Merge branch 'linux-linaro-lsk-v4.4-android' of git://git.linaro.org/kernel/linux...
[firefly-linux-kernel-4.4.55.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
39
40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
41 static int link_quirk;
42 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
44
45 static unsigned int quirks;
46 module_param(quirks, uint, S_IRUGO);
47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
48
49 /* TODO: copied from ehci-hcd.c - can this be refactored? */
50 /*
51  * xhci_handshake - spin reading hc until handshake completes or fails
52  * @ptr: address of hc register to be read
53  * @mask: bits to look at in result of read
54  * @done: value of those bits when handshake succeeds
55  * @usec: timeout in microseconds
56  *
57  * Returns negative errno, or zero on success
58  *
59  * Success happens when the "mask" bits have the specified value (hardware
60  * handshake done).  There are two failure modes:  "usec" have passed (major
61  * hardware flakeout), or the register reads as all-ones (hardware removed).
62  */
63 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
64 {
65         u32     result;
66
67         do {
68                 result = readl(ptr);
69                 if (result == ~(u32)0)          /* card removed */
70                         return -ENODEV;
71                 result &= mask;
72                 if (result == done)
73                         return 0;
74                 udelay(1);
75                 usec--;
76         } while (usec > 0);
77         return -ETIMEDOUT;
78 }
79
80 /*
81  * Disable interrupts and begin the xHCI halting process.
82  */
83 void xhci_quiesce(struct xhci_hcd *xhci)
84 {
85         u32 halted;
86         u32 cmd;
87         u32 mask;
88
89         mask = ~(XHCI_IRQS);
90         halted = readl(&xhci->op_regs->status) & STS_HALT;
91         if (!halted)
92                 mask &= ~CMD_RUN;
93
94         cmd = readl(&xhci->op_regs->command);
95         cmd &= mask;
96         writel(cmd, &xhci->op_regs->command);
97 }
98
99 /*
100  * Force HC into halt state.
101  *
102  * Disable any IRQs and clear the run/stop bit.
103  * HC will complete any current and actively pipelined transactions, and
104  * should halt within 16 ms of the run/stop bit being cleared.
105  * Read HC Halted bit in the status register to see when the HC is finished.
106  */
107 int xhci_halt(struct xhci_hcd *xhci)
108 {
109         int ret;
110         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
111         xhci_quiesce(xhci);
112
113         ret = xhci_handshake(&xhci->op_regs->status,
114                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
115         if (!ret) {
116                 xhci->xhc_state |= XHCI_STATE_HALTED;
117                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
118         } else
119                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
120                                 XHCI_MAX_HALT_USEC);
121         return ret;
122 }
123
124 /*
125  * Set the run bit and wait for the host to be running.
126  */
127 static int xhci_start(struct xhci_hcd *xhci)
128 {
129         u32 temp;
130         int ret;
131
132         temp = readl(&xhci->op_regs->command);
133         temp |= (CMD_RUN);
134         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
135                         temp);
136         writel(temp, &xhci->op_regs->command);
137
138         /*
139          * Wait for the HCHalted Status bit to be 0 to indicate the host is
140          * running.
141          */
142         ret = xhci_handshake(&xhci->op_regs->status,
143                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
144         if (ret == -ETIMEDOUT)
145                 xhci_err(xhci, "Host took too long to start, "
146                                 "waited %u microseconds.\n",
147                                 XHCI_MAX_HALT_USEC);
148         if (!ret)
149                 /* clear state flags. Including dying, halted or removing */
150                 xhci->xhc_state = 0;
151
152         return ret;
153 }
154
155 /*
156  * Reset a halted HC.
157  *
158  * This resets pipelines, timers, counters, state machines, etc.
159  * Transactions will be terminated immediately, and operational registers
160  * will be set to their defaults.
161  */
162 int xhci_reset(struct xhci_hcd *xhci)
163 {
164         u32 command;
165         u32 state;
166         int ret, i;
167
168         state = readl(&xhci->op_regs->status);
169         if ((state & STS_HALT) == 0) {
170                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
171                 return 0;
172         }
173
174         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
175         command = readl(&xhci->op_regs->command);
176         command |= CMD_RESET;
177         writel(command, &xhci->op_regs->command);
178
179         /* Existing Intel xHCI controllers require a delay of 1 mS,
180          * after setting the CMD_RESET bit, and before accessing any
181          * HC registers. This allows the HC to complete the
182          * reset operation and be ready for HC register access.
183          * Without this delay, the subsequent HC register access,
184          * may result in a system hang very rarely.
185          */
186         if (xhci->quirks & XHCI_INTEL_HOST)
187                 udelay(1000);
188
189         ret = xhci_handshake(&xhci->op_regs->command,
190                         CMD_RESET, 0, 10 * 1000 * 1000);
191         if (ret)
192                 return ret;
193
194         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195                          "Wait for controller to be ready for doorbell rings");
196         /*
197          * xHCI cannot write to any doorbells or operational registers other
198          * than status until the "Controller Not Ready" flag is cleared.
199          */
200         ret = xhci_handshake(&xhci->op_regs->status,
201                         STS_CNR, 0, 10 * 1000 * 1000);
202
203         for (i = 0; i < 2; ++i) {
204                 xhci->bus_state[i].port_c_suspend = 0;
205                 xhci->bus_state[i].suspended_ports = 0;
206                 xhci->bus_state[i].resuming_ports = 0;
207         }
208
209         return ret;
210 }
211
212 #ifdef CONFIG_PCI
213 static int xhci_free_msi(struct xhci_hcd *xhci)
214 {
215         int i;
216
217         if (!xhci->msix_entries)
218                 return -EINVAL;
219
220         for (i = 0; i < xhci->msix_count; i++)
221                 if (xhci->msix_entries[i].vector)
222                         free_irq(xhci->msix_entries[i].vector,
223                                         xhci_to_hcd(xhci));
224         return 0;
225 }
226
227 /*
228  * Set up MSI
229  */
230 static int xhci_setup_msi(struct xhci_hcd *xhci)
231 {
232         int ret;
233         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
234
235         ret = pci_enable_msi(pdev);
236         if (ret) {
237                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238                                 "failed to allocate MSI entry");
239                 return ret;
240         }
241
242         ret = request_irq(pdev->irq, xhci_msi_irq,
243                                 0, "xhci_hcd", xhci_to_hcd(xhci));
244         if (ret) {
245                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
246                                 "disable MSI interrupt");
247                 pci_disable_msi(pdev);
248         }
249
250         return ret;
251 }
252
253 /*
254  * Free IRQs
255  * free all IRQs request
256  */
257 static void xhci_free_irq(struct xhci_hcd *xhci)
258 {
259         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
260         int ret;
261
262         /* return if using legacy interrupt */
263         if (xhci_to_hcd(xhci)->irq > 0)
264                 return;
265
266         ret = xhci_free_msi(xhci);
267         if (!ret)
268                 return;
269         if (pdev->irq > 0)
270                 free_irq(pdev->irq, xhci_to_hcd(xhci));
271
272         return;
273 }
274
275 /*
276  * Set up MSI-X
277  */
278 static int xhci_setup_msix(struct xhci_hcd *xhci)
279 {
280         int i, ret = 0;
281         struct usb_hcd *hcd = xhci_to_hcd(xhci);
282         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
283
284         /*
285          * calculate number of msi-x vectors supported.
286          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
287          *   with max number of interrupters based on the xhci HCSPARAMS1.
288          * - num_online_cpus: maximum msi-x vectors per CPUs core.
289          *   Add additional 1 vector to ensure always available interrupt.
290          */
291         xhci->msix_count = min(num_online_cpus() + 1,
292                                 HCS_MAX_INTRS(xhci->hcs_params1));
293
294         xhci->msix_entries =
295                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
296                                 GFP_KERNEL);
297         if (!xhci->msix_entries) {
298                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
299                 return -ENOMEM;
300         }
301
302         for (i = 0; i < xhci->msix_count; i++) {
303                 xhci->msix_entries[i].entry = i;
304                 xhci->msix_entries[i].vector = 0;
305         }
306
307         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
308         if (ret) {
309                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310                                 "Failed to enable MSI-X");
311                 goto free_entries;
312         }
313
314         for (i = 0; i < xhci->msix_count; i++) {
315                 ret = request_irq(xhci->msix_entries[i].vector,
316                                 xhci_msi_irq,
317                                 0, "xhci_hcd", xhci_to_hcd(xhci));
318                 if (ret)
319                         goto disable_msix;
320         }
321
322         hcd->msix_enabled = 1;
323         return ret;
324
325 disable_msix:
326         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
327         xhci_free_irq(xhci);
328         pci_disable_msix(pdev);
329 free_entries:
330         kfree(xhci->msix_entries);
331         xhci->msix_entries = NULL;
332         return ret;
333 }
334
335 /* Free any IRQs and disable MSI-X */
336 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
337 {
338         struct usb_hcd *hcd = xhci_to_hcd(xhci);
339         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
340
341         if (xhci->quirks & XHCI_PLAT)
342                 return;
343
344         xhci_free_irq(xhci);
345
346         if (xhci->msix_entries) {
347                 pci_disable_msix(pdev);
348                 kfree(xhci->msix_entries);
349                 xhci->msix_entries = NULL;
350         } else {
351                 pci_disable_msi(pdev);
352         }
353
354         hcd->msix_enabled = 0;
355         return;
356 }
357
358 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
359 {
360         int i;
361
362         if (xhci->msix_entries) {
363                 for (i = 0; i < xhci->msix_count; i++)
364                         synchronize_irq(xhci->msix_entries[i].vector);
365         }
366 }
367
368 static int xhci_try_enable_msi(struct usb_hcd *hcd)
369 {
370         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
371         struct pci_dev  *pdev;
372         int ret;
373
374         /* The xhci platform device has set up IRQs through usb_add_hcd. */
375         if (xhci->quirks & XHCI_PLAT)
376                 return 0;
377
378         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
379         /*
380          * Some Fresco Logic host controllers advertise MSI, but fail to
381          * generate interrupts.  Don't even try to enable MSI.
382          */
383         if (xhci->quirks & XHCI_BROKEN_MSI)
384                 goto legacy_irq;
385
386         /* unregister the legacy interrupt */
387         if (hcd->irq)
388                 free_irq(hcd->irq, hcd);
389         hcd->irq = 0;
390
391         ret = xhci_setup_msix(xhci);
392         if (ret)
393                 /* fall back to msi*/
394                 ret = xhci_setup_msi(xhci);
395
396         if (!ret)
397                 /* hcd->irq is 0, we have MSI */
398                 return 0;
399
400         if (!pdev->irq) {
401                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
402                 return -EINVAL;
403         }
404
405  legacy_irq:
406         if (!strlen(hcd->irq_descr))
407                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
408                          hcd->driver->description, hcd->self.busnum);
409
410         /* fall back to legacy interrupt*/
411         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
412                         hcd->irq_descr, hcd);
413         if (ret) {
414                 xhci_err(xhci, "request interrupt %d failed\n",
415                                 pdev->irq);
416                 return ret;
417         }
418         hcd->irq = pdev->irq;
419         return 0;
420 }
421
422 #else
423
424 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
425 {
426         return 0;
427 }
428
429 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
430 {
431 }
432
433 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
434 {
435 }
436
437 #endif
438
439 static void compliance_mode_recovery(unsigned long arg)
440 {
441         struct xhci_hcd *xhci;
442         struct usb_hcd *hcd;
443         u32 temp;
444         int i;
445
446         xhci = (struct xhci_hcd *)arg;
447
448         for (i = 0; i < xhci->num_usb3_ports; i++) {
449                 temp = readl(xhci->usb3_ports[i]);
450                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
451                         /*
452                          * Compliance Mode Detected. Letting USB Core
453                          * handle the Warm Reset
454                          */
455                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
456                                         "Compliance mode detected->port %d",
457                                         i + 1);
458                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
459                                         "Attempting compliance mode recovery");
460                         hcd = xhci->shared_hcd;
461
462                         if (hcd->state == HC_STATE_SUSPENDED)
463                                 usb_hcd_resume_root_hub(hcd);
464
465                         usb_hcd_poll_rh_status(hcd);
466                 }
467         }
468
469         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
470                 mod_timer(&xhci->comp_mode_recovery_timer,
471                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 }
473
474 /*
475  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
476  * that causes ports behind that hardware to enter compliance mode sometimes.
477  * The quirk creates a timer that polls every 2 seconds the link state of
478  * each host controller's port and recovers it by issuing a Warm reset
479  * if Compliance mode is detected, otherwise the port will become "dead" (no
480  * device connections or disconnections will be detected anymore). Becasue no
481  * status event is generated when entering compliance mode (per xhci spec),
482  * this quirk is needed on systems that have the failing hardware installed.
483  */
484 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
485 {
486         xhci->port_status_u0 = 0;
487         setup_timer(&xhci->comp_mode_recovery_timer,
488                     compliance_mode_recovery, (unsigned long)xhci);
489         xhci->comp_mode_recovery_timer.expires = jiffies +
490                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
491
492         set_timer_slack(&xhci->comp_mode_recovery_timer,
493                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
494         add_timer(&xhci->comp_mode_recovery_timer);
495         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496                         "Compliance mode recovery timer initialized");
497 }
498
499 /*
500  * This function identifies the systems that have installed the SN65LVPE502CP
501  * USB3.0 re-driver and that need the Compliance Mode Quirk.
502  * Systems:
503  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
504  */
505 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
506 {
507         const char *dmi_product_name, *dmi_sys_vendor;
508
509         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
510         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
511         if (!dmi_product_name || !dmi_sys_vendor)
512                 return false;
513
514         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
515                 return false;
516
517         if (strstr(dmi_product_name, "Z420") ||
518                         strstr(dmi_product_name, "Z620") ||
519                         strstr(dmi_product_name, "Z820") ||
520                         strstr(dmi_product_name, "Z1 Workstation"))
521                 return true;
522
523         return false;
524 }
525
526 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
527 {
528         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
529 }
530
531
532 /*
533  * Initialize memory for HCD and xHC (one-time init).
534  *
535  * Program the PAGESIZE register, initialize the device context array, create
536  * device contexts (?), set up a command ring segment (or two?), create event
537  * ring (one for now).
538  */
539 int xhci_init(struct usb_hcd *hcd)
540 {
541         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
542         int retval = 0;
543
544         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
545         spin_lock_init(&xhci->lock);
546         if (xhci->hci_version == 0x95 && link_quirk) {
547                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
548                                 "QUIRK: Not clearing Link TRB chain bits.");
549                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
550         } else {
551                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552                                 "xHCI doesn't need link TRB QUIRK");
553         }
554         retval = xhci_mem_init(xhci, GFP_KERNEL);
555         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
556
557         /* Initializing Compliance Mode Recovery Data If Needed */
558         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
559                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
560                 compliance_mode_recovery_timer_init(xhci);
561         }
562
563         return retval;
564 }
565
566 /*-------------------------------------------------------------------------*/
567
568
569 static int xhci_run_finished(struct xhci_hcd *xhci)
570 {
571         if (xhci_start(xhci)) {
572                 xhci_halt(xhci);
573                 return -ENODEV;
574         }
575         xhci->shared_hcd->state = HC_STATE_RUNNING;
576         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
577
578         if (xhci->quirks & XHCI_NEC_HOST)
579                 xhci_ring_cmd_db(xhci);
580
581         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
582                         "Finished xhci_run for USB3 roothub");
583         return 0;
584 }
585
586 /*
587  * Start the HC after it was halted.
588  *
589  * This function is called by the USB core when the HC driver is added.
590  * Its opposite is xhci_stop().
591  *
592  * xhci_init() must be called once before this function can be called.
593  * Reset the HC, enable device slot contexts, program DCBAAP, and
594  * set command ring pointer and event ring pointer.
595  *
596  * Setup MSI-X vectors and enable interrupts.
597  */
598 int xhci_run(struct usb_hcd *hcd)
599 {
600         u32 temp;
601         u64 temp_64;
602         int ret;
603         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
604
605         /* Start the xHCI host controller running only after the USB 2.0 roothub
606          * is setup.
607          */
608
609         hcd->uses_new_polling = 1;
610         if (!usb_hcd_is_primary_hcd(hcd))
611                 return xhci_run_finished(xhci);
612
613         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
614
615         ret = xhci_try_enable_msi(hcd);
616         if (ret)
617                 return ret;
618
619         xhci_dbg(xhci, "Command ring memory map follows:\n");
620         xhci_debug_ring(xhci, xhci->cmd_ring);
621         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
622         xhci_dbg_cmd_ptrs(xhci);
623
624         xhci_dbg(xhci, "ERST memory map follows:\n");
625         xhci_dbg_erst(xhci, &xhci->erst);
626         xhci_dbg(xhci, "Event ring:\n");
627         xhci_debug_ring(xhci, xhci->event_ring);
628         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
629         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
630         temp_64 &= ~ERST_PTR_MASK;
631         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
632                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
633
634         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635                         "// Set the interrupt modulation register");
636         temp = readl(&xhci->ir_set->irq_control);
637         temp &= ~ER_IRQ_INTERVAL_MASK;
638         temp |= (u32) 160;
639         writel(temp, &xhci->ir_set->irq_control);
640
641         /* Set the HCD state before we enable the irqs */
642         temp = readl(&xhci->op_regs->command);
643         temp |= (CMD_EIE);
644         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
645                         "// Enable interrupts, cmd = 0x%x.", temp);
646         writel(temp, &xhci->op_regs->command);
647
648         temp = readl(&xhci->ir_set->irq_pending);
649         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
650                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
651                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
652         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
653         xhci_print_ir_set(xhci, 0);
654
655         if (xhci->quirks & XHCI_NEC_HOST) {
656                 struct xhci_command *command;
657                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
658                 if (!command)
659                         return -ENOMEM;
660                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
661                                 TRB_TYPE(TRB_NEC_GET_FW));
662         }
663         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664                         "Finished xhci_run for USB2 roothub");
665         return 0;
666 }
667 EXPORT_SYMBOL_GPL(xhci_run);
668
669 /*
670  * Stop xHCI driver.
671  *
672  * This function is called by the USB core when the HC driver is removed.
673  * Its opposite is xhci_run().
674  *
675  * Disable device contexts, disable IRQs, and quiesce the HC.
676  * Reset the HC, finish any completed transactions, and cleanup memory.
677  */
678 void xhci_stop(struct usb_hcd *hcd)
679 {
680         u32 temp;
681         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
682
683         mutex_lock(&xhci->mutex);
684
685         if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
686                 spin_lock_irq(&xhci->lock);
687
688                 xhci->xhc_state |= XHCI_STATE_HALTED;
689                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
690                 xhci_halt(xhci);
691                 xhci_reset(xhci);
692
693                 spin_unlock_irq(&xhci->lock);
694         }
695
696         if (!usb_hcd_is_primary_hcd(hcd)) {
697                 mutex_unlock(&xhci->mutex);
698                 return;
699         }
700
701         xhci_cleanup_msix(xhci);
702
703         /* Deleting Compliance Mode Recovery Timer */
704         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
705                         (!(xhci_all_ports_seen_u0(xhci)))) {
706                 del_timer_sync(&xhci->comp_mode_recovery_timer);
707                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
708                                 "%s: compliance mode recovery timer deleted",
709                                 __func__);
710         }
711
712         if (xhci->quirks & XHCI_AMD_PLL_FIX)
713                 usb_amd_dev_put();
714
715         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
716                         "// Disabling event ring interrupts");
717         temp = readl(&xhci->op_regs->status);
718         writel(temp & ~STS_EINT, &xhci->op_regs->status);
719         temp = readl(&xhci->ir_set->irq_pending);
720         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
721         xhci_print_ir_set(xhci, 0);
722
723         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
724         xhci_mem_cleanup(xhci);
725         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
726                         "xhci_stop completed - status = %x",
727                         readl(&xhci->op_regs->status));
728         mutex_unlock(&xhci->mutex);
729 }
730
731 /*
732  * Shutdown HC (not bus-specific)
733  *
734  * This is called when the machine is rebooting or halting.  We assume that the
735  * machine will be powered off, and the HC's internal state will be reset.
736  * Don't bother to free memory.
737  *
738  * This will only ever be called with the main usb_hcd (the USB3 roothub).
739  */
740 void xhci_shutdown(struct usb_hcd *hcd)
741 {
742         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
743
744         if (!hcd->rh_registered)
745                 return;
746
747         /* Don't poll the roothubs on shutdown */
748         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
749         del_timer_sync(&hcd->rh_timer);
750         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
751         del_timer_sync(&xhci->shared_hcd->rh_timer);
752
753         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
754                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
755
756         spin_lock_irq(&xhci->lock);
757         xhci_halt(xhci);
758         /* Workaround for spurious wakeups at shutdown with HSW */
759         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
760                 xhci_reset(xhci);
761         spin_unlock_irq(&xhci->lock);
762
763         xhci_cleanup_msix(xhci);
764
765         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
766                         "xhci_shutdown completed - status = %x",
767                         readl(&xhci->op_regs->status));
768
769         /* Yet another workaround for spurious wakeups at shutdown with HSW */
770         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
771                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
772 }
773
774 #ifdef CONFIG_PM
775 static void xhci_save_registers(struct xhci_hcd *xhci)
776 {
777         xhci->s3.command = readl(&xhci->op_regs->command);
778         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
779         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
780         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
781         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
782         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
783         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
784         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
785         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
786 }
787
788 static void xhci_restore_registers(struct xhci_hcd *xhci)
789 {
790         writel(xhci->s3.command, &xhci->op_regs->command);
791         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
792         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
793         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
794         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
795         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
796         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
797         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
798         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
799 }
800
801 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
802 {
803         u64     val_64;
804
805         /* step 2: initialize command ring buffer */
806         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
807         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
808                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
809                                       xhci->cmd_ring->dequeue) &
810                  (u64) ~CMD_RING_RSVD_BITS) |
811                 xhci->cmd_ring->cycle_state;
812         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
813                         "// Setting command ring address to 0x%llx",
814                         (long unsigned long) val_64);
815         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
816 }
817
818 /*
819  * The whole command ring must be cleared to zero when we suspend the host.
820  *
821  * The host doesn't save the command ring pointer in the suspend well, so we
822  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
823  * aligned, because of the reserved bits in the command ring dequeue pointer
824  * register.  Therefore, we can't just set the dequeue pointer back in the
825  * middle of the ring (TRBs are 16-byte aligned).
826  */
827 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
828 {
829         struct xhci_ring *ring;
830         struct xhci_segment *seg;
831
832         ring = xhci->cmd_ring;
833         seg = ring->deq_seg;
834         do {
835                 memset(seg->trbs, 0,
836                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
837                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
838                         cpu_to_le32(~TRB_CYCLE);
839                 seg = seg->next;
840         } while (seg != ring->deq_seg);
841
842         /* Reset the software enqueue and dequeue pointers */
843         ring->deq_seg = ring->first_seg;
844         ring->dequeue = ring->first_seg->trbs;
845         ring->enq_seg = ring->deq_seg;
846         ring->enqueue = ring->dequeue;
847
848         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
849         /*
850          * Ring is now zeroed, so the HW should look for change of ownership
851          * when the cycle bit is set to 1.
852          */
853         ring->cycle_state = 1;
854
855         /*
856          * Reset the hardware dequeue pointer.
857          * Yes, this will need to be re-written after resume, but we're paranoid
858          * and want to make sure the hardware doesn't access bogus memory
859          * because, say, the BIOS or an SMI started the host without changing
860          * the command ring pointers.
861          */
862         xhci_set_cmd_ring_deq(xhci);
863 }
864
865 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
866 {
867         int port_index;
868         __le32 __iomem **port_array;
869         unsigned long flags;
870         u32 t1, t2;
871
872         spin_lock_irqsave(&xhci->lock, flags);
873
874         /* disble usb3 ports Wake bits*/
875         port_index = xhci->num_usb3_ports;
876         port_array = xhci->usb3_ports;
877         while (port_index--) {
878                 t1 = readl(port_array[port_index]);
879                 t1 = xhci_port_state_to_neutral(t1);
880                 t2 = t1 & ~PORT_WAKE_BITS;
881                 if (t1 != t2)
882                         writel(t2, port_array[port_index]);
883         }
884
885         /* disble usb2 ports Wake bits*/
886         port_index = xhci->num_usb2_ports;
887         port_array = xhci->usb2_ports;
888         while (port_index--) {
889                 t1 = readl(port_array[port_index]);
890                 t1 = xhci_port_state_to_neutral(t1);
891                 t2 = t1 & ~PORT_WAKE_BITS;
892                 if (t1 != t2)
893                         writel(t2, port_array[port_index]);
894         }
895
896         spin_unlock_irqrestore(&xhci->lock, flags);
897 }
898
899 /*
900  * Stop HC (not bus-specific)
901  *
902  * This is called when the machine transition into S3/S4 mode.
903  *
904  */
905 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
906 {
907         int                     rc = 0;
908         unsigned int            delay = XHCI_MAX_HALT_USEC;
909         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
910         u32                     command;
911
912         if (!hcd->state)
913                 return 0;
914
915         if (hcd->state != HC_STATE_SUSPENDED ||
916                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
917                 return -EINVAL;
918
919         /* Clear root port wake on bits if wakeup not allowed. */
920         if (!do_wakeup)
921                 xhci_disable_port_wake_on_bits(xhci);
922
923         /* Don't poll the roothubs on bus suspend. */
924         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
925         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
926         del_timer_sync(&hcd->rh_timer);
927         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
928         del_timer_sync(&xhci->shared_hcd->rh_timer);
929
930         spin_lock_irq(&xhci->lock);
931         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
932         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
933         /* step 1: stop endpoint */
934         /* skipped assuming that port suspend has done */
935
936         /* step 2: clear Run/Stop bit */
937         command = readl(&xhci->op_regs->command);
938         command &= ~CMD_RUN;
939         writel(command, &xhci->op_regs->command);
940
941         /* Some chips from Fresco Logic need an extraordinary delay */
942         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
943
944         if (xhci_handshake(&xhci->op_regs->status,
945                       STS_HALT, STS_HALT, delay)) {
946                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
947                 spin_unlock_irq(&xhci->lock);
948                 return -ETIMEDOUT;
949         }
950         xhci_clear_command_ring(xhci);
951
952         /* step 3: save registers */
953         xhci_save_registers(xhci);
954
955         /* step 4: set CSS flag */
956         command = readl(&xhci->op_regs->command);
957         command |= CMD_CSS;
958         writel(command, &xhci->op_regs->command);
959         if (xhci_handshake(&xhci->op_regs->status,
960                                 STS_SAVE, 0, 10 * 1000)) {
961                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
962                 spin_unlock_irq(&xhci->lock);
963                 return -ETIMEDOUT;
964         }
965         spin_unlock_irq(&xhci->lock);
966
967         /*
968          * Deleting Compliance Mode Recovery Timer because the xHCI Host
969          * is about to be suspended.
970          */
971         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
972                         (!(xhci_all_ports_seen_u0(xhci)))) {
973                 del_timer_sync(&xhci->comp_mode_recovery_timer);
974                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
975                                 "%s: compliance mode recovery timer deleted",
976                                 __func__);
977         }
978
979         /* step 5: remove core well power */
980         /* synchronize irq when using MSI-X */
981         xhci_msix_sync_irqs(xhci);
982
983         return rc;
984 }
985 EXPORT_SYMBOL_GPL(xhci_suspend);
986
987 /*
988  * start xHC (not bus-specific)
989  *
990  * This is called when the machine transition from S3/S4 mode.
991  *
992  */
993 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
994 {
995         u32                     command, temp = 0, status;
996         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
997         struct usb_hcd          *secondary_hcd;
998         int                     retval = 0;
999         bool                    comp_timer_running = false;
1000
1001         if (!hcd->state)
1002                 return 0;
1003
1004         /* Wait a bit if either of the roothubs need to settle from the
1005          * transition into bus suspend.
1006          */
1007         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1008                         time_before(jiffies,
1009                                 xhci->bus_state[1].next_statechange))
1010                 msleep(100);
1011
1012         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1013         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1014
1015         spin_lock_irq(&xhci->lock);
1016         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1017                 hibernated = true;
1018
1019         if (!hibernated) {
1020                 /* step 1: restore register */
1021                 xhci_restore_registers(xhci);
1022                 /* step 2: initialize command ring buffer */
1023                 xhci_set_cmd_ring_deq(xhci);
1024                 /* step 3: restore state and start state*/
1025                 /* step 3: set CRS flag */
1026                 command = readl(&xhci->op_regs->command);
1027                 command |= CMD_CRS;
1028                 writel(command, &xhci->op_regs->command);
1029                 if (xhci_handshake(&xhci->op_regs->status,
1030                               STS_RESTORE, 0, 10 * 1000)) {
1031                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1032                         spin_unlock_irq(&xhci->lock);
1033                         return -ETIMEDOUT;
1034                 }
1035                 temp = readl(&xhci->op_regs->status);
1036         }
1037
1038         /* If restore operation fails, re-initialize the HC during resume */
1039         if ((temp & STS_SRE) || hibernated) {
1040
1041                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1042                                 !(xhci_all_ports_seen_u0(xhci))) {
1043                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1044                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1045                                 "Compliance Mode Recovery Timer deleted!");
1046                 }
1047
1048                 /* Let the USB core know _both_ roothubs lost power. */
1049                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1050                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1051
1052                 xhci_dbg(xhci, "Stop HCD\n");
1053                 xhci_halt(xhci);
1054                 xhci_reset(xhci);
1055                 spin_unlock_irq(&xhci->lock);
1056                 xhci_cleanup_msix(xhci);
1057
1058                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1059                 temp = readl(&xhci->op_regs->status);
1060                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1061                 temp = readl(&xhci->ir_set->irq_pending);
1062                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1063                 xhci_print_ir_set(xhci, 0);
1064
1065                 xhci_dbg(xhci, "cleaning up memory\n");
1066                 xhci_mem_cleanup(xhci);
1067                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1068                             readl(&xhci->op_regs->status));
1069
1070                 /* USB core calls the PCI reinit and start functions twice:
1071                  * first with the primary HCD, and then with the secondary HCD.
1072                  * If we don't do the same, the host will never be started.
1073                  */
1074                 if (!usb_hcd_is_primary_hcd(hcd))
1075                         secondary_hcd = hcd;
1076                 else
1077                         secondary_hcd = xhci->shared_hcd;
1078
1079                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1080                 retval = xhci_init(hcd->primary_hcd);
1081                 if (retval)
1082                         return retval;
1083                 comp_timer_running = true;
1084
1085                 xhci_dbg(xhci, "Start the primary HCD\n");
1086                 retval = xhci_run(hcd->primary_hcd);
1087                 if (!retval) {
1088                         xhci_dbg(xhci, "Start the secondary HCD\n");
1089                         retval = xhci_run(secondary_hcd);
1090                 }
1091                 hcd->state = HC_STATE_SUSPENDED;
1092                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1093                 goto done;
1094         }
1095
1096         /* step 4: set Run/Stop bit */
1097         command = readl(&xhci->op_regs->command);
1098         command |= CMD_RUN;
1099         writel(command, &xhci->op_regs->command);
1100         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1101                   0, 250 * 1000);
1102
1103         /* step 5: walk topology and initialize portsc,
1104          * portpmsc and portli
1105          */
1106         /* this is done in bus_resume */
1107
1108         /* step 6: restart each of the previously
1109          * Running endpoints by ringing their doorbells
1110          */
1111
1112         spin_unlock_irq(&xhci->lock);
1113
1114  done:
1115         if (retval == 0) {
1116                 /* Resume root hubs only when have pending events. */
1117                 status = readl(&xhci->op_regs->status);
1118                 if (status & STS_EINT) {
1119                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1120                         usb_hcd_resume_root_hub(hcd);
1121                 }
1122         }
1123
1124         /*
1125          * If system is subject to the Quirk, Compliance Mode Timer needs to
1126          * be re-initialized Always after a system resume. Ports are subject
1127          * to suffer the Compliance Mode issue again. It doesn't matter if
1128          * ports have entered previously to U0 before system's suspension.
1129          */
1130         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1131                 compliance_mode_recovery_timer_init(xhci);
1132
1133         /* Re-enable port polling. */
1134         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1135         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1136         usb_hcd_poll_rh_status(xhci->shared_hcd);
1137         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1138         usb_hcd_poll_rh_status(hcd);
1139
1140         return retval;
1141 }
1142 EXPORT_SYMBOL_GPL(xhci_resume);
1143 #endif  /* CONFIG_PM */
1144
1145 /*-------------------------------------------------------------------------*/
1146
1147 /**
1148  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1149  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1150  * value to right shift 1 for the bitmask.
1151  *
1152  * Index  = (epnum * 2) + direction - 1,
1153  * where direction = 0 for OUT, 1 for IN.
1154  * For control endpoints, the IN index is used (OUT index is unused), so
1155  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1156  */
1157 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1158 {
1159         unsigned int index;
1160         if (usb_endpoint_xfer_control(desc))
1161                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1162         else
1163                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1164                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1165         return index;
1166 }
1167
1168 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1169  * address from the XHCI endpoint index.
1170  */
1171 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1172 {
1173         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1174         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1175         return direction | number;
1176 }
1177
1178 /* Find the flag for this endpoint (for use in the control context).  Use the
1179  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1180  * bit 1, etc.
1181  */
1182 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1183 {
1184         return 1 << (xhci_get_endpoint_index(desc) + 1);
1185 }
1186
1187 /* Find the flag for this endpoint (for use in the control context).  Use the
1188  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1189  * bit 1, etc.
1190  */
1191 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1192 {
1193         return 1 << (ep_index + 1);
1194 }
1195
1196 /* Compute the last valid endpoint context index.  Basically, this is the
1197  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1198  * we find the most significant bit set in the added contexts flags.
1199  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1200  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1201  */
1202 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1203 {
1204         return fls(added_ctxs) - 1;
1205 }
1206
1207 /* Returns 1 if the arguments are OK;
1208  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1209  */
1210 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1211                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1212                 const char *func) {
1213         struct xhci_hcd *xhci;
1214         struct xhci_virt_device *virt_dev;
1215
1216         if (!hcd || (check_ep && !ep) || !udev) {
1217                 pr_debug("xHCI %s called with invalid args\n", func);
1218                 return -EINVAL;
1219         }
1220         if (!udev->parent) {
1221                 pr_debug("xHCI %s called for root hub\n", func);
1222                 return 0;
1223         }
1224
1225         xhci = hcd_to_xhci(hcd);
1226         if (check_virt_dev) {
1227                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1228                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1229                                         func);
1230                         return -EINVAL;
1231                 }
1232
1233                 virt_dev = xhci->devs[udev->slot_id];
1234                 if (virt_dev->udev != udev) {
1235                         xhci_dbg(xhci, "xHCI %s called with udev and "
1236                                           "virt_dev does not match\n", func);
1237                         return -EINVAL;
1238                 }
1239         }
1240
1241         if (xhci->xhc_state & XHCI_STATE_HALTED)
1242                 return -ENODEV;
1243
1244         return 1;
1245 }
1246
1247 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1248                 struct usb_device *udev, struct xhci_command *command,
1249                 bool ctx_change, bool must_succeed);
1250
1251 /*
1252  * Full speed devices may have a max packet size greater than 8 bytes, but the
1253  * USB core doesn't know that until it reads the first 8 bytes of the
1254  * descriptor.  If the usb_device's max packet size changes after that point,
1255  * we need to issue an evaluate context command and wait on it.
1256  */
1257 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1258                 unsigned int ep_index, struct urb *urb)
1259 {
1260         struct xhci_container_ctx *out_ctx;
1261         struct xhci_input_control_ctx *ctrl_ctx;
1262         struct xhci_ep_ctx *ep_ctx;
1263         struct xhci_command *command;
1264         int max_packet_size;
1265         int hw_max_packet_size;
1266         int ret = 0;
1267
1268         out_ctx = xhci->devs[slot_id]->out_ctx;
1269         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1270         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1271         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1272         if (hw_max_packet_size != max_packet_size) {
1273                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1274                                 "Max Packet Size for ep 0 changed.");
1275                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1276                                 "Max packet size in usb_device = %d",
1277                                 max_packet_size);
1278                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1279                                 "Max packet size in xHCI HW = %d",
1280                                 hw_max_packet_size);
1281                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1282                                 "Issuing evaluate context command.");
1283
1284                 /* Set up the input context flags for the command */
1285                 /* FIXME: This won't work if a non-default control endpoint
1286                  * changes max packet sizes.
1287                  */
1288
1289                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1290                 if (!command)
1291                         return -ENOMEM;
1292
1293                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1294                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1295                 if (!ctrl_ctx) {
1296                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1297                                         __func__);
1298                         ret = -ENOMEM;
1299                         goto command_cleanup;
1300                 }
1301                 /* Set up the modified control endpoint 0 */
1302                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1303                                 xhci->devs[slot_id]->out_ctx, ep_index);
1304
1305                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1306                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1307                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1308
1309                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1310                 ctrl_ctx->drop_flags = 0;
1311
1312                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1313                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1314                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1315                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1316
1317                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1318                                 true, false);
1319
1320                 /* Clean up the input context for later use by bandwidth
1321                  * functions.
1322                  */
1323                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1324 command_cleanup:
1325                 kfree(command->completion);
1326                 kfree(command);
1327         }
1328         return ret;
1329 }
1330
1331 /*
1332  * non-error returns are a promise to giveback() the urb later
1333  * we drop ownership so next owner (or urb unlink) can get it
1334  */
1335 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1336 {
1337         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1338         struct xhci_td *buffer;
1339         unsigned long flags;
1340         int ret = 0;
1341         unsigned int slot_id, ep_index;
1342         struct urb_priv *urb_priv;
1343         int size, i;
1344
1345         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1346                                         true, true, __func__) <= 0)
1347                 return -EINVAL;
1348
1349         slot_id = urb->dev->slot_id;
1350         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1351
1352         if (!HCD_HW_ACCESSIBLE(hcd)) {
1353                 if (!in_interrupt())
1354                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1355                 ret = -ESHUTDOWN;
1356                 goto exit;
1357         }
1358
1359         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1360                 size = urb->number_of_packets;
1361         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1362             urb->transfer_buffer_length > 0 &&
1363             urb->transfer_flags & URB_ZERO_PACKET &&
1364             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1365                 size = 2;
1366         else
1367                 size = 1;
1368
1369         urb_priv = kzalloc(sizeof(struct urb_priv) +
1370                                   size * sizeof(struct xhci_td *), mem_flags);
1371         if (!urb_priv)
1372                 return -ENOMEM;
1373
1374         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1375         if (!buffer) {
1376                 kfree(urb_priv);
1377                 return -ENOMEM;
1378         }
1379
1380         for (i = 0; i < size; i++) {
1381                 urb_priv->td[i] = buffer;
1382                 buffer++;
1383         }
1384
1385         urb_priv->length = size;
1386         urb_priv->td_cnt = 0;
1387         urb->hcpriv = urb_priv;
1388
1389         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1390                 /* Check to see if the max packet size for the default control
1391                  * endpoint changed during FS device enumeration
1392                  */
1393                 if (urb->dev->speed == USB_SPEED_FULL) {
1394                         ret = xhci_check_maxpacket(xhci, slot_id,
1395                                         ep_index, urb);
1396                         if (ret < 0) {
1397                                 xhci_urb_free_priv(urb_priv);
1398                                 urb->hcpriv = NULL;
1399                                 return ret;
1400                         }
1401                 }
1402
1403                 /* We have a spinlock and interrupts disabled, so we must pass
1404                  * atomic context to this function, which may allocate memory.
1405                  */
1406                 spin_lock_irqsave(&xhci->lock, flags);
1407                 if (xhci->xhc_state & XHCI_STATE_DYING)
1408                         goto dying;
1409                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1410                                 slot_id, ep_index);
1411                 if (ret)
1412                         goto free_priv;
1413                 spin_unlock_irqrestore(&xhci->lock, flags);
1414         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1415                 spin_lock_irqsave(&xhci->lock, flags);
1416                 if (xhci->xhc_state & XHCI_STATE_DYING)
1417                         goto dying;
1418                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1419                                 EP_GETTING_STREAMS) {
1420                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1421                                         "is transitioning to using streams.\n");
1422                         ret = -EINVAL;
1423                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1424                                 EP_GETTING_NO_STREAMS) {
1425                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1426                                         "is transitioning to "
1427                                         "not having streams.\n");
1428                         ret = -EINVAL;
1429                 } else {
1430                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1431                                         slot_id, ep_index);
1432                 }
1433                 if (ret)
1434                         goto free_priv;
1435                 spin_unlock_irqrestore(&xhci->lock, flags);
1436         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1437                 spin_lock_irqsave(&xhci->lock, flags);
1438                 if (xhci->xhc_state & XHCI_STATE_DYING)
1439                         goto dying;
1440                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1441                                 slot_id, ep_index);
1442                 if (ret)
1443                         goto free_priv;
1444                 spin_unlock_irqrestore(&xhci->lock, flags);
1445         } else {
1446                 spin_lock_irqsave(&xhci->lock, flags);
1447                 if (xhci->xhc_state & XHCI_STATE_DYING)
1448                         goto dying;
1449                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1450                                 slot_id, ep_index);
1451                 if (ret)
1452                         goto free_priv;
1453                 spin_unlock_irqrestore(&xhci->lock, flags);
1454         }
1455 exit:
1456         return ret;
1457 dying:
1458         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1459                         "non-responsive xHCI host.\n",
1460                         urb->ep->desc.bEndpointAddress, urb);
1461         ret = -ESHUTDOWN;
1462 free_priv:
1463         xhci_urb_free_priv(urb_priv);
1464         urb->hcpriv = NULL;
1465         spin_unlock_irqrestore(&xhci->lock, flags);
1466         return ret;
1467 }
1468
1469 /* Get the right ring for the given URB.
1470  * If the endpoint supports streams, boundary check the URB's stream ID.
1471  * If the endpoint doesn't support streams, return the singular endpoint ring.
1472  */
1473 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1474                 struct urb *urb)
1475 {
1476         unsigned int slot_id;
1477         unsigned int ep_index;
1478         unsigned int stream_id;
1479         struct xhci_virt_ep *ep;
1480
1481         slot_id = urb->dev->slot_id;
1482         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1483         stream_id = urb->stream_id;
1484         ep = &xhci->devs[slot_id]->eps[ep_index];
1485         /* Common case: no streams */
1486         if (!(ep->ep_state & EP_HAS_STREAMS))
1487                 return ep->ring;
1488
1489         if (stream_id == 0) {
1490                 xhci_warn(xhci,
1491                                 "WARN: Slot ID %u, ep index %u has streams, "
1492                                 "but URB has no stream ID.\n",
1493                                 slot_id, ep_index);
1494                 return NULL;
1495         }
1496
1497         if (stream_id < ep->stream_info->num_streams)
1498                 return ep->stream_info->stream_rings[stream_id];
1499
1500         xhci_warn(xhci,
1501                         "WARN: Slot ID %u, ep index %u has "
1502                         "stream IDs 1 to %u allocated, "
1503                         "but stream ID %u is requested.\n",
1504                         slot_id, ep_index,
1505                         ep->stream_info->num_streams - 1,
1506                         stream_id);
1507         return NULL;
1508 }
1509
1510 /*
1511  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1512  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1513  * should pick up where it left off in the TD, unless a Set Transfer Ring
1514  * Dequeue Pointer is issued.
1515  *
1516  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1517  * the ring.  Since the ring is a contiguous structure, they can't be physically
1518  * removed.  Instead, there are two options:
1519  *
1520  *  1) If the HC is in the middle of processing the URB to be canceled, we
1521  *     simply move the ring's dequeue pointer past those TRBs using the Set
1522  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1523  *     when drivers timeout on the last submitted URB and attempt to cancel.
1524  *
1525  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1526  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1527  *     HC will need to invalidate the any TRBs it has cached after the stop
1528  *     endpoint command, as noted in the xHCI 0.95 errata.
1529  *
1530  *  3) The TD may have completed by the time the Stop Endpoint Command
1531  *     completes, so software needs to handle that case too.
1532  *
1533  * This function should protect against the TD enqueueing code ringing the
1534  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1535  * It also needs to account for multiple cancellations on happening at the same
1536  * time for the same endpoint.
1537  *
1538  * Note that this function can be called in any context, or so says
1539  * usb_hcd_unlink_urb()
1540  */
1541 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1542 {
1543         unsigned long flags;
1544         int ret, i;
1545         u32 temp;
1546         struct xhci_hcd *xhci;
1547         struct urb_priv *urb_priv;
1548         struct xhci_td *td;
1549         unsigned int ep_index;
1550         struct xhci_ring *ep_ring;
1551         struct xhci_virt_ep *ep;
1552         struct xhci_command *command;
1553
1554         xhci = hcd_to_xhci(hcd);
1555         spin_lock_irqsave(&xhci->lock, flags);
1556         /* Make sure the URB hasn't completed or been unlinked already */
1557         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1558         if (ret || !urb->hcpriv)
1559                 goto done;
1560         temp = readl(&xhci->op_regs->status);
1561         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED) ||
1562             (xhci->xhc_state & XHCI_STATE_REMOVING)) {
1563                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1564                                 "HW died, freeing TD.");
1565                 urb_priv = urb->hcpriv;
1566                 for (i = urb_priv->td_cnt;
1567                      i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1568                      i++) {
1569                         td = urb_priv->td[i];
1570                         if (!list_empty(&td->td_list))
1571                                 list_del_init(&td->td_list);
1572                         if (!list_empty(&td->cancelled_td_list))
1573                                 list_del_init(&td->cancelled_td_list);
1574                 }
1575
1576                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1577                 spin_unlock_irqrestore(&xhci->lock, flags);
1578                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1579                 xhci_urb_free_priv(urb_priv);
1580                 return ret;
1581         }
1582         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1583                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1584                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1585                                 "Ep 0x%x: URB %p to be canceled on "
1586                                 "non-responsive xHCI host.",
1587                                 urb->ep->desc.bEndpointAddress, urb);
1588                 /* Let the stop endpoint command watchdog timer (which set this
1589                  * state) finish cleaning up the endpoint TD lists.  We must
1590                  * have caught it in the middle of dropping a lock and giving
1591                  * back an URB.
1592                  */
1593                 goto done;
1594         }
1595
1596         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1597         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1598         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1599         if (!ep_ring) {
1600                 ret = -EINVAL;
1601                 goto done;
1602         }
1603
1604         urb_priv = urb->hcpriv;
1605         i = urb_priv->td_cnt;
1606         if (i < urb_priv->length)
1607                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1608                                 "Cancel URB %p, dev %s, ep 0x%x, "
1609                                 "starting at offset 0x%llx",
1610                                 urb, urb->dev->devpath,
1611                                 urb->ep->desc.bEndpointAddress,
1612                                 (unsigned long long) xhci_trb_virt_to_dma(
1613                                         urb_priv->td[i]->start_seg,
1614                                         urb_priv->td[i]->first_trb));
1615
1616         for (; i < urb_priv->length; i++) {
1617                 td = urb_priv->td[i];
1618                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1619         }
1620
1621         /* Queue a stop endpoint command, but only if this is
1622          * the first cancellation to be handled.
1623          */
1624         if (!(ep->ep_state & EP_HALT_PENDING)) {
1625                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1626                 if (!command) {
1627                         ret = -ENOMEM;
1628                         goto done;
1629                 }
1630                 ep->ep_state |= EP_HALT_PENDING;
1631                 ep->stop_cmds_pending++;
1632                 ep->stop_cmd_timer.expires = jiffies +
1633                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1634                 add_timer(&ep->stop_cmd_timer);
1635                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1636                                          ep_index, 0);
1637                 xhci_ring_cmd_db(xhci);
1638         }
1639 done:
1640         spin_unlock_irqrestore(&xhci->lock, flags);
1641         return ret;
1642 }
1643
1644 /* Drop an endpoint from a new bandwidth configuration for this device.
1645  * Only one call to this function is allowed per endpoint before
1646  * check_bandwidth() or reset_bandwidth() must be called.
1647  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1648  * add the endpoint to the schedule with possibly new parameters denoted by a
1649  * different endpoint descriptor in usb_host_endpoint.
1650  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1651  * not allowed.
1652  *
1653  * The USB core will not allow URBs to be queued to an endpoint that is being
1654  * disabled, so there's no need for mutual exclusion to protect
1655  * the xhci->devs[slot_id] structure.
1656  */
1657 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1658                 struct usb_host_endpoint *ep)
1659 {
1660         struct xhci_hcd *xhci;
1661         struct xhci_container_ctx *in_ctx, *out_ctx;
1662         struct xhci_input_control_ctx *ctrl_ctx;
1663         unsigned int ep_index;
1664         struct xhci_ep_ctx *ep_ctx;
1665         u32 drop_flag;
1666         u32 new_add_flags, new_drop_flags;
1667         int ret;
1668
1669         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1670         if (ret <= 0)
1671                 return ret;
1672         xhci = hcd_to_xhci(hcd);
1673         if (xhci->xhc_state & XHCI_STATE_DYING)
1674                 return -ENODEV;
1675
1676         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1677         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1678         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1679                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1680                                 __func__, drop_flag);
1681                 return 0;
1682         }
1683
1684         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1685         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1686         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1687         if (!ctrl_ctx) {
1688                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1689                                 __func__);
1690                 return 0;
1691         }
1692
1693         ep_index = xhci_get_endpoint_index(&ep->desc);
1694         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1695         /* If the HC already knows the endpoint is disabled,
1696          * or the HCD has noted it is disabled, ignore this request
1697          */
1698         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1699              cpu_to_le32(EP_STATE_DISABLED)) ||
1700             le32_to_cpu(ctrl_ctx->drop_flags) &
1701             xhci_get_endpoint_flag(&ep->desc)) {
1702                 /* Do not warn when called after a usb_device_reset */
1703                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1704                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1705                                   __func__, ep);
1706                 return 0;
1707         }
1708
1709         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1710         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1711
1712         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1713         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1714
1715         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1716
1717         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1718                         (unsigned int) ep->desc.bEndpointAddress,
1719                         udev->slot_id,
1720                         (unsigned int) new_drop_flags,
1721                         (unsigned int) new_add_flags);
1722         return 0;
1723 }
1724
1725 /* Add an endpoint to a new possible bandwidth configuration for this device.
1726  * Only one call to this function is allowed per endpoint before
1727  * check_bandwidth() or reset_bandwidth() must be called.
1728  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1729  * add the endpoint to the schedule with possibly new parameters denoted by a
1730  * different endpoint descriptor in usb_host_endpoint.
1731  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1732  * not allowed.
1733  *
1734  * The USB core will not allow URBs to be queued to an endpoint until the
1735  * configuration or alt setting is installed in the device, so there's no need
1736  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1737  */
1738 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1739                 struct usb_host_endpoint *ep)
1740 {
1741         struct xhci_hcd *xhci;
1742         struct xhci_container_ctx *in_ctx;
1743         unsigned int ep_index;
1744         struct xhci_input_control_ctx *ctrl_ctx;
1745         u32 added_ctxs;
1746         u32 new_add_flags, new_drop_flags;
1747         struct xhci_virt_device *virt_dev;
1748         int ret = 0;
1749
1750         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1751         if (ret <= 0) {
1752                 /* So we won't queue a reset ep command for a root hub */
1753                 ep->hcpriv = NULL;
1754                 return ret;
1755         }
1756         xhci = hcd_to_xhci(hcd);
1757         if (xhci->xhc_state & XHCI_STATE_DYING)
1758                 return -ENODEV;
1759
1760         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1761         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1762                 /* FIXME when we have to issue an evaluate endpoint command to
1763                  * deal with ep0 max packet size changing once we get the
1764                  * descriptors
1765                  */
1766                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1767                                 __func__, added_ctxs);
1768                 return 0;
1769         }
1770
1771         virt_dev = xhci->devs[udev->slot_id];
1772         in_ctx = virt_dev->in_ctx;
1773         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1774         if (!ctrl_ctx) {
1775                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1776                                 __func__);
1777                 return 0;
1778         }
1779
1780         ep_index = xhci_get_endpoint_index(&ep->desc);
1781         /* If this endpoint is already in use, and the upper layers are trying
1782          * to add it again without dropping it, reject the addition.
1783          */
1784         if (virt_dev->eps[ep_index].ring &&
1785                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1786                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1787                                 "without dropping it.\n",
1788                                 (unsigned int) ep->desc.bEndpointAddress);
1789                 return -EINVAL;
1790         }
1791
1792         /* If the HCD has already noted the endpoint is enabled,
1793          * ignore this request.
1794          */
1795         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1796                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1797                                 __func__, ep);
1798                 return 0;
1799         }
1800
1801         /*
1802          * Configuration and alternate setting changes must be done in
1803          * process context, not interrupt context (or so documenation
1804          * for usb_set_interface() and usb_set_configuration() claim).
1805          */
1806         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1807                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1808                                 __func__, ep->desc.bEndpointAddress);
1809                 return -ENOMEM;
1810         }
1811
1812         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1813         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1814
1815         /* If xhci_endpoint_disable() was called for this endpoint, but the
1816          * xHC hasn't been notified yet through the check_bandwidth() call,
1817          * this re-adds a new state for the endpoint from the new endpoint
1818          * descriptors.  We must drop and re-add this endpoint, so we leave the
1819          * drop flags alone.
1820          */
1821         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1822
1823         /* Store the usb_device pointer for later use */
1824         ep->hcpriv = udev;
1825
1826         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1827                         (unsigned int) ep->desc.bEndpointAddress,
1828                         udev->slot_id,
1829                         (unsigned int) new_drop_flags,
1830                         (unsigned int) new_add_flags);
1831         return 0;
1832 }
1833
1834 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1835 {
1836         struct xhci_input_control_ctx *ctrl_ctx;
1837         struct xhci_ep_ctx *ep_ctx;
1838         struct xhci_slot_ctx *slot_ctx;
1839         int i;
1840
1841         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1842         if (!ctrl_ctx) {
1843                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1844                                 __func__);
1845                 return;
1846         }
1847
1848         /* When a device's add flag and drop flag are zero, any subsequent
1849          * configure endpoint command will leave that endpoint's state
1850          * untouched.  Make sure we don't leave any old state in the input
1851          * endpoint contexts.
1852          */
1853         ctrl_ctx->drop_flags = 0;
1854         ctrl_ctx->add_flags = 0;
1855         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1856         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1857         /* Endpoint 0 is always valid */
1858         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1859         for (i = 1; i < 31; ++i) {
1860                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1861                 ep_ctx->ep_info = 0;
1862                 ep_ctx->ep_info2 = 0;
1863                 ep_ctx->deq = 0;
1864                 ep_ctx->tx_info = 0;
1865         }
1866 }
1867
1868 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1869                 struct usb_device *udev, u32 *cmd_status)
1870 {
1871         int ret;
1872
1873         switch (*cmd_status) {
1874         case COMP_CMD_ABORT:
1875         case COMP_CMD_STOP:
1876                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1877                 ret = -ETIME;
1878                 break;
1879         case COMP_ENOMEM:
1880                 dev_warn(&udev->dev,
1881                          "Not enough host controller resources for new device state.\n");
1882                 ret = -ENOMEM;
1883                 /* FIXME: can we allocate more resources for the HC? */
1884                 break;
1885         case COMP_BW_ERR:
1886         case COMP_2ND_BW_ERR:
1887                 dev_warn(&udev->dev,
1888                          "Not enough bandwidth for new device state.\n");
1889                 ret = -ENOSPC;
1890                 /* FIXME: can we go back to the old state? */
1891                 break;
1892         case COMP_TRB_ERR:
1893                 /* the HCD set up something wrong */
1894                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1895                                 "add flag = 1, "
1896                                 "and endpoint is not disabled.\n");
1897                 ret = -EINVAL;
1898                 break;
1899         case COMP_DEV_ERR:
1900                 dev_warn(&udev->dev,
1901                          "ERROR: Incompatible device for endpoint configure command.\n");
1902                 ret = -ENODEV;
1903                 break;
1904         case COMP_SUCCESS:
1905                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1906                                 "Successful Endpoint Configure command");
1907                 ret = 0;
1908                 break;
1909         default:
1910                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1911                                 *cmd_status);
1912                 ret = -EINVAL;
1913                 break;
1914         }
1915         return ret;
1916 }
1917
1918 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1919                 struct usb_device *udev, u32 *cmd_status)
1920 {
1921         int ret;
1922         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1923
1924         switch (*cmd_status) {
1925         case COMP_CMD_ABORT:
1926         case COMP_CMD_STOP:
1927                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1928                 ret = -ETIME;
1929                 break;
1930         case COMP_EINVAL:
1931                 dev_warn(&udev->dev,
1932                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1933                 ret = -EINVAL;
1934                 break;
1935         case COMP_EBADSLT:
1936                 dev_warn(&udev->dev,
1937                         "WARN: slot not enabled for evaluate context command.\n");
1938                 ret = -EINVAL;
1939                 break;
1940         case COMP_CTX_STATE:
1941                 dev_warn(&udev->dev,
1942                         "WARN: invalid context state for evaluate context command.\n");
1943                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1944                 ret = -EINVAL;
1945                 break;
1946         case COMP_DEV_ERR:
1947                 dev_warn(&udev->dev,
1948                         "ERROR: Incompatible device for evaluate context command.\n");
1949                 ret = -ENODEV;
1950                 break;
1951         case COMP_MEL_ERR:
1952                 /* Max Exit Latency too large error */
1953                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1954                 ret = -EINVAL;
1955                 break;
1956         case COMP_SUCCESS:
1957                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1958                                 "Successful evaluate context command");
1959                 ret = 0;
1960                 break;
1961         default:
1962                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1963                         *cmd_status);
1964                 ret = -EINVAL;
1965                 break;
1966         }
1967         return ret;
1968 }
1969
1970 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1971                 struct xhci_input_control_ctx *ctrl_ctx)
1972 {
1973         u32 valid_add_flags;
1974         u32 valid_drop_flags;
1975
1976         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1977          * (bit 1).  The default control endpoint is added during the Address
1978          * Device command and is never removed until the slot is disabled.
1979          */
1980         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1981         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1982
1983         /* Use hweight32 to count the number of ones in the add flags, or
1984          * number of endpoints added.  Don't count endpoints that are changed
1985          * (both added and dropped).
1986          */
1987         return hweight32(valid_add_flags) -
1988                 hweight32(valid_add_flags & valid_drop_flags);
1989 }
1990
1991 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1992                 struct xhci_input_control_ctx *ctrl_ctx)
1993 {
1994         u32 valid_add_flags;
1995         u32 valid_drop_flags;
1996
1997         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1998         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1999
2000         return hweight32(valid_drop_flags) -
2001                 hweight32(valid_add_flags & valid_drop_flags);
2002 }
2003
2004 /*
2005  * We need to reserve the new number of endpoints before the configure endpoint
2006  * command completes.  We can't subtract the dropped endpoints from the number
2007  * of active endpoints until the command completes because we can oversubscribe
2008  * the host in this case:
2009  *
2010  *  - the first configure endpoint command drops more endpoints than it adds
2011  *  - a second configure endpoint command that adds more endpoints is queued
2012  *  - the first configure endpoint command fails, so the config is unchanged
2013  *  - the second command may succeed, even though there isn't enough resources
2014  *
2015  * Must be called with xhci->lock held.
2016  */
2017 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2018                 struct xhci_input_control_ctx *ctrl_ctx)
2019 {
2020         u32 added_eps;
2021
2022         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2023         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2024                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2025                                 "Not enough ep ctxs: "
2026                                 "%u active, need to add %u, limit is %u.",
2027                                 xhci->num_active_eps, added_eps,
2028                                 xhci->limit_active_eps);
2029                 return -ENOMEM;
2030         }
2031         xhci->num_active_eps += added_eps;
2032         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2033                         "Adding %u ep ctxs, %u now active.", added_eps,
2034                         xhci->num_active_eps);
2035         return 0;
2036 }
2037
2038 /*
2039  * The configure endpoint was failed by the xHC for some other reason, so we
2040  * need to revert the resources that failed configuration would have used.
2041  *
2042  * Must be called with xhci->lock held.
2043  */
2044 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2045                 struct xhci_input_control_ctx *ctrl_ctx)
2046 {
2047         u32 num_failed_eps;
2048
2049         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2050         xhci->num_active_eps -= num_failed_eps;
2051         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2052                         "Removing %u failed ep ctxs, %u now active.",
2053                         num_failed_eps,
2054                         xhci->num_active_eps);
2055 }
2056
2057 /*
2058  * Now that the command has completed, clean up the active endpoint count by
2059  * subtracting out the endpoints that were dropped (but not changed).
2060  *
2061  * Must be called with xhci->lock held.
2062  */
2063 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2064                 struct xhci_input_control_ctx *ctrl_ctx)
2065 {
2066         u32 num_dropped_eps;
2067
2068         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2069         xhci->num_active_eps -= num_dropped_eps;
2070         if (num_dropped_eps)
2071                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2072                                 "Removing %u dropped ep ctxs, %u now active.",
2073                                 num_dropped_eps,
2074                                 xhci->num_active_eps);
2075 }
2076
2077 static unsigned int xhci_get_block_size(struct usb_device *udev)
2078 {
2079         switch (udev->speed) {
2080         case USB_SPEED_LOW:
2081         case USB_SPEED_FULL:
2082                 return FS_BLOCK;
2083         case USB_SPEED_HIGH:
2084                 return HS_BLOCK;
2085         case USB_SPEED_SUPER:
2086         case USB_SPEED_SUPER_PLUS:
2087                 return SS_BLOCK;
2088         case USB_SPEED_UNKNOWN:
2089         case USB_SPEED_WIRELESS:
2090         default:
2091                 /* Should never happen */
2092                 return 1;
2093         }
2094 }
2095
2096 static unsigned int
2097 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2098 {
2099         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2100                 return LS_OVERHEAD;
2101         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2102                 return FS_OVERHEAD;
2103         return HS_OVERHEAD;
2104 }
2105
2106 /* If we are changing a LS/FS device under a HS hub,
2107  * make sure (if we are activating a new TT) that the HS bus has enough
2108  * bandwidth for this new TT.
2109  */
2110 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2111                 struct xhci_virt_device *virt_dev,
2112                 int old_active_eps)
2113 {
2114         struct xhci_interval_bw_table *bw_table;
2115         struct xhci_tt_bw_info *tt_info;
2116
2117         /* Find the bandwidth table for the root port this TT is attached to. */
2118         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2119         tt_info = virt_dev->tt_info;
2120         /* If this TT already had active endpoints, the bandwidth for this TT
2121          * has already been added.  Removing all periodic endpoints (and thus
2122          * making the TT enactive) will only decrease the bandwidth used.
2123          */
2124         if (old_active_eps)
2125                 return 0;
2126         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2127                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2128                         return -ENOMEM;
2129                 return 0;
2130         }
2131         /* Not sure why we would have no new active endpoints...
2132          *
2133          * Maybe because of an Evaluate Context change for a hub update or a
2134          * control endpoint 0 max packet size change?
2135          * FIXME: skip the bandwidth calculation in that case.
2136          */
2137         return 0;
2138 }
2139
2140 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2141                 struct xhci_virt_device *virt_dev)
2142 {
2143         unsigned int bw_reserved;
2144
2145         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2146         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2147                 return -ENOMEM;
2148
2149         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2150         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2151                 return -ENOMEM;
2152
2153         return 0;
2154 }
2155
2156 /*
2157  * This algorithm is a very conservative estimate of the worst-case scheduling
2158  * scenario for any one interval.  The hardware dynamically schedules the
2159  * packets, so we can't tell which microframe could be the limiting factor in
2160  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2161  *
2162  * Obviously, we can't solve an NP complete problem to find the minimum worst
2163  * case scenario.  Instead, we come up with an estimate that is no less than
2164  * the worst case bandwidth used for any one microframe, but may be an
2165  * over-estimate.
2166  *
2167  * We walk the requirements for each endpoint by interval, starting with the
2168  * smallest interval, and place packets in the schedule where there is only one
2169  * possible way to schedule packets for that interval.  In order to simplify
2170  * this algorithm, we record the largest max packet size for each interval, and
2171  * assume all packets will be that size.
2172  *
2173  * For interval 0, we obviously must schedule all packets for each interval.
2174  * The bandwidth for interval 0 is just the amount of data to be transmitted
2175  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2176  * the number of packets).
2177  *
2178  * For interval 1, we have two possible microframes to schedule those packets
2179  * in.  For this algorithm, if we can schedule the same number of packets for
2180  * each possible scheduling opportunity (each microframe), we will do so.  The
2181  * remaining number of packets will be saved to be transmitted in the gaps in
2182  * the next interval's scheduling sequence.
2183  *
2184  * As we move those remaining packets to be scheduled with interval 2 packets,
2185  * we have to double the number of remaining packets to transmit.  This is
2186  * because the intervals are actually powers of 2, and we would be transmitting
2187  * the previous interval's packets twice in this interval.  We also have to be
2188  * sure that when we look at the largest max packet size for this interval, we
2189  * also look at the largest max packet size for the remaining packets and take
2190  * the greater of the two.
2191  *
2192  * The algorithm continues to evenly distribute packets in each scheduling
2193  * opportunity, and push the remaining packets out, until we get to the last
2194  * interval.  Then those packets and their associated overhead are just added
2195  * to the bandwidth used.
2196  */
2197 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2198                 struct xhci_virt_device *virt_dev,
2199                 int old_active_eps)
2200 {
2201         unsigned int bw_reserved;
2202         unsigned int max_bandwidth;
2203         unsigned int bw_used;
2204         unsigned int block_size;
2205         struct xhci_interval_bw_table *bw_table;
2206         unsigned int packet_size = 0;
2207         unsigned int overhead = 0;
2208         unsigned int packets_transmitted = 0;
2209         unsigned int packets_remaining = 0;
2210         unsigned int i;
2211
2212         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2213                 return xhci_check_ss_bw(xhci, virt_dev);
2214
2215         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2216                 max_bandwidth = HS_BW_LIMIT;
2217                 /* Convert percent of bus BW reserved to blocks reserved */
2218                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2219         } else {
2220                 max_bandwidth = FS_BW_LIMIT;
2221                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2222         }
2223
2224         bw_table = virt_dev->bw_table;
2225         /* We need to translate the max packet size and max ESIT payloads into
2226          * the units the hardware uses.
2227          */
2228         block_size = xhci_get_block_size(virt_dev->udev);
2229
2230         /* If we are manipulating a LS/FS device under a HS hub, double check
2231          * that the HS bus has enough bandwidth if we are activing a new TT.
2232          */
2233         if (virt_dev->tt_info) {
2234                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2235                                 "Recalculating BW for rootport %u",
2236                                 virt_dev->real_port);
2237                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2238                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2239                                         "newly activated TT.\n");
2240                         return -ENOMEM;
2241                 }
2242                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2243                                 "Recalculating BW for TT slot %u port %u",
2244                                 virt_dev->tt_info->slot_id,
2245                                 virt_dev->tt_info->ttport);
2246         } else {
2247                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2248                                 "Recalculating BW for rootport %u",
2249                                 virt_dev->real_port);
2250         }
2251
2252         /* Add in how much bandwidth will be used for interval zero, or the
2253          * rounded max ESIT payload + number of packets * largest overhead.
2254          */
2255         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2256                 bw_table->interval_bw[0].num_packets *
2257                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2258
2259         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2260                 unsigned int bw_added;
2261                 unsigned int largest_mps;
2262                 unsigned int interval_overhead;
2263
2264                 /*
2265                  * How many packets could we transmit in this interval?
2266                  * If packets didn't fit in the previous interval, we will need
2267                  * to transmit that many packets twice within this interval.
2268                  */
2269                 packets_remaining = 2 * packets_remaining +
2270                         bw_table->interval_bw[i].num_packets;
2271
2272                 /* Find the largest max packet size of this or the previous
2273                  * interval.
2274                  */
2275                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2276                         largest_mps = 0;
2277                 else {
2278                         struct xhci_virt_ep *virt_ep;
2279                         struct list_head *ep_entry;
2280
2281                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2282                         virt_ep = list_entry(ep_entry,
2283                                         struct xhci_virt_ep, bw_endpoint_list);
2284                         /* Convert to blocks, rounding up */
2285                         largest_mps = DIV_ROUND_UP(
2286                                         virt_ep->bw_info.max_packet_size,
2287                                         block_size);
2288                 }
2289                 if (largest_mps > packet_size)
2290                         packet_size = largest_mps;
2291
2292                 /* Use the larger overhead of this or the previous interval. */
2293                 interval_overhead = xhci_get_largest_overhead(
2294                                 &bw_table->interval_bw[i]);
2295                 if (interval_overhead > overhead)
2296                         overhead = interval_overhead;
2297
2298                 /* How many packets can we evenly distribute across
2299                  * (1 << (i + 1)) possible scheduling opportunities?
2300                  */
2301                 packets_transmitted = packets_remaining >> (i + 1);
2302
2303                 /* Add in the bandwidth used for those scheduled packets */
2304                 bw_added = packets_transmitted * (overhead + packet_size);
2305
2306                 /* How many packets do we have remaining to transmit? */
2307                 packets_remaining = packets_remaining % (1 << (i + 1));
2308
2309                 /* What largest max packet size should those packets have? */
2310                 /* If we've transmitted all packets, don't carry over the
2311                  * largest packet size.
2312                  */
2313                 if (packets_remaining == 0) {
2314                         packet_size = 0;
2315                         overhead = 0;
2316                 } else if (packets_transmitted > 0) {
2317                         /* Otherwise if we do have remaining packets, and we've
2318                          * scheduled some packets in this interval, take the
2319                          * largest max packet size from endpoints with this
2320                          * interval.
2321                          */
2322                         packet_size = largest_mps;
2323                         overhead = interval_overhead;
2324                 }
2325                 /* Otherwise carry over packet_size and overhead from the last
2326                  * time we had a remainder.
2327                  */
2328                 bw_used += bw_added;
2329                 if (bw_used > max_bandwidth) {
2330                         xhci_warn(xhci, "Not enough bandwidth. "
2331                                         "Proposed: %u, Max: %u\n",
2332                                 bw_used, max_bandwidth);
2333                         return -ENOMEM;
2334                 }
2335         }
2336         /*
2337          * Ok, we know we have some packets left over after even-handedly
2338          * scheduling interval 15.  We don't know which microframes they will
2339          * fit into, so we over-schedule and say they will be scheduled every
2340          * microframe.
2341          */
2342         if (packets_remaining > 0)
2343                 bw_used += overhead + packet_size;
2344
2345         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2346                 unsigned int port_index = virt_dev->real_port - 1;
2347
2348                 /* OK, we're manipulating a HS device attached to a
2349                  * root port bandwidth domain.  Include the number of active TTs
2350                  * in the bandwidth used.
2351                  */
2352                 bw_used += TT_HS_OVERHEAD *
2353                         xhci->rh_bw[port_index].num_active_tts;
2354         }
2355
2356         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2357                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2358                 "Available: %u " "percent",
2359                 bw_used, max_bandwidth, bw_reserved,
2360                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2361                 max_bandwidth);
2362
2363         bw_used += bw_reserved;
2364         if (bw_used > max_bandwidth) {
2365                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2366                                 bw_used, max_bandwidth);
2367                 return -ENOMEM;
2368         }
2369
2370         bw_table->bw_used = bw_used;
2371         return 0;
2372 }
2373
2374 static bool xhci_is_async_ep(unsigned int ep_type)
2375 {
2376         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2377                                         ep_type != ISOC_IN_EP &&
2378                                         ep_type != INT_IN_EP);
2379 }
2380
2381 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2382 {
2383         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2384 }
2385
2386 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2387 {
2388         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2389
2390         if (ep_bw->ep_interval == 0)
2391                 return SS_OVERHEAD_BURST +
2392                         (ep_bw->mult * ep_bw->num_packets *
2393                                         (SS_OVERHEAD + mps));
2394         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2395                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2396                                 1 << ep_bw->ep_interval);
2397
2398 }
2399
2400 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2401                 struct xhci_bw_info *ep_bw,
2402                 struct xhci_interval_bw_table *bw_table,
2403                 struct usb_device *udev,
2404                 struct xhci_virt_ep *virt_ep,
2405                 struct xhci_tt_bw_info *tt_info)
2406 {
2407         struct xhci_interval_bw *interval_bw;
2408         int normalized_interval;
2409
2410         if (xhci_is_async_ep(ep_bw->type))
2411                 return;
2412
2413         if (udev->speed >= USB_SPEED_SUPER) {
2414                 if (xhci_is_sync_in_ep(ep_bw->type))
2415                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2416                                 xhci_get_ss_bw_consumed(ep_bw);
2417                 else
2418                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2419                                 xhci_get_ss_bw_consumed(ep_bw);
2420                 return;
2421         }
2422
2423         /* SuperSpeed endpoints never get added to intervals in the table, so
2424          * this check is only valid for HS/FS/LS devices.
2425          */
2426         if (list_empty(&virt_ep->bw_endpoint_list))
2427                 return;
2428         /* For LS/FS devices, we need to translate the interval expressed in
2429          * microframes to frames.
2430          */
2431         if (udev->speed == USB_SPEED_HIGH)
2432                 normalized_interval = ep_bw->ep_interval;
2433         else
2434                 normalized_interval = ep_bw->ep_interval - 3;
2435
2436         if (normalized_interval == 0)
2437                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2438         interval_bw = &bw_table->interval_bw[normalized_interval];
2439         interval_bw->num_packets -= ep_bw->num_packets;
2440         switch (udev->speed) {
2441         case USB_SPEED_LOW:
2442                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2443                 break;
2444         case USB_SPEED_FULL:
2445                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2446                 break;
2447         case USB_SPEED_HIGH:
2448                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2449                 break;
2450         case USB_SPEED_SUPER:
2451         case USB_SPEED_SUPER_PLUS:
2452         case USB_SPEED_UNKNOWN:
2453         case USB_SPEED_WIRELESS:
2454                 /* Should never happen because only LS/FS/HS endpoints will get
2455                  * added to the endpoint list.
2456                  */
2457                 return;
2458         }
2459         if (tt_info)
2460                 tt_info->active_eps -= 1;
2461         list_del_init(&virt_ep->bw_endpoint_list);
2462 }
2463
2464 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2465                 struct xhci_bw_info *ep_bw,
2466                 struct xhci_interval_bw_table *bw_table,
2467                 struct usb_device *udev,
2468                 struct xhci_virt_ep *virt_ep,
2469                 struct xhci_tt_bw_info *tt_info)
2470 {
2471         struct xhci_interval_bw *interval_bw;
2472         struct xhci_virt_ep *smaller_ep;
2473         int normalized_interval;
2474
2475         if (xhci_is_async_ep(ep_bw->type))
2476                 return;
2477
2478         if (udev->speed == USB_SPEED_SUPER) {
2479                 if (xhci_is_sync_in_ep(ep_bw->type))
2480                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2481                                 xhci_get_ss_bw_consumed(ep_bw);
2482                 else
2483                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2484                                 xhci_get_ss_bw_consumed(ep_bw);
2485                 return;
2486         }
2487
2488         /* For LS/FS devices, we need to translate the interval expressed in
2489          * microframes to frames.
2490          */
2491         if (udev->speed == USB_SPEED_HIGH)
2492                 normalized_interval = ep_bw->ep_interval;
2493         else
2494                 normalized_interval = ep_bw->ep_interval - 3;
2495
2496         if (normalized_interval == 0)
2497                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2498         interval_bw = &bw_table->interval_bw[normalized_interval];
2499         interval_bw->num_packets += ep_bw->num_packets;
2500         switch (udev->speed) {
2501         case USB_SPEED_LOW:
2502                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2503                 break;
2504         case USB_SPEED_FULL:
2505                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2506                 break;
2507         case USB_SPEED_HIGH:
2508                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2509                 break;
2510         case USB_SPEED_SUPER:
2511         case USB_SPEED_SUPER_PLUS:
2512         case USB_SPEED_UNKNOWN:
2513         case USB_SPEED_WIRELESS:
2514                 /* Should never happen because only LS/FS/HS endpoints will get
2515                  * added to the endpoint list.
2516                  */
2517                 return;
2518         }
2519
2520         if (tt_info)
2521                 tt_info->active_eps += 1;
2522         /* Insert the endpoint into the list, largest max packet size first. */
2523         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2524                         bw_endpoint_list) {
2525                 if (ep_bw->max_packet_size >=
2526                                 smaller_ep->bw_info.max_packet_size) {
2527                         /* Add the new ep before the smaller endpoint */
2528                         list_add_tail(&virt_ep->bw_endpoint_list,
2529                                         &smaller_ep->bw_endpoint_list);
2530                         return;
2531                 }
2532         }
2533         /* Add the new endpoint at the end of the list. */
2534         list_add_tail(&virt_ep->bw_endpoint_list,
2535                         &interval_bw->endpoints);
2536 }
2537
2538 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2539                 struct xhci_virt_device *virt_dev,
2540                 int old_active_eps)
2541 {
2542         struct xhci_root_port_bw_info *rh_bw_info;
2543         if (!virt_dev->tt_info)
2544                 return;
2545
2546         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2547         if (old_active_eps == 0 &&
2548                                 virt_dev->tt_info->active_eps != 0) {
2549                 rh_bw_info->num_active_tts += 1;
2550                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2551         } else if (old_active_eps != 0 &&
2552                                 virt_dev->tt_info->active_eps == 0) {
2553                 rh_bw_info->num_active_tts -= 1;
2554                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2555         }
2556 }
2557
2558 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2559                 struct xhci_virt_device *virt_dev,
2560                 struct xhci_container_ctx *in_ctx)
2561 {
2562         struct xhci_bw_info ep_bw_info[31];
2563         int i;
2564         struct xhci_input_control_ctx *ctrl_ctx;
2565         int old_active_eps = 0;
2566
2567         if (virt_dev->tt_info)
2568                 old_active_eps = virt_dev->tt_info->active_eps;
2569
2570         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2571         if (!ctrl_ctx) {
2572                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2573                                 __func__);
2574                 return -ENOMEM;
2575         }
2576
2577         for (i = 0; i < 31; i++) {
2578                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2579                         continue;
2580
2581                 /* Make a copy of the BW info in case we need to revert this */
2582                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2583                                 sizeof(ep_bw_info[i]));
2584                 /* Drop the endpoint from the interval table if the endpoint is
2585                  * being dropped or changed.
2586                  */
2587                 if (EP_IS_DROPPED(ctrl_ctx, i))
2588                         xhci_drop_ep_from_interval_table(xhci,
2589                                         &virt_dev->eps[i].bw_info,
2590                                         virt_dev->bw_table,
2591                                         virt_dev->udev,
2592                                         &virt_dev->eps[i],
2593                                         virt_dev->tt_info);
2594         }
2595         /* Overwrite the information stored in the endpoints' bw_info */
2596         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2597         for (i = 0; i < 31; i++) {
2598                 /* Add any changed or added endpoints to the interval table */
2599                 if (EP_IS_ADDED(ctrl_ctx, i))
2600                         xhci_add_ep_to_interval_table(xhci,
2601                                         &virt_dev->eps[i].bw_info,
2602                                         virt_dev->bw_table,
2603                                         virt_dev->udev,
2604                                         &virt_dev->eps[i],
2605                                         virt_dev->tt_info);
2606         }
2607
2608         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2609                 /* Ok, this fits in the bandwidth we have.
2610                  * Update the number of active TTs.
2611                  */
2612                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2613                 return 0;
2614         }
2615
2616         /* We don't have enough bandwidth for this, revert the stored info. */
2617         for (i = 0; i < 31; i++) {
2618                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2619                         continue;
2620
2621                 /* Drop the new copies of any added or changed endpoints from
2622                  * the interval table.
2623                  */
2624                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2625                         xhci_drop_ep_from_interval_table(xhci,
2626                                         &virt_dev->eps[i].bw_info,
2627                                         virt_dev->bw_table,
2628                                         virt_dev->udev,
2629                                         &virt_dev->eps[i],
2630                                         virt_dev->tt_info);
2631                 }
2632                 /* Revert the endpoint back to its old information */
2633                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2634                                 sizeof(ep_bw_info[i]));
2635                 /* Add any changed or dropped endpoints back into the table */
2636                 if (EP_IS_DROPPED(ctrl_ctx, i))
2637                         xhci_add_ep_to_interval_table(xhci,
2638                                         &virt_dev->eps[i].bw_info,
2639                                         virt_dev->bw_table,
2640                                         virt_dev->udev,
2641                                         &virt_dev->eps[i],
2642                                         virt_dev->tt_info);
2643         }
2644         return -ENOMEM;
2645 }
2646
2647
2648 /* Issue a configure endpoint command or evaluate context command
2649  * and wait for it to finish.
2650  */
2651 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2652                 struct usb_device *udev,
2653                 struct xhci_command *command,
2654                 bool ctx_change, bool must_succeed)
2655 {
2656         int ret;
2657         unsigned long flags;
2658         struct xhci_input_control_ctx *ctrl_ctx;
2659         struct xhci_virt_device *virt_dev;
2660
2661         if (!command)
2662                 return -EINVAL;
2663
2664         spin_lock_irqsave(&xhci->lock, flags);
2665         virt_dev = xhci->devs[udev->slot_id];
2666
2667         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2668         if (!ctrl_ctx) {
2669                 spin_unlock_irqrestore(&xhci->lock, flags);
2670                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2671                                 __func__);
2672                 return -ENOMEM;
2673         }
2674
2675         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2676                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2677                 spin_unlock_irqrestore(&xhci->lock, flags);
2678                 xhci_warn(xhci, "Not enough host resources, "
2679                                 "active endpoint contexts = %u\n",
2680                                 xhci->num_active_eps);
2681                 return -ENOMEM;
2682         }
2683         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2684             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2685                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2686                         xhci_free_host_resources(xhci, ctrl_ctx);
2687                 spin_unlock_irqrestore(&xhci->lock, flags);
2688                 xhci_warn(xhci, "Not enough bandwidth\n");
2689                 return -ENOMEM;
2690         }
2691
2692         if (!ctx_change)
2693                 ret = xhci_queue_configure_endpoint(xhci, command,
2694                                 command->in_ctx->dma,
2695                                 udev->slot_id, must_succeed);
2696         else
2697                 ret = xhci_queue_evaluate_context(xhci, command,
2698                                 command->in_ctx->dma,
2699                                 udev->slot_id, must_succeed);
2700         if (ret < 0) {
2701                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2702                         xhci_free_host_resources(xhci, ctrl_ctx);
2703                 spin_unlock_irqrestore(&xhci->lock, flags);
2704                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2705                                 "FIXME allocate a new ring segment");
2706                 return -ENOMEM;
2707         }
2708         xhci_ring_cmd_db(xhci);
2709         spin_unlock_irqrestore(&xhci->lock, flags);
2710
2711         /* Wait for the configure endpoint command to complete */
2712         wait_for_completion(command->completion);
2713
2714         if (!ctx_change)
2715                 ret = xhci_configure_endpoint_result(xhci, udev,
2716                                                      &command->status);
2717         else
2718                 ret = xhci_evaluate_context_result(xhci, udev,
2719                                                    &command->status);
2720
2721         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2722                 spin_lock_irqsave(&xhci->lock, flags);
2723                 /* If the command failed, remove the reserved resources.
2724                  * Otherwise, clean up the estimate to include dropped eps.
2725                  */
2726                 if (ret)
2727                         xhci_free_host_resources(xhci, ctrl_ctx);
2728                 else
2729                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2730                 spin_unlock_irqrestore(&xhci->lock, flags);
2731         }
2732         return ret;
2733 }
2734
2735 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2736         struct xhci_virt_device *vdev, int i)
2737 {
2738         struct xhci_virt_ep *ep = &vdev->eps[i];
2739
2740         if (ep->ep_state & EP_HAS_STREAMS) {
2741                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2742                                 xhci_get_endpoint_address(i));
2743                 xhci_free_stream_info(xhci, ep->stream_info);
2744                 ep->stream_info = NULL;
2745                 ep->ep_state &= ~EP_HAS_STREAMS;
2746         }
2747 }
2748
2749 /* Called after one or more calls to xhci_add_endpoint() or
2750  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2751  * to call xhci_reset_bandwidth().
2752  *
2753  * Since we are in the middle of changing either configuration or
2754  * installing a new alt setting, the USB core won't allow URBs to be
2755  * enqueued for any endpoint on the old config or interface.  Nothing
2756  * else should be touching the xhci->devs[slot_id] structure, so we
2757  * don't need to take the xhci->lock for manipulating that.
2758  */
2759 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2760 {
2761         int i;
2762         int ret = 0;
2763         struct xhci_hcd *xhci;
2764         struct xhci_virt_device *virt_dev;
2765         struct xhci_input_control_ctx *ctrl_ctx;
2766         struct xhci_slot_ctx *slot_ctx;
2767         struct xhci_command *command;
2768
2769         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2770         if (ret <= 0)
2771                 return ret;
2772         xhci = hcd_to_xhci(hcd);
2773         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2774                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2775                 return -ENODEV;
2776
2777         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2778         virt_dev = xhci->devs[udev->slot_id];
2779
2780         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2781         if (!command)
2782                 return -ENOMEM;
2783
2784         command->in_ctx = virt_dev->in_ctx;
2785
2786         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2787         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2788         if (!ctrl_ctx) {
2789                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2790                                 __func__);
2791                 ret = -ENOMEM;
2792                 goto command_cleanup;
2793         }
2794         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2795         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2796         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2797
2798         /* Don't issue the command if there's no endpoints to update. */
2799         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2800             ctrl_ctx->drop_flags == 0) {
2801                 ret = 0;
2802                 goto command_cleanup;
2803         }
2804         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2805         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2806         for (i = 31; i >= 1; i--) {
2807                 __le32 le32 = cpu_to_le32(BIT(i));
2808
2809                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2810                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2811                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2812                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2813                         break;
2814                 }
2815         }
2816         xhci_dbg(xhci, "New Input Control Context:\n");
2817         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2818                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2819
2820         ret = xhci_configure_endpoint(xhci, udev, command,
2821                         false, false);
2822         if (ret)
2823                 /* Callee should call reset_bandwidth() */
2824                 goto command_cleanup;
2825
2826         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2827         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2828                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2829
2830         /* Free any rings that were dropped, but not changed. */
2831         for (i = 1; i < 31; ++i) {
2832                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2833                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2834                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2835                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2836                 }
2837         }
2838         xhci_zero_in_ctx(xhci, virt_dev);
2839         /*
2840          * Install any rings for completely new endpoints or changed endpoints,
2841          * and free or cache any old rings from changed endpoints.
2842          */
2843         for (i = 1; i < 31; ++i) {
2844                 if (!virt_dev->eps[i].new_ring)
2845                         continue;
2846                 /* Only cache or free the old ring if it exists.
2847                  * It may not if this is the first add of an endpoint.
2848                  */
2849                 if (virt_dev->eps[i].ring) {
2850                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2851                 }
2852                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2853                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2854                 virt_dev->eps[i].new_ring = NULL;
2855         }
2856 command_cleanup:
2857         kfree(command->completion);
2858         kfree(command);
2859
2860         return ret;
2861 }
2862
2863 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2864 {
2865         struct xhci_hcd *xhci;
2866         struct xhci_virt_device *virt_dev;
2867         int i, ret;
2868
2869         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2870         if (ret <= 0)
2871                 return;
2872         xhci = hcd_to_xhci(hcd);
2873
2874         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2875         virt_dev = xhci->devs[udev->slot_id];
2876         /* Free any rings allocated for added endpoints */
2877         for (i = 0; i < 31; ++i) {
2878                 if (virt_dev->eps[i].new_ring) {
2879                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2880                         virt_dev->eps[i].new_ring = NULL;
2881                 }
2882         }
2883         xhci_zero_in_ctx(xhci, virt_dev);
2884 }
2885
2886 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2887                 struct xhci_container_ctx *in_ctx,
2888                 struct xhci_container_ctx *out_ctx,
2889                 struct xhci_input_control_ctx *ctrl_ctx,
2890                 u32 add_flags, u32 drop_flags)
2891 {
2892         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2893         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2894         xhci_slot_copy(xhci, in_ctx, out_ctx);
2895         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2896
2897         xhci_dbg(xhci, "Input Context:\n");
2898         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2899 }
2900
2901 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2902                 unsigned int slot_id, unsigned int ep_index,
2903                 struct xhci_dequeue_state *deq_state)
2904 {
2905         struct xhci_input_control_ctx *ctrl_ctx;
2906         struct xhci_container_ctx *in_ctx;
2907         struct xhci_ep_ctx *ep_ctx;
2908         u32 added_ctxs;
2909         dma_addr_t addr;
2910
2911         in_ctx = xhci->devs[slot_id]->in_ctx;
2912         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2913         if (!ctrl_ctx) {
2914                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2915                                 __func__);
2916                 return;
2917         }
2918
2919         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2920                         xhci->devs[slot_id]->out_ctx, ep_index);
2921         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2922         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2923                         deq_state->new_deq_ptr);
2924         if (addr == 0) {
2925                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2926                                 "reset ep command\n");
2927                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2928                                 deq_state->new_deq_seg,
2929                                 deq_state->new_deq_ptr);
2930                 return;
2931         }
2932         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2933
2934         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2935         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2936                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2937                         added_ctxs, added_ctxs);
2938 }
2939
2940 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2941                         unsigned int ep_index, struct xhci_td *td)
2942 {
2943         struct xhci_dequeue_state deq_state;
2944         struct xhci_virt_ep *ep;
2945         struct usb_device *udev = td->urb->dev;
2946
2947         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2948                         "Cleaning up stalled endpoint ring");
2949         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2950         /* We need to move the HW's dequeue pointer past this TD,
2951          * or it will attempt to resend it on the next doorbell ring.
2952          */
2953         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2954                         ep_index, ep->stopped_stream, td, &deq_state);
2955
2956         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2957                 return;
2958
2959         /* HW with the reset endpoint quirk will use the saved dequeue state to
2960          * issue a configure endpoint command later.
2961          */
2962         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2963                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2964                                 "Queueing new dequeue state");
2965                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2966                                 ep_index, ep->stopped_stream, &deq_state);
2967         } else {
2968                 /* Better hope no one uses the input context between now and the
2969                  * reset endpoint completion!
2970                  * XXX: No idea how this hardware will react when stream rings
2971                  * are enabled.
2972                  */
2973                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2974                                 "Setting up input context for "
2975                                 "configure endpoint command");
2976                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2977                                 ep_index, &deq_state);
2978         }
2979 }
2980
2981 /* Called when clearing halted device. The core should have sent the control
2982  * message to clear the device halt condition. The host side of the halt should
2983  * already be cleared with a reset endpoint command issued when the STALL tx
2984  * event was received.
2985  *
2986  * Context: in_interrupt
2987  */
2988
2989 void xhci_endpoint_reset(struct usb_hcd *hcd,
2990                 struct usb_host_endpoint *ep)
2991 {
2992         struct xhci_hcd *xhci;
2993
2994         xhci = hcd_to_xhci(hcd);
2995
2996         /*
2997          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2998          * The Reset Endpoint Command may only be issued to endpoints in the
2999          * Halted state. If software wishes reset the Data Toggle or Sequence
3000          * Number of an endpoint that isn't in the Halted state, then software
3001          * may issue a Configure Endpoint Command with the Drop and Add bits set
3002          * for the target endpoint. that is in the Stopped state.
3003          */
3004
3005         /* For now just print debug to follow the situation */
3006         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3007                  ep->desc.bEndpointAddress);
3008 }
3009
3010 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3011                 struct usb_device *udev, struct usb_host_endpoint *ep,
3012                 unsigned int slot_id)
3013 {
3014         int ret;
3015         unsigned int ep_index;
3016         unsigned int ep_state;
3017
3018         if (!ep)
3019                 return -EINVAL;
3020         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3021         if (ret <= 0)
3022                 return -EINVAL;
3023         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3024                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3025                                 " descriptor for ep 0x%x does not support streams\n",
3026                                 ep->desc.bEndpointAddress);
3027                 return -EINVAL;
3028         }
3029
3030         ep_index = xhci_get_endpoint_index(&ep->desc);
3031         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3032         if (ep_state & EP_HAS_STREAMS ||
3033                         ep_state & EP_GETTING_STREAMS) {
3034                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3035                                 "already has streams set up.\n",
3036                                 ep->desc.bEndpointAddress);
3037                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3038                                 "dynamic stream context array reallocation.\n");
3039                 return -EINVAL;
3040         }
3041         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3042                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3043                                 "endpoint 0x%x; URBs are pending.\n",
3044                                 ep->desc.bEndpointAddress);
3045                 return -EINVAL;
3046         }
3047         return 0;
3048 }
3049
3050 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3051                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3052 {
3053         unsigned int max_streams;
3054
3055         /* The stream context array size must be a power of two */
3056         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3057         /*
3058          * Find out how many primary stream array entries the host controller
3059          * supports.  Later we may use secondary stream arrays (similar to 2nd
3060          * level page entries), but that's an optional feature for xHCI host
3061          * controllers. xHCs must support at least 4 stream IDs.
3062          */
3063         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3064         if (*num_stream_ctxs > max_streams) {
3065                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3066                                 max_streams);
3067                 *num_stream_ctxs = max_streams;
3068                 *num_streams = max_streams;
3069         }
3070 }
3071
3072 /* Returns an error code if one of the endpoint already has streams.
3073  * This does not change any data structures, it only checks and gathers
3074  * information.
3075  */
3076 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3077                 struct usb_device *udev,
3078                 struct usb_host_endpoint **eps, unsigned int num_eps,
3079                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3080 {
3081         unsigned int max_streams;
3082         unsigned int endpoint_flag;
3083         int i;
3084         int ret;
3085
3086         for (i = 0; i < num_eps; i++) {
3087                 ret = xhci_check_streams_endpoint(xhci, udev,
3088                                 eps[i], udev->slot_id);
3089                 if (ret < 0)
3090                         return ret;
3091
3092                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3093                 if (max_streams < (*num_streams - 1)) {
3094                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3095                                         eps[i]->desc.bEndpointAddress,
3096                                         max_streams);
3097                         *num_streams = max_streams+1;
3098                 }
3099
3100                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3101                 if (*changed_ep_bitmask & endpoint_flag)
3102                         return -EINVAL;
3103                 *changed_ep_bitmask |= endpoint_flag;
3104         }
3105         return 0;
3106 }
3107
3108 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3109                 struct usb_device *udev,
3110                 struct usb_host_endpoint **eps, unsigned int num_eps)
3111 {
3112         u32 changed_ep_bitmask = 0;
3113         unsigned int slot_id;
3114         unsigned int ep_index;
3115         unsigned int ep_state;
3116         int i;
3117
3118         slot_id = udev->slot_id;
3119         if (!xhci->devs[slot_id])
3120                 return 0;
3121
3122         for (i = 0; i < num_eps; i++) {
3123                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3124                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3125                 /* Are streams already being freed for the endpoint? */
3126                 if (ep_state & EP_GETTING_NO_STREAMS) {
3127                         xhci_warn(xhci, "WARN Can't disable streams for "
3128                                         "endpoint 0x%x, "
3129                                         "streams are being disabled already\n",
3130                                         eps[i]->desc.bEndpointAddress);
3131                         return 0;
3132                 }
3133                 /* Are there actually any streams to free? */
3134                 if (!(ep_state & EP_HAS_STREAMS) &&
3135                                 !(ep_state & EP_GETTING_STREAMS)) {
3136                         xhci_warn(xhci, "WARN Can't disable streams for "
3137                                         "endpoint 0x%x, "
3138                                         "streams are already disabled!\n",
3139                                         eps[i]->desc.bEndpointAddress);
3140                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3141                                         "with non-streams endpoint\n");
3142                         return 0;
3143                 }
3144                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3145         }
3146         return changed_ep_bitmask;
3147 }
3148
3149 /*
3150  * The USB device drivers use this function (through the HCD interface in USB
3151  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3152  * coordinate mass storage command queueing across multiple endpoints (basically
3153  * a stream ID == a task ID).
3154  *
3155  * Setting up streams involves allocating the same size stream context array
3156  * for each endpoint and issuing a configure endpoint command for all endpoints.
3157  *
3158  * Don't allow the call to succeed if one endpoint only supports one stream
3159  * (which means it doesn't support streams at all).
3160  *
3161  * Drivers may get less stream IDs than they asked for, if the host controller
3162  * hardware or endpoints claim they can't support the number of requested
3163  * stream IDs.
3164  */
3165 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3166                 struct usb_host_endpoint **eps, unsigned int num_eps,
3167                 unsigned int num_streams, gfp_t mem_flags)
3168 {
3169         int i, ret;
3170         struct xhci_hcd *xhci;
3171         struct xhci_virt_device *vdev;
3172         struct xhci_command *config_cmd;
3173         struct xhci_input_control_ctx *ctrl_ctx;
3174         unsigned int ep_index;
3175         unsigned int num_stream_ctxs;
3176         unsigned long flags;
3177         u32 changed_ep_bitmask = 0;
3178
3179         if (!eps)
3180                 return -EINVAL;
3181
3182         /* Add one to the number of streams requested to account for
3183          * stream 0 that is reserved for xHCI usage.
3184          */
3185         num_streams += 1;
3186         xhci = hcd_to_xhci(hcd);
3187         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3188                         num_streams);
3189
3190         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3191         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3192                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3193                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3194                 return -ENOSYS;
3195         }
3196
3197         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3198         if (!config_cmd) {
3199                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3200                 return -ENOMEM;
3201         }
3202         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3203         if (!ctrl_ctx) {
3204                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3205                                 __func__);
3206                 xhci_free_command(xhci, config_cmd);
3207                 return -ENOMEM;
3208         }
3209
3210         /* Check to make sure all endpoints are not already configured for
3211          * streams.  While we're at it, find the maximum number of streams that
3212          * all the endpoints will support and check for duplicate endpoints.
3213          */
3214         spin_lock_irqsave(&xhci->lock, flags);
3215         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3216                         num_eps, &num_streams, &changed_ep_bitmask);
3217         if (ret < 0) {
3218                 xhci_free_command(xhci, config_cmd);
3219                 spin_unlock_irqrestore(&xhci->lock, flags);
3220                 return ret;
3221         }
3222         if (num_streams <= 1) {
3223                 xhci_warn(xhci, "WARN: endpoints can't handle "
3224                                 "more than one stream.\n");
3225                 xhci_free_command(xhci, config_cmd);
3226                 spin_unlock_irqrestore(&xhci->lock, flags);
3227                 return -EINVAL;
3228         }
3229         vdev = xhci->devs[udev->slot_id];
3230         /* Mark each endpoint as being in transition, so
3231          * xhci_urb_enqueue() will reject all URBs.
3232          */
3233         for (i = 0; i < num_eps; i++) {
3234                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3235                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3236         }
3237         spin_unlock_irqrestore(&xhci->lock, flags);
3238
3239         /* Setup internal data structures and allocate HW data structures for
3240          * streams (but don't install the HW structures in the input context
3241          * until we're sure all memory allocation succeeded).
3242          */
3243         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3244         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3245                         num_stream_ctxs, num_streams);
3246
3247         for (i = 0; i < num_eps; i++) {
3248                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3249                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3250                                 num_stream_ctxs,
3251                                 num_streams, mem_flags);
3252                 if (!vdev->eps[ep_index].stream_info)
3253                         goto cleanup;
3254                 /* Set maxPstreams in endpoint context and update deq ptr to
3255                  * point to stream context array. FIXME
3256                  */
3257         }
3258
3259         /* Set up the input context for a configure endpoint command. */
3260         for (i = 0; i < num_eps; i++) {
3261                 struct xhci_ep_ctx *ep_ctx;
3262
3263                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3264                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3265
3266                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3267                                 vdev->out_ctx, ep_index);
3268                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3269                                 vdev->eps[ep_index].stream_info);
3270         }
3271         /* Tell the HW to drop its old copy of the endpoint context info
3272          * and add the updated copy from the input context.
3273          */
3274         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3275                         vdev->out_ctx, ctrl_ctx,
3276                         changed_ep_bitmask, changed_ep_bitmask);
3277
3278         /* Issue and wait for the configure endpoint command */
3279         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3280                         false, false);
3281
3282         /* xHC rejected the configure endpoint command for some reason, so we
3283          * leave the old ring intact and free our internal streams data
3284          * structure.
3285          */
3286         if (ret < 0)
3287                 goto cleanup;
3288
3289         spin_lock_irqsave(&xhci->lock, flags);
3290         for (i = 0; i < num_eps; i++) {
3291                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3292                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3293                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3294                          udev->slot_id, ep_index);
3295                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3296         }
3297         xhci_free_command(xhci, config_cmd);
3298         spin_unlock_irqrestore(&xhci->lock, flags);
3299
3300         /* Subtract 1 for stream 0, which drivers can't use */
3301         return num_streams - 1;
3302
3303 cleanup:
3304         /* If it didn't work, free the streams! */
3305         for (i = 0; i < num_eps; i++) {
3306                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3307                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3308                 vdev->eps[ep_index].stream_info = NULL;
3309                 /* FIXME Unset maxPstreams in endpoint context and
3310                  * update deq ptr to point to normal string ring.
3311                  */
3312                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3313                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3314                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3315         }
3316         xhci_free_command(xhci, config_cmd);
3317         return -ENOMEM;
3318 }
3319
3320 /* Transition the endpoint from using streams to being a "normal" endpoint
3321  * without streams.
3322  *
3323  * Modify the endpoint context state, submit a configure endpoint command,
3324  * and free all endpoint rings for streams if that completes successfully.
3325  */
3326 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3327                 struct usb_host_endpoint **eps, unsigned int num_eps,
3328                 gfp_t mem_flags)
3329 {
3330         int i, ret;
3331         struct xhci_hcd *xhci;
3332         struct xhci_virt_device *vdev;
3333         struct xhci_command *command;
3334         struct xhci_input_control_ctx *ctrl_ctx;
3335         unsigned int ep_index;
3336         unsigned long flags;
3337         u32 changed_ep_bitmask;
3338
3339         xhci = hcd_to_xhci(hcd);
3340         vdev = xhci->devs[udev->slot_id];
3341
3342         /* Set up a configure endpoint command to remove the streams rings */
3343         spin_lock_irqsave(&xhci->lock, flags);
3344         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3345                         udev, eps, num_eps);
3346         if (changed_ep_bitmask == 0) {
3347                 spin_unlock_irqrestore(&xhci->lock, flags);
3348                 return -EINVAL;
3349         }
3350
3351         /* Use the xhci_command structure from the first endpoint.  We may have
3352          * allocated too many, but the driver may call xhci_free_streams() for
3353          * each endpoint it grouped into one call to xhci_alloc_streams().
3354          */
3355         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3356         command = vdev->eps[ep_index].stream_info->free_streams_command;
3357         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3358         if (!ctrl_ctx) {
3359                 spin_unlock_irqrestore(&xhci->lock, flags);
3360                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3361                                 __func__);
3362                 return -EINVAL;
3363         }
3364
3365         for (i = 0; i < num_eps; i++) {
3366                 struct xhci_ep_ctx *ep_ctx;
3367
3368                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3369                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3370                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3371                         EP_GETTING_NO_STREAMS;
3372
3373                 xhci_endpoint_copy(xhci, command->in_ctx,
3374                                 vdev->out_ctx, ep_index);
3375                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3376                                 &vdev->eps[ep_index]);
3377         }
3378         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3379                         vdev->out_ctx, ctrl_ctx,
3380                         changed_ep_bitmask, changed_ep_bitmask);
3381         spin_unlock_irqrestore(&xhci->lock, flags);
3382
3383         /* Issue and wait for the configure endpoint command,
3384          * which must succeed.
3385          */
3386         ret = xhci_configure_endpoint(xhci, udev, command,
3387                         false, true);
3388
3389         /* xHC rejected the configure endpoint command for some reason, so we
3390          * leave the streams rings intact.
3391          */
3392         if (ret < 0)
3393                 return ret;
3394
3395         spin_lock_irqsave(&xhci->lock, flags);
3396         for (i = 0; i < num_eps; i++) {
3397                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3398                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3399                 vdev->eps[ep_index].stream_info = NULL;
3400                 /* FIXME Unset maxPstreams in endpoint context and
3401                  * update deq ptr to point to normal string ring.
3402                  */
3403                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3404                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3405         }
3406         spin_unlock_irqrestore(&xhci->lock, flags);
3407
3408         return 0;
3409 }
3410
3411 /*
3412  * Deletes endpoint resources for endpoints that were active before a Reset
3413  * Device command, or a Disable Slot command.  The Reset Device command leaves
3414  * the control endpoint intact, whereas the Disable Slot command deletes it.
3415  *
3416  * Must be called with xhci->lock held.
3417  */
3418 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3419         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3420 {
3421         int i;
3422         unsigned int num_dropped_eps = 0;
3423         unsigned int drop_flags = 0;
3424
3425         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3426                 if (virt_dev->eps[i].ring) {
3427                         drop_flags |= 1 << i;
3428                         num_dropped_eps++;
3429                 }
3430         }
3431         xhci->num_active_eps -= num_dropped_eps;
3432         if (num_dropped_eps)
3433                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3434                                 "Dropped %u ep ctxs, flags = 0x%x, "
3435                                 "%u now active.",
3436                                 num_dropped_eps, drop_flags,
3437                                 xhci->num_active_eps);
3438 }
3439
3440 /*
3441  * This submits a Reset Device Command, which will set the device state to 0,
3442  * set the device address to 0, and disable all the endpoints except the default
3443  * control endpoint.  The USB core should come back and call
3444  * xhci_address_device(), and then re-set up the configuration.  If this is
3445  * called because of a usb_reset_and_verify_device(), then the old alternate
3446  * settings will be re-installed through the normal bandwidth allocation
3447  * functions.
3448  *
3449  * Wait for the Reset Device command to finish.  Remove all structures
3450  * associated with the endpoints that were disabled.  Clear the input device
3451  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3452  *
3453  * If the virt_dev to be reset does not exist or does not match the udev,
3454  * it means the device is lost, possibly due to the xHC restore error and
3455  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3456  * re-allocate the device.
3457  */
3458 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3459 {
3460         int ret, i;
3461         unsigned long flags;
3462         struct xhci_hcd *xhci;
3463         unsigned int slot_id;
3464         struct xhci_virt_device *virt_dev;
3465         struct xhci_command *reset_device_cmd;
3466         int last_freed_endpoint;
3467         struct xhci_slot_ctx *slot_ctx;
3468         int old_active_eps = 0;
3469
3470         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3471         if (ret <= 0)
3472                 return ret;
3473         xhci = hcd_to_xhci(hcd);
3474         slot_id = udev->slot_id;
3475         virt_dev = xhci->devs[slot_id];
3476         if (!virt_dev) {
3477                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3478                                 "not exist. Re-allocate the device\n", slot_id);
3479                 ret = xhci_alloc_dev(hcd, udev);
3480                 if (ret == 1)
3481                         return 0;
3482                 else
3483                         return -EINVAL;
3484         }
3485
3486         if (virt_dev->tt_info)
3487                 old_active_eps = virt_dev->tt_info->active_eps;
3488
3489         if (virt_dev->udev != udev) {
3490                 /* If the virt_dev and the udev does not match, this virt_dev
3491                  * may belong to another udev.
3492                  * Re-allocate the device.
3493                  */
3494                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3495                                 "not match the udev. Re-allocate the device\n",
3496                                 slot_id);
3497                 ret = xhci_alloc_dev(hcd, udev);
3498                 if (ret == 1)
3499                         return 0;
3500                 else
3501                         return -EINVAL;
3502         }
3503
3504         /* If device is not setup, there is no point in resetting it */
3505         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3506         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3507                                                 SLOT_STATE_DISABLED)
3508                 return 0;
3509
3510         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3511         /* Allocate the command structure that holds the struct completion.
3512          * Assume we're in process context, since the normal device reset
3513          * process has to wait for the device anyway.  Storage devices are
3514          * reset as part of error handling, so use GFP_NOIO instead of
3515          * GFP_KERNEL.
3516          */
3517         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3518         if (!reset_device_cmd) {
3519                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3520                 return -ENOMEM;
3521         }
3522
3523         /* Attempt to submit the Reset Device command to the command ring */
3524         spin_lock_irqsave(&xhci->lock, flags);
3525
3526         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3527         if (ret) {
3528                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3529                 spin_unlock_irqrestore(&xhci->lock, flags);
3530                 goto command_cleanup;
3531         }
3532         xhci_ring_cmd_db(xhci);
3533         spin_unlock_irqrestore(&xhci->lock, flags);
3534
3535         /* Wait for the Reset Device command to finish */
3536         wait_for_completion(reset_device_cmd->completion);
3537
3538         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3539          * unless we tried to reset a slot ID that wasn't enabled,
3540          * or the device wasn't in the addressed or configured state.
3541          */
3542         ret = reset_device_cmd->status;
3543         switch (ret) {
3544         case COMP_CMD_ABORT:
3545         case COMP_CMD_STOP:
3546                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3547                 ret = -ETIME;
3548                 goto command_cleanup;
3549         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3550         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3551                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3552                                 slot_id,
3553                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3554                 xhci_dbg(xhci, "Not freeing device rings.\n");
3555                 /* Don't treat this as an error.  May change my mind later. */
3556                 ret = 0;
3557                 goto command_cleanup;
3558         case COMP_SUCCESS:
3559                 xhci_dbg(xhci, "Successful reset device command.\n");
3560                 break;
3561         default:
3562                 if (xhci_is_vendor_info_code(xhci, ret))
3563                         break;
3564                 xhci_warn(xhci, "Unknown completion code %u for "
3565                                 "reset device command.\n", ret);
3566                 ret = -EINVAL;
3567                 goto command_cleanup;
3568         }
3569
3570         /* Free up host controller endpoint resources */
3571         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3572                 spin_lock_irqsave(&xhci->lock, flags);
3573                 /* Don't delete the default control endpoint resources */
3574                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3575                 spin_unlock_irqrestore(&xhci->lock, flags);
3576         }
3577
3578         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3579         last_freed_endpoint = 1;
3580         for (i = 1; i < 31; ++i) {
3581                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3582
3583                 if (ep->ep_state & EP_HAS_STREAMS) {
3584                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3585                                         xhci_get_endpoint_address(i));
3586                         xhci_free_stream_info(xhci, ep->stream_info);
3587                         ep->stream_info = NULL;
3588                         ep->ep_state &= ~EP_HAS_STREAMS;
3589                 }
3590
3591                 if (ep->ring) {
3592                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3593                         last_freed_endpoint = i;
3594                 }
3595                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3596                         xhci_drop_ep_from_interval_table(xhci,
3597                                         &virt_dev->eps[i].bw_info,
3598                                         virt_dev->bw_table,
3599                                         udev,
3600                                         &virt_dev->eps[i],
3601                                         virt_dev->tt_info);
3602                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3603         }
3604         /* If necessary, update the number of active TTs on this root port */
3605         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3606
3607         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3608         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3609         ret = 0;
3610
3611 command_cleanup:
3612         xhci_free_command(xhci, reset_device_cmd);
3613         return ret;
3614 }
3615
3616 /*
3617  * At this point, the struct usb_device is about to go away, the device has
3618  * disconnected, and all traffic has been stopped and the endpoints have been
3619  * disabled.  Free any HC data structures associated with that device.
3620  */
3621 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3622 {
3623         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3624         struct xhci_virt_device *virt_dev;
3625         unsigned long flags;
3626         u32 state;
3627         int i, ret;
3628         struct xhci_command *command;
3629
3630         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3631         if (!command)
3632                 return;
3633
3634 #ifndef CONFIG_USB_DEFAULT_PERSIST
3635         /*
3636          * We called pm_runtime_get_noresume when the device was attached.
3637          * Decrement the counter here to allow controller to runtime suspend
3638          * if no devices remain.
3639          */
3640         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3641                 pm_runtime_put_noidle(hcd->self.controller);
3642 #endif
3643
3644         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3645         /* If the host is halted due to driver unload, we still need to free the
3646          * device.
3647          */
3648         if (ret <= 0 && ret != -ENODEV) {
3649                 kfree(command);
3650                 return;
3651         }
3652
3653         virt_dev = xhci->devs[udev->slot_id];
3654
3655         /* Stop any wayward timer functions (which may grab the lock) */
3656         for (i = 0; i < 31; ++i) {
3657                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3658                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3659         }
3660
3661         spin_lock_irqsave(&xhci->lock, flags);
3662         /* Don't disable the slot if the host controller is dead. */
3663         state = readl(&xhci->op_regs->status);
3664         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3665                         (xhci->xhc_state & XHCI_STATE_HALTED) ||
3666                         (xhci->xhc_state & XHCI_STATE_REMOVING)) {
3667                 xhci_free_virt_device(xhci, udev->slot_id);
3668                 spin_unlock_irqrestore(&xhci->lock, flags);
3669                 kfree(command);
3670                 return;
3671         }
3672
3673         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3674                                     udev->slot_id)) {
3675                 spin_unlock_irqrestore(&xhci->lock, flags);
3676                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3677                 return;
3678         }
3679         xhci_ring_cmd_db(xhci);
3680         spin_unlock_irqrestore(&xhci->lock, flags);
3681
3682         /*
3683          * Event command completion handler will free any data structures
3684          * associated with the slot.  XXX Can free sleep?
3685          */
3686 }
3687
3688 /*
3689  * Checks if we have enough host controller resources for the default control
3690  * endpoint.
3691  *
3692  * Must be called with xhci->lock held.
3693  */
3694 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3695 {
3696         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3697                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3698                                 "Not enough ep ctxs: "
3699                                 "%u active, need to add 1, limit is %u.",
3700                                 xhci->num_active_eps, xhci->limit_active_eps);
3701                 return -ENOMEM;
3702         }
3703         xhci->num_active_eps += 1;
3704         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3705                         "Adding 1 ep ctx, %u now active.",
3706                         xhci->num_active_eps);
3707         return 0;
3708 }
3709
3710
3711 /*
3712  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3713  * timed out, or allocating memory failed.  Returns 1 on success.
3714  */
3715 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3716 {
3717         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3718         unsigned long flags;
3719         int ret, slot_id;
3720         struct xhci_command *command;
3721
3722         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3723         if (!command)
3724                 return 0;
3725
3726         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3727         mutex_lock(&xhci->mutex);
3728         spin_lock_irqsave(&xhci->lock, flags);
3729         command->completion = &xhci->addr_dev;
3730         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3731         if (ret) {
3732                 spin_unlock_irqrestore(&xhci->lock, flags);
3733                 mutex_unlock(&xhci->mutex);
3734                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3735                 kfree(command);
3736                 return 0;
3737         }
3738         xhci_ring_cmd_db(xhci);
3739         spin_unlock_irqrestore(&xhci->lock, flags);
3740
3741         wait_for_completion(command->completion);
3742         slot_id = xhci->slot_id;
3743         mutex_unlock(&xhci->mutex);
3744
3745         if (!slot_id || command->status != COMP_SUCCESS) {
3746                 xhci_err(xhci, "Error while assigning device slot ID\n");
3747                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3748                                 HCS_MAX_SLOTS(
3749                                         readl(&xhci->cap_regs->hcs_params1)));
3750                 kfree(command);
3751                 return 0;
3752         }
3753
3754         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3755                 spin_lock_irqsave(&xhci->lock, flags);
3756                 ret = xhci_reserve_host_control_ep_resources(xhci);
3757                 if (ret) {
3758                         spin_unlock_irqrestore(&xhci->lock, flags);
3759                         xhci_warn(xhci, "Not enough host resources, "
3760                                         "active endpoint contexts = %u\n",
3761                                         xhci->num_active_eps);
3762                         goto disable_slot;
3763                 }
3764                 spin_unlock_irqrestore(&xhci->lock, flags);
3765         }
3766         /* Use GFP_NOIO, since this function can be called from
3767          * xhci_discover_or_reset_device(), which may be called as part of
3768          * mass storage driver error handling.
3769          */
3770         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3771                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3772                 goto disable_slot;
3773         }
3774         udev->slot_id = slot_id;
3775
3776 #ifndef CONFIG_USB_DEFAULT_PERSIST
3777         /*
3778          * If resetting upon resume, we can't put the controller into runtime
3779          * suspend if there is a device attached.
3780          */
3781         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3782                 pm_runtime_get_noresume(hcd->self.controller);
3783 #endif
3784
3785
3786         kfree(command);
3787         /* Is this a LS or FS device under a HS hub? */
3788         /* Hub or peripherial? */
3789         return 1;
3790
3791 disable_slot:
3792         /* Disable slot, if we can do it without mem alloc */
3793         spin_lock_irqsave(&xhci->lock, flags);
3794         command->completion = NULL;
3795         command->status = 0;
3796         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3797                                      udev->slot_id))
3798                 xhci_ring_cmd_db(xhci);
3799         spin_unlock_irqrestore(&xhci->lock, flags);
3800         return 0;
3801 }
3802
3803 /*
3804  * Issue an Address Device command and optionally send a corresponding
3805  * SetAddress request to the device.
3806  */
3807 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3808                              enum xhci_setup_dev setup)
3809 {
3810         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3811         unsigned long flags;
3812         struct xhci_virt_device *virt_dev;
3813         int ret = 0;
3814         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3815         struct xhci_slot_ctx *slot_ctx;
3816         struct xhci_input_control_ctx *ctrl_ctx;
3817         u64 temp_64;
3818         struct xhci_command *command = NULL;
3819
3820         mutex_lock(&xhci->mutex);
3821
3822         if (xhci->xhc_state)    /* dying, removing or halted */
3823                 goto out;
3824
3825         if (!udev->slot_id) {
3826                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3827                                 "Bad Slot ID %d", udev->slot_id);
3828                 ret = -EINVAL;
3829                 goto out;
3830         }
3831
3832         virt_dev = xhci->devs[udev->slot_id];
3833
3834         if (WARN_ON(!virt_dev)) {
3835                 /*
3836                  * In plug/unplug torture test with an NEC controller,
3837                  * a zero-dereference was observed once due to virt_dev = 0.
3838                  * Print useful debug rather than crash if it is observed again!
3839                  */
3840                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3841                         udev->slot_id);
3842                 ret = -EINVAL;
3843                 goto out;
3844         }
3845
3846         if (setup == SETUP_CONTEXT_ONLY) {
3847                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3848                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3849                     SLOT_STATE_DEFAULT) {
3850                         xhci_dbg(xhci, "Slot already in default state\n");
3851                         goto out;
3852                 }
3853         }
3854
3855         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3856         if (!command) {
3857                 ret = -ENOMEM;
3858                 goto out;
3859         }
3860
3861         command->in_ctx = virt_dev->in_ctx;
3862         command->completion = &xhci->addr_dev;
3863
3864         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3865         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3866         if (!ctrl_ctx) {
3867                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3868                                 __func__);
3869                 ret = -EINVAL;
3870                 goto out;
3871         }
3872         /*
3873          * If this is the first Set Address since device plug-in or
3874          * virt_device realloaction after a resume with an xHCI power loss,
3875          * then set up the slot context.
3876          */
3877         if (!slot_ctx->dev_info)
3878                 xhci_setup_addressable_virt_dev(xhci, udev);
3879         /* Otherwise, update the control endpoint ring enqueue pointer. */
3880         else
3881                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3882         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3883         ctrl_ctx->drop_flags = 0;
3884
3885         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3886         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3887         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3888                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3889
3890         spin_lock_irqsave(&xhci->lock, flags);
3891         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3892                                         udev->slot_id, setup);
3893         if (ret) {
3894                 spin_unlock_irqrestore(&xhci->lock, flags);
3895                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3896                                 "FIXME: allocate a command ring segment");
3897                 goto out;
3898         }
3899         xhci_ring_cmd_db(xhci);
3900         spin_unlock_irqrestore(&xhci->lock, flags);
3901
3902         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3903         wait_for_completion(command->completion);
3904
3905         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3906          * the SetAddress() "recovery interval" required by USB and aborting the
3907          * command on a timeout.
3908          */
3909         switch (command->status) {
3910         case COMP_CMD_ABORT:
3911         case COMP_CMD_STOP:
3912                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3913                 ret = -ETIME;
3914                 break;
3915         case COMP_CTX_STATE:
3916         case COMP_EBADSLT:
3917                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3918                          act, udev->slot_id);
3919                 ret = -EINVAL;
3920                 break;
3921         case COMP_TX_ERR:
3922                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3923                 ret = -EPROTO;
3924                 break;
3925         case COMP_DEV_ERR:
3926                 dev_warn(&udev->dev,
3927                          "ERROR: Incompatible device for setup %s command\n", act);
3928                 ret = -ENODEV;
3929                 break;
3930         case COMP_SUCCESS:
3931                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3932                                "Successful setup %s command", act);
3933                 break;
3934         default:
3935                 xhci_err(xhci,
3936                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3937                          act, command->status);
3938                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3939                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3940                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3941                 ret = -EINVAL;
3942                 break;
3943         }
3944         if (ret)
3945                 goto out;
3946         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3947         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3948                         "Op regs DCBAA ptr = %#016llx", temp_64);
3949         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3950                 "Slot ID %d dcbaa entry @%p = %#016llx",
3951                 udev->slot_id,
3952                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3953                 (unsigned long long)
3954                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3955         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3956                         "Output Context DMA address = %#08llx",
3957                         (unsigned long long)virt_dev->out_ctx->dma);
3958         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3959         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3960         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3961                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3962         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3963         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3964         /*
3965          * USB core uses address 1 for the roothubs, so we add one to the
3966          * address given back to us by the HC.
3967          */
3968         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3969         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3970                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3971         /* Zero the input context control for later use */
3972         ctrl_ctx->add_flags = 0;
3973         ctrl_ctx->drop_flags = 0;
3974
3975         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3976                        "Internal device address = %d",
3977                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3978 out:
3979         mutex_unlock(&xhci->mutex);
3980         kfree(command);
3981         return ret;
3982 }
3983
3984 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3985 {
3986         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3987 }
3988
3989 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3990 {
3991         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3992 }
3993
3994 /*
3995  * Transfer the port index into real index in the HW port status
3996  * registers. Caculate offset between the port's PORTSC register
3997  * and port status base. Divide the number of per port register
3998  * to get the real index. The raw port number bases 1.
3999  */
4000 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4001 {
4002         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4003         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
4004         __le32 __iomem *addr;
4005         int raw_port;
4006
4007         if (hcd->speed < HCD_USB3)
4008                 addr = xhci->usb2_ports[port1 - 1];
4009         else
4010                 addr = xhci->usb3_ports[port1 - 1];
4011
4012         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4013         return raw_port;
4014 }
4015
4016 /*
4017  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4018  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4019  */
4020 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4021                         struct usb_device *udev, u16 max_exit_latency)
4022 {
4023         struct xhci_virt_device *virt_dev;
4024         struct xhci_command *command;
4025         struct xhci_input_control_ctx *ctrl_ctx;
4026         struct xhci_slot_ctx *slot_ctx;
4027         unsigned long flags;
4028         int ret;
4029
4030         spin_lock_irqsave(&xhci->lock, flags);
4031
4032         virt_dev = xhci->devs[udev->slot_id];
4033
4034         /*
4035          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4036          * xHC was re-initialized. Exit latency will be set later after
4037          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4038          */
4039
4040         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4041                 spin_unlock_irqrestore(&xhci->lock, flags);
4042                 return 0;
4043         }
4044
4045         /* Attempt to issue an Evaluate Context command to change the MEL. */
4046         command = xhci->lpm_command;
4047         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4048         if (!ctrl_ctx) {
4049                 spin_unlock_irqrestore(&xhci->lock, flags);
4050                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4051                                 __func__);
4052                 return -ENOMEM;
4053         }
4054
4055         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4056         spin_unlock_irqrestore(&xhci->lock, flags);
4057
4058         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4059         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4060         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4061         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4062         slot_ctx->dev_state = 0;
4063
4064         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4065                         "Set up evaluate context for LPM MEL change.");
4066         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4067         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4068
4069         /* Issue and wait for the evaluate context command. */
4070         ret = xhci_configure_endpoint(xhci, udev, command,
4071                         true, true);
4072         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4073         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4074
4075         if (!ret) {
4076                 spin_lock_irqsave(&xhci->lock, flags);
4077                 virt_dev->current_mel = max_exit_latency;
4078                 spin_unlock_irqrestore(&xhci->lock, flags);
4079         }
4080         return ret;
4081 }
4082
4083 #ifdef CONFIG_PM
4084
4085 /* BESL to HIRD Encoding array for USB2 LPM */
4086 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4087         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4088
4089 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4090 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4091                                         struct usb_device *udev)
4092 {
4093         int u2del, besl, besl_host;
4094         int besl_device = 0;
4095         u32 field;
4096
4097         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4098         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4099
4100         if (field & USB_BESL_SUPPORT) {
4101                 for (besl_host = 0; besl_host < 16; besl_host++) {
4102                         if (xhci_besl_encoding[besl_host] >= u2del)
4103                                 break;
4104                 }
4105                 /* Use baseline BESL value as default */
4106                 if (field & USB_BESL_BASELINE_VALID)
4107                         besl_device = USB_GET_BESL_BASELINE(field);
4108                 else if (field & USB_BESL_DEEP_VALID)
4109                         besl_device = USB_GET_BESL_DEEP(field);
4110         } else {
4111                 if (u2del <= 50)
4112                         besl_host = 0;
4113                 else
4114                         besl_host = (u2del - 51) / 75 + 1;
4115         }
4116
4117         besl = besl_host + besl_device;
4118         if (besl > 15)
4119                 besl = 15;
4120
4121         return besl;
4122 }
4123
4124 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4125 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4126 {
4127         u32 field;
4128         int l1;
4129         int besld = 0;
4130         int hirdm = 0;
4131
4132         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4133
4134         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4135         l1 = udev->l1_params.timeout / 256;
4136
4137         /* device has preferred BESLD */
4138         if (field & USB_BESL_DEEP_VALID) {
4139                 besld = USB_GET_BESL_DEEP(field);
4140                 hirdm = 1;
4141         }
4142
4143         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4144 }
4145
4146 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4147                         struct usb_device *udev, int enable)
4148 {
4149         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4150         __le32 __iomem  **port_array;
4151         __le32 __iomem  *pm_addr, *hlpm_addr;
4152         u32             pm_val, hlpm_val, field;
4153         unsigned int    port_num;
4154         unsigned long   flags;
4155         int             hird, exit_latency;
4156         int             ret;
4157
4158         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4159                         !udev->lpm_capable)
4160                 return -EPERM;
4161
4162         if (!udev->parent || udev->parent->parent ||
4163                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4164                 return -EPERM;
4165
4166         if (udev->usb2_hw_lpm_capable != 1)
4167                 return -EPERM;
4168
4169         spin_lock_irqsave(&xhci->lock, flags);
4170
4171         port_array = xhci->usb2_ports;
4172         port_num = udev->portnum - 1;
4173         pm_addr = port_array[port_num] + PORTPMSC;
4174         pm_val = readl(pm_addr);
4175         hlpm_addr = port_array[port_num] + PORTHLPMC;
4176         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4177
4178         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4179                         enable ? "enable" : "disable", port_num + 1);
4180
4181         if (enable) {
4182                 /* Host supports BESL timeout instead of HIRD */
4183                 if (udev->usb2_hw_lpm_besl_capable) {
4184                         /* if device doesn't have a preferred BESL value use a
4185                          * default one which works with mixed HIRD and BESL
4186                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4187                          */
4188                         if ((field & USB_BESL_SUPPORT) &&
4189                             (field & USB_BESL_BASELINE_VALID))
4190                                 hird = USB_GET_BESL_BASELINE(field);
4191                         else
4192                                 hird = udev->l1_params.besl;
4193
4194                         exit_latency = xhci_besl_encoding[hird];
4195                         spin_unlock_irqrestore(&xhci->lock, flags);
4196
4197                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4198                          * input context for link powermanagement evaluate
4199                          * context commands. It is protected by hcd->bandwidth
4200                          * mutex and is shared by all devices. We need to set
4201                          * the max ext latency in USB 2 BESL LPM as well, so
4202                          * use the same mutex and xhci_change_max_exit_latency()
4203                          */
4204                         mutex_lock(hcd->bandwidth_mutex);
4205                         ret = xhci_change_max_exit_latency(xhci, udev,
4206                                                            exit_latency);
4207                         mutex_unlock(hcd->bandwidth_mutex);
4208
4209                         if (ret < 0)
4210                                 return ret;
4211                         spin_lock_irqsave(&xhci->lock, flags);
4212
4213                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4214                         writel(hlpm_val, hlpm_addr);
4215                         /* flush write */
4216                         readl(hlpm_addr);
4217                 } else {
4218                         hird = xhci_calculate_hird_besl(xhci, udev);
4219                 }
4220
4221                 pm_val &= ~PORT_HIRD_MASK;
4222                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4223                 writel(pm_val, pm_addr);
4224                 pm_val = readl(pm_addr);
4225                 pm_val |= PORT_HLE;
4226                 writel(pm_val, pm_addr);
4227                 /* flush write */
4228                 readl(pm_addr);
4229         } else {
4230                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4231                 writel(pm_val, pm_addr);
4232                 /* flush write */
4233                 readl(pm_addr);
4234                 if (udev->usb2_hw_lpm_besl_capable) {
4235                         spin_unlock_irqrestore(&xhci->lock, flags);
4236                         mutex_lock(hcd->bandwidth_mutex);
4237                         xhci_change_max_exit_latency(xhci, udev, 0);
4238                         mutex_unlock(hcd->bandwidth_mutex);
4239                         return 0;
4240                 }
4241         }
4242
4243         spin_unlock_irqrestore(&xhci->lock, flags);
4244         return 0;
4245 }
4246
4247 /* check if a usb2 port supports a given extened capability protocol
4248  * only USB2 ports extended protocol capability values are cached.
4249  * Return 1 if capability is supported
4250  */
4251 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4252                                            unsigned capability)
4253 {
4254         u32 port_offset, port_count;
4255         int i;
4256
4257         for (i = 0; i < xhci->num_ext_caps; i++) {
4258                 if (xhci->ext_caps[i] & capability) {
4259                         /* port offsets starts at 1 */
4260                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4261                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4262                         if (port >= port_offset &&
4263                             port < port_offset + port_count)
4264                                 return 1;
4265                 }
4266         }
4267         return 0;
4268 }
4269
4270 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4271 {
4272         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4273         int             portnum = udev->portnum - 1;
4274
4275         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4276                         !udev->lpm_capable)
4277                 return 0;
4278
4279         /* we only support lpm for non-hub device connected to root hub yet */
4280         if (!udev->parent || udev->parent->parent ||
4281                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4282                 return 0;
4283
4284         if (xhci->hw_lpm_support == 1 &&
4285                         xhci_check_usb2_port_capability(
4286                                 xhci, portnum, XHCI_HLC)) {
4287                 udev->usb2_hw_lpm_capable = 1;
4288                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4289                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4290                 if (xhci_check_usb2_port_capability(xhci, portnum,
4291                                         XHCI_BLC))
4292                         udev->usb2_hw_lpm_besl_capable = 1;
4293         }
4294
4295         return 0;
4296 }
4297
4298 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4299
4300 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4301 static unsigned long long xhci_service_interval_to_ns(
4302                 struct usb_endpoint_descriptor *desc)
4303 {
4304         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4305 }
4306
4307 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4308                 enum usb3_link_state state)
4309 {
4310         unsigned long long sel;
4311         unsigned long long pel;
4312         unsigned int max_sel_pel;
4313         char *state_name;
4314
4315         switch (state) {
4316         case USB3_LPM_U1:
4317                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4318                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4319                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4320                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4321                 state_name = "U1";
4322                 break;
4323         case USB3_LPM_U2:
4324                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4325                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4326                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4327                 state_name = "U2";
4328                 break;
4329         default:
4330                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4331                                 __func__);
4332                 return USB3_LPM_DISABLED;
4333         }
4334
4335         if (sel <= max_sel_pel && pel <= max_sel_pel)
4336                 return USB3_LPM_DEVICE_INITIATED;
4337
4338         if (sel > max_sel_pel)
4339                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4340                                 "due to long SEL %llu ms\n",
4341                                 state_name, sel);
4342         else
4343                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4344                                 "due to long PEL %llu ms\n",
4345                                 state_name, pel);
4346         return USB3_LPM_DISABLED;
4347 }
4348
4349 /* The U1 timeout should be the maximum of the following values:
4350  *  - For control endpoints, U1 system exit latency (SEL) * 3
4351  *  - For bulk endpoints, U1 SEL * 5
4352  *  - For interrupt endpoints:
4353  *    - Notification EPs, U1 SEL * 3
4354  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4355  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4356  */
4357 static unsigned long long xhci_calculate_intel_u1_timeout(
4358                 struct usb_device *udev,
4359                 struct usb_endpoint_descriptor *desc)
4360 {
4361         unsigned long long timeout_ns;
4362         int ep_type;
4363         int intr_type;
4364
4365         ep_type = usb_endpoint_type(desc);
4366         switch (ep_type) {
4367         case USB_ENDPOINT_XFER_CONTROL:
4368                 timeout_ns = udev->u1_params.sel * 3;
4369                 break;
4370         case USB_ENDPOINT_XFER_BULK:
4371                 timeout_ns = udev->u1_params.sel * 5;
4372                 break;
4373         case USB_ENDPOINT_XFER_INT:
4374                 intr_type = usb_endpoint_interrupt_type(desc);
4375                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4376                         timeout_ns = udev->u1_params.sel * 3;
4377                         break;
4378                 }
4379                 /* Otherwise the calculation is the same as isoc eps */
4380         case USB_ENDPOINT_XFER_ISOC:
4381                 timeout_ns = xhci_service_interval_to_ns(desc);
4382                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4383                 if (timeout_ns < udev->u1_params.sel * 2)
4384                         timeout_ns = udev->u1_params.sel * 2;
4385                 break;
4386         default:
4387                 return 0;
4388         }
4389
4390         return timeout_ns;
4391 }
4392
4393 /* Returns the hub-encoded U1 timeout value. */
4394 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4395                 struct usb_device *udev,
4396                 struct usb_endpoint_descriptor *desc)
4397 {
4398         unsigned long long timeout_ns;
4399
4400         if (xhci->quirks & XHCI_INTEL_HOST)
4401                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4402         else
4403                 timeout_ns = udev->u1_params.sel;
4404
4405         /* The U1 timeout is encoded in 1us intervals.
4406          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4407          */
4408         if (timeout_ns == USB3_LPM_DISABLED)
4409                 timeout_ns = 1;
4410         else
4411                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4412
4413         /* If the necessary timeout value is bigger than what we can set in the
4414          * USB 3.0 hub, we have to disable hub-initiated U1.
4415          */
4416         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4417                 return timeout_ns;
4418         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4419                         "due to long timeout %llu ms\n", timeout_ns);
4420         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4421 }
4422
4423 /* The U2 timeout should be the maximum of:
4424  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4425  *  - largest bInterval of any active periodic endpoint (to avoid going
4426  *    into lower power link states between intervals).
4427  *  - the U2 Exit Latency of the device
4428  */
4429 static unsigned long long xhci_calculate_intel_u2_timeout(
4430                 struct usb_device *udev,
4431                 struct usb_endpoint_descriptor *desc)
4432 {
4433         unsigned long long timeout_ns;
4434         unsigned long long u2_del_ns;
4435
4436         timeout_ns = 10 * 1000 * 1000;
4437
4438         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4439                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4440                 timeout_ns = xhci_service_interval_to_ns(desc);
4441
4442         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4443         if (u2_del_ns > timeout_ns)
4444                 timeout_ns = u2_del_ns;
4445
4446         return timeout_ns;
4447 }
4448
4449 /* Returns the hub-encoded U2 timeout value. */
4450 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4451                 struct usb_device *udev,
4452                 struct usb_endpoint_descriptor *desc)
4453 {
4454         unsigned long long timeout_ns;
4455
4456         if (xhci->quirks & XHCI_INTEL_HOST)
4457                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4458         else
4459                 timeout_ns = udev->u2_params.sel;
4460
4461         /* The U2 timeout is encoded in 256us intervals */
4462         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4463         /* If the necessary timeout value is bigger than what we can set in the
4464          * USB 3.0 hub, we have to disable hub-initiated U2.
4465          */
4466         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4467                 return timeout_ns;
4468         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4469                         "due to long timeout %llu ms\n", timeout_ns);
4470         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4471 }
4472
4473 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4474                 struct usb_device *udev,
4475                 struct usb_endpoint_descriptor *desc,
4476                 enum usb3_link_state state,
4477                 u16 *timeout)
4478 {
4479         if (state == USB3_LPM_U1)
4480                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4481         else if (state == USB3_LPM_U2)
4482                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4483
4484         return USB3_LPM_DISABLED;
4485 }
4486
4487 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4488                 struct usb_device *udev,
4489                 struct usb_endpoint_descriptor *desc,
4490                 enum usb3_link_state state,
4491                 u16 *timeout)
4492 {
4493         u16 alt_timeout;
4494
4495         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4496                 desc, state, timeout);
4497
4498         /* If we found we can't enable hub-initiated LPM, or
4499          * the U1 or U2 exit latency was too high to allow
4500          * device-initiated LPM as well, just stop searching.
4501          */
4502         if (alt_timeout == USB3_LPM_DISABLED ||
4503                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4504                 *timeout = alt_timeout;
4505                 return -E2BIG;
4506         }
4507         if (alt_timeout > *timeout)
4508                 *timeout = alt_timeout;
4509         return 0;
4510 }
4511
4512 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4513                 struct usb_device *udev,
4514                 struct usb_host_interface *alt,
4515                 enum usb3_link_state state,
4516                 u16 *timeout)
4517 {
4518         int j;
4519
4520         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4521                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4522                                         &alt->endpoint[j].desc, state, timeout))
4523                         return -E2BIG;
4524                 continue;
4525         }
4526         return 0;
4527 }
4528
4529 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4530                 enum usb3_link_state state)
4531 {
4532         struct usb_device *parent;
4533         unsigned int num_hubs;
4534
4535         if (state == USB3_LPM_U2)
4536                 return 0;
4537
4538         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4539         for (parent = udev->parent, num_hubs = 0; parent->parent;
4540                         parent = parent->parent)
4541                 num_hubs++;
4542
4543         if (num_hubs < 2)
4544                 return 0;
4545
4546         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4547                         " below second-tier hub.\n");
4548         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4549                         "to decrease power consumption.\n");
4550         return -E2BIG;
4551 }
4552
4553 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4554                 struct usb_device *udev,
4555                 enum usb3_link_state state)
4556 {
4557         if (xhci->quirks & XHCI_INTEL_HOST)
4558                 return xhci_check_intel_tier_policy(udev, state);
4559         else
4560                 return 0;
4561 }
4562
4563 /* Returns the U1 or U2 timeout that should be enabled.
4564  * If the tier check or timeout setting functions return with a non-zero exit
4565  * code, that means the timeout value has been finalized and we shouldn't look
4566  * at any more endpoints.
4567  */
4568 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4569                         struct usb_device *udev, enum usb3_link_state state)
4570 {
4571         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4572         struct usb_host_config *config;
4573         char *state_name;
4574         int i;
4575         u16 timeout = USB3_LPM_DISABLED;
4576
4577         if (state == USB3_LPM_U1)
4578                 state_name = "U1";
4579         else if (state == USB3_LPM_U2)
4580                 state_name = "U2";
4581         else {
4582                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4583                                 state);
4584                 return timeout;
4585         }
4586
4587         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4588                 return timeout;
4589
4590         /* Gather some information about the currently installed configuration
4591          * and alternate interface settings.
4592          */
4593         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4594                         state, &timeout))
4595                 return timeout;
4596
4597         config = udev->actconfig;
4598         if (!config)
4599                 return timeout;
4600
4601         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4602                 struct usb_driver *driver;
4603                 struct usb_interface *intf = config->interface[i];
4604
4605                 if (!intf)
4606                         continue;
4607
4608                 /* Check if any currently bound drivers want hub-initiated LPM
4609                  * disabled.
4610                  */
4611                 if (intf->dev.driver) {
4612                         driver = to_usb_driver(intf->dev.driver);
4613                         if (driver && driver->disable_hub_initiated_lpm) {
4614                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4615                                                 "at request of driver %s\n",
4616                                                 state_name, driver->name);
4617                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4618                         }
4619                 }
4620
4621                 /* Not sure how this could happen... */
4622                 if (!intf->cur_altsetting)
4623                         continue;
4624
4625                 if (xhci_update_timeout_for_interface(xhci, udev,
4626                                         intf->cur_altsetting,
4627                                         state, &timeout))
4628                         return timeout;
4629         }
4630         return timeout;
4631 }
4632
4633 static int calculate_max_exit_latency(struct usb_device *udev,
4634                 enum usb3_link_state state_changed,
4635                 u16 hub_encoded_timeout)
4636 {
4637         unsigned long long u1_mel_us = 0;
4638         unsigned long long u2_mel_us = 0;
4639         unsigned long long mel_us = 0;
4640         bool disabling_u1;
4641         bool disabling_u2;
4642         bool enabling_u1;
4643         bool enabling_u2;
4644
4645         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4646                         hub_encoded_timeout == USB3_LPM_DISABLED);
4647         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4648                         hub_encoded_timeout == USB3_LPM_DISABLED);
4649
4650         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4651                         hub_encoded_timeout != USB3_LPM_DISABLED);
4652         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4653                         hub_encoded_timeout != USB3_LPM_DISABLED);
4654
4655         /* If U1 was already enabled and we're not disabling it,
4656          * or we're going to enable U1, account for the U1 max exit latency.
4657          */
4658         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4659                         enabling_u1)
4660                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4661         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4662                         enabling_u2)
4663                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4664
4665         if (u1_mel_us > u2_mel_us)
4666                 mel_us = u1_mel_us;
4667         else
4668                 mel_us = u2_mel_us;
4669         /* xHCI host controller max exit latency field is only 16 bits wide. */
4670         if (mel_us > MAX_EXIT) {
4671                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4672                                 "is too big.\n", mel_us);
4673                 return -E2BIG;
4674         }
4675         return mel_us;
4676 }
4677
4678 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4679 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4680                         struct usb_device *udev, enum usb3_link_state state)
4681 {
4682         struct xhci_hcd *xhci;
4683         u16 hub_encoded_timeout;
4684         int mel;
4685         int ret;
4686
4687         xhci = hcd_to_xhci(hcd);
4688         /* The LPM timeout values are pretty host-controller specific, so don't
4689          * enable hub-initiated timeouts unless the vendor has provided
4690          * information about their timeout algorithm.
4691          */
4692         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4693                         !xhci->devs[udev->slot_id])
4694                 return USB3_LPM_DISABLED;
4695
4696         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4697         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4698         if (mel < 0) {
4699                 /* Max Exit Latency is too big, disable LPM. */
4700                 hub_encoded_timeout = USB3_LPM_DISABLED;
4701                 mel = 0;
4702         }
4703
4704         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4705         if (ret)
4706                 return ret;
4707         return hub_encoded_timeout;
4708 }
4709
4710 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4711                         struct usb_device *udev, enum usb3_link_state state)
4712 {
4713         struct xhci_hcd *xhci;
4714         u16 mel;
4715
4716         xhci = hcd_to_xhci(hcd);
4717         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4718                         !xhci->devs[udev->slot_id])
4719                 return 0;
4720
4721         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4722         return xhci_change_max_exit_latency(xhci, udev, mel);
4723 }
4724 #else /* CONFIG_PM */
4725
4726 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4727                                 struct usb_device *udev, int enable)
4728 {
4729         return 0;
4730 }
4731
4732 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4733 {
4734         return 0;
4735 }
4736
4737 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4738                         struct usb_device *udev, enum usb3_link_state state)
4739 {
4740         return USB3_LPM_DISABLED;
4741 }
4742
4743 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4744                         struct usb_device *udev, enum usb3_link_state state)
4745 {
4746         return 0;
4747 }
4748 #endif  /* CONFIG_PM */
4749
4750 /*-------------------------------------------------------------------------*/
4751
4752 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4753  * internal data structures for the device.
4754  */
4755 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4756                         struct usb_tt *tt, gfp_t mem_flags)
4757 {
4758         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4759         struct xhci_virt_device *vdev;
4760         struct xhci_command *config_cmd;
4761         struct xhci_input_control_ctx *ctrl_ctx;
4762         struct xhci_slot_ctx *slot_ctx;
4763         unsigned long flags;
4764         unsigned think_time;
4765         int ret;
4766
4767         /* Ignore root hubs */
4768         if (!hdev->parent)
4769                 return 0;
4770
4771         vdev = xhci->devs[hdev->slot_id];
4772         if (!vdev) {
4773                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4774                 return -EINVAL;
4775         }
4776         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4777         if (!config_cmd) {
4778                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4779                 return -ENOMEM;
4780         }
4781         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4782         if (!ctrl_ctx) {
4783                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4784                                 __func__);
4785                 xhci_free_command(xhci, config_cmd);
4786                 return -ENOMEM;
4787         }
4788
4789         spin_lock_irqsave(&xhci->lock, flags);
4790         if (hdev->speed == USB_SPEED_HIGH &&
4791                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4792                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4793                 xhci_free_command(xhci, config_cmd);
4794                 spin_unlock_irqrestore(&xhci->lock, flags);
4795                 return -ENOMEM;
4796         }
4797
4798         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4799         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4800         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4801         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4802         /*
4803          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4804          * but it may be already set to 1 when setup an xHCI virtual
4805          * device, so clear it anyway.
4806          */
4807         if (tt->multi)
4808                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4809         else if (hdev->speed == USB_SPEED_FULL)
4810                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4811
4812         if (xhci->hci_version > 0x95) {
4813                 xhci_dbg(xhci, "xHCI version %x needs hub "
4814                                 "TT think time and number of ports\n",
4815                                 (unsigned int) xhci->hci_version);
4816                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4817                 /* Set TT think time - convert from ns to FS bit times.
4818                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4819                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4820                  *
4821                  * xHCI 1.0: this field shall be 0 if the device is not a
4822                  * High-spped hub.
4823                  */
4824                 think_time = tt->think_time;
4825                 if (think_time != 0)
4826                         think_time = (think_time / 666) - 1;
4827                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4828                         slot_ctx->tt_info |=
4829                                 cpu_to_le32(TT_THINK_TIME(think_time));
4830         } else {
4831                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4832                                 "TT think time or number of ports\n",
4833                                 (unsigned int) xhci->hci_version);
4834         }
4835         slot_ctx->dev_state = 0;
4836         spin_unlock_irqrestore(&xhci->lock, flags);
4837
4838         xhci_dbg(xhci, "Set up %s for hub device.\n",
4839                         (xhci->hci_version > 0x95) ?
4840                         "configure endpoint" : "evaluate context");
4841         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4842         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4843
4844         /* Issue and wait for the configure endpoint or
4845          * evaluate context command.
4846          */
4847         if (xhci->hci_version > 0x95)
4848                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4849                                 false, false);
4850         else
4851                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4852                                 true, false);
4853
4854         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4855         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4856
4857         xhci_free_command(xhci, config_cmd);
4858         return ret;
4859 }
4860
4861 int xhci_get_frame(struct usb_hcd *hcd)
4862 {
4863         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4864         /* EHCI mods by the periodic size.  Why? */
4865         return readl(&xhci->run_regs->microframe_index) >> 3;
4866 }
4867
4868 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4869 {
4870         struct xhci_hcd         *xhci;
4871         struct device           *dev = hcd->self.controller;
4872         int                     retval;
4873
4874         /* Accept arbitrarily long scatter-gather lists */
4875         hcd->self.sg_tablesize = ~0;
4876
4877         /* support to build packet from discontinuous buffers */
4878         hcd->self.no_sg_constraint = 1;
4879
4880         /* XHCI controllers don't stop the ep queue on short packets :| */
4881         hcd->self.no_stop_on_short = 1;
4882
4883         xhci = hcd_to_xhci(hcd);
4884
4885         if (usb_hcd_is_primary_hcd(hcd)) {
4886                 xhci->main_hcd = hcd;
4887                 /* Mark the first roothub as being USB 2.0.
4888                  * The xHCI driver will register the USB 3.0 roothub.
4889                  */
4890                 hcd->speed = HCD_USB2;
4891                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4892                 /*
4893                  * USB 2.0 roothub under xHCI has an integrated TT,
4894                  * (rate matching hub) as opposed to having an OHCI/UHCI
4895                  * companion controller.
4896                  */
4897                 hcd->has_tt = 1;
4898         } else {
4899                 if (xhci->sbrn == 0x31) {
4900                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4901                         hcd->speed = HCD_USB31;
4902                 }
4903                 /* xHCI private pointer was set in xhci_pci_probe for the second
4904                  * registered roothub.
4905                  */
4906                 return 0;
4907         }
4908
4909         mutex_init(&xhci->mutex);
4910         xhci->cap_regs = hcd->regs;
4911         xhci->op_regs = hcd->regs +
4912                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4913         xhci->run_regs = hcd->regs +
4914                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4915         /* Cache read-only capability registers */
4916         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4917         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4918         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4919         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4920         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4921         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4922         if (xhci->hci_version > 0x100)
4923                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4924         xhci_print_registers(xhci);
4925
4926         xhci->quirks |= quirks;
4927
4928         get_quirks(dev, xhci);
4929
4930         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4931          * success event after a short transfer. This quirk will ignore such
4932          * spurious event.
4933          */
4934         if (xhci->hci_version > 0x96)
4935                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4936
4937         /* Make sure the HC is halted. */
4938         retval = xhci_halt(xhci);
4939         if (retval)
4940                 return retval;
4941
4942         xhci_dbg(xhci, "Resetting HCD\n");
4943         /* Reset the internal HC memory state and registers. */
4944         retval = xhci_reset(xhci);
4945         if (retval)
4946                 return retval;
4947         xhci_dbg(xhci, "Reset complete\n");
4948
4949         /* Set dma_mask and coherent_dma_mask to 64-bits,
4950          * if xHC supports 64-bit addressing */
4951         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4952                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4953                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4954                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4955         } else {
4956                 /*
4957                  * This is to avoid error in cases where a 32-bit USB
4958                  * controller is used on a 64-bit capable system.
4959                  */
4960                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4961                 if (retval)
4962                         return retval;
4963                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4964                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4965         }
4966
4967         xhci_dbg(xhci, "Calling HCD init\n");
4968         /* Initialize HCD and host controller data structures. */
4969         retval = xhci_init(hcd);
4970         if (retval)
4971                 return retval;
4972         xhci_dbg(xhci, "Called HCD init\n");
4973
4974         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4975                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4976
4977         return 0;
4978 }
4979 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4980
4981 static const struct hc_driver xhci_hc_driver = {
4982         .description =          "xhci-hcd",
4983         .product_desc =         "xHCI Host Controller",
4984         .hcd_priv_size =        sizeof(struct xhci_hcd *),
4985
4986         /*
4987          * generic hardware linkage
4988          */
4989         .irq =                  xhci_irq,
4990         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4991
4992         /*
4993          * basic lifecycle operations
4994          */
4995         .reset =                NULL, /* set in xhci_init_driver() */
4996         .start =                xhci_run,
4997         .stop =                 xhci_stop,
4998         .shutdown =             xhci_shutdown,
4999
5000         /*
5001          * managing i/o requests and associated device resources
5002          */
5003         .urb_enqueue =          xhci_urb_enqueue,
5004         .urb_dequeue =          xhci_urb_dequeue,
5005         .alloc_dev =            xhci_alloc_dev,
5006         .free_dev =             xhci_free_dev,
5007         .alloc_streams =        xhci_alloc_streams,
5008         .free_streams =         xhci_free_streams,
5009         .add_endpoint =         xhci_add_endpoint,
5010         .drop_endpoint =        xhci_drop_endpoint,
5011         .endpoint_reset =       xhci_endpoint_reset,
5012         .check_bandwidth =      xhci_check_bandwidth,
5013         .reset_bandwidth =      xhci_reset_bandwidth,
5014         .address_device =       xhci_address_device,
5015         .enable_device =        xhci_enable_device,
5016         .update_hub_device =    xhci_update_hub_device,
5017         .reset_device =         xhci_discover_or_reset_device,
5018
5019         /*
5020          * scheduling support
5021          */
5022         .get_frame_number =     xhci_get_frame,
5023
5024         /*
5025          * root hub support
5026          */
5027         .hub_control =          xhci_hub_control,
5028         .hub_status_data =      xhci_hub_status_data,
5029         .bus_suspend =          xhci_bus_suspend,
5030         .bus_resume =           xhci_bus_resume,
5031
5032         /*
5033          * call back when device connected and addressed
5034          */
5035         .update_device =        xhci_update_device,
5036         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5037         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5038         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5039         .find_raw_port_number = xhci_find_raw_port_number,
5040 };
5041
5042 void xhci_init_driver(struct hc_driver *drv,
5043                       const struct xhci_driver_overrides *over)
5044 {
5045         BUG_ON(!over);
5046
5047         /* Copy the generic table to drv then apply the overrides */
5048         *drv = xhci_hc_driver;
5049
5050         if (over) {
5051                 drv->hcd_priv_size += over->extra_priv_size;
5052                 if (over->reset)
5053                         drv->reset = over->reset;
5054                 if (over->start)
5055                         drv->start = over->start;
5056         }
5057 }
5058 EXPORT_SYMBOL_GPL(xhci_init_driver);
5059
5060 MODULE_DESCRIPTION(DRIVER_DESC);
5061 MODULE_AUTHOR(DRIVER_AUTHOR);
5062 MODULE_LICENSE("GPL");
5063
5064 static int __init xhci_hcd_init(void)
5065 {
5066         /*
5067          * Check the compiler generated sizes of structures that must be laid
5068          * out in specific ways for hardware access.
5069          */
5070         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5071         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5072         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5073         /* xhci_device_control has eight fields, and also
5074          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5075          */
5076         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5077         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5078         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5079         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5080         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5081         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5082         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5083
5084         if (usb_disabled())
5085                 return -ENODEV;
5086
5087         return 0;
5088 }
5089
5090 /*
5091  * If an init function is provided, an exit function must also be provided
5092  * to allow module unload.
5093  */
5094 static void __exit xhci_hcd_fini(void) { }
5095
5096 module_init(xhci_hcd_init);
5097 module_exit(xhci_hcd_fini);