Merge tag 'wireless-drivers-for-davem-2015-12-28' of git://git.kernel.org/pub/scm...
[firefly-linux-kernel-4.4.55.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
39
40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
41 static int link_quirk;
42 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
44
45 static unsigned int quirks;
46 module_param(quirks, uint, S_IRUGO);
47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
48
49 /* TODO: copied from ehci-hcd.c - can this be refactored? */
50 /*
51  * xhci_handshake - spin reading hc until handshake completes or fails
52  * @ptr: address of hc register to be read
53  * @mask: bits to look at in result of read
54  * @done: value of those bits when handshake succeeds
55  * @usec: timeout in microseconds
56  *
57  * Returns negative errno, or zero on success
58  *
59  * Success happens when the "mask" bits have the specified value (hardware
60  * handshake done).  There are two failure modes:  "usec" have passed (major
61  * hardware flakeout), or the register reads as all-ones (hardware removed).
62  */
63 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
64 {
65         u32     result;
66
67         do {
68                 result = readl(ptr);
69                 if (result == ~(u32)0)          /* card removed */
70                         return -ENODEV;
71                 result &= mask;
72                 if (result == done)
73                         return 0;
74                 udelay(1);
75                 usec--;
76         } while (usec > 0);
77         return -ETIMEDOUT;
78 }
79
80 /*
81  * Disable interrupts and begin the xHCI halting process.
82  */
83 void xhci_quiesce(struct xhci_hcd *xhci)
84 {
85         u32 halted;
86         u32 cmd;
87         u32 mask;
88
89         mask = ~(XHCI_IRQS);
90         halted = readl(&xhci->op_regs->status) & STS_HALT;
91         if (!halted)
92                 mask &= ~CMD_RUN;
93
94         cmd = readl(&xhci->op_regs->command);
95         cmd &= mask;
96         writel(cmd, &xhci->op_regs->command);
97 }
98
99 /*
100  * Force HC into halt state.
101  *
102  * Disable any IRQs and clear the run/stop bit.
103  * HC will complete any current and actively pipelined transactions, and
104  * should halt within 16 ms of the run/stop bit being cleared.
105  * Read HC Halted bit in the status register to see when the HC is finished.
106  */
107 int xhci_halt(struct xhci_hcd *xhci)
108 {
109         int ret;
110         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
111         xhci_quiesce(xhci);
112
113         ret = xhci_handshake(&xhci->op_regs->status,
114                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
115         if (!ret) {
116                 xhci->xhc_state |= XHCI_STATE_HALTED;
117                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
118         } else
119                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
120                                 XHCI_MAX_HALT_USEC);
121         return ret;
122 }
123
124 /*
125  * Set the run bit and wait for the host to be running.
126  */
127 static int xhci_start(struct xhci_hcd *xhci)
128 {
129         u32 temp;
130         int ret;
131
132         temp = readl(&xhci->op_regs->command);
133         temp |= (CMD_RUN);
134         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
135                         temp);
136         writel(temp, &xhci->op_regs->command);
137
138         /*
139          * Wait for the HCHalted Status bit to be 0 to indicate the host is
140          * running.
141          */
142         ret = xhci_handshake(&xhci->op_regs->status,
143                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
144         if (ret == -ETIMEDOUT)
145                 xhci_err(xhci, "Host took too long to start, "
146                                 "waited %u microseconds.\n",
147                                 XHCI_MAX_HALT_USEC);
148         if (!ret)
149                 xhci->xhc_state &= ~(XHCI_STATE_HALTED | XHCI_STATE_DYING);
150
151         return ret;
152 }
153
154 /*
155  * Reset a halted HC.
156  *
157  * This resets pipelines, timers, counters, state machines, etc.
158  * Transactions will be terminated immediately, and operational registers
159  * will be set to their defaults.
160  */
161 int xhci_reset(struct xhci_hcd *xhci)
162 {
163         u32 command;
164         u32 state;
165         int ret, i;
166
167         state = readl(&xhci->op_regs->status);
168         if ((state & STS_HALT) == 0) {
169                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
170                 return 0;
171         }
172
173         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
174         command = readl(&xhci->op_regs->command);
175         command |= CMD_RESET;
176         writel(command, &xhci->op_regs->command);
177
178         /* Existing Intel xHCI controllers require a delay of 1 mS,
179          * after setting the CMD_RESET bit, and before accessing any
180          * HC registers. This allows the HC to complete the
181          * reset operation and be ready for HC register access.
182          * Without this delay, the subsequent HC register access,
183          * may result in a system hang very rarely.
184          */
185         if (xhci->quirks & XHCI_INTEL_HOST)
186                 udelay(1000);
187
188         ret = xhci_handshake(&xhci->op_regs->command,
189                         CMD_RESET, 0, 10 * 1000 * 1000);
190         if (ret)
191                 return ret;
192
193         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
194                          "Wait for controller to be ready for doorbell rings");
195         /*
196          * xHCI cannot write to any doorbells or operational registers other
197          * than status until the "Controller Not Ready" flag is cleared.
198          */
199         ret = xhci_handshake(&xhci->op_regs->status,
200                         STS_CNR, 0, 10 * 1000 * 1000);
201
202         for (i = 0; i < 2; ++i) {
203                 xhci->bus_state[i].port_c_suspend = 0;
204                 xhci->bus_state[i].suspended_ports = 0;
205                 xhci->bus_state[i].resuming_ports = 0;
206         }
207
208         return ret;
209 }
210
211 #ifdef CONFIG_PCI
212 static int xhci_free_msi(struct xhci_hcd *xhci)
213 {
214         int i;
215
216         if (!xhci->msix_entries)
217                 return -EINVAL;
218
219         for (i = 0; i < xhci->msix_count; i++)
220                 if (xhci->msix_entries[i].vector)
221                         free_irq(xhci->msix_entries[i].vector,
222                                         xhci_to_hcd(xhci));
223         return 0;
224 }
225
226 /*
227  * Set up MSI
228  */
229 static int xhci_setup_msi(struct xhci_hcd *xhci)
230 {
231         int ret;
232         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
233
234         ret = pci_enable_msi(pdev);
235         if (ret) {
236                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
237                                 "failed to allocate MSI entry");
238                 return ret;
239         }
240
241         ret = request_irq(pdev->irq, xhci_msi_irq,
242                                 0, "xhci_hcd", xhci_to_hcd(xhci));
243         if (ret) {
244                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
245                                 "disable MSI interrupt");
246                 pci_disable_msi(pdev);
247         }
248
249         return ret;
250 }
251
252 /*
253  * Free IRQs
254  * free all IRQs request
255  */
256 static void xhci_free_irq(struct xhci_hcd *xhci)
257 {
258         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
259         int ret;
260
261         /* return if using legacy interrupt */
262         if (xhci_to_hcd(xhci)->irq > 0)
263                 return;
264
265         ret = xhci_free_msi(xhci);
266         if (!ret)
267                 return;
268         if (pdev->irq > 0)
269                 free_irq(pdev->irq, xhci_to_hcd(xhci));
270
271         return;
272 }
273
274 /*
275  * Set up MSI-X
276  */
277 static int xhci_setup_msix(struct xhci_hcd *xhci)
278 {
279         int i, ret = 0;
280         struct usb_hcd *hcd = xhci_to_hcd(xhci);
281         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
282
283         /*
284          * calculate number of msi-x vectors supported.
285          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
286          *   with max number of interrupters based on the xhci HCSPARAMS1.
287          * - num_online_cpus: maximum msi-x vectors per CPUs core.
288          *   Add additional 1 vector to ensure always available interrupt.
289          */
290         xhci->msix_count = min(num_online_cpus() + 1,
291                                 HCS_MAX_INTRS(xhci->hcs_params1));
292
293         xhci->msix_entries =
294                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
295                                 GFP_KERNEL);
296         if (!xhci->msix_entries) {
297                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
298                 return -ENOMEM;
299         }
300
301         for (i = 0; i < xhci->msix_count; i++) {
302                 xhci->msix_entries[i].entry = i;
303                 xhci->msix_entries[i].vector = 0;
304         }
305
306         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
307         if (ret) {
308                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
309                                 "Failed to enable MSI-X");
310                 goto free_entries;
311         }
312
313         for (i = 0; i < xhci->msix_count; i++) {
314                 ret = request_irq(xhci->msix_entries[i].vector,
315                                 xhci_msi_irq,
316                                 0, "xhci_hcd", xhci_to_hcd(xhci));
317                 if (ret)
318                         goto disable_msix;
319         }
320
321         hcd->msix_enabled = 1;
322         return ret;
323
324 disable_msix:
325         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
326         xhci_free_irq(xhci);
327         pci_disable_msix(pdev);
328 free_entries:
329         kfree(xhci->msix_entries);
330         xhci->msix_entries = NULL;
331         return ret;
332 }
333
334 /* Free any IRQs and disable MSI-X */
335 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
336 {
337         struct usb_hcd *hcd = xhci_to_hcd(xhci);
338         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
339
340         if (xhci->quirks & XHCI_PLAT)
341                 return;
342
343         xhci_free_irq(xhci);
344
345         if (xhci->msix_entries) {
346                 pci_disable_msix(pdev);
347                 kfree(xhci->msix_entries);
348                 xhci->msix_entries = NULL;
349         } else {
350                 pci_disable_msi(pdev);
351         }
352
353         hcd->msix_enabled = 0;
354         return;
355 }
356
357 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
358 {
359         int i;
360
361         if (xhci->msix_entries) {
362                 for (i = 0; i < xhci->msix_count; i++)
363                         synchronize_irq(xhci->msix_entries[i].vector);
364         }
365 }
366
367 static int xhci_try_enable_msi(struct usb_hcd *hcd)
368 {
369         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
370         struct pci_dev  *pdev;
371         int ret;
372
373         /* The xhci platform device has set up IRQs through usb_add_hcd. */
374         if (xhci->quirks & XHCI_PLAT)
375                 return 0;
376
377         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
378         /*
379          * Some Fresco Logic host controllers advertise MSI, but fail to
380          * generate interrupts.  Don't even try to enable MSI.
381          */
382         if (xhci->quirks & XHCI_BROKEN_MSI)
383                 goto legacy_irq;
384
385         /* unregister the legacy interrupt */
386         if (hcd->irq)
387                 free_irq(hcd->irq, hcd);
388         hcd->irq = 0;
389
390         ret = xhci_setup_msix(xhci);
391         if (ret)
392                 /* fall back to msi*/
393                 ret = xhci_setup_msi(xhci);
394
395         if (!ret)
396                 /* hcd->irq is 0, we have MSI */
397                 return 0;
398
399         if (!pdev->irq) {
400                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
401                 return -EINVAL;
402         }
403
404  legacy_irq:
405         if (!strlen(hcd->irq_descr))
406                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
407                          hcd->driver->description, hcd->self.busnum);
408
409         /* fall back to legacy interrupt*/
410         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
411                         hcd->irq_descr, hcd);
412         if (ret) {
413                 xhci_err(xhci, "request interrupt %d failed\n",
414                                 pdev->irq);
415                 return ret;
416         }
417         hcd->irq = pdev->irq;
418         return 0;
419 }
420
421 #else
422
423 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
424 {
425         return 0;
426 }
427
428 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
429 {
430 }
431
432 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
433 {
434 }
435
436 #endif
437
438 static void compliance_mode_recovery(unsigned long arg)
439 {
440         struct xhci_hcd *xhci;
441         struct usb_hcd *hcd;
442         u32 temp;
443         int i;
444
445         xhci = (struct xhci_hcd *)arg;
446
447         for (i = 0; i < xhci->num_usb3_ports; i++) {
448                 temp = readl(xhci->usb3_ports[i]);
449                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
450                         /*
451                          * Compliance Mode Detected. Letting USB Core
452                          * handle the Warm Reset
453                          */
454                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
455                                         "Compliance mode detected->port %d",
456                                         i + 1);
457                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
458                                         "Attempting compliance mode recovery");
459                         hcd = xhci->shared_hcd;
460
461                         if (hcd->state == HC_STATE_SUSPENDED)
462                                 usb_hcd_resume_root_hub(hcd);
463
464                         usb_hcd_poll_rh_status(hcd);
465                 }
466         }
467
468         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
469                 mod_timer(&xhci->comp_mode_recovery_timer,
470                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
471 }
472
473 /*
474  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
475  * that causes ports behind that hardware to enter compliance mode sometimes.
476  * The quirk creates a timer that polls every 2 seconds the link state of
477  * each host controller's port and recovers it by issuing a Warm reset
478  * if Compliance mode is detected, otherwise the port will become "dead" (no
479  * device connections or disconnections will be detected anymore). Becasue no
480  * status event is generated when entering compliance mode (per xhci spec),
481  * this quirk is needed on systems that have the failing hardware installed.
482  */
483 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
484 {
485         xhci->port_status_u0 = 0;
486         setup_timer(&xhci->comp_mode_recovery_timer,
487                     compliance_mode_recovery, (unsigned long)xhci);
488         xhci->comp_mode_recovery_timer.expires = jiffies +
489                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
490
491         set_timer_slack(&xhci->comp_mode_recovery_timer,
492                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
493         add_timer(&xhci->comp_mode_recovery_timer);
494         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
495                         "Compliance mode recovery timer initialized");
496 }
497
498 /*
499  * This function identifies the systems that have installed the SN65LVPE502CP
500  * USB3.0 re-driver and that need the Compliance Mode Quirk.
501  * Systems:
502  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
503  */
504 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
505 {
506         const char *dmi_product_name, *dmi_sys_vendor;
507
508         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
509         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
510         if (!dmi_product_name || !dmi_sys_vendor)
511                 return false;
512
513         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
514                 return false;
515
516         if (strstr(dmi_product_name, "Z420") ||
517                         strstr(dmi_product_name, "Z620") ||
518                         strstr(dmi_product_name, "Z820") ||
519                         strstr(dmi_product_name, "Z1 Workstation"))
520                 return true;
521
522         return false;
523 }
524
525 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
526 {
527         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
528 }
529
530
531 /*
532  * Initialize memory for HCD and xHC (one-time init).
533  *
534  * Program the PAGESIZE register, initialize the device context array, create
535  * device contexts (?), set up a command ring segment (or two?), create event
536  * ring (one for now).
537  */
538 int xhci_init(struct usb_hcd *hcd)
539 {
540         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
541         int retval = 0;
542
543         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
544         spin_lock_init(&xhci->lock);
545         if (xhci->hci_version == 0x95 && link_quirk) {
546                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
547                                 "QUIRK: Not clearing Link TRB chain bits.");
548                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
549         } else {
550                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
551                                 "xHCI doesn't need link TRB QUIRK");
552         }
553         retval = xhci_mem_init(xhci, GFP_KERNEL);
554         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
555
556         /* Initializing Compliance Mode Recovery Data If Needed */
557         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
558                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
559                 compliance_mode_recovery_timer_init(xhci);
560         }
561
562         return retval;
563 }
564
565 /*-------------------------------------------------------------------------*/
566
567
568 static int xhci_run_finished(struct xhci_hcd *xhci)
569 {
570         if (xhci_start(xhci)) {
571                 xhci_halt(xhci);
572                 return -ENODEV;
573         }
574         xhci->shared_hcd->state = HC_STATE_RUNNING;
575         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
576
577         if (xhci->quirks & XHCI_NEC_HOST)
578                 xhci_ring_cmd_db(xhci);
579
580         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
581                         "Finished xhci_run for USB3 roothub");
582         return 0;
583 }
584
585 /*
586  * Start the HC after it was halted.
587  *
588  * This function is called by the USB core when the HC driver is added.
589  * Its opposite is xhci_stop().
590  *
591  * xhci_init() must be called once before this function can be called.
592  * Reset the HC, enable device slot contexts, program DCBAAP, and
593  * set command ring pointer and event ring pointer.
594  *
595  * Setup MSI-X vectors and enable interrupts.
596  */
597 int xhci_run(struct usb_hcd *hcd)
598 {
599         u32 temp;
600         u64 temp_64;
601         int ret;
602         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
603
604         /* Start the xHCI host controller running only after the USB 2.0 roothub
605          * is setup.
606          */
607
608         hcd->uses_new_polling = 1;
609         if (!usb_hcd_is_primary_hcd(hcd))
610                 return xhci_run_finished(xhci);
611
612         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
613
614         ret = xhci_try_enable_msi(hcd);
615         if (ret)
616                 return ret;
617
618         xhci_dbg(xhci, "Command ring memory map follows:\n");
619         xhci_debug_ring(xhci, xhci->cmd_ring);
620         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
621         xhci_dbg_cmd_ptrs(xhci);
622
623         xhci_dbg(xhci, "ERST memory map follows:\n");
624         xhci_dbg_erst(xhci, &xhci->erst);
625         xhci_dbg(xhci, "Event ring:\n");
626         xhci_debug_ring(xhci, xhci->event_ring);
627         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
628         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
629         temp_64 &= ~ERST_PTR_MASK;
630         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
631                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
632
633         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634                         "// Set the interrupt modulation register");
635         temp = readl(&xhci->ir_set->irq_control);
636         temp &= ~ER_IRQ_INTERVAL_MASK;
637         temp |= (u32) 160;
638         writel(temp, &xhci->ir_set->irq_control);
639
640         /* Set the HCD state before we enable the irqs */
641         temp = readl(&xhci->op_regs->command);
642         temp |= (CMD_EIE);
643         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
644                         "// Enable interrupts, cmd = 0x%x.", temp);
645         writel(temp, &xhci->op_regs->command);
646
647         temp = readl(&xhci->ir_set->irq_pending);
648         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
649                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
650                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
651         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
652         xhci_print_ir_set(xhci, 0);
653
654         if (xhci->quirks & XHCI_NEC_HOST) {
655                 struct xhci_command *command;
656                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
657                 if (!command)
658                         return -ENOMEM;
659                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
660                                 TRB_TYPE(TRB_NEC_GET_FW));
661         }
662         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
663                         "Finished xhci_run for USB2 roothub");
664         return 0;
665 }
666 EXPORT_SYMBOL_GPL(xhci_run);
667
668 /*
669  * Stop xHCI driver.
670  *
671  * This function is called by the USB core when the HC driver is removed.
672  * Its opposite is xhci_run().
673  *
674  * Disable device contexts, disable IRQs, and quiesce the HC.
675  * Reset the HC, finish any completed transactions, and cleanup memory.
676  */
677 void xhci_stop(struct usb_hcd *hcd)
678 {
679         u32 temp;
680         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
681
682         if (xhci->xhc_state & XHCI_STATE_HALTED)
683                 return;
684
685         mutex_lock(&xhci->mutex);
686         spin_lock_irq(&xhci->lock);
687         xhci->xhc_state |= XHCI_STATE_HALTED;
688         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
689
690         /* Make sure the xHC is halted for a USB3 roothub
691          * (xhci_stop() could be called as part of failed init).
692          */
693         xhci_halt(xhci);
694         xhci_reset(xhci);
695         spin_unlock_irq(&xhci->lock);
696
697         xhci_cleanup_msix(xhci);
698
699         /* Deleting Compliance Mode Recovery Timer */
700         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
701                         (!(xhci_all_ports_seen_u0(xhci)))) {
702                 del_timer_sync(&xhci->comp_mode_recovery_timer);
703                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
704                                 "%s: compliance mode recovery timer deleted",
705                                 __func__);
706         }
707
708         if (xhci->quirks & XHCI_AMD_PLL_FIX)
709                 usb_amd_dev_put();
710
711         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
712                         "// Disabling event ring interrupts");
713         temp = readl(&xhci->op_regs->status);
714         writel(temp & ~STS_EINT, &xhci->op_regs->status);
715         temp = readl(&xhci->ir_set->irq_pending);
716         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
717         xhci_print_ir_set(xhci, 0);
718
719         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
720         xhci_mem_cleanup(xhci);
721         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
722                         "xhci_stop completed - status = %x",
723                         readl(&xhci->op_regs->status));
724         mutex_unlock(&xhci->mutex);
725 }
726
727 /*
728  * Shutdown HC (not bus-specific)
729  *
730  * This is called when the machine is rebooting or halting.  We assume that the
731  * machine will be powered off, and the HC's internal state will be reset.
732  * Don't bother to free memory.
733  *
734  * This will only ever be called with the main usb_hcd (the USB3 roothub).
735  */
736 void xhci_shutdown(struct usb_hcd *hcd)
737 {
738         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
739
740         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
741                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
742
743         spin_lock_irq(&xhci->lock);
744         xhci_halt(xhci);
745         /* Workaround for spurious wakeups at shutdown with HSW */
746         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
747                 xhci_reset(xhci);
748         spin_unlock_irq(&xhci->lock);
749
750         xhci_cleanup_msix(xhci);
751
752         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
753                         "xhci_shutdown completed - status = %x",
754                         readl(&xhci->op_regs->status));
755
756         /* Yet another workaround for spurious wakeups at shutdown with HSW */
757         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
758                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
759 }
760
761 #ifdef CONFIG_PM
762 static void xhci_save_registers(struct xhci_hcd *xhci)
763 {
764         xhci->s3.command = readl(&xhci->op_regs->command);
765         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
766         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
767         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
768         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
769         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
770         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
771         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
772         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
773 }
774
775 static void xhci_restore_registers(struct xhci_hcd *xhci)
776 {
777         writel(xhci->s3.command, &xhci->op_regs->command);
778         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
779         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
780         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
781         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
782         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
783         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
784         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
785         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
786 }
787
788 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
789 {
790         u64     val_64;
791
792         /* step 2: initialize command ring buffer */
793         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
794         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
795                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
796                                       xhci->cmd_ring->dequeue) &
797                  (u64) ~CMD_RING_RSVD_BITS) |
798                 xhci->cmd_ring->cycle_state;
799         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
800                         "// Setting command ring address to 0x%llx",
801                         (long unsigned long) val_64);
802         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
803 }
804
805 /*
806  * The whole command ring must be cleared to zero when we suspend the host.
807  *
808  * The host doesn't save the command ring pointer in the suspend well, so we
809  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
810  * aligned, because of the reserved bits in the command ring dequeue pointer
811  * register.  Therefore, we can't just set the dequeue pointer back in the
812  * middle of the ring (TRBs are 16-byte aligned).
813  */
814 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
815 {
816         struct xhci_ring *ring;
817         struct xhci_segment *seg;
818
819         ring = xhci->cmd_ring;
820         seg = ring->deq_seg;
821         do {
822                 memset(seg->trbs, 0,
823                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
824                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
825                         cpu_to_le32(~TRB_CYCLE);
826                 seg = seg->next;
827         } while (seg != ring->deq_seg);
828
829         /* Reset the software enqueue and dequeue pointers */
830         ring->deq_seg = ring->first_seg;
831         ring->dequeue = ring->first_seg->trbs;
832         ring->enq_seg = ring->deq_seg;
833         ring->enqueue = ring->dequeue;
834
835         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
836         /*
837          * Ring is now zeroed, so the HW should look for change of ownership
838          * when the cycle bit is set to 1.
839          */
840         ring->cycle_state = 1;
841
842         /*
843          * Reset the hardware dequeue pointer.
844          * Yes, this will need to be re-written after resume, but we're paranoid
845          * and want to make sure the hardware doesn't access bogus memory
846          * because, say, the BIOS or an SMI started the host without changing
847          * the command ring pointers.
848          */
849         xhci_set_cmd_ring_deq(xhci);
850 }
851
852 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
853 {
854         int port_index;
855         __le32 __iomem **port_array;
856         unsigned long flags;
857         u32 t1, t2;
858
859         spin_lock_irqsave(&xhci->lock, flags);
860
861         /* disble usb3 ports Wake bits*/
862         port_index = xhci->num_usb3_ports;
863         port_array = xhci->usb3_ports;
864         while (port_index--) {
865                 t1 = readl(port_array[port_index]);
866                 t1 = xhci_port_state_to_neutral(t1);
867                 t2 = t1 & ~PORT_WAKE_BITS;
868                 if (t1 != t2)
869                         writel(t2, port_array[port_index]);
870         }
871
872         /* disble usb2 ports Wake bits*/
873         port_index = xhci->num_usb2_ports;
874         port_array = xhci->usb2_ports;
875         while (port_index--) {
876                 t1 = readl(port_array[port_index]);
877                 t1 = xhci_port_state_to_neutral(t1);
878                 t2 = t1 & ~PORT_WAKE_BITS;
879                 if (t1 != t2)
880                         writel(t2, port_array[port_index]);
881         }
882
883         spin_unlock_irqrestore(&xhci->lock, flags);
884 }
885
886 /*
887  * Stop HC (not bus-specific)
888  *
889  * This is called when the machine transition into S3/S4 mode.
890  *
891  */
892 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
893 {
894         int                     rc = 0;
895         unsigned int            delay = XHCI_MAX_HALT_USEC;
896         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
897         u32                     command;
898
899         if (!hcd->state)
900                 return 0;
901
902         if (hcd->state != HC_STATE_SUSPENDED ||
903                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
904                 return -EINVAL;
905
906         /* Clear root port wake on bits if wakeup not allowed. */
907         if (!do_wakeup)
908                 xhci_disable_port_wake_on_bits(xhci);
909
910         /* Don't poll the roothubs on bus suspend. */
911         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
912         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
913         del_timer_sync(&hcd->rh_timer);
914         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
915         del_timer_sync(&xhci->shared_hcd->rh_timer);
916
917         spin_lock_irq(&xhci->lock);
918         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
919         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
920         /* step 1: stop endpoint */
921         /* skipped assuming that port suspend has done */
922
923         /* step 2: clear Run/Stop bit */
924         command = readl(&xhci->op_regs->command);
925         command &= ~CMD_RUN;
926         writel(command, &xhci->op_regs->command);
927
928         /* Some chips from Fresco Logic need an extraordinary delay */
929         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
930
931         if (xhci_handshake(&xhci->op_regs->status,
932                       STS_HALT, STS_HALT, delay)) {
933                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
934                 spin_unlock_irq(&xhci->lock);
935                 return -ETIMEDOUT;
936         }
937         xhci_clear_command_ring(xhci);
938
939         /* step 3: save registers */
940         xhci_save_registers(xhci);
941
942         /* step 4: set CSS flag */
943         command = readl(&xhci->op_regs->command);
944         command |= CMD_CSS;
945         writel(command, &xhci->op_regs->command);
946         if (xhci_handshake(&xhci->op_regs->status,
947                                 STS_SAVE, 0, 10 * 1000)) {
948                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
949                 spin_unlock_irq(&xhci->lock);
950                 return -ETIMEDOUT;
951         }
952         spin_unlock_irq(&xhci->lock);
953
954         /*
955          * Deleting Compliance Mode Recovery Timer because the xHCI Host
956          * is about to be suspended.
957          */
958         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
959                         (!(xhci_all_ports_seen_u0(xhci)))) {
960                 del_timer_sync(&xhci->comp_mode_recovery_timer);
961                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
962                                 "%s: compliance mode recovery timer deleted",
963                                 __func__);
964         }
965
966         /* step 5: remove core well power */
967         /* synchronize irq when using MSI-X */
968         xhci_msix_sync_irqs(xhci);
969
970         return rc;
971 }
972 EXPORT_SYMBOL_GPL(xhci_suspend);
973
974 /*
975  * start xHC (not bus-specific)
976  *
977  * This is called when the machine transition from S3/S4 mode.
978  *
979  */
980 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
981 {
982         u32                     command, temp = 0, status;
983         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
984         struct usb_hcd          *secondary_hcd;
985         int                     retval = 0;
986         bool                    comp_timer_running = false;
987
988         if (!hcd->state)
989                 return 0;
990
991         /* Wait a bit if either of the roothubs need to settle from the
992          * transition into bus suspend.
993          */
994         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
995                         time_before(jiffies,
996                                 xhci->bus_state[1].next_statechange))
997                 msleep(100);
998
999         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1000         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1001
1002         spin_lock_irq(&xhci->lock);
1003         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1004                 hibernated = true;
1005
1006         if (!hibernated) {
1007                 /* step 1: restore register */
1008                 xhci_restore_registers(xhci);
1009                 /* step 2: initialize command ring buffer */
1010                 xhci_set_cmd_ring_deq(xhci);
1011                 /* step 3: restore state and start state*/
1012                 /* step 3: set CRS flag */
1013                 command = readl(&xhci->op_regs->command);
1014                 command |= CMD_CRS;
1015                 writel(command, &xhci->op_regs->command);
1016                 if (xhci_handshake(&xhci->op_regs->status,
1017                               STS_RESTORE, 0, 10 * 1000)) {
1018                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1019                         spin_unlock_irq(&xhci->lock);
1020                         return -ETIMEDOUT;
1021                 }
1022                 temp = readl(&xhci->op_regs->status);
1023         }
1024
1025         /* If restore operation fails, re-initialize the HC during resume */
1026         if ((temp & STS_SRE) || hibernated) {
1027
1028                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1029                                 !(xhci_all_ports_seen_u0(xhci))) {
1030                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1031                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1032                                 "Compliance Mode Recovery Timer deleted!");
1033                 }
1034
1035                 /* Let the USB core know _both_ roothubs lost power. */
1036                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1037                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1038
1039                 xhci_dbg(xhci, "Stop HCD\n");
1040                 xhci_halt(xhci);
1041                 xhci_reset(xhci);
1042                 spin_unlock_irq(&xhci->lock);
1043                 xhci_cleanup_msix(xhci);
1044
1045                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1046                 temp = readl(&xhci->op_regs->status);
1047                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1048                 temp = readl(&xhci->ir_set->irq_pending);
1049                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1050                 xhci_print_ir_set(xhci, 0);
1051
1052                 xhci_dbg(xhci, "cleaning up memory\n");
1053                 xhci_mem_cleanup(xhci);
1054                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1055                             readl(&xhci->op_regs->status));
1056
1057                 /* USB core calls the PCI reinit and start functions twice:
1058                  * first with the primary HCD, and then with the secondary HCD.
1059                  * If we don't do the same, the host will never be started.
1060                  */
1061                 if (!usb_hcd_is_primary_hcd(hcd))
1062                         secondary_hcd = hcd;
1063                 else
1064                         secondary_hcd = xhci->shared_hcd;
1065
1066                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1067                 retval = xhci_init(hcd->primary_hcd);
1068                 if (retval)
1069                         return retval;
1070                 comp_timer_running = true;
1071
1072                 xhci_dbg(xhci, "Start the primary HCD\n");
1073                 retval = xhci_run(hcd->primary_hcd);
1074                 if (!retval) {
1075                         xhci_dbg(xhci, "Start the secondary HCD\n");
1076                         retval = xhci_run(secondary_hcd);
1077                 }
1078                 hcd->state = HC_STATE_SUSPENDED;
1079                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1080                 goto done;
1081         }
1082
1083         /* step 4: set Run/Stop bit */
1084         command = readl(&xhci->op_regs->command);
1085         command |= CMD_RUN;
1086         writel(command, &xhci->op_regs->command);
1087         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1088                   0, 250 * 1000);
1089
1090         /* step 5: walk topology and initialize portsc,
1091          * portpmsc and portli
1092          */
1093         /* this is done in bus_resume */
1094
1095         /* step 6: restart each of the previously
1096          * Running endpoints by ringing their doorbells
1097          */
1098
1099         spin_unlock_irq(&xhci->lock);
1100
1101  done:
1102         if (retval == 0) {
1103                 /* Resume root hubs only when have pending events. */
1104                 status = readl(&xhci->op_regs->status);
1105                 if (status & STS_EINT) {
1106                         usb_hcd_resume_root_hub(hcd);
1107                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1108                 }
1109         }
1110
1111         /*
1112          * If system is subject to the Quirk, Compliance Mode Timer needs to
1113          * be re-initialized Always after a system resume. Ports are subject
1114          * to suffer the Compliance Mode issue again. It doesn't matter if
1115          * ports have entered previously to U0 before system's suspension.
1116          */
1117         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1118                 compliance_mode_recovery_timer_init(xhci);
1119
1120         /* Re-enable port polling. */
1121         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1122         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1123         usb_hcd_poll_rh_status(hcd);
1124         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1125         usb_hcd_poll_rh_status(xhci->shared_hcd);
1126
1127         return retval;
1128 }
1129 EXPORT_SYMBOL_GPL(xhci_resume);
1130 #endif  /* CONFIG_PM */
1131
1132 /*-------------------------------------------------------------------------*/
1133
1134 /**
1135  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1136  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1137  * value to right shift 1 for the bitmask.
1138  *
1139  * Index  = (epnum * 2) + direction - 1,
1140  * where direction = 0 for OUT, 1 for IN.
1141  * For control endpoints, the IN index is used (OUT index is unused), so
1142  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1143  */
1144 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1145 {
1146         unsigned int index;
1147         if (usb_endpoint_xfer_control(desc))
1148                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1149         else
1150                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1151                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1152         return index;
1153 }
1154
1155 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1156  * address from the XHCI endpoint index.
1157  */
1158 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1159 {
1160         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1161         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1162         return direction | number;
1163 }
1164
1165 /* Find the flag for this endpoint (for use in the control context).  Use the
1166  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1167  * bit 1, etc.
1168  */
1169 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1170 {
1171         return 1 << (xhci_get_endpoint_index(desc) + 1);
1172 }
1173
1174 /* Find the flag for this endpoint (for use in the control context).  Use the
1175  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1176  * bit 1, etc.
1177  */
1178 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1179 {
1180         return 1 << (ep_index + 1);
1181 }
1182
1183 /* Compute the last valid endpoint context index.  Basically, this is the
1184  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1185  * we find the most significant bit set in the added contexts flags.
1186  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1187  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1188  */
1189 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1190 {
1191         return fls(added_ctxs) - 1;
1192 }
1193
1194 /* Returns 1 if the arguments are OK;
1195  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1196  */
1197 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1198                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1199                 const char *func) {
1200         struct xhci_hcd *xhci;
1201         struct xhci_virt_device *virt_dev;
1202
1203         if (!hcd || (check_ep && !ep) || !udev) {
1204                 pr_debug("xHCI %s called with invalid args\n", func);
1205                 return -EINVAL;
1206         }
1207         if (!udev->parent) {
1208                 pr_debug("xHCI %s called for root hub\n", func);
1209                 return 0;
1210         }
1211
1212         xhci = hcd_to_xhci(hcd);
1213         if (check_virt_dev) {
1214                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1215                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1216                                         func);
1217                         return -EINVAL;
1218                 }
1219
1220                 virt_dev = xhci->devs[udev->slot_id];
1221                 if (virt_dev->udev != udev) {
1222                         xhci_dbg(xhci, "xHCI %s called with udev and "
1223                                           "virt_dev does not match\n", func);
1224                         return -EINVAL;
1225                 }
1226         }
1227
1228         if (xhci->xhc_state & XHCI_STATE_HALTED)
1229                 return -ENODEV;
1230
1231         return 1;
1232 }
1233
1234 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1235                 struct usb_device *udev, struct xhci_command *command,
1236                 bool ctx_change, bool must_succeed);
1237
1238 /*
1239  * Full speed devices may have a max packet size greater than 8 bytes, but the
1240  * USB core doesn't know that until it reads the first 8 bytes of the
1241  * descriptor.  If the usb_device's max packet size changes after that point,
1242  * we need to issue an evaluate context command and wait on it.
1243  */
1244 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1245                 unsigned int ep_index, struct urb *urb)
1246 {
1247         struct xhci_container_ctx *out_ctx;
1248         struct xhci_input_control_ctx *ctrl_ctx;
1249         struct xhci_ep_ctx *ep_ctx;
1250         struct xhci_command *command;
1251         int max_packet_size;
1252         int hw_max_packet_size;
1253         int ret = 0;
1254
1255         out_ctx = xhci->devs[slot_id]->out_ctx;
1256         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1257         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1258         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1259         if (hw_max_packet_size != max_packet_size) {
1260                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1261                                 "Max Packet Size for ep 0 changed.");
1262                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1263                                 "Max packet size in usb_device = %d",
1264                                 max_packet_size);
1265                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1266                                 "Max packet size in xHCI HW = %d",
1267                                 hw_max_packet_size);
1268                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1269                                 "Issuing evaluate context command.");
1270
1271                 /* Set up the input context flags for the command */
1272                 /* FIXME: This won't work if a non-default control endpoint
1273                  * changes max packet sizes.
1274                  */
1275
1276                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1277                 if (!command)
1278                         return -ENOMEM;
1279
1280                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1281                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1282                 if (!ctrl_ctx) {
1283                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1284                                         __func__);
1285                         ret = -ENOMEM;
1286                         goto command_cleanup;
1287                 }
1288                 /* Set up the modified control endpoint 0 */
1289                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1290                                 xhci->devs[slot_id]->out_ctx, ep_index);
1291
1292                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1293                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1294                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1295
1296                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1297                 ctrl_ctx->drop_flags = 0;
1298
1299                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1300                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1301                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1302                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1303
1304                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1305                                 true, false);
1306
1307                 /* Clean up the input context for later use by bandwidth
1308                  * functions.
1309                  */
1310                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1311 command_cleanup:
1312                 kfree(command->completion);
1313                 kfree(command);
1314         }
1315         return ret;
1316 }
1317
1318 /*
1319  * non-error returns are a promise to giveback() the urb later
1320  * we drop ownership so next owner (or urb unlink) can get it
1321  */
1322 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1323 {
1324         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1325         struct xhci_td *buffer;
1326         unsigned long flags;
1327         int ret = 0;
1328         unsigned int slot_id, ep_index;
1329         struct urb_priv *urb_priv;
1330         int size, i;
1331
1332         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1333                                         true, true, __func__) <= 0)
1334                 return -EINVAL;
1335
1336         slot_id = urb->dev->slot_id;
1337         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1338
1339         if (!HCD_HW_ACCESSIBLE(hcd)) {
1340                 if (!in_interrupt())
1341                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1342                 ret = -ESHUTDOWN;
1343                 goto exit;
1344         }
1345
1346         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1347                 size = urb->number_of_packets;
1348         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1349             urb->transfer_buffer_length > 0 &&
1350             urb->transfer_flags & URB_ZERO_PACKET &&
1351             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1352                 size = 2;
1353         else
1354                 size = 1;
1355
1356         urb_priv = kzalloc(sizeof(struct urb_priv) +
1357                                   size * sizeof(struct xhci_td *), mem_flags);
1358         if (!urb_priv)
1359                 return -ENOMEM;
1360
1361         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1362         if (!buffer) {
1363                 kfree(urb_priv);
1364                 return -ENOMEM;
1365         }
1366
1367         for (i = 0; i < size; i++) {
1368                 urb_priv->td[i] = buffer;
1369                 buffer++;
1370         }
1371
1372         urb_priv->length = size;
1373         urb_priv->td_cnt = 0;
1374         urb->hcpriv = urb_priv;
1375
1376         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1377                 /* Check to see if the max packet size for the default control
1378                  * endpoint changed during FS device enumeration
1379                  */
1380                 if (urb->dev->speed == USB_SPEED_FULL) {
1381                         ret = xhci_check_maxpacket(xhci, slot_id,
1382                                         ep_index, urb);
1383                         if (ret < 0) {
1384                                 xhci_urb_free_priv(urb_priv);
1385                                 urb->hcpriv = NULL;
1386                                 return ret;
1387                         }
1388                 }
1389
1390                 /* We have a spinlock and interrupts disabled, so we must pass
1391                  * atomic context to this function, which may allocate memory.
1392                  */
1393                 spin_lock_irqsave(&xhci->lock, flags);
1394                 if (xhci->xhc_state & XHCI_STATE_DYING)
1395                         goto dying;
1396                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1397                                 slot_id, ep_index);
1398                 if (ret)
1399                         goto free_priv;
1400                 spin_unlock_irqrestore(&xhci->lock, flags);
1401         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1402                 spin_lock_irqsave(&xhci->lock, flags);
1403                 if (xhci->xhc_state & XHCI_STATE_DYING)
1404                         goto dying;
1405                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1406                                 EP_GETTING_STREAMS) {
1407                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1408                                         "is transitioning to using streams.\n");
1409                         ret = -EINVAL;
1410                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1411                                 EP_GETTING_NO_STREAMS) {
1412                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1413                                         "is transitioning to "
1414                                         "not having streams.\n");
1415                         ret = -EINVAL;
1416                 } else {
1417                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1418                                         slot_id, ep_index);
1419                 }
1420                 if (ret)
1421                         goto free_priv;
1422                 spin_unlock_irqrestore(&xhci->lock, flags);
1423         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1424                 spin_lock_irqsave(&xhci->lock, flags);
1425                 if (xhci->xhc_state & XHCI_STATE_DYING)
1426                         goto dying;
1427                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1428                                 slot_id, ep_index);
1429                 if (ret)
1430                         goto free_priv;
1431                 spin_unlock_irqrestore(&xhci->lock, flags);
1432         } else {
1433                 spin_lock_irqsave(&xhci->lock, flags);
1434                 if (xhci->xhc_state & XHCI_STATE_DYING)
1435                         goto dying;
1436                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1437                                 slot_id, ep_index);
1438                 if (ret)
1439                         goto free_priv;
1440                 spin_unlock_irqrestore(&xhci->lock, flags);
1441         }
1442 exit:
1443         return ret;
1444 dying:
1445         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1446                         "non-responsive xHCI host.\n",
1447                         urb->ep->desc.bEndpointAddress, urb);
1448         ret = -ESHUTDOWN;
1449 free_priv:
1450         xhci_urb_free_priv(urb_priv);
1451         urb->hcpriv = NULL;
1452         spin_unlock_irqrestore(&xhci->lock, flags);
1453         return ret;
1454 }
1455
1456 /* Get the right ring for the given URB.
1457  * If the endpoint supports streams, boundary check the URB's stream ID.
1458  * If the endpoint doesn't support streams, return the singular endpoint ring.
1459  */
1460 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1461                 struct urb *urb)
1462 {
1463         unsigned int slot_id;
1464         unsigned int ep_index;
1465         unsigned int stream_id;
1466         struct xhci_virt_ep *ep;
1467
1468         slot_id = urb->dev->slot_id;
1469         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1470         stream_id = urb->stream_id;
1471         ep = &xhci->devs[slot_id]->eps[ep_index];
1472         /* Common case: no streams */
1473         if (!(ep->ep_state & EP_HAS_STREAMS))
1474                 return ep->ring;
1475
1476         if (stream_id == 0) {
1477                 xhci_warn(xhci,
1478                                 "WARN: Slot ID %u, ep index %u has streams, "
1479                                 "but URB has no stream ID.\n",
1480                                 slot_id, ep_index);
1481                 return NULL;
1482         }
1483
1484         if (stream_id < ep->stream_info->num_streams)
1485                 return ep->stream_info->stream_rings[stream_id];
1486
1487         xhci_warn(xhci,
1488                         "WARN: Slot ID %u, ep index %u has "
1489                         "stream IDs 1 to %u allocated, "
1490                         "but stream ID %u is requested.\n",
1491                         slot_id, ep_index,
1492                         ep->stream_info->num_streams - 1,
1493                         stream_id);
1494         return NULL;
1495 }
1496
1497 /*
1498  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1499  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1500  * should pick up where it left off in the TD, unless a Set Transfer Ring
1501  * Dequeue Pointer is issued.
1502  *
1503  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1504  * the ring.  Since the ring is a contiguous structure, they can't be physically
1505  * removed.  Instead, there are two options:
1506  *
1507  *  1) If the HC is in the middle of processing the URB to be canceled, we
1508  *     simply move the ring's dequeue pointer past those TRBs using the Set
1509  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1510  *     when drivers timeout on the last submitted URB and attempt to cancel.
1511  *
1512  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1513  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1514  *     HC will need to invalidate the any TRBs it has cached after the stop
1515  *     endpoint command, as noted in the xHCI 0.95 errata.
1516  *
1517  *  3) The TD may have completed by the time the Stop Endpoint Command
1518  *     completes, so software needs to handle that case too.
1519  *
1520  * This function should protect against the TD enqueueing code ringing the
1521  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1522  * It also needs to account for multiple cancellations on happening at the same
1523  * time for the same endpoint.
1524  *
1525  * Note that this function can be called in any context, or so says
1526  * usb_hcd_unlink_urb()
1527  */
1528 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1529 {
1530         unsigned long flags;
1531         int ret, i;
1532         u32 temp;
1533         struct xhci_hcd *xhci;
1534         struct urb_priv *urb_priv;
1535         struct xhci_td *td;
1536         unsigned int ep_index;
1537         struct xhci_ring *ep_ring;
1538         struct xhci_virt_ep *ep;
1539         struct xhci_command *command;
1540
1541         xhci = hcd_to_xhci(hcd);
1542         spin_lock_irqsave(&xhci->lock, flags);
1543         /* Make sure the URB hasn't completed or been unlinked already */
1544         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1545         if (ret || !urb->hcpriv)
1546                 goto done;
1547         temp = readl(&xhci->op_regs->status);
1548         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1549                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1550                                 "HW died, freeing TD.");
1551                 urb_priv = urb->hcpriv;
1552                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1553                         td = urb_priv->td[i];
1554                         if (!list_empty(&td->td_list))
1555                                 list_del_init(&td->td_list);
1556                         if (!list_empty(&td->cancelled_td_list))
1557                                 list_del_init(&td->cancelled_td_list);
1558                 }
1559
1560                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1561                 spin_unlock_irqrestore(&xhci->lock, flags);
1562                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1563                 xhci_urb_free_priv(urb_priv);
1564                 return ret;
1565         }
1566         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1567                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1568                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1569                                 "Ep 0x%x: URB %p to be canceled on "
1570                                 "non-responsive xHCI host.",
1571                                 urb->ep->desc.bEndpointAddress, urb);
1572                 /* Let the stop endpoint command watchdog timer (which set this
1573                  * state) finish cleaning up the endpoint TD lists.  We must
1574                  * have caught it in the middle of dropping a lock and giving
1575                  * back an URB.
1576                  */
1577                 goto done;
1578         }
1579
1580         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1581         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1582         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1583         if (!ep_ring) {
1584                 ret = -EINVAL;
1585                 goto done;
1586         }
1587
1588         urb_priv = urb->hcpriv;
1589         i = urb_priv->td_cnt;
1590         if (i < urb_priv->length)
1591                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1592                                 "Cancel URB %p, dev %s, ep 0x%x, "
1593                                 "starting at offset 0x%llx",
1594                                 urb, urb->dev->devpath,
1595                                 urb->ep->desc.bEndpointAddress,
1596                                 (unsigned long long) xhci_trb_virt_to_dma(
1597                                         urb_priv->td[i]->start_seg,
1598                                         urb_priv->td[i]->first_trb));
1599
1600         for (; i < urb_priv->length; i++) {
1601                 td = urb_priv->td[i];
1602                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1603         }
1604
1605         /* Queue a stop endpoint command, but only if this is
1606          * the first cancellation to be handled.
1607          */
1608         if (!(ep->ep_state & EP_HALT_PENDING)) {
1609                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1610                 if (!command) {
1611                         ret = -ENOMEM;
1612                         goto done;
1613                 }
1614                 ep->ep_state |= EP_HALT_PENDING;
1615                 ep->stop_cmds_pending++;
1616                 ep->stop_cmd_timer.expires = jiffies +
1617                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1618                 add_timer(&ep->stop_cmd_timer);
1619                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1620                                          ep_index, 0);
1621                 xhci_ring_cmd_db(xhci);
1622         }
1623 done:
1624         spin_unlock_irqrestore(&xhci->lock, flags);
1625         return ret;
1626 }
1627
1628 /* Drop an endpoint from a new bandwidth configuration for this device.
1629  * Only one call to this function is allowed per endpoint before
1630  * check_bandwidth() or reset_bandwidth() must be called.
1631  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1632  * add the endpoint to the schedule with possibly new parameters denoted by a
1633  * different endpoint descriptor in usb_host_endpoint.
1634  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1635  * not allowed.
1636  *
1637  * The USB core will not allow URBs to be queued to an endpoint that is being
1638  * disabled, so there's no need for mutual exclusion to protect
1639  * the xhci->devs[slot_id] structure.
1640  */
1641 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1642                 struct usb_host_endpoint *ep)
1643 {
1644         struct xhci_hcd *xhci;
1645         struct xhci_container_ctx *in_ctx, *out_ctx;
1646         struct xhci_input_control_ctx *ctrl_ctx;
1647         unsigned int ep_index;
1648         struct xhci_ep_ctx *ep_ctx;
1649         u32 drop_flag;
1650         u32 new_add_flags, new_drop_flags;
1651         int ret;
1652
1653         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1654         if (ret <= 0)
1655                 return ret;
1656         xhci = hcd_to_xhci(hcd);
1657         if (xhci->xhc_state & XHCI_STATE_DYING)
1658                 return -ENODEV;
1659
1660         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1661         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1662         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1663                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1664                                 __func__, drop_flag);
1665                 return 0;
1666         }
1667
1668         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1669         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1670         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1671         if (!ctrl_ctx) {
1672                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1673                                 __func__);
1674                 return 0;
1675         }
1676
1677         ep_index = xhci_get_endpoint_index(&ep->desc);
1678         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1679         /* If the HC already knows the endpoint is disabled,
1680          * or the HCD has noted it is disabled, ignore this request
1681          */
1682         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1683              cpu_to_le32(EP_STATE_DISABLED)) ||
1684             le32_to_cpu(ctrl_ctx->drop_flags) &
1685             xhci_get_endpoint_flag(&ep->desc)) {
1686                 /* Do not warn when called after a usb_device_reset */
1687                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1688                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1689                                   __func__, ep);
1690                 return 0;
1691         }
1692
1693         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1694         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1695
1696         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1697         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1698
1699         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1700
1701         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1702                         (unsigned int) ep->desc.bEndpointAddress,
1703                         udev->slot_id,
1704                         (unsigned int) new_drop_flags,
1705                         (unsigned int) new_add_flags);
1706         return 0;
1707 }
1708
1709 /* Add an endpoint to a new possible bandwidth configuration for this device.
1710  * Only one call to this function is allowed per endpoint before
1711  * check_bandwidth() or reset_bandwidth() must be called.
1712  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1713  * add the endpoint to the schedule with possibly new parameters denoted by a
1714  * different endpoint descriptor in usb_host_endpoint.
1715  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1716  * not allowed.
1717  *
1718  * The USB core will not allow URBs to be queued to an endpoint until the
1719  * configuration or alt setting is installed in the device, so there's no need
1720  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1721  */
1722 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1723                 struct usb_host_endpoint *ep)
1724 {
1725         struct xhci_hcd *xhci;
1726         struct xhci_container_ctx *in_ctx;
1727         unsigned int ep_index;
1728         struct xhci_input_control_ctx *ctrl_ctx;
1729         u32 added_ctxs;
1730         u32 new_add_flags, new_drop_flags;
1731         struct xhci_virt_device *virt_dev;
1732         int ret = 0;
1733
1734         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1735         if (ret <= 0) {
1736                 /* So we won't queue a reset ep command for a root hub */
1737                 ep->hcpriv = NULL;
1738                 return ret;
1739         }
1740         xhci = hcd_to_xhci(hcd);
1741         if (xhci->xhc_state & XHCI_STATE_DYING)
1742                 return -ENODEV;
1743
1744         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1745         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1746                 /* FIXME when we have to issue an evaluate endpoint command to
1747                  * deal with ep0 max packet size changing once we get the
1748                  * descriptors
1749                  */
1750                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1751                                 __func__, added_ctxs);
1752                 return 0;
1753         }
1754
1755         virt_dev = xhci->devs[udev->slot_id];
1756         in_ctx = virt_dev->in_ctx;
1757         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1758         if (!ctrl_ctx) {
1759                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1760                                 __func__);
1761                 return 0;
1762         }
1763
1764         ep_index = xhci_get_endpoint_index(&ep->desc);
1765         /* If this endpoint is already in use, and the upper layers are trying
1766          * to add it again without dropping it, reject the addition.
1767          */
1768         if (virt_dev->eps[ep_index].ring &&
1769                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1770                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1771                                 "without dropping it.\n",
1772                                 (unsigned int) ep->desc.bEndpointAddress);
1773                 return -EINVAL;
1774         }
1775
1776         /* If the HCD has already noted the endpoint is enabled,
1777          * ignore this request.
1778          */
1779         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1780                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1781                                 __func__, ep);
1782                 return 0;
1783         }
1784
1785         /*
1786          * Configuration and alternate setting changes must be done in
1787          * process context, not interrupt context (or so documenation
1788          * for usb_set_interface() and usb_set_configuration() claim).
1789          */
1790         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1791                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1792                                 __func__, ep->desc.bEndpointAddress);
1793                 return -ENOMEM;
1794         }
1795
1796         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1797         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1798
1799         /* If xhci_endpoint_disable() was called for this endpoint, but the
1800          * xHC hasn't been notified yet through the check_bandwidth() call,
1801          * this re-adds a new state for the endpoint from the new endpoint
1802          * descriptors.  We must drop and re-add this endpoint, so we leave the
1803          * drop flags alone.
1804          */
1805         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1806
1807         /* Store the usb_device pointer for later use */
1808         ep->hcpriv = udev;
1809
1810         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1811                         (unsigned int) ep->desc.bEndpointAddress,
1812                         udev->slot_id,
1813                         (unsigned int) new_drop_flags,
1814                         (unsigned int) new_add_flags);
1815         return 0;
1816 }
1817
1818 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1819 {
1820         struct xhci_input_control_ctx *ctrl_ctx;
1821         struct xhci_ep_ctx *ep_ctx;
1822         struct xhci_slot_ctx *slot_ctx;
1823         int i;
1824
1825         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1826         if (!ctrl_ctx) {
1827                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1828                                 __func__);
1829                 return;
1830         }
1831
1832         /* When a device's add flag and drop flag are zero, any subsequent
1833          * configure endpoint command will leave that endpoint's state
1834          * untouched.  Make sure we don't leave any old state in the input
1835          * endpoint contexts.
1836          */
1837         ctrl_ctx->drop_flags = 0;
1838         ctrl_ctx->add_flags = 0;
1839         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1840         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1841         /* Endpoint 0 is always valid */
1842         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1843         for (i = 1; i < 31; ++i) {
1844                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1845                 ep_ctx->ep_info = 0;
1846                 ep_ctx->ep_info2 = 0;
1847                 ep_ctx->deq = 0;
1848                 ep_ctx->tx_info = 0;
1849         }
1850 }
1851
1852 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1853                 struct usb_device *udev, u32 *cmd_status)
1854 {
1855         int ret;
1856
1857         switch (*cmd_status) {
1858         case COMP_CMD_ABORT:
1859         case COMP_CMD_STOP:
1860                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1861                 ret = -ETIME;
1862                 break;
1863         case COMP_ENOMEM:
1864                 dev_warn(&udev->dev,
1865                          "Not enough host controller resources for new device state.\n");
1866                 ret = -ENOMEM;
1867                 /* FIXME: can we allocate more resources for the HC? */
1868                 break;
1869         case COMP_BW_ERR:
1870         case COMP_2ND_BW_ERR:
1871                 dev_warn(&udev->dev,
1872                          "Not enough bandwidth for new device state.\n");
1873                 ret = -ENOSPC;
1874                 /* FIXME: can we go back to the old state? */
1875                 break;
1876         case COMP_TRB_ERR:
1877                 /* the HCD set up something wrong */
1878                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1879                                 "add flag = 1, "
1880                                 "and endpoint is not disabled.\n");
1881                 ret = -EINVAL;
1882                 break;
1883         case COMP_DEV_ERR:
1884                 dev_warn(&udev->dev,
1885                          "ERROR: Incompatible device for endpoint configure command.\n");
1886                 ret = -ENODEV;
1887                 break;
1888         case COMP_SUCCESS:
1889                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1890                                 "Successful Endpoint Configure command");
1891                 ret = 0;
1892                 break;
1893         default:
1894                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1895                                 *cmd_status);
1896                 ret = -EINVAL;
1897                 break;
1898         }
1899         return ret;
1900 }
1901
1902 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1903                 struct usb_device *udev, u32 *cmd_status)
1904 {
1905         int ret;
1906         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1907
1908         switch (*cmd_status) {
1909         case COMP_CMD_ABORT:
1910         case COMP_CMD_STOP:
1911                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1912                 ret = -ETIME;
1913                 break;
1914         case COMP_EINVAL:
1915                 dev_warn(&udev->dev,
1916                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1917                 ret = -EINVAL;
1918                 break;
1919         case COMP_EBADSLT:
1920                 dev_warn(&udev->dev,
1921                         "WARN: slot not enabled for evaluate context command.\n");
1922                 ret = -EINVAL;
1923                 break;
1924         case COMP_CTX_STATE:
1925                 dev_warn(&udev->dev,
1926                         "WARN: invalid context state for evaluate context command.\n");
1927                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1928                 ret = -EINVAL;
1929                 break;
1930         case COMP_DEV_ERR:
1931                 dev_warn(&udev->dev,
1932                         "ERROR: Incompatible device for evaluate context command.\n");
1933                 ret = -ENODEV;
1934                 break;
1935         case COMP_MEL_ERR:
1936                 /* Max Exit Latency too large error */
1937                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1938                 ret = -EINVAL;
1939                 break;
1940         case COMP_SUCCESS:
1941                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1942                                 "Successful evaluate context command");
1943                 ret = 0;
1944                 break;
1945         default:
1946                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1947                         *cmd_status);
1948                 ret = -EINVAL;
1949                 break;
1950         }
1951         return ret;
1952 }
1953
1954 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1955                 struct xhci_input_control_ctx *ctrl_ctx)
1956 {
1957         u32 valid_add_flags;
1958         u32 valid_drop_flags;
1959
1960         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1961          * (bit 1).  The default control endpoint is added during the Address
1962          * Device command and is never removed until the slot is disabled.
1963          */
1964         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1965         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1966
1967         /* Use hweight32 to count the number of ones in the add flags, or
1968          * number of endpoints added.  Don't count endpoints that are changed
1969          * (both added and dropped).
1970          */
1971         return hweight32(valid_add_flags) -
1972                 hweight32(valid_add_flags & valid_drop_flags);
1973 }
1974
1975 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1976                 struct xhci_input_control_ctx *ctrl_ctx)
1977 {
1978         u32 valid_add_flags;
1979         u32 valid_drop_flags;
1980
1981         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1982         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1983
1984         return hweight32(valid_drop_flags) -
1985                 hweight32(valid_add_flags & valid_drop_flags);
1986 }
1987
1988 /*
1989  * We need to reserve the new number of endpoints before the configure endpoint
1990  * command completes.  We can't subtract the dropped endpoints from the number
1991  * of active endpoints until the command completes because we can oversubscribe
1992  * the host in this case:
1993  *
1994  *  - the first configure endpoint command drops more endpoints than it adds
1995  *  - a second configure endpoint command that adds more endpoints is queued
1996  *  - the first configure endpoint command fails, so the config is unchanged
1997  *  - the second command may succeed, even though there isn't enough resources
1998  *
1999  * Must be called with xhci->lock held.
2000  */
2001 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2002                 struct xhci_input_control_ctx *ctrl_ctx)
2003 {
2004         u32 added_eps;
2005
2006         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2007         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2008                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2009                                 "Not enough ep ctxs: "
2010                                 "%u active, need to add %u, limit is %u.",
2011                                 xhci->num_active_eps, added_eps,
2012                                 xhci->limit_active_eps);
2013                 return -ENOMEM;
2014         }
2015         xhci->num_active_eps += added_eps;
2016         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2017                         "Adding %u ep ctxs, %u now active.", added_eps,
2018                         xhci->num_active_eps);
2019         return 0;
2020 }
2021
2022 /*
2023  * The configure endpoint was failed by the xHC for some other reason, so we
2024  * need to revert the resources that failed configuration would have used.
2025  *
2026  * Must be called with xhci->lock held.
2027  */
2028 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2029                 struct xhci_input_control_ctx *ctrl_ctx)
2030 {
2031         u32 num_failed_eps;
2032
2033         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2034         xhci->num_active_eps -= num_failed_eps;
2035         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2036                         "Removing %u failed ep ctxs, %u now active.",
2037                         num_failed_eps,
2038                         xhci->num_active_eps);
2039 }
2040
2041 /*
2042  * Now that the command has completed, clean up the active endpoint count by
2043  * subtracting out the endpoints that were dropped (but not changed).
2044  *
2045  * Must be called with xhci->lock held.
2046  */
2047 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2048                 struct xhci_input_control_ctx *ctrl_ctx)
2049 {
2050         u32 num_dropped_eps;
2051
2052         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2053         xhci->num_active_eps -= num_dropped_eps;
2054         if (num_dropped_eps)
2055                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2056                                 "Removing %u dropped ep ctxs, %u now active.",
2057                                 num_dropped_eps,
2058                                 xhci->num_active_eps);
2059 }
2060
2061 static unsigned int xhci_get_block_size(struct usb_device *udev)
2062 {
2063         switch (udev->speed) {
2064         case USB_SPEED_LOW:
2065         case USB_SPEED_FULL:
2066                 return FS_BLOCK;
2067         case USB_SPEED_HIGH:
2068                 return HS_BLOCK;
2069         case USB_SPEED_SUPER:
2070                 return SS_BLOCK;
2071         case USB_SPEED_UNKNOWN:
2072         case USB_SPEED_WIRELESS:
2073         default:
2074                 /* Should never happen */
2075                 return 1;
2076         }
2077 }
2078
2079 static unsigned int
2080 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2081 {
2082         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2083                 return LS_OVERHEAD;
2084         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2085                 return FS_OVERHEAD;
2086         return HS_OVERHEAD;
2087 }
2088
2089 /* If we are changing a LS/FS device under a HS hub,
2090  * make sure (if we are activating a new TT) that the HS bus has enough
2091  * bandwidth for this new TT.
2092  */
2093 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2094                 struct xhci_virt_device *virt_dev,
2095                 int old_active_eps)
2096 {
2097         struct xhci_interval_bw_table *bw_table;
2098         struct xhci_tt_bw_info *tt_info;
2099
2100         /* Find the bandwidth table for the root port this TT is attached to. */
2101         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2102         tt_info = virt_dev->tt_info;
2103         /* If this TT already had active endpoints, the bandwidth for this TT
2104          * has already been added.  Removing all periodic endpoints (and thus
2105          * making the TT enactive) will only decrease the bandwidth used.
2106          */
2107         if (old_active_eps)
2108                 return 0;
2109         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2110                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2111                         return -ENOMEM;
2112                 return 0;
2113         }
2114         /* Not sure why we would have no new active endpoints...
2115          *
2116          * Maybe because of an Evaluate Context change for a hub update or a
2117          * control endpoint 0 max packet size change?
2118          * FIXME: skip the bandwidth calculation in that case.
2119          */
2120         return 0;
2121 }
2122
2123 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2124                 struct xhci_virt_device *virt_dev)
2125 {
2126         unsigned int bw_reserved;
2127
2128         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2129         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2130                 return -ENOMEM;
2131
2132         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2133         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2134                 return -ENOMEM;
2135
2136         return 0;
2137 }
2138
2139 /*
2140  * This algorithm is a very conservative estimate of the worst-case scheduling
2141  * scenario for any one interval.  The hardware dynamically schedules the
2142  * packets, so we can't tell which microframe could be the limiting factor in
2143  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2144  *
2145  * Obviously, we can't solve an NP complete problem to find the minimum worst
2146  * case scenario.  Instead, we come up with an estimate that is no less than
2147  * the worst case bandwidth used for any one microframe, but may be an
2148  * over-estimate.
2149  *
2150  * We walk the requirements for each endpoint by interval, starting with the
2151  * smallest interval, and place packets in the schedule where there is only one
2152  * possible way to schedule packets for that interval.  In order to simplify
2153  * this algorithm, we record the largest max packet size for each interval, and
2154  * assume all packets will be that size.
2155  *
2156  * For interval 0, we obviously must schedule all packets for each interval.
2157  * The bandwidth for interval 0 is just the amount of data to be transmitted
2158  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2159  * the number of packets).
2160  *
2161  * For interval 1, we have two possible microframes to schedule those packets
2162  * in.  For this algorithm, if we can schedule the same number of packets for
2163  * each possible scheduling opportunity (each microframe), we will do so.  The
2164  * remaining number of packets will be saved to be transmitted in the gaps in
2165  * the next interval's scheduling sequence.
2166  *
2167  * As we move those remaining packets to be scheduled with interval 2 packets,
2168  * we have to double the number of remaining packets to transmit.  This is
2169  * because the intervals are actually powers of 2, and we would be transmitting
2170  * the previous interval's packets twice in this interval.  We also have to be
2171  * sure that when we look at the largest max packet size for this interval, we
2172  * also look at the largest max packet size for the remaining packets and take
2173  * the greater of the two.
2174  *
2175  * The algorithm continues to evenly distribute packets in each scheduling
2176  * opportunity, and push the remaining packets out, until we get to the last
2177  * interval.  Then those packets and their associated overhead are just added
2178  * to the bandwidth used.
2179  */
2180 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2181                 struct xhci_virt_device *virt_dev,
2182                 int old_active_eps)
2183 {
2184         unsigned int bw_reserved;
2185         unsigned int max_bandwidth;
2186         unsigned int bw_used;
2187         unsigned int block_size;
2188         struct xhci_interval_bw_table *bw_table;
2189         unsigned int packet_size = 0;
2190         unsigned int overhead = 0;
2191         unsigned int packets_transmitted = 0;
2192         unsigned int packets_remaining = 0;
2193         unsigned int i;
2194
2195         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2196                 return xhci_check_ss_bw(xhci, virt_dev);
2197
2198         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2199                 max_bandwidth = HS_BW_LIMIT;
2200                 /* Convert percent of bus BW reserved to blocks reserved */
2201                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2202         } else {
2203                 max_bandwidth = FS_BW_LIMIT;
2204                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2205         }
2206
2207         bw_table = virt_dev->bw_table;
2208         /* We need to translate the max packet size and max ESIT payloads into
2209          * the units the hardware uses.
2210          */
2211         block_size = xhci_get_block_size(virt_dev->udev);
2212
2213         /* If we are manipulating a LS/FS device under a HS hub, double check
2214          * that the HS bus has enough bandwidth if we are activing a new TT.
2215          */
2216         if (virt_dev->tt_info) {
2217                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2218                                 "Recalculating BW for rootport %u",
2219                                 virt_dev->real_port);
2220                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2221                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2222                                         "newly activated TT.\n");
2223                         return -ENOMEM;
2224                 }
2225                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2226                                 "Recalculating BW for TT slot %u port %u",
2227                                 virt_dev->tt_info->slot_id,
2228                                 virt_dev->tt_info->ttport);
2229         } else {
2230                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2231                                 "Recalculating BW for rootport %u",
2232                                 virt_dev->real_port);
2233         }
2234
2235         /* Add in how much bandwidth will be used for interval zero, or the
2236          * rounded max ESIT payload + number of packets * largest overhead.
2237          */
2238         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2239                 bw_table->interval_bw[0].num_packets *
2240                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2241
2242         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2243                 unsigned int bw_added;
2244                 unsigned int largest_mps;
2245                 unsigned int interval_overhead;
2246
2247                 /*
2248                  * How many packets could we transmit in this interval?
2249                  * If packets didn't fit in the previous interval, we will need
2250                  * to transmit that many packets twice within this interval.
2251                  */
2252                 packets_remaining = 2 * packets_remaining +
2253                         bw_table->interval_bw[i].num_packets;
2254
2255                 /* Find the largest max packet size of this or the previous
2256                  * interval.
2257                  */
2258                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2259                         largest_mps = 0;
2260                 else {
2261                         struct xhci_virt_ep *virt_ep;
2262                         struct list_head *ep_entry;
2263
2264                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2265                         virt_ep = list_entry(ep_entry,
2266                                         struct xhci_virt_ep, bw_endpoint_list);
2267                         /* Convert to blocks, rounding up */
2268                         largest_mps = DIV_ROUND_UP(
2269                                         virt_ep->bw_info.max_packet_size,
2270                                         block_size);
2271                 }
2272                 if (largest_mps > packet_size)
2273                         packet_size = largest_mps;
2274
2275                 /* Use the larger overhead of this or the previous interval. */
2276                 interval_overhead = xhci_get_largest_overhead(
2277                                 &bw_table->interval_bw[i]);
2278                 if (interval_overhead > overhead)
2279                         overhead = interval_overhead;
2280
2281                 /* How many packets can we evenly distribute across
2282                  * (1 << (i + 1)) possible scheduling opportunities?
2283                  */
2284                 packets_transmitted = packets_remaining >> (i + 1);
2285
2286                 /* Add in the bandwidth used for those scheduled packets */
2287                 bw_added = packets_transmitted * (overhead + packet_size);
2288
2289                 /* How many packets do we have remaining to transmit? */
2290                 packets_remaining = packets_remaining % (1 << (i + 1));
2291
2292                 /* What largest max packet size should those packets have? */
2293                 /* If we've transmitted all packets, don't carry over the
2294                  * largest packet size.
2295                  */
2296                 if (packets_remaining == 0) {
2297                         packet_size = 0;
2298                         overhead = 0;
2299                 } else if (packets_transmitted > 0) {
2300                         /* Otherwise if we do have remaining packets, and we've
2301                          * scheduled some packets in this interval, take the
2302                          * largest max packet size from endpoints with this
2303                          * interval.
2304                          */
2305                         packet_size = largest_mps;
2306                         overhead = interval_overhead;
2307                 }
2308                 /* Otherwise carry over packet_size and overhead from the last
2309                  * time we had a remainder.
2310                  */
2311                 bw_used += bw_added;
2312                 if (bw_used > max_bandwidth) {
2313                         xhci_warn(xhci, "Not enough bandwidth. "
2314                                         "Proposed: %u, Max: %u\n",
2315                                 bw_used, max_bandwidth);
2316                         return -ENOMEM;
2317                 }
2318         }
2319         /*
2320          * Ok, we know we have some packets left over after even-handedly
2321          * scheduling interval 15.  We don't know which microframes they will
2322          * fit into, so we over-schedule and say they will be scheduled every
2323          * microframe.
2324          */
2325         if (packets_remaining > 0)
2326                 bw_used += overhead + packet_size;
2327
2328         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2329                 unsigned int port_index = virt_dev->real_port - 1;
2330
2331                 /* OK, we're manipulating a HS device attached to a
2332                  * root port bandwidth domain.  Include the number of active TTs
2333                  * in the bandwidth used.
2334                  */
2335                 bw_used += TT_HS_OVERHEAD *
2336                         xhci->rh_bw[port_index].num_active_tts;
2337         }
2338
2339         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2340                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2341                 "Available: %u " "percent",
2342                 bw_used, max_bandwidth, bw_reserved,
2343                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2344                 max_bandwidth);
2345
2346         bw_used += bw_reserved;
2347         if (bw_used > max_bandwidth) {
2348                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2349                                 bw_used, max_bandwidth);
2350                 return -ENOMEM;
2351         }
2352
2353         bw_table->bw_used = bw_used;
2354         return 0;
2355 }
2356
2357 static bool xhci_is_async_ep(unsigned int ep_type)
2358 {
2359         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2360                                         ep_type != ISOC_IN_EP &&
2361                                         ep_type != INT_IN_EP);
2362 }
2363
2364 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2365 {
2366         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2367 }
2368
2369 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2370 {
2371         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2372
2373         if (ep_bw->ep_interval == 0)
2374                 return SS_OVERHEAD_BURST +
2375                         (ep_bw->mult * ep_bw->num_packets *
2376                                         (SS_OVERHEAD + mps));
2377         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2378                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2379                                 1 << ep_bw->ep_interval);
2380
2381 }
2382
2383 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2384                 struct xhci_bw_info *ep_bw,
2385                 struct xhci_interval_bw_table *bw_table,
2386                 struct usb_device *udev,
2387                 struct xhci_virt_ep *virt_ep,
2388                 struct xhci_tt_bw_info *tt_info)
2389 {
2390         struct xhci_interval_bw *interval_bw;
2391         int normalized_interval;
2392
2393         if (xhci_is_async_ep(ep_bw->type))
2394                 return;
2395
2396         if (udev->speed == USB_SPEED_SUPER) {
2397                 if (xhci_is_sync_in_ep(ep_bw->type))
2398                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2399                                 xhci_get_ss_bw_consumed(ep_bw);
2400                 else
2401                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2402                                 xhci_get_ss_bw_consumed(ep_bw);
2403                 return;
2404         }
2405
2406         /* SuperSpeed endpoints never get added to intervals in the table, so
2407          * this check is only valid for HS/FS/LS devices.
2408          */
2409         if (list_empty(&virt_ep->bw_endpoint_list))
2410                 return;
2411         /* For LS/FS devices, we need to translate the interval expressed in
2412          * microframes to frames.
2413          */
2414         if (udev->speed == USB_SPEED_HIGH)
2415                 normalized_interval = ep_bw->ep_interval;
2416         else
2417                 normalized_interval = ep_bw->ep_interval - 3;
2418
2419         if (normalized_interval == 0)
2420                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2421         interval_bw = &bw_table->interval_bw[normalized_interval];
2422         interval_bw->num_packets -= ep_bw->num_packets;
2423         switch (udev->speed) {
2424         case USB_SPEED_LOW:
2425                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2426                 break;
2427         case USB_SPEED_FULL:
2428                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2429                 break;
2430         case USB_SPEED_HIGH:
2431                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2432                 break;
2433         case USB_SPEED_SUPER:
2434         case USB_SPEED_UNKNOWN:
2435         case USB_SPEED_WIRELESS:
2436                 /* Should never happen because only LS/FS/HS endpoints will get
2437                  * added to the endpoint list.
2438                  */
2439                 return;
2440         }
2441         if (tt_info)
2442                 tt_info->active_eps -= 1;
2443         list_del_init(&virt_ep->bw_endpoint_list);
2444 }
2445
2446 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2447                 struct xhci_bw_info *ep_bw,
2448                 struct xhci_interval_bw_table *bw_table,
2449                 struct usb_device *udev,
2450                 struct xhci_virt_ep *virt_ep,
2451                 struct xhci_tt_bw_info *tt_info)
2452 {
2453         struct xhci_interval_bw *interval_bw;
2454         struct xhci_virt_ep *smaller_ep;
2455         int normalized_interval;
2456
2457         if (xhci_is_async_ep(ep_bw->type))
2458                 return;
2459
2460         if (udev->speed == USB_SPEED_SUPER) {
2461                 if (xhci_is_sync_in_ep(ep_bw->type))
2462                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2463                                 xhci_get_ss_bw_consumed(ep_bw);
2464                 else
2465                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2466                                 xhci_get_ss_bw_consumed(ep_bw);
2467                 return;
2468         }
2469
2470         /* For LS/FS devices, we need to translate the interval expressed in
2471          * microframes to frames.
2472          */
2473         if (udev->speed == USB_SPEED_HIGH)
2474                 normalized_interval = ep_bw->ep_interval;
2475         else
2476                 normalized_interval = ep_bw->ep_interval - 3;
2477
2478         if (normalized_interval == 0)
2479                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2480         interval_bw = &bw_table->interval_bw[normalized_interval];
2481         interval_bw->num_packets += ep_bw->num_packets;
2482         switch (udev->speed) {
2483         case USB_SPEED_LOW:
2484                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2485                 break;
2486         case USB_SPEED_FULL:
2487                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2488                 break;
2489         case USB_SPEED_HIGH:
2490                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2491                 break;
2492         case USB_SPEED_SUPER:
2493         case USB_SPEED_UNKNOWN:
2494         case USB_SPEED_WIRELESS:
2495                 /* Should never happen because only LS/FS/HS endpoints will get
2496                  * added to the endpoint list.
2497                  */
2498                 return;
2499         }
2500
2501         if (tt_info)
2502                 tt_info->active_eps += 1;
2503         /* Insert the endpoint into the list, largest max packet size first. */
2504         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2505                         bw_endpoint_list) {
2506                 if (ep_bw->max_packet_size >=
2507                                 smaller_ep->bw_info.max_packet_size) {
2508                         /* Add the new ep before the smaller endpoint */
2509                         list_add_tail(&virt_ep->bw_endpoint_list,
2510                                         &smaller_ep->bw_endpoint_list);
2511                         return;
2512                 }
2513         }
2514         /* Add the new endpoint at the end of the list. */
2515         list_add_tail(&virt_ep->bw_endpoint_list,
2516                         &interval_bw->endpoints);
2517 }
2518
2519 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2520                 struct xhci_virt_device *virt_dev,
2521                 int old_active_eps)
2522 {
2523         struct xhci_root_port_bw_info *rh_bw_info;
2524         if (!virt_dev->tt_info)
2525                 return;
2526
2527         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2528         if (old_active_eps == 0 &&
2529                                 virt_dev->tt_info->active_eps != 0) {
2530                 rh_bw_info->num_active_tts += 1;
2531                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2532         } else if (old_active_eps != 0 &&
2533                                 virt_dev->tt_info->active_eps == 0) {
2534                 rh_bw_info->num_active_tts -= 1;
2535                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2536         }
2537 }
2538
2539 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2540                 struct xhci_virt_device *virt_dev,
2541                 struct xhci_container_ctx *in_ctx)
2542 {
2543         struct xhci_bw_info ep_bw_info[31];
2544         int i;
2545         struct xhci_input_control_ctx *ctrl_ctx;
2546         int old_active_eps = 0;
2547
2548         if (virt_dev->tt_info)
2549                 old_active_eps = virt_dev->tt_info->active_eps;
2550
2551         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2552         if (!ctrl_ctx) {
2553                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2554                                 __func__);
2555                 return -ENOMEM;
2556         }
2557
2558         for (i = 0; i < 31; i++) {
2559                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2560                         continue;
2561
2562                 /* Make a copy of the BW info in case we need to revert this */
2563                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2564                                 sizeof(ep_bw_info[i]));
2565                 /* Drop the endpoint from the interval table if the endpoint is
2566                  * being dropped or changed.
2567                  */
2568                 if (EP_IS_DROPPED(ctrl_ctx, i))
2569                         xhci_drop_ep_from_interval_table(xhci,
2570                                         &virt_dev->eps[i].bw_info,
2571                                         virt_dev->bw_table,
2572                                         virt_dev->udev,
2573                                         &virt_dev->eps[i],
2574                                         virt_dev->tt_info);
2575         }
2576         /* Overwrite the information stored in the endpoints' bw_info */
2577         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2578         for (i = 0; i < 31; i++) {
2579                 /* Add any changed or added endpoints to the interval table */
2580                 if (EP_IS_ADDED(ctrl_ctx, i))
2581                         xhci_add_ep_to_interval_table(xhci,
2582                                         &virt_dev->eps[i].bw_info,
2583                                         virt_dev->bw_table,
2584                                         virt_dev->udev,
2585                                         &virt_dev->eps[i],
2586                                         virt_dev->tt_info);
2587         }
2588
2589         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2590                 /* Ok, this fits in the bandwidth we have.
2591                  * Update the number of active TTs.
2592                  */
2593                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2594                 return 0;
2595         }
2596
2597         /* We don't have enough bandwidth for this, revert the stored info. */
2598         for (i = 0; i < 31; i++) {
2599                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2600                         continue;
2601
2602                 /* Drop the new copies of any added or changed endpoints from
2603                  * the interval table.
2604                  */
2605                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2606                         xhci_drop_ep_from_interval_table(xhci,
2607                                         &virt_dev->eps[i].bw_info,
2608                                         virt_dev->bw_table,
2609                                         virt_dev->udev,
2610                                         &virt_dev->eps[i],
2611                                         virt_dev->tt_info);
2612                 }
2613                 /* Revert the endpoint back to its old information */
2614                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2615                                 sizeof(ep_bw_info[i]));
2616                 /* Add any changed or dropped endpoints back into the table */
2617                 if (EP_IS_DROPPED(ctrl_ctx, i))
2618                         xhci_add_ep_to_interval_table(xhci,
2619                                         &virt_dev->eps[i].bw_info,
2620                                         virt_dev->bw_table,
2621                                         virt_dev->udev,
2622                                         &virt_dev->eps[i],
2623                                         virt_dev->tt_info);
2624         }
2625         return -ENOMEM;
2626 }
2627
2628
2629 /* Issue a configure endpoint command or evaluate context command
2630  * and wait for it to finish.
2631  */
2632 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2633                 struct usb_device *udev,
2634                 struct xhci_command *command,
2635                 bool ctx_change, bool must_succeed)
2636 {
2637         int ret;
2638         unsigned long flags;
2639         struct xhci_input_control_ctx *ctrl_ctx;
2640         struct xhci_virt_device *virt_dev;
2641
2642         if (!command)
2643                 return -EINVAL;
2644
2645         spin_lock_irqsave(&xhci->lock, flags);
2646         virt_dev = xhci->devs[udev->slot_id];
2647
2648         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2649         if (!ctrl_ctx) {
2650                 spin_unlock_irqrestore(&xhci->lock, flags);
2651                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2652                                 __func__);
2653                 return -ENOMEM;
2654         }
2655
2656         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2657                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2658                 spin_unlock_irqrestore(&xhci->lock, flags);
2659                 xhci_warn(xhci, "Not enough host resources, "
2660                                 "active endpoint contexts = %u\n",
2661                                 xhci->num_active_eps);
2662                 return -ENOMEM;
2663         }
2664         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2665             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2666                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2667                         xhci_free_host_resources(xhci, ctrl_ctx);
2668                 spin_unlock_irqrestore(&xhci->lock, flags);
2669                 xhci_warn(xhci, "Not enough bandwidth\n");
2670                 return -ENOMEM;
2671         }
2672
2673         if (!ctx_change)
2674                 ret = xhci_queue_configure_endpoint(xhci, command,
2675                                 command->in_ctx->dma,
2676                                 udev->slot_id, must_succeed);
2677         else
2678                 ret = xhci_queue_evaluate_context(xhci, command,
2679                                 command->in_ctx->dma,
2680                                 udev->slot_id, must_succeed);
2681         if (ret < 0) {
2682                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2683                         xhci_free_host_resources(xhci, ctrl_ctx);
2684                 spin_unlock_irqrestore(&xhci->lock, flags);
2685                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2686                                 "FIXME allocate a new ring segment");
2687                 return -ENOMEM;
2688         }
2689         xhci_ring_cmd_db(xhci);
2690         spin_unlock_irqrestore(&xhci->lock, flags);
2691
2692         /* Wait for the configure endpoint command to complete */
2693         wait_for_completion(command->completion);
2694
2695         if (!ctx_change)
2696                 ret = xhci_configure_endpoint_result(xhci, udev,
2697                                                      &command->status);
2698         else
2699                 ret = xhci_evaluate_context_result(xhci, udev,
2700                                                    &command->status);
2701
2702         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2703                 spin_lock_irqsave(&xhci->lock, flags);
2704                 /* If the command failed, remove the reserved resources.
2705                  * Otherwise, clean up the estimate to include dropped eps.
2706                  */
2707                 if (ret)
2708                         xhci_free_host_resources(xhci, ctrl_ctx);
2709                 else
2710                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2711                 spin_unlock_irqrestore(&xhci->lock, flags);
2712         }
2713         return ret;
2714 }
2715
2716 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2717         struct xhci_virt_device *vdev, int i)
2718 {
2719         struct xhci_virt_ep *ep = &vdev->eps[i];
2720
2721         if (ep->ep_state & EP_HAS_STREAMS) {
2722                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2723                                 xhci_get_endpoint_address(i));
2724                 xhci_free_stream_info(xhci, ep->stream_info);
2725                 ep->stream_info = NULL;
2726                 ep->ep_state &= ~EP_HAS_STREAMS;
2727         }
2728 }
2729
2730 /* Called after one or more calls to xhci_add_endpoint() or
2731  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2732  * to call xhci_reset_bandwidth().
2733  *
2734  * Since we are in the middle of changing either configuration or
2735  * installing a new alt setting, the USB core won't allow URBs to be
2736  * enqueued for any endpoint on the old config or interface.  Nothing
2737  * else should be touching the xhci->devs[slot_id] structure, so we
2738  * don't need to take the xhci->lock for manipulating that.
2739  */
2740 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2741 {
2742         int i;
2743         int ret = 0;
2744         struct xhci_hcd *xhci;
2745         struct xhci_virt_device *virt_dev;
2746         struct xhci_input_control_ctx *ctrl_ctx;
2747         struct xhci_slot_ctx *slot_ctx;
2748         struct xhci_command *command;
2749
2750         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2751         if (ret <= 0)
2752                 return ret;
2753         xhci = hcd_to_xhci(hcd);
2754         if (xhci->xhc_state & XHCI_STATE_DYING)
2755                 return -ENODEV;
2756
2757         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2758         virt_dev = xhci->devs[udev->slot_id];
2759
2760         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2761         if (!command)
2762                 return -ENOMEM;
2763
2764         command->in_ctx = virt_dev->in_ctx;
2765
2766         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2767         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2768         if (!ctrl_ctx) {
2769                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2770                                 __func__);
2771                 ret = -ENOMEM;
2772                 goto command_cleanup;
2773         }
2774         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2775         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2776         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2777
2778         /* Don't issue the command if there's no endpoints to update. */
2779         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2780             ctrl_ctx->drop_flags == 0) {
2781                 ret = 0;
2782                 goto command_cleanup;
2783         }
2784         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2785         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2786         for (i = 31; i >= 1; i--) {
2787                 __le32 le32 = cpu_to_le32(BIT(i));
2788
2789                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2790                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2791                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2792                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2793                         break;
2794                 }
2795         }
2796         xhci_dbg(xhci, "New Input Control Context:\n");
2797         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2798                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2799
2800         ret = xhci_configure_endpoint(xhci, udev, command,
2801                         false, false);
2802         if (ret)
2803                 /* Callee should call reset_bandwidth() */
2804                 goto command_cleanup;
2805
2806         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2807         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2808                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2809
2810         /* Free any rings that were dropped, but not changed. */
2811         for (i = 1; i < 31; ++i) {
2812                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2813                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2814                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2815                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2816                 }
2817         }
2818         xhci_zero_in_ctx(xhci, virt_dev);
2819         /*
2820          * Install any rings for completely new endpoints or changed endpoints,
2821          * and free or cache any old rings from changed endpoints.
2822          */
2823         for (i = 1; i < 31; ++i) {
2824                 if (!virt_dev->eps[i].new_ring)
2825                         continue;
2826                 /* Only cache or free the old ring if it exists.
2827                  * It may not if this is the first add of an endpoint.
2828                  */
2829                 if (virt_dev->eps[i].ring) {
2830                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2831                 }
2832                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2833                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2834                 virt_dev->eps[i].new_ring = NULL;
2835         }
2836 command_cleanup:
2837         kfree(command->completion);
2838         kfree(command);
2839
2840         return ret;
2841 }
2842
2843 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2844 {
2845         struct xhci_hcd *xhci;
2846         struct xhci_virt_device *virt_dev;
2847         int i, ret;
2848
2849         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2850         if (ret <= 0)
2851                 return;
2852         xhci = hcd_to_xhci(hcd);
2853
2854         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2855         virt_dev = xhci->devs[udev->slot_id];
2856         /* Free any rings allocated for added endpoints */
2857         for (i = 0; i < 31; ++i) {
2858                 if (virt_dev->eps[i].new_ring) {
2859                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2860                         virt_dev->eps[i].new_ring = NULL;
2861                 }
2862         }
2863         xhci_zero_in_ctx(xhci, virt_dev);
2864 }
2865
2866 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2867                 struct xhci_container_ctx *in_ctx,
2868                 struct xhci_container_ctx *out_ctx,
2869                 struct xhci_input_control_ctx *ctrl_ctx,
2870                 u32 add_flags, u32 drop_flags)
2871 {
2872         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2873         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2874         xhci_slot_copy(xhci, in_ctx, out_ctx);
2875         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2876
2877         xhci_dbg(xhci, "Input Context:\n");
2878         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2879 }
2880
2881 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2882                 unsigned int slot_id, unsigned int ep_index,
2883                 struct xhci_dequeue_state *deq_state)
2884 {
2885         struct xhci_input_control_ctx *ctrl_ctx;
2886         struct xhci_container_ctx *in_ctx;
2887         struct xhci_ep_ctx *ep_ctx;
2888         u32 added_ctxs;
2889         dma_addr_t addr;
2890
2891         in_ctx = xhci->devs[slot_id]->in_ctx;
2892         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2893         if (!ctrl_ctx) {
2894                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2895                                 __func__);
2896                 return;
2897         }
2898
2899         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2900                         xhci->devs[slot_id]->out_ctx, ep_index);
2901         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2902         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2903                         deq_state->new_deq_ptr);
2904         if (addr == 0) {
2905                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2906                                 "reset ep command\n");
2907                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2908                                 deq_state->new_deq_seg,
2909                                 deq_state->new_deq_ptr);
2910                 return;
2911         }
2912         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2913
2914         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2915         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2916                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2917                         added_ctxs, added_ctxs);
2918 }
2919
2920 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2921                         unsigned int ep_index, struct xhci_td *td)
2922 {
2923         struct xhci_dequeue_state deq_state;
2924         struct xhci_virt_ep *ep;
2925         struct usb_device *udev = td->urb->dev;
2926
2927         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2928                         "Cleaning up stalled endpoint ring");
2929         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2930         /* We need to move the HW's dequeue pointer past this TD,
2931          * or it will attempt to resend it on the next doorbell ring.
2932          */
2933         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2934                         ep_index, ep->stopped_stream, td, &deq_state);
2935
2936         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2937                 return;
2938
2939         /* HW with the reset endpoint quirk will use the saved dequeue state to
2940          * issue a configure endpoint command later.
2941          */
2942         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2943                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2944                                 "Queueing new dequeue state");
2945                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2946                                 ep_index, ep->stopped_stream, &deq_state);
2947         } else {
2948                 /* Better hope no one uses the input context between now and the
2949                  * reset endpoint completion!
2950                  * XXX: No idea how this hardware will react when stream rings
2951                  * are enabled.
2952                  */
2953                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2954                                 "Setting up input context for "
2955                                 "configure endpoint command");
2956                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2957                                 ep_index, &deq_state);
2958         }
2959 }
2960
2961 /* Called when clearing halted device. The core should have sent the control
2962  * message to clear the device halt condition. The host side of the halt should
2963  * already be cleared with a reset endpoint command issued when the STALL tx
2964  * event was received.
2965  *
2966  * Context: in_interrupt
2967  */
2968
2969 void xhci_endpoint_reset(struct usb_hcd *hcd,
2970                 struct usb_host_endpoint *ep)
2971 {
2972         struct xhci_hcd *xhci;
2973
2974         xhci = hcd_to_xhci(hcd);
2975
2976         /*
2977          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2978          * The Reset Endpoint Command may only be issued to endpoints in the
2979          * Halted state. If software wishes reset the Data Toggle or Sequence
2980          * Number of an endpoint that isn't in the Halted state, then software
2981          * may issue a Configure Endpoint Command with the Drop and Add bits set
2982          * for the target endpoint. that is in the Stopped state.
2983          */
2984
2985         /* For now just print debug to follow the situation */
2986         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2987                  ep->desc.bEndpointAddress);
2988 }
2989
2990 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2991                 struct usb_device *udev, struct usb_host_endpoint *ep,
2992                 unsigned int slot_id)
2993 {
2994         int ret;
2995         unsigned int ep_index;
2996         unsigned int ep_state;
2997
2998         if (!ep)
2999                 return -EINVAL;
3000         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3001         if (ret <= 0)
3002                 return -EINVAL;
3003         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3004                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3005                                 " descriptor for ep 0x%x does not support streams\n",
3006                                 ep->desc.bEndpointAddress);
3007                 return -EINVAL;
3008         }
3009
3010         ep_index = xhci_get_endpoint_index(&ep->desc);
3011         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3012         if (ep_state & EP_HAS_STREAMS ||
3013                         ep_state & EP_GETTING_STREAMS) {
3014                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3015                                 "already has streams set up.\n",
3016                                 ep->desc.bEndpointAddress);
3017                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3018                                 "dynamic stream context array reallocation.\n");
3019                 return -EINVAL;
3020         }
3021         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3022                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3023                                 "endpoint 0x%x; URBs are pending.\n",
3024                                 ep->desc.bEndpointAddress);
3025                 return -EINVAL;
3026         }
3027         return 0;
3028 }
3029
3030 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3031                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3032 {
3033         unsigned int max_streams;
3034
3035         /* The stream context array size must be a power of two */
3036         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3037         /*
3038          * Find out how many primary stream array entries the host controller
3039          * supports.  Later we may use secondary stream arrays (similar to 2nd
3040          * level page entries), but that's an optional feature for xHCI host
3041          * controllers. xHCs must support at least 4 stream IDs.
3042          */
3043         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3044         if (*num_stream_ctxs > max_streams) {
3045                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3046                                 max_streams);
3047                 *num_stream_ctxs = max_streams;
3048                 *num_streams = max_streams;
3049         }
3050 }
3051
3052 /* Returns an error code if one of the endpoint already has streams.
3053  * This does not change any data structures, it only checks and gathers
3054  * information.
3055  */
3056 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3057                 struct usb_device *udev,
3058                 struct usb_host_endpoint **eps, unsigned int num_eps,
3059                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3060 {
3061         unsigned int max_streams;
3062         unsigned int endpoint_flag;
3063         int i;
3064         int ret;
3065
3066         for (i = 0; i < num_eps; i++) {
3067                 ret = xhci_check_streams_endpoint(xhci, udev,
3068                                 eps[i], udev->slot_id);
3069                 if (ret < 0)
3070                         return ret;
3071
3072                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3073                 if (max_streams < (*num_streams - 1)) {
3074                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3075                                         eps[i]->desc.bEndpointAddress,
3076                                         max_streams);
3077                         *num_streams = max_streams+1;
3078                 }
3079
3080                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3081                 if (*changed_ep_bitmask & endpoint_flag)
3082                         return -EINVAL;
3083                 *changed_ep_bitmask |= endpoint_flag;
3084         }
3085         return 0;
3086 }
3087
3088 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3089                 struct usb_device *udev,
3090                 struct usb_host_endpoint **eps, unsigned int num_eps)
3091 {
3092         u32 changed_ep_bitmask = 0;
3093         unsigned int slot_id;
3094         unsigned int ep_index;
3095         unsigned int ep_state;
3096         int i;
3097
3098         slot_id = udev->slot_id;
3099         if (!xhci->devs[slot_id])
3100                 return 0;
3101
3102         for (i = 0; i < num_eps; i++) {
3103                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3104                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3105                 /* Are streams already being freed for the endpoint? */
3106                 if (ep_state & EP_GETTING_NO_STREAMS) {
3107                         xhci_warn(xhci, "WARN Can't disable streams for "
3108                                         "endpoint 0x%x, "
3109                                         "streams are being disabled already\n",
3110                                         eps[i]->desc.bEndpointAddress);
3111                         return 0;
3112                 }
3113                 /* Are there actually any streams to free? */
3114                 if (!(ep_state & EP_HAS_STREAMS) &&
3115                                 !(ep_state & EP_GETTING_STREAMS)) {
3116                         xhci_warn(xhci, "WARN Can't disable streams for "
3117                                         "endpoint 0x%x, "
3118                                         "streams are already disabled!\n",
3119                                         eps[i]->desc.bEndpointAddress);
3120                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3121                                         "with non-streams endpoint\n");
3122                         return 0;
3123                 }
3124                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3125         }
3126         return changed_ep_bitmask;
3127 }
3128
3129 /*
3130  * The USB device drivers use this function (through the HCD interface in USB
3131  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3132  * coordinate mass storage command queueing across multiple endpoints (basically
3133  * a stream ID == a task ID).
3134  *
3135  * Setting up streams involves allocating the same size stream context array
3136  * for each endpoint and issuing a configure endpoint command for all endpoints.
3137  *
3138  * Don't allow the call to succeed if one endpoint only supports one stream
3139  * (which means it doesn't support streams at all).
3140  *
3141  * Drivers may get less stream IDs than they asked for, if the host controller
3142  * hardware or endpoints claim they can't support the number of requested
3143  * stream IDs.
3144  */
3145 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3146                 struct usb_host_endpoint **eps, unsigned int num_eps,
3147                 unsigned int num_streams, gfp_t mem_flags)
3148 {
3149         int i, ret;
3150         struct xhci_hcd *xhci;
3151         struct xhci_virt_device *vdev;
3152         struct xhci_command *config_cmd;
3153         struct xhci_input_control_ctx *ctrl_ctx;
3154         unsigned int ep_index;
3155         unsigned int num_stream_ctxs;
3156         unsigned long flags;
3157         u32 changed_ep_bitmask = 0;
3158
3159         if (!eps)
3160                 return -EINVAL;
3161
3162         /* Add one to the number of streams requested to account for
3163          * stream 0 that is reserved for xHCI usage.
3164          */
3165         num_streams += 1;
3166         xhci = hcd_to_xhci(hcd);
3167         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3168                         num_streams);
3169
3170         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3171         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3172                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3173                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3174                 return -ENOSYS;
3175         }
3176
3177         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3178         if (!config_cmd) {
3179                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3180                 return -ENOMEM;
3181         }
3182         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3183         if (!ctrl_ctx) {
3184                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3185                                 __func__);
3186                 xhci_free_command(xhci, config_cmd);
3187                 return -ENOMEM;
3188         }
3189
3190         /* Check to make sure all endpoints are not already configured for
3191          * streams.  While we're at it, find the maximum number of streams that
3192          * all the endpoints will support and check for duplicate endpoints.
3193          */
3194         spin_lock_irqsave(&xhci->lock, flags);
3195         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3196                         num_eps, &num_streams, &changed_ep_bitmask);
3197         if (ret < 0) {
3198                 xhci_free_command(xhci, config_cmd);
3199                 spin_unlock_irqrestore(&xhci->lock, flags);
3200                 return ret;
3201         }
3202         if (num_streams <= 1) {
3203                 xhci_warn(xhci, "WARN: endpoints can't handle "
3204                                 "more than one stream.\n");
3205                 xhci_free_command(xhci, config_cmd);
3206                 spin_unlock_irqrestore(&xhci->lock, flags);
3207                 return -EINVAL;
3208         }
3209         vdev = xhci->devs[udev->slot_id];
3210         /* Mark each endpoint as being in transition, so
3211          * xhci_urb_enqueue() will reject all URBs.
3212          */
3213         for (i = 0; i < num_eps; i++) {
3214                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3215                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3216         }
3217         spin_unlock_irqrestore(&xhci->lock, flags);
3218
3219         /* Setup internal data structures and allocate HW data structures for
3220          * streams (but don't install the HW structures in the input context
3221          * until we're sure all memory allocation succeeded).
3222          */
3223         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3224         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3225                         num_stream_ctxs, num_streams);
3226
3227         for (i = 0; i < num_eps; i++) {
3228                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3229                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3230                                 num_stream_ctxs,
3231                                 num_streams, mem_flags);
3232                 if (!vdev->eps[ep_index].stream_info)
3233                         goto cleanup;
3234                 /* Set maxPstreams in endpoint context and update deq ptr to
3235                  * point to stream context array. FIXME
3236                  */
3237         }
3238
3239         /* Set up the input context for a configure endpoint command. */
3240         for (i = 0; i < num_eps; i++) {
3241                 struct xhci_ep_ctx *ep_ctx;
3242
3243                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3244                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3245
3246                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3247                                 vdev->out_ctx, ep_index);
3248                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3249                                 vdev->eps[ep_index].stream_info);
3250         }
3251         /* Tell the HW to drop its old copy of the endpoint context info
3252          * and add the updated copy from the input context.
3253          */
3254         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3255                         vdev->out_ctx, ctrl_ctx,
3256                         changed_ep_bitmask, changed_ep_bitmask);
3257
3258         /* Issue and wait for the configure endpoint command */
3259         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3260                         false, false);
3261
3262         /* xHC rejected the configure endpoint command for some reason, so we
3263          * leave the old ring intact and free our internal streams data
3264          * structure.
3265          */
3266         if (ret < 0)
3267                 goto cleanup;
3268
3269         spin_lock_irqsave(&xhci->lock, flags);
3270         for (i = 0; i < num_eps; i++) {
3271                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3272                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3273                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3274                          udev->slot_id, ep_index);
3275                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3276         }
3277         xhci_free_command(xhci, config_cmd);
3278         spin_unlock_irqrestore(&xhci->lock, flags);
3279
3280         /* Subtract 1 for stream 0, which drivers can't use */
3281         return num_streams - 1;
3282
3283 cleanup:
3284         /* If it didn't work, free the streams! */
3285         for (i = 0; i < num_eps; i++) {
3286                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3287                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3288                 vdev->eps[ep_index].stream_info = NULL;
3289                 /* FIXME Unset maxPstreams in endpoint context and
3290                  * update deq ptr to point to normal string ring.
3291                  */
3292                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3293                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3294                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3295         }
3296         xhci_free_command(xhci, config_cmd);
3297         return -ENOMEM;
3298 }
3299
3300 /* Transition the endpoint from using streams to being a "normal" endpoint
3301  * without streams.
3302  *
3303  * Modify the endpoint context state, submit a configure endpoint command,
3304  * and free all endpoint rings for streams if that completes successfully.
3305  */
3306 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3307                 struct usb_host_endpoint **eps, unsigned int num_eps,
3308                 gfp_t mem_flags)
3309 {
3310         int i, ret;
3311         struct xhci_hcd *xhci;
3312         struct xhci_virt_device *vdev;
3313         struct xhci_command *command;
3314         struct xhci_input_control_ctx *ctrl_ctx;
3315         unsigned int ep_index;
3316         unsigned long flags;
3317         u32 changed_ep_bitmask;
3318
3319         xhci = hcd_to_xhci(hcd);
3320         vdev = xhci->devs[udev->slot_id];
3321
3322         /* Set up a configure endpoint command to remove the streams rings */
3323         spin_lock_irqsave(&xhci->lock, flags);
3324         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3325                         udev, eps, num_eps);
3326         if (changed_ep_bitmask == 0) {
3327                 spin_unlock_irqrestore(&xhci->lock, flags);
3328                 return -EINVAL;
3329         }
3330
3331         /* Use the xhci_command structure from the first endpoint.  We may have
3332          * allocated too many, but the driver may call xhci_free_streams() for
3333          * each endpoint it grouped into one call to xhci_alloc_streams().
3334          */
3335         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3336         command = vdev->eps[ep_index].stream_info->free_streams_command;
3337         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3338         if (!ctrl_ctx) {
3339                 spin_unlock_irqrestore(&xhci->lock, flags);
3340                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3341                                 __func__);
3342                 return -EINVAL;
3343         }
3344
3345         for (i = 0; i < num_eps; i++) {
3346                 struct xhci_ep_ctx *ep_ctx;
3347
3348                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3349                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3350                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3351                         EP_GETTING_NO_STREAMS;
3352
3353                 xhci_endpoint_copy(xhci, command->in_ctx,
3354                                 vdev->out_ctx, ep_index);
3355                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3356                                 &vdev->eps[ep_index]);
3357         }
3358         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3359                         vdev->out_ctx, ctrl_ctx,
3360                         changed_ep_bitmask, changed_ep_bitmask);
3361         spin_unlock_irqrestore(&xhci->lock, flags);
3362
3363         /* Issue and wait for the configure endpoint command,
3364          * which must succeed.
3365          */
3366         ret = xhci_configure_endpoint(xhci, udev, command,
3367                         false, true);
3368
3369         /* xHC rejected the configure endpoint command for some reason, so we
3370          * leave the streams rings intact.
3371          */
3372         if (ret < 0)
3373                 return ret;
3374
3375         spin_lock_irqsave(&xhci->lock, flags);
3376         for (i = 0; i < num_eps; i++) {
3377                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3378                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3379                 vdev->eps[ep_index].stream_info = NULL;
3380                 /* FIXME Unset maxPstreams in endpoint context and
3381                  * update deq ptr to point to normal string ring.
3382                  */
3383                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3384                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3385         }
3386         spin_unlock_irqrestore(&xhci->lock, flags);
3387
3388         return 0;
3389 }
3390
3391 /*
3392  * Deletes endpoint resources for endpoints that were active before a Reset
3393  * Device command, or a Disable Slot command.  The Reset Device command leaves
3394  * the control endpoint intact, whereas the Disable Slot command deletes it.
3395  *
3396  * Must be called with xhci->lock held.
3397  */
3398 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3399         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3400 {
3401         int i;
3402         unsigned int num_dropped_eps = 0;
3403         unsigned int drop_flags = 0;
3404
3405         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3406                 if (virt_dev->eps[i].ring) {
3407                         drop_flags |= 1 << i;
3408                         num_dropped_eps++;
3409                 }
3410         }
3411         xhci->num_active_eps -= num_dropped_eps;
3412         if (num_dropped_eps)
3413                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3414                                 "Dropped %u ep ctxs, flags = 0x%x, "
3415                                 "%u now active.",
3416                                 num_dropped_eps, drop_flags,
3417                                 xhci->num_active_eps);
3418 }
3419
3420 /*
3421  * This submits a Reset Device Command, which will set the device state to 0,
3422  * set the device address to 0, and disable all the endpoints except the default
3423  * control endpoint.  The USB core should come back and call
3424  * xhci_address_device(), and then re-set up the configuration.  If this is
3425  * called because of a usb_reset_and_verify_device(), then the old alternate
3426  * settings will be re-installed through the normal bandwidth allocation
3427  * functions.
3428  *
3429  * Wait for the Reset Device command to finish.  Remove all structures
3430  * associated with the endpoints that were disabled.  Clear the input device
3431  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3432  *
3433  * If the virt_dev to be reset does not exist or does not match the udev,
3434  * it means the device is lost, possibly due to the xHC restore error and
3435  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3436  * re-allocate the device.
3437  */
3438 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3439 {
3440         int ret, i;
3441         unsigned long flags;
3442         struct xhci_hcd *xhci;
3443         unsigned int slot_id;
3444         struct xhci_virt_device *virt_dev;
3445         struct xhci_command *reset_device_cmd;
3446         int last_freed_endpoint;
3447         struct xhci_slot_ctx *slot_ctx;
3448         int old_active_eps = 0;
3449
3450         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3451         if (ret <= 0)
3452                 return ret;
3453         xhci = hcd_to_xhci(hcd);
3454         slot_id = udev->slot_id;
3455         virt_dev = xhci->devs[slot_id];
3456         if (!virt_dev) {
3457                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3458                                 "not exist. Re-allocate the device\n", slot_id);
3459                 ret = xhci_alloc_dev(hcd, udev);
3460                 if (ret == 1)
3461                         return 0;
3462                 else
3463                         return -EINVAL;
3464         }
3465
3466         if (virt_dev->tt_info)
3467                 old_active_eps = virt_dev->tt_info->active_eps;
3468
3469         if (virt_dev->udev != udev) {
3470                 /* If the virt_dev and the udev does not match, this virt_dev
3471                  * may belong to another udev.
3472                  * Re-allocate the device.
3473                  */
3474                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3475                                 "not match the udev. Re-allocate the device\n",
3476                                 slot_id);
3477                 ret = xhci_alloc_dev(hcd, udev);
3478                 if (ret == 1)
3479                         return 0;
3480                 else
3481                         return -EINVAL;
3482         }
3483
3484         /* If device is not setup, there is no point in resetting it */
3485         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3486         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3487                                                 SLOT_STATE_DISABLED)
3488                 return 0;
3489
3490         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3491         /* Allocate the command structure that holds the struct completion.
3492          * Assume we're in process context, since the normal device reset
3493          * process has to wait for the device anyway.  Storage devices are
3494          * reset as part of error handling, so use GFP_NOIO instead of
3495          * GFP_KERNEL.
3496          */
3497         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3498         if (!reset_device_cmd) {
3499                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3500                 return -ENOMEM;
3501         }
3502
3503         /* Attempt to submit the Reset Device command to the command ring */
3504         spin_lock_irqsave(&xhci->lock, flags);
3505
3506         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3507         if (ret) {
3508                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3509                 spin_unlock_irqrestore(&xhci->lock, flags);
3510                 goto command_cleanup;
3511         }
3512         xhci_ring_cmd_db(xhci);
3513         spin_unlock_irqrestore(&xhci->lock, flags);
3514
3515         /* Wait for the Reset Device command to finish */
3516         wait_for_completion(reset_device_cmd->completion);
3517
3518         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3519          * unless we tried to reset a slot ID that wasn't enabled,
3520          * or the device wasn't in the addressed or configured state.
3521          */
3522         ret = reset_device_cmd->status;
3523         switch (ret) {
3524         case COMP_CMD_ABORT:
3525         case COMP_CMD_STOP:
3526                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3527                 ret = -ETIME;
3528                 goto command_cleanup;
3529         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3530         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3531                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3532                                 slot_id,
3533                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3534                 xhci_dbg(xhci, "Not freeing device rings.\n");
3535                 /* Don't treat this as an error.  May change my mind later. */
3536                 ret = 0;
3537                 goto command_cleanup;
3538         case COMP_SUCCESS:
3539                 xhci_dbg(xhci, "Successful reset device command.\n");
3540                 break;
3541         default:
3542                 if (xhci_is_vendor_info_code(xhci, ret))
3543                         break;
3544                 xhci_warn(xhci, "Unknown completion code %u for "
3545                                 "reset device command.\n", ret);
3546                 ret = -EINVAL;
3547                 goto command_cleanup;
3548         }
3549
3550         /* Free up host controller endpoint resources */
3551         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3552                 spin_lock_irqsave(&xhci->lock, flags);
3553                 /* Don't delete the default control endpoint resources */
3554                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3555                 spin_unlock_irqrestore(&xhci->lock, flags);
3556         }
3557
3558         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3559         last_freed_endpoint = 1;
3560         for (i = 1; i < 31; ++i) {
3561                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3562
3563                 if (ep->ep_state & EP_HAS_STREAMS) {
3564                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3565                                         xhci_get_endpoint_address(i));
3566                         xhci_free_stream_info(xhci, ep->stream_info);
3567                         ep->stream_info = NULL;
3568                         ep->ep_state &= ~EP_HAS_STREAMS;
3569                 }
3570
3571                 if (ep->ring) {
3572                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3573                         last_freed_endpoint = i;
3574                 }
3575                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3576                         xhci_drop_ep_from_interval_table(xhci,
3577                                         &virt_dev->eps[i].bw_info,
3578                                         virt_dev->bw_table,
3579                                         udev,
3580                                         &virt_dev->eps[i],
3581                                         virt_dev->tt_info);
3582                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3583         }
3584         /* If necessary, update the number of active TTs on this root port */
3585         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3586
3587         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3588         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3589         ret = 0;
3590
3591 command_cleanup:
3592         xhci_free_command(xhci, reset_device_cmd);
3593         return ret;
3594 }
3595
3596 /*
3597  * At this point, the struct usb_device is about to go away, the device has
3598  * disconnected, and all traffic has been stopped and the endpoints have been
3599  * disabled.  Free any HC data structures associated with that device.
3600  */
3601 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3602 {
3603         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3604         struct xhci_virt_device *virt_dev;
3605         unsigned long flags;
3606         u32 state;
3607         int i, ret;
3608         struct xhci_command *command;
3609
3610         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3611         if (!command)
3612                 return;
3613
3614 #ifndef CONFIG_USB_DEFAULT_PERSIST
3615         /*
3616          * We called pm_runtime_get_noresume when the device was attached.
3617          * Decrement the counter here to allow controller to runtime suspend
3618          * if no devices remain.
3619          */
3620         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3621                 pm_runtime_put_noidle(hcd->self.controller);
3622 #endif
3623
3624         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3625         /* If the host is halted due to driver unload, we still need to free the
3626          * device.
3627          */
3628         if (ret <= 0 && ret != -ENODEV) {
3629                 kfree(command);
3630                 return;
3631         }
3632
3633         virt_dev = xhci->devs[udev->slot_id];
3634
3635         /* Stop any wayward timer functions (which may grab the lock) */
3636         for (i = 0; i < 31; ++i) {
3637                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3638                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3639         }
3640
3641         spin_lock_irqsave(&xhci->lock, flags);
3642         /* Don't disable the slot if the host controller is dead. */
3643         state = readl(&xhci->op_regs->status);
3644         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3645                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3646                 xhci_free_virt_device(xhci, udev->slot_id);
3647                 spin_unlock_irqrestore(&xhci->lock, flags);
3648                 kfree(command);
3649                 return;
3650         }
3651
3652         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3653                                     udev->slot_id)) {
3654                 spin_unlock_irqrestore(&xhci->lock, flags);
3655                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3656                 return;
3657         }
3658         xhci_ring_cmd_db(xhci);
3659         spin_unlock_irqrestore(&xhci->lock, flags);
3660
3661         /*
3662          * Event command completion handler will free any data structures
3663          * associated with the slot.  XXX Can free sleep?
3664          */
3665 }
3666
3667 /*
3668  * Checks if we have enough host controller resources for the default control
3669  * endpoint.
3670  *
3671  * Must be called with xhci->lock held.
3672  */
3673 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3674 {
3675         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3676                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3677                                 "Not enough ep ctxs: "
3678                                 "%u active, need to add 1, limit is %u.",
3679                                 xhci->num_active_eps, xhci->limit_active_eps);
3680                 return -ENOMEM;
3681         }
3682         xhci->num_active_eps += 1;
3683         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3684                         "Adding 1 ep ctx, %u now active.",
3685                         xhci->num_active_eps);
3686         return 0;
3687 }
3688
3689
3690 /*
3691  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3692  * timed out, or allocating memory failed.  Returns 1 on success.
3693  */
3694 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3695 {
3696         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3697         unsigned long flags;
3698         int ret, slot_id;
3699         struct xhci_command *command;
3700
3701         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3702         if (!command)
3703                 return 0;
3704
3705         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3706         mutex_lock(&xhci->mutex);
3707         spin_lock_irqsave(&xhci->lock, flags);
3708         command->completion = &xhci->addr_dev;
3709         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3710         if (ret) {
3711                 spin_unlock_irqrestore(&xhci->lock, flags);
3712                 mutex_unlock(&xhci->mutex);
3713                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3714                 kfree(command);
3715                 return 0;
3716         }
3717         xhci_ring_cmd_db(xhci);
3718         spin_unlock_irqrestore(&xhci->lock, flags);
3719
3720         wait_for_completion(command->completion);
3721         slot_id = xhci->slot_id;
3722         mutex_unlock(&xhci->mutex);
3723
3724         if (!slot_id || command->status != COMP_SUCCESS) {
3725                 xhci_err(xhci, "Error while assigning device slot ID\n");
3726                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3727                                 HCS_MAX_SLOTS(
3728                                         readl(&xhci->cap_regs->hcs_params1)));
3729                 kfree(command);
3730                 return 0;
3731         }
3732
3733         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3734                 spin_lock_irqsave(&xhci->lock, flags);
3735                 ret = xhci_reserve_host_control_ep_resources(xhci);
3736                 if (ret) {
3737                         spin_unlock_irqrestore(&xhci->lock, flags);
3738                         xhci_warn(xhci, "Not enough host resources, "
3739                                         "active endpoint contexts = %u\n",
3740                                         xhci->num_active_eps);
3741                         goto disable_slot;
3742                 }
3743                 spin_unlock_irqrestore(&xhci->lock, flags);
3744         }
3745         /* Use GFP_NOIO, since this function can be called from
3746          * xhci_discover_or_reset_device(), which may be called as part of
3747          * mass storage driver error handling.
3748          */
3749         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3750                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3751                 goto disable_slot;
3752         }
3753         udev->slot_id = slot_id;
3754
3755 #ifndef CONFIG_USB_DEFAULT_PERSIST
3756         /*
3757          * If resetting upon resume, we can't put the controller into runtime
3758          * suspend if there is a device attached.
3759          */
3760         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3761                 pm_runtime_get_noresume(hcd->self.controller);
3762 #endif
3763
3764
3765         kfree(command);
3766         /* Is this a LS or FS device under a HS hub? */
3767         /* Hub or peripherial? */
3768         return 1;
3769
3770 disable_slot:
3771         /* Disable slot, if we can do it without mem alloc */
3772         spin_lock_irqsave(&xhci->lock, flags);
3773         command->completion = NULL;
3774         command->status = 0;
3775         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3776                                      udev->slot_id))
3777                 xhci_ring_cmd_db(xhci);
3778         spin_unlock_irqrestore(&xhci->lock, flags);
3779         return 0;
3780 }
3781
3782 /*
3783  * Issue an Address Device command and optionally send a corresponding
3784  * SetAddress request to the device.
3785  */
3786 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3787                              enum xhci_setup_dev setup)
3788 {
3789         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3790         unsigned long flags;
3791         struct xhci_virt_device *virt_dev;
3792         int ret = 0;
3793         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3794         struct xhci_slot_ctx *slot_ctx;
3795         struct xhci_input_control_ctx *ctrl_ctx;
3796         u64 temp_64;
3797         struct xhci_command *command = NULL;
3798
3799         mutex_lock(&xhci->mutex);
3800
3801         if (xhci->xhc_state)    /* dying or halted */
3802                 goto out;
3803
3804         if (!udev->slot_id) {
3805                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3806                                 "Bad Slot ID %d", udev->slot_id);
3807                 ret = -EINVAL;
3808                 goto out;
3809         }
3810
3811         virt_dev = xhci->devs[udev->slot_id];
3812
3813         if (WARN_ON(!virt_dev)) {
3814                 /*
3815                  * In plug/unplug torture test with an NEC controller,
3816                  * a zero-dereference was observed once due to virt_dev = 0.
3817                  * Print useful debug rather than crash if it is observed again!
3818                  */
3819                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3820                         udev->slot_id);
3821                 ret = -EINVAL;
3822                 goto out;
3823         }
3824
3825         if (setup == SETUP_CONTEXT_ONLY) {
3826                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3827                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3828                     SLOT_STATE_DEFAULT) {
3829                         xhci_dbg(xhci, "Slot already in default state\n");
3830                         goto out;
3831                 }
3832         }
3833
3834         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3835         if (!command) {
3836                 ret = -ENOMEM;
3837                 goto out;
3838         }
3839
3840         command->in_ctx = virt_dev->in_ctx;
3841         command->completion = &xhci->addr_dev;
3842
3843         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3844         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3845         if (!ctrl_ctx) {
3846                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3847                                 __func__);
3848                 ret = -EINVAL;
3849                 goto out;
3850         }
3851         /*
3852          * If this is the first Set Address since device plug-in or
3853          * virt_device realloaction after a resume with an xHCI power loss,
3854          * then set up the slot context.
3855          */
3856         if (!slot_ctx->dev_info)
3857                 xhci_setup_addressable_virt_dev(xhci, udev);
3858         /* Otherwise, update the control endpoint ring enqueue pointer. */
3859         else
3860                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3861         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3862         ctrl_ctx->drop_flags = 0;
3863
3864         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3865         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3866         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3867                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3868
3869         spin_lock_irqsave(&xhci->lock, flags);
3870         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3871                                         udev->slot_id, setup);
3872         if (ret) {
3873                 spin_unlock_irqrestore(&xhci->lock, flags);
3874                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3875                                 "FIXME: allocate a command ring segment");
3876                 goto out;
3877         }
3878         xhci_ring_cmd_db(xhci);
3879         spin_unlock_irqrestore(&xhci->lock, flags);
3880
3881         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3882         wait_for_completion(command->completion);
3883
3884         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3885          * the SetAddress() "recovery interval" required by USB and aborting the
3886          * command on a timeout.
3887          */
3888         switch (command->status) {
3889         case COMP_CMD_ABORT:
3890         case COMP_CMD_STOP:
3891                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3892                 ret = -ETIME;
3893                 break;
3894         case COMP_CTX_STATE:
3895         case COMP_EBADSLT:
3896                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3897                          act, udev->slot_id);
3898                 ret = -EINVAL;
3899                 break;
3900         case COMP_TX_ERR:
3901                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3902                 ret = -EPROTO;
3903                 break;
3904         case COMP_DEV_ERR:
3905                 dev_warn(&udev->dev,
3906                          "ERROR: Incompatible device for setup %s command\n", act);
3907                 ret = -ENODEV;
3908                 break;
3909         case COMP_SUCCESS:
3910                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3911                                "Successful setup %s command", act);
3912                 break;
3913         default:
3914                 xhci_err(xhci,
3915                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3916                          act, command->status);
3917                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3918                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3919                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3920                 ret = -EINVAL;
3921                 break;
3922         }
3923         if (ret)
3924                 goto out;
3925         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3926         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3927                         "Op regs DCBAA ptr = %#016llx", temp_64);
3928         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3929                 "Slot ID %d dcbaa entry @%p = %#016llx",
3930                 udev->slot_id,
3931                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3932                 (unsigned long long)
3933                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3934         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3935                         "Output Context DMA address = %#08llx",
3936                         (unsigned long long)virt_dev->out_ctx->dma);
3937         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3938         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3939         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3940                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3941         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3942         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3943         /*
3944          * USB core uses address 1 for the roothubs, so we add one to the
3945          * address given back to us by the HC.
3946          */
3947         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3948         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3949                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3950         /* Zero the input context control for later use */
3951         ctrl_ctx->add_flags = 0;
3952         ctrl_ctx->drop_flags = 0;
3953
3954         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3955                        "Internal device address = %d",
3956                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3957 out:
3958         mutex_unlock(&xhci->mutex);
3959         kfree(command);
3960         return ret;
3961 }
3962
3963 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3964 {
3965         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3966 }
3967
3968 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3969 {
3970         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3971 }
3972
3973 /*
3974  * Transfer the port index into real index in the HW port status
3975  * registers. Caculate offset between the port's PORTSC register
3976  * and port status base. Divide the number of per port register
3977  * to get the real index. The raw port number bases 1.
3978  */
3979 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3980 {
3981         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3982         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3983         __le32 __iomem *addr;
3984         int raw_port;
3985
3986         if (hcd->speed < HCD_USB3)
3987                 addr = xhci->usb2_ports[port1 - 1];
3988         else
3989                 addr = xhci->usb3_ports[port1 - 1];
3990
3991         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3992         return raw_port;
3993 }
3994
3995 /*
3996  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3997  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3998  */
3999 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4000                         struct usb_device *udev, u16 max_exit_latency)
4001 {
4002         struct xhci_virt_device *virt_dev;
4003         struct xhci_command *command;
4004         struct xhci_input_control_ctx *ctrl_ctx;
4005         struct xhci_slot_ctx *slot_ctx;
4006         unsigned long flags;
4007         int ret;
4008
4009         spin_lock_irqsave(&xhci->lock, flags);
4010
4011         virt_dev = xhci->devs[udev->slot_id];
4012
4013         /*
4014          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4015          * xHC was re-initialized. Exit latency will be set later after
4016          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4017          */
4018
4019         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4020                 spin_unlock_irqrestore(&xhci->lock, flags);
4021                 return 0;
4022         }
4023
4024         /* Attempt to issue an Evaluate Context command to change the MEL. */
4025         command = xhci->lpm_command;
4026         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4027         if (!ctrl_ctx) {
4028                 spin_unlock_irqrestore(&xhci->lock, flags);
4029                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4030                                 __func__);
4031                 return -ENOMEM;
4032         }
4033
4034         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4035         spin_unlock_irqrestore(&xhci->lock, flags);
4036
4037         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4038         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4039         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4040         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4041         slot_ctx->dev_state = 0;
4042
4043         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4044                         "Set up evaluate context for LPM MEL change.");
4045         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4046         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4047
4048         /* Issue and wait for the evaluate context command. */
4049         ret = xhci_configure_endpoint(xhci, udev, command,
4050                         true, true);
4051         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4052         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4053
4054         if (!ret) {
4055                 spin_lock_irqsave(&xhci->lock, flags);
4056                 virt_dev->current_mel = max_exit_latency;
4057                 spin_unlock_irqrestore(&xhci->lock, flags);
4058         }
4059         return ret;
4060 }
4061
4062 #ifdef CONFIG_PM
4063
4064 /* BESL to HIRD Encoding array for USB2 LPM */
4065 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4066         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4067
4068 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4069 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4070                                         struct usb_device *udev)
4071 {
4072         int u2del, besl, besl_host;
4073         int besl_device = 0;
4074         u32 field;
4075
4076         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4077         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4078
4079         if (field & USB_BESL_SUPPORT) {
4080                 for (besl_host = 0; besl_host < 16; besl_host++) {
4081                         if (xhci_besl_encoding[besl_host] >= u2del)
4082                                 break;
4083                 }
4084                 /* Use baseline BESL value as default */
4085                 if (field & USB_BESL_BASELINE_VALID)
4086                         besl_device = USB_GET_BESL_BASELINE(field);
4087                 else if (field & USB_BESL_DEEP_VALID)
4088                         besl_device = USB_GET_BESL_DEEP(field);
4089         } else {
4090                 if (u2del <= 50)
4091                         besl_host = 0;
4092                 else
4093                         besl_host = (u2del - 51) / 75 + 1;
4094         }
4095
4096         besl = besl_host + besl_device;
4097         if (besl > 15)
4098                 besl = 15;
4099
4100         return besl;
4101 }
4102
4103 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4104 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4105 {
4106         u32 field;
4107         int l1;
4108         int besld = 0;
4109         int hirdm = 0;
4110
4111         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4112
4113         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4114         l1 = udev->l1_params.timeout / 256;
4115
4116         /* device has preferred BESLD */
4117         if (field & USB_BESL_DEEP_VALID) {
4118                 besld = USB_GET_BESL_DEEP(field);
4119                 hirdm = 1;
4120         }
4121
4122         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4123 }
4124
4125 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4126                         struct usb_device *udev, int enable)
4127 {
4128         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4129         __le32 __iomem  **port_array;
4130         __le32 __iomem  *pm_addr, *hlpm_addr;
4131         u32             pm_val, hlpm_val, field;
4132         unsigned int    port_num;
4133         unsigned long   flags;
4134         int             hird, exit_latency;
4135         int             ret;
4136
4137         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4138                         !udev->lpm_capable)
4139                 return -EPERM;
4140
4141         if (!udev->parent || udev->parent->parent ||
4142                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4143                 return -EPERM;
4144
4145         if (udev->usb2_hw_lpm_capable != 1)
4146                 return -EPERM;
4147
4148         spin_lock_irqsave(&xhci->lock, flags);
4149
4150         port_array = xhci->usb2_ports;
4151         port_num = udev->portnum - 1;
4152         pm_addr = port_array[port_num] + PORTPMSC;
4153         pm_val = readl(pm_addr);
4154         hlpm_addr = port_array[port_num] + PORTHLPMC;
4155         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4156
4157         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4158                         enable ? "enable" : "disable", port_num + 1);
4159
4160         if (enable) {
4161                 /* Host supports BESL timeout instead of HIRD */
4162                 if (udev->usb2_hw_lpm_besl_capable) {
4163                         /* if device doesn't have a preferred BESL value use a
4164                          * default one which works with mixed HIRD and BESL
4165                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4166                          */
4167                         if ((field & USB_BESL_SUPPORT) &&
4168                             (field & USB_BESL_BASELINE_VALID))
4169                                 hird = USB_GET_BESL_BASELINE(field);
4170                         else
4171                                 hird = udev->l1_params.besl;
4172
4173                         exit_latency = xhci_besl_encoding[hird];
4174                         spin_unlock_irqrestore(&xhci->lock, flags);
4175
4176                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4177                          * input context for link powermanagement evaluate
4178                          * context commands. It is protected by hcd->bandwidth
4179                          * mutex and is shared by all devices. We need to set
4180                          * the max ext latency in USB 2 BESL LPM as well, so
4181                          * use the same mutex and xhci_change_max_exit_latency()
4182                          */
4183                         mutex_lock(hcd->bandwidth_mutex);
4184                         ret = xhci_change_max_exit_latency(xhci, udev,
4185                                                            exit_latency);
4186                         mutex_unlock(hcd->bandwidth_mutex);
4187
4188                         if (ret < 0)
4189                                 return ret;
4190                         spin_lock_irqsave(&xhci->lock, flags);
4191
4192                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4193                         writel(hlpm_val, hlpm_addr);
4194                         /* flush write */
4195                         readl(hlpm_addr);
4196                 } else {
4197                         hird = xhci_calculate_hird_besl(xhci, udev);
4198                 }
4199
4200                 pm_val &= ~PORT_HIRD_MASK;
4201                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4202                 writel(pm_val, pm_addr);
4203                 pm_val = readl(pm_addr);
4204                 pm_val |= PORT_HLE;
4205                 writel(pm_val, pm_addr);
4206                 /* flush write */
4207                 readl(pm_addr);
4208         } else {
4209                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4210                 writel(pm_val, pm_addr);
4211                 /* flush write */
4212                 readl(pm_addr);
4213                 if (udev->usb2_hw_lpm_besl_capable) {
4214                         spin_unlock_irqrestore(&xhci->lock, flags);
4215                         mutex_lock(hcd->bandwidth_mutex);
4216                         xhci_change_max_exit_latency(xhci, udev, 0);
4217                         mutex_unlock(hcd->bandwidth_mutex);
4218                         return 0;
4219                 }
4220         }
4221
4222         spin_unlock_irqrestore(&xhci->lock, flags);
4223         return 0;
4224 }
4225
4226 /* check if a usb2 port supports a given extened capability protocol
4227  * only USB2 ports extended protocol capability values are cached.
4228  * Return 1 if capability is supported
4229  */
4230 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4231                                            unsigned capability)
4232 {
4233         u32 port_offset, port_count;
4234         int i;
4235
4236         for (i = 0; i < xhci->num_ext_caps; i++) {
4237                 if (xhci->ext_caps[i] & capability) {
4238                         /* port offsets starts at 1 */
4239                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4240                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4241                         if (port >= port_offset &&
4242                             port < port_offset + port_count)
4243                                 return 1;
4244                 }
4245         }
4246         return 0;
4247 }
4248
4249 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4250 {
4251         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4252         int             portnum = udev->portnum - 1;
4253
4254         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4255                         !udev->lpm_capable)
4256                 return 0;
4257
4258         /* we only support lpm for non-hub device connected to root hub yet */
4259         if (!udev->parent || udev->parent->parent ||
4260                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4261                 return 0;
4262
4263         if (xhci->hw_lpm_support == 1 &&
4264                         xhci_check_usb2_port_capability(
4265                                 xhci, portnum, XHCI_HLC)) {
4266                 udev->usb2_hw_lpm_capable = 1;
4267                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4268                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4269                 if (xhci_check_usb2_port_capability(xhci, portnum,
4270                                         XHCI_BLC))
4271                         udev->usb2_hw_lpm_besl_capable = 1;
4272         }
4273
4274         return 0;
4275 }
4276
4277 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4278
4279 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4280 static unsigned long long xhci_service_interval_to_ns(
4281                 struct usb_endpoint_descriptor *desc)
4282 {
4283         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4284 }
4285
4286 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4287                 enum usb3_link_state state)
4288 {
4289         unsigned long long sel;
4290         unsigned long long pel;
4291         unsigned int max_sel_pel;
4292         char *state_name;
4293
4294         switch (state) {
4295         case USB3_LPM_U1:
4296                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4297                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4298                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4299                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4300                 state_name = "U1";
4301                 break;
4302         case USB3_LPM_U2:
4303                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4304                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4305                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4306                 state_name = "U2";
4307                 break;
4308         default:
4309                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4310                                 __func__);
4311                 return USB3_LPM_DISABLED;
4312         }
4313
4314         if (sel <= max_sel_pel && pel <= max_sel_pel)
4315                 return USB3_LPM_DEVICE_INITIATED;
4316
4317         if (sel > max_sel_pel)
4318                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4319                                 "due to long SEL %llu ms\n",
4320                                 state_name, sel);
4321         else
4322                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4323                                 "due to long PEL %llu ms\n",
4324                                 state_name, pel);
4325         return USB3_LPM_DISABLED;
4326 }
4327
4328 /* The U1 timeout should be the maximum of the following values:
4329  *  - For control endpoints, U1 system exit latency (SEL) * 3
4330  *  - For bulk endpoints, U1 SEL * 5
4331  *  - For interrupt endpoints:
4332  *    - Notification EPs, U1 SEL * 3
4333  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4334  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4335  */
4336 static unsigned long long xhci_calculate_intel_u1_timeout(
4337                 struct usb_device *udev,
4338                 struct usb_endpoint_descriptor *desc)
4339 {
4340         unsigned long long timeout_ns;
4341         int ep_type;
4342         int intr_type;
4343
4344         ep_type = usb_endpoint_type(desc);
4345         switch (ep_type) {
4346         case USB_ENDPOINT_XFER_CONTROL:
4347                 timeout_ns = udev->u1_params.sel * 3;
4348                 break;
4349         case USB_ENDPOINT_XFER_BULK:
4350                 timeout_ns = udev->u1_params.sel * 5;
4351                 break;
4352         case USB_ENDPOINT_XFER_INT:
4353                 intr_type = usb_endpoint_interrupt_type(desc);
4354                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4355                         timeout_ns = udev->u1_params.sel * 3;
4356                         break;
4357                 }
4358                 /* Otherwise the calculation is the same as isoc eps */
4359         case USB_ENDPOINT_XFER_ISOC:
4360                 timeout_ns = xhci_service_interval_to_ns(desc);
4361                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4362                 if (timeout_ns < udev->u1_params.sel * 2)
4363                         timeout_ns = udev->u1_params.sel * 2;
4364                 break;
4365         default:
4366                 return 0;
4367         }
4368
4369         return timeout_ns;
4370 }
4371
4372 /* Returns the hub-encoded U1 timeout value. */
4373 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4374                 struct usb_device *udev,
4375                 struct usb_endpoint_descriptor *desc)
4376 {
4377         unsigned long long timeout_ns;
4378
4379         if (xhci->quirks & XHCI_INTEL_HOST)
4380                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4381         else
4382                 timeout_ns = udev->u1_params.sel;
4383
4384         /* The U1 timeout is encoded in 1us intervals.
4385          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4386          */
4387         if (timeout_ns == USB3_LPM_DISABLED)
4388                 timeout_ns = 1;
4389         else
4390                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4391
4392         /* If the necessary timeout value is bigger than what we can set in the
4393          * USB 3.0 hub, we have to disable hub-initiated U1.
4394          */
4395         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4396                 return timeout_ns;
4397         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4398                         "due to long timeout %llu ms\n", timeout_ns);
4399         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4400 }
4401
4402 /* The U2 timeout should be the maximum of:
4403  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4404  *  - largest bInterval of any active periodic endpoint (to avoid going
4405  *    into lower power link states between intervals).
4406  *  - the U2 Exit Latency of the device
4407  */
4408 static unsigned long long xhci_calculate_intel_u2_timeout(
4409                 struct usb_device *udev,
4410                 struct usb_endpoint_descriptor *desc)
4411 {
4412         unsigned long long timeout_ns;
4413         unsigned long long u2_del_ns;
4414
4415         timeout_ns = 10 * 1000 * 1000;
4416
4417         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4418                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4419                 timeout_ns = xhci_service_interval_to_ns(desc);
4420
4421         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4422         if (u2_del_ns > timeout_ns)
4423                 timeout_ns = u2_del_ns;
4424
4425         return timeout_ns;
4426 }
4427
4428 /* Returns the hub-encoded U2 timeout value. */
4429 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4430                 struct usb_device *udev,
4431                 struct usb_endpoint_descriptor *desc)
4432 {
4433         unsigned long long timeout_ns;
4434
4435         if (xhci->quirks & XHCI_INTEL_HOST)
4436                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4437         else
4438                 timeout_ns = udev->u2_params.sel;
4439
4440         /* The U2 timeout is encoded in 256us intervals */
4441         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4442         /* If the necessary timeout value is bigger than what we can set in the
4443          * USB 3.0 hub, we have to disable hub-initiated U2.
4444          */
4445         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4446                 return timeout_ns;
4447         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4448                         "due to long timeout %llu ms\n", timeout_ns);
4449         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4450 }
4451
4452 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4453                 struct usb_device *udev,
4454                 struct usb_endpoint_descriptor *desc,
4455                 enum usb3_link_state state,
4456                 u16 *timeout)
4457 {
4458         if (state == USB3_LPM_U1)
4459                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4460         else if (state == USB3_LPM_U2)
4461                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4462
4463         return USB3_LPM_DISABLED;
4464 }
4465
4466 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4467                 struct usb_device *udev,
4468                 struct usb_endpoint_descriptor *desc,
4469                 enum usb3_link_state state,
4470                 u16 *timeout)
4471 {
4472         u16 alt_timeout;
4473
4474         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4475                 desc, state, timeout);
4476
4477         /* If we found we can't enable hub-initiated LPM, or
4478          * the U1 or U2 exit latency was too high to allow
4479          * device-initiated LPM as well, just stop searching.
4480          */
4481         if (alt_timeout == USB3_LPM_DISABLED ||
4482                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4483                 *timeout = alt_timeout;
4484                 return -E2BIG;
4485         }
4486         if (alt_timeout > *timeout)
4487                 *timeout = alt_timeout;
4488         return 0;
4489 }
4490
4491 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4492                 struct usb_device *udev,
4493                 struct usb_host_interface *alt,
4494                 enum usb3_link_state state,
4495                 u16 *timeout)
4496 {
4497         int j;
4498
4499         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4500                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4501                                         &alt->endpoint[j].desc, state, timeout))
4502                         return -E2BIG;
4503                 continue;
4504         }
4505         return 0;
4506 }
4507
4508 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4509                 enum usb3_link_state state)
4510 {
4511         struct usb_device *parent;
4512         unsigned int num_hubs;
4513
4514         if (state == USB3_LPM_U2)
4515                 return 0;
4516
4517         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4518         for (parent = udev->parent, num_hubs = 0; parent->parent;
4519                         parent = parent->parent)
4520                 num_hubs++;
4521
4522         if (num_hubs < 2)
4523                 return 0;
4524
4525         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4526                         " below second-tier hub.\n");
4527         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4528                         "to decrease power consumption.\n");
4529         return -E2BIG;
4530 }
4531
4532 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4533                 struct usb_device *udev,
4534                 enum usb3_link_state state)
4535 {
4536         if (xhci->quirks & XHCI_INTEL_HOST)
4537                 return xhci_check_intel_tier_policy(udev, state);
4538         else
4539                 return 0;
4540 }
4541
4542 /* Returns the U1 or U2 timeout that should be enabled.
4543  * If the tier check or timeout setting functions return with a non-zero exit
4544  * code, that means the timeout value has been finalized and we shouldn't look
4545  * at any more endpoints.
4546  */
4547 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4548                         struct usb_device *udev, enum usb3_link_state state)
4549 {
4550         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4551         struct usb_host_config *config;
4552         char *state_name;
4553         int i;
4554         u16 timeout = USB3_LPM_DISABLED;
4555
4556         if (state == USB3_LPM_U1)
4557                 state_name = "U1";
4558         else if (state == USB3_LPM_U2)
4559                 state_name = "U2";
4560         else {
4561                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4562                                 state);
4563                 return timeout;
4564         }
4565
4566         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4567                 return timeout;
4568
4569         /* Gather some information about the currently installed configuration
4570          * and alternate interface settings.
4571          */
4572         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4573                         state, &timeout))
4574                 return timeout;
4575
4576         config = udev->actconfig;
4577         if (!config)
4578                 return timeout;
4579
4580         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4581                 struct usb_driver *driver;
4582                 struct usb_interface *intf = config->interface[i];
4583
4584                 if (!intf)
4585                         continue;
4586
4587                 /* Check if any currently bound drivers want hub-initiated LPM
4588                  * disabled.
4589                  */
4590                 if (intf->dev.driver) {
4591                         driver = to_usb_driver(intf->dev.driver);
4592                         if (driver && driver->disable_hub_initiated_lpm) {
4593                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4594                                                 "at request of driver %s\n",
4595                                                 state_name, driver->name);
4596                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4597                         }
4598                 }
4599
4600                 /* Not sure how this could happen... */
4601                 if (!intf->cur_altsetting)
4602                         continue;
4603
4604                 if (xhci_update_timeout_for_interface(xhci, udev,
4605                                         intf->cur_altsetting,
4606                                         state, &timeout))
4607                         return timeout;
4608         }
4609         return timeout;
4610 }
4611
4612 static int calculate_max_exit_latency(struct usb_device *udev,
4613                 enum usb3_link_state state_changed,
4614                 u16 hub_encoded_timeout)
4615 {
4616         unsigned long long u1_mel_us = 0;
4617         unsigned long long u2_mel_us = 0;
4618         unsigned long long mel_us = 0;
4619         bool disabling_u1;
4620         bool disabling_u2;
4621         bool enabling_u1;
4622         bool enabling_u2;
4623
4624         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4625                         hub_encoded_timeout == USB3_LPM_DISABLED);
4626         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4627                         hub_encoded_timeout == USB3_LPM_DISABLED);
4628
4629         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4630                         hub_encoded_timeout != USB3_LPM_DISABLED);
4631         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4632                         hub_encoded_timeout != USB3_LPM_DISABLED);
4633
4634         /* If U1 was already enabled and we're not disabling it,
4635          * or we're going to enable U1, account for the U1 max exit latency.
4636          */
4637         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4638                         enabling_u1)
4639                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4640         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4641                         enabling_u2)
4642                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4643
4644         if (u1_mel_us > u2_mel_us)
4645                 mel_us = u1_mel_us;
4646         else
4647                 mel_us = u2_mel_us;
4648         /* xHCI host controller max exit latency field is only 16 bits wide. */
4649         if (mel_us > MAX_EXIT) {
4650                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4651                                 "is too big.\n", mel_us);
4652                 return -E2BIG;
4653         }
4654         return mel_us;
4655 }
4656
4657 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4658 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4659                         struct usb_device *udev, enum usb3_link_state state)
4660 {
4661         struct xhci_hcd *xhci;
4662         u16 hub_encoded_timeout;
4663         int mel;
4664         int ret;
4665
4666         xhci = hcd_to_xhci(hcd);
4667         /* The LPM timeout values are pretty host-controller specific, so don't
4668          * enable hub-initiated timeouts unless the vendor has provided
4669          * information about their timeout algorithm.
4670          */
4671         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4672                         !xhci->devs[udev->slot_id])
4673                 return USB3_LPM_DISABLED;
4674
4675         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4676         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4677         if (mel < 0) {
4678                 /* Max Exit Latency is too big, disable LPM. */
4679                 hub_encoded_timeout = USB3_LPM_DISABLED;
4680                 mel = 0;
4681         }
4682
4683         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4684         if (ret)
4685                 return ret;
4686         return hub_encoded_timeout;
4687 }
4688
4689 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4690                         struct usb_device *udev, enum usb3_link_state state)
4691 {
4692         struct xhci_hcd *xhci;
4693         u16 mel;
4694
4695         xhci = hcd_to_xhci(hcd);
4696         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4697                         !xhci->devs[udev->slot_id])
4698                 return 0;
4699
4700         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4701         return xhci_change_max_exit_latency(xhci, udev, mel);
4702 }
4703 #else /* CONFIG_PM */
4704
4705 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4706                                 struct usb_device *udev, int enable)
4707 {
4708         return 0;
4709 }
4710
4711 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4712 {
4713         return 0;
4714 }
4715
4716 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4717                         struct usb_device *udev, enum usb3_link_state state)
4718 {
4719         return USB3_LPM_DISABLED;
4720 }
4721
4722 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4723                         struct usb_device *udev, enum usb3_link_state state)
4724 {
4725         return 0;
4726 }
4727 #endif  /* CONFIG_PM */
4728
4729 /*-------------------------------------------------------------------------*/
4730
4731 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4732  * internal data structures for the device.
4733  */
4734 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4735                         struct usb_tt *tt, gfp_t mem_flags)
4736 {
4737         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4738         struct xhci_virt_device *vdev;
4739         struct xhci_command *config_cmd;
4740         struct xhci_input_control_ctx *ctrl_ctx;
4741         struct xhci_slot_ctx *slot_ctx;
4742         unsigned long flags;
4743         unsigned think_time;
4744         int ret;
4745
4746         /* Ignore root hubs */
4747         if (!hdev->parent)
4748                 return 0;
4749
4750         vdev = xhci->devs[hdev->slot_id];
4751         if (!vdev) {
4752                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4753                 return -EINVAL;
4754         }
4755         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4756         if (!config_cmd) {
4757                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4758                 return -ENOMEM;
4759         }
4760         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4761         if (!ctrl_ctx) {
4762                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4763                                 __func__);
4764                 xhci_free_command(xhci, config_cmd);
4765                 return -ENOMEM;
4766         }
4767
4768         spin_lock_irqsave(&xhci->lock, flags);
4769         if (hdev->speed == USB_SPEED_HIGH &&
4770                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4771                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4772                 xhci_free_command(xhci, config_cmd);
4773                 spin_unlock_irqrestore(&xhci->lock, flags);
4774                 return -ENOMEM;
4775         }
4776
4777         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4778         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4779         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4780         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4781         /*
4782          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4783          * but it may be already set to 1 when setup an xHCI virtual
4784          * device, so clear it anyway.
4785          */
4786         if (tt->multi)
4787                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4788         else if (hdev->speed == USB_SPEED_FULL)
4789                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4790
4791         if (xhci->hci_version > 0x95) {
4792                 xhci_dbg(xhci, "xHCI version %x needs hub "
4793                                 "TT think time and number of ports\n",
4794                                 (unsigned int) xhci->hci_version);
4795                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4796                 /* Set TT think time - convert from ns to FS bit times.
4797                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4798                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4799                  *
4800                  * xHCI 1.0: this field shall be 0 if the device is not a
4801                  * High-spped hub.
4802                  */
4803                 think_time = tt->think_time;
4804                 if (think_time != 0)
4805                         think_time = (think_time / 666) - 1;
4806                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4807                         slot_ctx->tt_info |=
4808                                 cpu_to_le32(TT_THINK_TIME(think_time));
4809         } else {
4810                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4811                                 "TT think time or number of ports\n",
4812                                 (unsigned int) xhci->hci_version);
4813         }
4814         slot_ctx->dev_state = 0;
4815         spin_unlock_irqrestore(&xhci->lock, flags);
4816
4817         xhci_dbg(xhci, "Set up %s for hub device.\n",
4818                         (xhci->hci_version > 0x95) ?
4819                         "configure endpoint" : "evaluate context");
4820         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4821         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4822
4823         /* Issue and wait for the configure endpoint or
4824          * evaluate context command.
4825          */
4826         if (xhci->hci_version > 0x95)
4827                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4828                                 false, false);
4829         else
4830                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4831                                 true, false);
4832
4833         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4834         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4835
4836         xhci_free_command(xhci, config_cmd);
4837         return ret;
4838 }
4839
4840 int xhci_get_frame(struct usb_hcd *hcd)
4841 {
4842         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4843         /* EHCI mods by the periodic size.  Why? */
4844         return readl(&xhci->run_regs->microframe_index) >> 3;
4845 }
4846
4847 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4848 {
4849         struct xhci_hcd         *xhci;
4850         struct device           *dev = hcd->self.controller;
4851         int                     retval;
4852
4853         /* Accept arbitrarily long scatter-gather lists */
4854         hcd->self.sg_tablesize = ~0;
4855
4856         /* support to build packet from discontinuous buffers */
4857         hcd->self.no_sg_constraint = 1;
4858
4859         /* XHCI controllers don't stop the ep queue on short packets :| */
4860         hcd->self.no_stop_on_short = 1;
4861
4862         xhci = hcd_to_xhci(hcd);
4863
4864         if (usb_hcd_is_primary_hcd(hcd)) {
4865                 xhci->main_hcd = hcd;
4866                 /* Mark the first roothub as being USB 2.0.
4867                  * The xHCI driver will register the USB 3.0 roothub.
4868                  */
4869                 hcd->speed = HCD_USB2;
4870                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4871                 /*
4872                  * USB 2.0 roothub under xHCI has an integrated TT,
4873                  * (rate matching hub) as opposed to having an OHCI/UHCI
4874                  * companion controller.
4875                  */
4876                 hcd->has_tt = 1;
4877         } else {
4878                 if (xhci->sbrn == 0x31) {
4879                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4880                         hcd->speed = HCD_USB31;
4881                 }
4882                 /* xHCI private pointer was set in xhci_pci_probe for the second
4883                  * registered roothub.
4884                  */
4885                 return 0;
4886         }
4887
4888         mutex_init(&xhci->mutex);
4889         xhci->cap_regs = hcd->regs;
4890         xhci->op_regs = hcd->regs +
4891                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4892         xhci->run_regs = hcd->regs +
4893                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4894         /* Cache read-only capability registers */
4895         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4896         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4897         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4898         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4899         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4900         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4901         if (xhci->hci_version > 0x100)
4902                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4903         xhci_print_registers(xhci);
4904
4905         xhci->quirks = quirks;
4906
4907         get_quirks(dev, xhci);
4908
4909         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4910          * success event after a short transfer. This quirk will ignore such
4911          * spurious event.
4912          */
4913         if (xhci->hci_version > 0x96)
4914                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4915
4916         /* Make sure the HC is halted. */
4917         retval = xhci_halt(xhci);
4918         if (retval)
4919                 return retval;
4920
4921         xhci_dbg(xhci, "Resetting HCD\n");
4922         /* Reset the internal HC memory state and registers. */
4923         retval = xhci_reset(xhci);
4924         if (retval)
4925                 return retval;
4926         xhci_dbg(xhci, "Reset complete\n");
4927
4928         /* Set dma_mask and coherent_dma_mask to 64-bits,
4929          * if xHC supports 64-bit addressing */
4930         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4931                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4932                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4933                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4934         } else {
4935                 /*
4936                  * This is to avoid error in cases where a 32-bit USB
4937                  * controller is used on a 64-bit capable system.
4938                  */
4939                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4940                 if (retval)
4941                         return retval;
4942                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4943                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4944         }
4945
4946         xhci_dbg(xhci, "Calling HCD init\n");
4947         /* Initialize HCD and host controller data structures. */
4948         retval = xhci_init(hcd);
4949         if (retval)
4950                 return retval;
4951         xhci_dbg(xhci, "Called HCD init\n");
4952
4953         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4954                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4955
4956         return 0;
4957 }
4958 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4959
4960 static const struct hc_driver xhci_hc_driver = {
4961         .description =          "xhci-hcd",
4962         .product_desc =         "xHCI Host Controller",
4963         .hcd_priv_size =        sizeof(struct xhci_hcd *),
4964
4965         /*
4966          * generic hardware linkage
4967          */
4968         .irq =                  xhci_irq,
4969         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4970
4971         /*
4972          * basic lifecycle operations
4973          */
4974         .reset =                NULL, /* set in xhci_init_driver() */
4975         .start =                xhci_run,
4976         .stop =                 xhci_stop,
4977         .shutdown =             xhci_shutdown,
4978
4979         /*
4980          * managing i/o requests and associated device resources
4981          */
4982         .urb_enqueue =          xhci_urb_enqueue,
4983         .urb_dequeue =          xhci_urb_dequeue,
4984         .alloc_dev =            xhci_alloc_dev,
4985         .free_dev =             xhci_free_dev,
4986         .alloc_streams =        xhci_alloc_streams,
4987         .free_streams =         xhci_free_streams,
4988         .add_endpoint =         xhci_add_endpoint,
4989         .drop_endpoint =        xhci_drop_endpoint,
4990         .endpoint_reset =       xhci_endpoint_reset,
4991         .check_bandwidth =      xhci_check_bandwidth,
4992         .reset_bandwidth =      xhci_reset_bandwidth,
4993         .address_device =       xhci_address_device,
4994         .enable_device =        xhci_enable_device,
4995         .update_hub_device =    xhci_update_hub_device,
4996         .reset_device =         xhci_discover_or_reset_device,
4997
4998         /*
4999          * scheduling support
5000          */
5001         .get_frame_number =     xhci_get_frame,
5002
5003         /*
5004          * root hub support
5005          */
5006         .hub_control =          xhci_hub_control,
5007         .hub_status_data =      xhci_hub_status_data,
5008         .bus_suspend =          xhci_bus_suspend,
5009         .bus_resume =           xhci_bus_resume,
5010
5011         /*
5012          * call back when device connected and addressed
5013          */
5014         .update_device =        xhci_update_device,
5015         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5016         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5017         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5018         .find_raw_port_number = xhci_find_raw_port_number,
5019 };
5020
5021 void xhci_init_driver(struct hc_driver *drv,
5022                       const struct xhci_driver_overrides *over)
5023 {
5024         BUG_ON(!over);
5025
5026         /* Copy the generic table to drv then apply the overrides */
5027         *drv = xhci_hc_driver;
5028
5029         if (over) {
5030                 drv->hcd_priv_size += over->extra_priv_size;
5031                 if (over->reset)
5032                         drv->reset = over->reset;
5033                 if (over->start)
5034                         drv->start = over->start;
5035         }
5036 }
5037 EXPORT_SYMBOL_GPL(xhci_init_driver);
5038
5039 MODULE_DESCRIPTION(DRIVER_DESC);
5040 MODULE_AUTHOR(DRIVER_AUTHOR);
5041 MODULE_LICENSE("GPL");
5042
5043 static int __init xhci_hcd_init(void)
5044 {
5045         /*
5046          * Check the compiler generated sizes of structures that must be laid
5047          * out in specific ways for hardware access.
5048          */
5049         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5050         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5051         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5052         /* xhci_device_control has eight fields, and also
5053          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5054          */
5055         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5056         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5057         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5058         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5059         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5060         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5061         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5062         return 0;
5063 }
5064
5065 /*
5066  * If an init function is provided, an exit function must also be provided
5067  * to allow module unload.
5068  */
5069 static void __exit xhci_hcd_fini(void) { }
5070
5071 module_init(xhci_hcd_init);
5072 module_exit(xhci_hcd_fini);