1);
1176 }
1177
1178 /* Find the flag for this endpoint (for use in the control context).  Use the
1179  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1180  * bit 1, etc.
1181  */
1182 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1183 {
1184         return 1 << (ep_index + 1);
1185 }
1186
1187 /* Compute the last valid endpoint context index.  Basically, this is the
1188  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1189  * we find the most significant bit set in the added contexts flags.
1190  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1191  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1192  */
1193 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1194 {
1195         return fls(added_ctxs) - 1;
1196 }
1197
1198 /* Returns 1 if the arguments are OK;
1199  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1200  */
1201 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1202                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1203                 const char *func) {
1204         struct xhci_hcd *xhci;
1205         struct xhci_virt_device *virt_dev;
1206
1207         if (!hcd || (check_ep && !ep) || !udev) {
1208                 pr_debug("xHCI %s called with invalid args\n", func);
1209                 return -EINVAL;
1210         }
1211         if (!udev->parent) {
1212                 pr_debug("xHCI %s called for root hub\n", func);
1213                 return 0;
1214         }
1215
1216         xhci = hcd_to_xhci(hcd);
1217         if (check_virt_dev) {
1218                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1219                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1220                                         func);
1221                         return -EINVAL;
1222                 }
1223
1224                 virt_dev = xhci->devs[udev->slot_id];
1225                 if (virt_dev->udev != udev) {
1226                         xhci_dbg(xhci, "xHCI %s called with udev and "
1227                                           "virt_dev does not match\n", func);
1228                         return -EINVAL;
1229                 }
1230         }
1231
1232         if (xhci->xhc_state & XHCI_STATE_HALTED)
1233                 return -ENODEV;
1234
1235         return 1;
1236 }
1237
1238 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1239                 struct usb_device *udev, struct xhci_command *command,
1240                 bool ctx_change, bool must_succeed);
1241
1242 /*
1243  * Full speed devices may have a max packet size greater than 8 bytes, but the
1244  * USB core doesn't know that until it reads the first 8 bytes of the
1245  * descriptor.  If the usb_device's max packet size changes after that point,
1246  * we need to issue an evaluate context command and wait on it.
1247  */
1248 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1249                 unsigned int ep_index, struct urb *urb)
1250 {
1251         struct xhci_container_ctx *out_ctx;
1252         struct xhci_input_control_ctx *ctrl_ctx;
1253         struct xhci_ep_ctx *ep_ctx;
1254         struct xhci_command *command;
1255         int max_packet_size;
1256         int hw_max_packet_size;
1257         int ret = 0;
1258
1259         out_ctx = xhci->devs[slot_id]->out_ctx;
1260         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1261         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1262         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1263         if (hw_max_packet_size != max_packet_size) {
1264                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1265                                 "Max Packet Size for ep 0 changed.");
1266                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1267                                 "Max packet size in usb_device = %d",
1268                                 max_packet_size);
1269                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1270                                 "Max packet size in xHCI HW = %d",
1271                                 hw_max_packet_size);
1272                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1273                                 "Issuing evaluate context command.");
1274
1275                 /* Set up the input context flags for the command */
1276                 /* FIXME: This won't work if a non-default control endpoint
1277                  * changes max packet sizes.
1278                  */
1279
1280                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1281                 if (!command)
1282                         return -ENOMEM;
1283
1284                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1285                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1286                 if (!ctrl_ctx) {
1287                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1288                                         __func__);
1289                         ret = -ENOMEM;
1290                         goto command_cleanup;
1291                 }
1292                 /* Set up the modified control endpoint 0 */
1293                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1294                                 xhci->devs[slot_id]->out_ctx, ep_index);
1295
1296                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1297                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1298                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1299
1300                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1301                 ctrl_ctx->drop_flags = 0;
1302
1303                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1304                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1305                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1306                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1307
1308                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1309                                 true, false);
1310
1311                 /* Clean up the input context for later use by bandwidth
1312                  * functions.
1313                  */
1314                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1315 command_cleanup:
1316                 kfree(command->completion);
1317                 kfree(command);
1318         }
1319         return ret;
1320 }
1321
1322 /*
1323  * non-error returns are a promise to giveback() the urb later
1324  * we drop ownership so next owner (or urb unlink) can get it
1325  */
1326 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1327 {
1328         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1329         struct xhci_td *buffer;
1330         unsigned long flags;
1331         int ret = 0;
1332         unsigned int slot_id, ep_index;
1333         struct urb_priv *urb_priv;
1334         int size, i;
1335
1336         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1337                                         true, true, __func__) <= 0)
1338                 return -EINVAL;
1339
1340         slot_id = urb->dev->slot_id;
1341         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1342
1343         if (!HCD_HW_ACCESSIBLE(hcd)) {
1344                 if (!in_interrupt())
1345                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1346                 ret = -ESHUTDOWN;
1347                 goto exit;
1348         }
1349
1350         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1351                 size = urb->number_of_packets;
1352         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1353             urb->transfer_buffer_length > 0 &&
1354             urb->transfer_flags & URB_ZERO_PACKET &&
1355             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1356                 size = 2;
1357         else
1358                 size = 1;
1359
1360         urb_priv = kzalloc(sizeof(struct urb_priv) +
1361                                   size * sizeof(struct xhci_td *), mem_flags);
1362         if (!urb_priv)
1363                 return -ENOMEM;
1364
1365         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1366         if (!buffer) {
1367                 kfree(urb_priv);
1368                 return -ENOMEM;
1369         }
1370
1371         for (i = 0; i < size; i++) {
1372                 urb_priv->td[i] = buffer;
1373                 buffer++;
1374         }
1375
1376         urb_priv->length = size;
1377         urb_priv->td_cnt = 0;
1378         urb->hcpriv = urb_priv;
1379
1380         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1381                 /* Check to see if the max packet size for the default control
1382                  * endpoint changed during FS device enumeration
1383                  */
1384                 if (urb->dev->speed == USB_SPEED_FULL) {
1385                         ret = xhci_check_maxpacket(xhci, slot_id,
1386                                         ep_index, urb);
1387                         if (ret < 0) {
1388                                 xhci_urb_free_priv(urb_priv);
1389                                 urb->hcpriv = NULL;
1390                                 return ret;
1391                         }
1392                 }
1393
1394                 /* We have a spinlock and interrupts disabled, so we must pass
1395                  * atomic context to this function, which may allocate memory.
1396                  */
1397                 spin_lock_irqsave(&xhci->lock, flags);
1398                 if (xhci->xhc_state & XHCI_STATE_DYING)
1399                         goto dying;
1400                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1401                                 slot_id, ep_index);
1402                 if (ret)
1403                         goto free_priv;
1404                 spin_unlock_irqrestore(&xhci->lock, flags);
1405         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1406                 spin_lock_irqsave(&xhci->lock, flags);
1407                 if (xhci->xhc_state & XHCI_STATE_DYING)
1408                         goto dying;
1409                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1410                                 EP_GETTING_STREAMS) {
1411                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1412                                         "is transitioning to using streams.\n");
1413                         ret = -EINVAL;
1414                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1415                                 EP_GETTING_NO_STREAMS) {
1416                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1417                                         "is transitioning to "
1418                                         "not having streams.\n");
1419                         ret = -EINVAL;
1420                 } else {
1421                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1422                                         slot_id, ep_index);
1423                 }
1424                 if (ret)
1425                         goto free_priv;
1426                 spin_unlock_irqrestore(&xhci->lock, flags);
1427         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1428                 spin_lock_irqsave(&xhci->lock, flags);
1429                 if (xhci->xhc_state & XHCI_STATE_DYING)
1430                         goto dying;
1431                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1432                                 slot_id, ep_index);
1433                 if (ret)
1434                         goto free_priv;
1435                 spin_unlock_irqrestore(&xhci->lock, flags);
1436         } else {
1437                 spin_lock_irqsave(&xhci->lock, flags);
1438                 if (xhci->xhc_state & XHCI_STATE_DYING)
1439                         goto dying;
1440                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1441                                 slot_id, ep_index);
1442                 if (ret)
1443                         goto free_priv;
1444                 spin_unlock_irqrestore(&xhci->lock, flags);
1445         }
1446 exit:
1447         return ret;
1448 dying:
1449         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1450                         "non-responsive xHCI host.\n",
1451                         urb->ep->desc.bEndpointAddress, urb);
1452         ret = -ESHUTDOWN;
1453 free_priv:
1454         xhci_urb_free_priv(urb_priv);
1455         urb->hcpriv = NULL;
1456         spin_unlock_irqrestore(&xhci->lock, flags);
1457         return ret;
1458 }
1459
1460 /* Get the right ring for the given URB.
1461  * If the endpoint supports streams, boundary check the URB's stream ID.
1462  * If the endpoint doesn't support streams, return the singular endpoint ring.
1463  */
1464 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1465                 struct urb *urb)
1466 {
1467         unsigned int slot_id;
1468         unsigned int ep_index;
1469         unsigned int stream_id;
1470         struct xhci_virt_ep *ep;
1471
1472         slot_id = urb->dev->slot_id;
1473         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1474         stream_id = urb->stream_id;
1475         ep = &xhci->devs[slot_id]->eps[ep_index];
1476         /* Common case: no streams */
1477         if (!(ep->ep_state & EP_HAS_STREAMS))
1478                 return ep->ring;
1479
1480         if (stream_id == 0) {
1481                 xhci_warn(xhci,
1482                                 "WARN: Slot ID %u, ep index %u has streams, "
1483                                 "but URB has no stream ID.\n",
1484                                 slot_id, ep_index);
1485                 return NULL;
1486         }
1487
1488         if (stream_id < ep->stream_info->num_streams)
1489                 return ep->stream_info->stream_rings[stream_id];
1490
1491         xhci_warn(xhci,
1492                         "WARN: Slot ID %u, ep index %u has "
1493                         "stream IDs 1 to %u allocated, "
1494                         "but stream ID %u is requested.\n",
1495                         slot_id, ep_index,
1496                         ep->stream_info->num_streams - 1,
1497                         stream_id);
1498         return NULL;
1499 }
1500
1501 /*
1502  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1503  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1504  * should pick up where it left off in the TD, unless a Set Transfer Ring
1505  * Dequeue Pointer is issued.
1506  *
1507  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1508  * the ring.  Since the ring is a contiguous structure, they can't be physically
1509  * removed.  Instead, there are two options:
1510  *
1511  *  1) If the HC is in the middle of processing the URB to be canceled, we
1512  *     simply move the ring's dequeue pointer past those TRBs using the Set
1513  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1514  *     when drivers timeout on the last submitted URB and attempt to cancel.
1515  *
1516  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1517  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1518  *     HC will need to invalidate the any TRBs it has cached after the stop
1519  *     endpoint command, as noted in the xHCI 0.95 errata.
1520  *
1521  *  3) The TD may have completed by the time the Stop Endpoint Command
1522  *     completes, so software needs to handle that case too.
1523  *
1524  * This function should protect against the TD enqueueing code ringing the
1525  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1526  * It also needs to account for multiple cancellations on happening at the same
1527  * time for the same endpoint.
1528  *
1529  * Note that this function can be called in any context, or so says
1530  * usb_hcd_unlink_urb()
1531  */
1532 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1533 {
1534         unsigned long flags;
1535         int ret, i;
1536         u32 temp;
1537         struct xhci_hcd *xhci;
1538         struct urb_priv *urb_priv;
1539         struct xhci_td *td;
1540         unsigned int ep_index;
1541         struct xhci_ring *ep_ring;
1542         struct xhci_virt_ep *ep;
1543         struct xhci_command *command;
1544
1545         xhci = hcd_to_xhci(hcd);
1546         spin_lock_irqsave(&xhci->lock, flags);
1547         /* Make sure the URB hasn't completed or been unlinked already */
1548         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1549         if (ret || !urb->hcpriv)
1550                 goto done;
1551         temp = readl(&xhci->op_regs->status);
1552         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1553                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1554                                 "HW died, freeing TD.");
1555                 urb_priv = urb->hcpriv;
1556                 for (i = urb_priv->td_cnt;
1557                      i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1558                      i++) {
1559                         td = urb_priv->td[i];
1560                         if (!list_empty(&td->td_list))
1561                                 list_del_init(&td->td_list);
1562                         if (!list_empty(&td->cancelled_td_list))
1563                                 list_del_init(&td->cancelled_td_list);
1564                 }
1565
1566                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1567                 spin_unlock_irqrestore(&xhci->lock, flags);
1568                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1569                 xhci_urb_free_priv(urb_priv);
1570                 return ret;
1571         }
1572         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1573                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1574                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1575                                 "Ep 0x%x: URB %p to be canceled on "
1576                                 "non-responsive xHCI host.",
1577                                 urb->ep->desc.bEndpointAddress, urb);
1578                 /* Let the stop endpoint command watchdog timer (which set this
1579                  * state) finish cleaning up the endpoint TD lists.  We must
1580                  * have caught it in the middle of dropping a lock and giving
1581                  * back an URB.
1582                  */
1583                 goto done;
1584         }
1585
1586         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1587         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1588         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1589         if (!ep_ring) {
1590                 ret = -EINVAL;
1591                 goto done;
1592         }
1593
1594         urb_priv = urb->hcpriv;
1595         i = urb_priv->td_cnt;
1596         if (i < urb_priv->length)
1597                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1598                                 "Cancel URB %p, dev %s, ep 0x%x, "
1599                                 "starting at offset 0x%llx",
1600                                 urb, urb->dev->devpath,
1601                                 urb->ep->desc.bEndpointAddress,
1602                                 (unsigned long long) xhci_trb_virt_to_dma(
1603                                         urb_priv->td[i]->start_seg,
1604                                         urb_priv->td[i]->first_trb));
1605
1606         for (; i < urb_priv->length; i++) {
1607                 td = urb_priv->td[i];
1608                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1609         }
1610
1611         /* Queue a stop endpoint command, but only if this is
1612          * the first cancellation to be handled.
1613          */
1614         if (!(ep->ep_state & EP_HALT_PENDING)) {
1615                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1616                 if (!command) {
1617                         ret = -ENOMEM;
1618                         goto done;
1619                 }
1620                 ep->ep_state |= EP_HALT_PENDING;
1621                 ep->stop_cmds_pending++;
1622                 ep->stop_cmd_timer.expires = jiffies +
1623                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1624                 add_timer(&ep->stop_cmd_timer);
1625                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1626                                          ep_index, 0);
1627                 xhci_ring_cmd_db(xhci);
1628         }
1629 done:
1630         spin_unlock_irqrestore(&xhci->lock, flags);
1631         return ret;
1632 }
1633
1634 /* Drop an endpoint from a new bandwidth configuration for this device.
1635  * Only one call to this function is allowed per endpoint before
1636  * check_bandwidth() or reset_bandwidth() must be called.
1637  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1638  * add the endpoint to the schedule with possibly new parameters denoted by a
1639  * different endpoint descriptor in usb_host_endpoint.
1640  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1641  * not allowed.
1642  *
1643  * The USB core will not allow URBs to be queued to an endpoint that is being
1644  * disabled, so there's no need for mutual exclusion to protect
1645  * the xhci->devs[slot_id] structure.
1646  */
1647 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1648                 struct usb_host_endpoint *ep)
1649 {
1650         struct xhci_hcd *xhci;
1651         struct xhci_container_ctx *in_ctx, *out_ctx;
1652         struct xhci_input_control_ctx *ctrl_ctx;
1653         unsigned int ep_index;
1654         struct xhci_ep_ctx *ep_ctx;
1655         u32 drop_flag;
1656         u32 new_add_flags, new_drop_flags;
1657         int ret;
1658
1659         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1660         if (ret <= 0)
1661                 return ret;
1662         xhci = hcd_to_xhci(hcd);
1663         if (xhci->xhc_state & XHCI_STATE_DYING)
1664                 return -ENODEV;
1665
1666         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1667         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1668         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1669                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1670                                 __func__, drop_flag);
1671                 return 0;
1672         }
1673
1674         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1675         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1676         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1677         if (!ctrl_ctx) {
1678                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1679                                 __func__);
1680                 return 0;
1681         }
1682
1683         ep_index = xhci_get_endpoint_index(&ep->desc);
1684         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1685         /* If the HC already knows the endpoint is disabled,
1686          * or the HCD has noted it is disabled, ignore this request
1687          */
1688         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1689              cpu_to_le32(EP_STATE_DISABLED)) ||
1690             le32_to_cpu(ctrl_ctx->drop_flags) &
1691             xhci_get_endpoint_flag(&ep->desc)) {
1692                 /* Do not warn when called after a usb_device_reset */
1693                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1694                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1695                                   __func__, ep);
1696                 return 0;
1697         }
1698
1699         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1700         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1701
1702         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1703         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1704
1705         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1706
1707         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1708                         (unsigned int) ep->desc.bEndpointAddress,
1709                         udev->slot_id,
1710                         (unsigned int) new_drop_flags,
1711                         (unsigned int) new_add_flags);
1712         return 0;
1713 }
1714
1715 /* Add an endpoint to a new possible bandwidth configuration for this device.
1716  * Only one call to this function is allowed per endpoint before
1717  * check_bandwidth() or reset_bandwidth() must be called.
1718  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1719  * add the endpoint to the schedule with possibly new parameters denoted by a
1720  * different endpoint descriptor in usb_host_endpoint.
1721  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1722  * not allowed.
1723  *
1724  * The USB core will not allow URBs to be queued to an endpoint until the
1725  * configuration or alt setting is installed in the device, so there's no need
1726  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1727  */
1728 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1729                 struct usb_host_endpoint *ep)
1730 {
1731         struct xhci_hcd *xhci;
1732         struct xhci_container_ctx *in_ctx;
1733         unsigned int ep_index;
1734         struct xhci_input_control_ctx *ctrl_ctx;
1735         u32 added_ctxs;
1736         u32 new_add_flags, new_drop_flags;
1737         struct xhci_virt_device *virt_dev;
1738         int ret = 0;
1739
1740         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1741         if (ret <= 0) {
1742                 /* So we won't queue a reset ep command for a root hub */
1743                 ep->hcpriv = NULL;
1744                 return ret;
1745         }
1746         xhci = hcd_to_xhci(hcd);
1747         if (xhci->xhc_state & XHCI_STATE_DYING)
1748                 return -ENODEV;
1749
1750         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1751         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1752                 /* FIXME when we have to issue an evaluate endpoint command to
1753                  * deal with ep0 max packet size changing once we get the
1754                  * descriptors
1755                  */
1756                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1757                                 __func__, added_ctxs);
1758                 return 0;
1759         }
1760
1761         virt_dev = xhci->devs[udev->slot_id];
1762         in_ctx = virt_dev->in_ctx;
1763         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1764         if (!ctrl_ctx) {
1765                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1766                                 __func__);
1767                 return 0;
1768         }
1769
1770         ep_index = xhci_get_endpoint_index(&ep->desc);
1771         /* If this endpoint is already in use, and the upper layers are trying
1772          * to add it again without dropping it, reject the addition.
1773          */
1774         if (virt_dev->eps[ep_index].ring &&
1775                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1776                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1777                                 "without dropping it.\n",
1778                                 (unsigned int) ep->desc.bEndpointAddress);
1779                 return -EINVAL;
1780         }
1781
1782         /* If the HCD has already noted the endpoint is enabled,
1783          * ignore this request.
1784          */
1785         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1786                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1787                                 __func__, ep);
1788                 return 0;
1789         }
1790
1791         /*
1792          * Configuration and alternate setting changes must be done in
1793          * process context, not interrupt context (or so documenation
1794          * for usb_set_interface() and usb_set_configuration() claim).
1795          */
1796         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1797                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1798                                 __func__, ep->desc.bEndpointAddress);
1799                 return -ENOMEM;
1800         }
1801
1802         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1803         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1804
1805         /* If xhci_endpoint_disable() was called for this endpoint, but the
1806          * xHC hasn't been notified yet through the check_bandwidth() call,
1807          * this re-adds a new state for the endpoint from the new endpoint
1808          * descriptors.  We must drop and re-add this endpoint, so we leave the
1809          * drop flags alone.
1810          */
1811         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1812
1813         /* Store the usb_device pointer for later use */
1814         ep->hcpriv = udev;
1815
1816         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1817                         (unsigned int) ep->desc.bEndpointAddress,
1818                         udev->slot_id,
1819                         (unsigned int) new_drop_flags,
1820                         (unsigned int) new_add_flags);
1821         return 0;
1822 }
1823
1824 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1825 {
1826         struct xhci_input_control_ctx *ctrl_ctx;
1827         struct xhci_ep_ctx *ep_ctx;
1828         struct xhci_slot_ctx *slot_ctx;
1829         int i;
1830
1831         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1832         if (!ctrl_ctx) {
1833                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1834                                 __func__);
1835                 return;
1836         }
1837
1838         /* When a device's add flag and drop flag are zero, any subsequent
1839          * configure endpoint command will leave that endpoint's state
1840          * untouched.  Make sure we don't leave any old state in the input
1841          * endpoint contexts.
1842          */
1843         ctrl_ctx->drop_flags = 0;
1844         ctrl_ctx->add_flags = 0;
1845         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1846         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1847         /* Endpoint 0 is always valid */
1848         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1849         for (i = 1; i < 31; ++i) {
1850                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1851                 ep_ctx->ep_info = 0;
1852                 ep_ctx->ep_info2 = 0;
1853                 ep_ctx->deq = 0;
1854                 ep_ctx->tx_info = 0;
1855         }
1856 }
1857
1858 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1859                 struct usb_device *udev, u32 *cmd_status)
1860 {
1861         int ret;
1862
1863         switch (*cmd_status) {
1864         case COMP_CMD_ABORT:
1865         case COMP_CMD_STOP:
1866                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1867                 ret = -ETIME;
1868                 break;
1869         case COMP_ENOMEM:
1870                 dev_warn(&udev->dev,
1871                          "Not enough host controller resources for new device state.\n");
1872                 ret = -ENOMEM;
1873                 /* FIXME: can we allocate more resources for the HC? */
1874                 break;
1875         case COMP_BW_ERR:
1876         case COMP_2ND_BW_ERR:
1877                 dev_warn(&udev->dev,
1878                          "Not enough bandwidth for new device state.\n");
1879                 ret = -ENOSPC;
1880                 /* FIXME: can we go back to the old state? */
1881                 break;
1882         case COMP_TRB_ERR:
1883                 /* the HCD set up something wrong */
1884                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1885                                 "add flag = 1, "
1886                                 "and endpoint is not disabled.\n");
1887                 ret = -EINVAL;
1888                 break;
1889         case COMP_DEV_ERR:
1890                 dev_warn(&udev->dev,
1891                          "ERROR: Incompatible device for endpoint configure command.\n");
1892                 ret = -ENODEV;
1893                 break;
1894         case COMP_SUCCESS:
1895                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1896                                 "Successful Endpoint Configure command");
1897                 ret = 0;
1898                 break;
1899         default:
1900                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1901                                 *cmd_status);
1902                 ret = -EINVAL;
1903                 break;
1904         }
1905         return ret;
1906 }
1907
1908 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1909                 struct usb_device *udev, u32 *cmd_status)
1910 {
1911         int ret;
1912         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1913
1914         switch (*cmd_status) {
1915         case COMP_CMD_ABORT:
1916         case COMP_CMD_STOP:
1917                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1918                 ret = -ETIME;
1919                 break;
1920         case COMP_EINVAL:
1921                 dev_warn(&udev->dev,
1922                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1923                 ret = -EINVAL;
1924                 break;
1925         case COMP_EBADSLT:
1926                 dev_warn(&udev->dev,
1927                         "WARN: slot not enabled for evaluate context command.\n");
1928                 ret = -EINVAL;
1929                 break;
1930         case COMP_CTX_STATE:
1931                 dev_warn(&udev->dev,
1932                         "WARN: invalid context state for evaluate context command.\n");
1933                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1934                 ret = -EINVAL;
1935                 break;
1936         case COMP_DEV_ERR:
1937                 dev_warn(&udev->dev,
1938                         "ERROR: Incompatible device for evaluate context command.\n");
1939                 ret = -ENODEV;
1940                 break;
1941         case COMP_MEL_ERR:
1942                 /* Max Exit Latency too large error */
1943                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1944                 ret = -EINVAL;
1945                 break;
1946         case COMP_SUCCESS:
1947                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1948                                 "Successful evaluate context command");
1949                 ret = 0;
1950                 break;
1951         default:
1952                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1953                         *cmd_status);
1954                 ret = -EINVAL;
1955                 break;
1956         }
1957         return ret;
1958 }
1959
1960 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1961                 struct xhci_input_control_ctx *ctrl_ctx)
1962 {
1963         u32 valid_add_flags;
1964         u32 valid_drop_flags;
1965
1966         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1967          * (bit 1).  The default control endpoint is added during the Address
1968          * Device command and is never removed until the slot is disabled.
1969          */
1970         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1971         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1972
1973         /* Use hweight32 to count the number of ones in the add flags, or
1974          * number of endpoints added.  Don't count endpoints that are changed
1975          * (both added and dropped).
1976          */
1977         return hweight32(valid_add_flags) -
1978                 hweight32(valid_add_flags & valid_drop_flags);
1979 }
1980
1981 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1982                 struct xhci_input_control_ctx *ctrl_ctx)
1983 {
1984         u32 valid_add_flags;
1985         u32 valid_drop_flags;
1986
1987         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1988         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1989
1990         return hweight32(valid_drop_flags) -
1991                 hweight32(valid_add_flags & valid_drop_flags);
1992 }
1993
1994 /*
1995  * We need to reserve the new number of endpoints before the configure endpoint
1996  * command completes.  We can't subtract the dropped endpoints from the number
1997  * of active endpoints until the command completes because we can oversubscribe
1998  * the host in this case:
1999  *
2000  *  - the first configure endpoint command drops more endpoints than it adds
2001  *  - a second configure endpoint command that adds more endpoints is queued
2002  *  - the first configure endpoint command fails, so the config is unchanged
2003  *  - the second command may succeed, even though there isn't enough resources
2004  *
2005  * Must be called with xhci->lock held.
2006  */
2007 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2008                 struct xhci_input_control_ctx *ctrl_ctx)
2009 {
2010         u32 added_eps;
2011
2012         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2013         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2014                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2015                                 "Not enough ep ctxs: "
2016                                 "%u active, need to add %u, limit is %u.",
2017                                 xhci->num_active_eps, added_eps,
2018                                 xhci->limit_active_eps);
2019                 return -ENOMEM;
2020         }
2021         xhci->num_active_eps += added_eps;
2022         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2023                         "Adding %u ep ctxs, %u now active.", added_eps,
2024                         xhci->num_active_eps);
2025         return 0;
2026 }
2027
2028 /*
2029  * The configure endpoint was failed by the xHC for some other reason, so we
2030  * need to revert the resources that failed configuration would have used.
2031  *
2032  * Must be called with xhci->lock held.
2033  */
2034 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2035                 struct xhci_input_control_ctx *ctrl_ctx)
2036 {
2037         u32 num_failed_eps;
2038
2039         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2040         xhci->num_active_eps -= num_failed_eps;
2041         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2042                         "Removing %u failed ep ctxs, %u now active.",
2043                         num_failed_eps,
2044                         xhci->num_active_eps);
2045 }
2046
2047 /*
2048  * Now that the command has completed, clean up the active endpoint count by
2049  * subtracting out the endpoints that were dropped (but not changed).
2050  *
2051  * Must be called with xhci->lock held.
2052  */
2053 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2054                 struct xhci_input_control_ctx *ctrl_ctx)
2055 {
2056         u32 num_dropped_eps;
2057
2058         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2059         xhci->num_active_eps -= num_dropped_eps;
2060         if (num_dropped_eps)
2061                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2062                                 "Removing %u dropped ep ctxs, %u now active.",
2063                                 num_dropped_eps,
2064                                 xhci->num_active_eps);
2065 }
2066
2067 static unsigned int xhci_get_block_size(struct usb_device *udev)
2068 {
2069         switch (udev->speed) {
2070         case USB_SPEED_LOW:
2071         case USB_SPEED_FULL:
2072                 return FS_BLOCK;
2073         case USB_SPEED_HIGH:
2074                 return HS_BLOCK;
2075         case USB_SPEED_SUPER:
2076                 return SS_BLOCK;
2077         case USB_SPEED_UNKNOWN:
2078         case USB_SPEED_WIRELESS:
2079         default:
2080                 /* Should never happen */
2081                 return 1;
2082         }
2083 }
2084
2085 static unsigned int
2086 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2087 {
2088         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2089                 return LS_OVERHEAD;
2090         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2091                 return FS_OVERHEAD;
2092         return HS_OVERHEAD;
2093 }
2094
2095 /* If we are changing a LS/FS device under a HS hub,
2096  * make sure (if we are activating a new TT) that the HS bus has enough
2097  * bandwidth for this new TT.
2098  */
2099 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2100                 struct xhci_virt_device *virt_dev,
2101                 int old_active_eps)
2102 {
2103         struct xhci_interval_bw_table *bw_table;
2104         struct xhci_tt_bw_info *tt_info;
2105
2106         /* Find the bandwidth table for the root port this TT is attached to. */
2107         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2108         tt_info = virt_dev->tt_info;
2109         /* If this TT already had active endpoints, the bandwidth for this TT
2110          * has already been added.  Removing all periodic endpoints (and thus
2111          * making the TT enactive) will only decrease the bandwidth used.
2112          */
2113         if (old_active_eps)
2114                 return 0;
2115         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2116                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2117                         return -ENOMEM;
2118                 return 0;
2119         }
2120         /* Not sure why we would have no new active endpoints...
2121          *
2122          * Maybe because of an Evaluate Context change for a hub update or a
2123          * control endpoint 0 max packet size change?
2124          * FIXME: skip the bandwidth calculation in that case.
2125          */
2126         return 0;
2127 }
2128
2129 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2130                 struct xhci_virt_device *virt_dev)
2131 {
2132         unsigned int bw_reserved;
2133
2134         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2135         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2136                 return -ENOMEM;
2137
2138         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2139         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2140                 return -ENOMEM;
2141
2142         return 0;
2143 }
2144
2145 /*
2146  * This algorithm is a very conservative estimate of the worst-case scheduling
2147  * scenario for any one interval.  The hardware dynamically schedules the
2148  * packets, so we can't tell which microframe could be the limiting factor in
2149  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2150  *
2151  * Obviously, we can't solve an NP complete problem to find the minimum worst
2152  * case scenario.  Instead, we come up with an estimate that is no less than
2153  * the worst case bandwidth used for any one microframe, but may be an
2154  * over-estimate.
2155  *
2156  * We walk the requirements for each endpoint by interval, starting with the
2157  * smallest interval, and place packets in the schedule where there is only one
2158  * possible way to schedule packets for that interval.  In order to simplify
2159  * this algorithm, we record the largest max packet size for each interval, and
2160  * assume all packets will be that size.
2161  *
2162  * For interval 0, we obviously must schedule all packets for each interval.
2163  * The bandwidth for interval 0 is just the amount of data to be transmitted
2164  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2165  * the number of packets).
2166  *
2167  * For interval 1, we have two possible microframes to schedule those packets
2168  * in.  For this algorithm, if we can schedule the same number of packets for
2169  * each possible scheduling opportunity (each microframe), we will do so.  The
2170  * remaining number of packets will be saved to be transmitted in the gaps in
2171  * the next interval's scheduling sequence.
2172  *
2173  * As we move those remaining packets to be scheduled with interval 2 packets,
2174  * we have to double the number of remaining packets to transmit.  This is
2175  * because the intervals are actually powers of 2, and we would be transmitting
2176  * the previous interval's packets twice in this interval.  We also have to be
2177  * sure that when we look at the largest max packet size for this interval, we
2178  * also look at the largest max packet size for the remaining packets and take
2179  * the greater of the two.
2180  *
2181  * The algorithm continues to evenly distribute packets in each scheduling
2182  * opportunity, and push the remaining packets out, until we get to the last
2183  * interval.  Then those packets and their associated overhead are just added
2184  * to the bandwidth used.
2185  */
2186 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2187                 struct xhci_virt_device *virt_dev,
2188                 int old_active_eps)
2189 {
2190         unsigned int bw_reserved;
2191         unsigned int max_bandwidth;
2192         unsigned int bw_used;
2193         unsigned int block_size;
2194         struct xhci_interval_bw_table *bw_table;
2195         unsigned int packet_size = 0;
2196         unsigned int overhead = 0;
2197         unsigned int packets_transmitted = 0;
2198         unsigned int packets_remaining = 0;
2199         unsigned int i;
2200
2201         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2202                 return xhci_check_ss_bw(xhci, virt_dev);
2203
2204         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2205                 max_bandwidth = HS_BW_LIMIT;
2206                 /* Convert percent of bus BW reserved to blocks reserved */
2207                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2208         } else {
2209                 max_bandwidth = FS_BW_LIMIT;
2210                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2211         }
2212
2213         bw_table = virt_dev->bw_table;
2214         /* We need to translate the max packet size and max ESIT payloads into
2215          * the units the hardware uses.
2216          */
2217         block_size = xhci_get_block_size(virt_dev->udev);
2218
2219         /* If we are manipulating a LS/FS device under a HS hub, double check
2220          * that the HS bus has enough bandwidth if we are activing a new TT.
2221          */
2222         if (virt_dev->tt_info) {
2223                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2224                                 "Recalculating BW for rootport %u",
2225                                 virt_dev->real_port);
2226                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2227                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2228                                         "newly activated TT.\n");
2229                         return -ENOMEM;
2230                 }
2231                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2232                                 "Recalculating BW for TT slot %u port %u",
2233                                 virt_dev->tt_info->slot_id,
2234                                 virt_dev->tt_info->ttport);
2235         } else {
2236                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2237                                 "Recalculating BW for rootport %u",
2238                                 virt_dev->real_port);
2239         }
2240
2241         /* Add in how much bandwidth will be used for interval zero, or the
2242          * rounded max ESIT payload + number of packets * largest overhead.
2243          */
2244         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2245                 bw_table->interval_bw[0].num_packets *
2246                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2247
2248         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2249                 unsigned int bw_added;
2250                 unsigned int largest_mps;
2251                 unsigned int interval_overhead;
2252
2253                 /*
2254                  * How many packets could we transmit in this interval?
2255                  * If packets didn't fit in the previous interval, we will need
2256                  * to transmit that many packets twice within this interval.
2257                  */
2258                 packets_remaining = 2 * packets_remaining +
2259                         bw_table->interval_bw[i].num_packets;
2260
2261                 /* Find the largest max packet size of this or the previous
2262                  * interval.
2263                  */
2264                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2265                         largest_mps = 0;
2266                 else {
2267                         struct xhci_virt_ep *virt_ep;
2268                         struct list_head *ep_entry;
2269
2270                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2271                         virt_ep = list_entry(ep_entry,
2272                                         struct xhci_virt_ep, bw_endpoint_list);
2273                         /* Convert to blocks, rounding up */
2274                         largest_mps = DIV_ROUND_UP(
2275                                         virt_ep->bw_info.max_packet_size,
2276                                         block_size);
2277                 }
2278                 if (largest_mps > packet_size)
2279                         packet_size = largest_mps;
2280
2281                 /* Use the larger overhead of this or the previous interval. */
2282                 interval_overhead = xhci_get_largest_overhead(
2283                                 &bw_table->interval_bw[i]);
2284                 if (interval_overhead > overhead)
2285                         overhead = interval_overhead;
2286
2287                 /* How many packets can we evenly distribute across
2288                  * (1 << (i + 1)) possible scheduling opportunities?
2289                  */
2290                 packets_transmitted = packets_remaining >> (i + 1);
2291
2292                 /* Add in the bandwidth used for those scheduled packets */
2293                 bw_added = packets_transmitted * (overhead + packet_size);
2294
2295                 /* How many packets do we have remaining to transmit? */
2296                 packets_remaining = packets_remaining % (1 << (i + 1));
2297
2298                 /* What largest max packet size should those packets have? */
2299                 /* If we've transmitted all packets, don't carry over the
2300                  * largest packet size.
2301                  */
2302                 if (packets_remaining == 0) {
2303                         packet_size = 0;
2304                         overhead = 0;
2305                 } else if (packets_transmitted > 0) {
2306                         /* Otherwise if we do have remaining packets, and we've
2307                          * scheduled some packets in this interval, take the
2308                          * largest max packet size from endpoints with this
2309                          * interval.
2310                          */
2311                         packet_size = largest_mps;
2312                         overhead = interval_overhead;
2313                 }
2314                 /* Otherwise carry over packet_size and overhead from the last
2315                  * time we had a remainder.
2316                  */
2317                 bw_used += bw_added;
2318                 if (bw_used > max_bandwidth) {
2319                         xhci_warn(xhci, "Not enough bandwidth. "
2320                                         "Proposed: %u, Max: %u\n",
2321                                 bw_used, max_bandwidth);
2322                         return -ENOMEM;
2323                 }
2324         }
2325         /*
2326          * Ok, we know we have some packets left over after even-handedly
2327          * scheduling interval 15.  We don't know which microframes they will
2328          * fit into, so we over-schedule and say they will be scheduled every
2329          * microframe.
2330          */
2331         if (packets_remaining > 0)
2332                 bw_used += overhead + packet_size;
2333
2334         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2335                 unsigned int port_index = virt_dev->real_port - 1;
2336
2337                 /* OK, we're manipulating a HS device attached to a
2338                  * root port bandwidth domain.  Include the number of active TTs
2339                  * in the bandwidth used.
2340                  */
2341                 bw_used += TT_HS_OVERHEAD *
2342                         xhci->rh_bw[port_index].num_active_tts;
2343         }
2344
2345         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2346                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2347                 "Available: %u " "percent",
2348                 bw_used, max_bandwidth, bw_reserved,
2349                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2350                 max_bandwidth);
2351
2352         bw_used += bw_reserved;
2353         if (bw_used > max_bandwidth) {
2354                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2355                                 bw_used, max_bandwidth);
2356                 return -ENOMEM;
2357         }
2358
2359         bw_table->bw_used = bw_used;
2360         return 0;
2361 }
2362
2363 static bool xhci_is_async_ep(unsigned int ep_type)
2364 {
2365         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2366                                         ep_type != ISOC_IN_EP &&
2367                                         ep_type != INT_IN_EP);
2368 }
2369
2370 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2371 {
2372         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2373 }
2374
2375 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2376 {
2377         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2378
2379         if (ep_bw->ep_interval == 0)
2380                 return SS_OVERHEAD_BURST +
2381                         (ep_bw->mult * ep_bw->num_packets *
2382                                         (SS_OVERHEAD + mps));
2383         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2384                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2385                                 1 << ep_bw->ep_interval);
2386
2387 }
2388
2389 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2390                 struct xhci_bw_info *ep_bw,
2391                 struct xhci_interval_bw_table *bw_table,
2392                 struct usb_device *udev,
2393                 struct xhci_virt_ep *virt_ep,
2394                 struct xhci_tt_bw_info *tt_info)
2395 {
2396         struct xhci_interval_bw *interval_bw;
2397         int normalized_interval;
2398
2399         if (xhci_is_async_ep(ep_bw->type))
2400                 return;
2401
2402         if (udev->speed == USB_SPEED_SUPER) {
2403                 if (xhci_is_sync_in_ep(ep_bw->type))
2404                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2405                                 xhci_get_ss_bw_consumed(ep_bw);
2406                 else
2407                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2408                                 xhci_get_ss_bw_consumed(ep_bw);
2409                 return;
2410         }
2411
2412         /* SuperSpeed endpoints never get added to intervals in the table, so
2413          * this check is only valid for HS/FS/LS devices.
2414          */
2415         if (list_empty(&virt_ep->bw_endpoint_list))
2416                 return;
2417         /* For LS/FS devices, we need to translate the interval expressed in
2418          * microframes to frames.
2419          */
2420         if (udev->speed == USB_SPEED_HIGH)
2421                 normalized_interval = ep_bw->ep_interval;
2422         else
2423                 normalized_interval = ep_bw->ep_interval - 3;
2424
2425         if (normalized_interval == 0)
2426                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2427         interval_bw = &bw_table->interval_bw[normalized_interval];
2428         interval_bw->num_packets -= ep_bw->num_packets;
2429         switch (udev->speed) {
2430         case USB_SPEED_LOW:
2431                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2432                 break;
2433         case USB_SPEED_FULL:
2434                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2435                 break;
2436         case USB_SPEED_HIGH:
2437                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2438                 break;
2439         case USB_SPEED_SUPER:
2440         case USB_SPEED_UNKNOWN:
2441         case USB_SPEED_WIRELESS:
2442                 /* Should never happen because only LS/FS/HS endpoints will get
2443                  * added to the endpoint list.
2444                  */
2445                 return;
2446         }
2447         if (tt_info)
2448                 tt_info->active_eps -= 1;
2449         list_del_init(&virt_ep->bw_endpoint_list);
2450 }
2451
2452 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2453                 struct xhci_bw_info *ep_bw,
2454                 struct xhci_interval_bw_table *bw_table,
2455                 struct usb_device *udev,
2456                 struct xhci_virt_ep *virt_ep,
2457                 struct xhci_tt_bw_info *tt_info)
2458 {
2459         struct xhci_interval_bw *interval_bw;
2460         struct xhci_virt_ep *smaller_ep;
2461         int normalized_interval;
2462
2463         if (xhci_is_async_ep(ep_bw->type))
2464                 return;
2465
2466         if (udev->speed == USB_SPEED_SUPER) {
2467                 if (xhci_is_sync_in_ep(ep_bw->type))
2468                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2469                                 xhci_get_ss_bw_consumed(ep_bw);
2470                 else
2471                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2472                                 xhci_get_ss_bw_consumed(ep_bw);
2473                 return;
2474         }
2475
2476         /* For LS/FS devices, we need to translate the interval expressed in
2477          * microframes to frames.
2478          */
2479         if (udev->speed == USB_SPEED_HIGH)
2480                 normalized_interval = ep_bw->ep_interval;
2481         else
2482                 normalized_interval = ep_bw->ep_interval - 3;
2483
2484         if (normalized_interval == 0)
2485                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2486         interval_bw = &bw_table->interval_bw[normalized_interval];
2487         interval_bw->num_packets += ep_bw->num_packets;
2488         switch (udev->speed) {
2489         case USB_SPEED_LOW:
2490                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2491                 break;
2492         case USB_SPEED_FULL:
2493                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2494                 break;
2495         case USB_SPEED_HIGH:
2496                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2497                 break;
2498         case USB_SPEED_SUPER:
2499         case USB_SPEED_UNKNOWN:
2500         case USB_SPEED_WIRELESS:
2501                 /* Should never happen because only LS/FS/HS endpoints will get
2502                  * added to the endpoint list.
2503                  */
2504                 return;
2505         }
2506
2507         if (tt_info)
2508                 tt_info->active_eps += 1;
2509         /* Insert the endpoint into the list, largest max packet size first. */
2510         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2511                         bw_endpoint_list) {
2512                 if (ep_bw->max_packet_size >=
2513                                 smaller_ep->bw_info.max_packet_size) {
2514                         /* Add the new ep before the smaller endpoint */
2515                         list_add_tail(&virt_ep->bw_endpoint_list,
2516                                         &smaller_ep->bw_endpoint_list);
2517                         return;
2518                 }
2519         }
2520         /* Add the new endpoint at the end of the list. */
2521         list_add_tail(&virt_ep->bw_endpoint_list,
2522                         &interval_bw->endpoints);
2523 }
2524
2525 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2526                 struct xhci_virt_device *virt_dev,
2527                 int old_active_eps)
2528 {
2529         struct xhci_root_port_bw_info *rh_bw_info;
2530         if (!virt_dev->tt_info)
2531                 return;
2532
2533         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2534         if (old_active_eps == 0 &&
2535                                 virt_dev->tt_info->active_eps != 0) {
2536                 rh_bw_info->num_active_tts += 1;
2537                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2538         } else if (old_active_eps != 0 &&
2539                                 virt_dev->tt_info->active_eps == 0) {
2540                 rh_bw_info->num_active_tts -= 1;
2541                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2542         }
2543 }
2544
2545 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2546                 struct xhci_virt_device *virt_dev,
2547                 struct xhci_container_ctx *in_ctx)
2548 {
2549         struct xhci_bw_info ep_bw_info[31];
2550         int i;
2551         struct xhci_input_control_ctx *ctrl_ctx;
2552         int old_active_eps = 0;
2553
2554         if (virt_dev->tt_info)
2555                 old_active_eps = virt_dev->tt_info->active_eps;
2556
2557         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2558         if (!ctrl_ctx) {
2559                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2560                                 __func__);
2561                 return -ENOMEM;
2562         }
2563
2564         for (i = 0; i < 31; i++) {
2565                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2566                         continue;
2567
2568                 /* Make a copy of the BW info in case we need to revert this */
2569                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2570                                 sizeof(ep_bw_info[i]));
2571                 /* Drop the endpoint from the interval table if the endpoint is
2572                  * being dropped or changed.
2573                  */
2574                 if (EP_IS_DROPPED(ctrl_ctx, i))
2575                         xhci_drop_ep_from_interval_table(xhci,
2576                                         &virt_dev->eps[i].bw_info,
2577                                         virt_dev->bw_table,
2578                                         virt_dev->udev,
2579                                         &virt_dev->eps[i],
2580                                         virt_dev->tt_info);
2581         }
2582         /* Overwrite the information stored in the endpoints' bw_info */
2583         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2584         for (i = 0; i < 31; i++) {
2585                 /* Add any changed or added endpoints to the interval table */
2586                 if (EP_IS_ADDED(ctrl_ctx, i))
2587                         xhci_add_ep_to_interval_table(xhci,
2588                                         &virt_dev->eps[i].bw_info,
2589                                         virt_dev->bw_table,
2590                                         virt_dev->udev,
2591                                         &virt_dev->eps[i],
2592                                         virt_dev->tt_info);
2593         }
2594
2595         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2596                 /* Ok, this fits in the bandwidth we have.
2597                  * Update the number of active TTs.
2598                  */
2599                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2600                 return 0;
2601         }
2602
2603         /* We don't have enough bandwidth for this, revert the stored info. */
2604         for (i = 0; i < 31; i++) {
2605                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2606                         continue;
2607
2608                 /* Drop the new copies of any added or changed endpoints from
2609                  * the interval table.
2610                  */
2611                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2612                         xhci_drop_ep_from_interval_table(xhci,
2613                                         &virt_dev->eps[i].bw_info,
2614                                         virt_dev->bw_table,
2615                                         virt_dev->udev,
2616                                         &virt_dev->eps[i],
2617                                         virt_dev->tt_info);
2618                 }
2619                 /* Revert the endpoint back to its old information */
2620                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2621                                 sizeof(ep_bw_info[i]));
2622                 /* Add any changed or dropped endpoints back into the table */
2623                 if (EP_IS_DROPPED(ctrl_ctx, i))
2624                         xhci_add_ep_to_interval_table(xhci,
2625                                         &virt_dev->eps[i].bw_info,
2626                                         virt_dev->bw_table,
2627                                         virt_dev->udev,
2628                                         &virt_dev->eps[i],
2629                                         virt_dev->tt_info);
2630         }
2631         return -ENOMEM;
2632 }
2633
2634
2635 /* Issue a configure endpoint command or evaluate context command
2636  * and wait for it to finish.
2637  */
2638 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2639                 struct usb_device *udev,
2640                 struct xhci_command *command,
2641                 bool ctx_change, bool must_succeed)
2642 {
2643         int ret;
2644         unsigned long flags;
2645         struct xhci_input_control_ctx *ctrl_ctx;
2646         struct xhci_virt_device *virt_dev;
2647
2648         if (!command)
2649                 return -EINVAL;
2650
2651         spin_lock_irqsave(&xhci->lock, flags);
2652         virt_dev = xhci->devs[udev->slot_id];
2653
2654         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2655         if (!ctrl_ctx) {
2656                 spin_unlock_irqrestore(&xhci->lock, flags);
2657                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2658                                 __func__);
2659                 return -ENOMEM;
2660         }
2661
2662         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2663                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2664                 spin_unlock_irqrestore(&xhci->lock, flags);
2665                 xhci_warn(xhci, "Not enough host resources, "
2666                                 "active endpoint contexts = %u\n",
2667                                 xhci->num_active_eps);
2668                 return -ENOMEM;
2669         }
2670         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2671             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2672                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2673                         xhci_free_host_resources(xhci, ctrl_ctx);
2674                 spin_unlock_irqrestore(&xhci->lock, flags);
2675                 xhci_warn(xhci, "Not enough bandwidth\n");
2676                 return -ENOMEM;
2677         }
2678
2679         if (!ctx_change)
2680                 ret = xhci_queue_configure_endpoint(xhci, command,
2681                                 command->in_ctx->dma,
2682                                 udev->slot_id, must_succeed);
2683         else
2684                 ret = xhci_queue_evaluate_context(xhci, command,
2685                                 command->in_ctx->dma,
2686                                 udev->slot_id, must_succeed);
2687         if (ret < 0) {
2688                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2689                         xhci_free_host_resources(xhci, ctrl_ctx);
2690                 spin_unlock_irqrestore(&xhci->lock, flags);
2691                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2692                                 "FIXME allocate a new ring segment");
2693                 return -ENOMEM;
2694         }
2695         xhci_ring_cmd_db(xhci);
2696         spin_unlock_irqrestore(&xhci->lock, flags);
2697
2698         /* Wait for the configure endpoint command to complete */
2699         wait_for_completion(command->completion);
2700
2701         if (!ctx_change)
2702                 ret = xhci_configure_endpoint_result(xhci, udev,
2703                                                      &command->status);
2704         else
2705                 ret = xhci_evaluate_context_result(xhci, udev,
2706                                                    &command->status);
2707
2708         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2709                 spin_lock_irqsave(&xhci->lock, flags);
2710                 /* If the command failed, remove the reserved resources.
2711                  * Otherwise, clean up the estimate to include dropped eps.
2712                  */
2713                 if (ret)
2714                         xhci_free_host_resources(xhci, ctrl_ctx);
2715                 else
2716                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2717                 spin_unlock_irqrestore(&xhci->lock, flags);
2718         }
2719         return ret;
2720 }
2721
2722 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2723         struct xhci_virt_device *vdev, int i)
2724 {
2725         struct xhci_virt_ep *ep = &vdev->eps[i];
2726
2727         if (ep->ep_state & EP_HAS_STREAMS) {
2728                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2729                                 xhci_get_endpoint_address(i));
2730                 xhci_free_stream_info(xhci, ep->stream_info);
2731                 ep->stream_info = NULL;
2732                 ep->ep_state &= ~EP_HAS_STREAMS;
2733         }
2734 }
2735
2736 /* Called after one or more calls to xhci_add_endpoint() or
2737  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2738  * to call xhci_reset_bandwidth().
2739  *
2740  * Since we are in the middle of changing either configuration or
2741  * installing a new alt setting, the USB core won't allow URBs to be
2742  * enqueued for any endpoint on the old config or interface.  Nothing
2743  * else should be touching the xhci->devs[slot_id] structure, so we
2744  * don't need to take the xhci->lock for manipulating that.
2745  */
2746 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2747 {
2748         int i;
2749         int ret = 0;
2750         struct xhci_hcd *xhci;
2751         struct xhci_virt_device *virt_dev;
2752         struct xhci_input_control_ctx *ctrl_ctx;
2753         struct xhci_slot_ctx *slot_ctx;
2754         struct xhci_command *command;
2755
2756         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2757         if (ret <= 0)
2758                 return ret;
2759         xhci = hcd_to_xhci(hcd);
2760         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2761                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2762                 return -ENODEV;
2763
2764         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2765         virt_dev = xhci->devs[udev->slot_id];
2766
2767         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2768         if (!command)
2769                 return -ENOMEM;
2770
2771         command->in_ctx = virt_dev->in_ctx;
2772
2773         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2774         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2775         if (!ctrl_ctx) {
2776                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2777                                 __func__);
2778                 ret = -ENOMEM;
2779                 goto command_cleanup;
2780         }
2781         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2782         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2783         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2784
2785         /* Don't issue the command if there's no endpoints to update. */
2786         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2787             ctrl_ctx->drop_flags == 0) {
2788                 ret = 0;
2789                 goto command_cleanup;
2790         }
2791         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2792         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2793         for (i = 31; i >= 1; i--) {
2794                 __le32 le32 = cpu_to_le32(BIT(i));
2795
2796                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2797                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2798                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2799                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2800                         break;
2801                 }
2802         }
2803         xhci_dbg(xhci, "New Input Control Context:\n");
2804         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2805                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2806
2807         ret = xhci_configure_endpoint(xhci, udev, command,
2808                         false, false);
2809         if (ret)
2810                 /* Callee should call reset_bandwidth() */
2811                 goto command_cleanup;
2812
2813         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2814         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2815                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2816
2817         /* Free any rings that were dropped, but not changed. */
2818         for (i = 1; i < 31; ++i) {
2819                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2820                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2821                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2822                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2823                 }
2824         }
2825         xhci_zero_in_ctx(xhci, virt_dev);
2826         /*
2827          * Install any rings for completely new endpoints or changed endpoints,
2828          * and free or cache any old rings from changed endpoints.
2829          */
2830         for (i = 1; i < 31; ++i) {
2831                 if (!virt_dev->eps[i].new_ring)
2832                         continue;
2833                 /* Only cache or free the old ring if it exists.
2834                  * It may not if this is the first add of an endpoint.
2835                  */
2836                 if (virt_dev->eps[i].ring) {
2837                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2838                 }
2839                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2840                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2841                 virt_dev->eps[i].new_ring = NULL;
2842         }
2843 command_cleanup:
2844         kfree(command->completion);
2845         kfree(command);
2846
2847         return ret;
2848 }
2849
2850 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2851 {
2852         struct xhci_hcd *xhci;
2853         struct xhci_virt_device *virt_dev;
2854         int i, ret;
2855
2856         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2857         if (ret <= 0)
2858                 return;
2859         xhci = hcd_to_xhci(hcd);
2860
2861         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2862         virt_dev = xhci->devs[udev->slot_id];
2863         /* Free any rings allocated for added endpoints */
2864         for (i = 0; i < 31; ++i) {
2865                 if (virt_dev->eps[i].new_ring) {
2866                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2867                         virt_dev->eps[i].new_ring = NULL;
2868                 }
2869         }
2870         xhci_zero_in_ctx(xhci, virt_dev);
2871 }
2872
2873 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2874                 struct xhci_container_ctx *in_ctx,
2875                 struct xhci_container_ctx *out_ctx,
2876                 struct xhci_input_control_ctx *ctrl_ctx,
2877                 u32 add_flags, u32 drop_flags)
2878 {
2879         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2880         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2881         xhci_slot_copy(xhci, in_ctx, out_ctx);
2882         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2883
2884         xhci_dbg(xhci, "Input Context:\n");
2885         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2886 }
2887
2888 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2889                 unsigned int slot_id, unsigned int ep_index,
2890                 struct xhci_dequeue_state *deq_state)
2891 {
2892         struct xhci_input_control_ctx *ctrl_ctx;
2893         struct xhci_container_ctx *in_ctx;
2894         struct xhci_ep_ctx *ep_ctx;
2895         u32 added_ctxs;
2896         dma_addr_t addr;
2897
2898         in_ctx = xhci->devs[slot_id]->in_ctx;
2899         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2900         if (!ctrl_ctx) {
2901                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2902                                 __func__);
2903                 return;
2904         }
2905
2906         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2907                         xhci->devs[slot_id]->out_ctx, ep_index);
2908         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2909         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2910                         deq_state->new_deq_ptr);
2911         if (addr == 0) {
2912                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2913                                 "reset ep command\n");
2914                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2915                                 deq_state->new_deq_seg,
2916                                 deq_state->new_deq_ptr);
2917                 return;
2918         }
2919         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2920
2921         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2922         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2923                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2924                         added_ctxs, added_ctxs);
2925 }
2926
2927 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2928                         unsigned int ep_index, struct xhci_td *td)
2929 {
2930         struct xhci_dequeue_state deq_state;
2931         struct xhci_virt_ep *ep;
2932         struct usb_device *udev = td->urb->dev;
2933
2934         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2935                         "Cleaning up stalled endpoint ring");
2936         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2937         /* We need to move the HW's dequeue pointer past this TD,
2938          * or it will attempt to resend it on the next doorbell ring.
2939          */
2940         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2941                         ep_index, ep->stopped_stream, td, &deq_state);
2942
2943         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2944                 return;
2945
2946         /* HW with the reset endpoint quirk will use the saved dequeue state to
2947          * issue a configure endpoint command later.
2948          */
2949         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2950                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2951                                 "Queueing new dequeue state");
2952                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2953                                 ep_index, ep->stopped_stream, &deq_state);
2954         } else {
2955                 /* Better hope no one uses the input context between now and the
2956                  * reset endpoint completion!
2957                  * XXX: No idea how this hardware will react when stream rings
2958                  * are enabled.
2959                  */
2960                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2961                                 "Setting up input context for "
2962                                 "configure endpoint command");
2963                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2964                                 ep_index, &deq_state);
2965         }
2966 }
2967
2968 /* Called when clearing halted device. The core should have sent the control
2969  * message to clear the device halt condition. The host side of the halt should
2970  * already be cleared with a reset endpoint command issued when the STALL tx
2971  * event was received.
2972  *
2973  * Context: in_interrupt
2974  */
2975
2976 void xhci_endpoint_reset(struct usb_hcd *hcd,
2977                 struct usb_host_endpoint *ep)
2978 {
2979         struct xhci_hcd *xhci;
2980
2981         xhci = hcd_to_xhci(hcd);
2982
2983         /*
2984          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2985          * The Reset Endpoint Command may only be issued to endpoints in the
2986          * Halted state. If software wishes reset the Data Toggle or Sequence
2987          * Number of an endpoint that isn't in the Halted state, then software
2988          * may issue a Configure Endpoint Command with the Drop and Add bits set
2989          * for the target endpoint. that is in the Stopped state.
2990          */
2991
2992         /* For now just print debug to follow the situation */
2993         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2994                  ep->desc.bEndpointAddress);
2995 }
2996
2997 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2998                 struct usb_device *udev, struct usb_host_endpoint *ep,
2999                 unsigned int slot_id)
3000 {
3001         int ret;
3002         unsigned int ep_index;
3003         unsigned int ep_state;
3004
3005         if (!ep)
3006                 return -EINVAL;
3007         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3008         if (ret <= 0)
3009                 return -EINVAL;
3010         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3011                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3012                                 " descriptor for ep 0x%x does not support streams\n",
3013                                 ep->desc.bEndpointAddress);
3014                 return -EINVAL;
3015         }
3016
3017         ep_index = xhci_get_endpoint_index(&ep->desc);
3018         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3019         if (ep_state & EP_HAS_STREAMS ||
3020                         ep_state & EP_GETTING_STREAMS) {
3021                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3022                                 "already has streams set up.\n",
3023                                 ep->desc.bEndpointAddress);
3024                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3025                                 "dynamic stream context array reallocation.\n");
3026                 return -EINVAL;
3027         }
3028         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3029                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3030                                 "endpoint 0x%x; URBs are pending.\n",
3031                                 ep->desc.bEndpointAddress);
3032                 return -EINVAL;
3033         }
3034         return 0;
3035 }
3036
3037 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3038                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3039 {
3040         unsigned int max_streams;
3041
3042         /* The stream context array size must be a power of two */
3043         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3044         /*
3045          * Find out how many primary stream array entries the host controller
3046          * supports.  Later we may use secondary stream arrays (similar to 2nd
3047          * level page entries), but that's an optional feature for xHCI host
3048          * controllers. xHCs must support at least 4 stream IDs.
3049          */
3050         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3051         if (*num_stream_ctxs > max_streams) {
3052                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3053                                 max_streams);
3054                 *num_stream_ctxs = max_streams;
3055                 *num_streams = max_streams;
3056         }
3057 }
3058
3059 /* Returns an error code if one of the endpoint already has streams.
3060  * This does not change any data structures, it only checks and gathers
3061  * information.
3062  */
3063 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3064                 struct usb_device *udev,
3065                 struct usb_host_endpoint **eps, unsigned int num_eps,
3066                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3067 {
3068         unsigned int max_streams;
3069         unsigned int endpoint_flag;
3070         int i;
3071         int ret;
3072
3073         for (i = 0; i < num_eps; i++) {
3074                 ret = xhci_check_streams_endpoint(xhci, udev,
3075                                 eps[i], udev->slot_id);
3076                 if (ret < 0)
3077                         return ret;
3078
3079                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3080                 if (max_streams < (*num_streams - 1)) {
3081                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3082                                         eps[i]->desc.bEndpointAddress,
3083                                         max_streams);
3084                         *num_streams = max_streams+1;
3085                 }
3086
3087                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3088                 if (*changed_ep_bitmask & endpoint_flag)
3089                         return -EINVAL;
3090                 *changed_ep_bitmask |= endpoint_flag;
3091         }
3092         return 0;
3093 }
3094
3095 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3096                 struct usb_device *udev,
3097                 struct usb_host_endpoint **eps, unsigned int num_eps)
3098 {
3099         u32 changed_ep_bitmask = 0;
3100         unsigned int slot_id;
3101         unsigned int ep_index;
3102         unsigned int ep_state;
3103         int i;
3104
3105         slot_id = udev->slot_id;
3106         if (!xhci->devs[slot_id])
3107                 return 0;
3108
3109         for (i = 0; i < num_eps; i++) {
3110                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3111                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3112                 /* Are streams already being freed for the endpoint? */
3113                 if (ep_state & EP_GETTING_NO_STREAMS) {
3114                         xhci_warn(xhci, "WARN Can't disable streams for "
3115                                         "endpoint 0x%x, "
3116                                         "streams are being disabled already\n",
3117                                         eps[i]->desc.bEndpointAddress);
3118                         return 0;
3119                 }
3120                 /* Are there actually any streams to free? */
3121                 if (!(ep_state & EP_HAS_STREAMS) &&
3122                                 !(ep_state & EP_GETTING_STREAMS)) {
3123                         xhci_warn(xhci, "WARN Can't disable streams for "
3124                                         "endpoint 0x%x, "
3125                                         "streams are already disabled!\n",
3126                                         eps[i]->desc.bEndpointAddress);
3127                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3128                                         "with non-streams endpoint\n");
3129                         return 0;
3130                 }
3131                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3132         }
3133         return changed_ep_bitmask;
3134 }
3135
3136 /*
3137  * The USB device drivers use this function (through the HCD interface in USB
3138  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3139  * coordinate mass storage command queueing across multiple endpoints (basically
3140  * a stream ID == a task ID).
3141  *
3142  * Setting up streams involves allocating the same size stream context array
3143  * for each endpoint and issuing a configure endpoint command for all endpoints.
3144  *
3145  * Don't allow the call to succeed if one endpoint only supports one stream
3146  * (which means it doesn't support streams at all).
3147  *
3148  * Drivers may get less stream IDs than they asked for, if the host controller
3149  * hardware or endpoints claim they can't support the number of requested
3150  * stream IDs.
3151  */
3152 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3153                 struct usb_host_endpoint **eps, unsigned int num_eps,
3154                 unsigned int num_streams, gfp_t mem_flags)
3155 {
3156         int i, ret;
3157         struct xhci_hcd *xhci;
3158         struct xhci_virt_device *vdev;
3159         struct xhci_command *config_cmd;
3160         struct xhci_input_control_ctx *ctrl_ctx;
3161         unsigned int ep_index;
3162         unsigned int num_stream_ctxs;
3163         unsigned long flags;
3164         u32 changed_ep_bitmask = 0;
3165
3166         if (!eps)
3167                 return -EINVAL;
3168
3169         /* Add one to the number of streams requested to account for
3170          * stream 0 that is reserved for xHCI usage.
3171          */
3172         num_streams += 1;
3173         xhci = hcd_to_xhci(hcd);
3174         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3175                         num_streams);
3176
3177         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3178         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3179                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3180                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3181                 return -ENOSYS;
3182         }
3183
3184         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3185         if (!config_cmd) {
3186                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3187                 return -ENOMEM;
3188         }
3189         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3190         if (!ctrl_ctx) {
3191                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3192                                 __func__);
3193                 xhci_free_command(xhci, config_cmd);
3194                 return -ENOMEM;
3195         }
3196
3197         /* Check to make sure all endpoints are not already configured for
3198          * streams.  While we're at it, find the maximum number of streams that
3199          * all the endpoints will support and check for duplicate endpoints.
3200          */
3201         spin_lock_irqsave(&xhci->lock, flags);
3202         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3203                         num_eps, &num_streams, &changed_ep_bitmask);
3204         if (ret < 0) {
3205                 xhci_free_command(xhci, config_cmd);
3206                 spin_unlock_irqrestore(&xhci->lock, flags);
3207                 return ret;
3208         }
3209         if (num_streams <= 1) {
3210                 xhci_warn(xhci, "WARN: endpoints can't handle "
3211                                 "more than one stream.\n");
3212                 xhci_free_command(xhci, config_cmd);
3213                 spin_unlock_irqrestore(&xhci->lock, flags);
3214                 return -EINVAL;
3215         }
3216         vdev = xhci->devs[udev->slot_id];
3217         /* Mark each endpoint as being in transition, so
3218          * xhci_urb_enqueue() will reject all URBs.
3219          */
3220         for (i = 0; i < num_eps; i++) {
3221                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3222                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3223         }
3224         spin_unlock_irqrestore(&xhci->lock, flags);
3225
3226         /* Setup internal data structures and allocate HW data structures for
3227          * streams (but don't install the HW structures in the input context
3228          * until we're sure all memory allocation succeeded).
3229          */
3230         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3231         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3232                         num_stream_ctxs, num_streams);
3233
3234         for (i = 0; i < num_eps; i++) {
3235                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3236                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3237                                 num_stream_ctxs,
3238                                 num_streams, mem_flags);
3239                 if (!vdev->eps[ep_index].stream_info)
3240                         goto cleanup;
3241                 /* Set maxPstreams in endpoint context and update deq ptr to
3242                  * point to stream context array. FIXME
3243                  */
3244         }
3245
3246         /* Set up the input context for a configure endpoint command. */
3247         for (i = 0; i < num_eps; i++) {
3248                 struct xhci_ep_ctx *ep_ctx;
3249
3250                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3251                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3252
3253                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3254                                 vdev->out_ctx, ep_index);
3255                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3256                                 vdev->eps[ep_index].stream_info);
3257         }
3258         /* Tell the HW to drop its old copy of the endpoint context info
3259          * and add the updated copy from the input context.
3260          */
3261         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3262                         vdev->out_ctx, ctrl_ctx,
3263                         changed_ep_bitmask, changed_ep_bitmask);
3264
3265         /* Issue and wait for the configure endpoint command */
3266         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3267                         false, false);
3268
3269         /* xHC rejected the configure endpoint command for some reason, so we
3270          * leave the old ring intact and free our internal streams data
3271          * structure.
3272          */
3273         if (ret < 0)
3274                 goto cleanup;
3275
3276         spin_lock_irqsave(&xhci->lock, flags);
3277         for (i = 0; i < num_eps; i++) {
3278                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3279                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3280                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3281                          udev->slot_id, ep_index);
3282                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3283         }
3284         xhci_free_command(xhci, config_cmd);
3285         spin_unlock_irqrestore(&xhci->lock, flags);
3286
3287         /* Subtract 1 for stream 0, which drivers can't use */
3288         return num_streams - 1;
3289
3290 cleanup:
3291         /* If it didn't work, free the streams! */
3292         for (i = 0; i < num_eps; i++) {
3293                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3294                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3295                 vdev->eps[ep_index].stream_info = NULL;
3296                 /* FIXME Unset maxPstreams in endpoint context and
3297                  * update deq ptr to point to normal string ring.
3298                  */
3299                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3300                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3301                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3302         }
3303         xhci_free_command(xhci, config_cmd);
3304         return -ENOMEM;
3305 }
3306
3307 /* Transition the endpoint from using streams to being a "normal" endpoint
3308  * without streams.
3309  *
3310  * Modify the endpoint context state, submit a configure endpoint command,
3311  * and free all endpoint rings for streams if that completes successfully.
3312  */
3313 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3314                 struct usb_host_endpoint **eps, unsigned int num_eps,
3315                 gfp_t mem_flags)
3316 {
3317         int i, ret;
3318         struct xhci_hcd *xhci;
3319         struct xhci_virt_device *vdev;
3320         struct xhci_command *command;
3321         struct xhci_input_control_ctx *ctrl_ctx;
3322         unsigned int ep_index;
3323         unsigned long flags;
3324         u32 changed_ep_bitmask;
3325
3326         xhci = hcd_to_xhci(hcd);
3327         vdev = xhci->devs[udev->slot_id];
3328
3329         /* Set up a configure endpoint command to remove the streams rings */
3330         spin_lock_irqsave(&xhci->lock, flags);
3331         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3332                         udev, eps, num_eps);
3333         if (changed_ep_bitmask == 0) {
3334                 spin_unlock_irqrestore(&xhci->lock, flags);
3335                 return -EINVAL;
3336         }
3337
3338         /* Use the xhci_command structure from the first endpoint.  We may have
3339          * allocated too many, but the driver may call xhci_free_streams() for
3340          * each endpoint it grouped into one call to xhci_alloc_streams().
3341          */
3342         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3343         command = vdev->eps[ep_index].stream_info->free_streams_command;
3344         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3345         if (!ctrl_ctx) {
3346                 spin_unlock_irqrestore(&xhci->lock, flags);
3347                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3348                                 __func__);
3349                 return -EINVAL;
3350         }
3351
3352         for (i = 0; i < num_eps; i++) {
3353                 struct xhci_ep_ctx *ep_ctx;
3354
3355                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3356                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3357                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3358                         EP_GETTING_NO_STREAMS;
3359
3360                 xhci_endpoint_copy(xhci, command->in_ctx,
3361                                 vdev->out_ctx, ep_index);
3362                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3363                                 &vdev->eps[ep_index]);
3364         }
3365         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3366                         vdev->out_ctx, ctrl_ctx,
3367                         changed_ep_bitmask, changed_ep_bitmask);
3368         spin_unlock_irqrestore(&xhci->lock, flags);
3369
3370         /* Issue and wait for the configure endpoint command,
3371          * which must succeed.
3372          */
3373         ret = xhci_configure_endpoint(xhci, udev, command,
3374                         false, true);
3375
3376         /* xHC rejected the configure endpoint command for some reason, so we
3377          * leave the streams rings intact.
3378          */
3379         if (ret < 0)
3380                 return ret;
3381
3382         spin_lock_irqsave(&xhci->lock, flags);
3383         for (i = 0; i < num_eps; i++) {
3384                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3385                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3386                 vdev->eps[ep_index].stream_info = NULL;
3387                 /* FIXME Unset maxPstreams in endpoint context and
3388                  * update deq ptr to point to normal string ring.
3389                  */
3390                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3391                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3392         }
3393         spin_unlock_irqrestore(&xhci->lock, flags);
3394
3395         return 0;
3396 }
3397
3398 /*
3399  * Deletes endpoint resources for endpoints that were active before a Reset
3400  * Device command, or a Disable Slot command.  The Reset Device command leaves
3401  * the control endpoint intact, whereas the Disable Slot command deletes it.
3402  *
3403  * Must be called with xhci->lock held.
3404  */
3405 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3406         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3407 {
3408         int i;
3409         unsigned int num_dropped_eps = 0;
3410         unsigned int drop_flags = 0;
3411
3412         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3413                 if (virt_dev->eps[i].ring) {
3414                         drop_flags |= 1 << i;
3415                         num_dropped_eps++;
3416                 }
3417         }
3418         xhci->num_active_eps -= num_dropped_eps;
3419         if (num_dropped_eps)
3420                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3421                                 "Dropped %u ep ctxs, flags = 0x%x, "
3422                                 "%u now active.",
3423                                 num_dropped_eps, drop_flags,
3424                                 xhci->num_active_eps);
3425 }
3426
3427 /*
3428  * This submits a Reset Device Command, which will set the device state to 0,
3429  * set the device address to 0, and disable all the endpoints except the default
3430  * control endpoint.  The USB core should come back and call
3431  * xhci_address_device(), and then re-set up the configuration.  If this is
3432  * called because of a usb_reset_and_verify_device(), then the old alternate
3433  * settings will be re-installed through the normal bandwidth allocation
3434  * functions.
3435  *
3436  * Wait for the Reset Device command to finish.  Remove all structures
3437  * associated with the endpoints that were disabled.  Clear the input device
3438  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3439  *
3440  * If the virt_dev to be reset does not exist or does not match the udev,
3441  * it means the device is lost, possibly due to the xHC restore error and
3442  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3443  * re-allocate the device.
3444  */
3445 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3446 {
3447         int ret, i;
3448         unsigned long flags;
3449         struct xhci_hcd *xhci;
3450         unsigned int slot_id;
3451         struct xhci_virt_device *virt_dev;
3452         struct xhci_command *reset_device_cmd;
3453         int last_freed_endpoint;
3454         struct xhci_slot_ctx *slot_ctx;
3455         int old_active_eps = 0;
3456
3457         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3458         if (ret <= 0)
3459                 return ret;
3460         xhci = hcd_to_xhci(hcd);
3461         slot_id = udev->slot_id;
3462         virt_dev = xhci->devs[slot_id];
3463         if (!virt_dev) {
3464                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3465                                 "not exist. Re-allocate the device\n", slot_id);
3466                 ret = xhci_alloc_dev(hcd, udev);
3467                 if (ret == 1)
3468                         return 0;
3469                 else
3470                         return -EINVAL;
3471         }
3472
3473         if (virt_dev->tt_info)
3474                 old_active_eps = virt_dev->tt_info->active_eps;
3475
3476         if (virt_dev->udev != udev) {
3477                 /* If the virt_dev and the udev does not match, this virt_dev
3478                  * may belong to another udev.
3479                  * Re-allocate the device.
3480                  */
3481                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3482                                 "not match the udev. Re-allocate the device\n",
3483                                 slot_id);
3484                 ret = xhci_alloc_dev(hcd, udev);
3485                 if (ret == 1)
3486                         return 0;
3487                 else
3488                         return -EINVAL;
3489         }
3490
3491         /* If device is not setup, there is no point in resetting it */
3492         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3493         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3494                                                 SLOT_STATE_DISABLED)
3495                 return 0;
3496
3497         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3498         /* Allocate the command structure that holds the struct completion.
3499          * Assume we're in process context, since the normal device reset
3500          * process has to wait for the device anyway.  Storage devices are
3501          * reset as part of error handling, so use GFP_NOIO instead of
3502          * GFP_KERNEL.
3503          */
3504         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3505         if (!reset_device_cmd) {
3506                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3507                 return -ENOMEM;
3508         }
3509
3510         /* Attempt to submit the Reset Device command to the command ring */
3511         spin_lock_irqsave(&xhci->lock, flags);
3512
3513         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3514         if (ret) {
3515                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3516                 spin_unlock_irqrestore(&xhci->lock, flags);
3517                 goto command_cleanup;
3518         }
3519         xhci_ring_cmd_db(xhci);
3520         spin_unlock_irqrestore(&xhci->lock, flags);
3521
3522         /* Wait for the Reset Device command to finish */
3523         wait_for_completion(reset_device_cmd->completion);
3524
3525         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3526          * unless we tried to reset a slot ID that wasn't enabled,
3527          * or the device wasn't in the addressed or configured state.
3528          */
3529         ret = reset_device_cmd->status;
3530         switch (ret) {
3531         case COMP_CMD_ABORT:
3532         case COMP_CMD_STOP:
3533                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3534                 ret = -ETIME;
3535                 goto command_cleanup;
3536         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3537         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3538                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3539                                 slot_id,
3540                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3541                 xhci_dbg(xhci, "Not freeing device rings.\n");
3542                 /* Don't treat this as an error.  May change my mind later. */
3543                 ret = 0;
3544                 goto command_cleanup;
3545         case COMP_SUCCESS:
3546                 xhci_dbg(xhci, "Successful reset device command.\n");
3547                 break;
3548         default:
3549                 if (xhci_is_vendor_info_code(xhci, ret))
3550                         break;
3551                 xhci_warn(xhci, "Unknown completion code %u for "
3552                                 "reset device command.\n", ret);
3553                 ret = -EINVAL;
3554                 goto command_cleanup;
3555         }
3556
3557         /* Free up host controller endpoint resources */
3558         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3559                 spin_lock_irqsave(&xhci->lock, flags);
3560                 /* Don't delete the default control endpoint resources */
3561                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3562                 spin_unlock_irqrestore(&xhci->lock, flags);
3563         }
3564
3565         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3566         last_freed_endpoint = 1;
3567         for (i = 1; i < 31; ++i) {
3568                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3569
3570                 if (ep->ep_state & EP_HAS_STREAMS) {
3571                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3572                                         xhci_get_endpoint_address(i));
3573                         xhci_free_stream_info(xhci, ep->stream_info);
3574                         ep->stream_info = NULL;
3575                         ep->ep_state &= ~EP_HAS_STREAMS;
3576                 }
3577
3578                 if (ep->ring) {
3579                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3580                         last_freed_endpoint = i;
3581                 }
3582                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3583                         xhci_drop_ep_from_interval_table(xhci,
3584                                         &virt_dev->eps[i].bw_info,
3585                                         virt_dev->bw_table,
3586                                         udev,
3587                                         &virt_dev->eps[i],
3588                                         virt_dev->tt_info);
3589                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3590         }
3591         /* If necessary, update the number of active TTs on this root port */
3592         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3593
3594         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3595         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3596         ret = 0;
3597
3598 command_cleanup:
3599         xhci_free_command(xhci, reset_device_cmd);
3600         return ret;
3601 }
3602
3603 /*
3604  * At this point, the struct usb_device is about to go away, the device has
3605  * disconnected, and all traffic has been stopped and the endpoints have been
3606  * disabled.  Free any HC data structures associated with that device.
3607  */
3608 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3609 {
3610         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3611         struct xhci_virt_device *virt_dev;
3612         unsigned long flags;
3613         u32 state;
3614         int i, ret;
3615         struct xhci_command *command;
3616
3617         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3618         if (!command)
3619                 return;
3620
3621 #ifndef CONFIG_USB_DEFAULT_PERSIST
3622         /*
3623          * We called pm_runtime_get_noresume when the device was attached.
3624          * Decrement the counter here to allow controller to runtime suspend
3625          * if no devices remain.
3626          */
3627         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3628                 pm_runtime_put_noidle(hcd->self.controller);
3629 #endif
3630
3631         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3632         /* If the host is halted due to driver unload, we still need to free the
3633          * device.
3634          */
3635         if (ret <= 0 && ret != -ENODEV) {
3636                 kfree(command);
3637                 return;
3638         }
3639
3640         virt_dev = xhci->devs[udev->slot_id];
3641
3642         /* Stop any wayward timer functions (which may grab the lock) */
3643         for (i = 0; i < 31; ++i) {
3644                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3645                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3646         }
3647
3648         spin_lock_irqsave(&xhci->lock, flags);
3649         /* Don't disable the slot if the host controller is dead. */
3650         state = readl(&xhci->op_regs->status);
3651         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3652                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3653                 xhci_free_virt_device(xhci, udev->slot_id);
3654                 spin_unlock_irqrestore(&xhci->lock, flags);
3655                 kfree(command);
3656                 return;
3657         }
3658
3659         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3660                                     udev->slot_id)) {
3661                 spin_unlock_irqrestore(&xhci->lock, flags);
3662                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3663                 return;
3664         }
3665         xhci_ring_cmd_db(xhci);
3666         spin_unlock_irqrestore(&xhci->lock, flags);
3667
3668         /*
3669          * Event command completion handler will free any data structures
3670          * associated with the slot.  XXX Can free sleep?
3671          */
3672 }
3673
3674 /*
3675  * Checks if we have enough host controller resources for the default control
3676  * endpoint.
3677  *
3678  * Must be called with xhci->lock held.
3679  */
3680 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3681 {
3682         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3683                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3684                                 "Not enough ep ctxs: "
3685                                 "%u active, need to add 1, limit is %u.",
3686                                 xhci->num_active_eps, xhci->limit_active_eps);
3687                 return -ENOMEM;
3688         }
3689         xhci->num_active_eps += 1;
3690         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3691                         "Adding 1 ep ctx, %u now active.",
3692                         xhci->num_active_eps);
3693         return 0;
3694 }
3695
3696
3697 /*
3698  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3699  * timed out, or allocating memory failed.  Returns 1 on success.
3700  */
3701 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3702 {
3703         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3704         unsigned long flags;
3705         int ret, slot_id;
3706         struct xhci_command *command;
3707
3708         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3709         if (!command)
3710                 return 0;
3711
3712         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3713         mutex_lock(&xhci->mutex);
3714         spin_lock_irqsave(&xhci->lock, flags);
3715         command->completion = &xhci->addr_dev;
3716         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3717         if (ret) {
3718                 spin_unlock_irqrestore(&xhci->lock, flags);
3719                 mutex_unlock(&xhci->mutex);
3720                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3721                 kfree(command);
3722                 return 0;
3723         }
3724         xhci_ring_cmd_db(xhci);
3725         spin_unlock_irqrestore(&xhci->lock, flags);
3726
3727         wait_for_completion(command->completion);
3728         slot_id = xhci->slot_id;
3729         mutex_unlock(&xhci->mutex);
3730
3731         if (!slot_id || command->status != COMP_SUCCESS) {
3732                 xhci_err(xhci, "Error while assigning device slot ID\n");
3733                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3734                                 HCS_MAX_SLOTS(
3735                                         readl(&xhci->cap_regs->hcs_params1)));
3736                 kfree(command);
3737                 return 0;
3738         }
3739
3740         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3741                 spin_lock_irqsave(&xhci->lock, flags);
3742                 ret = xhci_reserve_host_control_ep_resources(xhci);
3743                 if (ret) {
3744                         spin_unlock_irqrestore(&xhci->lock, flags);
3745                         xhci_warn(xhci, "Not enough host resources, "
3746                                         "active endpoint contexts = %u\n",
3747                                         xhci->num_active_eps);
3748                         goto disable_slot;
3749                 }
3750                 spin_unlock_irqrestore(&xhci->lock, flags);
3751         }
3752         /* Use GFP_NOIO, since this function can be called from
3753          * xhci_discover_or_reset_device(), which may be called as part of
3754          * mass storage driver error handling.
3755          */
3756         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3757                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3758                 goto disable_slot;
3759         }
3760         udev->slot_id = slot_id;
3761
3762 #ifndef CONFIG_USB_DEFAULT_PERSIST
3763         /*
3764          * If resetting upon resume, we can't put the controller into runtime
3765          * suspend if there is a device attached.
3766          */
3767         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3768                 pm_runtime_get_noresume(hcd->self.controller);
3769 #endif
3770
3771
3772         kfree(command);
3773         /* Is this a LS or FS device under a HS hub? */
3774         /* Hub or peripherial? */
3775         return 1;
3776
3777 disable_slot:
3778         /* Disable slot, if we can do it without mem alloc */
3779         spin_lock_irqsave(&xhci->lock, flags);
3780         command->completion = NULL;
3781         command->status = 0;
3782         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3783                                      udev->slot_id))
3784                 xhci_ring_cmd_db(xhci);
3785         spin_unlock_irqrestore(&xhci->lock, flags);
3786         return 0;
3787 }
3788
3789 /*
3790  * Issue an Address Device command and optionally send a corresponding
3791  * SetAddress request to the device.
3792  */
3793 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3794                              enum xhci_setup_dev setup)
3795 {
3796         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3797         unsigned long flags;
3798         struct xhci_virt_device *virt_dev;
3799         int ret = 0;
3800         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3801         struct xhci_slot_ctx *slot_ctx;
3802         struct xhci_input_control_ctx *ctrl_ctx;
3803         u64 temp_64;
3804         struct xhci_command *command = NULL;
3805
3806         mutex_lock(&xhci->mutex);
3807
3808         if (xhci->xhc_state)    /* dying, removing or halted */
3809                 goto out;
3810
3811         if (!udev->slot_id) {
3812                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3813                                 "Bad Slot ID %d", udev->slot_id);
3814                 ret = -EINVAL;
3815                 goto out;
3816         }
3817
3818         virt_dev = xhci->devs[udev->slot_id];
3819
3820         if (WARN_ON(!virt_dev)) {
3821                 /*
3822                  * In plug/unplug torture test with an NEC controller,
3823                  * a zero-dereference was observed once due to virt_dev = 0.
3824                  * Print useful debug rather than crash if it is observed again!
3825                  */
3826                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3827                         udev->slot_id);
3828                 ret = -EINVAL;
3829                 goto out;
3830         }
3831
3832         if (setup == SETUP_CONTEXT_ONLY) {
3833                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3834                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3835                     SLOT_STATE_DEFAULT) {
3836                         xhci_dbg(xhci, "Slot already in default state\n");
3837                         goto out;
3838                 }
3839         }
3840
3841         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3842         if (!command) {
3843                 ret = -ENOMEM;
3844                 goto out;
3845         }
3846
3847         command->in_ctx = virt_dev->in_ctx;
3848         command->completion = &xhci->addr_dev;
3849
3850         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3851         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3852         if (!ctrl_ctx) {
3853                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3854                                 __func__);
3855                 ret = -EINVAL;
3856                 goto out;
3857         }
3858         /*
3859          * If this is the first Set Address since device plug-in or
3860          * virt_device realloaction after a resume with an xHCI power loss,
3861          * then set up the slot context.
3862          */
3863         if (!slot_ctx->dev_info)
3864                 xhci_setup_addressable_virt_dev(xhci, udev);
3865         /* Otherwise, update the control endpoint ring enqueue pointer. */
3866         else
3867                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3868         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3869         ctrl_ctx->drop_flags = 0;
3870
3871         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3872         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3873         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3874                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3875
3876         spin_lock_irqsave(&xhci->lock, flags);
3877         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3878                                         udev->slot_id, setup);
3879         if (ret) {
3880                 spin_unlock_irqrestore(&xhci->lock, flags);
3881                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3882                                 "FIXME: allocate a command ring segment");
3883                 goto out;
3884         }
3885         xhci_ring_cmd_db(xhci);
3886         spin_unlock_irqrestore(&xhci->lock, flags);
3887
3888         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3889         wait_for_completion(command->completion);
3890
3891         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3892          * the SetAddress() "recovery interval" required by USB and aborting the
3893          * command on a timeout.
3894          */
3895         switch (command->status) {
3896         case COMP_CMD_ABORT:
3897         case COMP_CMD_STOP:
3898                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3899                 ret = -ETIME;
3900                 break;
3901         case COMP_CTX_STATE:
3902         case COMP_EBADSLT:
3903                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3904                          act, udev->slot_id);
3905                 ret = -EINVAL;
3906                 break;
3907         case COMP_TX_ERR:
3908                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3909                 ret = -EPROTO;
3910                 break;
3911         case COMP_DEV_ERR:
3912                 dev_warn(&udev->dev,
3913                          "ERROR: Incompatible device for setup %s command\n", act);
3914                 ret = -ENODEV;
3915                 break;
3916         case COMP_SUCCESS:
3917                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3918                                "Successful setup %s command", act);
3919                 break;
3920         default:
3921                 xhci_err(xhci,
3922                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3923                          act, command->status);
3924                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3925                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3926                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3927                 ret = -EINVAL;
3928                 break;
3929         }
3930         if (ret)
3931                 goto out;
3932         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3933         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3934                         "Op regs DCBAA ptr = %#016llx", temp_64);
3935         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3936                 "Slot ID %d dcbaa entry @%p = %#016llx",
3937                 udev->slot_id,
3938                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3939                 (unsigned long long)
3940                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3941         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3942                         "Output Context DMA address = %#08llx",
3943                         (unsigned long long)virt_dev->out_ctx->dma);
3944         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3945         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3946         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3947                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3948         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3949         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3950         /*
3951          * USB core uses address 1 for the roothubs, so we add one to the
3952          * address given back to us by the HC.
3953          */
3954         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3955         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3956                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3957         /* Zero the input context control for later use */
3958         ctrl_ctx->add_flags = 0;
3959         ctrl_ctx->drop_flags = 0;
3960
3961         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3962                        "Internal device address = %d",
3963                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3964 out:
3965         mutex_unlock(&xhci->mutex);
3966         kfree(command);
3967         return ret;
3968 }
3969
3970 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3971 {
3972         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3973 }
3974
3975 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3976 {
3977         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3978 }
3979
3980 /*
3981  * Transfer the port index into real index in the HW port status
3982  * registers. Caculate offset between the port's PORTSC register
3983  * and port status base. Divide the number of per port register
3984  * to get the real index. The raw port number bases 1.
3985  */
3986 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3987 {
3988         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3989         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3990         __le32 __iomem *addr;
3991         int raw_port;
3992
3993         if (hcd->speed < HCD_USB3)
3994                 addr = xhci->usb2_ports[port1 - 1];
3995         else
3996                 addr = xhci->usb3_ports[port1 - 1];
3997
3998         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3999         return raw_port;
4000 }
4001
4002 /*
4003  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4004  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4005  */
4006 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4007                         struct usb_device *udev, u16 max_exit_latency)
4008 {
4009         struct xhci_virt_device *virt_dev;
4010         struct xhci_command *command;
4011         struct xhci_input_control_ctx *ctrl_ctx;
4012         struct xhci_slot_ctx *slot_ctx;
4013         unsigned long flags;
4014         int ret;
4015
4016         spin_lock_irqsave(&xhci->lock, flags);
4017
4018         virt_dev = xhci->devs[udev->slot_id];
4019
4020         /*
4021          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4022          * xHC was re-initialized. Exit latency will be set later after
4023          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4024          */
4025
4026         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4027                 spin_unlock_irqrestore(&xhci->lock, flags);
4028                 return 0;
4029         }
4030
4031         /* Attempt to issue an Evaluate Context command to change the MEL. */
4032         command = xhci->lpm_command;
4033         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4034         if (!ctrl_ctx) {
4035                 spin_unlock_irqrestore(&xhci->lock, flags);
4036                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4037                                 __func__);
4038                 return -ENOMEM;
4039         }
4040
4041         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4042         spin_unlock_irqrestore(&xhci->lock, flags);
4043
4044         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4045         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4046         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4047         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4048         slot_ctx->dev_state = 0;
4049
4050         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4051                         "Set up evaluate context for LPM MEL change.");
4052         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4053         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4054
4055         /* Issue and wait for the evaluate context command. */
4056         ret = xhci_configure_endpoint(xhci, udev, command,
4057                         true, true);
4058         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4059         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4060
4061         if (!ret) {
4062                 spin_lock_irqsave(&xhci->lock, flags);
4063                 virt_dev->current_mel = max_exit_latency;
4064                 spin_unlock_irqrestore(&xhci->lock, flags);
4065         }
4066         return ret;
4067 }
4068
4069 #ifdef CONFIG_PM
4070
4071 /* BESL to HIRD Encoding array for USB2 LPM */
4072 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4073         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4074
4075 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4076 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4077                                         struct usb_device *udev)
4078 {
4079         int u2del, besl, besl_host;
4080         int besl_device = 0;
4081         u32 field;
4082
4083         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4084         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4085
4086         if (field & USB_BESL_SUPPORT) {
4087                 for (besl_host = 0; besl_host < 16; besl_host++) {
4088                         if (xhci_besl_encoding[besl_host] >= u2del)
4089                                 break;
4090                 }
4091                 /* Use baseline BESL value as default */
4092                 if (field & USB_BESL_BASELINE_VALID)
4093                         besl_device = USB_GET_BESL_BASELINE(field);
4094                 else if (field & USB_BESL_DEEP_VALID)
4095                         besl_device = USB_GET_BESL_DEEP(field);
4096         } else {
4097                 if (u2del <= 50)
4098                         besl_host = 0;
4099                 else
4100                         besl_host = (u2del - 51) / 75 + 1;
4101         }
4102
4103         besl = besl_host + besl_device;
4104         if (besl > 15)
4105                 besl = 15;
4106
4107         return besl;
4108 }
4109
4110 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4111 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4112 {
4113         u32 field;
4114         int l1;
4115         int besld = 0;
4116         int hirdm = 0;
4117
4118         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4119
4120         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4121         l1 = udev->l1_params.timeout / 256;
4122
4123         /* device has preferred BESLD */
4124         if (field & USB_BESL_DEEP_VALID) {
4125                 besld = USB_GET_BESL_DEEP(field);
4126                 hirdm = 1;
4127         }
4128
4129         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4130 }
4131
4132 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4133                         struct usb_device *udev, int enable)
4134 {
4135         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4136         __le32 __iomem  **port_array;
4137         __le32 __iomem  *pm_addr, *hlpm_addr;
4138         u32             pm_val, hlpm_val, field;
4139         unsigned int    port_num;
4140         unsigned long   flags;
4141         int             hird, exit_latency;
4142         int             ret;
4143
4144         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4145                         !udev->lpm_capable)
4146                 return -EPERM;
4147
4148         if (!udev->parent || udev->parent->parent ||
4149                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4150                 return -EPERM;
4151
4152         if (udev->usb2_hw_lpm_capable != 1)
4153                 return -EPERM;
4154
4155         spin_lock_irqsave(&xhci->lock, flags);
4156
4157         port_array = xhci->usb2_ports;
4158         port_num = udev->portnum - 1;
4159         pm_addr = port_array[port_num] + PORTPMSC;
4160         pm_val = readl(pm_addr);
4161         hlpm_addr = port_array[port_num] + PORTHLPMC;
4162         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4163
4164         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4165                         enable ? "enable" : "disable", port_num + 1);
4166
4167         if (enable) {
4168                 /* Host supports BESL timeout instead of HIRD */
4169                 if (udev->usb2_hw_lpm_besl_capable) {
4170                         /* if device doesn't have a preferred BESL value use a
4171                          * default one which works with mixed HIRD and BESL
4172                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4173                          */
4174                         if ((field & USB_BESL_SUPPORT) &&
4175                             (field & USB_BESL_BASELINE_VALID))
4176                                 hird = USB_GET_BESL_BASELINE(field);
4177                         else
4178                                 hird = udev->l1_params.besl;
4179
4180                         exit_latency = xhci_besl_encoding[hird];
4181                         spin_unlock_irqrestore(&xhci->lock, flags);
4182
4183                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4184                          * input context for link powermanagement evaluate
4185                          * context commands. It is protected by hcd->bandwidth
4186                          * mutex and is shared by all devices. We need to set
4187                          * the max ext latency in USB 2 BESL LPM as well, so
4188                          * use the same mutex and xhci_change_max_exit_latency()
4189                          */
4190                         mutex_lock(hcd->bandwidth_mutex);
4191                         ret = xhci_change_max_exit_latency(xhci, udev,
4192                                                            exit_latency);
4193                         mutex_unlock(hcd->bandwidth_mutex);
4194
4195                         if (ret < 0)
4196                                 return ret;
4197                         spin_lock_irqsave(&xhci->lock, flags);
4198
4199                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4200                         writel(hlpm_val, hlpm_addr);
4201                         /* flush write */
4202                         readl(hlpm_addr);
4203                 } else {
4204                         hird = xhci_calculate_hird_besl(xhci, udev);
4205                 }
4206
4207                 pm_val &= ~PORT_HIRD_MASK;
4208                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4209                 writel(pm_val, pm_addr);
4210                 pm_val = readl(pm_addr);
4211                 pm_val |= PORT_HLE;
4212                 writel(pm_val, pm_addr);
4213                 /* flush write */
4214                 readl(pm_addr);
4215         } else {
4216                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4217                 writel(pm_val, pm_addr);
4218                 /* flush write */
4219                 readl(pm_addr);
4220                 if (udev->usb2_hw_lpm_besl_capable) {
4221                         spin_unlock_irqrestore(&xhci->lock, flags);
4222                         mutex_lock(hcd->bandwidth_mutex);
4223                         xhci_change_max_exit_latency(xhci, udev, 0);
4224                         mutex_unlock(hcd->bandwidth_mutex);
4225                         return 0;
4226                 }
4227         }
4228
4229         spin_unlock_irqrestore(&xhci->lock, flags);
4230         return 0;
4231 }
4232
4233 /* check if a usb2 port supports a given extened capability protocol
4234  * only USB2 ports extended protocol capability values are cached.
4235  * Return 1 if capability is supported
4236  */
4237 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4238                                            unsigned capability)
4239 {
4240         u32 port_offset, port_count;
4241         int i;
4242
4243         for (i = 0; i < xhci->num_ext_caps; i++) {
4244                 if (xhci->ext_caps[i] & capability) {
4245                         /* port offsets starts at 1 */
4246                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4247                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4248                         if (port >= port_offset &&
4249                             port < port_offset + port_count)
4250                                 return 1;
4251                 }
4252         }
4253         return 0;
4254 }
4255
4256 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4257 {
4258         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4259         int             portnum = udev->portnum - 1;
4260
4261         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4262                         !udev->lpm_capable)
4263                 return 0;
4264
4265         /* we only support lpm for non-hub device connected to root hub yet */
4266         if (!udev->parent || udev->parent->parent ||
4267                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4268                 return 0;
4269
4270         if (xhci->hw_lpm_support == 1 &&
4271                         xhci_check_usb2_port_capability(
4272                                 xhci, portnum, XHCI_HLC)) {
4273                 udev->usb2_hw_lpm_capable = 1;
4274                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4275                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4276                 if (xhci_check_usb2_port_capability(xhci, portnum,
4277                                         XHCI_BLC))
4278                         udev->usb2_hw_lpm_besl_capable = 1;
4279         }
4280
4281         return 0;
4282 }
4283
4284 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4285
4286 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4287 static unsigned long long xhci_service_interval_to_ns(
4288                 struct usb_endpoint_descriptor *desc)
4289 {
4290         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4291 }
4292
4293 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4294                 enum usb3_link_state state)
4295 {
4296         unsigned long long sel;
4297         unsigned long long pel;
4298         unsigned int max_sel_pel;
4299         char *state_name;
4300
4301         switch (state) {
4302         case USB3_LPM_U1:
4303                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4304                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4305                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4306                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4307                 state_name = "U1";
4308                 break;
4309         case USB3_LPM_U2:
4310                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4311                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4312                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4313                 state_name = "U2";
4314                 break;
4315         default:
4316                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4317                                 __func__);
4318                 return USB3_LPM_DISABLED;
4319         }
4320
4321         if (sel <= max_sel_pel && pel <= max_sel_pel)
4322                 return USB3_LPM_DEVICE_INITIATED;
4323
4324         if (sel > max_sel_pel)
4325                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4326                                 "due to long SEL %llu ms\n",
4327                                 state_name, sel);
4328         else
4329                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4330                                 "due to long PEL %llu ms\n",
4331                                 state_name, pel);
4332         return USB3_LPM_DISABLED;
4333 }
4334
4335 /* The U1 timeout should be the maximum of the following values:
4336  *  - For control endpoints, U1 system exit latency (SEL) * 3
4337  *  - For bulk endpoints, U1 SEL * 5
4338  *  - For interrupt endpoints:
4339  *    - Notification EPs, U1 SEL * 3
4340  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4341  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4342  */
4343 static unsigned long long xhci_calculate_intel_u1_timeout(
4344                 struct usb_device *udev,
4345                 struct usb_endpoint_descriptor *desc)
4346 {
4347         unsigned long long timeout_ns;
4348         int ep_type;
4349         int intr_type;
4350
4351         ep_type = usb_endpoint_type(desc);
4352         switch (ep_type) {
4353         case USB_ENDPOINT_XFER_CONTROL:
4354                 timeout_ns = udev->u1_params.sel * 3;
4355                 break;
4356         case USB_ENDPOINT_XFER_BULK:
4357                 timeout_ns = udev->u1_params.sel * 5;
4358                 break;
4359         case USB_ENDPOINT_XFER_INT:
4360                 intr_type = usb_endpoint_interrupt_type(desc);
4361                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4362                         timeout_ns = udev->u1_params.sel * 3;
4363                         break;
4364                 }
4365                 /* Otherwise the calculation is the same as isoc eps */
4366         case USB_ENDPOINT_XFER_ISOC:
4367                 timeout_ns = xhci_service_interval_to_ns(desc);
4368                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4369                 if (timeout_ns < udev->u1_params.sel * 2)
4370                         timeout_ns = udev->u1_params.sel * 2;
4371                 break;
4372         default:
4373                 return 0;
4374         }
4375
4376         return timeout_ns;
4377 }
4378
4379 /* Returns the hub-encoded U1 timeout value. */
4380 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4381                 struct usb_device *udev,
4382                 struct usb_endpoint_descriptor *desc)
4383 {
4384         unsigned long long timeout_ns;
4385
4386         if (xhci->quirks & XHCI_INTEL_HOST)
4387                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4388         else
4389                 timeout_ns = udev->u1_params.sel;
4390
4391         /* The U1 timeout is encoded in 1us intervals.
4392          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4393          */
4394         if (timeout_ns == USB3_LPM_DISABLED)
4395                 timeout_ns = 1;
4396         else
4397                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4398
4399         /* If the necessary timeout value is bigger than what we can set in the
4400          * USB 3.0 hub, we have to disable hub-initiated U1.
4401          */
4402         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4403                 return timeout_ns;
4404         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4405                         "due to long timeout %llu ms\n", timeout_ns);
4406         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4407 }
4408
4409 /* The U2 timeout should be the maximum of:
4410  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4411  *  - largest bInterval of any active periodic endpoint (to avoid going
4412  *    into lower power link states between intervals).
4413  *  - the U2 Exit Latency of the device
4414  */
4415 static unsigned long long xhci_calculate_intel_u2_timeout(
4416                 struct usb_device *udev,
4417                 struct usb_endpoint_descriptor *desc)
4418 {
4419         unsigned long long timeout_ns;
4420         unsigned long long u2_del_ns;
4421
4422         timeout_ns = 10 * 1000 * 1000;
4423
4424         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4425                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4426                 timeout_ns = xhci_service_interval_to_ns(desc);
4427
4428         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4429         if (u2_del_ns > timeout_ns)
4430                 timeout_ns = u2_del_ns;
4431
4432         return timeout_ns;
4433 }
4434
4435 /* Returns the hub-encoded U2 timeout value. */
4436 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4437                 struct usb_device *udev,
4438                 struct usb_endpoint_descriptor *desc)
4439 {
4440         unsigned long long timeout_ns;
4441
4442         if (xhci->quirks & XHCI_INTEL_HOST)
4443                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4444         else
4445                 timeout_ns = udev->u2_params.sel;
4446
4447         /* The U2 timeout is encoded in 256us intervals */
4448         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4449         /* If the necessary timeout value is bigger than what we can set in the
4450          * USB 3.0 hub, we have to disable hub-initiated U2.
4451          */
4452         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4453                 return timeout_ns;
4454         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4455                         "due to long timeout %llu ms\n", timeout_ns);
4456         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4457 }
4458
4459 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4460                 struct usb_device *udev,
4461                 struct usb_endpoint_descriptor *desc,
4462                 enum usb3_link_state state,
4463                 u16 *timeout)
4464 {
4465         if (state == USB3_LPM_U1)
4466                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4467         else if (state == USB3_LPM_U2)
4468                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4469
4470         return USB3_LPM_DISABLED;
4471 }
4472
4473 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4474                 struct usb_device *udev,
4475                 struct usb_endpoint_descriptor *desc,
4476                 enum usb3_link_state state,
4477                 u16 *timeout)
4478 {
4479         u16 alt_timeout;
4480
4481         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4482                 desc, state, timeout);
4483
4484         /* If we found we can't enable hub-initiated LPM, or
4485          * the U1 or U2 exit latency was too high to allow
4486          * device-initiated LPM as well, just stop searching.
4487          */
4488         if (alt_timeout == USB3_LPM_DISABLED ||
4489                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4490                 *timeout = alt_timeout;
4491                 return -E2BIG;
4492         }
4493         if (alt_timeout > *timeout)
4494                 *timeout = alt_timeout;
4495         return 0;
4496 }
4497
4498 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4499                 struct usb_device *udev,
4500                 struct usb_host_interface *alt,
4501                 enum usb3_link_state state,
4502                 u16 *timeout)
4503 {
4504         int j;
4505
4506         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4507                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4508                                         &alt->endpoint[j].desc, state, timeout))
4509                         return -E2BIG;
4510                 continue;
4511         }
4512         return 0;
4513 }
4514
4515 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4516                 enum usb3_link_state state)
4517 {
4518         struct usb_device *parent;
4519         unsigned int num_hubs;
4520
4521         if (state == USB3_LPM_U2)
4522                 return 0;
4523
4524         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4525         for (parent = udev->parent, num_hubs = 0; parent->parent;
4526                         parent = parent->parent)
4527                 num_hubs++;
4528
4529         if (num_hubs < 2)
4530                 return 0;
4531
4532         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4533                         " below second-tier hub.\n");
4534         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4535                         "to decrease power consumption.\n");
4536         return -E2BIG;
4537 }
4538
4539 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4540                 struct usb_device *udev,
4541                 enum usb3_link_state state)
4542 {
4543         if (xhci->quirks & XHCI_INTEL_HOST)
4544                 return xhci_check_intel_tier_policy(udev, state);
4545         else
4546                 return 0;
4547 }
4548
4549 /* Returns the U1 or U2 timeout that should be enabled.
4550  * If the tier check or timeout setting functions return with a non-zero exit
4551  * code, that means the timeout value has been finalized and we shouldn't look
4552  * at any more endpoints.
4553  */
4554 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4555                         struct usb_device *udev, enum usb3_link_state state)
4556 {
4557         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4558         struct usb_host_config *config;
4559         char *state_name;
4560         int i;
4561         u16 timeout = USB3_LPM_DISABLED;
4562
4563         if (state == USB3_LPM_U1)
4564                 state_name = "U1";
4565         else if (state == USB3_LPM_U2)
4566                 state_name = "U2";
4567         else {
4568                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4569                                 state);
4570                 return timeout;
4571         }
4572
4573         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4574                 return timeout;
4575
4576         /* Gather some information about the currently installed configuration
4577          * and alternate interface settings.
4578          */
4579         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4580                         state, &timeout))
4581                 return timeout;
4582
4583         config = udev->actconfig;
4584         if (!config)
4585                 return timeout;
4586
4587         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4588                 struct usb_driver *driver;
4589                 struct usb_interface *intf = config->interface[i];
4590
4591                 if (!intf)
4592                         continue;
4593
4594                 /* Check if any currently bound drivers want hub-initiated LPM
4595                  * disabled.
4596                  */
4597                 if (intf->dev.driver) {
4598                         driver = to_usb_driver(intf->dev.driver);
4599                         if (driver && driver->disable_hub_initiated_lpm) {
4600                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4601                                                 "at request of driver %s\n",
4602                                                 state_name, driver->name);
4603                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4604                         }
4605                 }
4606
4607                 /* Not sure how this could happen... */
4608                 if (!intf->cur_altsetting)
4609                         continue;
4610
4611                 if (xhci_update_timeout_for_interface(xhci, udev,
4612                                         intf->cur_altsetting,
4613                                         state, &timeout))
4614                         return timeout;
4615         }
4616         return timeout;
4617 }
4618
4619 static int calculate_max_exit_latency(struct usb_device *udev,
4620                 enum usb3_link_state state_changed,
4621                 u16 hub_encoded_timeout)
4622 {
4623         unsigned long long u1_mel_us = 0;
4624         unsigned long long u2_mel_us = 0;
4625         unsigned long long mel_us = 0;
4626         bool disabling_u1;
4627         bool disabling_u2;
4628         bool enabling_u1;
4629         bool enabling_u2;
4630
4631         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4632                         hub_encoded_timeout == USB3_LPM_DISABLED);
4633         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4634                         hub_encoded_timeout == USB3_LPM_DISABLED);
4635
4636         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4637                         hub_encoded_timeout != USB3_LPM_DISABLED);
4638         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4639                         hub_encoded_timeout != USB3_LPM_DISABLED);
4640
4641         /* If U1 was already enabled and we're not disabling it,
4642          * or we're going to enable U1, account for the U1 max exit latency.
4643          */
4644         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4645                         enabling_u1)
4646                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4647         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4648                         enabling_u2)
4649                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4650
4651         if (u1_mel_us > u2_mel_us)
4652                 mel_us = u1_mel_us;
4653         else
4654                 mel_us = u2_mel_us;
4655         /* xHCI host controller max exit latency field is only 16 bits wide. */
4656         if (mel_us > MAX_EXIT) {
4657                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4658                                 "is too big.\n", mel_us);
4659                 return -E2BIG;
4660         }
4661         return mel_us;
4662 }
4663
4664 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4665 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4666                         struct usb_device *udev, enum usb3_link_state state)
4667 {
4668         struct xhci_hcd *xhci;
4669         u16 hub_encoded_timeout;
4670         int mel;
4671         int ret;
4672
4673         xhci = hcd_to_xhci(hcd);
4674         /* The LPM timeout values are pretty host-controller specific, so don't
4675          * enable hub-initiated timeouts unless the vendor has provided
4676          * information about their timeout algorithm.
4677          */
4678         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4679                         !xhci->devs[udev->slot_id])
4680                 return USB3_LPM_DISABLED;
4681
4682         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4683         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4684         if (mel < 0) {
4685                 /* Max Exit Latency is too big, disable LPM. */
4686                 hub_encoded_timeout = USB3_LPM_DISABLED;
4687                 mel = 0;
4688         }
4689
4690         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4691         if (ret)
4692                 return ret;
4693         return hub_encoded_timeout;
4694 }
4695
4696 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4697                         struct usb_device *udev, enum usb3_link_state state)
4698 {
4699         struct xhci_hcd *xhci;
4700         u16 mel;
4701
4702         xhci = hcd_to_xhci(hcd);
4703         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4704                         !xhci->devs[udev->slot_id])
4705                 return 0;
4706
4707         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4708         return xhci_change_max_exit_latency(xhci, udev, mel);
4709 }
4710 #else /* CONFIG_PM */
4711
4712 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4713                                 struct usb_device *udev, int enable)
4714 {
4715         return 0;
4716 }
4717
4718 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4719 {
4720         return 0;
4721 }
4722
4723 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4724                         struct usb_device *udev, enum usb3_link_state state)
4725 {
4726         return USB3_LPM_DISABLED;
4727 }
4728
4729 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4730                         struct usb_device *udev, enum usb3_link_state state)
4731 {
4732         return 0;
4733 }
4734 #endif  /* CONFIG_PM */
4735
4736 /*-------------------------------------------------------------------------*/
4737
4738 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4739  * internal data structures for the device.
4740  */
4741 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4742                         struct usb_tt *tt, gfp_t mem_flags)
4743 {
4744         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4745         struct xhci_virt_device *vdev;
4746         struct xhci_command *config_cmd;
4747         struct xhci_input_control_ctx *ctrl_ctx;
4748         struct xhci_slot_ctx *slot_ctx;
4749         unsigned long flags;
4750         unsigned think_time;
4751         int ret;
4752
4753         /* Ignore root hubs */
4754         if (!hdev->parent)
4755                 return 0;
4756
4757         vdev = xhci->devs[hdev->slot_id];
4758         if (!vdev) {
4759                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4760                 return -EINVAL;
4761         }
4762         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4763         if (!config_cmd) {
4764                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4765                 return -ENOMEM;
4766         }
4767         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4768         if (!ctrl_ctx) {
4769                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4770                                 __func__);
4771                 xhci_free_command(xhci, config_cmd);
4772                 return -ENOMEM;
4773         }
4774
4775         spin_lock_irqsave(&xhci->lock, flags);
4776         if (hdev->speed == USB_SPEED_HIGH &&
4777                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4778                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4779                 xhci_free_command(xhci, config_cmd);
4780                 spin_unlock_irqrestore(&xhci->lock, flags);
4781                 return -ENOMEM;
4782         }
4783
4784         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4785         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4786         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4787         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4788         /*
4789          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4790          * but it may be already set to 1 when setup an xHCI virtual
4791          * device, so clear it anyway.
4792          */
4793         if (tt->multi)
4794                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4795         else if (hdev->speed == USB_SPEED_FULL)
4796                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4797
4798         if (xhci->hci_version > 0x95) {
4799                 xhci_dbg(xhci, "xHCI version %x needs hub "
4800                                 "TT think time and number of ports\n",
4801                                 (unsigned int) xhci->hci_version);
4802                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4803                 /* Set TT think time - convert from ns to FS bit times.
4804                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4805                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4806                  *
4807                  * xHCI 1.0: this field shall be 0 if the device is not a
4808                  * High-spped hub.
4809                  */
4810                 think_time = tt->think_time;
4811                 if (think_time != 0)
4812                         think_time = (think_time / 666) - 1;
4813                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4814                         slot_ctx->tt_info |=
4815                                 cpu_to_le32(TT_THINK_TIME(think_time));
4816         } else {
4817                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4818                                 "TT think time or number of ports\n",
4819                                 (unsigned int) xhci->hci_version);
4820         }
4821         slot_ctx->dev_state = 0;
4822         spin_unlock_irqrestore(&xhci->lock, flags);
4823
4824         xhci_dbg(xhci, "Set up %s for hub device.\n",
4825                         (xhci->hci_version > 0x95) ?
4826                         "configure endpoint" : "evaluate context");
4827         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4828         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4829
4830         /* Issue and wait for the configure endpoint or
4831          * evaluate context command.
4832          */
4833         if (xhci->hci_version > 0x95)
4834                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4835                                 false, false);
4836         else
4837                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4838                                 true, false);
4839
4840         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4841         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4842
4843         xhci_free_command(xhci, config_cmd);
4844         return ret;
4845 }
4846
4847 int xhci_get_frame(struct usb_hcd *hcd)
4848 {
4849         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4850         /* EHCI mods by the periodic size.  Why? */
4851         return readl(&xhci->run_regs->microframe_index) >> 3;
4852 }
4853
4854 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4855 {
4856         struct xhci_hcd         *xhci;
4857         struct device           *dev = hcd->self.controller;
4858         int                     retval;
4859
4860         /* Accept arbitrarily long scatter-gather lists */
4861         hcd->self.sg_tablesize = ~0;
4862
4863         /* support to build packet from discontinuous buffers */
4864         hcd->self.no_sg_constraint = 1;
4865
4866         /* XHCI controllers don't stop the ep queue on short packets :| */
4867         hcd->self.no_stop_on_short = 1;
4868
4869         xhci = hcd_to_xhci(hcd);
4870
4871         if (usb_hcd_is_primary_hcd(hcd)) {
4872                 xhci->main_hcd = hcd;
4873                 /* Mark the first roothub as being USB 2.0.
4874                  * The xHCI driver will register the USB 3.0 roothub.
4875                  */
4876                 hcd->speed = HCD_USB2;
4877                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4878                 /*
4879                  * USB 2.0 roothub under xHCI has an integrated TT,
4880                  * (rate matching hub) as opposed to having an OHCI/UHCI
4881                  * companion controller.
4882                  */
4883                 hcd->has_tt = 1;
4884         } else {
4885                 if (xhci->sbrn == 0x31) {
4886                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4887                         hcd->speed = HCD_USB31;
4888                 }
4889                 /* xHCI private pointer was set in xhci_pci_probe for the second
4890                  * registered roothub.
4891                  */
4892                 return 0;
4893         }
4894
4895         mutex_init(&xhci->mutex);
4896         xhci->cap_regs = hcd->regs;
4897         xhci->op_regs = hcd->regs +
4898                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4899         xhci->run_regs = hcd->regs +
4900                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4901         /* Cache read-only capability registers */
4902         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4903         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4904         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4905         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4906         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4907         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4908         if (xhci->hci_version > 0x100)
4909                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4910         xhci_print_registers(xhci);
4911
4912         xhci->quirks = quirks;
4913
4914         get_quirks(dev, xhci);
4915
4916         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4917          * success event after a short transfer. This quirk will ignore such
4918          * spurious event.
4919          */
4920         if (xhci->hci_version > 0x96)
4921                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4922
4923         /* Make sure the HC is halted. */
4924         retval = xhci_halt(xhci);
4925         if (retval)
4926                 return retval;
4927
4928         xhci_dbg(xhci, "Resetting HCD\n");
4929         /* Reset the internal HC memory state and registers. */
4930         retval = xhci_reset(xhci);
4931         if (retval)
4932                 return retval;
4933         xhci_dbg(xhci, "Reset complete\n");
4934
4935         /* Set dma_mask and coherent_dma_mask to 64-bits,
4936          * if xHC supports 64-bit addressing */
4937         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4938                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4939                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4940                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4941         } else {
4942                 /*
4943                  * This is to avoid error in cases where a 32-bit USB
4944                  * controller is used on a 64-bit capable system.
4945                  */
4946                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4947                 if (retval)
4948                         return retval;
4949                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4950                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4951         }
4952
4953         xhci_dbg(xhci, "Calling HCD init\n");
4954         /* Initialize HCD and host controller data structures. */
4955         retval = xhci_init(hcd);
4956         if (retval)
4957                 return retval;
4958         xhci_dbg(xhci, "Called HCD init\n");
4959
4960         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4961                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4962
4963         return 0;
4964 }
4965 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4966
4967 static const struct hc_driver xhci_hc_driver = {
4968         .description =          "xhci-hcd",
4969         .product_desc =         "xHCI Host Controller",
4970         .hcd_priv_size =        sizeof(struct xhci_hcd *),
4971
4972         /*
4973          * generic hardware linkage
4974          */
4975         .irq =                  xhci_irq,
4976         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4977
4978         /*
4979          * basic lifecycle operations
4980          */
4981         .reset =                NULL, /* set in xhci_init_driver() */
4982         .start =                xhci_run,
4983         .stop =                 xhci_stop,
4984         .shutdown =             xhci_shutdown,
4985
4986         /*
4987          * managing i/o requests and associated device resources
4988          */
4989         .urb_enqueue =          xhci_urb_enqueue,
4990         .urb_dequeue =          xhci_urb_dequeue,
4991         .alloc_dev =            xhci_alloc_dev,
4992         .free_dev =             xhci_free_dev,
4993         .alloc_streams =        xhci_alloc_streams,
4994         .free_streams =         xhci_free_streams,
4995         .add_endpoint =         xhci_add_endpoint,
4996         .drop_endpoint =        xhci_drop_endpoint,
4997         .endpoint_reset =       xhci_endpoint_reset,
4998         .check_bandwidth =      xhci_check_bandwidth,
4999         .reset_bandwidth =      xhci_reset_bandwidth,
5000         .address_device =       xhci_address_device,
5001         .enable_device =        xhci_enable_device,
5002         .update_hub_device =    xhci_update_hub_device,
5003         .reset_device =         xhci_discover_or_reset_device,
5004
5005         /*
5006          * scheduling support
5007          */
5008         .get_frame_number =     xhci_get_frame,
5009
5010         /*
5011          * root hub support
5012          */
5013         .hub_control =          xhci_hub_control,
5014         .hub_status_data =      xhci_hub_status_data,
5015         .bus_suspend =          xhci_bus_suspend,
5016         .bus_resume =           xhci_bus_resume,
5017
5018         /*
5019          * call back when device connected and addressed
5020          */
5021         .update_device =        xhci_update_device,
5022         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5023         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5024         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5025         .find_raw_port_number = xhci_find_raw_port_number,
5026 };
5027
5028 void xhci_init_driver(struct hc_driver *drv,
5029                       const struct xhci_driver_overrides *over)
5030 {
5031         BUG_ON(!over);
5032
5033         /* Copy the generic table to drv then apply the overrides */
5034         *drv = xhci_hc_driver;
5035
5036         if (over) {
5037                 drv->hcd_priv_size += over->extra_priv_size;
5038                 if (over->reset)
5039                         drv->reset = over->reset;
5040                 if (over->start)
5041                         drv->start = over->start;
5042         }
5043 }
5044 EXPORT_SYMBOL_GPL(xhci_init_driver);
5045
5046 MODULE_DESCRIPTION(DRIVER_DESC);
5047 MODULE_AUTHOR(DRIVER_AUTHOR);
5048 MODULE_LICENSE("GPL");
5049
5050 static int __init xhci_hcd_init(void)
5051 {
5052         /*
5053          * Check the compiler generated sizes of structures that must be laid
5054          * out in specific ways for hardware access.
5055          */
5056         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5057         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5058         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5059         /* xhci_device_control has eight fields, and also
5060          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5061          */
5062         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5063         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5064         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5065         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5066         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5067         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5068         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5069
5070         if (usb_disabled())
5071                 return -ENODEV;
5072
5073         return 0;
5074 }
5075
5076 /*
5077  * If an init function is provided, an exit function must also be provided
5078  * to allow module unload.
5079  */
5080 static void __exit xhci_hcd_fini(void) { }
5081
5082 module_init(xhci_hcd_init);
5083 module_exit(xhci_hcd_fini);