Merge branch 'v4.4/topic/ro-vdso' into linux-linaro-lsk-v4.4
[firefly-linux-kernel-4.4.55.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
39
40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
41 static int link_quirk;
42 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
44
45 static unsigned int quirks;
46 module_param(quirks, uint, S_IRUGO);
47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
48
49 /* TODO: copied from ehci-hcd.c - can this be refactored? */
50 /*
51  * xhci_handshake - spin reading hc until handshake completes or fails
52  * @ptr: address of hc register to be read
53  * @mask: bits to look at in result of read
54  * @done: value of those bits when handshake succeeds
55  * @usec: timeout in microseconds
56  *
57  * Returns negative errno, or zero on success
58  *
59  * Success happens when the "mask" bits have the specified value (hardware
60  * handshake done).  There are two failure modes:  "usec" have passed (major
61  * hardware flakeout), or the register reads as all-ones (hardware removed).
62  */
63 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
64 {
65         u32     result;
66
67         do {
68                 result = readl(ptr);
69                 if (result == ~(u32)0)          /* card removed */
70                         return -ENODEV;
71                 result &= mask;
72                 if (result == done)
73                         return 0;
74                 udelay(1);
75                 usec--;
76         } while (usec > 0);
77         return -ETIMEDOUT;
78 }
79
80 /*
81  * Disable interrupts and begin the xHCI halting process.
82  */
83 void xhci_quiesce(struct xhci_hcd *xhci)
84 {
85         u32 halted;
86         u32 cmd;
87         u32 mask;
88
89         mask = ~(XHCI_IRQS);
90         halted = readl(&xhci->op_regs->status) & STS_HALT;
91         if (!halted)
92                 mask &= ~CMD_RUN;
93
94         cmd = readl(&xhci->op_regs->command);
95         cmd &= mask;
96         writel(cmd, &xhci->op_regs->command);
97 }
98
99 /*
100  * Force HC into halt state.
101  *
102  * Disable any IRQs and clear the run/stop bit.
103  * HC will complete any current and actively pipelined transactions, and
104  * should halt within 16 ms of the run/stop bit being cleared.
105  * Read HC Halted bit in the status register to see when the HC is finished.
106  */
107 int xhci_halt(struct xhci_hcd *xhci)
108 {
109         int ret;
110         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
111         xhci_quiesce(xhci);
112
113         ret = xhci_handshake(&xhci->op_regs->status,
114                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
115         if (!ret) {
116                 xhci->xhc_state |= XHCI_STATE_HALTED;
117                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
118         } else
119                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
120                                 XHCI_MAX_HALT_USEC);
121         return ret;
122 }
123
124 /*
125  * Set the run bit and wait for the host to be running.
126  */
127 static int xhci_start(struct xhci_hcd *xhci)
128 {
129         u32 temp;
130         int ret;
131
132         temp = readl(&xhci->op_regs->command);
133         temp |= (CMD_RUN);
134         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
135                         temp);
136         writel(temp, &xhci->op_regs->command);
137
138         /*
139          * Wait for the HCHalted Status bit to be 0 to indicate the host is
140          * running.
141          */
142         ret = xhci_handshake(&xhci->op_regs->status,
143                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
144         if (ret == -ETIMEDOUT)
145                 xhci_err(xhci, "Host took too long to start, "
146                                 "waited %u microseconds.\n",
147                                 XHCI_MAX_HALT_USEC);
148         if (!ret)
149                 xhci->xhc_state &= ~(XHCI_STATE_HALTED | XHCI_STATE_DYING);
150
151         return ret;
152 }
153
154 /*
155  * Reset a halted HC.
156  *
157  * This resets pipelines, timers, counters, state machines, etc.
158  * Transactions will be terminated immediately, and operational registers
159  * will be set to their defaults.
160  */
161 int xhci_reset(struct xhci_hcd *xhci)
162 {
163         u32 command;
164         u32 state;
165         int ret, i;
166
167         state = readl(&xhci->op_regs->status);
168         if ((state & STS_HALT) == 0) {
169                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
170                 return 0;
171         }
172
173         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
174         command = readl(&xhci->op_regs->command);
175         command |= CMD_RESET;
176         writel(command, &xhci->op_regs->command);
177
178         /* Existing Intel xHCI controllers require a delay of 1 mS,
179          * after setting the CMD_RESET bit, and before accessing any
180          * HC registers. This allows the HC to complete the
181          * reset operation and be ready for HC register access.
182          * Without this delay, the subsequent HC register access,
183          * may result in a system hang very rarely.
184          */
185         if (xhci->quirks & XHCI_INTEL_HOST)
186                 udelay(1000);
187
188         ret = xhci_handshake(&xhci->op_regs->command,
189                         CMD_RESET, 0, 10 * 1000 * 1000);
190         if (ret)
191                 return ret;
192
193         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
194                          "Wait for controller to be ready for doorbell rings");
195         /*
196          * xHCI cannot write to any doorbells or operational registers other
197          * than status until the "Controller Not Ready" flag is cleared.
198          */
199         ret = xhci_handshake(&xhci->op_regs->status,
200                         STS_CNR, 0, 10 * 1000 * 1000);
201
202         for (i = 0; i < 2; ++i) {
203                 xhci->bus_state[i].port_c_suspend = 0;
204                 xhci->bus_state[i].suspended_ports = 0;
205                 xhci->bus_state[i].resuming_ports = 0;
206         }
207
208         return ret;
209 }
210
211 #ifdef CONFIG_PCI
212 static int xhci_free_msi(struct xhci_hcd *xhci)
213 {
214         int i;
215
216         if (!xhci->msix_entries)
217                 return -EINVAL;
218
219         for (i = 0; i < xhci->msix_count; i++)
220                 if (xhci->msix_entries[i].vector)
221                         free_irq(xhci->msix_entries[i].vector,
222                                         xhci_to_hcd(xhci));
223         return 0;
224 }
225
226 /*
227  * Set up MSI
228  */
229 static int xhci_setup_msi(struct xhci_hcd *xhci)
230 {
231         int ret;
232         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
233
234         ret = pci_enable_msi(pdev);
235         if (ret) {
236                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
237                                 "failed to allocate MSI entry");
238                 return ret;
239         }
240
241         ret = request_irq(pdev->irq, xhci_msi_irq,
242                                 0, "xhci_hcd", xhci_to_hcd(xhci));
243         if (ret) {
244                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
245                                 "disable MSI interrupt");
246                 pci_disable_msi(pdev);
247         }
248
249         return ret;
250 }
251
252 /*
253  * Free IRQs
254  * free all IRQs request
255  */
256 static void xhci_free_irq(struct xhci_hcd *xhci)
257 {
258         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
259         int ret;
260
261         /* return if using legacy interrupt */
262         if (xhci_to_hcd(xhci)->irq > 0)
263                 return;
264
265         ret = xhci_free_msi(xhci);
266         if (!ret)
267                 return;
268         if (pdev->irq > 0)
269                 free_irq(pdev->irq, xhci_to_hcd(xhci));
270
271         return;
272 }
273
274 /*
275  * Set up MSI-X
276  */
277 static int xhci_setup_msix(struct xhci_hcd *xhci)
278 {
279         int i, ret = 0;
280         struct usb_hcd *hcd = xhci_to_hcd(xhci);
281         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
282
283         /*
284          * calculate number of msi-x vectors supported.
285          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
286          *   with max number of interrupters based on the xhci HCSPARAMS1.
287          * - num_online_cpus: maximum msi-x vectors per CPUs core.
288          *   Add additional 1 vector to ensure always available interrupt.
289          */
290         xhci->msix_count = min(num_online_cpus() + 1,
291                                 HCS_MAX_INTRS(xhci->hcs_params1));
292
293         xhci->msix_entries =
294                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
295                                 GFP_KERNEL);
296         if (!xhci->msix_entries) {
297                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
298                 return -ENOMEM;
299         }
300
301         for (i = 0; i < xhci->msix_count; i++) {
302                 xhci->msix_entries[i].entry = i;
303                 xhci->msix_entries[i].vector = 0;
304         }
305
306         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
307         if (ret) {
308                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
309                                 "Failed to enable MSI-X");
310                 goto free_entries;
311         }
312
313         for (i = 0; i < xhci->msix_count; i++) {
314                 ret = request_irq(xhci->msix_entries[i].vector,
315                                 xhci_msi_irq,
316                                 0, "xhci_hcd", xhci_to_hcd(xhci));
317                 if (ret)
318                         goto disable_msix;
319         }
320
321         hcd->msix_enabled = 1;
322         return ret;
323
324 disable_msix:
325         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
326         xhci_free_irq(xhci);
327         pci_disable_msix(pdev);
328 free_entries:
329         kfree(xhci->msix_entries);
330         xhci->msix_entries = NULL;
331         return ret;
332 }
333
334 /* Free any IRQs and disable MSI-X */
335 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
336 {
337         struct usb_hcd *hcd = xhci_to_hcd(xhci);
338         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
339
340         if (xhci->quirks & XHCI_PLAT)
341                 return;
342
343         xhci_free_irq(xhci);
344
345         if (xhci->msix_entries) {
346                 pci_disable_msix(pdev);
347                 kfree(xhci->msix_entries);
348                 xhci->msix_entries = NULL;
349         } else {
350                 pci_disable_msi(pdev);
351         }
352
353         hcd->msix_enabled = 0;
354         return;
355 }
356
357 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
358 {
359         int i;
360
361         if (xhci->msix_entries) {
362                 for (i = 0; i < xhci->msix_count; i++)
363                         synchronize_irq(xhci->msix_entries[i].vector);
364         }
365 }
366
367 static int xhci_try_enable_msi(struct usb_hcd *hcd)
368 {
369         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
370         struct pci_dev  *pdev;
371         int ret;
372
373         /* The xhci platform device has set up IRQs through usb_add_hcd. */
374         if (xhci->quirks & XHCI_PLAT)
375                 return 0;
376
377         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
378         /*
379          * Some Fresco Logic host controllers advertise MSI, but fail to
380          * generate interrupts.  Don't even try to enable MSI.
381          */
382         if (xhci->quirks & XHCI_BROKEN_MSI)
383                 goto legacy_irq;
384
385         /* unregister the legacy interrupt */
386         if (hcd->irq)
387                 free_irq(hcd->irq, hcd);
388         hcd->irq = 0;
389
390         ret = xhci_setup_msix(xhci);
391         if (ret)
392                 /* fall back to msi*/
393                 ret = xhci_setup_msi(xhci);
394
395         if (!ret)
396                 /* hcd->irq is 0, we have MSI */
397                 return 0;
398
399         if (!pdev->irq) {
400                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
401                 return -EINVAL;
402         }
403
404  legacy_irq:
405         if (!strlen(hcd->irq_descr))
406                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
407                          hcd->driver->description, hcd->self.busnum);
408
409         /* fall back to legacy interrupt*/
410         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
411                         hcd->irq_descr, hcd);
412         if (ret) {
413                 xhci_err(xhci, "request interrupt %d failed\n",
414                                 pdev->irq);
415                 return ret;
416         }
417         hcd->irq = pdev->irq;
418         return 0;
419 }
420
421 #else
422
423 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
424 {
425         return 0;
426 }
427
428 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
429 {
430 }
431
432 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
433 {
434 }
435
436 #endif
437
438 static void compliance_mode_recovery(unsigned long arg)
439 {
440         struct xhci_hcd *xhci;
441         struct usb_hcd *hcd;
442         u32 temp;
443         int i;
444
445         xhci = (struct xhci_hcd *)arg;
446
447         for (i = 0; i < xhci->num_usb3_ports; i++) {
448                 temp = readl(xhci->usb3_ports[i]);
449                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
450                         /*
451                          * Compliance Mode Detected. Letting USB Core
452                          * handle the Warm Reset
453                          */
454                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
455                                         "Compliance mode detected->port %d",
456                                         i + 1);
457                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
458                                         "Attempting compliance mode recovery");
459                         hcd = xhci->shared_hcd;
460
461                         if (hcd->state == HC_STATE_SUSPENDED)
462                                 usb_hcd_resume_root_hub(hcd);
463
464                         usb_hcd_poll_rh_status(hcd);
465                 }
466         }
467
468         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
469                 mod_timer(&xhci->comp_mode_recovery_timer,
470                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
471 }
472
473 /*
474  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
475  * that causes ports behind that hardware to enter compliance mode sometimes.
476  * The quirk creates a timer that polls every 2 seconds the link state of
477  * each host controller's port and recovers it by issuing a Warm reset
478  * if Compliance mode is detected, otherwise the port will become "dead" (no
479  * device connections or disconnections will be detected anymore). Becasue no
480  * status event is generated when entering compliance mode (per xhci spec),
481  * this quirk is needed on systems that have the failing hardware installed.
482  */
483 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
484 {
485         xhci->port_status_u0 = 0;
486         setup_timer(&xhci->comp_mode_recovery_timer,
487                     compliance_mode_recovery, (unsigned long)xhci);
488         xhci->comp_mode_recovery_timer.expires = jiffies +
489                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
490
491         set_timer_slack(&xhci->comp_mode_recovery_timer,
492                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
493         add_timer(&xhci->comp_mode_recovery_timer);
494         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
495                         "Compliance mode recovery timer initialized");
496 }
497
498 /*
499  * This function identifies the systems that have installed the SN65LVPE502CP
500  * USB3.0 re-driver and that need the Compliance Mode Quirk.
501  * Systems:
502  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
503  */
504 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
505 {
506         const char *dmi_product_name, *dmi_sys_vendor;
507
508         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
509         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
510         if (!dmi_product_name || !dmi_sys_vendor)
511                 return false;
512
513         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
514                 return false;
515
516         if (strstr(dmi_product_name, "Z420") ||
517                         strstr(dmi_product_name, "Z620") ||
518                         strstr(dmi_product_name, "Z820") ||
519                         strstr(dmi_product_name, "Z1 Workstation"))
520                 return true;
521
522         return false;
523 }
524
525 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
526 {
527         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
528 }
529
530
531 /*
532  * Initialize memory for HCD and xHC (one-time init).
533  *
534  * Program the PAGESIZE register, initialize the device context array, create
535  * device contexts (?), set up a command ring segment (or two?), create event
536  * ring (one for now).
537  */
538 int xhci_init(struct usb_hcd *hcd)
539 {
540         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
541         int retval = 0;
542
543         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
544         spin_lock_init(&xhci->lock);
545         if (xhci->hci_version == 0x95 && link_quirk) {
546                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
547                                 "QUIRK: Not clearing Link TRB chain bits.");
548                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
549         } else {
550                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
551                                 "xHCI doesn't need link TRB QUIRK");
552         }
553         retval = xhci_mem_init(xhci, GFP_KERNEL);
554         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
555
556         /* Initializing Compliance Mode Recovery Data If Needed */
557         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
558                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
559                 compliance_mode_recovery_timer_init(xhci);
560         }
561
562         return retval;
563 }
564
565 /*-------------------------------------------------------------------------*/
566
567
568 static int xhci_run_finished(struct xhci_hcd *xhci)
569 {
570         if (xhci_start(xhci)) {
571                 xhci_halt(xhci);
572                 return -ENODEV;
573         }
574         xhci->shared_hcd->state = HC_STATE_RUNNING;
575         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
576
577         if (xhci->quirks & XHCI_NEC_HOST)
578                 xhci_ring_cmd_db(xhci);
579
580         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
581                         "Finished xhci_run for USB3 roothub");
582         return 0;
583 }
584
585 /*
586  * Start the HC after it was halted.
587  *
588  * This function is called by the USB core when the HC driver is added.
589  * Its opposite is xhci_stop().
590  *
591  * xhci_init() must be called once before this function can be called.
592  * Reset the HC, enable device slot contexts, program DCBAAP, and
593  * set command ring pointer and event ring pointer.
594  *
595  * Setup MSI-X vectors and enable interrupts.
596  */
597 int xhci_run(struct usb_hcd *hcd)
598 {
599         u32 temp;
600         u64 temp_64;
601         int ret;
602         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
603
604         /* Start the xHCI host controller running only after the USB 2.0 roothub
605          * is setup.
606          */
607
608         hcd->uses_new_polling = 1;
609         if (!usb_hcd_is_primary_hcd(hcd))
610                 return xhci_run_finished(xhci);
611
612         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
613
614         ret = xhci_try_enable_msi(hcd);
615         if (ret)
616                 return ret;
617
618         xhci_dbg(xhci, "Command ring memory map follows:\n");
619         xhci_debug_ring(xhci, xhci->cmd_ring);
620         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
621         xhci_dbg_cmd_ptrs(xhci);
622
623         xhci_dbg(xhci, "ERST memory map follows:\n");
624         xhci_dbg_erst(xhci, &xhci->erst);
625         xhci_dbg(xhci, "Event ring:\n");
626         xhci_debug_ring(xhci, xhci->event_ring);
627         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
628         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
629         temp_64 &= ~ERST_PTR_MASK;
630         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
631                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
632
633         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634                         "// Set the interrupt modulation register");
635         temp = readl(&xhci->ir_set->irq_control);
636         temp &= ~ER_IRQ_INTERVAL_MASK;
637         temp |= (u32) 160;
638         writel(temp, &xhci->ir_set->irq_control);
639
640         /* Set the HCD state before we enable the irqs */
641         temp = readl(&xhci->op_regs->command);
642         temp |= (CMD_EIE);
643         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
644                         "// Enable interrupts, cmd = 0x%x.", temp);
645         writel(temp, &xhci->op_regs->command);
646
647         temp = readl(&xhci->ir_set->irq_pending);
648         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
649                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
650                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
651         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
652         xhci_print_ir_set(xhci, 0);
653
654         if (xhci->quirks & XHCI_NEC_HOST) {
655                 struct xhci_command *command;
656                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
657                 if (!command)
658                         return -ENOMEM;
659                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
660                                 TRB_TYPE(TRB_NEC_GET_FW));
661         }
662         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
663                         "Finished xhci_run for USB2 roothub");
664         return 0;
665 }
666 EXPORT_SYMBOL_GPL(xhci_run);
667
668 /*
669  * Stop xHCI driver.
670  *
671  * This function is called by the USB core when the HC driver is removed.
672  * Its opposite is xhci_run().
673  *
674  * Disable device contexts, disable IRQs, and quiesce the HC.
675  * Reset the HC, finish any completed transactions, and cleanup memory.
676  */
677 void xhci_stop(struct usb_hcd *hcd)
678 {
679         u32 temp;
680         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
681
682         if (xhci->xhc_state & XHCI_STATE_HALTED)
683                 return;
684
685         mutex_lock(&xhci->mutex);
686         spin_lock_irq(&xhci->lock);
687         xhci->xhc_state |= XHCI_STATE_HALTED;
688         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
689
690         /* Make sure the xHC is halted for a USB3 roothub
691          * (xhci_stop() could be called as part of failed init).
692          */
693         xhci_halt(xhci);
694         xhci_reset(xhci);
695         spin_unlock_irq(&xhci->lock);
696
697         xhci_cleanup_msix(xhci);
698
699         /* Deleting Compliance Mode Recovery Timer */
700         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
701                         (!(xhci_all_ports_seen_u0(xhci)))) {
702                 del_timer_sync(&xhci->comp_mode_recovery_timer);
703                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
704                                 "%s: compliance mode recovery timer deleted",
705                                 __func__);
706         }
707
708         if (xhci->quirks & XHCI_AMD_PLL_FIX)
709                 usb_amd_dev_put();
710
711         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
712                         "// Disabling event ring interrupts");
713         temp = readl(&xhci->op_regs->status);
714         writel(temp & ~STS_EINT, &xhci->op_regs->status);
715         temp = readl(&xhci->ir_set->irq_pending);
716         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
717         xhci_print_ir_set(xhci, 0);
718
719         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
720         xhci_mem_cleanup(xhci);
721         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
722                         "xhci_stop completed - status = %x",
723                         readl(&xhci->op_regs->status));
724         mutex_unlock(&xhci->mutex);
725 }
726
727 /*
728  * Shutdown HC (not bus-specific)
729  *
730  * This is called when the machine is rebooting or halting.  We assume that the
731  * machine will be powered off, and the HC's internal state will be reset.
732  * Don't bother to free memory.
733  *
734  * This will only ever be called with the main usb_hcd (the USB3 roothub).
735  */
736 void xhci_shutdown(struct usb_hcd *hcd)
737 {
738         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
739
740         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
741                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
742
743         spin_lock_irq(&xhci->lock);
744         xhci_halt(xhci);
745         /* Workaround for spurious wakeups at shutdown with HSW */
746         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
747                 xhci_reset(xhci);
748         spin_unlock_irq(&xhci->lock);
749
750         xhci_cleanup_msix(xhci);
751
752         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
753                         "xhci_shutdown completed - status = %x",
754                         readl(&xhci->op_regs->status));
755
756         /* Yet another workaround for spurious wakeups at shutdown with HSW */
757         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
758                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
759 }
760
761 #ifdef CONFIG_PM
762 static void xhci_save_registers(struct xhci_hcd *xhci)
763 {
764         xhci->s3.command = readl(&xhci->op_regs->command);
765         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
766         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
767         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
768         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
769         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
770         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
771         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
772         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
773 }
774
775 static void xhci_restore_registers(struct xhci_hcd *xhci)
776 {
777         writel(xhci->s3.command, &xhci->op_regs->command);
778         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
779         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
780         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
781         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
782         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
783         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
784         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
785         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
786 }
787
788 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
789 {
790         u64     val_64;
791
792         /* step 2: initialize command ring buffer */
793         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
794         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
795                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
796                                       xhci->cmd_ring->dequeue) &
797                  (u64) ~CMD_RING_RSVD_BITS) |
798                 xhci->cmd_ring->cycle_state;
799         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
800                         "// Setting command ring address to 0x%llx",
801                         (long unsigned long) val_64);
802         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
803 }
804
805 /*
806  * The whole command ring must be cleared to zero when we suspend the host.
807  *
808  * The host doesn't save the command ring pointer in the suspend well, so we
809  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
810  * aligned, because of the reserved bits in the command ring dequeue pointer
811  * register.  Therefore, we can't just set the dequeue pointer back in the
812  * middle of the ring (TRBs are 16-byte aligned).
813  */
814 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
815 {
816         struct xhci_ring *ring;
817         struct xhci_segment *seg;
818
819         ring = xhci->cmd_ring;
820         seg = ring->deq_seg;
821         do {
822                 memset(seg->trbs, 0,
823                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
824                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
825                         cpu_to_le32(~TRB_CYCLE);
826                 seg = seg->next;
827         } while (seg != ring->deq_seg);
828
829         /* Reset the software enqueue and dequeue pointers */
830         ring->deq_seg = ring->first_seg;
831         ring->dequeue = ring->first_seg->trbs;
832         ring->enq_seg = ring->deq_seg;
833         ring->enqueue = ring->dequeue;
834
835         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
836         /*
837          * Ring is now zeroed, so the HW should look for change of ownership
838          * when the cycle bit is set to 1.
839          */
840         ring->cycle_state = 1;
841
842         /*
843          * Reset the hardware dequeue pointer.
844          * Yes, this will need to be re-written after resume, but we're paranoid
845          * and want to make sure the hardware doesn't access bogus memory
846          * because, say, the BIOS or an SMI started the host without changing
847          * the command ring pointers.
848          */
849         xhci_set_cmd_ring_deq(xhci);
850 }
851
852 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
853 {
854         int port_index;
855         __le32 __iomem **port_array;
856         unsigned long flags;
857         u32 t1, t2;
858
859         spin_lock_irqsave(&xhci->lock, flags);
860
861         /* disble usb3 ports Wake bits*/
862         port_index = xhci->num_usb3_ports;
863         port_array = xhci->usb3_ports;
864         while (port_index--) {
865                 t1 = readl(port_array[port_index]);
866                 t1 = xhci_port_state_to_neutral(t1);
867                 t2 = t1 & ~PORT_WAKE_BITS;
868                 if (t1 != t2)
869                         writel(t2, port_array[port_index]);
870         }
871
872         /* disble usb2 ports Wake bits*/
873         port_index = xhci->num_usb2_ports;
874         port_array = xhci->usb2_ports;
875         while (port_index--) {
876                 t1 = readl(port_array[port_index]);
877                 t1 = xhci_port_state_to_neutral(t1);
878                 t2 = t1 & ~PORT_WAKE_BITS;
879                 if (t1 != t2)
880                         writel(t2, port_array[port_index]);
881         }
882
883         spin_unlock_irqrestore(&xhci->lock, flags);
884 }
885
886 /*
887  * Stop HC (not bus-specific)
888  *
889  * This is called when the machine transition into S3/S4 mode.
890  *
891  */
892 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
893 {
894         int                     rc = 0;
895         unsigned int            delay = XHCI_MAX_HALT_USEC;
896         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
897         u32                     command;
898
899         if (!hcd->state)
900                 return 0;
901
902         if (hcd->state != HC_STATE_SUSPENDED ||
903                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
904                 return -EINVAL;
905
906         /* Clear root port wake on bits if wakeup not allowed. */
907         if (!do_wakeup)
908                 xhci_disable_port_wake_on_bits(xhci);
909
910         /* Don't poll the roothubs on bus suspend. */
911         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
912         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
913         del_timer_sync(&hcd->rh_timer);
914         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
915         del_timer_sync(&xhci->shared_hcd->rh_timer);
916
917         spin_lock_irq(&xhci->lock);
918         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
919         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
920         /* step 1: stop endpoint */
921         /* skipped assuming that port suspend has done */
922
923         /* step 2: clear Run/Stop bit */
924         command = readl(&xhci->op_regs->command);
925         command &= ~CMD_RUN;
926         writel(command, &xhci->op_regs->command);
927
928         /* Some chips from Fresco Logic need an extraordinary delay */
929         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
930
931         if (xhci_handshake(&xhci->op_regs->status,
932                       STS_HALT, STS_HALT, delay)) {
933                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
934                 spin_unlock_irq(&xhci->lock);
935                 return -ETIMEDOUT;
936         }
937         xhci_clear_command_ring(xhci);
938
939         /* step 3: save registers */
940         xhci_save_registers(xhci);
941
942         /* step 4: set CSS flag */
943         command = readl(&xhci->op_regs->command);
944         command |= CMD_CSS;
945         writel(command, &xhci->op_regs->command);
946         if (xhci_handshake(&xhci->op_regs->status,
947                                 STS_SAVE, 0, 10 * 1000)) {
948                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
949                 spin_unlock_irq(&xhci->lock);
950                 return -ETIMEDOUT;
951         }
952         spin_unlock_irq(&xhci->lock);
953
954         /*
955          * Deleting Compliance Mode Recovery Timer because the xHCI Host
956          * is about to be suspended.
957          */
958         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
959                         (!(xhci_all_ports_seen_u0(xhci)))) {
960                 del_timer_sync(&xhci->comp_mode_recovery_timer);
961                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
962                                 "%s: compliance mode recovery timer deleted",
963                                 __func__);
964         }
965
966         /* step 5: remove core well power */
967         /* synchronize irq when using MSI-X */
968         xhci_msix_sync_irqs(xhci);
969
970         return rc;
971 }
972 EXPORT_SYMBOL_GPL(xhci_suspend);
973
974 /*
975  * start xHC (not bus-specific)
976  *
977  * This is called when the machine transition from S3/S4 mode.
978  *
979  */
980 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
981 {
982         u32                     command, temp = 0, status;
983         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
984         struct usb_hcd          *secondary_hcd;
985         int                     retval = 0;
986         bool                    comp_timer_running = false;
987
988         if (!hcd->state)
989                 return 0;
990
991         /* Wait a bit if either of the roothubs need to settle from the
992          * transition into bus suspend.
993          */
994         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
995                         time_before(jiffies,
996                                 xhci->bus_state[1].next_statechange))
997                 msleep(100);
998
999         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1000         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1001
1002         spin_lock_irq(&xhci->lock);
1003         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1004                 hibernated = true;
1005
1006         if (!hibernated) {
1007                 /* step 1: restore register */
1008                 xhci_restore_registers(xhci);
1009                 /* step 2: initialize command ring buffer */
1010                 xhci_set_cmd_ring_deq(xhci);
1011                 /* step 3: restore state and start state*/
1012                 /* step 3: set CRS flag */
1013                 command = readl(&xhci->op_regs->command);
1014                 command |= CMD_CRS;
1015                 writel(command, &xhci->op_regs->command);
1016                 if (xhci_handshake(&xhci->op_regs->status,
1017                               STS_RESTORE, 0, 10 * 1000)) {
1018                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1019                         spin_unlock_irq(&xhci->lock);
1020                         return -ETIMEDOUT;
1021                 }
1022                 temp = readl(&xhci->op_regs->status);
1023         }
1024
1025         /* If restore operation fails, re-initialize the HC during resume */
1026         if ((temp & STS_SRE) || hibernated) {
1027
1028                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1029                                 !(xhci_all_ports_seen_u0(xhci))) {
1030                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1031                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1032                                 "Compliance Mode Recovery Timer deleted!");
1033                 }
1034
1035                 /* Let the USB core know _both_ roothubs lost power. */
1036                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1037                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1038
1039                 xhci_dbg(xhci, "Stop HCD\n");
1040                 xhci_halt(xhci);
1041                 xhci_reset(xhci);
1042                 spin_unlock_irq(&xhci->lock);
1043                 xhci_cleanup_msix(xhci);
1044
1045                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1046                 temp = readl(&xhci->op_regs->status);
1047                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1048                 temp = readl(&xhci->ir_set->irq_pending);
1049                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1050                 xhci_print_ir_set(xhci, 0);
1051
1052                 xhci_dbg(xhci, "cleaning up memory\n");
1053                 xhci_mem_cleanup(xhci);
1054                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1055                             readl(&xhci->op_regs->status));
1056
1057                 /* USB core calls the PCI reinit and start functions twice:
1058                  * first with the primary HCD, and then with the secondary HCD.
1059                  * If we don't do the same, the host will never be started.
1060                  */
1061                 if (!usb_hcd_is_primary_hcd(hcd))
1062                         secondary_hcd = hcd;
1063                 else
1064                         secondary_hcd = xhci->shared_hcd;
1065
1066                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1067                 retval = xhci_init(hcd->primary_hcd);
1068                 if (retval)
1069                         return retval;
1070                 comp_timer_running = true;
1071
1072                 xhci_dbg(xhci, "Start the primary HCD\n");
1073                 retval = xhci_run(hcd->primary_hcd);
1074                 if (!retval) {
1075                         xhci_dbg(xhci, "Start the secondary HCD\n");
1076                         retval = xhci_run(secondary_hcd);
1077                 }
1078                 hcd->state = HC_STATE_SUSPENDED;
1079                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1080                 goto done;
1081         }
1082
1083         /* step 4: set Run/Stop bit */
1084         command = readl(&xhci->op_regs->command);
1085         command |= CMD_RUN;
1086         writel(command, &xhci->op_regs->command);
1087         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1088                   0, 250 * 1000);
1089
1090         /* step 5: walk topology and initialize portsc,
1091          * portpmsc and portli
1092          */
1093         /* this is done in bus_resume */
1094
1095         /* step 6: restart each of the previously
1096          * Running endpoints by ringing their doorbells
1097          */
1098
1099         spin_unlock_irq(&xhci->lock);
1100
1101  done:
1102         if (retval == 0) {
1103                 /* Resume root hubs only when have pending events. */
1104                 status = readl(&xhci->op_regs->status);
1105                 if (status & STS_EINT) {
1106                         usb_hcd_resume_root_hub(hcd);
1107                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1108                 }
1109         }
1110
1111         /*
1112          * If system is subject to the Quirk, Compliance Mode Timer needs to
1113          * be re-initialized Always after a system resume. Ports are subject
1114          * to suffer the Compliance Mode issue again. It doesn't matter if
1115          * ports have entered previously to U0 before system's suspension.
1116          */
1117         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1118                 compliance_mode_recovery_timer_init(xhci);
1119
1120         /* Re-enable port polling. */
1121         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1122         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1123         usb_hcd_poll_rh_status(hcd);
1124         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1125         usb_hcd_poll_rh_status(xhci->shared_hcd);
1126
1127         return retval;
1128 }
1129 EXPORT_SYMBOL_GPL(xhci_resume);
1130 #endif  /* CONFIG_PM */
1131
1132 /*-------------------------------------------------------------------------*/
1133
1134 /**
1135  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1136  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1137  * value to right shift 1 for the bitmask.
1138  *
1139  * Index  = (epnum * 2) + direction - 1,
1140  * where direction = 0 for OUT, 1 for IN.
1141  * For control endpoints, the IN index is used (OUT index is unused), so
1142  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1143  */
1144 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1145 {
1146         unsigned int index;
1147         if (usb_endpoint_xfer_control(desc))
1148                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1149         else
1150                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1151                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1152         return index;
1153 }
1154
1155 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1156  * address from the XHCI endpoint index.
1157  */
1158 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1159 {
1160         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1161         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1162         return direction | number;
1163 }
1164
1165 /* Find the flag for this endpoint (for use in the control context).  Use the
1166  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1167  * bit 1, etc.
1168  */
1169 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1170 {
1171         return 1 << (xhci_get_endpoint_index(desc) + 1);
1172 }
1173
1174 /* Find the flag for this endpoint (for use in the control context).  Use the
1175  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1176  * bit 1, etc.
1177  */
1178 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1179 {
1180         return 1 << (ep_index + 1);
1181 }
1182
1183 /* Compute the last valid endpoint context index.  Basically, this is the
1184  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1185  * we find the most significant bit set in the added contexts flags.
1186  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1187  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1188  */
1189 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1190 {
1191         return fls(added_ctxs) - 1;
1192 }
1193
1194 /* Returns 1 if the arguments are OK;
1195  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1196  */
1197 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1198                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1199                 const char *func) {
1200         struct xhci_hcd *xhci;
1201         struct xhci_virt_device *virt_dev;
1202
1203         if (!hcd || (check_ep && !ep) || !udev) {
1204                 pr_debug("xHCI %s called with invalid args\n", func);
1205                 return -EINVAL;
1206         }
1207         if (!udev->parent) {
1208                 pr_debug("xHCI %s called for root hub\n", func);
1209                 return 0;
1210         }
1211
1212         xhci = hcd_to_xhci(hcd);
1213         if (check_virt_dev) {
1214                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1215                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1216                                         func);
1217                         return -EINVAL;
1218                 }
1219
1220                 virt_dev = xhci->devs[udev->slot_id];
1221                 if (virt_dev->udev != udev) {
1222                         xhci_dbg(xhci, "xHCI %s called with udev and "
1223                                           "virt_dev does not match\n", func);
1224                         return -EINVAL;
1225                 }
1226         }
1227
1228         if (xhci->xhc_state & XHCI_STATE_HALTED)
1229                 return -ENODEV;
1230
1231         return 1;
1232 }
1233
1234 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1235                 struct usb_device *udev, struct xhci_command *command,
1236                 bool ctx_change, bool must_succeed);
1237
1238 /*
1239  * Full speed devices may have a max packet size greater than 8 bytes, but the
1240  * USB core doesn't know that until it reads the first 8 bytes of the
1241  * descriptor.  If the usb_device's max packet size changes after that point,
1242  * we need to issue an evaluate context command and wait on it.
1243  */
1244 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1245                 unsigned int ep_index, struct urb *urb)
1246 {
1247         struct xhci_container_ctx *out_ctx;
1248         struct xhci_input_control_ctx *ctrl_ctx;
1249         struct xhci_ep_ctx *ep_ctx;
1250         struct xhci_command *command;
1251         int max_packet_size;
1252         int hw_max_packet_size;
1253         int ret = 0;
1254
1255         out_ctx = xhci->devs[slot_id]->out_ctx;
1256         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1257         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1258         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1259         if (hw_max_packet_size != max_packet_size) {
1260                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1261                                 "Max Packet Size for ep 0 changed.");
1262                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1263                                 "Max packet size in usb_device = %d",
1264                                 max_packet_size);
1265                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1266                                 "Max packet size in xHCI HW = %d",
1267                                 hw_max_packet_size);
1268                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1269                                 "Issuing evaluate context command.");
1270
1271                 /* Set up the input context flags for the command */
1272                 /* FIXME: This won't work if a non-default control endpoint
1273                  * changes max packet sizes.
1274                  */
1275
1276                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1277                 if (!command)
1278                         return -ENOMEM;
1279
1280                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1281                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1282                 if (!ctrl_ctx) {
1283                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1284                                         __func__);
1285                         ret = -ENOMEM;
1286                         goto command_cleanup;
1287                 }
1288                 /* Set up the modified control endpoint 0 */
1289                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1290                                 xhci->devs[slot_id]->out_ctx, ep_index);
1291
1292                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1293                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1294                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1295
1296                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1297                 ctrl_ctx->drop_flags = 0;
1298
1299                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1300                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1301                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1302                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1303
1304                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1305                                 true, false);
1306
1307                 /* Clean up the input context for later use by bandwidth
1308                  * functions.
1309                  */
1310                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1311 command_cleanup:
1312                 kfree(command->completion);
1313                 kfree(command);
1314         }
1315         return ret;
1316 }
1317
1318 /*
1319  * non-error returns are a promise to giveback() the urb later
1320  * we drop ownership so next owner (or urb unlink) can get it
1321  */
1322 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1323 {
1324         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1325         struct xhci_td *buffer;
1326         unsigned long flags;
1327         int ret = 0;
1328         unsigned int slot_id, ep_index;
1329         struct urb_priv *urb_priv;
1330         int size, i;
1331
1332         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1333                                         true, true, __func__) <= 0)
1334                 return -EINVAL;
1335
1336         slot_id = urb->dev->slot_id;
1337         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1338
1339         if (!HCD_HW_ACCESSIBLE(hcd)) {
1340                 if (!in_interrupt())
1341                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1342                 ret = -ESHUTDOWN;
1343                 goto exit;
1344         }
1345
1346         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1347                 size = urb->number_of_packets;
1348         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1349             urb->transfer_buffer_length > 0 &&
1350             urb->transfer_flags & URB_ZERO_PACKET &&
1351             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1352                 size = 2;
1353         else
1354                 size = 1;
1355
1356         urb_priv = kzalloc(sizeof(struct urb_priv) +
1357                                   size * sizeof(struct xhci_td *), mem_flags);
1358         if (!urb_priv)
1359                 return -ENOMEM;
1360
1361         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1362         if (!buffer) {
1363                 kfree(urb_priv);
1364                 return -ENOMEM;
1365         }
1366
1367         for (i = 0; i < size; i++) {
1368                 urb_priv->td[i] = buffer;
1369                 buffer++;
1370         }
1371
1372         urb_priv->length = size;
1373         urb_priv->td_cnt = 0;
1374         urb->hcpriv = urb_priv;
1375
1376         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1377                 /* Check to see if the max packet size for the default control
1378                  * endpoint changed during FS device enumeration
1379                  */
1380                 if (urb->dev->speed == USB_SPEED_FULL) {
1381                         ret = xhci_check_maxpacket(xhci, slot_id,
1382                                         ep_index, urb);
1383                         if (ret < 0) {
1384                                 xhci_urb_free_priv(urb_priv);
1385                                 urb->hcpriv = NULL;
1386                                 return ret;
1387                         }
1388                 }
1389
1390                 /* We have a spinlock and interrupts disabled, so we must pass
1391                  * atomic context to this function, which may allocate memory.
1392                  */
1393                 spin_lock_irqsave(&xhci->lock, flags);
1394                 if (xhci->xhc_state & XHCI_STATE_DYING)
1395                         goto dying;
1396                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1397                                 slot_id, ep_index);
1398                 if (ret)
1399                         goto free_priv;
1400                 spin_unlock_irqrestore(&xhci->lock, flags);
1401         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1402                 spin_lock_irqsave(&xhci->lock, flags);
1403                 if (xhci->xhc_state & XHCI_STATE_DYING)
1404                         goto dying;
1405                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1406                                 EP_GETTING_STREAMS) {
1407                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1408                                         "is transitioning to using streams.\n");
1409                         ret = -EINVAL;
1410                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1411                                 EP_GETTING_NO_STREAMS) {
1412                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1413                                         "is transitioning to "
1414                                         "not having streams.\n");
1415                         ret = -EINVAL;
1416                 } else {
1417                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1418                                         slot_id, ep_index);
1419                 }
1420                 if (ret)
1421                         goto free_priv;
1422                 spin_unlock_irqrestore(&xhci->lock, flags);
1423         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1424                 spin_lock_irqsave(&xhci->lock, flags);
1425                 if (xhci->xhc_state & XHCI_STATE_DYING)
1426                         goto dying;
1427                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1428                                 slot_id, ep_index);
1429                 if (ret)
1430                         goto free_priv;
1431                 spin_unlock_irqrestore(&xhci->lock, flags);
1432         } else {
1433                 spin_lock_irqsave(&xhci->lock, flags);
1434                 if (xhci->xhc_state & XHCI_STATE_DYING)
1435                         goto dying;
1436                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1437                                 slot_id, ep_index);
1438                 if (ret)
1439                         goto free_priv;
1440                 spin_unlock_irqrestore(&xhci->lock, flags);
1441         }
1442 exit:
1443         return ret;
1444 dying:
1445         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1446                         "non-responsive xHCI host.\n",
1447                         urb->ep->desc.bEndpointAddress, urb);
1448         ret = -ESHUTDOWN;
1449 free_priv:
1450         xhci_urb_free_priv(urb_priv);
1451         urb->hcpriv = NULL;
1452         spin_unlock_irqrestore(&xhci->lock, flags);
1453         return ret;
1454 }
1455
1456 /* Get the right ring for the given URB.
1457  * If the endpoint supports streams, boundary check the URB's stream ID.
1458  * If the endpoint doesn't support streams, return the singular endpoint ring.
1459  */
1460 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1461                 struct urb *urb)
1462 {
1463         unsigned int slot_id;
1464         unsigned int ep_index;
1465         unsigned int stream_id;
1466         struct xhci_virt_ep *ep;
1467
1468         slot_id = urb->dev->slot_id;
1469         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1470         stream_id = urb->stream_id;
1471         ep = &xhci->devs[slot_id]->eps[ep_index];
1472         /* Common case: no streams */
1473         if (!(ep->ep_state & EP_HAS_STREAMS))
1474                 return ep->ring;
1475
1476         if (stream_id == 0) {
1477                 xhci_warn(xhci,
1478                                 "WARN: Slot ID %u, ep index %u has streams, "
1479                                 "but URB has no stream ID.\n",
1480                                 slot_id, ep_index);
1481                 return NULL;
1482         }
1483
1484         if (stream_id < ep->stream_info->num_streams)
1485                 return ep->stream_info->stream_rings[stream_id];
1486
1487         xhci_warn(xhci,
1488                         "WARN: Slot ID %u, ep index %u has "
1489                         "stream IDs 1 to %u allocated, "
1490                         "but stream ID %u is requested.\n",
1491                         slot_id, ep_index,
1492                         ep->stream_info->num_streams - 1,
1493                         stream_id);
1494         return NULL;
1495 }
1496
1497 /*
1498  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1499  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1500  * should pick up where it left off in the TD, unless a Set Transfer Ring
1501  * Dequeue Pointer is issued.
1502  *
1503  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1504  * the ring.  Since the ring is a contiguous structure, they can't be physically
1505  * removed.  Instead, there are two options:
1506  *
1507  *  1) If the HC is in the middle of processing the URB to be canceled, we
1508  *     simply move the ring's dequeue pointer past those TRBs using the Set
1509  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1510  *     when drivers timeout on the last submitted URB and attempt to cancel.
1511  *
1512  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1513  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1514  *     HC will need to invalidate the any TRBs it has cached after the stop
1515  *     endpoint command, as noted in the xHCI 0.95 errata.
1516  *
1517  *  3) The TD may have completed by the time the Stop Endpoint Command
1518  *     completes, so software needs to handle that case too.
1519  *
1520  * This function should protect against the TD enqueueing code ringing the
1521  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1522  * It also needs to account for multiple cancellations on happening at the same
1523  * time for the same endpoint.
1524  *
1525  * Note that this function can be called in any context, or so says
1526  * usb_hcd_unlink_urb()
1527  */
1528 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1529 {
1530         unsigned long flags;
1531         int ret, i;
1532         u32 temp;
1533         struct xhci_hcd *xhci;
1534         struct urb_priv *urb_priv;
1535         struct xhci_td *td;
1536         unsigned int ep_index;
1537         struct xhci_ring *ep_ring;
1538         struct xhci_virt_ep *ep;
1539         struct xhci_command *command;
1540
1541         xhci = hcd_to_xhci(hcd);
1542         spin_lock_irqsave(&xhci->lock, flags);
1543         /* Make sure the URB hasn't completed or been unlinked already */
1544         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1545         if (ret || !urb->hcpriv)
1546                 goto done;
1547         temp = readl(&xhci->op_regs->status);
1548         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1549                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1550                                 "HW died, freeing TD.");
1551                 urb_priv = urb->hcpriv;
1552                 for (i = urb_priv->td_cnt;
1553                      i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1554                      i++) {
1555                         td = urb_priv->td[i];
1556                         if (!list_empty(&td->td_list))
1557                                 list_del_init(&td->td_list);
1558                         if (!list_empty(&td->cancelled_td_list))
1559                                 list_del_init(&td->cancelled_td_list);
1560                 }
1561
1562                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1563                 spin_unlock_irqrestore(&xhci->lock, flags);
1564                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1565                 xhci_urb_free_priv(urb_priv);
1566                 return ret;
1567         }
1568         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1569                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1570                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1571                                 "Ep 0x%x: URB %p to be canceled on "
1572                                 "non-responsive xHCI host.",
1573                                 urb->ep->desc.bEndpointAddress, urb);
1574                 /* Let the stop endpoint command watchdog timer (which set this
1575                  * state) finish cleaning up the endpoint TD lists.  We must
1576                  * have caught it in the middle of dropping a lock and giving
1577                  * back an URB.
1578                  */
1579                 goto done;
1580         }
1581
1582         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1583         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1584         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1585         if (!ep_ring) {
1586                 ret = -EINVAL;
1587                 goto done;
1588         }
1589
1590         urb_priv = urb->hcpriv;
1591         i = urb_priv->td_cnt;
1592         if (i < urb_priv->length)
1593                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1594                                 "Cancel URB %p, dev %s, ep 0x%x, "
1595                                 "starting at offset 0x%llx",
1596                                 urb, urb->dev->devpath,
1597                                 urb->ep->desc.bEndpointAddress,
1598                                 (unsigned long long) xhci_trb_virt_to_dma(
1599                                         urb_priv->td[i]->start_seg,
1600                                         urb_priv->td[i]->first_trb));
1601
1602         for (; i < urb_priv->length; i++) {
1603                 td = urb_priv->td[i];
1604                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1605         }
1606
1607         /* Queue a stop endpoint command, but only if this is
1608          * the first cancellation to be handled.
1609          */
1610         if (!(ep->ep_state & EP_HALT_PENDING)) {
1611                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1612                 if (!command) {
1613                         ret = -ENOMEM;
1614                         goto done;
1615                 }
1616                 ep->ep_state |= EP_HALT_PENDING;
1617                 ep->stop_cmds_pending++;
1618                 ep->stop_cmd_timer.expires = jiffies +
1619                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1620                 add_timer(&ep->stop_cmd_timer);
1621                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1622                                          ep_index, 0);
1623                 xhci_ring_cmd_db(xhci);
1624         }
1625 done:
1626         spin_unlock_irqrestore(&xhci->lock, flags);
1627         return ret;
1628 }
1629
1630 /* Drop an endpoint from a new bandwidth configuration for this device.
1631  * Only one call to this function is allowed per endpoint before
1632  * check_bandwidth() or reset_bandwidth() must be called.
1633  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1634  * add the endpoint to the schedule with possibly new parameters denoted by a
1635  * different endpoint descriptor in usb_host_endpoint.
1636  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1637  * not allowed.
1638  *
1639  * The USB core will not allow URBs to be queued to an endpoint that is being
1640  * disabled, so there's no need for mutual exclusion to protect
1641  * the xhci->devs[slot_id] structure.
1642  */
1643 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1644                 struct usb_host_endpoint *ep)
1645 {
1646         struct xhci_hcd *xhci;
1647         struct xhci_container_ctx *in_ctx, *out_ctx;
1648         struct xhci_input_control_ctx *ctrl_ctx;
1649         unsigned int ep_index;
1650         struct xhci_ep_ctx *ep_ctx;
1651         u32 drop_flag;
1652         u32 new_add_flags, new_drop_flags;
1653         int ret;
1654
1655         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1656         if (ret <= 0)
1657                 return ret;
1658         xhci = hcd_to_xhci(hcd);
1659         if (xhci->xhc_state & XHCI_STATE_DYING)
1660                 return -ENODEV;
1661
1662         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1663         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1664         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1665                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1666                                 __func__, drop_flag);
1667                 return 0;
1668         }
1669
1670         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1671         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1672         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1673         if (!ctrl_ctx) {
1674                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1675                                 __func__);
1676                 return 0;
1677         }
1678
1679         ep_index = xhci_get_endpoint_index(&ep->desc);
1680         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1681         /* If the HC already knows the endpoint is disabled,
1682          * or the HCD has noted it is disabled, ignore this request
1683          */
1684         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1685              cpu_to_le32(EP_STATE_DISABLED)) ||
1686             le32_to_cpu(ctrl_ctx->drop_flags) &
1687             xhci_get_endpoint_flag(&ep->desc)) {
1688                 /* Do not warn when called after a usb_device_reset */
1689                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1690                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1691                                   __func__, ep);
1692                 return 0;
1693         }
1694
1695         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1696         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1697
1698         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1699         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1700
1701         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1702
1703         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1704                         (unsigned int) ep->desc.bEndpointAddress,
1705                         udev->slot_id,
1706                         (unsigned int) new_drop_flags,
1707                         (unsigned int) new_add_flags);
1708         return 0;
1709 }
1710
1711 /* Add an endpoint to a new possible bandwidth configuration for this device.
1712  * Only one call to this function is allowed per endpoint before
1713  * check_bandwidth() or reset_bandwidth() must be called.
1714  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1715  * add the endpoint to the schedule with possibly new parameters denoted by a
1716  * different endpoint descriptor in usb_host_endpoint.
1717  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1718  * not allowed.
1719  *
1720  * The USB core will not allow URBs to be queued to an endpoint until the
1721  * configuration or alt setting is installed in the device, so there's no need
1722  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1723  */
1724 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1725                 struct usb_host_endpoint *ep)
1726 {
1727         struct xhci_hcd *xhci;
1728         struct xhci_container_ctx *in_ctx;
1729         unsigned int ep_index;
1730         struct xhci_input_control_ctx *ctrl_ctx;
1731         u32 added_ctxs;
1732         u32 new_add_flags, new_drop_flags;
1733         struct xhci_virt_device *virt_dev;
1734         int ret = 0;
1735
1736         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1737         if (ret <= 0) {
1738                 /* So we won't queue a reset ep command for a root hub */
1739                 ep->hcpriv = NULL;
1740                 return ret;
1741         }
1742         xhci = hcd_to_xhci(hcd);
1743         if (xhci->xhc_state & XHCI_STATE_DYING)
1744                 return -ENODEV;
1745
1746         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1747         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1748                 /* FIXME when we have to issue an evaluate endpoint command to
1749                  * deal with ep0 max packet size changing once we get the
1750                  * descriptors
1751                  */
1752                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1753                                 __func__, added_ctxs);
1754                 return 0;
1755         }
1756
1757         virt_dev = xhci->devs[udev->slot_id];
1758         in_ctx = virt_dev->in_ctx;
1759         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1760         if (!ctrl_ctx) {
1761                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1762                                 __func__);
1763                 return 0;
1764         }
1765
1766         ep_index = xhci_get_endpoint_index(&ep->desc);
1767         /* If this endpoint is already in use, and the upper layers are trying
1768          * to add it again without dropping it, reject the addition.
1769          */
1770         if (virt_dev->eps[ep_index].ring &&
1771                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1772                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1773                                 "without dropping it.\n",
1774                                 (unsigned int) ep->desc.bEndpointAddress);
1775                 return -EINVAL;
1776         }
1777
1778         /* If the HCD has already noted the endpoint is enabled,
1779          * ignore this request.
1780          */
1781         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1782                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1783                                 __func__, ep);
1784                 return 0;
1785         }
1786
1787         /*
1788          * Configuration and alternate setting changes must be done in
1789          * process context, not interrupt context (or so documenation
1790          * for usb_set_interface() and usb_set_configuration() claim).
1791          */
1792         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1793                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1794                                 __func__, ep->desc.bEndpointAddress);
1795                 return -ENOMEM;
1796         }
1797
1798         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1799         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1800
1801         /* If xhci_endpoint_disable() was called for this endpoint, but the
1802          * xHC hasn't been notified yet through the check_bandwidth() call,
1803          * this re-adds a new state for the endpoint from the new endpoint
1804          * descriptors.  We must drop and re-add this endpoint, so we leave the
1805          * drop flags alone.
1806          */
1807         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1808
1809         /* Store the usb_device pointer for later use */
1810         ep->hcpriv = udev;
1811
1812         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1813                         (unsigned int) ep->desc.bEndpointAddress,
1814                         udev->slot_id,
1815                         (unsigned int) new_drop_flags,
1816                         (unsigned int) new_add_flags);
1817         return 0;
1818 }
1819
1820 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1821 {
1822         struct xhci_input_control_ctx *ctrl_ctx;
1823         struct xhci_ep_ctx *ep_ctx;
1824         struct xhci_slot_ctx *slot_ctx;
1825         int i;
1826
1827         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1828         if (!ctrl_ctx) {
1829                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1830                                 __func__);
1831                 return;
1832         }
1833
1834         /* When a device's add flag and drop flag are zero, any subsequent
1835          * configure endpoint command will leave that endpoint's state
1836          * untouched.  Make sure we don't leave any old state in the input
1837          * endpoint contexts.
1838          */
1839         ctrl_ctx->drop_flags = 0;
1840         ctrl_ctx->add_flags = 0;
1841         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1842         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1843         /* Endpoint 0 is always valid */
1844         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1845         for (i = 1; i < 31; ++i) {
1846                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1847                 ep_ctx->ep_info = 0;
1848                 ep_ctx->ep_info2 = 0;
1849                 ep_ctx->deq = 0;
1850                 ep_ctx->tx_info = 0;
1851         }
1852 }
1853
1854 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1855                 struct usb_device *udev, u32 *cmd_status)
1856 {
1857         int ret;
1858
1859         switch (*cmd_status) {
1860         case COMP_CMD_ABORT:
1861         case COMP_CMD_STOP:
1862                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1863                 ret = -ETIME;
1864                 break;
1865         case COMP_ENOMEM:
1866                 dev_warn(&udev->dev,
1867                          "Not enough host controller resources for new device state.\n");
1868                 ret = -ENOMEM;
1869                 /* FIXME: can we allocate more resources for the HC? */
1870                 break;
1871         case COMP_BW_ERR:
1872         case COMP_2ND_BW_ERR:
1873                 dev_warn(&udev->dev,
1874                          "Not enough bandwidth for new device state.\n");
1875                 ret = -ENOSPC;
1876                 /* FIXME: can we go back to the old state? */
1877                 break;
1878         case COMP_TRB_ERR:
1879                 /* the HCD set up something wrong */
1880                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1881                                 "add flag = 1, "
1882                                 "and endpoint is not disabled.\n");
1883                 ret = -EINVAL;
1884                 break;
1885         case COMP_DEV_ERR:
1886                 dev_warn(&udev->dev,
1887                          "ERROR: Incompatible device for endpoint configure command.\n");
1888                 ret = -ENODEV;
1889                 break;
1890         case COMP_SUCCESS:
1891                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1892                                 "Successful Endpoint Configure command");
1893                 ret = 0;
1894                 break;
1895         default:
1896                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1897                                 *cmd_status);
1898                 ret = -EINVAL;
1899                 break;
1900         }
1901         return ret;
1902 }
1903
1904 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1905                 struct usb_device *udev, u32 *cmd_status)
1906 {
1907         int ret;
1908         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1909
1910         switch (*cmd_status) {
1911         case COMP_CMD_ABORT:
1912         case COMP_CMD_STOP:
1913                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1914                 ret = -ETIME;
1915                 break;
1916         case COMP_EINVAL:
1917                 dev_warn(&udev->dev,
1918                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1919                 ret = -EINVAL;
1920                 break;
1921         case COMP_EBADSLT:
1922                 dev_warn(&udev->dev,
1923                         "WARN: slot not enabled for evaluate context command.\n");
1924                 ret = -EINVAL;
1925                 break;
1926         case COMP_CTX_STATE:
1927                 dev_warn(&udev->dev,
1928                         "WARN: invalid context state for evaluate context command.\n");
1929                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1930                 ret = -EINVAL;
1931                 break;
1932         case COMP_DEV_ERR:
1933                 dev_warn(&udev->dev,
1934                         "ERROR: Incompatible device for evaluate context command.\n");
1935                 ret = -ENODEV;
1936                 break;
1937         case COMP_MEL_ERR:
1938                 /* Max Exit Latency too large error */
1939                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1940                 ret = -EINVAL;
1941                 break;
1942         case COMP_SUCCESS:
1943                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1944                                 "Successful evaluate context command");
1945                 ret = 0;
1946                 break;
1947         default:
1948                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1949                         *cmd_status);
1950                 ret = -EINVAL;
1951                 break;
1952         }
1953         return ret;
1954 }
1955
1956 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1957                 struct xhci_input_control_ctx *ctrl_ctx)
1958 {
1959         u32 valid_add_flags;
1960         u32 valid_drop_flags;
1961
1962         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1963          * (bit 1).  The default control endpoint is added during the Address
1964          * Device command and is never removed until the slot is disabled.
1965          */
1966         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1967         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1968
1969         /* Use hweight32 to count the number of ones in the add flags, or
1970          * number of endpoints added.  Don't count endpoints that are changed
1971          * (both added and dropped).
1972          */
1973         return hweight32(valid_add_flags) -
1974                 hweight32(valid_add_flags & valid_drop_flags);
1975 }
1976
1977 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1978                 struct xhci_input_control_ctx *ctrl_ctx)
1979 {
1980         u32 valid_add_flags;
1981         u32 valid_drop_flags;
1982
1983         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1984         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1985
1986         return hweight32(valid_drop_flags) -
1987                 hweight32(valid_add_flags & valid_drop_flags);
1988 }
1989
1990 /*
1991  * We need to reserve the new number of endpoints before the configure endpoint
1992  * command completes.  We can't subtract the dropped endpoints from the number
1993  * of active endpoints until the command completes because we can oversubscribe
1994  * the host in this case:
1995  *
1996  *  - the first configure endpoint command drops more endpoints than it adds
1997  *  - a second configure endpoint command that adds more endpoints is queued
1998  *  - the first configure endpoint command fails, so the config is unchanged
1999  *  - the second command may succeed, even though there isn't enough resources
2000  *
2001  * Must be called with xhci->lock held.
2002  */
2003 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2004                 struct xhci_input_control_ctx *ctrl_ctx)
2005 {
2006         u32 added_eps;
2007
2008         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2009         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2010                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2011                                 "Not enough ep ctxs: "
2012                                 "%u active, need to add %u, limit is %u.",
2013                                 xhci->num_active_eps, added_eps,
2014                                 xhci->limit_active_eps);
2015                 return -ENOMEM;
2016         }
2017         xhci->num_active_eps += added_eps;
2018         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2019                         "Adding %u ep ctxs, %u now active.", added_eps,
2020                         xhci->num_active_eps);
2021         return 0;
2022 }
2023
2024 /*
2025  * The configure endpoint was failed by the xHC for some other reason, so we
2026  * need to revert the resources that failed configuration would have used.
2027  *
2028  * Must be called with xhci->lock held.
2029  */
2030 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2031                 struct xhci_input_control_ctx *ctrl_ctx)
2032 {
2033         u32 num_failed_eps;
2034
2035         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2036         xhci->num_active_eps -= num_failed_eps;
2037         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2038                         "Removing %u failed ep ctxs, %u now active.",
2039                         num_failed_eps,
2040                         xhci->num_active_eps);
2041 }
2042
2043 /*
2044  * Now that the command has completed, clean up the active endpoint count by
2045  * subtracting out the endpoints that were dropped (but not changed).
2046  *
2047  * Must be called with xhci->lock held.
2048  */
2049 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2050                 struct xhci_input_control_ctx *ctrl_ctx)
2051 {
2052         u32 num_dropped_eps;
2053
2054         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2055         xhci->num_active_eps -= num_dropped_eps;
2056         if (num_dropped_eps)
2057                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2058                                 "Removing %u dropped ep ctxs, %u now active.",
2059                                 num_dropped_eps,
2060                                 xhci->num_active_eps);
2061 }
2062
2063 static unsigned int xhci_get_block_size(struct usb_device *udev)
2064 {
2065         switch (udev->speed) {
2066         case USB_SPEED_LOW:
2067         case USB_SPEED_FULL:
2068                 return FS_BLOCK;
2069         case USB_SPEED_HIGH:
2070                 return HS_BLOCK;
2071         case USB_SPEED_SUPER:
2072                 return SS_BLOCK;
2073         case USB_SPEED_UNKNOWN:
2074         case USB_SPEED_WIRELESS:
2075         default:
2076                 /* Should never happen */
2077                 return 1;
2078         }
2079 }
2080
2081 static unsigned int
2082 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2083 {
2084         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2085                 return LS_OVERHEAD;
2086         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2087                 return FS_OVERHEAD;
2088         return HS_OVERHEAD;
2089 }
2090
2091 /* If we are changing a LS/FS device under a HS hub,
2092  * make sure (if we are activating a new TT) that the HS bus has enough
2093  * bandwidth for this new TT.
2094  */
2095 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2096                 struct xhci_virt_device *virt_dev,
2097                 int old_active_eps)
2098 {
2099         struct xhci_interval_bw_table *bw_table;
2100         struct xhci_tt_bw_info *tt_info;
2101
2102         /* Find the bandwidth table for the root port this TT is attached to. */
2103         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2104         tt_info = virt_dev->tt_info;
2105         /* If this TT already had active endpoints, the bandwidth for this TT
2106          * has already been added.  Removing all periodic endpoints (and thus
2107          * making the TT enactive) will only decrease the bandwidth used.
2108          */
2109         if (old_active_eps)
2110                 return 0;
2111         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2112                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2113                         return -ENOMEM;
2114                 return 0;
2115         }
2116         /* Not sure why we would have no new active endpoints...
2117          *
2118          * Maybe because of an Evaluate Context change for a hub update or a
2119          * control endpoint 0 max packet size change?
2120          * FIXME: skip the bandwidth calculation in that case.
2121          */
2122         return 0;
2123 }
2124
2125 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2126                 struct xhci_virt_device *virt_dev)
2127 {
2128         unsigned int bw_reserved;
2129
2130         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2131         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2132                 return -ENOMEM;
2133
2134         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2135         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2136                 return -ENOMEM;
2137
2138         return 0;
2139 }
2140
2141 /*
2142  * This algorithm is a very conservative estimate of the worst-case scheduling
2143  * scenario for any one interval.  The hardware dynamically schedules the
2144  * packets, so we can't tell which microframe could be the limiting factor in
2145  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2146  *
2147  * Obviously, we can't solve an NP complete problem to find the minimum worst
2148  * case scenario.  Instead, we come up with an estimate that is no less than
2149  * the worst case bandwidth used for any one microframe, but may be an
2150  * over-estimate.
2151  *
2152  * We walk the requirements for each endpoint by interval, starting with the
2153  * smallest interval, and place packets in the schedule where there is only one
2154  * possible way to schedule packets for that interval.  In order to simplify
2155  * this algorithm, we record the largest max packet size for each interval, and
2156  * assume all packets will be that size.
2157  *
2158  * For interval 0, we obviously must schedule all packets for each interval.
2159  * The bandwidth for interval 0 is just the amount of data to be transmitted
2160  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2161  * the number of packets).
2162  *
2163  * For interval 1, we have two possible microframes to schedule those packets
2164  * in.  For this algorithm, if we can schedule the same number of packets for
2165  * each possible scheduling opportunity (each microframe), we will do so.  The
2166  * remaining number of packets will be saved to be transmitted in the gaps in
2167  * the next interval's scheduling sequence.
2168  *
2169  * As we move those remaining packets to be scheduled with interval 2 packets,
2170  * we have to double the number of remaining packets to transmit.  This is
2171  * because the intervals are actually powers of 2, and we would be transmitting
2172  * the previous interval's packets twice in this interval.  We also have to be
2173  * sure that when we look at the largest max packet size for this interval, we
2174  * also look at the largest max packet size for the remaining packets and take
2175  * the greater of the two.
2176  *
2177  * The algorithm continues to evenly distribute packets in each scheduling
2178  * opportunity, and push the remaining packets out, until we get to the last
2179  * interval.  Then those packets and their associated overhead are just added
2180  * to the bandwidth used.
2181  */
2182 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2183                 struct xhci_virt_device *virt_dev,
2184                 int old_active_eps)
2185 {
2186         unsigned int bw_reserved;
2187         unsigned int max_bandwidth;
2188         unsigned int bw_used;
2189         unsigned int block_size;
2190         struct xhci_interval_bw_table *bw_table;
2191         unsigned int packet_size = 0;
2192         unsigned int overhead = 0;
2193         unsigned int packets_transmitted = 0;
2194         unsigned int packets_remaining = 0;
2195         unsigned int i;
2196
2197         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2198                 return xhci_check_ss_bw(xhci, virt_dev);
2199
2200         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2201                 max_bandwidth = HS_BW_LIMIT;
2202                 /* Convert percent of bus BW reserved to blocks reserved */
2203                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2204         } else {
2205                 max_bandwidth = FS_BW_LIMIT;
2206                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2207         }
2208
2209         bw_table = virt_dev->bw_table;
2210         /* We need to translate the max packet size and max ESIT payloads into
2211          * the units the hardware uses.
2212          */
2213         block_size = xhci_get_block_size(virt_dev->udev);
2214
2215         /* If we are manipulating a LS/FS device under a HS hub, double check
2216          * that the HS bus has enough bandwidth if we are activing a new TT.
2217          */
2218         if (virt_dev->tt_info) {
2219                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2220                                 "Recalculating BW for rootport %u",
2221                                 virt_dev->real_port);
2222                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2223                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2224                                         "newly activated TT.\n");
2225                         return -ENOMEM;
2226                 }
2227                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2228                                 "Recalculating BW for TT slot %u port %u",
2229                                 virt_dev->tt_info->slot_id,
2230                                 virt_dev->tt_info->ttport);
2231         } else {
2232                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2233                                 "Recalculating BW for rootport %u",
2234                                 virt_dev->real_port);
2235         }
2236
2237         /* Add in how much bandwidth will be used for interval zero, or the
2238          * rounded max ESIT payload + number of packets * largest overhead.
2239          */
2240         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2241                 bw_table->interval_bw[0].num_packets *
2242                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2243
2244         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2245                 unsigned int bw_added;
2246                 unsigned int largest_mps;
2247                 unsigned int interval_overhead;
2248
2249                 /*
2250                  * How many packets could we transmit in this interval?
2251                  * If packets didn't fit in the previous interval, we will need
2252                  * to transmit that many packets twice within this interval.
2253                  */
2254                 packets_remaining = 2 * packets_remaining +
2255                         bw_table->interval_bw[i].num_packets;
2256
2257                 /* Find the largest max packet size of this or the previous
2258                  * interval.
2259                  */
2260                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2261                         largest_mps = 0;
2262                 else {
2263                         struct xhci_virt_ep *virt_ep;
2264                         struct list_head *ep_entry;
2265
2266                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2267                         virt_ep = list_entry(ep_entry,
2268                                         struct xhci_virt_ep, bw_endpoint_list);
2269                         /* Convert to blocks, rounding up */
2270                         largest_mps = DIV_ROUND_UP(
2271                                         virt_ep->bw_info.max_packet_size,
2272                                         block_size);
2273                 }
2274                 if (largest_mps > packet_size)
2275                         packet_size = largest_mps;
2276
2277                 /* Use the larger overhead of this or the previous interval. */
2278                 interval_overhead = xhci_get_largest_overhead(
2279                                 &bw_table->interval_bw[i]);
2280                 if (interval_overhead > overhead)
2281                         overhead = interval_overhead;
2282
2283                 /* How many packets can we evenly distribute across
2284                  * (1 << (i + 1)) possible scheduling opportunities?
2285                  */
2286                 packets_transmitted = packets_remaining >> (i + 1);
2287
2288                 /* Add in the bandwidth used for those scheduled packets */
2289                 bw_added = packets_transmitted * (overhead + packet_size);
2290
2291                 /* How many packets do we have remaining to transmit? */
2292                 packets_remaining = packets_remaining % (1 << (i + 1));
2293
2294                 /* What largest max packet size should those packets have? */
2295                 /* If we've transmitted all packets, don't carry over the
2296                  * largest packet size.
2297                  */
2298                 if (packets_remaining == 0) {
2299                         packet_size = 0;
2300                         overhead = 0;
2301                 } else if (packets_transmitted > 0) {
2302                         /* Otherwise if we do have remaining packets, and we've
2303                          * scheduled some packets in this interval, take the
2304                          * largest max packet size from endpoints with this
2305                          * interval.
2306                          */
2307                         packet_size = largest_mps;
2308                         overhead = interval_overhead;
2309                 }
2310                 /* Otherwise carry over packet_size and overhead from the last
2311                  * time we had a remainder.
2312                  */
2313                 bw_used += bw_added;
2314                 if (bw_used > max_bandwidth) {
2315                         xhci_warn(xhci, "Not enough bandwidth. "
2316                                         "Proposed: %u, Max: %u\n",
2317                                 bw_used, max_bandwidth);
2318                         return -ENOMEM;
2319                 }
2320         }
2321         /*
2322          * Ok, we know we have some packets left over after even-handedly
2323          * scheduling interval 15.  We don't know which microframes they will
2324          * fit into, so we over-schedule and say they will be scheduled every
2325          * microframe.
2326          */
2327         if (packets_remaining > 0)
2328                 bw_used += overhead + packet_size;
2329
2330         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2331                 unsigned int port_index = virt_dev->real_port - 1;
2332
2333                 /* OK, we're manipulating a HS device attached to a
2334                  * root port bandwidth domain.  Include the number of active TTs
2335                  * in the bandwidth used.
2336                  */
2337                 bw_used += TT_HS_OVERHEAD *
2338                         xhci->rh_bw[port_index].num_active_tts;
2339         }
2340
2341         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2342                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2343                 "Available: %u " "percent",
2344                 bw_used, max_bandwidth, bw_reserved,
2345                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2346                 max_bandwidth);
2347
2348         bw_used += bw_reserved;
2349         if (bw_used > max_bandwidth) {
2350                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2351                                 bw_used, max_bandwidth);
2352                 return -ENOMEM;
2353         }
2354
2355         bw_table->bw_used = bw_used;
2356         return 0;
2357 }
2358
2359 static bool xhci_is_async_ep(unsigned int ep_type)
2360 {
2361         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2362                                         ep_type != ISOC_IN_EP &&
2363                                         ep_type != INT_IN_EP);
2364 }
2365
2366 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2367 {
2368         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2369 }
2370
2371 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2372 {
2373         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2374
2375         if (ep_bw->ep_interval == 0)
2376                 return SS_OVERHEAD_BURST +
2377                         (ep_bw->mult * ep_bw->num_packets *
2378                                         (SS_OVERHEAD + mps));
2379         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2380                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2381                                 1 << ep_bw->ep_interval);
2382
2383 }
2384
2385 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2386                 struct xhci_bw_info *ep_bw,
2387                 struct xhci_interval_bw_table *bw_table,
2388                 struct usb_device *udev,
2389                 struct xhci_virt_ep *virt_ep,
2390                 struct xhci_tt_bw_info *tt_info)
2391 {
2392         struct xhci_interval_bw *interval_bw;
2393         int normalized_interval;
2394
2395         if (xhci_is_async_ep(ep_bw->type))
2396                 return;
2397
2398         if (udev->speed == USB_SPEED_SUPER) {
2399                 if (xhci_is_sync_in_ep(ep_bw->type))
2400                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2401                                 xhci_get_ss_bw_consumed(ep_bw);
2402                 else
2403                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2404                                 xhci_get_ss_bw_consumed(ep_bw);
2405                 return;
2406         }
2407
2408         /* SuperSpeed endpoints never get added to intervals in the table, so
2409          * this check is only valid for HS/FS/LS devices.
2410          */
2411         if (list_empty(&virt_ep->bw_endpoint_list))
2412                 return;
2413         /* For LS/FS devices, we need to translate the interval expressed in
2414          * microframes to frames.
2415          */
2416         if (udev->speed == USB_SPEED_HIGH)
2417                 normalized_interval = ep_bw->ep_interval;
2418         else
2419                 normalized_interval = ep_bw->ep_interval - 3;
2420
2421         if (normalized_interval == 0)
2422                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2423         interval_bw = &bw_table->interval_bw[normalized_interval];
2424         interval_bw->num_packets -= ep_bw->num_packets;
2425         switch (udev->speed) {
2426         case USB_SPEED_LOW:
2427                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2428                 break;
2429         case USB_SPEED_FULL:
2430                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2431                 break;
2432         case USB_SPEED_HIGH:
2433                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2434                 break;
2435         case USB_SPEED_SUPER:
2436         case USB_SPEED_UNKNOWN:
2437         case USB_SPEED_WIRELESS:
2438                 /* Should never happen because only LS/FS/HS endpoints will get
2439                  * added to the endpoint list.
2440                  */
2441                 return;
2442         }
2443         if (tt_info)
2444                 tt_info->active_eps -= 1;
2445         list_del_init(&virt_ep->bw_endpoint_list);
2446 }
2447
2448 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2449                 struct xhci_bw_info *ep_bw,
2450                 struct xhci_interval_bw_table *bw_table,
2451                 struct usb_device *udev,
2452                 struct xhci_virt_ep *virt_ep,
2453                 struct xhci_tt_bw_info *tt_info)
2454 {
2455         struct xhci_interval_bw *interval_bw;
2456         struct xhci_virt_ep *smaller_ep;
2457         int normalized_interval;
2458
2459         if (xhci_is_async_ep(ep_bw->type))
2460                 return;
2461
2462         if (udev->speed == USB_SPEED_SUPER) {
2463                 if (xhci_is_sync_in_ep(ep_bw->type))
2464                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2465                                 xhci_get_ss_bw_consumed(ep_bw);
2466                 else
2467                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2468                                 xhci_get_ss_bw_consumed(ep_bw);
2469                 return;
2470         }
2471
2472         /* For LS/FS devices, we need to translate the interval expressed in
2473          * microframes to frames.
2474          */
2475         if (udev->speed == USB_SPEED_HIGH)
2476                 normalized_interval = ep_bw->ep_interval;
2477         else
2478                 normalized_interval = ep_bw->ep_interval - 3;
2479
2480         if (normalized_interval == 0)
2481                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2482         interval_bw = &bw_table->interval_bw[normalized_interval];
2483         interval_bw->num_packets += ep_bw->num_packets;
2484         switch (udev->speed) {
2485         case USB_SPEED_LOW:
2486                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2487                 break;
2488         case USB_SPEED_FULL:
2489                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2490                 break;
2491         case USB_SPEED_HIGH:
2492                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2493                 break;
2494         case USB_SPEED_SUPER:
2495         case USB_SPEED_UNKNOWN:
2496         case USB_SPEED_WIRELESS:
2497                 /* Should never happen because only LS/FS/HS endpoints will get
2498                  * added to the endpoint list.
2499                  */
2500                 return;
2501         }
2502
2503         if (tt_info)
2504                 tt_info->active_eps += 1;
2505         /* Insert the endpoint into the list, largest max packet size first. */
2506         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2507                         bw_endpoint_list) {
2508                 if (ep_bw->max_packet_size >=
2509                                 smaller_ep->bw_info.max_packet_size) {
2510                         /* Add the new ep before the smaller endpoint */
2511                         list_add_tail(&virt_ep->bw_endpoint_list,
2512                                         &smaller_ep->bw_endpoint_list);
2513                         return;
2514                 }
2515         }
2516         /* Add the new endpoint at the end of the list. */
2517         list_add_tail(&virt_ep->bw_endpoint_list,
2518                         &interval_bw->endpoints);
2519 }
2520
2521 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2522                 struct xhci_virt_device *virt_dev,
2523                 int old_active_eps)
2524 {
2525         struct xhci_root_port_bw_info *rh_bw_info;
2526         if (!virt_dev->tt_info)
2527                 return;
2528
2529         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2530         if (old_active_eps == 0 &&
2531                                 virt_dev->tt_info->active_eps != 0) {
2532                 rh_bw_info->num_active_tts += 1;
2533                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2534         } else if (old_active_eps != 0 &&
2535                                 virt_dev->tt_info->active_eps == 0) {
2536                 rh_bw_info->num_active_tts -= 1;
2537                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2538         }
2539 }
2540
2541 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2542                 struct xhci_virt_device *virt_dev,
2543                 struct xhci_container_ctx *in_ctx)
2544 {
2545         struct xhci_bw_info ep_bw_info[31];
2546         int i;
2547         struct xhci_input_control_ctx *ctrl_ctx;
2548         int old_active_eps = 0;
2549
2550         if (virt_dev->tt_info)
2551                 old_active_eps = virt_dev->tt_info->active_eps;
2552
2553         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2554         if (!ctrl_ctx) {
2555                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2556                                 __func__);
2557                 return -ENOMEM;
2558         }
2559
2560         for (i = 0; i < 31; i++) {
2561                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2562                         continue;
2563
2564                 /* Make a copy of the BW info in case we need to revert this */
2565                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2566                                 sizeof(ep_bw_info[i]));
2567                 /* Drop the endpoint from the interval table if the endpoint is
2568                  * being dropped or changed.
2569                  */
2570                 if (EP_IS_DROPPED(ctrl_ctx, i))
2571                         xhci_drop_ep_from_interval_table(xhci,
2572                                         &virt_dev->eps[i].bw_info,
2573                                         virt_dev->bw_table,
2574                                         virt_dev->udev,
2575                                         &virt_dev->eps[i],
2576                                         virt_dev->tt_info);
2577         }
2578         /* Overwrite the information stored in the endpoints' bw_info */
2579         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2580         for (i = 0; i < 31; i++) {
2581                 /* Add any changed or added endpoints to the interval table */
2582                 if (EP_IS_ADDED(ctrl_ctx, i))
2583                         xhci_add_ep_to_interval_table(xhci,
2584                                         &virt_dev->eps[i].bw_info,
2585                                         virt_dev->bw_table,
2586                                         virt_dev->udev,
2587                                         &virt_dev->eps[i],
2588                                         virt_dev->tt_info);
2589         }
2590
2591         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2592                 /* Ok, this fits in the bandwidth we have.
2593                  * Update the number of active TTs.
2594                  */
2595                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2596                 return 0;
2597         }
2598
2599         /* We don't have enough bandwidth for this, revert the stored info. */
2600         for (i = 0; i < 31; i++) {
2601                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2602                         continue;
2603
2604                 /* Drop the new copies of any added or changed endpoints from
2605                  * the interval table.
2606                  */
2607                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2608                         xhci_drop_ep_from_interval_table(xhci,
2609                                         &virt_dev->eps[i].bw_info,
2610                                         virt_dev->bw_table,
2611                                         virt_dev->udev,
2612                                         &virt_dev->eps[i],
2613                                         virt_dev->tt_info);
2614                 }
2615                 /* Revert the endpoint back to its old information */
2616                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2617                                 sizeof(ep_bw_info[i]));
2618                 /* Add any changed or dropped endpoints back into the table */
2619                 if (EP_IS_DROPPED(ctrl_ctx, i))
2620                         xhci_add_ep_to_interval_table(xhci,
2621                                         &virt_dev->eps[i].bw_info,
2622                                         virt_dev->bw_table,
2623                                         virt_dev->udev,
2624                                         &virt_dev->eps[i],
2625                                         virt_dev->tt_info);
2626         }
2627         return -ENOMEM;
2628 }
2629
2630
2631 /* Issue a configure endpoint command or evaluate context command
2632  * and wait for it to finish.
2633  */
2634 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2635                 struct usb_device *udev,
2636                 struct xhci_command *command,
2637                 bool ctx_change, bool must_succeed)
2638 {
2639         int ret;
2640         unsigned long flags;
2641         struct xhci_input_control_ctx *ctrl_ctx;
2642         struct xhci_virt_device *virt_dev;
2643
2644         if (!command)
2645                 return -EINVAL;
2646
2647         spin_lock_irqsave(&xhci->lock, flags);
2648         virt_dev = xhci->devs[udev->slot_id];
2649
2650         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2651         if (!ctrl_ctx) {
2652                 spin_unlock_irqrestore(&xhci->lock, flags);
2653                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2654                                 __func__);
2655                 return -ENOMEM;
2656         }
2657
2658         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2659                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2660                 spin_unlock_irqrestore(&xhci->lock, flags);
2661                 xhci_warn(xhci, "Not enough host resources, "
2662                                 "active endpoint contexts = %u\n",
2663                                 xhci->num_active_eps);
2664                 return -ENOMEM;
2665         }
2666         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2667             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2668                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2669                         xhci_free_host_resources(xhci, ctrl_ctx);
2670                 spin_unlock_irqrestore(&xhci->lock, flags);
2671                 xhci_warn(xhci, "Not enough bandwidth\n");
2672                 return -ENOMEM;
2673         }
2674
2675         if (!ctx_change)
2676                 ret = xhci_queue_configure_endpoint(xhci, command,
2677                                 command->in_ctx->dma,
2678                                 udev->slot_id, must_succeed);
2679         else
2680                 ret = xhci_queue_evaluate_context(xhci, command,
2681                                 command->in_ctx->dma,
2682                                 udev->slot_id, must_succeed);
2683         if (ret < 0) {
2684                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2685                         xhci_free_host_resources(xhci, ctrl_ctx);
2686                 spin_unlock_irqrestore(&xhci->lock, flags);
2687                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2688                                 "FIXME allocate a new ring segment");
2689                 return -ENOMEM;
2690         }
2691         xhci_ring_cmd_db(xhci);
2692         spin_unlock_irqrestore(&xhci->lock, flags);
2693
2694         /* Wait for the configure endpoint command to complete */
2695         wait_for_completion(command->completion);
2696
2697         if (!ctx_change)
2698                 ret = xhci_configure_endpoint_result(xhci, udev,
2699                                                      &command->status);
2700         else
2701                 ret = xhci_evaluate_context_result(xhci, udev,
2702                                                    &command->status);
2703
2704         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2705                 spin_lock_irqsave(&xhci->lock, flags);
2706                 /* If the command failed, remove the reserved resources.
2707                  * Otherwise, clean up the estimate to include dropped eps.
2708                  */
2709                 if (ret)
2710                         xhci_free_host_resources(xhci, ctrl_ctx);
2711                 else
2712                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2713                 spin_unlock_irqrestore(&xhci->lock, flags);
2714         }
2715         return ret;
2716 }
2717
2718 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2719         struct xhci_virt_device *vdev, int i)
2720 {
2721         struct xhci_virt_ep *ep = &vdev->eps[i];
2722
2723         if (ep->ep_state & EP_HAS_STREAMS) {
2724                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2725                                 xhci_get_endpoint_address(i));
2726                 xhci_free_stream_info(xhci, ep->stream_info);
2727                 ep->stream_info = NULL;
2728                 ep->ep_state &= ~EP_HAS_STREAMS;
2729         }
2730 }
2731
2732 /* Called after one or more calls to xhci_add_endpoint() or
2733  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2734  * to call xhci_reset_bandwidth().
2735  *
2736  * Since we are in the middle of changing either configuration or
2737  * installing a new alt setting, the USB core won't allow URBs to be
2738  * enqueued for any endpoint on the old config or interface.  Nothing
2739  * else should be touching the xhci->devs[slot_id] structure, so we
2740  * don't need to take the xhci->lock for manipulating that.
2741  */
2742 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2743 {
2744         int i;
2745         int ret = 0;
2746         struct xhci_hcd *xhci;
2747         struct xhci_virt_device *virt_dev;
2748         struct xhci_input_control_ctx *ctrl_ctx;
2749         struct xhci_slot_ctx *slot_ctx;
2750         struct xhci_command *command;
2751
2752         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2753         if (ret <= 0)
2754                 return ret;
2755         xhci = hcd_to_xhci(hcd);
2756         if (xhci->xhc_state & XHCI_STATE_DYING)
2757                 return -ENODEV;
2758
2759         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2760         virt_dev = xhci->devs[udev->slot_id];
2761
2762         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2763         if (!command)
2764                 return -ENOMEM;
2765
2766         command->in_ctx = virt_dev->in_ctx;
2767
2768         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2769         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2770         if (!ctrl_ctx) {
2771                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2772                                 __func__);
2773                 ret = -ENOMEM;
2774                 goto command_cleanup;
2775         }
2776         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2777         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2778         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2779
2780         /* Don't issue the command if there's no endpoints to update. */
2781         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2782             ctrl_ctx->drop_flags == 0) {
2783                 ret = 0;
2784                 goto command_cleanup;
2785         }
2786         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2787         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2788         for (i = 31; i >= 1; i--) {
2789                 __le32 le32 = cpu_to_le32(BIT(i));
2790
2791                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2792                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2793                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2794                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2795                         break;
2796                 }
2797         }
2798         xhci_dbg(xhci, "New Input Control Context:\n");
2799         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2800                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2801
2802         ret = xhci_configure_endpoint(xhci, udev, command,
2803                         false, false);
2804         if (ret)
2805                 /* Callee should call reset_bandwidth() */
2806                 goto command_cleanup;
2807
2808         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2809         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2810                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2811
2812         /* Free any rings that were dropped, but not changed. */
2813         for (i = 1; i < 31; ++i) {
2814                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2815                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2816                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2817                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2818                 }
2819         }
2820         xhci_zero_in_ctx(xhci, virt_dev);
2821         /*
2822          * Install any rings for completely new endpoints or changed endpoints,
2823          * and free or cache any old rings from changed endpoints.
2824          */
2825         for (i = 1; i < 31; ++i) {
2826                 if (!virt_dev->eps[i].new_ring)
2827                         continue;
2828                 /* Only cache or free the old ring if it exists.
2829                  * It may not if this is the first add of an endpoint.
2830                  */
2831                 if (virt_dev->eps[i].ring) {
2832                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2833                 }
2834                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2835                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2836                 virt_dev->eps[i].new_ring = NULL;
2837         }
2838 command_cleanup:
2839         kfree(command->completion);
2840         kfree(command);
2841
2842         return ret;
2843 }
2844
2845 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2846 {
2847         struct xhci_hcd *xhci;
2848         struct xhci_virt_device *virt_dev;
2849         int i, ret;
2850
2851         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2852         if (ret <= 0)
2853                 return;
2854         xhci = hcd_to_xhci(hcd);
2855
2856         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2857         virt_dev = xhci->devs[udev->slot_id];
2858         /* Free any rings allocated for added endpoints */
2859         for (i = 0; i < 31; ++i) {
2860                 if (virt_dev->eps[i].new_ring) {
2861                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2862                         virt_dev->eps[i].new_ring = NULL;
2863                 }
2864         }
2865         xhci_zero_in_ctx(xhci, virt_dev);
2866 }
2867
2868 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2869                 struct xhci_container_ctx *in_ctx,
2870                 struct xhci_container_ctx *out_ctx,
2871                 struct xhci_input_control_ctx *ctrl_ctx,
2872                 u32 add_flags, u32 drop_flags)
2873 {
2874         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2875         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2876         xhci_slot_copy(xhci, in_ctx, out_ctx);
2877         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2878
2879         xhci_dbg(xhci, "Input Context:\n");
2880         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2881 }
2882
2883 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2884                 unsigned int slot_id, unsigned int ep_index,
2885                 struct xhci_dequeue_state *deq_state)
2886 {
2887         struct xhci_input_control_ctx *ctrl_ctx;
2888         struct xhci_container_ctx *in_ctx;
2889         struct xhci_ep_ctx *ep_ctx;
2890         u32 added_ctxs;
2891         dma_addr_t addr;
2892
2893         in_ctx = xhci->devs[slot_id]->in_ctx;
2894         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2895         if (!ctrl_ctx) {
2896                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2897                                 __func__);
2898                 return;
2899         }
2900
2901         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2902                         xhci->devs[slot_id]->out_ctx, ep_index);
2903         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2904         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2905                         deq_state->new_deq_ptr);
2906         if (addr == 0) {
2907                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2908                                 "reset ep command\n");
2909                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2910                                 deq_state->new_deq_seg,
2911                                 deq_state->new_deq_ptr);
2912                 return;
2913         }
2914         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2915
2916         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2917         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2918                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2919                         added_ctxs, added_ctxs);
2920 }
2921
2922 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2923                         unsigned int ep_index, struct xhci_td *td)
2924 {
2925         struct xhci_dequeue_state deq_state;
2926         struct xhci_virt_ep *ep;
2927         struct usb_device *udev = td->urb->dev;
2928
2929         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2930                         "Cleaning up stalled endpoint ring");
2931         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2932         /* We need to move the HW's dequeue pointer past this TD,
2933          * or it will attempt to resend it on the next doorbell ring.
2934          */
2935         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2936                         ep_index, ep->stopped_stream, td, &deq_state);
2937
2938         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2939                 return;
2940
2941         /* HW with the reset endpoint quirk will use the saved dequeue state to
2942          * issue a configure endpoint command later.
2943          */
2944         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2945                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2946                                 "Queueing new dequeue state");
2947                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2948                                 ep_index, ep->stopped_stream, &deq_state);
2949         } else {
2950                 /* Better hope no one uses the input context between now and the
2951                  * reset endpoint completion!
2952                  * XXX: No idea how this hardware will react when stream rings
2953                  * are enabled.
2954                  */
2955                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2956                                 "Setting up input context for "
2957                                 "configure endpoint command");
2958                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2959                                 ep_index, &deq_state);
2960         }
2961 }
2962
2963 /* Called when clearing halted device. The core should have sent the control
2964  * message to clear the device halt condition. The host side of the halt should
2965  * already be cleared with a reset endpoint command issued when the STALL tx
2966  * event was received.
2967  *
2968  * Context: in_interrupt
2969  */
2970
2971 void xhci_endpoint_reset(struct usb_hcd *hcd,
2972                 struct usb_host_endpoint *ep)
2973 {
2974         struct xhci_hcd *xhci;
2975
2976         xhci = hcd_to_xhci(hcd);
2977
2978         /*
2979          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2980          * The Reset Endpoint Command may only be issued to endpoints in the
2981          * Halted state. If software wishes reset the Data Toggle or Sequence
2982          * Number of an endpoint that isn't in the Halted state, then software
2983          * may issue a Configure Endpoint Command with the Drop and Add bits set
2984          * for the target endpoint. that is in the Stopped state.
2985          */
2986
2987         /* For now just print debug to follow the situation */
2988         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2989                  ep->desc.bEndpointAddress);
2990 }
2991
2992 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2993                 struct usb_device *udev, struct usb_host_endpoint *ep,
2994                 unsigned int slot_id)
2995 {
2996         int ret;
2997         unsigned int ep_index;
2998         unsigned int ep_state;
2999
3000         if (!ep)
3001                 return -EINVAL;
3002         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3003         if (ret <= 0)
3004                 return -EINVAL;
3005         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3006                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3007                                 " descriptor for ep 0x%x does not support streams\n",
3008                                 ep->desc.bEndpointAddress);
3009                 return -EINVAL;
3010         }
3011
3012         ep_index = xhci_get_endpoint_index(&ep->desc);
3013         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3014         if (ep_state & EP_HAS_STREAMS ||
3015                         ep_state & EP_GETTING_STREAMS) {
3016                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3017                                 "already has streams set up.\n",
3018                                 ep->desc.bEndpointAddress);
3019                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3020                                 "dynamic stream context array reallocation.\n");
3021                 return -EINVAL;
3022         }
3023         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3024                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3025                                 "endpoint 0x%x; URBs are pending.\n",
3026                                 ep->desc.bEndpointAddress);
3027                 return -EINVAL;
3028         }
3029         return 0;
3030 }
3031
3032 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3033                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3034 {
3035         unsigned int max_streams;
3036
3037         /* The stream context array size must be a power of two */
3038         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3039         /*
3040          * Find out how many primary stream array entries the host controller
3041          * supports.  Later we may use secondary stream arrays (similar to 2nd
3042          * level page entries), but that's an optional feature for xHCI host
3043          * controllers. xHCs must support at least 4 stream IDs.
3044          */
3045         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3046         if (*num_stream_ctxs > max_streams) {
3047                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3048                                 max_streams);
3049                 *num_stream_ctxs = max_streams;
3050                 *num_streams = max_streams;
3051         }
3052 }
3053
3054 /* Returns an error code if one of the endpoint already has streams.
3055  * This does not change any data structures, it only checks and gathers
3056  * information.
3057  */
3058 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3059                 struct usb_device *udev,
3060                 struct usb_host_endpoint **eps, unsigned int num_eps,
3061                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3062 {
3063         unsigned int max_streams;
3064         unsigned int endpoint_flag;
3065         int i;
3066         int ret;
3067
3068         for (i = 0; i < num_eps; i++) {
3069                 ret = xhci_check_streams_endpoint(xhci, udev,
3070                                 eps[i], udev->slot_id);
3071                 if (ret < 0)
3072                         return ret;
3073
3074                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3075                 if (max_streams < (*num_streams - 1)) {
3076                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3077                                         eps[i]->desc.bEndpointAddress,
3078                                         max_streams);
3079                         *num_streams = max_streams+1;
3080                 }
3081
3082                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3083                 if (*changed_ep_bitmask & endpoint_flag)
3084                         return -EINVAL;
3085                 *changed_ep_bitmask |= endpoint_flag;
3086         }
3087         return 0;
3088 }
3089
3090 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3091                 struct usb_device *udev,
3092                 struct usb_host_endpoint **eps, unsigned int num_eps)
3093 {
3094         u32 changed_ep_bitmask = 0;
3095         unsigned int slot_id;
3096         unsigned int ep_index;
3097         unsigned int ep_state;
3098         int i;
3099
3100         slot_id = udev->slot_id;
3101         if (!xhci->devs[slot_id])
3102                 return 0;
3103
3104         for (i = 0; i < num_eps; i++) {
3105                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3106                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3107                 /* Are streams already being freed for the endpoint? */
3108                 if (ep_state & EP_GETTING_NO_STREAMS) {
3109                         xhci_warn(xhci, "WARN Can't disable streams for "
3110                                         "endpoint 0x%x, "
3111                                         "streams are being disabled already\n",
3112                                         eps[i]->desc.bEndpointAddress);
3113                         return 0;
3114                 }
3115                 /* Are there actually any streams to free? */
3116                 if (!(ep_state & EP_HAS_STREAMS) &&
3117                                 !(ep_state & EP_GETTING_STREAMS)) {
3118                         xhci_warn(xhci, "WARN Can't disable streams for "
3119                                         "endpoint 0x%x, "
3120                                         "streams are already disabled!\n",
3121                                         eps[i]->desc.bEndpointAddress);
3122                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3123                                         "with non-streams endpoint\n");
3124                         return 0;
3125                 }
3126                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3127         }
3128         return changed_ep_bitmask;
3129 }
3130
3131 /*
3132  * The USB device drivers use this function (through the HCD interface in USB
3133  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3134  * coordinate mass storage command queueing across multiple endpoints (basically
3135  * a stream ID == a task ID).
3136  *
3137  * Setting up streams involves allocating the same size stream context array
3138  * for each endpoint and issuing a configure endpoint command for all endpoints.
3139  *
3140  * Don't allow the call to succeed if one endpoint only supports one stream
3141  * (which means it doesn't support streams at all).
3142  *
3143  * Drivers may get less stream IDs than they asked for, if the host controller
3144  * hardware or endpoints claim they can't support the number of requested
3145  * stream IDs.
3146  */
3147 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3148                 struct usb_host_endpoint **eps, unsigned int num_eps,
3149                 unsigned int num_streams, gfp_t mem_flags)
3150 {
3151         int i, ret;
3152         struct xhci_hcd *xhci;
3153         struct xhci_virt_device *vdev;
3154         struct xhci_command *config_cmd;
3155         struct xhci_input_control_ctx *ctrl_ctx;
3156         unsigned int ep_index;
3157         unsigned int num_stream_ctxs;
3158         unsigned long flags;
3159         u32 changed_ep_bitmask = 0;
3160
3161         if (!eps)
3162                 return -EINVAL;
3163
3164         /* Add one to the number of streams requested to account for
3165          * stream 0 that is reserved for xHCI usage.
3166          */
3167         num_streams += 1;
3168         xhci = hcd_to_xhci(hcd);
3169         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3170                         num_streams);
3171
3172         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3173         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3174                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3175                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3176                 return -ENOSYS;
3177         }
3178
3179         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3180         if (!config_cmd) {
3181                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3182                 return -ENOMEM;
3183         }
3184         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3185         if (!ctrl_ctx) {
3186                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3187                                 __func__);
3188                 xhci_free_command(xhci, config_cmd);
3189                 return -ENOMEM;
3190         }
3191
3192         /* Check to make sure all endpoints are not already configured for
3193          * streams.  While we're at it, find the maximum number of streams that
3194          * all the endpoints will support and check for duplicate endpoints.
3195          */
3196         spin_lock_irqsave(&xhci->lock, flags);
3197         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3198                         num_eps, &num_streams, &changed_ep_bitmask);
3199         if (ret < 0) {
3200                 xhci_free_command(xhci, config_cmd);
3201                 spin_unlock_irqrestore(&xhci->lock, flags);
3202                 return ret;
3203         }
3204         if (num_streams <= 1) {
3205                 xhci_warn(xhci, "WARN: endpoints can't handle "
3206                                 "more than one stream.\n");
3207                 xhci_free_command(xhci, config_cmd);
3208                 spin_unlock_irqrestore(&xhci->lock, flags);
3209                 return -EINVAL;
3210         }
3211         vdev = xhci->devs[udev->slot_id];
3212         /* Mark each endpoint as being in transition, so
3213          * xhci_urb_enqueue() will reject all URBs.
3214          */
3215         for (i = 0; i < num_eps; i++) {
3216                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3217                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3218         }
3219         spin_unlock_irqrestore(&xhci->lock, flags);
3220
3221         /* Setup internal data structures and allocate HW data structures for
3222          * streams (but don't install the HW structures in the input context
3223          * until we're sure all memory allocation succeeded).
3224          */
3225         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3226         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3227                         num_stream_ctxs, num_streams);
3228
3229         for (i = 0; i < num_eps; i++) {
3230                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3231                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3232                                 num_stream_ctxs,
3233                                 num_streams, mem_flags);
3234                 if (!vdev->eps[ep_index].stream_info)
3235                         goto cleanup;
3236                 /* Set maxPstreams in endpoint context and update deq ptr to
3237                  * point to stream context array. FIXME
3238                  */
3239         }
3240
3241         /* Set up the input context for a configure endpoint command. */
3242         for (i = 0; i < num_eps; i++) {
3243                 struct xhci_ep_ctx *ep_ctx;
3244
3245                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3246                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3247
3248                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3249                                 vdev->out_ctx, ep_index);
3250                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3251                                 vdev->eps[ep_index].stream_info);
3252         }
3253         /* Tell the HW to drop its old copy of the endpoint context info
3254          * and add the updated copy from the input context.
3255          */
3256         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3257                         vdev->out_ctx, ctrl_ctx,
3258                         changed_ep_bitmask, changed_ep_bitmask);
3259
3260         /* Issue and wait for the configure endpoint command */
3261         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3262                         false, false);
3263
3264         /* xHC rejected the configure endpoint command for some reason, so we
3265          * leave the old ring intact and free our internal streams data
3266          * structure.
3267          */
3268         if (ret < 0)
3269                 goto cleanup;
3270
3271         spin_lock_irqsave(&xhci->lock, flags);
3272         for (i = 0; i < num_eps; i++) {
3273                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3274                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3275                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3276                          udev->slot_id, ep_index);
3277                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3278         }
3279         xhci_free_command(xhci, config_cmd);
3280         spin_unlock_irqrestore(&xhci->lock, flags);
3281
3282         /* Subtract 1 for stream 0, which drivers can't use */
3283         return num_streams - 1;
3284
3285 cleanup:
3286         /* If it didn't work, free the streams! */
3287         for (i = 0; i < num_eps; i++) {
3288                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3289                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3290                 vdev->eps[ep_index].stream_info = NULL;
3291                 /* FIXME Unset maxPstreams in endpoint context and
3292                  * update deq ptr to point to normal string ring.
3293                  */
3294                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3295                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3296                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3297         }
3298         xhci_free_command(xhci, config_cmd);
3299         return -ENOMEM;
3300 }
3301
3302 /* Transition the endpoint from using streams to being a "normal" endpoint
3303  * without streams.
3304  *
3305  * Modify the endpoint context state, submit a configure endpoint command,
3306  * and free all endpoint rings for streams if that completes successfully.
3307  */
3308 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3309                 struct usb_host_endpoint **eps, unsigned int num_eps,
3310                 gfp_t mem_flags)
3311 {
3312         int i, ret;
3313         struct xhci_hcd *xhci;
3314         struct xhci_virt_device *vdev;
3315         struct xhci_command *command;
3316         struct xhci_input_control_ctx *ctrl_ctx;
3317         unsigned int ep_index;
3318         unsigned long flags;
3319         u32 changed_ep_bitmask;
3320
3321         xhci = hcd_to_xhci(hcd);
3322         vdev = xhci->devs[udev->slot_id];
3323
3324         /* Set up a configure endpoint command to remove the streams rings */
3325         spin_lock_irqsave(&xhci->lock, flags);
3326         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3327                         udev, eps, num_eps);
3328         if (changed_ep_bitmask == 0) {
3329                 spin_unlock_irqrestore(&xhci->lock, flags);
3330                 return -EINVAL;
3331         }
3332
3333         /* Use the xhci_command structure from the first endpoint.  We may have
3334          * allocated too many, but the driver may call xhci_free_streams() for
3335          * each endpoint it grouped into one call to xhci_alloc_streams().
3336          */
3337         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3338         command = vdev->eps[ep_index].stream_info->free_streams_command;
3339         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3340         if (!ctrl_ctx) {
3341                 spin_unlock_irqrestore(&xhci->lock, flags);
3342                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3343                                 __func__);
3344                 return -EINVAL;
3345         }
3346
3347         for (i = 0; i < num_eps; i++) {
3348                 struct xhci_ep_ctx *ep_ctx;
3349
3350                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3351                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3352                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3353                         EP_GETTING_NO_STREAMS;
3354
3355                 xhci_endpoint_copy(xhci, command->in_ctx,
3356                                 vdev->out_ctx, ep_index);
3357                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3358                                 &vdev->eps[ep_index]);
3359         }
3360         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3361                         vdev->out_ctx, ctrl_ctx,
3362                         changed_ep_bitmask, changed_ep_bitmask);
3363         spin_unlock_irqrestore(&xhci->lock, flags);
3364
3365         /* Issue and wait for the configure endpoint command,
3366          * which must succeed.
3367          */
3368         ret = xhci_configure_endpoint(xhci, udev, command,
3369                         false, true);
3370
3371         /* xHC rejected the configure endpoint command for some reason, so we
3372          * leave the streams rings intact.
3373          */
3374         if (ret < 0)
3375                 return ret;
3376
3377         spin_lock_irqsave(&xhci->lock, flags);
3378         for (i = 0; i < num_eps; i++) {
3379                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3380                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3381                 vdev->eps[ep_index].stream_info = NULL;
3382                 /* FIXME Unset maxPstreams in endpoint context and
3383                  * update deq ptr to point to normal string ring.
3384                  */
3385                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3386                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3387         }
3388         spin_unlock_irqrestore(&xhci->lock, flags);
3389
3390         return 0;
3391 }
3392
3393 /*
3394  * Deletes endpoint resources for endpoints that were active before a Reset
3395  * Device command, or a Disable Slot command.  The Reset Device command leaves
3396  * the control endpoint intact, whereas the Disable Slot command deletes it.
3397  *
3398  * Must be called with xhci->lock held.
3399  */
3400 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3401         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3402 {
3403         int i;
3404         unsigned int num_dropped_eps = 0;
3405         unsigned int drop_flags = 0;
3406
3407         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3408                 if (virt_dev->eps[i].ring) {
3409                         drop_flags |= 1 << i;
3410                         num_dropped_eps++;
3411                 }
3412         }
3413         xhci->num_active_eps -= num_dropped_eps;
3414         if (num_dropped_eps)
3415                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3416                                 "Dropped %u ep ctxs, flags = 0x%x, "
3417                                 "%u now active.",
3418                                 num_dropped_eps, drop_flags,
3419                                 xhci->num_active_eps);
3420 }
3421
3422 /*
3423  * This submits a Reset Device Command, which will set the device state to 0,
3424  * set the device address to 0, and disable all the endpoints except the default
3425  * control endpoint.  The USB core should come back and call
3426  * xhci_address_device(), and then re-set up the configuration.  If this is
3427  * called because of a usb_reset_and_verify_device(), then the old alternate
3428  * settings will be re-installed through the normal bandwidth allocation
3429  * functions.
3430  *
3431  * Wait for the Reset Device command to finish.  Remove all structures
3432  * associated with the endpoints that were disabled.  Clear the input device
3433  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3434  *
3435  * If the virt_dev to be reset does not exist or does not match the udev,
3436  * it means the device is lost, possibly due to the xHC restore error and
3437  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3438  * re-allocate the device.
3439  */
3440 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3441 {
3442         int ret, i;
3443         unsigned long flags;
3444         struct xhci_hcd *xhci;
3445         unsigned int slot_id;
3446         struct xhci_virt_device *virt_dev;
3447         struct xhci_command *reset_device_cmd;
3448         int last_freed_endpoint;
3449         struct xhci_slot_ctx *slot_ctx;
3450         int old_active_eps = 0;
3451
3452         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3453         if (ret <= 0)
3454                 return ret;
3455         xhci = hcd_to_xhci(hcd);
3456         slot_id = udev->slot_id;
3457         virt_dev = xhci->devs[slot_id];
3458         if (!virt_dev) {
3459                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3460                                 "not exist. Re-allocate the device\n", slot_id);
3461                 ret = xhci_alloc_dev(hcd, udev);
3462                 if (ret == 1)
3463                         return 0;
3464                 else
3465                         return -EINVAL;
3466         }
3467
3468         if (virt_dev->tt_info)
3469                 old_active_eps = virt_dev->tt_info->active_eps;
3470
3471         if (virt_dev->udev != udev) {
3472                 /* If the virt_dev and the udev does not match, this virt_dev
3473                  * may belong to another udev.
3474                  * Re-allocate the device.
3475                  */
3476                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3477                                 "not match the udev. Re-allocate the device\n",
3478                                 slot_id);
3479                 ret = xhci_alloc_dev(hcd, udev);
3480                 if (ret == 1)
3481                         return 0;
3482                 else
3483                         return -EINVAL;
3484         }
3485
3486         /* If device is not setup, there is no point in resetting it */
3487         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3488         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3489                                                 SLOT_STATE_DISABLED)
3490                 return 0;
3491
3492         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3493         /* Allocate the command structure that holds the struct completion.
3494          * Assume we're in process context, since the normal device reset
3495          * process has to wait for the device anyway.  Storage devices are
3496          * reset as part of error handling, so use GFP_NOIO instead of
3497          * GFP_KERNEL.
3498          */
3499         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3500         if (!reset_device_cmd) {
3501                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3502                 return -ENOMEM;
3503         }
3504
3505         /* Attempt to submit the Reset Device command to the command ring */
3506         spin_lock_irqsave(&xhci->lock, flags);
3507
3508         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3509         if (ret) {
3510                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3511                 spin_unlock_irqrestore(&xhci->lock, flags);
3512                 goto command_cleanup;
3513         }
3514         xhci_ring_cmd_db(xhci);
3515         spin_unlock_irqrestore(&xhci->lock, flags);
3516
3517         /* Wait for the Reset Device command to finish */
3518         wait_for_completion(reset_device_cmd->completion);
3519
3520         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3521          * unless we tried to reset a slot ID that wasn't enabled,
3522          * or the device wasn't in the addressed or configured state.
3523          */
3524         ret = reset_device_cmd->status;
3525         switch (ret) {
3526         case COMP_CMD_ABORT:
3527         case COMP_CMD_STOP:
3528                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3529                 ret = -ETIME;
3530                 goto command_cleanup;
3531         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3532         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3533                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3534                                 slot_id,
3535                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3536                 xhci_dbg(xhci, "Not freeing device rings.\n");
3537                 /* Don't treat this as an error.  May change my mind later. */
3538                 ret = 0;
3539                 goto command_cleanup;
3540         case COMP_SUCCESS:
3541                 xhci_dbg(xhci, "Successful reset device command.\n");
3542                 break;
3543         default:
3544                 if (xhci_is_vendor_info_code(xhci, ret))
3545                         break;
3546                 xhci_warn(xhci, "Unknown completion code %u for "
3547                                 "reset device command.\n", ret);
3548                 ret = -EINVAL;
3549                 goto command_cleanup;
3550         }
3551
3552         /* Free up host controller endpoint resources */
3553         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3554                 spin_lock_irqsave(&xhci->lock, flags);
3555                 /* Don't delete the default control endpoint resources */
3556                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3557                 spin_unlock_irqrestore(&xhci->lock, flags);
3558         }
3559
3560         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3561         last_freed_endpoint = 1;
3562         for (i = 1; i < 31; ++i) {
3563                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3564
3565                 if (ep->ep_state & EP_HAS_STREAMS) {
3566                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3567                                         xhci_get_endpoint_address(i));
3568                         xhci_free_stream_info(xhci, ep->stream_info);
3569                         ep->stream_info = NULL;
3570                         ep->ep_state &= ~EP_HAS_STREAMS;
3571                 }
3572
3573                 if (ep->ring) {
3574                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3575                         last_freed_endpoint = i;
3576                 }
3577                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3578                         xhci_drop_ep_from_interval_table(xhci,
3579                                         &virt_dev->eps[i].bw_info,
3580                                         virt_dev->bw_table,
3581                                         udev,
3582                                         &virt_dev->eps[i],
3583                                         virt_dev->tt_info);
3584                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3585         }
3586         /* If necessary, update the number of active TTs on this root port */
3587         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3588
3589         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3590         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3591         ret = 0;
3592
3593 command_cleanup:
3594         xhci_free_command(xhci, reset_device_cmd);
3595         return ret;
3596 }
3597
3598 /*
3599  * At this point, the struct usb_device is about to go away, the device has
3600  * disconnected, and all traffic has been stopped and the endpoints have been
3601  * disabled.  Free any HC data structures associated with that device.
3602  */
3603 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3604 {
3605         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3606         struct xhci_virt_device *virt_dev;
3607         unsigned long flags;
3608         u32 state;
3609         int i, ret;
3610         struct xhci_command *command;
3611
3612         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3613         if (!command)
3614                 return;
3615
3616 #ifndef CONFIG_USB_DEFAULT_PERSIST
3617         /*
3618          * We called pm_runtime_get_noresume when the device was attached.
3619          * Decrement the counter here to allow controller to runtime suspend
3620          * if no devices remain.
3621          */
3622         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3623                 pm_runtime_put_noidle(hcd->self.controller);
3624 #endif
3625
3626         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3627         /* If the host is halted due to driver unload, we still need to free the
3628          * device.
3629          */
3630         if (ret <= 0 && ret != -ENODEV) {
3631                 kfree(command);
3632                 return;
3633         }
3634
3635         virt_dev = xhci->devs[udev->slot_id];
3636
3637         /* Stop any wayward timer functions (which may grab the lock) */
3638         for (i = 0; i < 31; ++i) {
3639                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3640                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3641         }
3642
3643         spin_lock_irqsave(&xhci->lock, flags);
3644         /* Don't disable the slot if the host controller is dead. */
3645         state = readl(&xhci->op_regs->status);
3646         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3647                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3648                 xhci_free_virt_device(xhci, udev->slot_id);
3649                 spin_unlock_irqrestore(&xhci->lock, flags);
3650                 kfree(command);
3651                 return;
3652         }
3653
3654         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3655                                     udev->slot_id)) {
3656                 spin_unlock_irqrestore(&xhci->lock, flags);
3657                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3658                 return;
3659         }
3660         xhci_ring_cmd_db(xhci);
3661         spin_unlock_irqrestore(&xhci->lock, flags);
3662
3663         /*
3664          * Event command completion handler will free any data structures
3665          * associated with the slot.  XXX Can free sleep?
3666          */
3667 }
3668
3669 /*
3670  * Checks if we have enough host controller resources for the default control
3671  * endpoint.
3672  *
3673  * Must be called with xhci->lock held.
3674  */
3675 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3676 {
3677         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3678                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3679                                 "Not enough ep ctxs: "
3680                                 "%u active, need to add 1, limit is %u.",
3681                                 xhci->num_active_eps, xhci->limit_active_eps);
3682                 return -ENOMEM;
3683         }
3684         xhci->num_active_eps += 1;
3685         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3686                         "Adding 1 ep ctx, %u now active.",
3687                         xhci->num_active_eps);
3688         return 0;
3689 }
3690
3691
3692 /*
3693  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3694  * timed out, or allocating memory failed.  Returns 1 on success.
3695  */
3696 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3697 {
3698         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3699         unsigned long flags;
3700         int ret, slot_id;
3701         struct xhci_command *command;
3702
3703         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3704         if (!command)
3705                 return 0;
3706
3707         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3708         mutex_lock(&xhci->mutex);
3709         spin_lock_irqsave(&xhci->lock, flags);
3710         command->completion = &xhci->addr_dev;
3711         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3712         if (ret) {
3713                 spin_unlock_irqrestore(&xhci->lock, flags);
3714                 mutex_unlock(&xhci->mutex);
3715                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3716                 kfree(command);
3717                 return 0;
3718         }
3719         xhci_ring_cmd_db(xhci);
3720         spin_unlock_irqrestore(&xhci->lock, flags);
3721
3722         wait_for_completion(command->completion);
3723         slot_id = xhci->slot_id;
3724         mutex_unlock(&xhci->mutex);
3725
3726         if (!slot_id || command->status != COMP_SUCCESS) {
3727                 xhci_err(xhci, "Error while assigning device slot ID\n");
3728                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3729                                 HCS_MAX_SLOTS(
3730                                         readl(&xhci->cap_regs->hcs_params1)));
3731                 kfree(command);
3732                 return 0;
3733         }
3734
3735         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3736                 spin_lock_irqsave(&xhci->lock, flags);
3737                 ret = xhci_reserve_host_control_ep_resources(xhci);
3738                 if (ret) {
3739                         spin_unlock_irqrestore(&xhci->lock, flags);
3740                         xhci_warn(xhci, "Not enough host resources, "
3741                                         "active endpoint contexts = %u\n",
3742                                         xhci->num_active_eps);
3743                         goto disable_slot;
3744                 }
3745                 spin_unlock_irqrestore(&xhci->lock, flags);
3746         }
3747         /* Use GFP_NOIO, since this function can be called from
3748          * xhci_discover_or_reset_device(), which may be called as part of
3749          * mass storage driver error handling.
3750          */
3751         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3752                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3753                 goto disable_slot;
3754         }
3755         udev->slot_id = slot_id;
3756
3757 #ifndef CONFIG_USB_DEFAULT_PERSIST
3758         /*
3759          * If resetting upon resume, we can't put the controller into runtime
3760          * suspend if there is a device attached.
3761          */
3762         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3763                 pm_runtime_get_noresume(hcd->self.controller);
3764 #endif
3765
3766
3767         kfree(command);
3768         /* Is this a LS or FS device under a HS hub? */
3769         /* Hub or peripherial? */
3770         return 1;
3771
3772 disable_slot:
3773         /* Disable slot, if we can do it without mem alloc */
3774         spin_lock_irqsave(&xhci->lock, flags);
3775         command->completion = NULL;
3776         command->status = 0;
3777         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3778                                      udev->slot_id))
3779                 xhci_ring_cmd_db(xhci);
3780         spin_unlock_irqrestore(&xhci->lock, flags);
3781         return 0;
3782 }
3783
3784 /*
3785  * Issue an Address Device command and optionally send a corresponding
3786  * SetAddress request to the device.
3787  */
3788 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3789                              enum xhci_setup_dev setup)
3790 {
3791         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3792         unsigned long flags;
3793         struct xhci_virt_device *virt_dev;
3794         int ret = 0;
3795         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3796         struct xhci_slot_ctx *slot_ctx;
3797         struct xhci_input_control_ctx *ctrl_ctx;
3798         u64 temp_64;
3799         struct xhci_command *command = NULL;
3800
3801         mutex_lock(&xhci->mutex);
3802
3803         if (xhci->xhc_state)    /* dying or halted */
3804                 goto out;
3805
3806         if (!udev->slot_id) {
3807                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3808                                 "Bad Slot ID %d", udev->slot_id);
3809                 ret = -EINVAL;
3810                 goto out;
3811         }
3812
3813         virt_dev = xhci->devs[udev->slot_id];
3814
3815         if (WARN_ON(!virt_dev)) {
3816                 /*
3817                  * In plug/unplug torture test with an NEC controller,
3818                  * a zero-dereference was observed once due to virt_dev = 0.
3819                  * Print useful debug rather than crash if it is observed again!
3820                  */
3821                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3822                         udev->slot_id);
3823                 ret = -EINVAL;
3824                 goto out;
3825         }
3826
3827         if (setup == SETUP_CONTEXT_ONLY) {
3828                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3829                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3830                     SLOT_STATE_DEFAULT) {
3831                         xhci_dbg(xhci, "Slot already in default state\n");
3832                         goto out;
3833                 }
3834         }
3835
3836         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3837         if (!command) {
3838                 ret = -ENOMEM;
3839                 goto out;
3840         }
3841
3842         command->in_ctx = virt_dev->in_ctx;
3843         command->completion = &xhci->addr_dev;
3844
3845         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3846         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3847         if (!ctrl_ctx) {
3848                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3849                                 __func__);
3850                 ret = -EINVAL;
3851                 goto out;
3852         }
3853         /*
3854          * If this is the first Set Address since device plug-in or
3855          * virt_device realloaction after a resume with an xHCI power loss,
3856          * then set up the slot context.
3857          */
3858         if (!slot_ctx->dev_info)
3859                 xhci_setup_addressable_virt_dev(xhci, udev);
3860         /* Otherwise, update the control endpoint ring enqueue pointer. */
3861         else
3862                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3863         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3864         ctrl_ctx->drop_flags = 0;
3865
3866         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3867         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3868         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3869                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3870
3871         spin_lock_irqsave(&xhci->lock, flags);
3872         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3873                                         udev->slot_id, setup);
3874         if (ret) {
3875                 spin_unlock_irqrestore(&xhci->lock, flags);
3876                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3877                                 "FIXME: allocate a command ring segment");
3878                 goto out;
3879         }
3880         xhci_ring_cmd_db(xhci);
3881         spin_unlock_irqrestore(&xhci->lock, flags);
3882
3883         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3884         wait_for_completion(command->completion);
3885
3886         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3887          * the SetAddress() "recovery interval" required by USB and aborting the
3888          * command on a timeout.
3889          */
3890         switch (command->status) {
3891         case COMP_CMD_ABORT:
3892         case COMP_CMD_STOP:
3893                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3894                 ret = -ETIME;
3895                 break;
3896         case COMP_CTX_STATE:
3897         case COMP_EBADSLT:
3898                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3899                          act, udev->slot_id);
3900                 ret = -EINVAL;
3901                 break;
3902         case COMP_TX_ERR:
3903                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3904                 ret = -EPROTO;
3905                 break;
3906         case COMP_DEV_ERR:
3907                 dev_warn(&udev->dev,
3908                          "ERROR: Incompatible device for setup %s command\n", act);
3909                 ret = -ENODEV;
3910                 break;
3911         case COMP_SUCCESS:
3912                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3913                                "Successful setup %s command", act);
3914                 break;
3915         default:
3916                 xhci_err(xhci,
3917                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3918                          act, command->status);
3919                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3920                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3921                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3922                 ret = -EINVAL;
3923                 break;
3924         }
3925         if (ret)
3926                 goto out;
3927         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3928         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3929                         "Op regs DCBAA ptr = %#016llx", temp_64);
3930         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3931                 "Slot ID %d dcbaa entry @%p = %#016llx",
3932                 udev->slot_id,
3933                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3934                 (unsigned long long)
3935                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3936         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3937                         "Output Context DMA address = %#08llx",
3938                         (unsigned long long)virt_dev->out_ctx->dma);
3939         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3940         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3941         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3942                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3943         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3944         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3945         /*
3946          * USB core uses address 1 for the roothubs, so we add one to the
3947          * address given back to us by the HC.
3948          */
3949         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3950         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3951                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3952         /* Zero the input context control for later use */
3953         ctrl_ctx->add_flags = 0;
3954         ctrl_ctx->drop_flags = 0;
3955
3956         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3957                        "Internal device address = %d",
3958                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3959 out:
3960         mutex_unlock(&xhci->mutex);
3961         kfree(command);
3962         return ret;
3963 }
3964
3965 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3966 {
3967         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3968 }
3969
3970 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3971 {
3972         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3973 }
3974
3975 /*
3976  * Transfer the port index into real index in the HW port status
3977  * registers. Caculate offset between the port's PORTSC register
3978  * and port status base. Divide the number of per port register
3979  * to get the real index. The raw port number bases 1.
3980  */
3981 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3982 {
3983         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3984         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3985         __le32 __iomem *addr;
3986         int raw_port;
3987
3988         if (hcd->speed < HCD_USB3)
3989                 addr = xhci->usb2_ports[port1 - 1];
3990         else
3991                 addr = xhci->usb3_ports[port1 - 1];
3992
3993         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3994         return raw_port;
3995 }
3996
3997 /*
3998  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3999  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4000  */
4001 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4002                         struct usb_device *udev, u16 max_exit_latency)
4003 {
4004         struct xhci_virt_device *virt_dev;
4005         struct xhci_command *command;
4006         struct xhci_input_control_ctx *ctrl_ctx;
4007         struct xhci_slot_ctx *slot_ctx;
4008         unsigned long flags;
4009         int ret;
4010
4011         spin_lock_irqsave(&xhci->lock, flags);
4012
4013         virt_dev = xhci->devs[udev->slot_id];
4014
4015         /*
4016          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4017          * xHC was re-initialized. Exit latency will be set later after
4018          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4019          */
4020
4021         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4022                 spin_unlock_irqrestore(&xhci->lock, flags);
4023                 return 0;
4024         }
4025
4026         /* Attempt to issue an Evaluate Context command to change the MEL. */
4027         command = xhci->lpm_command;
4028         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4029         if (!ctrl_ctx) {
4030                 spin_unlock_irqrestore(&xhci->lock, flags);
4031                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4032                                 __func__);
4033                 return -ENOMEM;
4034         }
4035
4036         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4037         spin_unlock_irqrestore(&xhci->lock, flags);
4038
4039         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4040         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4041         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4042         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4043         slot_ctx->dev_state = 0;
4044
4045         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4046                         "Set up evaluate context for LPM MEL change.");
4047         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4048         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4049
4050         /* Issue and wait for the evaluate context command. */
4051         ret = xhci_configure_endpoint(xhci, udev, command,
4052                         true, true);
4053         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4054         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4055
4056         if (!ret) {
4057                 spin_lock_irqsave(&xhci->lock, flags);
4058                 virt_dev->current_mel = max_exit_latency;
4059                 spin_unlock_irqrestore(&xhci->lock, flags);
4060         }
4061         return ret;
4062 }
4063
4064 #ifdef CONFIG_PM
4065
4066 /* BESL to HIRD Encoding array for USB2 LPM */
4067 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4068         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4069
4070 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4071 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4072                                         struct usb_device *udev)
4073 {
4074         int u2del, besl, besl_host;
4075         int besl_device = 0;
4076         u32 field;
4077
4078         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4079         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4080
4081         if (field & USB_BESL_SUPPORT) {
4082                 for (besl_host = 0; besl_host < 16; besl_host++) {
4083                         if (xhci_besl_encoding[besl_host] >= u2del)
4084                                 break;
4085                 }
4086                 /* Use baseline BESL value as default */
4087                 if (field & USB_BESL_BASELINE_VALID)
4088                         besl_device = USB_GET_BESL_BASELINE(field);
4089                 else if (field & USB_BESL_DEEP_VALID)
4090                         besl_device = USB_GET_BESL_DEEP(field);
4091         } else {
4092                 if (u2del <= 50)
4093                         besl_host = 0;
4094                 else
4095                         besl_host = (u2del - 51) / 75 + 1;
4096         }
4097
4098         besl = besl_host + besl_device;
4099         if (besl > 15)
4100                 besl = 15;
4101
4102         return besl;
4103 }
4104
4105 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4106 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4107 {
4108         u32 field;
4109         int l1;
4110         int besld = 0;
4111         int hirdm = 0;
4112
4113         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4114
4115         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4116         l1 = udev->l1_params.timeout / 256;
4117
4118         /* device has preferred BESLD */
4119         if (field & USB_BESL_DEEP_VALID) {
4120                 besld = USB_GET_BESL_DEEP(field);
4121                 hirdm = 1;
4122         }
4123
4124         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4125 }
4126
4127 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4128                         struct usb_device *udev, int enable)
4129 {
4130         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4131         __le32 __iomem  **port_array;
4132         __le32 __iomem  *pm_addr, *hlpm_addr;
4133         u32             pm_val, hlpm_val, field;
4134         unsigned int    port_num;
4135         unsigned long   flags;
4136         int             hird, exit_latency;
4137         int             ret;
4138
4139         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4140                         !udev->lpm_capable)
4141                 return -EPERM;
4142
4143         if (!udev->parent || udev->parent->parent ||
4144                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4145                 return -EPERM;
4146
4147         if (udev->usb2_hw_lpm_capable != 1)
4148                 return -EPERM;
4149
4150         spin_lock_irqsave(&xhci->lock, flags);
4151
4152         port_array = xhci->usb2_ports;
4153         port_num = udev->portnum - 1;
4154         pm_addr = port_array[port_num] + PORTPMSC;
4155         pm_val = readl(pm_addr);
4156         hlpm_addr = port_array[port_num] + PORTHLPMC;
4157         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4158
4159         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4160                         enable ? "enable" : "disable", port_num + 1);
4161
4162         if (enable) {
4163                 /* Host supports BESL timeout instead of HIRD */
4164                 if (udev->usb2_hw_lpm_besl_capable) {
4165                         /* if device doesn't have a preferred BESL value use a
4166                          * default one which works with mixed HIRD and BESL
4167                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4168                          */
4169                         if ((field & USB_BESL_SUPPORT) &&
4170                             (field & USB_BESL_BASELINE_VALID))
4171                                 hird = USB_GET_BESL_BASELINE(field);
4172                         else
4173                                 hird = udev->l1_params.besl;
4174
4175                         exit_latency = xhci_besl_encoding[hird];
4176                         spin_unlock_irqrestore(&xhci->lock, flags);
4177
4178                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4179                          * input context for link powermanagement evaluate
4180                          * context commands. It is protected by hcd->bandwidth
4181                          * mutex and is shared by all devices. We need to set
4182                          * the max ext latency in USB 2 BESL LPM as well, so
4183                          * use the same mutex and xhci_change_max_exit_latency()
4184                          */
4185                         mutex_lock(hcd->bandwidth_mutex);
4186                         ret = xhci_change_max_exit_latency(xhci, udev,
4187                                                            exit_latency);
4188                         mutex_unlock(hcd->bandwidth_mutex);
4189
4190                         if (ret < 0)
4191                                 return ret;
4192                         spin_lock_irqsave(&xhci->lock, flags);
4193
4194                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4195                         writel(hlpm_val, hlpm_addr);
4196                         /* flush write */
4197                         readl(hlpm_addr);
4198                 } else {
4199                         hird = xhci_calculate_hird_besl(xhci, udev);
4200                 }
4201
4202                 pm_val &= ~PORT_HIRD_MASK;
4203                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4204                 writel(pm_val, pm_addr);
4205                 pm_val = readl(pm_addr);
4206                 pm_val |= PORT_HLE;
4207                 writel(pm_val, pm_addr);
4208                 /* flush write */
4209                 readl(pm_addr);
4210         } else {
4211                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4212                 writel(pm_val, pm_addr);
4213                 /* flush write */
4214                 readl(pm_addr);
4215                 if (udev->usb2_hw_lpm_besl_capable) {
4216                         spin_unlock_irqrestore(&xhci->lock, flags);
4217                         mutex_lock(hcd->bandwidth_mutex);
4218                         xhci_change_max_exit_latency(xhci, udev, 0);
4219                         mutex_unlock(hcd->bandwidth_mutex);
4220                         return 0;
4221                 }
4222         }
4223
4224         spin_unlock_irqrestore(&xhci->lock, flags);
4225         return 0;
4226 }
4227
4228 /* check if a usb2 port supports a given extened capability protocol
4229  * only USB2 ports extended protocol capability values are cached.
4230  * Return 1 if capability is supported
4231  */
4232 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4233                                            unsigned capability)
4234 {
4235         u32 port_offset, port_count;
4236         int i;
4237
4238         for (i = 0; i < xhci->num_ext_caps; i++) {
4239                 if (xhci->ext_caps[i] & capability) {
4240                         /* port offsets starts at 1 */
4241                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4242                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4243                         if (port >= port_offset &&
4244                             port < port_offset + port_count)
4245                                 return 1;
4246                 }
4247         }
4248         return 0;
4249 }
4250
4251 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4252 {
4253         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4254         int             portnum = udev->portnum - 1;
4255
4256         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4257                         !udev->lpm_capable)
4258                 return 0;
4259
4260         /* we only support lpm for non-hub device connected to root hub yet */
4261         if (!udev->parent || udev->parent->parent ||
4262                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4263                 return 0;
4264
4265         if (xhci->hw_lpm_support == 1 &&
4266                         xhci_check_usb2_port_capability(
4267                                 xhci, portnum, XHCI_HLC)) {
4268                 udev->usb2_hw_lpm_capable = 1;
4269                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4270                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4271                 if (xhci_check_usb2_port_capability(xhci, portnum,
4272                                         XHCI_BLC))
4273                         udev->usb2_hw_lpm_besl_capable = 1;
4274         }
4275
4276         return 0;
4277 }
4278
4279 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4280
4281 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4282 static unsigned long long xhci_service_interval_to_ns(
4283                 struct usb_endpoint_descriptor *desc)
4284 {
4285         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4286 }
4287
4288 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4289                 enum usb3_link_state state)
4290 {
4291         unsigned long long sel;
4292         unsigned long long pel;
4293         unsigned int max_sel_pel;
4294         char *state_name;
4295
4296         switch (state) {
4297         case USB3_LPM_U1:
4298                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4299                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4300                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4301                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4302                 state_name = "U1";
4303                 break;
4304         case USB3_LPM_U2:
4305                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4306                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4307                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4308                 state_name = "U2";
4309                 break;
4310         default:
4311                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4312                                 __func__);
4313                 return USB3_LPM_DISABLED;
4314         }
4315
4316         if (sel <= max_sel_pel && pel <= max_sel_pel)
4317                 return USB3_LPM_DEVICE_INITIATED;
4318
4319         if (sel > max_sel_pel)
4320                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4321                                 "due to long SEL %llu ms\n",
4322                                 state_name, sel);
4323         else
4324                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4325                                 "due to long PEL %llu ms\n",
4326                                 state_name, pel);
4327         return USB3_LPM_DISABLED;
4328 }
4329
4330 /* The U1 timeout should be the maximum of the following values:
4331  *  - For control endpoints, U1 system exit latency (SEL) * 3
4332  *  - For bulk endpoints, U1 SEL * 5
4333  *  - For interrupt endpoints:
4334  *    - Notification EPs, U1 SEL * 3
4335  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4336  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4337  */
4338 static unsigned long long xhci_calculate_intel_u1_timeout(
4339                 struct usb_device *udev,
4340                 struct usb_endpoint_descriptor *desc)
4341 {
4342         unsigned long long timeout_ns;
4343         int ep_type;
4344         int intr_type;
4345
4346         ep_type = usb_endpoint_type(desc);
4347         switch (ep_type) {
4348         case USB_ENDPOINT_XFER_CONTROL:
4349                 timeout_ns = udev->u1_params.sel * 3;
4350                 break;
4351         case USB_ENDPOINT_XFER_BULK:
4352                 timeout_ns = udev->u1_params.sel * 5;
4353                 break;
4354         case USB_ENDPOINT_XFER_INT:
4355                 intr_type = usb_endpoint_interrupt_type(desc);
4356                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4357                         timeout_ns = udev->u1_params.sel * 3;
4358                         break;
4359                 }
4360                 /* Otherwise the calculation is the same as isoc eps */
4361         case USB_ENDPOINT_XFER_ISOC:
4362                 timeout_ns = xhci_service_interval_to_ns(desc);
4363                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4364                 if (timeout_ns < udev->u1_params.sel * 2)
4365                         timeout_ns = udev->u1_params.sel * 2;
4366                 break;
4367         default:
4368                 return 0;
4369         }
4370
4371         return timeout_ns;
4372 }
4373
4374 /* Returns the hub-encoded U1 timeout value. */
4375 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4376                 struct usb_device *udev,
4377                 struct usb_endpoint_descriptor *desc)
4378 {
4379         unsigned long long timeout_ns;
4380
4381         if (xhci->quirks & XHCI_INTEL_HOST)
4382                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4383         else
4384                 timeout_ns = udev->u1_params.sel;
4385
4386         /* The U1 timeout is encoded in 1us intervals.
4387          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4388          */
4389         if (timeout_ns == USB3_LPM_DISABLED)
4390                 timeout_ns = 1;
4391         else
4392                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4393
4394         /* If the necessary timeout value is bigger than what we can set in the
4395          * USB 3.0 hub, we have to disable hub-initiated U1.
4396          */
4397         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4398                 return timeout_ns;
4399         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4400                         "due to long timeout %llu ms\n", timeout_ns);
4401         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4402 }
4403
4404 /* The U2 timeout should be the maximum of:
4405  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4406  *  - largest bInterval of any active periodic endpoint (to avoid going
4407  *    into lower power link states between intervals).
4408  *  - the U2 Exit Latency of the device
4409  */
4410 static unsigned long long xhci_calculate_intel_u2_timeout(
4411                 struct usb_device *udev,
4412                 struct usb_endpoint_descriptor *desc)
4413 {
4414         unsigned long long timeout_ns;
4415         unsigned long long u2_del_ns;
4416
4417         timeout_ns = 10 * 1000 * 1000;
4418
4419         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4420                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4421                 timeout_ns = xhci_service_interval_to_ns(desc);
4422
4423         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4424         if (u2_del_ns > timeout_ns)
4425                 timeout_ns = u2_del_ns;
4426
4427         return timeout_ns;
4428 }
4429
4430 /* Returns the hub-encoded U2 timeout value. */
4431 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4432                 struct usb_device *udev,
4433                 struct usb_endpoint_descriptor *desc)
4434 {
4435         unsigned long long timeout_ns;
4436
4437         if (xhci->quirks & XHCI_INTEL_HOST)
4438                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4439         else
4440                 timeout_ns = udev->u2_params.sel;
4441
4442         /* The U2 timeout is encoded in 256us intervals */
4443         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4444         /* If the necessary timeout value is bigger than what we can set in the
4445          * USB 3.0 hub, we have to disable hub-initiated U2.
4446          */
4447         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4448                 return timeout_ns;
4449         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4450                         "due to long timeout %llu ms\n", timeout_ns);
4451         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4452 }
4453
4454 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4455                 struct usb_device *udev,
4456                 struct usb_endpoint_descriptor *desc,
4457                 enum usb3_link_state state,
4458                 u16 *timeout)
4459 {
4460         if (state == USB3_LPM_U1)
4461                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4462         else if (state == USB3_LPM_U2)
4463                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4464
4465         return USB3_LPM_DISABLED;
4466 }
4467
4468 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4469                 struct usb_device *udev,
4470                 struct usb_endpoint_descriptor *desc,
4471                 enum usb3_link_state state,
4472                 u16 *timeout)
4473 {
4474         u16 alt_timeout;
4475
4476         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4477                 desc, state, timeout);
4478
4479         /* If we found we can't enable hub-initiated LPM, or
4480          * the U1 or U2 exit latency was too high to allow
4481          * device-initiated LPM as well, just stop searching.
4482          */
4483         if (alt_timeout == USB3_LPM_DISABLED ||
4484                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4485                 *timeout = alt_timeout;
4486                 return -E2BIG;
4487         }
4488         if (alt_timeout > *timeout)
4489                 *timeout = alt_timeout;
4490         return 0;
4491 }
4492
4493 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4494                 struct usb_device *udev,
4495                 struct usb_host_interface *alt,
4496                 enum usb3_link_state state,
4497                 u16 *timeout)
4498 {
4499         int j;
4500
4501         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4502                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4503                                         &alt->endpoint[j].desc, state, timeout))
4504                         return -E2BIG;
4505                 continue;
4506         }
4507         return 0;
4508 }
4509
4510 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4511                 enum usb3_link_state state)
4512 {
4513         struct usb_device *parent;
4514         unsigned int num_hubs;
4515
4516         if (state == USB3_LPM_U2)
4517                 return 0;
4518
4519         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4520         for (parent = udev->parent, num_hubs = 0; parent->parent;
4521                         parent = parent->parent)
4522                 num_hubs++;
4523
4524         if (num_hubs < 2)
4525                 return 0;
4526
4527         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4528                         " below second-tier hub.\n");
4529         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4530                         "to decrease power consumption.\n");
4531         return -E2BIG;
4532 }
4533
4534 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4535                 struct usb_device *udev,
4536                 enum usb3_link_state state)
4537 {
4538         if (xhci->quirks & XHCI_INTEL_HOST)
4539                 return xhci_check_intel_tier_policy(udev, state);
4540         else
4541                 return 0;
4542 }
4543
4544 /* Returns the U1 or U2 timeout that should be enabled.
4545  * If the tier check or timeout setting functions return with a non-zero exit
4546  * code, that means the timeout value has been finalized and we shouldn't look
4547  * at any more endpoints.
4548  */
4549 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4550                         struct usb_device *udev, enum usb3_link_state state)
4551 {
4552         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4553         struct usb_host_config *config;
4554         char *state_name;
4555         int i;
4556         u16 timeout = USB3_LPM_DISABLED;
4557
4558         if (state == USB3_LPM_U1)
4559                 state_name = "U1";
4560         else if (state == USB3_LPM_U2)
4561                 state_name = "U2";
4562         else {
4563                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4564                                 state);
4565                 return timeout;
4566         }
4567
4568         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4569                 return timeout;
4570
4571         /* Gather some information about the currently installed configuration
4572          * and alternate interface settings.
4573          */
4574         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4575                         state, &timeout))
4576                 return timeout;
4577
4578         config = udev->actconfig;
4579         if (!config)
4580                 return timeout;
4581
4582         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4583                 struct usb_driver *driver;
4584                 struct usb_interface *intf = config->interface[i];
4585
4586                 if (!intf)
4587                         continue;
4588
4589                 /* Check if any currently bound drivers want hub-initiated LPM
4590                  * disabled.
4591                  */
4592                 if (intf->dev.driver) {
4593                         driver = to_usb_driver(intf->dev.driver);
4594                         if (driver && driver->disable_hub_initiated_lpm) {
4595                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4596                                                 "at request of driver %s\n",
4597                                                 state_name, driver->name);
4598                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4599                         }
4600                 }
4601
4602                 /* Not sure how this could happen... */
4603                 if (!intf->cur_altsetting)
4604                         continue;
4605
4606                 if (xhci_update_timeout_for_interface(xhci, udev,
4607                                         intf->cur_altsetting,
4608                                         state, &timeout))
4609                         return timeout;
4610         }
4611         return timeout;
4612 }
4613
4614 static int calculate_max_exit_latency(struct usb_device *udev,
4615                 enum usb3_link_state state_changed,
4616                 u16 hub_encoded_timeout)
4617 {
4618         unsigned long long u1_mel_us = 0;
4619         unsigned long long u2_mel_us = 0;
4620         unsigned long long mel_us = 0;
4621         bool disabling_u1;
4622         bool disabling_u2;
4623         bool enabling_u1;
4624         bool enabling_u2;
4625
4626         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4627                         hub_encoded_timeout == USB3_LPM_DISABLED);
4628         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4629                         hub_encoded_timeout == USB3_LPM_DISABLED);
4630
4631         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4632                         hub_encoded_timeout != USB3_LPM_DISABLED);
4633         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4634                         hub_encoded_timeout != USB3_LPM_DISABLED);
4635
4636         /* If U1 was already enabled and we're not disabling it,
4637          * or we're going to enable U1, account for the U1 max exit latency.
4638          */
4639         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4640                         enabling_u1)
4641                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4642         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4643                         enabling_u2)
4644                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4645
4646         if (u1_mel_us > u2_mel_us)
4647                 mel_us = u1_mel_us;
4648         else
4649                 mel_us = u2_mel_us;
4650         /* xHCI host controller max exit latency field is only 16 bits wide. */
4651         if (mel_us > MAX_EXIT) {
4652                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4653                                 "is too big.\n", mel_us);
4654                 return -E2BIG;
4655         }
4656         return mel_us;
4657 }
4658
4659 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4660 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4661                         struct usb_device *udev, enum usb3_link_state state)
4662 {
4663         struct xhci_hcd *xhci;
4664         u16 hub_encoded_timeout;
4665         int mel;
4666         int ret;
4667
4668         xhci = hcd_to_xhci(hcd);
4669         /* The LPM timeout values are pretty host-controller specific, so don't
4670          * enable hub-initiated timeouts unless the vendor has provided
4671          * information about their timeout algorithm.
4672          */
4673         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4674                         !xhci->devs[udev->slot_id])
4675                 return USB3_LPM_DISABLED;
4676
4677         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4678         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4679         if (mel < 0) {
4680                 /* Max Exit Latency is too big, disable LPM. */
4681                 hub_encoded_timeout = USB3_LPM_DISABLED;
4682                 mel = 0;
4683         }
4684
4685         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4686         if (ret)
4687                 return ret;
4688         return hub_encoded_timeout;
4689 }
4690
4691 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4692                         struct usb_device *udev, enum usb3_link_state state)
4693 {
4694         struct xhci_hcd *xhci;
4695         u16 mel;
4696
4697         xhci = hcd_to_xhci(hcd);
4698         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4699                         !xhci->devs[udev->slot_id])
4700                 return 0;
4701
4702         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4703         return xhci_change_max_exit_latency(xhci, udev, mel);
4704 }
4705 #else /* CONFIG_PM */
4706
4707 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4708                                 struct usb_device *udev, int enable)
4709 {
4710         return 0;
4711 }
4712
4713 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4714 {
4715         return 0;
4716 }
4717
4718 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4719                         struct usb_device *udev, enum usb3_link_state state)
4720 {
4721         return USB3_LPM_DISABLED;
4722 }
4723
4724 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4725                         struct usb_device *udev, enum usb3_link_state state)
4726 {
4727         return 0;
4728 }
4729 #endif  /* CONFIG_PM */
4730
4731 /*-------------------------------------------------------------------------*/
4732
4733 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4734  * internal data structures for the device.
4735  */
4736 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4737                         struct usb_tt *tt, gfp_t mem_flags)
4738 {
4739         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4740         struct xhci_virt_device *vdev;
4741         struct xhci_command *config_cmd;
4742         struct xhci_input_control_ctx *ctrl_ctx;
4743         struct xhci_slot_ctx *slot_ctx;
4744         unsigned long flags;
4745         unsigned think_time;
4746         int ret;
4747
4748         /* Ignore root hubs */
4749         if (!hdev->parent)
4750                 return 0;
4751
4752         vdev = xhci->devs[hdev->slot_id];
4753         if (!vdev) {
4754                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4755                 return -EINVAL;
4756         }
4757         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4758         if (!config_cmd) {
4759                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4760                 return -ENOMEM;
4761         }
4762         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4763         if (!ctrl_ctx) {
4764                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4765                                 __func__);
4766                 xhci_free_command(xhci, config_cmd);
4767                 return -ENOMEM;
4768         }
4769
4770         spin_lock_irqsave(&xhci->lock, flags);
4771         if (hdev->speed == USB_SPEED_HIGH &&
4772                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4773                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4774                 xhci_free_command(xhci, config_cmd);
4775                 spin_unlock_irqrestore(&xhci->lock, flags);
4776                 return -ENOMEM;
4777         }
4778
4779         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4780         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4781         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4782         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4783         /*
4784          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4785          * but it may be already set to 1 when setup an xHCI virtual
4786          * device, so clear it anyway.
4787          */
4788         if (tt->multi)
4789                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4790         else if (hdev->speed == USB_SPEED_FULL)
4791                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4792
4793         if (xhci->hci_version > 0x95) {
4794                 xhci_dbg(xhci, "xHCI version %x needs hub "
4795                                 "TT think time and number of ports\n",
4796                                 (unsigned int) xhci->hci_version);
4797                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4798                 /* Set TT think time - convert from ns to FS bit times.
4799                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4800                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4801                  *
4802                  * xHCI 1.0: this field shall be 0 if the device is not a
4803                  * High-spped hub.
4804                  */
4805                 think_time = tt->think_time;
4806                 if (think_time != 0)
4807                         think_time = (think_time / 666) - 1;
4808                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4809                         slot_ctx->tt_info |=
4810                                 cpu_to_le32(TT_THINK_TIME(think_time));
4811         } else {
4812                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4813                                 "TT think time or number of ports\n",
4814                                 (unsigned int) xhci->hci_version);
4815         }
4816         slot_ctx->dev_state = 0;
4817         spin_unlock_irqrestore(&xhci->lock, flags);
4818
4819         xhci_dbg(xhci, "Set up %s for hub device.\n",
4820                         (xhci->hci_version > 0x95) ?
4821                         "configure endpoint" : "evaluate context");
4822         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4823         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4824
4825         /* Issue and wait for the configure endpoint or
4826          * evaluate context command.
4827          */
4828         if (xhci->hci_version > 0x95)
4829                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4830                                 false, false);
4831         else
4832                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4833                                 true, false);
4834
4835         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4836         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4837
4838         xhci_free_command(xhci, config_cmd);
4839         return ret;
4840 }
4841
4842 int xhci_get_frame(struct usb_hcd *hcd)
4843 {
4844         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4845         /* EHCI mods by the periodic size.  Why? */
4846         return readl(&xhci->run_regs->microframe_index) >> 3;
4847 }
4848
4849 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4850 {
4851         struct xhci_hcd         *xhci;
4852         struct device           *dev = hcd->self.controller;
4853         int                     retval;
4854
4855         /* Accept arbitrarily long scatter-gather lists */
4856         hcd->self.sg_tablesize = ~0;
4857
4858         /* support to build packet from discontinuous buffers */
4859         hcd->self.no_sg_constraint = 1;
4860
4861         /* XHCI controllers don't stop the ep queue on short packets :| */
4862         hcd->self.no_stop_on_short = 1;
4863
4864         xhci = hcd_to_xhci(hcd);
4865
4866         if (usb_hcd_is_primary_hcd(hcd)) {
4867                 xhci->main_hcd = hcd;
4868                 /* Mark the first roothub as being USB 2.0.
4869                  * The xHCI driver will register the USB 3.0 roothub.
4870                  */
4871                 hcd->speed = HCD_USB2;
4872                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4873                 /*
4874                  * USB 2.0 roothub under xHCI has an integrated TT,
4875                  * (rate matching hub) as opposed to having an OHCI/UHCI
4876                  * companion controller.
4877                  */
4878                 hcd->has_tt = 1;
4879         } else {
4880                 if (xhci->sbrn == 0x31) {
4881                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4882                         hcd->speed = HCD_USB31;
4883                 }
4884                 /* xHCI private pointer was set in xhci_pci_probe for the second
4885                  * registered roothub.
4886                  */
4887                 return 0;
4888         }
4889
4890         mutex_init(&xhci->mutex);
4891         xhci->cap_regs = hcd->regs;
4892         xhci->op_regs = hcd->regs +
4893                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4894         xhci->run_regs = hcd->regs +
4895                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4896         /* Cache read-only capability registers */
4897         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4898         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4899         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4900         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4901         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4902         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4903         if (xhci->hci_version > 0x100)
4904                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4905         xhci_print_registers(xhci);
4906
4907         xhci->quirks = quirks;
4908
4909         get_quirks(dev, xhci);
4910
4911         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4912          * success event after a short transfer. This quirk will ignore such
4913          * spurious event.
4914          */
4915         if (xhci->hci_version > 0x96)
4916                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4917
4918         /* Make sure the HC is halted. */
4919         retval = xhci_halt(xhci);
4920         if (retval)
4921                 return retval;
4922
4923         xhci_dbg(xhci, "Resetting HCD\n");
4924         /* Reset the internal HC memory state and registers. */
4925         retval = xhci_reset(xhci);
4926         if (retval)
4927                 return retval;
4928         xhci_dbg(xhci, "Reset complete\n");
4929
4930         /* Set dma_mask and coherent_dma_mask to 64-bits,
4931          * if xHC supports 64-bit addressing */
4932         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4933                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4934                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4935                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4936         } else {
4937                 /*
4938                  * This is to avoid error in cases where a 32-bit USB
4939                  * controller is used on a 64-bit capable system.
4940                  */
4941                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4942                 if (retval)
4943                         return retval;
4944                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4945                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4946         }
4947
4948         xhci_dbg(xhci, "Calling HCD init\n");
4949         /* Initialize HCD and host controller data structures. */
4950         retval = xhci_init(hcd);
4951         if (retval)
4952                 return retval;
4953         xhci_dbg(xhci, "Called HCD init\n");
4954
4955         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4956                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4957
4958         return 0;
4959 }
4960 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4961
4962 static const struct hc_driver xhci_hc_driver = {
4963         .description =          "xhci-hcd",
4964         .product_desc =         "xHCI Host Controller",
4965         .hcd_priv_size =        sizeof(struct xhci_hcd *),
4966
4967         /*
4968          * generic hardware linkage
4969          */
4970         .irq =                  xhci_irq,
4971         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4972
4973         /*
4974          * basic lifecycle operations
4975          */
4976         .reset =                NULL, /* set in xhci_init_driver() */
4977         .start =                xhci_run,
4978         .stop =                 xhci_stop,
4979         .shutdown =             xhci_shutdown,
4980
4981         /*
4982          * managing i/o requests and associated device resources
4983          */
4984         .urb_enqueue =          xhci_urb_enqueue,
4985         .urb_dequeue =          xhci_urb_dequeue,
4986         .alloc_dev =            xhci_alloc_dev,
4987         .free_dev =             xhci_free_dev,
4988         .alloc_streams =        xhci_alloc_streams,
4989         .free_streams =         xhci_free_streams,
4990         .add_endpoint =         xhci_add_endpoint,
4991         .drop_endpoint =        xhci_drop_endpoint,
4992         .endpoint_reset =       xhci_endpoint_reset,
4993         .check_bandwidth =      xhci_check_bandwidth,
4994         .reset_bandwidth =      xhci_reset_bandwidth,
4995         .address_device =       xhci_address_device,
4996         .enable_device =        xhci_enable_device,
4997         .update_hub_device =    xhci_update_hub_device,
4998         .reset_device =         xhci_discover_or_reset_device,
4999
5000         /*
5001          * scheduling support
5002          */
5003         .get_frame_number =     xhci_get_frame,
5004
5005         /*
5006          * root hub support
5007          */
5008         .hub_control =          xhci_hub_control,
5009         .hub_status_data =      xhci_hub_status_data,
5010         .bus_suspend =          xhci_bus_suspend,
5011         .bus_resume =           xhci_bus_resume,
5012
5013         /*
5014          * call back when device connected and addressed
5015          */
5016         .update_device =        xhci_update_device,
5017         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5018         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5019         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5020         .find_raw_port_number = xhci_find_raw_port_number,
5021 };
5022
5023 void xhci_init_driver(struct hc_driver *drv,
5024                       const struct xhci_driver_overrides *over)
5025 {
5026         BUG_ON(!over);
5027
5028         /* Copy the generic table to drv then apply the overrides */
5029         *drv = xhci_hc_driver;
5030
5031         if (over) {
5032                 drv->hcd_priv_size += over->extra_priv_size;
5033                 if (over->reset)
5034                         drv->reset = over->reset;
5035                 if (over->start)
5036                         drv->start = over->start;
5037         }
5038 }
5039 EXPORT_SYMBOL_GPL(xhci_init_driver);
5040
5041 MODULE_DESCRIPTION(DRIVER_DESC);
5042 MODULE_AUTHOR(DRIVER_AUTHOR);
5043 MODULE_LICENSE("GPL");
5044
5045 static int __init xhci_hcd_init(void)
5046 {
5047         /*
5048          * Check the compiler generated sizes of structures that must be laid
5049          * out in specific ways for hardware access.
5050          */
5051         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5052         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5053         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5054         /* xhci_device_control has eight fields, and also
5055          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5056          */
5057         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5058         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5059         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5060         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5061         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5062         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5063         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5064
5065         if (usb_disabled())
5066                 return -ENODEV;
5067
5068         return 0;
5069 }
5070
5071 /*
5072  * If an init function is provided, an exit function must also be provided
5073  * to allow module unload.
5074  */
5075 static void __exit xhci_hcd_fini(void) { }
5076
5077 module_init(xhci_hcd_init);
5078 module_exit(xhci_hcd_fini);