Merge branch 'linux-linaro-lsk-v4.4' into linux-linaro-lsk-v4.4-android
[firefly-linux-kernel-4.4.55.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
39
40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
41 static int link_quirk;
42 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
44
45 static unsigned int quirks;
46 module_param(quirks, uint, S_IRUGO);
47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
48
49 /* TODO: copied from ehci-hcd.c - can this be refactored? */
50 /*
51  * xhci_handshake - spin reading hc until handshake completes or fails
52  * @ptr: address of hc register to be read
53  * @mask: bits to look at in result of read
54  * @done: value of those bits when handshake succeeds
55  * @usec: timeout in microseconds
56  *
57  * Returns negative errno, or zero on success
58  *
59  * Success happens when the "mask" bits have the specified value (hardware
60  * handshake done).  There are two failure modes:  "usec" have passed (major
61  * hardware flakeout), or the register reads as all-ones (hardware removed).
62  */
63 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
64 {
65         u32     result;
66
67         do {
68                 result = readl(ptr);
69                 if (result == ~(u32)0)          /* card removed */
70                         return -ENODEV;
71                 result &= mask;
72                 if (result == done)
73                         return 0;
74                 udelay(1);
75                 usec--;
76         } while (usec > 0);
77         return -ETIMEDOUT;
78 }
79
80 /*
81  * Disable interrupts and begin the xHCI halting process.
82  */
83 void xhci_quiesce(struct xhci_hcd *xhci)
84 {
85         u32 halted;
86         u32 cmd;
87         u32 mask;
88
89         mask = ~(XHCI_IRQS);
90         halted = readl(&xhci->op_regs->status) & STS_HALT;
91         if (!halted)
92                 mask &= ~CMD_RUN;
93
94         cmd = readl(&xhci->op_regs->command);
95         cmd &= mask;
96         writel(cmd, &xhci->op_regs->command);
97 }
98
99 /*
100  * Force HC into halt state.
101  *
102  * Disable any IRQs and clear the run/stop bit.
103  * HC will complete any current and actively pipelined transactions, and
104  * should halt within 16 ms of the run/stop bit being cleared.
105  * Read HC Halted bit in the status register to see when the HC is finished.
106  */
107 int xhci_halt(struct xhci_hcd *xhci)
108 {
109         int ret;
110         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
111         xhci_quiesce(xhci);
112
113         ret = xhci_handshake(&xhci->op_regs->status,
114                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
115         if (!ret) {
116                 xhci->xhc_state |= XHCI_STATE_HALTED;
117                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
118         } else
119                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
120                                 XHCI_MAX_HALT_USEC);
121         return ret;
122 }
123
124 /*
125  * Set the run bit and wait for the host to be running.
126  */
127 static int xhci_start(struct xhci_hcd *xhci)
128 {
129         u32 temp;
130         int ret;
131
132         temp = readl(&xhci->op_regs->command);
133         temp |= (CMD_RUN);
134         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
135                         temp);
136         writel(temp, &xhci->op_regs->command);
137
138         /*
139          * Wait for the HCHalted Status bit to be 0 to indicate the host is
140          * running.
141          */
142         ret = xhci_handshake(&xhci->op_regs->status,
143                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
144         if (ret == -ETIMEDOUT)
145                 xhci_err(xhci, "Host took too long to start, "
146                                 "waited %u microseconds.\n",
147                                 XHCI_MAX_HALT_USEC);
148         if (!ret)
149                 /* clear state flags. Including dying, halted or removing */
150                 xhci->xhc_state = 0;
151
152         return ret;
153 }
154
155 /*
156  * Reset a halted HC.
157  *
158  * This resets pipelines, timers, counters, state machines, etc.
159  * Transactions will be terminated immediately, and operational registers
160  * will be set to their defaults.
161  */
162 int xhci_reset(struct xhci_hcd *xhci)
163 {
164         u32 command;
165         u32 state;
166         int ret, i;
167
168         state = readl(&xhci->op_regs->status);
169         if ((state & STS_HALT) == 0) {
170                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
171                 return 0;
172         }
173
174         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
175         command = readl(&xhci->op_regs->command);
176         command |= CMD_RESET;
177         writel(command, &xhci->op_regs->command);
178
179         /* Existing Intel xHCI controllers require a delay of 1 mS,
180          * after setting the CMD_RESET bit, and before accessing any
181          * HC registers. This allows the HC to complete the
182          * reset operation and be ready for HC register access.
183          * Without this delay, the subsequent HC register access,
184          * may result in a system hang very rarely.
185          */
186         if (xhci->quirks & XHCI_INTEL_HOST)
187                 udelay(1000);
188
189         ret = xhci_handshake(&xhci->op_regs->command,
190                         CMD_RESET, 0, 10 * 1000 * 1000);
191         if (ret)
192                 return ret;
193
194         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195                          "Wait for controller to be ready for doorbell rings");
196         /*
197          * xHCI cannot write to any doorbells or operational registers other
198          * than status until the "Controller Not Ready" flag is cleared.
199          */
200         ret = xhci_handshake(&xhci->op_regs->status,
201                         STS_CNR, 0, 10 * 1000 * 1000);
202
203         for (i = 0; i < 2; ++i) {
204                 xhci->bus_state[i].port_c_suspend = 0;
205                 xhci->bus_state[i].suspended_ports = 0;
206                 xhci->bus_state[i].resuming_ports = 0;
207         }
208
209         return ret;
210 }
211
212 #ifdef CONFIG_PCI
213 static int xhci_free_msi(struct xhci_hcd *xhci)
214 {
215         int i;
216
217         if (!xhci->msix_entries)
218                 return -EINVAL;
219
220         for (i = 0; i < xhci->msix_count; i++)
221                 if (xhci->msix_entries[i].vector)
222                         free_irq(xhci->msix_entries[i].vector,
223                                         xhci_to_hcd(xhci));
224         return 0;
225 }
226
227 /*
228  * Set up MSI
229  */
230 static int xhci_setup_msi(struct xhci_hcd *xhci)
231 {
232         int ret;
233         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
234
235         ret = pci_enable_msi(pdev);
236         if (ret) {
237                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238                                 "failed to allocate MSI entry");
239                 return ret;
240         }
241
242         ret = request_irq(pdev->irq, xhci_msi_irq,
243                                 0, "xhci_hcd", xhci_to_hcd(xhci));
244         if (ret) {
245                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
246                                 "disable MSI interrupt");
247                 pci_disable_msi(pdev);
248         }
249
250         return ret;
251 }
252
253 /*
254  * Free IRQs
255  * free all IRQs request
256  */
257 static void xhci_free_irq(struct xhci_hcd *xhci)
258 {
259         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
260         int ret;
261
262         /* return if using legacy interrupt */
263         if (xhci_to_hcd(xhci)->irq > 0)
264                 return;
265
266         ret = xhci_free_msi(xhci);
267         if (!ret)
268                 return;
269         if (pdev->irq > 0)
270                 free_irq(pdev->irq, xhci_to_hcd(xhci));
271
272         return;
273 }
274
275 /*
276  * Set up MSI-X
277  */
278 static int xhci_setup_msix(struct xhci_hcd *xhci)
279 {
280         int i, ret = 0;
281         struct usb_hcd *hcd = xhci_to_hcd(xhci);
282         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
283
284         /*
285          * calculate number of msi-x vectors supported.
286          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
287          *   with max number of interrupters based on the xhci HCSPARAMS1.
288          * - num_online_cpus: maximum msi-x vectors per CPUs core.
289          *   Add additional 1 vector to ensure always available interrupt.
290          */
291         xhci->msix_count = min(num_online_cpus() + 1,
292                                 HCS_MAX_INTRS(xhci->hcs_params1));
293
294         xhci->msix_entries =
295                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
296                                 GFP_KERNEL);
297         if (!xhci->msix_entries) {
298                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
299                 return -ENOMEM;
300         }
301
302         for (i = 0; i < xhci->msix_count; i++) {
303                 xhci->msix_entries[i].entry = i;
304                 xhci->msix_entries[i].vector = 0;
305         }
306
307         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
308         if (ret) {
309                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310                                 "Failed to enable MSI-X");
311                 goto free_entries;
312         }
313
314         for (i = 0; i < xhci->msix_count; i++) {
315                 ret = request_irq(xhci->msix_entries[i].vector,
316                                 xhci_msi_irq,
317                                 0, "xhci_hcd", xhci_to_hcd(xhci));
318                 if (ret)
319                         goto disable_msix;
320         }
321
322         hcd->msix_enabled = 1;
323         return ret;
324
325 disable_msix:
326         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
327         xhci_free_irq(xhci);
328         pci_disable_msix(pdev);
329 free_entries:
330         kfree(xhci->msix_entries);
331         xhci->msix_entries = NULL;
332         return ret;
333 }
334
335 /* Free any IRQs and disable MSI-X */
336 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
337 {
338         struct usb_hcd *hcd = xhci_to_hcd(xhci);
339         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
340
341         if (xhci->quirks & XHCI_PLAT)
342                 return;
343
344         xhci_free_irq(xhci);
345
346         if (xhci->msix_entries) {
347                 pci_disable_msix(pdev);
348                 kfree(xhci->msix_entries);
349                 xhci->msix_entries = NULL;
350         } else {
351                 pci_disable_msi(pdev);
352         }
353
354         hcd->msix_enabled = 0;
355         return;
356 }
357
358 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
359 {
360         int i;
361
362         if (xhci->msix_entries) {
363                 for (i = 0; i < xhci->msix_count; i++)
364                         synchronize_irq(xhci->msix_entries[i].vector);
365         }
366 }
367
368 static int xhci_try_enable_msi(struct usb_hcd *hcd)
369 {
370         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
371         struct pci_dev  *pdev;
372         int ret;
373
374         /* The xhci platform device has set up IRQs through usb_add_hcd. */
375         if (xhci->quirks & XHCI_PLAT)
376                 return 0;
377
378         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
379         /*
380          * Some Fresco Logic host controllers advertise MSI, but fail to
381          * generate interrupts.  Don't even try to enable MSI.
382          */
383         if (xhci->quirks & XHCI_BROKEN_MSI)
384                 goto legacy_irq;
385
386         /* unregister the legacy interrupt */
387         if (hcd->irq)
388                 free_irq(hcd->irq, hcd);
389         hcd->irq = 0;
390
391         ret = xhci_setup_msix(xhci);
392         if (ret)
393                 /* fall back to msi*/
394                 ret = xhci_setup_msi(xhci);
395
396         if (!ret)
397                 /* hcd->irq is 0, we have MSI */
398                 return 0;
399
400         if (!pdev->irq) {
401                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
402                 return -EINVAL;
403         }
404
405  legacy_irq:
406         if (!strlen(hcd->irq_descr))
407                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
408                          hcd->driver->description, hcd->self.busnum);
409
410         /* fall back to legacy interrupt*/
411         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
412                         hcd->irq_descr, hcd);
413         if (ret) {
414                 xhci_err(xhci, "request interrupt %d failed\n",
415                                 pdev->irq);
416                 return ret;
417         }
418         hcd->irq = pdev->irq;
419         return 0;
420 }
421
422 #else
423
424 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
425 {
426         return 0;
427 }
428
429 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
430 {
431 }
432
433 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
434 {
435 }
436
437 #endif
438
439 static void compliance_mode_recovery(unsigned long arg)
440 {
441         struct xhci_hcd *xhci;
442         struct usb_hcd *hcd;
443         u32 temp;
444         int i;
445
446         xhci = (struct xhci_hcd *)arg;
447
448         for (i = 0; i < xhci->num_usb3_ports; i++) {
449                 temp = readl(xhci->usb3_ports[i]);
450                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
451                         /*
452                          * Compliance Mode Detected. Letting USB Core
453                          * handle the Warm Reset
454                          */
455                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
456                                         "Compliance mode detected->port %d",
457                                         i + 1);
458                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
459                                         "Attempting compliance mode recovery");
460                         hcd = xhci->shared_hcd;
461
462                         if (hcd->state == HC_STATE_SUSPENDED)
463                                 usb_hcd_resume_root_hub(hcd);
464
465                         usb_hcd_poll_rh_status(hcd);
466                 }
467         }
468
469         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
470                 mod_timer(&xhci->comp_mode_recovery_timer,
471                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 }
473
474 /*
475  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
476  * that causes ports behind that hardware to enter compliance mode sometimes.
477  * The quirk creates a timer that polls every 2 seconds the link state of
478  * each host controller's port and recovers it by issuing a Warm reset
479  * if Compliance mode is detected, otherwise the port will become "dead" (no
480  * device connections or disconnections will be detected anymore). Becasue no
481  * status event is generated when entering compliance mode (per xhci spec),
482  * this quirk is needed on systems that have the failing hardware installed.
483  */
484 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
485 {
486         xhci->port_status_u0 = 0;
487         setup_timer(&xhci->comp_mode_recovery_timer,
488                     compliance_mode_recovery, (unsigned long)xhci);
489         xhci->comp_mode_recovery_timer.expires = jiffies +
490                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
491
492         set_timer_slack(&xhci->comp_mode_recovery_timer,
493                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
494         add_timer(&xhci->comp_mode_recovery_timer);
495         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496                         "Compliance mode recovery timer initialized");
497 }
498
499 /*
500  * This function identifies the systems that have installed the SN65LVPE502CP
501  * USB3.0 re-driver and that need the Compliance Mode Quirk.
502  * Systems:
503  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
504  */
505 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
506 {
507         const char *dmi_product_name, *dmi_sys_vendor;
508
509         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
510         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
511         if (!dmi_product_name || !dmi_sys_vendor)
512                 return false;
513
514         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
515                 return false;
516
517         if (strstr(dmi_product_name, "Z420") ||
518                         strstr(dmi_product_name, "Z620") ||
519                         strstr(dmi_product_name, "Z820") ||
520                         strstr(dmi_product_name, "Z1 Workstation"))
521                 return true;
522
523         return false;
524 }
525
526 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
527 {
528         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
529 }
530
531
532 /*
533  * Initialize memory for HCD and xHC (one-time init).
534  *
535  * Program the PAGESIZE register, initialize the device context array, create
536  * device contexts (?), set up a command ring segment (or two?), create event
537  * ring (one for now).
538  */
539 int xhci_init(struct usb_hcd *hcd)
540 {
541         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
542         int retval = 0;
543
544         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
545         spin_lock_init(&xhci->lock);
546         if (xhci->hci_version == 0x95 && link_quirk) {
547                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
548                                 "QUIRK: Not clearing Link TRB chain bits.");
549                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
550         } else {
551                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552                                 "xHCI doesn't need link TRB QUIRK");
553         }
554         retval = xhci_mem_init(xhci, GFP_KERNEL);
555         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
556
557         /* Initializing Compliance Mode Recovery Data If Needed */
558         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
559                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
560                 compliance_mode_recovery_timer_init(xhci);
561         }
562
563         return retval;
564 }
565
566 /*-------------------------------------------------------------------------*/
567
568
569 static int xhci_run_finished(struct xhci_hcd *xhci)
570 {
571         if (xhci_start(xhci)) {
572                 xhci_halt(xhci);
573                 return -ENODEV;
574         }
575         xhci->shared_hcd->state = HC_STATE_RUNNING;
576         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
577
578         if (xhci->quirks & XHCI_NEC_HOST)
579                 xhci_ring_cmd_db(xhci);
580
581         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
582                         "Finished xhci_run for USB3 roothub");
583         return 0;
584 }
585
586 /*
587  * Start the HC after it was halted.
588  *
589  * This function is called by the USB core when the HC driver is added.
590  * Its opposite is xhci_stop().
591  *
592  * xhci_init() must be called once before this function can be called.
593  * Reset the HC, enable device slot contexts, program DCBAAP, and
594  * set command ring pointer and event ring pointer.
595  *
596  * Setup MSI-X vectors and enable interrupts.
597  */
598 int xhci_run(struct usb_hcd *hcd)
599 {
600         u32 temp;
601         u64 temp_64;
602         int ret;
603         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
604
605         /* Start the xHCI host controller running only after the USB 2.0 roothub
606          * is setup.
607          */
608
609         hcd->uses_new_polling = 1;
610         if (!usb_hcd_is_primary_hcd(hcd))
611                 return xhci_run_finished(xhci);
612
613         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
614
615         ret = xhci_try_enable_msi(hcd);
616         if (ret)
617                 return ret;
618
619         xhci_dbg(xhci, "Command ring memory map follows:\n");
620         xhci_debug_ring(xhci, xhci->cmd_ring);
621         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
622         xhci_dbg_cmd_ptrs(xhci);
623
624         xhci_dbg(xhci, "ERST memory map follows:\n");
625         xhci_dbg_erst(xhci, &xhci->erst);
626         xhci_dbg(xhci, "Event ring:\n");
627         xhci_debug_ring(xhci, xhci->event_ring);
628         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
629         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
630         temp_64 &= ~ERST_PTR_MASK;
631         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
632                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
633
634         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635                         "// Set the interrupt modulation register");
636         temp = readl(&xhci->ir_set->irq_control);
637         temp &= ~ER_IRQ_INTERVAL_MASK;
638         temp |= (u32) 160;
639         writel(temp, &xhci->ir_set->irq_control);
640
641         /* Set the HCD state before we enable the irqs */
642         temp = readl(&xhci->op_regs->command);
643         temp |= (CMD_EIE);
644         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
645                         "// Enable interrupts, cmd = 0x%x.", temp);
646         writel(temp, &xhci->op_regs->command);
647
648         temp = readl(&xhci->ir_set->irq_pending);
649         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
650                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
651                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
652         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
653         xhci_print_ir_set(xhci, 0);
654
655         if (xhci->quirks & XHCI_NEC_HOST) {
656                 struct xhci_command *command;
657                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
658                 if (!command)
659                         return -ENOMEM;
660                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
661                                 TRB_TYPE(TRB_NEC_GET_FW));
662         }
663         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664                         "Finished xhci_run for USB2 roothub");
665         return 0;
666 }
667 EXPORT_SYMBOL_GPL(xhci_run);
668
669 /*
670  * Stop xHCI driver.
671  *
672  * This function is called by the USB core when the HC driver is removed.
673  * Its opposite is xhci_run().
674  *
675  * Disable device contexts, disable IRQs, and quiesce the HC.
676  * Reset the HC, finish any completed transactions, and cleanup memory.
677  */
678 void xhci_stop(struct usb_hcd *hcd)
679 {
680         u32 temp;
681         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
682
683         if (xhci->xhc_state & XHCI_STATE_HALTED)
684                 return;
685
686         mutex_lock(&xhci->mutex);
687         spin_lock_irq(&xhci->lock);
688         xhci->xhc_state |= XHCI_STATE_HALTED;
689         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
690
691         /* Make sure the xHC is halted for a USB3 roothub
692          * (xhci_stop() could be called as part of failed init).
693          */
694         xhci_halt(xhci);
695         xhci_reset(xhci);
696         spin_unlock_irq(&xhci->lock);
697
698         xhci_cleanup_msix(xhci);
699
700         /* Deleting Compliance Mode Recovery Timer */
701         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
702                         (!(xhci_all_ports_seen_u0(xhci)))) {
703                 del_timer_sync(&xhci->comp_mode_recovery_timer);
704                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
705                                 "%s: compliance mode recovery timer deleted",
706                                 __func__);
707         }
708
709         if (xhci->quirks & XHCI_AMD_PLL_FIX)
710                 usb_amd_dev_put();
711
712         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
713                         "// Disabling event ring interrupts");
714         temp = readl(&xhci->op_regs->status);
715         writel(temp & ~STS_EINT, &xhci->op_regs->status);
716         temp = readl(&xhci->ir_set->irq_pending);
717         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
718         xhci_print_ir_set(xhci, 0);
719
720         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
721         xhci_mem_cleanup(xhci);
722         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
723                         "xhci_stop completed - status = %x",
724                         readl(&xhci->op_regs->status));
725         mutex_unlock(&xhci->mutex);
726 }
727
728 /*
729  * Shutdown HC (not bus-specific)
730  *
731  * This is called when the machine is rebooting or halting.  We assume that the
732  * machine will be powered off, and the HC's internal state will be reset.
733  * Don't bother to free memory.
734  *
735  * This will only ever be called with the main usb_hcd (the USB3 roothub).
736  */
737 void xhci_shutdown(struct usb_hcd *hcd)
738 {
739         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
740
741         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
742                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
743
744         spin_lock_irq(&xhci->lock);
745         xhci_halt(xhci);
746         /* Workaround for spurious wakeups at shutdown with HSW */
747         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
748                 xhci_reset(xhci);
749         spin_unlock_irq(&xhci->lock);
750
751         xhci_cleanup_msix(xhci);
752
753         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
754                         "xhci_shutdown completed - status = %x",
755                         readl(&xhci->op_regs->status));
756
757         /* Yet another workaround for spurious wakeups at shutdown with HSW */
758         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
759                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
760 }
761
762 #ifdef CONFIG_PM
763 static void xhci_save_registers(struct xhci_hcd *xhci)
764 {
765         xhci->s3.command = readl(&xhci->op_regs->command);
766         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
767         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
768         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
769         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
770         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
771         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
772         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
773         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
774 }
775
776 static void xhci_restore_registers(struct xhci_hcd *xhci)
777 {
778         writel(xhci->s3.command, &xhci->op_regs->command);
779         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
780         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
781         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
782         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
783         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
784         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
785         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
786         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
787 }
788
789 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
790 {
791         u64     val_64;
792
793         /* step 2: initialize command ring buffer */
794         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
795         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
796                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
797                                       xhci->cmd_ring->dequeue) &
798                  (u64) ~CMD_RING_RSVD_BITS) |
799                 xhci->cmd_ring->cycle_state;
800         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
801                         "// Setting command ring address to 0x%llx",
802                         (long unsigned long) val_64);
803         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
804 }
805
806 /*
807  * The whole command ring must be cleared to zero when we suspend the host.
808  *
809  * The host doesn't save the command ring pointer in the suspend well, so we
810  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
811  * aligned, because of the reserved bits in the command ring dequeue pointer
812  * register.  Therefore, we can't just set the dequeue pointer back in the
813  * middle of the ring (TRBs are 16-byte aligned).
814  */
815 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
816 {
817         struct xhci_ring *ring;
818         struct xhci_segment *seg;
819
820         ring = xhci->cmd_ring;
821         seg = ring->deq_seg;
822         do {
823                 memset(seg->trbs, 0,
824                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
825                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
826                         cpu_to_le32(~TRB_CYCLE);
827                 seg = seg->next;
828         } while (seg != ring->deq_seg);
829
830         /* Reset the software enqueue and dequeue pointers */
831         ring->deq_seg = ring->first_seg;
832         ring->dequeue = ring->first_seg->trbs;
833         ring->enq_seg = ring->deq_seg;
834         ring->enqueue = ring->dequeue;
835
836         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
837         /*
838          * Ring is now zeroed, so the HW should look for change of ownership
839          * when the cycle bit is set to 1.
840          */
841         ring->cycle_state = 1;
842
843         /*
844          * Reset the hardware dequeue pointer.
845          * Yes, this will need to be re-written after resume, but we're paranoid
846          * and want to make sure the hardware doesn't access bogus memory
847          * because, say, the BIOS or an SMI started the host without changing
848          * the command ring pointers.
849          */
850         xhci_set_cmd_ring_deq(xhci);
851 }
852
853 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
854 {
855         int port_index;
856         __le32 __iomem **port_array;
857         unsigned long flags;
858         u32 t1, t2;
859
860         spin_lock_irqsave(&xhci->lock, flags);
861
862         /* disble usb3 ports Wake bits*/
863         port_index = xhci->num_usb3_ports;
864         port_array = xhci->usb3_ports;
865         while (port_index--) {
866                 t1 = readl(port_array[port_index]);
867                 t1 = xhci_port_state_to_neutral(t1);
868                 t2 = t1 & ~PORT_WAKE_BITS;
869                 if (t1 != t2)
870                         writel(t2, port_array[port_index]);
871         }
872
873         /* disble usb2 ports Wake bits*/
874         port_index = xhci->num_usb2_ports;
875         port_array = xhci->usb2_ports;
876         while (port_index--) {
877                 t1 = readl(port_array[port_index]);
878                 t1 = xhci_port_state_to_neutral(t1);
879                 t2 = t1 & ~PORT_WAKE_BITS;
880                 if (t1 != t2)
881                         writel(t2, port_array[port_index]);
882         }
883
884         spin_unlock_irqrestore(&xhci->lock, flags);
885 }
886
887 /*
888  * Stop HC (not bus-specific)
889  *
890  * This is called when the machine transition into S3/S4 mode.
891  *
892  */
893 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
894 {
895         int                     rc = 0;
896         unsigned int            delay = XHCI_MAX_HALT_USEC;
897         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
898         u32                     command;
899
900         if (!hcd->state)
901                 return 0;
902
903         if (hcd->state != HC_STATE_SUSPENDED ||
904                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
905                 return -EINVAL;
906
907         /* Clear root port wake on bits if wakeup not allowed. */
908         if (!do_wakeup)
909                 xhci_disable_port_wake_on_bits(xhci);
910
911         /* Don't poll the roothubs on bus suspend. */
912         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
913         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
914         del_timer_sync(&hcd->rh_timer);
915         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
916         del_timer_sync(&xhci->shared_hcd->rh_timer);
917
918         spin_lock_irq(&xhci->lock);
919         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
920         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
921         /* step 1: stop endpoint */
922         /* skipped assuming that port suspend has done */
923
924         /* step 2: clear Run/Stop bit */
925         command = readl(&xhci->op_regs->command);
926         command &= ~CMD_RUN;
927         writel(command, &xhci->op_regs->command);
928
929         /* Some chips from Fresco Logic need an extraordinary delay */
930         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
931
932         if (xhci_handshake(&xhci->op_regs->status,
933                       STS_HALT, STS_HALT, delay)) {
934                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
935                 spin_unlock_irq(&xhci->lock);
936                 return -ETIMEDOUT;
937         }
938         xhci_clear_command_ring(xhci);
939
940         /* step 3: save registers */
941         xhci_save_registers(xhci);
942
943         /* step 4: set CSS flag */
944         command = readl(&xhci->op_regs->command);
945         command |= CMD_CSS;
946         writel(command, &xhci->op_regs->command);
947         if (xhci_handshake(&xhci->op_regs->status,
948                                 STS_SAVE, 0, 10 * 1000)) {
949                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
950                 spin_unlock_irq(&xhci->lock);
951                 return -ETIMEDOUT;
952         }
953         spin_unlock_irq(&xhci->lock);
954
955         /*
956          * Deleting Compliance Mode Recovery Timer because the xHCI Host
957          * is about to be suspended.
958          */
959         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
960                         (!(xhci_all_ports_seen_u0(xhci)))) {
961                 del_timer_sync(&xhci->comp_mode_recovery_timer);
962                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
963                                 "%s: compliance mode recovery timer deleted",
964                                 __func__);
965         }
966
967         /* step 5: remove core well power */
968         /* synchronize irq when using MSI-X */
969         xhci_msix_sync_irqs(xhci);
970
971         return rc;
972 }
973 EXPORT_SYMBOL_GPL(xhci_suspend);
974
975 /*
976  * start xHC (not bus-specific)
977  *
978  * This is called when the machine transition from S3/S4 mode.
979  *
980  */
981 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
982 {
983         u32                     command, temp = 0, status;
984         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
985         struct usb_hcd          *secondary_hcd;
986         int                     retval = 0;
987         bool                    comp_timer_running = false;
988
989         if (!hcd->state)
990                 return 0;
991
992         /* Wait a bit if either of the roothubs need to settle from the
993          * transition into bus suspend.
994          */
995         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
996                         time_before(jiffies,
997                                 xhci->bus_state[1].next_statechange))
998                 msleep(100);
999
1000         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1001         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1002
1003         spin_lock_irq(&xhci->lock);
1004         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1005                 hibernated = true;
1006
1007         if (!hibernated) {
1008                 /* step 1: restore register */
1009                 xhci_restore_registers(xhci);
1010                 /* step 2: initialize command ring buffer */
1011                 xhci_set_cmd_ring_deq(xhci);
1012                 /* step 3: restore state and start state*/
1013                 /* step 3: set CRS flag */
1014                 command = readl(&xhci->op_regs->command);
1015                 command |= CMD_CRS;
1016                 writel(command, &xhci->op_regs->command);
1017                 if (xhci_handshake(&xhci->op_regs->status,
1018                               STS_RESTORE, 0, 10 * 1000)) {
1019                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1020                         spin_unlock_irq(&xhci->lock);
1021                         return -ETIMEDOUT;
1022                 }
1023                 temp = readl(&xhci->op_regs->status);
1024         }
1025
1026         /* If restore operation fails, re-initialize the HC during resume */
1027         if ((temp & STS_SRE) || hibernated) {
1028
1029                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1030                                 !(xhci_all_ports_seen_u0(xhci))) {
1031                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1032                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1033                                 "Compliance Mode Recovery Timer deleted!");
1034                 }
1035
1036                 /* Let the USB core know _both_ roothubs lost power. */
1037                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1038                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1039
1040                 xhci_dbg(xhci, "Stop HCD\n");
1041                 xhci_halt(xhci);
1042                 xhci_reset(xhci);
1043                 spin_unlock_irq(&xhci->lock);
1044                 xhci_cleanup_msix(xhci);
1045
1046                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1047                 temp = readl(&xhci->op_regs->status);
1048                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1049                 temp = readl(&xhci->ir_set->irq_pending);
1050                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1051                 xhci_print_ir_set(xhci, 0);
1052
1053                 xhci_dbg(xhci, "cleaning up memory\n");
1054                 xhci_mem_cleanup(xhci);
1055                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1056                             readl(&xhci->op_regs->status));
1057
1058                 /* USB core calls the PCI reinit and start functions twice:
1059                  * first with the primary HCD, and then with the secondary HCD.
1060                  * If we don't do the same, the host will never be started.
1061                  */
1062                 if (!usb_hcd_is_primary_hcd(hcd))
1063                         secondary_hcd = hcd;
1064                 else
1065                         secondary_hcd = xhci->shared_hcd;
1066
1067                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1068                 retval = xhci_init(hcd->primary_hcd);
1069                 if (retval)
1070                         return retval;
1071                 comp_timer_running = true;
1072
1073                 xhci_dbg(xhci, "Start the primary HCD\n");
1074                 retval = xhci_run(hcd->primary_hcd);
1075                 if (!retval) {
1076                         xhci_dbg(xhci, "Start the secondary HCD\n");
1077                         retval = xhci_run(secondary_hcd);
1078                 }
1079                 hcd->state = HC_STATE_SUSPENDED;
1080                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1081                 goto done;
1082         }
1083
1084         /* step 4: set Run/Stop bit */
1085         command = readl(&xhci->op_regs->command);
1086         command |= CMD_RUN;
1087         writel(command, &xhci->op_regs->command);
1088         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1089                   0, 250 * 1000);
1090
1091         /* step 5: walk topology and initialize portsc,
1092          * portpmsc and portli
1093          */
1094         /* this is done in bus_resume */
1095
1096         /* step 6: restart each of the previously
1097          * Running endpoints by ringing their doorbells
1098          */
1099
1100         spin_unlock_irq(&xhci->lock);
1101
1102  done:
1103         if (retval == 0) {
1104                 /* Resume root hubs only when have pending events. */
1105                 status = readl(&xhci->op_regs->status);
1106                 if (status & STS_EINT) {
1107                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1108                         usb_hcd_resume_root_hub(hcd);
1109                 }
1110         }
1111
1112         /*
1113          * If system is subject to the Quirk, Compliance Mode Timer needs to
1114          * be re-initialized Always after a system resume. Ports are subject
1115          * to suffer the Compliance Mode issue again. It doesn't matter if
1116          * ports have entered previously to U0 before system's suspension.
1117          */
1118         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1119                 compliance_mode_recovery_timer_init(xhci);
1120
1121         /* Re-enable port polling. */
1122         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1123         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1124         usb_hcd_poll_rh_status(xhci->shared_hcd);
1125         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1126         usb_hcd_poll_rh_status(hcd);
1127
1128         return retval;
1129 }
1130 EXPORT_SYMBOL_GPL(xhci_resume);
1131 #endif  /* CONFIG_PM */
1132
1133 /*-------------------------------------------------------------------------*/
1134
1135 /**
1136  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1137  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1138  * value to right shift 1 for the bitmask.
1139  *
1140  * Index  = (epnum * 2) + direction - 1,
1141  * where direction = 0 for OUT, 1 for IN.
1142  * For control endpoints, the IN index is used (OUT index is unused), so
1143  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1144  */
1145 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1146 {
1147         unsigned int index;
1148         if (usb_endpoint_xfer_control(desc))
1149                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1150         else
1151                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1152                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1153         return index;
1154 }
1155
1156 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1157  * address from the XHCI endpoint index.
1158  */
1159 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1160 {
1161         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1162         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1163         return direction | number;
1164 }
1165
1166 /* Find the flag for this endpoint (for use in the control context).  Use the
1167  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1168  * bit 1, etc.
1169  */
1170 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1171 {
1172         return 1 << (xhci_get_endpoint_index(desc) + 1);
1173 }
1174
1175 /* Find the flag for this endpoint (for use in the control context).  Use the
1176  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1177  * bit 1, etc.
1178  */
1179 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1180 {
1181         return 1 << (ep_index + 1);
1182 }
1183
1184 /* Compute the last valid endpoint context index.  Basically, this is the
1185  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1186  * we find the most significant bit set in the added contexts flags.
1187  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1188  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1189  */
1190 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1191 {
1192         return fls(added_ctxs) - 1;
1193 }
1194
1195 /* Returns 1 if the arguments are OK;
1196  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1197  */
1198 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1199                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1200                 const char *func) {
1201         struct xhci_hcd *xhci;
1202         struct xhci_virt_device *virt_dev;
1203
1204         if (!hcd || (check_ep && !ep) || !udev) {
1205                 pr_debug("xHCI %s called with invalid args\n", func);
1206                 return -EINVAL;
1207         }
1208         if (!udev->parent) {
1209                 pr_debug("xHCI %s called for root hub\n", func);
1210                 return 0;
1211         }
1212
1213         xhci = hcd_to_xhci(hcd);
1214         if (check_virt_dev) {
1215                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1216                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1217                                         func);
1218                         return -EINVAL;
1219                 }
1220
1221                 virt_dev = xhci->devs[udev->slot_id];
1222                 if (virt_dev->udev != udev) {
1223                         xhci_dbg(xhci, "xHCI %s called with udev and "
1224                                           "virt_dev does not match\n", func);
1225                         return -EINVAL;
1226                 }
1227         }
1228
1229         if (xhci->xhc_state & XHCI_STATE_HALTED)
1230                 return -ENODEV;
1231
1232         return 1;
1233 }
1234
1235 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1236                 struct usb_device *udev, struct xhci_command *command,
1237                 bool ctx_change, bool must_succeed);
1238
1239 /*
1240  * Full speed devices may have a max packet size greater than 8 bytes, but the
1241  * USB core doesn't know that until it reads the first 8 bytes of the
1242  * descriptor.  If the usb_device's max packet size changes after that point,
1243  * we need to issue an evaluate context command and wait on it.
1244  */
1245 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1246                 unsigned int ep_index, struct urb *urb)
1247 {
1248         struct xhci_container_ctx *out_ctx;
1249         struct xhci_input_control_ctx *ctrl_ctx;
1250         struct xhci_ep_ctx *ep_ctx;
1251         struct xhci_command *command;
1252         int max_packet_size;
1253         int hw_max_packet_size;
1254         int ret = 0;
1255
1256         out_ctx = xhci->devs[slot_id]->out_ctx;
1257         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1258         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1259         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1260         if (hw_max_packet_size != max_packet_size) {
1261                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1262                                 "Max Packet Size for ep 0 changed.");
1263                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1264                                 "Max packet size in usb_device = %d",
1265                                 max_packet_size);
1266                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1267                                 "Max packet size in xHCI HW = %d",
1268                                 hw_max_packet_size);
1269                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1270                                 "Issuing evaluate context command.");
1271
1272                 /* Set up the input context flags for the command */
1273                 /* FIXME: This won't work if a non-default control endpoint
1274                  * changes max packet sizes.
1275                  */
1276
1277                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1278                 if (!command)
1279                         return -ENOMEM;
1280
1281                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1282                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1283                 if (!ctrl_ctx) {
1284                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1285                                         __func__);
1286                         ret = -ENOMEM;
1287                         goto command_cleanup;
1288                 }
1289                 /* Set up the modified control endpoint 0 */
1290                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1291                                 xhci->devs[slot_id]->out_ctx, ep_index);
1292
1293                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1294                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1295                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1296
1297                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1298                 ctrl_ctx->drop_flags = 0;
1299
1300                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1301                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1302                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1303                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1304
1305                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1306                                 true, false);
1307
1308                 /* Clean up the input context for later use by bandwidth
1309                  * functions.
1310                  */
1311                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1312 command_cleanup:
1313                 kfree(command->completion);
1314                 kfree(command);
1315         }
1316         return ret;
1317 }
1318
1319 /*
1320  * non-error returns are a promise to giveback() the urb later
1321  * we drop ownership so next owner (or urb unlink) can get it
1322  */
1323 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1324 {
1325         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1326         struct xhci_td *buffer;
1327         unsigned long flags;
1328         int ret = 0;
1329         unsigned int slot_id, ep_index;
1330         struct urb_priv *urb_priv;
1331         int size, i;
1332
1333         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1334                                         true, true, __func__) <= 0)
1335                 return -EINVAL;
1336
1337         slot_id = urb->dev->slot_id;
1338         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1339
1340         if (!HCD_HW_ACCESSIBLE(hcd)) {
1341                 if (!in_interrupt())
1342                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1343                 ret = -ESHUTDOWN;
1344                 goto exit;
1345         }
1346
1347         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1348                 size = urb->number_of_packets;
1349         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1350             urb->transfer_buffer_length > 0 &&
1351             urb->transfer_flags & URB_ZERO_PACKET &&
1352             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1353                 size = 2;
1354         else
1355                 size = 1;
1356
1357         urb_priv = kzalloc(sizeof(struct urb_priv) +
1358                                   size * sizeof(struct xhci_td *), mem_flags);
1359         if (!urb_priv)
1360                 return -ENOMEM;
1361
1362         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1363         if (!buffer) {
1364                 kfree(urb_priv);
1365                 return -ENOMEM;
1366         }
1367
1368         for (i = 0; i < size; i++) {
1369                 urb_priv->td[i] = buffer;
1370                 buffer++;
1371         }
1372
1373         urb_priv->length = size;
1374         urb_priv->td_cnt = 0;
1375         urb->hcpriv = urb_priv;
1376
1377         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1378                 /* Check to see if the max packet size for the default control
1379                  * endpoint changed during FS device enumeration
1380                  */
1381                 if (urb->dev->speed == USB_SPEED_FULL) {
1382                         ret = xhci_check_maxpacket(xhci, slot_id,
1383                                         ep_index, urb);
1384                         if (ret < 0) {
1385                                 xhci_urb_free_priv(urb_priv);
1386                                 urb->hcpriv = NULL;
1387                                 return ret;
1388                         }
1389                 }
1390
1391                 /* We have a spinlock and interrupts disabled, so we must pass
1392                  * atomic context to this function, which may allocate memory.
1393                  */
1394                 spin_lock_irqsave(&xhci->lock, flags);
1395                 if (xhci->xhc_state & XHCI_STATE_DYING)
1396                         goto dying;
1397                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1398                                 slot_id, ep_index);
1399                 if (ret)
1400                         goto free_priv;
1401                 spin_unlock_irqrestore(&xhci->lock, flags);
1402         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1403                 spin_lock_irqsave(&xhci->lock, flags);
1404                 if (xhci->xhc_state & XHCI_STATE_DYING)
1405                         goto dying;
1406                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1407                                 EP_GETTING_STREAMS) {
1408                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1409                                         "is transitioning to using streams.\n");
1410                         ret = -EINVAL;
1411                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1412                                 EP_GETTING_NO_STREAMS) {
1413                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1414                                         "is transitioning to "
1415                                         "not having streams.\n");
1416                         ret = -EINVAL;
1417                 } else {
1418                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1419                                         slot_id, ep_index);
1420                 }
1421                 if (ret)
1422                         goto free_priv;
1423                 spin_unlock_irqrestore(&xhci->lock, flags);
1424         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1425                 spin_lock_irqsave(&xhci->lock, flags);
1426                 if (xhci->xhc_state & XHCI_STATE_DYING)
1427                         goto dying;
1428                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1429                                 slot_id, ep_index);
1430                 if (ret)
1431                         goto free_priv;
1432                 spin_unlock_irqrestore(&xhci->lock, flags);
1433         } else {
1434                 spin_lock_irqsave(&xhci->lock, flags);
1435                 if (xhci->xhc_state & XHCI_STATE_DYING)
1436                         goto dying;
1437                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1438                                 slot_id, ep_index);
1439                 if (ret)
1440                         goto free_priv;
1441                 spin_unlock_irqrestore(&xhci->lock, flags);
1442         }
1443 exit:
1444         return ret;
1445 dying:
1446         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1447                         "non-responsive xHCI host.\n",
1448                         urb->ep->desc.bEndpointAddress, urb);
1449         ret = -ESHUTDOWN;
1450 free_priv:
1451         xhci_urb_free_priv(urb_priv);
1452         urb->hcpriv = NULL;
1453         spin_unlock_irqrestore(&xhci->lock, flags);
1454         return ret;
1455 }
1456
1457 /* Get the right ring for the given URB.
1458  * If the endpoint supports streams, boundary check the URB's stream ID.
1459  * If the endpoint doesn't support streams, return the singular endpoint ring.
1460  */
1461 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1462                 struct urb *urb)
1463 {
1464         unsigned int slot_id;
1465         unsigned int ep_index;
1466         unsigned int stream_id;
1467         struct xhci_virt_ep *ep;
1468
1469         slot_id = urb->dev->slot_id;
1470         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1471         stream_id = urb->stream_id;
1472         ep = &xhci->devs[slot_id]->eps[ep_index];
1473         /* Common case: no streams */
1474         if (!(ep->ep_state & EP_HAS_STREAMS))
1475                 return ep->ring;
1476
1477         if (stream_id == 0) {
1478                 xhci_warn(xhci,
1479                                 "WARN: Slot ID %u, ep index %u has streams, "
1480                                 "but URB has no stream ID.\n",
1481                                 slot_id, ep_index);
1482                 return NULL;
1483         }
1484
1485         if (stream_id < ep->stream_info->num_streams)
1486                 return ep->stream_info->stream_rings[stream_id];
1487
1488         xhci_warn(xhci,
1489                         "WARN: Slot ID %u, ep index %u has "
1490                         "stream IDs 1 to %u allocated, "
1491                         "but stream ID %u is requested.\n",
1492                         slot_id, ep_index,
1493                         ep->stream_info->num_streams - 1,
1494                         stream_id);
1495         return NULL;
1496 }
1497
1498 /*
1499  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1500  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1501  * should pick up where it left off in the TD, unless a Set Transfer Ring
1502  * Dequeue Pointer is issued.
1503  *
1504  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1505  * the ring.  Since the ring is a contiguous structure, they can't be physically
1506  * removed.  Instead, there are two options:
1507  *
1508  *  1) If the HC is in the middle of processing the URB to be canceled, we
1509  *     simply move the ring's dequeue pointer past those TRBs using the Set
1510  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1511  *     when drivers timeout on the last submitted URB and attempt to cancel.
1512  *
1513  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1514  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1515  *     HC will need to invalidate the any TRBs it has cached after the stop
1516  *     endpoint command, as noted in the xHCI 0.95 errata.
1517  *
1518  *  3) The TD may have completed by the time the Stop Endpoint Command
1519  *     completes, so software needs to handle that case too.
1520  *
1521  * This function should protect against the TD enqueueing code ringing the
1522  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1523  * It also needs to account for multiple cancellations on happening at the same
1524  * time for the same endpoint.
1525  *
1526  * Note that this function can be called in any context, or so says
1527  * usb_hcd_unlink_urb()
1528  */
1529 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1530 {
1531         unsigned long flags;
1532         int ret, i;
1533         u32 temp;
1534         struct xhci_hcd *xhci;
1535         struct urb_priv *urb_priv;
1536         struct xhci_td *td;
1537         unsigned int ep_index;
1538         struct xhci_ring *ep_ring;
1539         struct xhci_virt_ep *ep;
1540         struct xhci_command *command;
1541
1542         xhci = hcd_to_xhci(hcd);
1543         spin_lock_irqsave(&xhci->lock, flags);
1544         /* Make sure the URB hasn't completed or been unlinked already */
1545         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1546         if (ret || !urb->hcpriv)
1547                 goto done;
1548         temp = readl(&xhci->op_regs->status);
1549         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1550                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1551                                 "HW died, freeing TD.");
1552                 urb_priv = urb->hcpriv;
1553                 for (i = urb_priv->td_cnt;
1554                      i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1555                      i++) {
1556                         td = urb_priv->td[i];
1557                         if (!list_empty(&td->td_list))
1558                                 list_del_init(&td->td_list);
1559                         if (!list_empty(&td->cancelled_td_list))
1560                                 list_del_init(&td->cancelled_td_list);
1561                 }
1562
1563                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1564                 spin_unlock_irqrestore(&xhci->lock, flags);
1565                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1566                 xhci_urb_free_priv(urb_priv);
1567                 return ret;
1568         }
1569         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1570                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1571                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1572                                 "Ep 0x%x: URB %p to be canceled on "
1573                                 "non-responsive xHCI host.",
1574                                 urb->ep->desc.bEndpointAddress, urb);
1575                 /* Let the stop endpoint command watchdog timer (which set this
1576                  * state) finish cleaning up the endpoint TD lists.  We must
1577                  * have caught it in the middle of dropping a lock and giving
1578                  * back an URB.
1579                  */
1580                 goto done;
1581         }
1582
1583         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1584         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1585         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1586         if (!ep_ring) {
1587                 ret = -EINVAL;
1588                 goto done;
1589         }
1590
1591         urb_priv = urb->hcpriv;
1592         i = urb_priv->td_cnt;
1593         if (i < urb_priv->length)
1594                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1595                                 "Cancel URB %p, dev %s, ep 0x%x, "
1596                                 "starting at offset 0x%llx",
1597                                 urb, urb->dev->devpath,
1598                                 urb->ep->desc.bEndpointAddress,
1599                                 (unsigned long long) xhci_trb_virt_to_dma(
1600                                         urb_priv->td[i]->start_seg,
1601                                         urb_priv->td[i]->first_trb));
1602
1603         for (; i < urb_priv->length; i++) {
1604                 td = urb_priv->td[i];
1605                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1606         }
1607
1608         /* Queue a stop endpoint command, but only if this is
1609          * the first cancellation to be handled.
1610          */
1611         if (!(ep->ep_state & EP_HALT_PENDING)) {
1612                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1613                 if (!command) {
1614                         ret = -ENOMEM;
1615                         goto done;
1616                 }
1617                 ep->ep_state |= EP_HALT_PENDING;
1618                 ep->stop_cmds_pending++;
1619                 ep->stop_cmd_timer.expires = jiffies +
1620                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1621                 add_timer(&ep->stop_cmd_timer);
1622                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1623                                          ep_index, 0);
1624                 xhci_ring_cmd_db(xhci);
1625         }
1626 done:
1627         spin_unlock_irqrestore(&xhci->lock, flags);
1628         return ret;
1629 }
1630
1631 /* Drop an endpoint from a new bandwidth configuration for this device.
1632  * Only one call to this function is allowed per endpoint before
1633  * check_bandwidth() or reset_bandwidth() must be called.
1634  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1635  * add the endpoint to the schedule with possibly new parameters denoted by a
1636  * different endpoint descriptor in usb_host_endpoint.
1637  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1638  * not allowed.
1639  *
1640  * The USB core will not allow URBs to be queued to an endpoint that is being
1641  * disabled, so there's no need for mutual exclusion to protect
1642  * the xhci->devs[slot_id] structure.
1643  */
1644 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1645                 struct usb_host_endpoint *ep)
1646 {
1647         struct xhci_hcd *xhci;
1648         struct xhci_container_ctx *in_ctx, *out_ctx;
1649         struct xhci_input_control_ctx *ctrl_ctx;
1650         unsigned int ep_index;
1651         struct xhci_ep_ctx *ep_ctx;
1652         u32 drop_flag;
1653         u32 new_add_flags, new_drop_flags;
1654         int ret;
1655
1656         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1657         if (ret <= 0)
1658                 return ret;
1659         xhci = hcd_to_xhci(hcd);
1660         if (xhci->xhc_state & XHCI_STATE_DYING)
1661                 return -ENODEV;
1662
1663         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1664         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1665         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1666                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1667                                 __func__, drop_flag);
1668                 return 0;
1669         }
1670
1671         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1672         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1673         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1674         if (!ctrl_ctx) {
1675                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1676                                 __func__);
1677                 return 0;
1678         }
1679
1680         ep_index = xhci_get_endpoint_index(&ep->desc);
1681         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1682         /* If the HC already knows the endpoint is disabled,
1683          * or the HCD has noted it is disabled, ignore this request
1684          */
1685         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1686              cpu_to_le32(EP_STATE_DISABLED)) ||
1687             le32_to_cpu(ctrl_ctx->drop_flags) &
1688             xhci_get_endpoint_flag(&ep->desc)) {
1689                 /* Do not warn when called after a usb_device_reset */
1690                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1691                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1692                                   __func__, ep);
1693                 return 0;
1694         }
1695
1696         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1697         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1698
1699         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1700         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1701
1702         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1703
1704         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1705                         (unsigned int) ep->desc.bEndpointAddress,
1706                         udev->slot_id,
1707                         (unsigned int) new_drop_flags,
1708                         (unsigned int) new_add_flags);
1709         return 0;
1710 }
1711
1712 /* Add an endpoint to a new possible bandwidth configuration for this device.
1713  * Only one call to this function is allowed per endpoint before
1714  * check_bandwidth() or reset_bandwidth() must be called.
1715  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1716  * add the endpoint to the schedule with possibly new parameters denoted by a
1717  * different endpoint descriptor in usb_host_endpoint.
1718  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1719  * not allowed.
1720  *
1721  * The USB core will not allow URBs to be queued to an endpoint until the
1722  * configuration or alt setting is installed in the device, so there's no need
1723  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1724  */
1725 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1726                 struct usb_host_endpoint *ep)
1727 {
1728         struct xhci_hcd *xhci;
1729         struct xhci_container_ctx *in_ctx;
1730         unsigned int ep_index;
1731         struct xhci_input_control_ctx *ctrl_ctx;
1732         u32 added_ctxs;
1733         u32 new_add_flags, new_drop_flags;
1734         struct xhci_virt_device *virt_dev;
1735         int ret = 0;
1736
1737         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1738         if (ret <= 0) {
1739                 /* So we won't queue a reset ep command for a root hub */
1740                 ep->hcpriv = NULL;
1741                 return ret;
1742         }
1743         xhci = hcd_to_xhci(hcd);
1744         if (xhci->xhc_state & XHCI_STATE_DYING)
1745                 return -ENODEV;
1746
1747         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1748         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1749                 /* FIXME when we have to issue an evaluate endpoint command to
1750                  * deal with ep0 max packet size changing once we get the
1751                  * descriptors
1752                  */
1753                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1754                                 __func__, added_ctxs);
1755                 return 0;
1756         }
1757
1758         virt_dev = xhci->devs[udev->slot_id];
1759         in_ctx = virt_dev->in_ctx;
1760         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1761         if (!ctrl_ctx) {
1762                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1763                                 __func__);
1764                 return 0;
1765         }
1766
1767         ep_index = xhci_get_endpoint_index(&ep->desc);
1768         /* If this endpoint is already in use, and the upper layers are trying
1769          * to add it again without dropping it, reject the addition.
1770          */
1771         if (virt_dev->eps[ep_index].ring &&
1772                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1773                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1774                                 "without dropping it.\n",
1775                                 (unsigned int) ep->desc.bEndpointAddress);
1776                 return -EINVAL;
1777         }
1778
1779         /* If the HCD has already noted the endpoint is enabled,
1780          * ignore this request.
1781          */
1782         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1783                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1784                                 __func__, ep);
1785                 return 0;
1786         }
1787
1788         /*
1789          * Configuration and alternate setting changes must be done in
1790          * process context, not interrupt context (or so documenation
1791          * for usb_set_interface() and usb_set_configuration() claim).
1792          */
1793         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1794                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1795                                 __func__, ep->desc.bEndpointAddress);
1796                 return -ENOMEM;
1797         }
1798
1799         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1800         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1801
1802         /* If xhci_endpoint_disable() was called for this endpoint, but the
1803          * xHC hasn't been notified yet through the check_bandwidth() call,
1804          * this re-adds a new state for the endpoint from the new endpoint
1805          * descriptors.  We must drop and re-add this endpoint, so we leave the
1806          * drop flags alone.
1807          */
1808         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1809
1810         /* Store the usb_device pointer for later use */
1811         ep->hcpriv = udev;
1812
1813         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1814                         (unsigned int) ep->desc.bEndpointAddress,
1815                         udev->slot_id,
1816                         (unsigned int) new_drop_flags,
1817                         (unsigned int) new_add_flags);
1818         return 0;
1819 }
1820
1821 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1822 {
1823         struct xhci_input_control_ctx *ctrl_ctx;
1824         struct xhci_ep_ctx *ep_ctx;
1825         struct xhci_slot_ctx *slot_ctx;
1826         int i;
1827
1828         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1829         if (!ctrl_ctx) {
1830                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1831                                 __func__);
1832                 return;
1833         }
1834
1835         /* When a device's add flag and drop flag are zero, any subsequent
1836          * configure endpoint command will leave that endpoint's state
1837          * untouched.  Make sure we don't leave any old state in the input
1838          * endpoint contexts.
1839          */
1840         ctrl_ctx->drop_flags = 0;
1841         ctrl_ctx->add_flags = 0;
1842         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1843         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1844         /* Endpoint 0 is always valid */
1845         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1846         for (i = 1; i < 31; ++i) {
1847                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1848                 ep_ctx->ep_info = 0;
1849                 ep_ctx->ep_info2 = 0;
1850                 ep_ctx->deq = 0;
1851                 ep_ctx->tx_info = 0;
1852         }
1853 }
1854
1855 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1856                 struct usb_device *udev, u32 *cmd_status)
1857 {
1858         int ret;
1859
1860         switch (*cmd_status) {
1861         case COMP_CMD_ABORT:
1862         case COMP_CMD_STOP:
1863                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1864                 ret = -ETIME;
1865                 break;
1866         case COMP_ENOMEM:
1867                 dev_warn(&udev->dev,
1868                          "Not enough host controller resources for new device state.\n");
1869                 ret = -ENOMEM;
1870                 /* FIXME: can we allocate more resources for the HC? */
1871                 break;
1872         case COMP_BW_ERR:
1873         case COMP_2ND_BW_ERR:
1874                 dev_warn(&udev->dev,
1875                          "Not enough bandwidth for new device state.\n");
1876                 ret = -ENOSPC;
1877                 /* FIXME: can we go back to the old state? */
1878                 break;
1879         case COMP_TRB_ERR:
1880                 /* the HCD set up something wrong */
1881                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1882                                 "add flag = 1, "
1883                                 "and endpoint is not disabled.\n");
1884                 ret = -EINVAL;
1885                 break;
1886         case COMP_DEV_ERR:
1887                 dev_warn(&udev->dev,
1888                          "ERROR: Incompatible device for endpoint configure command.\n");
1889                 ret = -ENODEV;
1890                 break;
1891         case COMP_SUCCESS:
1892                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1893                                 "Successful Endpoint Configure command");
1894                 ret = 0;
1895                 break;
1896         default:
1897                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1898                                 *cmd_status);
1899                 ret = -EINVAL;
1900                 break;
1901         }
1902         return ret;
1903 }
1904
1905 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1906                 struct usb_device *udev, u32 *cmd_status)
1907 {
1908         int ret;
1909         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1910
1911         switch (*cmd_status) {
1912         case COMP_CMD_ABORT:
1913         case COMP_CMD_STOP:
1914                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1915                 ret = -ETIME;
1916                 break;
1917         case COMP_EINVAL:
1918                 dev_warn(&udev->dev,
1919                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1920                 ret = -EINVAL;
1921                 break;
1922         case COMP_EBADSLT:
1923                 dev_warn(&udev->dev,
1924                         "WARN: slot not enabled for evaluate context command.\n");
1925                 ret = -EINVAL;
1926                 break;
1927         case COMP_CTX_STATE:
1928                 dev_warn(&udev->dev,
1929                         "WARN: invalid context state for evaluate context command.\n");
1930                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1931                 ret = -EINVAL;
1932                 break;
1933         case COMP_DEV_ERR:
1934                 dev_warn(&udev->dev,
1935                         "ERROR: Incompatible device for evaluate context command.\n");
1936                 ret = -ENODEV;
1937                 break;
1938         case COMP_MEL_ERR:
1939                 /* Max Exit Latency too large error */
1940                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1941                 ret = -EINVAL;
1942                 break;
1943         case COMP_SUCCESS:
1944                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1945                                 "Successful evaluate context command");
1946                 ret = 0;
1947                 break;
1948         default:
1949                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1950                         *cmd_status);
1951                 ret = -EINVAL;
1952                 break;
1953         }
1954         return ret;
1955 }
1956
1957 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1958                 struct xhci_input_control_ctx *ctrl_ctx)
1959 {
1960         u32 valid_add_flags;
1961         u32 valid_drop_flags;
1962
1963         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1964          * (bit 1).  The default control endpoint is added during the Address
1965          * Device command and is never removed until the slot is disabled.
1966          */
1967         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1968         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1969
1970         /* Use hweight32 to count the number of ones in the add flags, or
1971          * number of endpoints added.  Don't count endpoints that are changed
1972          * (both added and dropped).
1973          */
1974         return hweight32(valid_add_flags) -
1975                 hweight32(valid_add_flags & valid_drop_flags);
1976 }
1977
1978 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1979                 struct xhci_input_control_ctx *ctrl_ctx)
1980 {
1981         u32 valid_add_flags;
1982         u32 valid_drop_flags;
1983
1984         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1985         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1986
1987         return hweight32(valid_drop_flags) -
1988                 hweight32(valid_add_flags & valid_drop_flags);
1989 }
1990
1991 /*
1992  * We need to reserve the new number of endpoints before the configure endpoint
1993  * command completes.  We can't subtract the dropped endpoints from the number
1994  * of active endpoints until the command completes because we can oversubscribe
1995  * the host in this case:
1996  *
1997  *  - the first configure endpoint command drops more endpoints than it adds
1998  *  - a second configure endpoint command that adds more endpoints is queued
1999  *  - the first configure endpoint command fails, so the config is unchanged
2000  *  - the second command may succeed, even though there isn't enough resources
2001  *
2002  * Must be called with xhci->lock held.
2003  */
2004 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2005                 struct xhci_input_control_ctx *ctrl_ctx)
2006 {
2007         u32 added_eps;
2008
2009         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2010         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2011                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2012                                 "Not enough ep ctxs: "
2013                                 "%u active, need to add %u, limit is %u.",
2014                                 xhci->num_active_eps, added_eps,
2015                                 xhci->limit_active_eps);
2016                 return -ENOMEM;
2017         }
2018         xhci->num_active_eps += added_eps;
2019         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2020                         "Adding %u ep ctxs, %u now active.", added_eps,
2021                         xhci->num_active_eps);
2022         return 0;
2023 }
2024
2025 /*
2026  * The configure endpoint was failed by the xHC for some other reason, so we
2027  * need to revert the resources that failed configuration would have used.
2028  *
2029  * Must be called with xhci->lock held.
2030  */
2031 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2032                 struct xhci_input_control_ctx *ctrl_ctx)
2033 {
2034         u32 num_failed_eps;
2035
2036         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2037         xhci->num_active_eps -= num_failed_eps;
2038         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2039                         "Removing %u failed ep ctxs, %u now active.",
2040                         num_failed_eps,
2041                         xhci->num_active_eps);
2042 }
2043
2044 /*
2045  * Now that the command has completed, clean up the active endpoint count by
2046  * subtracting out the endpoints that were dropped (but not changed).
2047  *
2048  * Must be called with xhci->lock held.
2049  */
2050 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2051                 struct xhci_input_control_ctx *ctrl_ctx)
2052 {
2053         u32 num_dropped_eps;
2054
2055         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2056         xhci->num_active_eps -= num_dropped_eps;
2057         if (num_dropped_eps)
2058                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2059                                 "Removing %u dropped ep ctxs, %u now active.",
2060                                 num_dropped_eps,
2061                                 xhci->num_active_eps);
2062 }
2063
2064 static unsigned int xhci_get_block_size(struct usb_device *udev)
2065 {
2066         switch (udev->speed) {
2067         case USB_SPEED_LOW:
2068         case USB_SPEED_FULL:
2069                 return FS_BLOCK;
2070         case USB_SPEED_HIGH:
2071                 return HS_BLOCK;
2072         case USB_SPEED_SUPER:
2073                 return SS_BLOCK;
2074         case USB_SPEED_UNKNOWN:
2075         case USB_SPEED_WIRELESS:
2076         default:
2077                 /* Should never happen */
2078                 return 1;
2079         }
2080 }
2081
2082 static unsigned int
2083 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2084 {
2085         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2086                 return LS_OVERHEAD;
2087         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2088                 return FS_OVERHEAD;
2089         return HS_OVERHEAD;
2090 }
2091
2092 /* If we are changing a LS/FS device under a HS hub,
2093  * make sure (if we are activating a new TT) that the HS bus has enough
2094  * bandwidth for this new TT.
2095  */
2096 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2097                 struct xhci_virt_device *virt_dev,
2098                 int old_active_eps)
2099 {
2100         struct xhci_interval_bw_table *bw_table;
2101         struct xhci_tt_bw_info *tt_info;
2102
2103         /* Find the bandwidth table for the root port this TT is attached to. */
2104         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2105         tt_info = virt_dev->tt_info;
2106         /* If this TT already had active endpoints, the bandwidth for this TT
2107          * has already been added.  Removing all periodic endpoints (and thus
2108          * making the TT enactive) will only decrease the bandwidth used.
2109          */
2110         if (old_active_eps)
2111                 return 0;
2112         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2113                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2114                         return -ENOMEM;
2115                 return 0;
2116         }
2117         /* Not sure why we would have no new active endpoints...
2118          *
2119          * Maybe because of an Evaluate Context change for a hub update or a
2120          * control endpoint 0 max packet size change?
2121          * FIXME: skip the bandwidth calculation in that case.
2122          */
2123         return 0;
2124 }
2125
2126 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2127                 struct xhci_virt_device *virt_dev)
2128 {
2129         unsigned int bw_reserved;
2130
2131         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2132         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2133                 return -ENOMEM;
2134
2135         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2136         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2137                 return -ENOMEM;
2138
2139         return 0;
2140 }
2141
2142 /*
2143  * This algorithm is a very conservative estimate of the worst-case scheduling
2144  * scenario for any one interval.  The hardware dynamically schedules the
2145  * packets, so we can't tell which microframe could be the limiting factor in
2146  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2147  *
2148  * Obviously, we can't solve an NP complete problem to find the minimum worst
2149  * case scenario.  Instead, we come up with an estimate that is no less than
2150  * the worst case bandwidth used for any one microframe, but may be an
2151  * over-estimate.
2152  *
2153  * We walk the requirements for each endpoint by interval, starting with the
2154  * smallest interval, and place packets in the schedule where there is only one
2155  * possible way to schedule packets for that interval.  In order to simplify
2156  * this algorithm, we record the largest max packet size for each interval, and
2157  * assume all packets will be that size.
2158  *
2159  * For interval 0, we obviously must schedule all packets for each interval.
2160  * The bandwidth for interval 0 is just the amount of data to be transmitted
2161  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2162  * the number of packets).
2163  *
2164  * For interval 1, we have two possible microframes to schedule those packets
2165  * in.  For this algorithm, if we can schedule the same number of packets for
2166  * each possible scheduling opportunity (each microframe), we will do so.  The
2167  * remaining number of packets will be saved to be transmitted in the gaps in
2168  * the next interval's scheduling sequence.
2169  *
2170  * As we move those remaining packets to be scheduled with interval 2 packets,
2171  * we have to double the number of remaining packets to transmit.  This is
2172  * because the intervals are actually powers of 2, and we would be transmitting
2173  * the previous interval's packets twice in this interval.  We also have to be
2174  * sure that when we look at the largest max packet size for this interval, we
2175  * also look at the largest max packet size for the remaining packets and take
2176  * the greater of the two.
2177  *
2178  * The algorithm continues to evenly distribute packets in each scheduling
2179  * opportunity, and push the remaining packets out, until we get to the last
2180  * interval.  Then those packets and their associated overhead are just added
2181  * to the bandwidth used.
2182  */
2183 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2184                 struct xhci_virt_device *virt_dev,
2185                 int old_active_eps)
2186 {
2187         unsigned int bw_reserved;
2188         unsigned int max_bandwidth;
2189         unsigned int bw_used;
2190         unsigned int block_size;
2191         struct xhci_interval_bw_table *bw_table;
2192         unsigned int packet_size = 0;
2193         unsigned int overhead = 0;
2194         unsigned int packets_transmitted = 0;
2195         unsigned int packets_remaining = 0;
2196         unsigned int i;
2197
2198         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2199                 return xhci_check_ss_bw(xhci, virt_dev);
2200
2201         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2202                 max_bandwidth = HS_BW_LIMIT;
2203                 /* Convert percent of bus BW reserved to blocks reserved */
2204                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2205         } else {
2206                 max_bandwidth = FS_BW_LIMIT;
2207                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2208         }
2209
2210         bw_table = virt_dev->bw_table;
2211         /* We need to translate the max packet size and max ESIT payloads into
2212          * the units the hardware uses.
2213          */
2214         block_size = xhci_get_block_size(virt_dev->udev);
2215
2216         /* If we are manipulating a LS/FS device under a HS hub, double check
2217          * that the HS bus has enough bandwidth if we are activing a new TT.
2218          */
2219         if (virt_dev->tt_info) {
2220                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2221                                 "Recalculating BW for rootport %u",
2222                                 virt_dev->real_port);
2223                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2224                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2225                                         "newly activated TT.\n");
2226                         return -ENOMEM;
2227                 }
2228                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2229                                 "Recalculating BW for TT slot %u port %u",
2230                                 virt_dev->tt_info->slot_id,
2231                                 virt_dev->tt_info->ttport);
2232         } else {
2233                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2234                                 "Recalculating BW for rootport %u",
2235                                 virt_dev->real_port);
2236         }
2237
2238         /* Add in how much bandwidth will be used for interval zero, or the
2239          * rounded max ESIT payload + number of packets * largest overhead.
2240          */
2241         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2242                 bw_table->interval_bw[0].num_packets *
2243                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2244
2245         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2246                 unsigned int bw_added;
2247                 unsigned int largest_mps;
2248                 unsigned int interval_overhead;
2249
2250                 /*
2251                  * How many packets could we transmit in this interval?
2252                  * If packets didn't fit in the previous interval, we will need
2253                  * to transmit that many packets twice within this interval.
2254                  */
2255                 packets_remaining = 2 * packets_remaining +
2256                         bw_table->interval_bw[i].num_packets;
2257
2258                 /* Find the largest max packet size of this or the previous
2259                  * interval.
2260                  */
2261                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2262                         largest_mps = 0;
2263                 else {
2264                         struct xhci_virt_ep *virt_ep;
2265                         struct list_head *ep_entry;
2266
2267                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2268                         virt_ep = list_entry(ep_entry,
2269                                         struct xhci_virt_ep, bw_endpoint_list);
2270                         /* Convert to blocks, rounding up */
2271                         largest_mps = DIV_ROUND_UP(
2272                                         virt_ep->bw_info.max_packet_size,
2273                                         block_size);
2274                 }
2275                 if (largest_mps > packet_size)
2276                         packet_size = largest_mps;
2277
2278                 /* Use the larger overhead of this or the previous interval. */
2279                 interval_overhead = xhci_get_largest_overhead(
2280                                 &bw_table->interval_bw[i]);
2281                 if (interval_overhead > overhead)
2282                         overhead = interval_overhead;
2283
2284                 /* How many packets can we evenly distribute across
2285                  * (1 << (i + 1)) possible scheduling opportunities?
2286                  */
2287                 packets_transmitted = packets_remaining >> (i + 1);
2288
2289                 /* Add in the bandwidth used for those scheduled packets */
2290                 bw_added = packets_transmitted * (overhead + packet_size);
2291
2292                 /* How many packets do we have remaining to transmit? */
2293                 packets_remaining = packets_remaining % (1 << (i + 1));
2294
2295                 /* What largest max packet size should those packets have? */
2296                 /* If we've transmitted all packets, don't carry over the
2297                  * largest packet size.
2298                  */
2299                 if (packets_remaining == 0) {
2300                         packet_size = 0;
2301                         overhead = 0;
2302                 } else if (packets_transmitted > 0) {
2303                         /* Otherwise if we do have remaining packets, and we've
2304                          * scheduled some packets in this interval, take the
2305                          * largest max packet size from endpoints with this
2306                          * interval.
2307                          */
2308                         packet_size = largest_mps;
2309                         overhead = interval_overhead;
2310                 }
2311                 /* Otherwise carry over packet_size and overhead from the last
2312                  * time we had a remainder.
2313                  */
2314                 bw_used += bw_added;
2315                 if (bw_used > max_bandwidth) {
2316                         xhci_warn(xhci, "Not enough bandwidth. "
2317                                         "Proposed: %u, Max: %u\n",
2318                                 bw_used, max_bandwidth);
2319                         return -ENOMEM;
2320                 }
2321         }
2322         /*
2323          * Ok, we know we have some packets left over after even-handedly
2324          * scheduling interval 15.  We don't know which microframes they will
2325          * fit into, so we over-schedule and say they will be scheduled every
2326          * microframe.
2327          */
2328         if (packets_remaining > 0)
2329                 bw_used += overhead + packet_size;
2330
2331         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2332                 unsigned int port_index = virt_dev->real_port - 1;
2333
2334                 /* OK, we're manipulating a HS device attached to a
2335                  * root port bandwidth domain.  Include the number of active TTs
2336                  * in the bandwidth used.
2337                  */
2338                 bw_used += TT_HS_OVERHEAD *
2339                         xhci->rh_bw[port_index].num_active_tts;
2340         }
2341
2342         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2343                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2344                 "Available: %u " "percent",
2345                 bw_used, max_bandwidth, bw_reserved,
2346                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2347                 max_bandwidth);
2348
2349         bw_used += bw_reserved;
2350         if (bw_used > max_bandwidth) {
2351                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2352                                 bw_used, max_bandwidth);
2353                 return -ENOMEM;
2354         }
2355
2356         bw_table->bw_used = bw_used;
2357         return 0;
2358 }
2359
2360 static bool xhci_is_async_ep(unsigned int ep_type)
2361 {
2362         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2363                                         ep_type != ISOC_IN_EP &&
2364                                         ep_type != INT_IN_EP);
2365 }
2366
2367 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2368 {
2369         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2370 }
2371
2372 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2373 {
2374         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2375
2376         if (ep_bw->ep_interval == 0)
2377                 return SS_OVERHEAD_BURST +
2378                         (ep_bw->mult * ep_bw->num_packets *
2379                                         (SS_OVERHEAD + mps));
2380         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2381                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2382                                 1 << ep_bw->ep_interval);
2383
2384 }
2385
2386 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2387                 struct xhci_bw_info *ep_bw,
2388                 struct xhci_interval_bw_table *bw_table,
2389                 struct usb_device *udev,
2390                 struct xhci_virt_ep *virt_ep,
2391                 struct xhci_tt_bw_info *tt_info)
2392 {
2393         struct xhci_interval_bw *interval_bw;
2394         int normalized_interval;
2395
2396         if (xhci_is_async_ep(ep_bw->type))
2397                 return;
2398
2399         if (udev->speed == USB_SPEED_SUPER) {
2400                 if (xhci_is_sync_in_ep(ep_bw->type))
2401                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2402                                 xhci_get_ss_bw_consumed(ep_bw);
2403                 else
2404                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2405                                 xhci_get_ss_bw_consumed(ep_bw);
2406                 return;
2407         }
2408
2409         /* SuperSpeed endpoints never get added to intervals in the table, so
2410          * this check is only valid for HS/FS/LS devices.
2411          */
2412         if (list_empty(&virt_ep->bw_endpoint_list))
2413                 return;
2414         /* For LS/FS devices, we need to translate the interval expressed in
2415          * microframes to frames.
2416          */
2417         if (udev->speed == USB_SPEED_HIGH)
2418                 normalized_interval = ep_bw->ep_interval;
2419         else
2420                 normalized_interval = ep_bw->ep_interval - 3;
2421
2422         if (normalized_interval == 0)
2423                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2424         interval_bw = &bw_table->interval_bw[normalized_interval];
2425         interval_bw->num_packets -= ep_bw->num_packets;
2426         switch (udev->speed) {
2427         case USB_SPEED_LOW:
2428                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2429                 break;
2430         case USB_SPEED_FULL:
2431                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2432                 break;
2433         case USB_SPEED_HIGH:
2434                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2435                 break;
2436         case USB_SPEED_SUPER:
2437         case USB_SPEED_UNKNOWN:
2438         case USB_SPEED_WIRELESS:
2439                 /* Should never happen because only LS/FS/HS endpoints will get
2440                  * added to the endpoint list.
2441                  */
2442                 return;
2443         }
2444         if (tt_info)
2445                 tt_info->active_eps -= 1;
2446         list_del_init(&virt_ep->bw_endpoint_list);
2447 }
2448
2449 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2450                 struct xhci_bw_info *ep_bw,
2451                 struct xhci_interval_bw_table *bw_table,
2452                 struct usb_device *udev,
2453                 struct xhci_virt_ep *virt_ep,
2454                 struct xhci_tt_bw_info *tt_info)
2455 {
2456         struct xhci_interval_bw *interval_bw;
2457         struct xhci_virt_ep *smaller_ep;
2458         int normalized_interval;
2459
2460         if (xhci_is_async_ep(ep_bw->type))
2461                 return;
2462
2463         if (udev->speed == USB_SPEED_SUPER) {
2464                 if (xhci_is_sync_in_ep(ep_bw->type))
2465                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2466                                 xhci_get_ss_bw_consumed(ep_bw);
2467                 else
2468                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2469                                 xhci_get_ss_bw_consumed(ep_bw);
2470                 return;
2471         }
2472
2473         /* For LS/FS devices, we need to translate the interval expressed in
2474          * microframes to frames.
2475          */
2476         if (udev->speed == USB_SPEED_HIGH)
2477                 normalized_interval = ep_bw->ep_interval;
2478         else
2479                 normalized_interval = ep_bw->ep_interval - 3;
2480
2481         if (normalized_interval == 0)
2482                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2483         interval_bw = &bw_table->interval_bw[normalized_interval];
2484         interval_bw->num_packets += ep_bw->num_packets;
2485         switch (udev->speed) {
2486         case USB_SPEED_LOW:
2487                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2488                 break;
2489         case USB_SPEED_FULL:
2490                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2491                 break;
2492         case USB_SPEED_HIGH:
2493                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2494                 break;
2495         case USB_SPEED_SUPER:
2496         case USB_SPEED_UNKNOWN:
2497         case USB_SPEED_WIRELESS:
2498                 /* Should never happen because only LS/FS/HS endpoints will get
2499                  * added to the endpoint list.
2500                  */
2501                 return;
2502         }
2503
2504         if (tt_info)
2505                 tt_info->active_eps += 1;
2506         /* Insert the endpoint into the list, largest max packet size first. */
2507         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2508                         bw_endpoint_list) {
2509                 if (ep_bw->max_packet_size >=
2510                                 smaller_ep->bw_info.max_packet_size) {
2511                         /* Add the new ep before the smaller endpoint */
2512                         list_add_tail(&virt_ep->bw_endpoint_list,
2513                                         &smaller_ep->bw_endpoint_list);
2514                         return;
2515                 }
2516         }
2517         /* Add the new endpoint at the end of the list. */
2518         list_add_tail(&virt_ep->bw_endpoint_list,
2519                         &interval_bw->endpoints);
2520 }
2521
2522 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2523                 struct xhci_virt_device *virt_dev,
2524                 int old_active_eps)
2525 {
2526         struct xhci_root_port_bw_info *rh_bw_info;
2527         if (!virt_dev->tt_info)
2528                 return;
2529
2530         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2531         if (old_active_eps == 0 &&
2532                                 virt_dev->tt_info->active_eps != 0) {
2533                 rh_bw_info->num_active_tts += 1;
2534                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2535         } else if (old_active_eps != 0 &&
2536                                 virt_dev->tt_info->active_eps == 0) {
2537                 rh_bw_info->num_active_tts -= 1;
2538                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2539         }
2540 }
2541
2542 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2543                 struct xhci_virt_device *virt_dev,
2544                 struct xhci_container_ctx *in_ctx)
2545 {
2546         struct xhci_bw_info ep_bw_info[31];
2547         int i;
2548         struct xhci_input_control_ctx *ctrl_ctx;
2549         int old_active_eps = 0;
2550
2551         if (virt_dev->tt_info)
2552                 old_active_eps = virt_dev->tt_info->active_eps;
2553
2554         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2555         if (!ctrl_ctx) {
2556                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2557                                 __func__);
2558                 return -ENOMEM;
2559         }
2560
2561         for (i = 0; i < 31; i++) {
2562                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2563                         continue;
2564
2565                 /* Make a copy of the BW info in case we need to revert this */
2566                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2567                                 sizeof(ep_bw_info[i]));
2568                 /* Drop the endpoint from the interval table if the endpoint is
2569                  * being dropped or changed.
2570                  */
2571                 if (EP_IS_DROPPED(ctrl_ctx, i))
2572                         xhci_drop_ep_from_interval_table(xhci,
2573                                         &virt_dev->eps[i].bw_info,
2574                                         virt_dev->bw_table,
2575                                         virt_dev->udev,
2576                                         &virt_dev->eps[i],
2577                                         virt_dev->tt_info);
2578         }
2579         /* Overwrite the information stored in the endpoints' bw_info */
2580         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2581         for (i = 0; i < 31; i++) {
2582                 /* Add any changed or added endpoints to the interval table */
2583                 if (EP_IS_ADDED(ctrl_ctx, i))
2584                         xhci_add_ep_to_interval_table(xhci,
2585                                         &virt_dev->eps[i].bw_info,
2586                                         virt_dev->bw_table,
2587                                         virt_dev->udev,
2588                                         &virt_dev->eps[i],
2589                                         virt_dev->tt_info);
2590         }
2591
2592         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2593                 /* Ok, this fits in the bandwidth we have.
2594                  * Update the number of active TTs.
2595                  */
2596                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2597                 return 0;
2598         }
2599
2600         /* We don't have enough bandwidth for this, revert the stored info. */
2601         for (i = 0; i < 31; i++) {
2602                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2603                         continue;
2604
2605                 /* Drop the new copies of any added or changed endpoints from
2606                  * the interval table.
2607                  */
2608                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2609                         xhci_drop_ep_from_interval_table(xhci,
2610                                         &virt_dev->eps[i].bw_info,
2611                                         virt_dev->bw_table,
2612                                         virt_dev->udev,
2613                                         &virt_dev->eps[i],
2614                                         virt_dev->tt_info);
2615                 }
2616                 /* Revert the endpoint back to its old information */
2617                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2618                                 sizeof(ep_bw_info[i]));
2619                 /* Add any changed or dropped endpoints back into the table */
2620                 if (EP_IS_DROPPED(ctrl_ctx, i))
2621                         xhci_add_ep_to_interval_table(xhci,
2622                                         &virt_dev->eps[i].bw_info,
2623                                         virt_dev->bw_table,
2624                                         virt_dev->udev,
2625                                         &virt_dev->eps[i],
2626                                         virt_dev->tt_info);
2627         }
2628         return -ENOMEM;
2629 }
2630
2631
2632 /* Issue a configure endpoint command or evaluate context command
2633  * and wait for it to finish.
2634  */
2635 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2636                 struct usb_device *udev,
2637                 struct xhci_command *command,
2638                 bool ctx_change, bool must_succeed)
2639 {
2640         int ret;
2641         unsigned long flags;
2642         struct xhci_input_control_ctx *ctrl_ctx;
2643         struct xhci_virt_device *virt_dev;
2644
2645         if (!command)
2646                 return -EINVAL;
2647
2648         spin_lock_irqsave(&xhci->lock, flags);
2649         virt_dev = xhci->devs[udev->slot_id];
2650
2651         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2652         if (!ctrl_ctx) {
2653                 spin_unlock_irqrestore(&xhci->lock, flags);
2654                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2655                                 __func__);
2656                 return -ENOMEM;
2657         }
2658
2659         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2660                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2661                 spin_unlock_irqrestore(&xhci->lock, flags);
2662                 xhci_warn(xhci, "Not enough host resources, "
2663                                 "active endpoint contexts = %u\n",
2664                                 xhci->num_active_eps);
2665                 return -ENOMEM;
2666         }
2667         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2668             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2669                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2670                         xhci_free_host_resources(xhci, ctrl_ctx);
2671                 spin_unlock_irqrestore(&xhci->lock, flags);
2672                 xhci_warn(xhci, "Not enough bandwidth\n");
2673                 return -ENOMEM;
2674         }
2675
2676         if (!ctx_change)
2677                 ret = xhci_queue_configure_endpoint(xhci, command,
2678                                 command->in_ctx->dma,
2679                                 udev->slot_id, must_succeed);
2680         else
2681                 ret = xhci_queue_evaluate_context(xhci, command,
2682                                 command->in_ctx->dma,
2683                                 udev->slot_id, must_succeed);
2684         if (ret < 0) {
2685                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2686                         xhci_free_host_resources(xhci, ctrl_ctx);
2687                 spin_unlock_irqrestore(&xhci->lock, flags);
2688                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2689                                 "FIXME allocate a new ring segment");
2690                 return -ENOMEM;
2691         }
2692         xhci_ring_cmd_db(xhci);
2693         spin_unlock_irqrestore(&xhci->lock, flags);
2694
2695         /* Wait for the configure endpoint command to complete */
2696         wait_for_completion(command->completion);
2697
2698         if (!ctx_change)
2699                 ret = xhci_configure_endpoint_result(xhci, udev,
2700                                                      &command->status);
2701         else
2702                 ret = xhci_evaluate_context_result(xhci, udev,
2703                                                    &command->status);
2704
2705         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2706                 spin_lock_irqsave(&xhci->lock, flags);
2707                 /* If the command failed, remove the reserved resources.
2708                  * Otherwise, clean up the estimate to include dropped eps.
2709                  */
2710                 if (ret)
2711                         xhci_free_host_resources(xhci, ctrl_ctx);
2712                 else
2713                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2714                 spin_unlock_irqrestore(&xhci->lock, flags);
2715         }
2716         return ret;
2717 }
2718
2719 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2720         struct xhci_virt_device *vdev, int i)
2721 {
2722         struct xhci_virt_ep *ep = &vdev->eps[i];
2723
2724         if (ep->ep_state & EP_HAS_STREAMS) {
2725                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2726                                 xhci_get_endpoint_address(i));
2727                 xhci_free_stream_info(xhci, ep->stream_info);
2728                 ep->stream_info = NULL;
2729                 ep->ep_state &= ~EP_HAS_STREAMS;
2730         }
2731 }
2732
2733 /* Called after one or more calls to xhci_add_endpoint() or
2734  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2735  * to call xhci_reset_bandwidth().
2736  *
2737  * Since we are in the middle of changing either configuration or
2738  * installing a new alt setting, the USB core won't allow URBs to be
2739  * enqueued for any endpoint on the old config or interface.  Nothing
2740  * else should be touching the xhci->devs[slot_id] structure, so we
2741  * don't need to take the xhci->lock for manipulating that.
2742  */
2743 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2744 {
2745         int i;
2746         int ret = 0;
2747         struct xhci_hcd *xhci;
2748         struct xhci_virt_device *virt_dev;
2749         struct xhci_input_control_ctx *ctrl_ctx;
2750         struct xhci_slot_ctx *slot_ctx;
2751         struct xhci_command *command;
2752
2753         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2754         if (ret <= 0)
2755                 return ret;
2756         xhci = hcd_to_xhci(hcd);
2757         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2758                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2759                 return -ENODEV;
2760
2761         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2762         virt_dev = xhci->devs[udev->slot_id];
2763
2764         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2765         if (!command)
2766                 return -ENOMEM;
2767
2768         command->in_ctx = virt_dev->in_ctx;
2769
2770         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2771         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2772         if (!ctrl_ctx) {
2773                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2774                                 __func__);
2775                 ret = -ENOMEM;
2776                 goto command_cleanup;
2777         }
2778         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2779         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2780         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2781
2782         /* Don't issue the command if there's no endpoints to update. */
2783         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2784             ctrl_ctx->drop_flags == 0) {
2785                 ret = 0;
2786                 goto command_cleanup;
2787         }
2788         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2789         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2790         for (i = 31; i >= 1; i--) {
2791                 __le32 le32 = cpu_to_le32(BIT(i));
2792
2793                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2794                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2795                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2796                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2797                         break;
2798                 }
2799         }
2800         xhci_dbg(xhci, "New Input Control Context:\n");
2801         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2802                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2803
2804         ret = xhci_configure_endpoint(xhci, udev, command,
2805                         false, false);
2806         if (ret)
2807                 /* Callee should call reset_bandwidth() */
2808                 goto command_cleanup;
2809
2810         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2811         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2812                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2813
2814         /* Free any rings that were dropped, but not changed. */
2815         for (i = 1; i < 31; ++i) {
2816                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2817                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2818                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2819                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2820                 }
2821         }
2822         xhci_zero_in_ctx(xhci, virt_dev);
2823         /*
2824          * Install any rings for completely new endpoints or changed endpoints,
2825          * and free or cache any old rings from changed endpoints.
2826          */
2827         for (i = 1; i < 31; ++i) {
2828                 if (!virt_dev->eps[i].new_ring)
2829                         continue;
2830                 /* Only cache or free the old ring if it exists.
2831                  * It may not if this is the first add of an endpoint.
2832                  */
2833                 if (virt_dev->eps[i].ring) {
2834                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2835                 }
2836                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2837                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2838                 virt_dev->eps[i].new_ring = NULL;
2839         }
2840 command_cleanup:
2841         kfree(command->completion);
2842         kfree(command);
2843
2844         return ret;
2845 }
2846
2847 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2848 {
2849         struct xhci_hcd *xhci;
2850         struct xhci_virt_device *virt_dev;
2851         int i, ret;
2852
2853         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2854         if (ret <= 0)
2855                 return;
2856         xhci = hcd_to_xhci(hcd);
2857
2858         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2859         virt_dev = xhci->devs[udev->slot_id];
2860         /* Free any rings allocated for added endpoints */
2861         for (i = 0; i < 31; ++i) {
2862                 if (virt_dev->eps[i].new_ring) {
2863                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2864                         virt_dev->eps[i].new_ring = NULL;
2865                 }
2866         }
2867         xhci_zero_in_ctx(xhci, virt_dev);
2868 }
2869
2870 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2871                 struct xhci_container_ctx *in_ctx,
2872                 struct xhci_container_ctx *out_ctx,
2873                 struct xhci_input_control_ctx *ctrl_ctx,
2874                 u32 add_flags, u32 drop_flags)
2875 {
2876         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2877         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2878         xhci_slot_copy(xhci, in_ctx, out_ctx);
2879         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2880
2881         xhci_dbg(xhci, "Input Context:\n");
2882         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2883 }
2884
2885 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2886                 unsigned int slot_id, unsigned int ep_index,
2887                 struct xhci_dequeue_state *deq_state)
2888 {
2889         struct xhci_input_control_ctx *ctrl_ctx;
2890         struct xhci_container_ctx *in_ctx;
2891         struct xhci_ep_ctx *ep_ctx;
2892         u32 added_ctxs;
2893         dma_addr_t addr;
2894
2895         in_ctx = xhci->devs[slot_id]->in_ctx;
2896         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2897         if (!ctrl_ctx) {
2898                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2899                                 __func__);
2900                 return;
2901         }
2902
2903         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2904                         xhci->devs[slot_id]->out_ctx, ep_index);
2905         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2906         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2907                         deq_state->new_deq_ptr);
2908         if (addr == 0) {
2909                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2910                                 "reset ep command\n");
2911                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2912                                 deq_state->new_deq_seg,
2913                                 deq_state->new_deq_ptr);
2914                 return;
2915         }
2916         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2917
2918         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2919         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2920                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2921                         added_ctxs, added_ctxs);
2922 }
2923
2924 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2925                         unsigned int ep_index, struct xhci_td *td)
2926 {
2927         struct xhci_dequeue_state deq_state;
2928         struct xhci_virt_ep *ep;
2929         struct usb_device *udev = td->urb->dev;
2930
2931         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2932                         "Cleaning up stalled endpoint ring");
2933         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2934         /* We need to move the HW's dequeue pointer past this TD,
2935          * or it will attempt to resend it on the next doorbell ring.
2936          */
2937         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2938                         ep_index, ep->stopped_stream, td, &deq_state);
2939
2940         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2941                 return;
2942
2943         /* HW with the reset endpoint quirk will use the saved dequeue state to
2944          * issue a configure endpoint command later.
2945          */
2946         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2947                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2948                                 "Queueing new dequeue state");
2949                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2950                                 ep_index, ep->stopped_stream, &deq_state);
2951         } else {
2952                 /* Better hope no one uses the input context between now and the
2953                  * reset endpoint completion!
2954                  * XXX: No idea how this hardware will react when stream rings
2955                  * are enabled.
2956                  */
2957                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2958                                 "Setting up input context for "
2959                                 "configure endpoint command");
2960                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2961                                 ep_index, &deq_state);
2962         }
2963 }
2964
2965 /* Called when clearing halted device. The core should have sent the control
2966  * message to clear the device halt condition. The host side of the halt should
2967  * already be cleared with a reset endpoint command issued when the STALL tx
2968  * event was received.
2969  *
2970  * Context: in_interrupt
2971  */
2972
2973 void xhci_endpoint_reset(struct usb_hcd *hcd,
2974                 struct usb_host_endpoint *ep)
2975 {
2976         struct xhci_hcd *xhci;
2977
2978         xhci = hcd_to_xhci(hcd);
2979
2980         /*
2981          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2982          * The Reset Endpoint Command may only be issued to endpoints in the
2983          * Halted state. If software wishes reset the Data Toggle or Sequence
2984          * Number of an endpoint that isn't in the Halted state, then software
2985          * may issue a Configure Endpoint Command with the Drop and Add bits set
2986          * for the target endpoint. that is in the Stopped state.
2987          */
2988
2989         /* For now just print debug to follow the situation */
2990         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2991                  ep->desc.bEndpointAddress);
2992 }
2993
2994 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2995                 struct usb_device *udev, struct usb_host_endpoint *ep,
2996                 unsigned int slot_id)
2997 {
2998         int ret;
2999         unsigned int ep_index;
3000         unsigned int ep_state;
3001
3002         if (!ep)
3003                 return -EINVAL;
3004         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3005         if (ret <= 0)
3006                 return -EINVAL;
3007         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3008                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3009                                 " descriptor for ep 0x%x does not support streams\n",
3010                                 ep->desc.bEndpointAddress);
3011                 return -EINVAL;
3012         }
3013
3014         ep_index = xhci_get_endpoint_index(&ep->desc);
3015         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3016         if (ep_state & EP_HAS_STREAMS ||
3017                         ep_state & EP_GETTING_STREAMS) {
3018                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3019                                 "already has streams set up.\n",
3020                                 ep->desc.bEndpointAddress);
3021                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3022                                 "dynamic stream context array reallocation.\n");
3023                 return -EINVAL;
3024         }
3025         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3026                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3027                                 "endpoint 0x%x; URBs are pending.\n",
3028                                 ep->desc.bEndpointAddress);
3029                 return -EINVAL;
3030         }
3031         return 0;
3032 }
3033
3034 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3035                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3036 {
3037         unsigned int max_streams;
3038
3039         /* The stream context array size must be a power of two */
3040         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3041         /*
3042          * Find out how many primary stream array entries the host controller
3043          * supports.  Later we may use secondary stream arrays (similar to 2nd
3044          * level page entries), but that's an optional feature for xHCI host
3045          * controllers. xHCs must support at least 4 stream IDs.
3046          */
3047         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3048         if (*num_stream_ctxs > max_streams) {
3049                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3050                                 max_streams);
3051                 *num_stream_ctxs = max_streams;
3052                 *num_streams = max_streams;
3053         }
3054 }
3055
3056 /* Returns an error code if one of the endpoint already has streams.
3057  * This does not change any data structures, it only checks and gathers
3058  * information.
3059  */
3060 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3061                 struct usb_device *udev,
3062                 struct usb_host_endpoint **eps, unsigned int num_eps,
3063                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3064 {
3065         unsigned int max_streams;
3066         unsigned int endpoint_flag;
3067         int i;
3068         int ret;
3069
3070         for (i = 0; i < num_eps; i++) {
3071                 ret = xhci_check_streams_endpoint(xhci, udev,
3072                                 eps[i], udev->slot_id);
3073                 if (ret < 0)
3074                         return ret;
3075
3076                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3077                 if (max_streams < (*num_streams - 1)) {
3078                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3079                                         eps[i]->desc.bEndpointAddress,
3080                                         max_streams);
3081                         *num_streams = max_streams+1;
3082                 }
3083
3084                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3085                 if (*changed_ep_bitmask & endpoint_flag)
3086                         return -EINVAL;
3087                 *changed_ep_bitmask |= endpoint_flag;
3088         }
3089         return 0;
3090 }
3091
3092 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3093                 struct usb_device *udev,
3094                 struct usb_host_endpoint **eps, unsigned int num_eps)
3095 {
3096         u32 changed_ep_bitmask = 0;
3097         unsigned int slot_id;
3098         unsigned int ep_index;
3099         unsigned int ep_state;
3100         int i;
3101
3102         slot_id = udev->slot_id;
3103         if (!xhci->devs[slot_id])
3104                 return 0;
3105
3106         for (i = 0; i < num_eps; i++) {
3107                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3108                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3109                 /* Are streams already being freed for the endpoint? */
3110                 if (ep_state & EP_GETTING_NO_STREAMS) {
3111                         xhci_warn(xhci, "WARN Can't disable streams for "
3112                                         "endpoint 0x%x, "
3113                                         "streams are being disabled already\n",
3114                                         eps[i]->desc.bEndpointAddress);
3115                         return 0;
3116                 }
3117                 /* Are there actually any streams to free? */
3118                 if (!(ep_state & EP_HAS_STREAMS) &&
3119                                 !(ep_state & EP_GETTING_STREAMS)) {
3120                         xhci_warn(xhci, "WARN Can't disable streams for "
3121                                         "endpoint 0x%x, "
3122                                         "streams are already disabled!\n",
3123                                         eps[i]->desc.bEndpointAddress);
3124                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3125                                         "with non-streams endpoint\n");
3126                         return 0;
3127                 }
3128                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3129         }
3130         return changed_ep_bitmask;
3131 }
3132
3133 /*
3134  * The USB device drivers use this function (through the HCD interface in USB
3135  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3136  * coordinate mass storage command queueing across multiple endpoints (basically
3137  * a stream ID == a task ID).
3138  *
3139  * Setting up streams involves allocating the same size stream context array
3140  * for each endpoint and issuing a configure endpoint command for all endpoints.
3141  *
3142  * Don't allow the call to succeed if one endpoint only supports one stream
3143  * (which means it doesn't support streams at all).
3144  *
3145  * Drivers may get less stream IDs than they asked for, if the host controller
3146  * hardware or endpoints claim they can't support the number of requested
3147  * stream IDs.
3148  */
3149 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3150                 struct usb_host_endpoint **eps, unsigned int num_eps,
3151                 unsigned int num_streams, gfp_t mem_flags)
3152 {
3153         int i, ret;
3154         struct xhci_hcd *xhci;
3155         struct xhci_virt_device *vdev;
3156         struct xhci_command *config_cmd;
3157         struct xhci_input_control_ctx *ctrl_ctx;
3158         unsigned int ep_index;
3159         unsigned int num_stream_ctxs;
3160         unsigned long flags;
3161         u32 changed_ep_bitmask = 0;
3162
3163         if (!eps)
3164                 return -EINVAL;
3165
3166         /* Add one to the number of streams requested to account for
3167          * stream 0 that is reserved for xHCI usage.
3168          */
3169         num_streams += 1;
3170         xhci = hcd_to_xhci(hcd);
3171         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3172                         num_streams);
3173
3174         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3175         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3176                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3177                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3178                 return -ENOSYS;
3179         }
3180
3181         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3182         if (!config_cmd) {
3183                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3184                 return -ENOMEM;
3185         }
3186         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3187         if (!ctrl_ctx) {
3188                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3189                                 __func__);
3190                 xhci_free_command(xhci, config_cmd);
3191                 return -ENOMEM;
3192         }
3193
3194         /* Check to make sure all endpoints are not already configured for
3195          * streams.  While we're at it, find the maximum number of streams that
3196          * all the endpoints will support and check for duplicate endpoints.
3197          */
3198         spin_lock_irqsave(&xhci->lock, flags);
3199         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3200                         num_eps, &num_streams, &changed_ep_bitmask);
3201         if (ret < 0) {
3202                 xhci_free_command(xhci, config_cmd);
3203                 spin_unlock_irqrestore(&xhci->lock, flags);
3204                 return ret;
3205         }
3206         if (num_streams <= 1) {
3207                 xhci_warn(xhci, "WARN: endpoints can't handle "
3208                                 "more than one stream.\n");
3209                 xhci_free_command(xhci, config_cmd);
3210                 spin_unlock_irqrestore(&xhci->lock, flags);
3211                 return -EINVAL;
3212         }
3213         vdev = xhci->devs[udev->slot_id];
3214         /* Mark each endpoint as being in transition, so
3215          * xhci_urb_enqueue() will reject all URBs.
3216          */
3217         for (i = 0; i < num_eps; i++) {
3218                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3219                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3220         }
3221         spin_unlock_irqrestore(&xhci->lock, flags);
3222
3223         /* Setup internal data structures and allocate HW data structures for
3224          * streams (but don't install the HW structures in the input context
3225          * until we're sure all memory allocation succeeded).
3226          */
3227         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3228         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3229                         num_stream_ctxs, num_streams);
3230
3231         for (i = 0; i < num_eps; i++) {
3232                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3233                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3234                                 num_stream_ctxs,
3235                                 num_streams, mem_flags);
3236                 if (!vdev->eps[ep_index].stream_info)
3237                         goto cleanup;
3238                 /* Set maxPstreams in endpoint context and update deq ptr to
3239                  * point to stream context array. FIXME
3240                  */
3241         }
3242
3243         /* Set up the input context for a configure endpoint command. */
3244         for (i = 0; i < num_eps; i++) {
3245                 struct xhci_ep_ctx *ep_ctx;
3246
3247                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3248                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3249
3250                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3251                                 vdev->out_ctx, ep_index);
3252                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3253                                 vdev->eps[ep_index].stream_info);
3254         }
3255         /* Tell the HW to drop its old copy of the endpoint context info
3256          * and add the updated copy from the input context.
3257          */
3258         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3259                         vdev->out_ctx, ctrl_ctx,
3260                         changed_ep_bitmask, changed_ep_bitmask);
3261
3262         /* Issue and wait for the configure endpoint command */
3263         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3264                         false, false);
3265
3266         /* xHC rejected the configure endpoint command for some reason, so we
3267          * leave the old ring intact and free our internal streams data
3268          * structure.
3269          */
3270         if (ret < 0)
3271                 goto cleanup;
3272
3273         spin_lock_irqsave(&xhci->lock, flags);
3274         for (i = 0; i < num_eps; i++) {
3275                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3276                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3277                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3278                          udev->slot_id, ep_index);
3279                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3280         }
3281         xhci_free_command(xhci, config_cmd);
3282         spin_unlock_irqrestore(&xhci->lock, flags);
3283
3284         /* Subtract 1 for stream 0, which drivers can't use */
3285         return num_streams - 1;
3286
3287 cleanup:
3288         /* If it didn't work, free the streams! */
3289         for (i = 0; i < num_eps; i++) {
3290                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3291                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3292                 vdev->eps[ep_index].stream_info = NULL;
3293                 /* FIXME Unset maxPstreams in endpoint context and
3294                  * update deq ptr to point to normal string ring.
3295                  */
3296                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3297                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3298                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3299         }
3300         xhci_free_command(xhci, config_cmd);
3301         return -ENOMEM;
3302 }
3303
3304 /* Transition the endpoint from using streams to being a "normal" endpoint
3305  * without streams.
3306  *
3307  * Modify the endpoint context state, submit a configure endpoint command,
3308  * and free all endpoint rings for streams if that completes successfully.
3309  */
3310 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3311                 struct usb_host_endpoint **eps, unsigned int num_eps,
3312                 gfp_t mem_flags)
3313 {
3314         int i, ret;
3315         struct xhci_hcd *xhci;
3316         struct xhci_virt_device *vdev;
3317         struct xhci_command *command;
3318         struct xhci_input_control_ctx *ctrl_ctx;
3319         unsigned int ep_index;
3320         unsigned long flags;
3321         u32 changed_ep_bitmask;
3322
3323         xhci = hcd_to_xhci(hcd);
3324         vdev = xhci->devs[udev->slot_id];
3325
3326         /* Set up a configure endpoint command to remove the streams rings */
3327         spin_lock_irqsave(&xhci->lock, flags);
3328         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3329                         udev, eps, num_eps);
3330         if (changed_ep_bitmask == 0) {
3331                 spin_unlock_irqrestore(&xhci->lock, flags);
3332                 return -EINVAL;
3333         }
3334
3335         /* Use the xhci_command structure from the first endpoint.  We may have
3336          * allocated too many, but the driver may call xhci_free_streams() for
3337          * each endpoint it grouped into one call to xhci_alloc_streams().
3338          */
3339         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3340         command = vdev->eps[ep_index].stream_info->free_streams_command;
3341         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3342         if (!ctrl_ctx) {
3343                 spin_unlock_irqrestore(&xhci->lock, flags);
3344                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3345                                 __func__);
3346                 return -EINVAL;
3347         }
3348
3349         for (i = 0; i < num_eps; i++) {
3350                 struct xhci_ep_ctx *ep_ctx;
3351
3352                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3353                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3354                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3355                         EP_GETTING_NO_STREAMS;
3356
3357                 xhci_endpoint_copy(xhci, command->in_ctx,
3358                                 vdev->out_ctx, ep_index);
3359                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3360                                 &vdev->eps[ep_index]);
3361         }
3362         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3363                         vdev->out_ctx, ctrl_ctx,
3364                         changed_ep_bitmask, changed_ep_bitmask);
3365         spin_unlock_irqrestore(&xhci->lock, flags);
3366
3367         /* Issue and wait for the configure endpoint command,
3368          * which must succeed.
3369          */
3370         ret = xhci_configure_endpoint(xhci, udev, command,
3371                         false, true);
3372
3373         /* xHC rejected the configure endpoint command for some reason, so we
3374          * leave the streams rings intact.
3375          */
3376         if (ret < 0)
3377                 return ret;
3378
3379         spin_lock_irqsave(&xhci->lock, flags);
3380         for (i = 0; i < num_eps; i++) {
3381                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3382                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3383                 vdev->eps[ep_index].stream_info = NULL;
3384                 /* FIXME Unset maxPstreams in endpoint context and
3385                  * update deq ptr to point to normal string ring.
3386                  */
3387                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3388                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3389         }
3390         spin_unlock_irqrestore(&xhci->lock, flags);
3391
3392         return 0;
3393 }
3394
3395 /*
3396  * Deletes endpoint resources for endpoints that were active before a Reset
3397  * Device command, or a Disable Slot command.  The Reset Device command leaves
3398  * the control endpoint intact, whereas the Disable Slot command deletes it.
3399  *
3400  * Must be called with xhci->lock held.
3401  */
3402 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3403         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3404 {
3405         int i;
3406         unsigned int num_dropped_eps = 0;
3407         unsigned int drop_flags = 0;
3408
3409         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3410                 if (virt_dev->eps[i].ring) {
3411                         drop_flags |= 1 << i;
3412                         num_dropped_eps++;
3413                 }
3414         }
3415         xhci->num_active_eps -= num_dropped_eps;
3416         if (num_dropped_eps)
3417                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3418                                 "Dropped %u ep ctxs, flags = 0x%x, "
3419                                 "%u now active.",
3420                                 num_dropped_eps, drop_flags,
3421                                 xhci->num_active_eps);
3422 }
3423
3424 /*
3425  * This submits a Reset Device Command, which will set the device state to 0,
3426  * set the device address to 0, and disable all the endpoints except the default
3427  * control endpoint.  The USB core should come back and call
3428  * xhci_address_device(), and then re-set up the configuration.  If this is
3429  * called because of a usb_reset_and_verify_device(), then the old alternate
3430  * settings will be re-installed through the normal bandwidth allocation
3431  * functions.
3432  *
3433  * Wait for the Reset Device command to finish.  Remove all structures
3434  * associated with the endpoints that were disabled.  Clear the input device
3435  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3436  *
3437  * If the virt_dev to be reset does not exist or does not match the udev,
3438  * it means the device is lost, possibly due to the xHC restore error and
3439  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3440  * re-allocate the device.
3441  */
3442 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3443 {
3444         int ret, i;
3445         unsigned long flags;
3446         struct xhci_hcd *xhci;
3447         unsigned int slot_id;
3448         struct xhci_virt_device *virt_dev;
3449         struct xhci_command *reset_device_cmd;
3450         int last_freed_endpoint;
3451         struct xhci_slot_ctx *slot_ctx;
3452         int old_active_eps = 0;
3453
3454         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3455         if (ret <= 0)
3456                 return ret;
3457         xhci = hcd_to_xhci(hcd);
3458         slot_id = udev->slot_id;
3459         virt_dev = xhci->devs[slot_id];
3460         if (!virt_dev) {
3461                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3462                                 "not exist. Re-allocate the device\n", slot_id);
3463                 ret = xhci_alloc_dev(hcd, udev);
3464                 if (ret == 1)
3465                         return 0;
3466                 else
3467                         return -EINVAL;
3468         }
3469
3470         if (virt_dev->tt_info)
3471                 old_active_eps = virt_dev->tt_info->active_eps;
3472
3473         if (virt_dev->udev != udev) {
3474                 /* If the virt_dev and the udev does not match, this virt_dev
3475                  * may belong to another udev.
3476                  * Re-allocate the device.
3477                  */
3478                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3479                                 "not match the udev. Re-allocate the device\n",
3480                                 slot_id);
3481                 ret = xhci_alloc_dev(hcd, udev);
3482                 if (ret == 1)
3483                         return 0;
3484                 else
3485                         return -EINVAL;
3486         }
3487
3488         /* If device is not setup, there is no point in resetting it */
3489         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3490         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3491                                                 SLOT_STATE_DISABLED)
3492                 return 0;
3493
3494         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3495         /* Allocate the command structure that holds the struct completion.
3496          * Assume we're in process context, since the normal device reset
3497          * process has to wait for the device anyway.  Storage devices are
3498          * reset as part of error handling, so use GFP_NOIO instead of
3499          * GFP_KERNEL.
3500          */
3501         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3502         if (!reset_device_cmd) {
3503                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3504                 return -ENOMEM;
3505         }
3506
3507         /* Attempt to submit the Reset Device command to the command ring */
3508         spin_lock_irqsave(&xhci->lock, flags);
3509
3510         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3511         if (ret) {
3512                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3513                 spin_unlock_irqrestore(&xhci->lock, flags);
3514                 goto command_cleanup;
3515         }
3516         xhci_ring_cmd_db(xhci);
3517         spin_unlock_irqrestore(&xhci->lock, flags);
3518
3519         /* Wait for the Reset Device command to finish */
3520         wait_for_completion(reset_device_cmd->completion);
3521
3522         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3523          * unless we tried to reset a slot ID that wasn't enabled,
3524          * or the device wasn't in the addressed or configured state.
3525          */
3526         ret = reset_device_cmd->status;
3527         switch (ret) {
3528         case COMP_CMD_ABORT:
3529         case COMP_CMD_STOP:
3530                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3531                 ret = -ETIME;
3532                 goto command_cleanup;
3533         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3534         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3535                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3536                                 slot_id,
3537                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3538                 xhci_dbg(xhci, "Not freeing device rings.\n");
3539                 /* Don't treat this as an error.  May change my mind later. */
3540                 ret = 0;
3541                 goto command_cleanup;
3542         case COMP_SUCCESS:
3543                 xhci_dbg(xhci, "Successful reset device command.\n");
3544                 break;
3545         default:
3546                 if (xhci_is_vendor_info_code(xhci, ret))
3547                         break;
3548                 xhci_warn(xhci, "Unknown completion code %u for "
3549                                 "reset device command.\n", ret);
3550                 ret = -EINVAL;
3551                 goto command_cleanup;
3552         }
3553
3554         /* Free up host controller endpoint resources */
3555         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3556                 spin_lock_irqsave(&xhci->lock, flags);
3557                 /* Don't delete the default control endpoint resources */
3558                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3559                 spin_unlock_irqrestore(&xhci->lock, flags);
3560         }
3561
3562         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3563         last_freed_endpoint = 1;
3564         for (i = 1; i < 31; ++i) {
3565                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3566
3567                 if (ep->ep_state & EP_HAS_STREAMS) {
3568                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3569                                         xhci_get_endpoint_address(i));
3570                         xhci_free_stream_info(xhci, ep->stream_info);
3571                         ep->stream_info = NULL;
3572                         ep->ep_state &= ~EP_HAS_STREAMS;
3573                 }
3574
3575                 if (ep->ring) {
3576                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3577                         last_freed_endpoint = i;
3578                 }
3579                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3580                         xhci_drop_ep_from_interval_table(xhci,
3581                                         &virt_dev->eps[i].bw_info,
3582                                         virt_dev->bw_table,
3583                                         udev,
3584                                         &virt_dev->eps[i],
3585                                         virt_dev->tt_info);
3586                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3587         }
3588         /* If necessary, update the number of active TTs on this root port */
3589         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3590
3591         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3592         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3593         ret = 0;
3594
3595 command_cleanup:
3596         xhci_free_command(xhci, reset_device_cmd);
3597         return ret;
3598 }
3599
3600 /*
3601  * At this point, the struct usb_device is about to go away, the device has
3602  * disconnected, and all traffic has been stopped and the endpoints have been
3603  * disabled.  Free any HC data structures associated with that device.
3604  */
3605 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3606 {
3607         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3608         struct xhci_virt_device *virt_dev;
3609         unsigned long flags;
3610         u32 state;
3611         int i, ret;
3612         struct xhci_command *command;
3613
3614         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3615         if (!command)
3616                 return;
3617
3618 #ifndef CONFIG_USB_DEFAULT_PERSIST
3619         /*
3620          * We called pm_runtime_get_noresume when the device was attached.
3621          * Decrement the counter here to allow controller to runtime suspend
3622          * if no devices remain.
3623          */
3624         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3625                 pm_runtime_put_noidle(hcd->self.controller);
3626 #endif
3627
3628         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3629         /* If the host is halted due to driver unload, we still need to free the
3630          * device.
3631          */
3632         if (ret <= 0 && ret != -ENODEV) {
3633                 kfree(command);
3634                 return;
3635         }
3636
3637         virt_dev = xhci->devs[udev->slot_id];
3638
3639         /* Stop any wayward timer functions (which may grab the lock) */
3640         for (i = 0; i < 31; ++i) {
3641                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3642                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3643         }
3644
3645         spin_lock_irqsave(&xhci->lock, flags);
3646         /* Don't disable the slot if the host controller is dead. */
3647         state = readl(&xhci->op_regs->status);
3648         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3649                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3650                 xhci_free_virt_device(xhci, udev->slot_id);
3651                 spin_unlock_irqrestore(&xhci->lock, flags);
3652                 kfree(command);
3653                 return;
3654         }
3655
3656         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3657                                     udev->slot_id)) {
3658                 spin_unlock_irqrestore(&xhci->lock, flags);
3659                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3660                 return;
3661         }
3662         xhci_ring_cmd_db(xhci);
3663         spin_unlock_irqrestore(&xhci->lock, flags);
3664
3665         /*
3666          * Event command completion handler will free any data structures
3667          * associated with the slot.  XXX Can free sleep?
3668          */
3669 }
3670
3671 /*
3672  * Checks if we have enough host controller resources for the default control
3673  * endpoint.
3674  *
3675  * Must be called with xhci->lock held.
3676  */
3677 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3678 {
3679         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3680                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3681                                 "Not enough ep ctxs: "
3682                                 "%u active, need to add 1, limit is %u.",
3683                                 xhci->num_active_eps, xhci->limit_active_eps);
3684                 return -ENOMEM;
3685         }
3686         xhci->num_active_eps += 1;
3687         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3688                         "Adding 1 ep ctx, %u now active.",
3689                         xhci->num_active_eps);
3690         return 0;
3691 }
3692
3693
3694 /*
3695  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3696  * timed out, or allocating memory failed.  Returns 1 on success.
3697  */
3698 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3699 {
3700         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3701         unsigned long flags;
3702         int ret, slot_id;
3703         struct xhci_command *command;
3704
3705         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3706         if (!command)
3707                 return 0;
3708
3709         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3710         mutex_lock(&xhci->mutex);
3711         spin_lock_irqsave(&xhci->lock, flags);
3712         command->completion = &xhci->addr_dev;
3713         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3714         if (ret) {
3715                 spin_unlock_irqrestore(&xhci->lock, flags);
3716                 mutex_unlock(&xhci->mutex);
3717                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3718                 kfree(command);
3719                 return 0;
3720         }
3721         xhci_ring_cmd_db(xhci);
3722         spin_unlock_irqrestore(&xhci->lock, flags);
3723
3724         wait_for_completion(command->completion);
3725         slot_id = xhci->slot_id;
3726         mutex_unlock(&xhci->mutex);
3727
3728         if (!slot_id || command->status != COMP_SUCCESS) {
3729                 xhci_err(xhci, "Error while assigning device slot ID\n");
3730                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3731                                 HCS_MAX_SLOTS(
3732                                         readl(&xhci->cap_regs->hcs_params1)));
3733                 kfree(command);
3734                 return 0;
3735         }
3736
3737         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3738                 spin_lock_irqsave(&xhci->lock, flags);
3739                 ret = xhci_reserve_host_control_ep_resources(xhci);
3740                 if (ret) {
3741                         spin_unlock_irqrestore(&xhci->lock, flags);
3742                         xhci_warn(xhci, "Not enough host resources, "
3743                                         "active endpoint contexts = %u\n",
3744                                         xhci->num_active_eps);
3745                         goto disable_slot;
3746                 }
3747                 spin_unlock_irqrestore(&xhci->lock, flags);
3748         }
3749         /* Use GFP_NOIO, since this function can be called from
3750          * xhci_discover_or_reset_device(), which may be called as part of
3751          * mass storage driver error handling.
3752          */
3753         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3754                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3755                 goto disable_slot;
3756         }
3757         udev->slot_id = slot_id;
3758
3759 #ifndef CONFIG_USB_DEFAULT_PERSIST
3760         /*
3761          * If resetting upon resume, we can't put the controller into runtime
3762          * suspend if there is a device attached.
3763          */
3764         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3765                 pm_runtime_get_noresume(hcd->self.controller);
3766 #endif
3767
3768
3769         kfree(command);
3770         /* Is this a LS or FS device under a HS hub? */
3771         /* Hub or peripherial? */
3772         return 1;
3773
3774 disable_slot:
3775         /* Disable slot, if we can do it without mem alloc */
3776         spin_lock_irqsave(&xhci->lock, flags);
3777         command->completion = NULL;
3778         command->status = 0;
3779         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3780                                      udev->slot_id))
3781                 xhci_ring_cmd_db(xhci);
3782         spin_unlock_irqrestore(&xhci->lock, flags);
3783         return 0;
3784 }
3785
3786 /*
3787  * Issue an Address Device command and optionally send a corresponding
3788  * SetAddress request to the device.
3789  */
3790 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3791                              enum xhci_setup_dev setup)
3792 {
3793         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3794         unsigned long flags;
3795         struct xhci_virt_device *virt_dev;
3796         int ret = 0;
3797         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3798         struct xhci_slot_ctx *slot_ctx;
3799         struct xhci_input_control_ctx *ctrl_ctx;
3800         u64 temp_64;
3801         struct xhci_command *command = NULL;
3802
3803         mutex_lock(&xhci->mutex);
3804
3805         if (xhci->xhc_state)    /* dying, removing or halted */
3806                 goto out;
3807
3808         if (!udev->slot_id) {
3809                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3810                                 "Bad Slot ID %d", udev->slot_id);
3811                 ret = -EINVAL;
3812                 goto out;
3813         }
3814
3815         virt_dev = xhci->devs[udev->slot_id];
3816
3817         if (WARN_ON(!virt_dev)) {
3818                 /*
3819                  * In plug/unplug torture test with an NEC controller,
3820                  * a zero-dereference was observed once due to virt_dev = 0.
3821                  * Print useful debug rather than crash if it is observed again!
3822                  */
3823                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3824                         udev->slot_id);
3825                 ret = -EINVAL;
3826                 goto out;
3827         }
3828
3829         if (setup == SETUP_CONTEXT_ONLY) {
3830                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3831                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3832                     SLOT_STATE_DEFAULT) {
3833                         xhci_dbg(xhci, "Slot already in default state\n");
3834                         goto out;
3835                 }
3836         }
3837
3838         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3839         if (!command) {
3840                 ret = -ENOMEM;
3841                 goto out;
3842         }
3843
3844         command->in_ctx = virt_dev->in_ctx;
3845         command->completion = &xhci->addr_dev;
3846
3847         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3848         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3849         if (!ctrl_ctx) {
3850                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3851                                 __func__);
3852                 ret = -EINVAL;
3853                 goto out;
3854         }
3855         /*
3856          * If this is the first Set Address since device plug-in or
3857          * virt_device realloaction after a resume with an xHCI power loss,
3858          * then set up the slot context.
3859          */
3860         if (!slot_ctx->dev_info)
3861                 xhci_setup_addressable_virt_dev(xhci, udev);
3862         /* Otherwise, update the control endpoint ring enqueue pointer. */
3863         else
3864                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3865         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3866         ctrl_ctx->drop_flags = 0;
3867
3868         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3869         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3870         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3871                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3872
3873         spin_lock_irqsave(&xhci->lock, flags);
3874         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3875                                         udev->slot_id, setup);
3876         if (ret) {
3877                 spin_unlock_irqrestore(&xhci->lock, flags);
3878                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3879                                 "FIXME: allocate a command ring segment");
3880                 goto out;
3881         }
3882         xhci_ring_cmd_db(xhci);
3883         spin_unlock_irqrestore(&xhci->lock, flags);
3884
3885         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3886         wait_for_completion(command->completion);
3887
3888         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3889          * the SetAddress() "recovery interval" required by USB and aborting the
3890          * command on a timeout.
3891          */
3892         switch (command->status) {
3893         case COMP_CMD_ABORT:
3894         case COMP_CMD_STOP:
3895                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3896                 ret = -ETIME;
3897                 break;
3898         case COMP_CTX_STATE:
3899         case COMP_EBADSLT:
3900                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3901                          act, udev->slot_id);
3902                 ret = -EINVAL;
3903                 break;
3904         case COMP_TX_ERR:
3905                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3906                 ret = -EPROTO;
3907                 break;
3908         case COMP_DEV_ERR:
3909                 dev_warn(&udev->dev,
3910                          "ERROR: Incompatible device for setup %s command\n", act);
3911                 ret = -ENODEV;
3912                 break;
3913         case COMP_SUCCESS:
3914                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3915                                "Successful setup %s command", act);
3916                 break;
3917         default:
3918                 xhci_err(xhci,
3919                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3920                          act, command->status);
3921                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3922                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3923                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3924                 ret = -EINVAL;
3925                 break;
3926         }
3927         if (ret)
3928                 goto out;
3929         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3930         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3931                         "Op regs DCBAA ptr = %#016llx", temp_64);
3932         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3933                 "Slot ID %d dcbaa entry @%p = %#016llx",
3934                 udev->slot_id,
3935                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3936                 (unsigned long long)
3937                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3938         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3939                         "Output Context DMA address = %#08llx",
3940                         (unsigned long long)virt_dev->out_ctx->dma);
3941         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3942         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3943         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3944                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3945         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3946         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3947         /*
3948          * USB core uses address 1 for the roothubs, so we add one to the
3949          * address given back to us by the HC.
3950          */
3951         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3952         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3953                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3954         /* Zero the input context control for later use */
3955         ctrl_ctx->add_flags = 0;
3956         ctrl_ctx->drop_flags = 0;
3957
3958         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3959                        "Internal device address = %d",
3960                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3961 out:
3962         mutex_unlock(&xhci->mutex);
3963         kfree(command);
3964         return ret;
3965 }
3966
3967 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3968 {
3969         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3970 }
3971
3972 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3973 {
3974         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3975 }
3976
3977 /*
3978  * Transfer the port index into real index in the HW port status
3979  * registers. Caculate offset between the port's PORTSC register
3980  * and port status base. Divide the number of per port register
3981  * to get the real index. The raw port number bases 1.
3982  */
3983 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3984 {
3985         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3986         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3987         __le32 __iomem *addr;
3988         int raw_port;
3989
3990         if (hcd->speed < HCD_USB3)
3991                 addr = xhci->usb2_ports[port1 - 1];
3992         else
3993                 addr = xhci->usb3_ports[port1 - 1];
3994
3995         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3996         return raw_port;
3997 }
3998
3999 /*
4000  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4001  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4002  */
4003 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4004                         struct usb_device *udev, u16 max_exit_latency)
4005 {
4006         struct xhci_virt_device *virt_dev;
4007         struct xhci_command *command;
4008         struct xhci_input_control_ctx *ctrl_ctx;
4009         struct xhci_slot_ctx *slot_ctx;
4010         unsigned long flags;
4011         int ret;
4012
4013         spin_lock_irqsave(&xhci->lock, flags);
4014
4015         virt_dev = xhci->devs[udev->slot_id];
4016
4017         /*
4018          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4019          * xHC was re-initialized. Exit latency will be set later after
4020          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4021          */
4022
4023         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4024                 spin_unlock_irqrestore(&xhci->lock, flags);
4025                 return 0;
4026         }
4027
4028         /* Attempt to issue an Evaluate Context command to change the MEL. */
4029         command = xhci->lpm_command;
4030         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4031         if (!ctrl_ctx) {
4032                 spin_unlock_irqrestore(&xhci->lock, flags);
4033                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4034                                 __func__);
4035                 return -ENOMEM;
4036         }
4037
4038         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4039         spin_unlock_irqrestore(&xhci->lock, flags);
4040
4041         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4042         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4043         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4044         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4045         slot_ctx->dev_state = 0;
4046
4047         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4048                         "Set up evaluate context for LPM MEL change.");
4049         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4050         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4051
4052         /* Issue and wait for the evaluate context command. */
4053         ret = xhci_configure_endpoint(xhci, udev, command,
4054                         true, true);
4055         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4056         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4057
4058         if (!ret) {
4059                 spin_lock_irqsave(&xhci->lock, flags);
4060                 virt_dev->current_mel = max_exit_latency;
4061                 spin_unlock_irqrestore(&xhci->lock, flags);
4062         }
4063         return ret;
4064 }
4065
4066 #ifdef CONFIG_PM
4067
4068 /* BESL to HIRD Encoding array for USB2 LPM */
4069 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4070         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4071
4072 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4073 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4074                                         struct usb_device *udev)
4075 {
4076         int u2del, besl, besl_host;
4077         int besl_device = 0;
4078         u32 field;
4079
4080         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4081         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4082
4083         if (field & USB_BESL_SUPPORT) {
4084                 for (besl_host = 0; besl_host < 16; besl_host++) {
4085                         if (xhci_besl_encoding[besl_host] >= u2del)
4086                                 break;
4087                 }
4088                 /* Use baseline BESL value as default */
4089                 if (field & USB_BESL_BASELINE_VALID)
4090                         besl_device = USB_GET_BESL_BASELINE(field);
4091                 else if (field & USB_BESL_DEEP_VALID)
4092                         besl_device = USB_GET_BESL_DEEP(field);
4093         } else {
4094                 if (u2del <= 50)
4095                         besl_host = 0;
4096                 else
4097                         besl_host = (u2del - 51) / 75 + 1;
4098         }
4099
4100         besl = besl_host + besl_device;
4101         if (besl > 15)
4102                 besl = 15;
4103
4104         return besl;
4105 }
4106
4107 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4108 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4109 {
4110         u32 field;
4111         int l1;
4112         int besld = 0;
4113         int hirdm = 0;
4114
4115         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4116
4117         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4118         l1 = udev->l1_params.timeout / 256;
4119
4120         /* device has preferred BESLD */
4121         if (field & USB_BESL_DEEP_VALID) {
4122                 besld = USB_GET_BESL_DEEP(field);
4123                 hirdm = 1;
4124         }
4125
4126         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4127 }
4128
4129 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4130                         struct usb_device *udev, int enable)
4131 {
4132         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4133         __le32 __iomem  **port_array;
4134         __le32 __iomem  *pm_addr, *hlpm_addr;
4135         u32             pm_val, hlpm_val, field;
4136         unsigned int    port_num;
4137         unsigned long   flags;
4138         int             hird, exit_latency;
4139         int             ret;
4140
4141         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4142                         !udev->lpm_capable)
4143                 return -EPERM;
4144
4145         if (!udev->parent || udev->parent->parent ||
4146                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4147                 return -EPERM;
4148
4149         if (udev->usb2_hw_lpm_capable != 1)
4150                 return -EPERM;
4151
4152         spin_lock_irqsave(&xhci->lock, flags);
4153
4154         port_array = xhci->usb2_ports;
4155         port_num = udev->portnum - 1;
4156         pm_addr = port_array[port_num] + PORTPMSC;
4157         pm_val = readl(pm_addr);
4158         hlpm_addr = port_array[port_num] + PORTHLPMC;
4159         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4160
4161         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4162                         enable ? "enable" : "disable", port_num + 1);
4163
4164         if (enable) {
4165                 /* Host supports BESL timeout instead of HIRD */
4166                 if (udev->usb2_hw_lpm_besl_capable) {
4167                         /* if device doesn't have a preferred BESL value use a
4168                          * default one which works with mixed HIRD and BESL
4169                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4170                          */
4171                         if ((field & USB_BESL_SUPPORT) &&
4172                             (field & USB_BESL_BASELINE_VALID))
4173                                 hird = USB_GET_BESL_BASELINE(field);
4174                         else
4175                                 hird = udev->l1_params.besl;
4176
4177                         exit_latency = xhci_besl_encoding[hird];
4178                         spin_unlock_irqrestore(&xhci->lock, flags);
4179
4180                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4181                          * input context for link powermanagement evaluate
4182                          * context commands. It is protected by hcd->bandwidth
4183                          * mutex and is shared by all devices. We need to set
4184                          * the max ext latency in USB 2 BESL LPM as well, so
4185                          * use the same mutex and xhci_change_max_exit_latency()
4186                          */
4187                         mutex_lock(hcd->bandwidth_mutex);
4188                         ret = xhci_change_max_exit_latency(xhci, udev,
4189                                                            exit_latency);
4190                         mutex_unlock(hcd->bandwidth_mutex);
4191
4192                         if (ret < 0)
4193                                 return ret;
4194                         spin_lock_irqsave(&xhci->lock, flags);
4195
4196                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4197                         writel(hlpm_val, hlpm_addr);
4198                         /* flush write */
4199                         readl(hlpm_addr);
4200                 } else {
4201                         hird = xhci_calculate_hird_besl(xhci, udev);
4202                 }
4203
4204                 pm_val &= ~PORT_HIRD_MASK;
4205                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4206                 writel(pm_val, pm_addr);
4207                 pm_val = readl(pm_addr);
4208                 pm_val |= PORT_HLE;
4209                 writel(pm_val, pm_addr);
4210                 /* flush write */
4211                 readl(pm_addr);
4212         } else {
4213                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4214                 writel(pm_val, pm_addr);
4215                 /* flush write */
4216                 readl(pm_addr);
4217                 if (udev->usb2_hw_lpm_besl_capable) {
4218                         spin_unlock_irqrestore(&xhci->lock, flags);
4219                         mutex_lock(hcd->bandwidth_mutex);
4220                         xhci_change_max_exit_latency(xhci, udev, 0);
4221                         mutex_unlock(hcd->bandwidth_mutex);
4222                         return 0;
4223                 }
4224         }
4225
4226         spin_unlock_irqrestore(&xhci->lock, flags);
4227         return 0;
4228 }
4229
4230 /* check if a usb2 port supports a given extened capability protocol
4231  * only USB2 ports extended protocol capability values are cached.
4232  * Return 1 if capability is supported
4233  */
4234 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4235                                            unsigned capability)
4236 {
4237         u32 port_offset, port_count;
4238         int i;
4239
4240         for (i = 0; i < xhci->num_ext_caps; i++) {
4241                 if (xhci->ext_caps[i] & capability) {
4242                         /* port offsets starts at 1 */
4243                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4244                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4245                         if (port >= port_offset &&
4246                             port < port_offset + port_count)
4247                                 return 1;
4248                 }
4249         }
4250         return 0;
4251 }
4252
4253 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4254 {
4255         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4256         int             portnum = udev->portnum - 1;
4257
4258         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4259                         !udev->lpm_capable)
4260                 return 0;
4261
4262         /* we only support lpm for non-hub device connected to root hub yet */
4263         if (!udev->parent || udev->parent->parent ||
4264                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4265                 return 0;
4266
4267         if (xhci->hw_lpm_support == 1 &&
4268                         xhci_check_usb2_port_capability(
4269                                 xhci, portnum, XHCI_HLC)) {
4270                 udev->usb2_hw_lpm_capable = 1;
4271                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4272                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4273                 if (xhci_check_usb2_port_capability(xhci, portnum,
4274                                         XHCI_BLC))
4275                         udev->usb2_hw_lpm_besl_capable = 1;
4276         }
4277
4278         return 0;
4279 }
4280
4281 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4282
4283 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4284 static unsigned long long xhci_service_interval_to_ns(
4285                 struct usb_endpoint_descriptor *desc)
4286 {
4287         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4288 }
4289
4290 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4291                 enum usb3_link_state state)
4292 {
4293         unsigned long long sel;
4294         unsigned long long pel;
4295         unsigned int max_sel_pel;
4296         char *state_name;
4297
4298         switch (state) {
4299         case USB3_LPM_U1:
4300                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4301                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4302                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4303                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4304                 state_name = "U1";
4305                 break;
4306         case USB3_LPM_U2:
4307                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4308                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4309                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4310                 state_name = "U2";
4311                 break;
4312         default:
4313                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4314                                 __func__);
4315                 return USB3_LPM_DISABLED;
4316         }
4317
4318         if (sel <= max_sel_pel && pel <= max_sel_pel)
4319                 return USB3_LPM_DEVICE_INITIATED;
4320
4321         if (sel > max_sel_pel)
4322                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4323                                 "due to long SEL %llu ms\n",
4324                                 state_name, sel);
4325         else
4326                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4327                                 "due to long PEL %llu ms\n",
4328                                 state_name, pel);
4329         return USB3_LPM_DISABLED;
4330 }
4331
4332 /* The U1 timeout should be the maximum of the following values:
4333  *  - For control endpoints, U1 system exit latency (SEL) * 3
4334  *  - For bulk endpoints, U1 SEL * 5
4335  *  - For interrupt endpoints:
4336  *    - Notification EPs, U1 SEL * 3
4337  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4338  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4339  */
4340 static unsigned long long xhci_calculate_intel_u1_timeout(
4341                 struct usb_device *udev,
4342                 struct usb_endpoint_descriptor *desc)
4343 {
4344         unsigned long long timeout_ns;
4345         int ep_type;
4346         int intr_type;
4347
4348         ep_type = usb_endpoint_type(desc);
4349         switch (ep_type) {
4350         case USB_ENDPOINT_XFER_CONTROL:
4351                 timeout_ns = udev->u1_params.sel * 3;
4352                 break;
4353         case USB_ENDPOINT_XFER_BULK:
4354                 timeout_ns = udev->u1_params.sel * 5;
4355                 break;
4356         case USB_ENDPOINT_XFER_INT:
4357                 intr_type = usb_endpoint_interrupt_type(desc);
4358                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4359                         timeout_ns = udev->u1_params.sel * 3;
4360                         break;
4361                 }
4362                 /* Otherwise the calculation is the same as isoc eps */
4363         case USB_ENDPOINT_XFER_ISOC:
4364                 timeout_ns = xhci_service_interval_to_ns(desc);
4365                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4366                 if (timeout_ns < udev->u1_params.sel * 2)
4367                         timeout_ns = udev->u1_params.sel * 2;
4368                 break;
4369         default:
4370                 return 0;
4371         }
4372
4373         return timeout_ns;
4374 }
4375
4376 /* Returns the hub-encoded U1 timeout value. */
4377 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4378                 struct usb_device *udev,
4379                 struct usb_endpoint_descriptor *desc)
4380 {
4381         unsigned long long timeout_ns;
4382
4383         if (xhci->quirks & XHCI_INTEL_HOST)
4384                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4385         else
4386                 timeout_ns = udev->u1_params.sel;
4387
4388         /* The U1 timeout is encoded in 1us intervals.
4389          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4390          */
4391         if (timeout_ns == USB3_LPM_DISABLED)
4392                 timeout_ns = 1;
4393         else
4394                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4395
4396         /* If the necessary timeout value is bigger than what we can set in the
4397          * USB 3.0 hub, we have to disable hub-initiated U1.
4398          */
4399         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4400                 return timeout_ns;
4401         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4402                         "due to long timeout %llu ms\n", timeout_ns);
4403         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4404 }
4405
4406 /* The U2 timeout should be the maximum of:
4407  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4408  *  - largest bInterval of any active periodic endpoint (to avoid going
4409  *    into lower power link states between intervals).
4410  *  - the U2 Exit Latency of the device
4411  */
4412 static unsigned long long xhci_calculate_intel_u2_timeout(
4413                 struct usb_device *udev,
4414                 struct usb_endpoint_descriptor *desc)
4415 {
4416         unsigned long long timeout_ns;
4417         unsigned long long u2_del_ns;
4418
4419         timeout_ns = 10 * 1000 * 1000;
4420
4421         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4422                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4423                 timeout_ns = xhci_service_interval_to_ns(desc);
4424
4425         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4426         if (u2_del_ns > timeout_ns)
4427                 timeout_ns = u2_del_ns;
4428
4429         return timeout_ns;
4430 }
4431
4432 /* Returns the hub-encoded U2 timeout value. */
4433 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4434                 struct usb_device *udev,
4435                 struct usb_endpoint_descriptor *desc)
4436 {
4437         unsigned long long timeout_ns;
4438
4439         if (xhci->quirks & XHCI_INTEL_HOST)
4440                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4441         else
4442                 timeout_ns = udev->u2_params.sel;
4443
4444         /* The U2 timeout is encoded in 256us intervals */
4445         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4446         /* If the necessary timeout value is bigger than what we can set in the
4447          * USB 3.0 hub, we have to disable hub-initiated U2.
4448          */
4449         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4450                 return timeout_ns;
4451         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4452                         "due to long timeout %llu ms\n", timeout_ns);
4453         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4454 }
4455
4456 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4457                 struct usb_device *udev,
4458                 struct usb_endpoint_descriptor *desc,
4459                 enum usb3_link_state state,
4460                 u16 *timeout)
4461 {
4462         if (state == USB3_LPM_U1)
4463                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4464         else if (state == USB3_LPM_U2)
4465                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4466
4467         return USB3_LPM_DISABLED;
4468 }
4469
4470 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4471                 struct usb_device *udev,
4472                 struct usb_endpoint_descriptor *desc,
4473                 enum usb3_link_state state,
4474                 u16 *timeout)
4475 {
4476         u16 alt_timeout;
4477
4478         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4479                 desc, state, timeout);
4480
4481         /* If we found we can't enable hub-initiated LPM, or
4482          * the U1 or U2 exit latency was too high to allow
4483          * device-initiated LPM as well, just stop searching.
4484          */
4485         if (alt_timeout == USB3_LPM_DISABLED ||
4486                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4487                 *timeout = alt_timeout;
4488                 return -E2BIG;
4489         }
4490         if (alt_timeout > *timeout)
4491                 *timeout = alt_timeout;
4492         return 0;
4493 }
4494
4495 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4496                 struct usb_device *udev,
4497                 struct usb_host_interface *alt,
4498                 enum usb3_link_state state,
4499                 u16 *timeout)
4500 {
4501         int j;
4502
4503         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4504                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4505                                         &alt->endpoint[j].desc, state, timeout))
4506                         return -E2BIG;
4507                 continue;
4508         }
4509         return 0;
4510 }
4511
4512 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4513                 enum usb3_link_state state)
4514 {
4515         struct usb_device *parent;
4516         unsigned int num_hubs;
4517
4518         if (state == USB3_LPM_U2)
4519                 return 0;
4520
4521         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4522         for (parent = udev->parent, num_hubs = 0; parent->parent;
4523                         parent = parent->parent)
4524                 num_hubs++;
4525
4526         if (num_hubs < 2)
4527                 return 0;
4528
4529         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4530                         " below second-tier hub.\n");
4531         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4532                         "to decrease power consumption.\n");
4533         return -E2BIG;
4534 }
4535
4536 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4537                 struct usb_device *udev,
4538                 enum usb3_link_state state)
4539 {
4540         if (xhci->quirks & XHCI_INTEL_HOST)
4541                 return xhci_check_intel_tier_policy(udev, state);
4542         else
4543                 return 0;
4544 }
4545
4546 /* Returns the U1 or U2 timeout that should be enabled.
4547  * If the tier check or timeout setting functions return with a non-zero exit
4548  * code, that means the timeout value has been finalized and we shouldn't look
4549  * at any more endpoints.
4550  */
4551 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4552                         struct usb_device *udev, enum usb3_link_state state)
4553 {
4554         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4555         struct usb_host_config *config;
4556         char *state_name;
4557         int i;
4558         u16 timeout = USB3_LPM_DISABLED;
4559
4560         if (state == USB3_LPM_U1)
4561                 state_name = "U1";
4562         else if (state == USB3_LPM_U2)
4563                 state_name = "U2";
4564         else {
4565                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4566                                 state);
4567                 return timeout;
4568         }
4569
4570         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4571                 return timeout;
4572
4573         /* Gather some information about the currently installed configuration
4574          * and alternate interface settings.
4575          */
4576         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4577                         state, &timeout))
4578                 return timeout;
4579
4580         config = udev->actconfig;
4581         if (!config)
4582                 return timeout;
4583
4584         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4585                 struct usb_driver *driver;
4586                 struct usb_interface *intf = config->interface[i];
4587
4588                 if (!intf)
4589                         continue;
4590
4591                 /* Check if any currently bound drivers want hub-initiated LPM
4592                  * disabled.
4593                  */
4594                 if (intf->dev.driver) {
4595                         driver = to_usb_driver(intf->dev.driver);
4596                         if (driver && driver->disable_hub_initiated_lpm) {
4597                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4598                                                 "at request of driver %s\n",
4599                                                 state_name, driver->name);
4600                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4601                         }
4602                 }
4603
4604                 /* Not sure how this could happen... */
4605                 if (!intf->cur_altsetting)
4606                         continue;
4607
4608                 if (xhci_update_timeout_for_interface(xhci, udev,
4609                                         intf->cur_altsetting,
4610                                         state, &timeout))
4611                         return timeout;
4612         }
4613         return timeout;
4614 }
4615
4616 static int calculate_max_exit_latency(struct usb_device *udev,
4617                 enum usb3_link_state state_changed,
4618                 u16 hub_encoded_timeout)
4619 {
4620         unsigned long long u1_mel_us = 0;
4621         unsigned long long u2_mel_us = 0;
4622         unsigned long long mel_us = 0;
4623         bool disabling_u1;
4624         bool disabling_u2;
4625         bool enabling_u1;
4626         bool enabling_u2;
4627
4628         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4629                         hub_encoded_timeout == USB3_LPM_DISABLED);
4630         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4631                         hub_encoded_timeout == USB3_LPM_DISABLED);
4632
4633         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4634                         hub_encoded_timeout != USB3_LPM_DISABLED);
4635         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4636                         hub_encoded_timeout != USB3_LPM_DISABLED);
4637
4638         /* If U1 was already enabled and we're not disabling it,
4639          * or we're going to enable U1, account for the U1 max exit latency.
4640          */
4641         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4642                         enabling_u1)
4643                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4644         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4645                         enabling_u2)
4646                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4647
4648         if (u1_mel_us > u2_mel_us)
4649                 mel_us = u1_mel_us;
4650         else
4651                 mel_us = u2_mel_us;
4652         /* xHCI host controller max exit latency field is only 16 bits wide. */
4653         if (mel_us > MAX_EXIT) {
4654                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4655                                 "is too big.\n", mel_us);
4656                 return -E2BIG;
4657         }
4658         return mel_us;
4659 }
4660
4661 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4662 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4663                         struct usb_device *udev, enum usb3_link_state state)
4664 {
4665         struct xhci_hcd *xhci;
4666         u16 hub_encoded_timeout;
4667         int mel;
4668         int ret;
4669
4670         xhci = hcd_to_xhci(hcd);
4671         /* The LPM timeout values are pretty host-controller specific, so don't
4672          * enable hub-initiated timeouts unless the vendor has provided
4673          * information about their timeout algorithm.
4674          */
4675         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4676                         !xhci->devs[udev->slot_id])
4677                 return USB3_LPM_DISABLED;
4678
4679         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4680         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4681         if (mel < 0) {
4682                 /* Max Exit Latency is too big, disable LPM. */
4683                 hub_encoded_timeout = USB3_LPM_DISABLED;
4684                 mel = 0;
4685         }
4686
4687         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4688         if (ret)
4689                 return ret;
4690         return hub_encoded_timeout;
4691 }
4692
4693 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4694                         struct usb_device *udev, enum usb3_link_state state)
4695 {
4696         struct xhci_hcd *xhci;
4697         u16 mel;
4698
4699         xhci = hcd_to_xhci(hcd);
4700         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4701                         !xhci->devs[udev->slot_id])
4702                 return 0;
4703
4704         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4705         return xhci_change_max_exit_latency(xhci, udev, mel);
4706 }
4707 #else /* CONFIG_PM */
4708
4709 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4710                                 struct usb_device *udev, int enable)
4711 {
4712         return 0;
4713 }
4714
4715 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4716 {
4717         return 0;
4718 }
4719
4720 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4721                         struct usb_device *udev, enum usb3_link_state state)
4722 {
4723         return USB3_LPM_DISABLED;
4724 }
4725
4726 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4727                         struct usb_device *udev, enum usb3_link_state state)
4728 {
4729         return 0;
4730 }
4731 #endif  /* CONFIG_PM */
4732
4733 /*-------------------------------------------------------------------------*/
4734
4735 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4736  * internal data structures for the device.
4737  */
4738 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4739                         struct usb_tt *tt, gfp_t mem_flags)
4740 {
4741         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4742         struct xhci_virt_device *vdev;
4743         struct xhci_command *config_cmd;
4744         struct xhci_input_control_ctx *ctrl_ctx;
4745         struct xhci_slot_ctx *slot_ctx;
4746         unsigned long flags;
4747         unsigned think_time;
4748         int ret;
4749
4750         /* Ignore root hubs */
4751         if (!hdev->parent)
4752                 return 0;
4753
4754         vdev = xhci->devs[hdev->slot_id];
4755         if (!vdev) {
4756                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4757                 return -EINVAL;
4758         }
4759         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4760         if (!config_cmd) {
4761                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4762                 return -ENOMEM;
4763         }
4764         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4765         if (!ctrl_ctx) {
4766                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4767                                 __func__);
4768                 xhci_free_command(xhci, config_cmd);
4769                 return -ENOMEM;
4770         }
4771
4772         spin_lock_irqsave(&xhci->lock, flags);
4773         if (hdev->speed == USB_SPEED_HIGH &&
4774                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4775                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4776                 xhci_free_command(xhci, config_cmd);
4777                 spin_unlock_irqrestore(&xhci->lock, flags);
4778                 return -ENOMEM;
4779         }
4780
4781         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4782         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4783         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4784         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4785         /*
4786          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4787          * but it may be already set to 1 when setup an xHCI virtual
4788          * device, so clear it anyway.
4789          */
4790         if (tt->multi)
4791                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4792         else if (hdev->speed == USB_SPEED_FULL)
4793                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4794
4795         if (xhci->hci_version > 0x95) {
4796                 xhci_dbg(xhci, "xHCI version %x needs hub "
4797                                 "TT think time and number of ports\n",
4798                                 (unsigned int) xhci->hci_version);
4799                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4800                 /* Set TT think time - convert from ns to FS bit times.
4801                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4802                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4803                  *
4804                  * xHCI 1.0: this field shall be 0 if the device is not a
4805                  * High-spped hub.
4806                  */
4807                 think_time = tt->think_time;
4808                 if (think_time != 0)
4809                         think_time = (think_time / 666) - 1;
4810                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4811                         slot_ctx->tt_info |=
4812                                 cpu_to_le32(TT_THINK_TIME(think_time));
4813         } else {
4814                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4815                                 "TT think time or number of ports\n",
4816                                 (unsigned int) xhci->hci_version);
4817         }
4818         slot_ctx->dev_state = 0;
4819         spin_unlock_irqrestore(&xhci->lock, flags);
4820
4821         xhci_dbg(xhci, "Set up %s for hub device.\n",
4822                         (xhci->hci_version > 0x95) ?
4823                         "configure endpoint" : "evaluate context");
4824         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4825         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4826
4827         /* Issue and wait for the configure endpoint or
4828          * evaluate context command.
4829          */
4830         if (xhci->hci_version > 0x95)
4831                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4832                                 false, false);
4833         else
4834                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4835                                 true, false);
4836
4837         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4838         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4839
4840         xhci_free_command(xhci, config_cmd);
4841         return ret;
4842 }
4843
4844 int xhci_get_frame(struct usb_hcd *hcd)
4845 {
4846         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4847         /* EHCI mods by the periodic size.  Why? */
4848         return readl(&xhci->run_regs->microframe_index) >> 3;
4849 }
4850
4851 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4852 {
4853         struct xhci_hcd         *xhci;
4854         struct device           *dev = hcd->self.controller;
4855         int                     retval;
4856
4857         /* Accept arbitrarily long scatter-gather lists */
4858         hcd->self.sg_tablesize = ~0;
4859
4860         /* support to build packet from discontinuous buffers */
4861         hcd->self.no_sg_constraint = 1;
4862
4863         /* XHCI controllers don't stop the ep queue on short packets :| */
4864         hcd->self.no_stop_on_short = 1;
4865
4866         xhci = hcd_to_xhci(hcd);
4867
4868         if (usb_hcd_is_primary_hcd(hcd)) {
4869                 xhci->main_hcd = hcd;
4870                 /* Mark the first roothub as being USB 2.0.
4871                  * The xHCI driver will register the USB 3.0 roothub.
4872                  */
4873                 hcd->speed = HCD_USB2;
4874                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4875                 /*
4876                  * USB 2.0 roothub under xHCI has an integrated TT,
4877                  * (rate matching hub) as opposed to having an OHCI/UHCI
4878                  * companion controller.
4879                  */
4880                 hcd->has_tt = 1;
4881         } else {
4882                 if (xhci->sbrn == 0x31) {
4883                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4884                         hcd->speed = HCD_USB31;
4885                 }
4886                 /* xHCI private pointer was set in xhci_pci_probe for the second
4887                  * registered roothub.
4888                  */
4889                 return 0;
4890         }
4891
4892         mutex_init(&xhci->mutex);
4893         xhci->cap_regs = hcd->regs;
4894         xhci->op_regs = hcd->regs +
4895                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4896         xhci->run_regs = hcd->regs +
4897                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4898         /* Cache read-only capability registers */
4899         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4900         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4901         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4902         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4903         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4904         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4905         if (xhci->hci_version > 0x100)
4906                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4907         xhci_print_registers(xhci);
4908
4909         xhci->quirks = quirks;
4910
4911         get_quirks(dev, xhci);
4912
4913         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4914          * success event after a short transfer. This quirk will ignore such
4915          * spurious event.
4916          */
4917         if (xhci->hci_version > 0x96)
4918                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4919
4920         /* Make sure the HC is halted. */
4921         retval = xhci_halt(xhci);
4922         if (retval)
4923                 return retval;
4924
4925         xhci_dbg(xhci, "Resetting HCD\n");
4926         /* Reset the internal HC memory state and registers. */
4927         retval = xhci_reset(xhci);
4928         if (retval)
4929                 return retval;
4930         xhci_dbg(xhci, "Reset complete\n");
4931
4932         /* Set dma_mask and coherent_dma_mask to 64-bits,
4933          * if xHC supports 64-bit addressing */
4934         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4935                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4936                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4937                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4938         } else {
4939                 /*
4940                  * This is to avoid error in cases where a 32-bit USB
4941                  * controller is used on a 64-bit capable system.
4942                  */
4943                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4944                 if (retval)
4945                         return retval;
4946                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4947                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4948         }
4949
4950         xhci_dbg(xhci, "Calling HCD init\n");
4951         /* Initialize HCD and host controller data structures. */
4952         retval = xhci_init(hcd);
4953         if (retval)
4954                 return retval;
4955         xhci_dbg(xhci, "Called HCD init\n");
4956
4957         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4958                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4959
4960         return 0;
4961 }
4962 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4963
4964 static const struct hc_driver xhci_hc_driver = {
4965         .description =          "xhci-hcd",
4966         .product_desc =         "xHCI Host Controller",
4967         .hcd_priv_size =        sizeof(struct xhci_hcd *),
4968
4969         /*
4970          * generic hardware linkage
4971          */
4972         .irq =                  xhci_irq,
4973         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4974
4975         /*
4976          * basic lifecycle operations
4977          */
4978         .reset =                NULL, /* set in xhci_init_driver() */
4979         .start =                xhci_run,
4980         .stop =                 xhci_stop,
4981         .shutdown =             xhci_shutdown,
4982
4983         /*
4984          * managing i/o requests and associated device resources
4985          */
4986         .urb_enqueue =          xhci_urb_enqueue,
4987         .urb_dequeue =          xhci_urb_dequeue,
4988         .alloc_dev =            xhci_alloc_dev,
4989         .free_dev =             xhci_free_dev,
4990         .alloc_streams =        xhci_alloc_streams,
4991         .free_streams =         xhci_free_streams,
4992         .add_endpoint =         xhci_add_endpoint,
4993         .drop_endpoint =        xhci_drop_endpoint,
4994         .endpoint_reset =       xhci_endpoint_reset,
4995         .check_bandwidth =      xhci_check_bandwidth,
4996         .reset_bandwidth =      xhci_reset_bandwidth,
4997         .address_device =       xhci_address_device,
4998         .enable_device =        xhci_enable_device,
4999         .update_hub_device =    xhci_update_hub_device,
5000         .reset_device =         xhci_discover_or_reset_device,
5001
5002         /*
5003          * scheduling support
5004          */
5005         .get_frame_number =     xhci_get_frame,
5006
5007         /*
5008          * root hub support
5009          */
5010         .hub_control =          xhci_hub_control,
5011         .hub_status_data =      xhci_hub_status_data,
5012         .bus_suspend =          xhci_bus_suspend,
5013         .bus_resume =           xhci_bus_resume,
5014
5015         /*
5016          * call back when device connected and addressed
5017          */
5018         .update_device =        xhci_update_device,
5019         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5020         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5021         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5022         .find_raw_port_number = xhci_find_raw_port_number,
5023 };
5024
5025 void xhci_init_driver(struct hc_driver *drv,
5026                       const struct xhci_driver_overrides *over)
5027 {
5028         BUG_ON(!over);
5029
5030         /* Copy the generic table to drv then apply the overrides */
5031         *drv = xhci_hc_driver;
5032
5033         if (over) {
5034                 drv->hcd_priv_size += over->extra_priv_size;
5035                 if (over->reset)
5036                         drv->reset = over->reset;
5037                 if (over->start)
5038                         drv->start = over->start;
5039         }
5040 }
5041 EXPORT_SYMBOL_GPL(xhci_init_driver);
5042
5043 MODULE_DESCRIPTION(DRIVER_DESC);
5044 MODULE_AUTHOR(DRIVER_AUTHOR);
5045 MODULE_LICENSE("GPL");
5046
5047 static int __init xhci_hcd_init(void)
5048 {
5049         /*
5050          * Check the compiler generated sizes of structures that must be laid
5051          * out in specific ways for hardware access.
5052          */
5053         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5054         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5055         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5056         /* xhci_device_control has eight fields, and also
5057          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5058          */
5059         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5060         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5061         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5062         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5063         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5064         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5065         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5066
5067         if (usb_disabled())
5068                 return -ENODEV;
5069
5070         return 0;
5071 }
5072
5073 /*
5074  * If an init function is provided, an exit function must also be provided
5075  * to allow module unload.
5076  */
5077 static void __exit xhci_hcd_fini(void) { }
5078
5079 module_init(xhci_hcd_init);
5080 module_exit(xhci_hcd_fini);