e6ed6b2eab8ee2e4f4d9da95d1acc564cbad60ab
[firefly-linux-kernel-4.4.55.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
39
40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
41 static int link_quirk;
42 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
44
45 static unsigned int quirks;
46 module_param(quirks, uint, S_IRUGO);
47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
48
49 /* TODO: copied from ehci-hcd.c - can this be refactored? */
50 /*
51  * xhci_handshake - spin reading hc until handshake completes or fails
52  * @ptr: address of hc register to be read
53  * @mask: bits to look at in result of read
54  * @done: value of those bits when handshake succeeds
55  * @usec: timeout in microseconds
56  *
57  * Returns negative errno, or zero on success
58  *
59  * Success happens when the "mask" bits have the specified value (hardware
60  * handshake done).  There are two failure modes:  "usec" have passed (major
61  * hardware flakeout), or the register reads as all-ones (hardware removed).
62  */
63 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
64 {
65         u32     result;
66
67         do {
68                 result = readl(ptr);
69                 if (result == ~(u32)0)          /* card removed */
70                         return -ENODEV;
71                 result &= mask;
72                 if (result == done)
73                         return 0;
74                 udelay(1);
75                 usec--;
76         } while (usec > 0);
77         return -ETIMEDOUT;
78 }
79
80 /*
81  * Disable interrupts and begin the xHCI halting process.
82  */
83 void xhci_quiesce(struct xhci_hcd *xhci)
84 {
85         u32 halted;
86         u32 cmd;
87         u32 mask;
88
89         mask = ~(XHCI_IRQS);
90         halted = readl(&xhci->op_regs->status) & STS_HALT;
91         if (!halted)
92                 mask &= ~CMD_RUN;
93
94         cmd = readl(&xhci->op_regs->command);
95         cmd &= mask;
96         writel(cmd, &xhci->op_regs->command);
97 }
98
99 /*
100  * Force HC into halt state.
101  *
102  * Disable any IRQs and clear the run/stop bit.
103  * HC will complete any current and actively pipelined transactions, and
104  * should halt within 16 ms of the run/stop bit being cleared.
105  * Read HC Halted bit in the status register to see when the HC is finished.
106  */
107 int xhci_halt(struct xhci_hcd *xhci)
108 {
109         int ret;
110         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
111         xhci_quiesce(xhci);
112
113         ret = xhci_handshake(&xhci->op_regs->status,
114                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
115         if (!ret) {
116                 xhci->xhc_state |= XHCI_STATE_HALTED;
117                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
118         } else
119                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
120                                 XHCI_MAX_HALT_USEC);
121         return ret;
122 }
123
124 /*
125  * Set the run bit and wait for the host to be running.
126  */
127 static int xhci_start(struct xhci_hcd *xhci)
128 {
129         u32 temp;
130         int ret;
131
132         temp = readl(&xhci->op_regs->command);
133         temp |= (CMD_RUN);
134         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
135                         temp);
136         writel(temp, &xhci->op_regs->command);
137
138         /*
139          * Wait for the HCHalted Status bit to be 0 to indicate the host is
140          * running.
141          */
142         ret = xhci_handshake(&xhci->op_regs->status,
143                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
144         if (ret == -ETIMEDOUT)
145                 xhci_err(xhci, "Host took too long to start, "
146                                 "waited %u microseconds.\n",
147                                 XHCI_MAX_HALT_USEC);
148         if (!ret)
149                 /* clear state flags. Including dying, halted or removing */
150                 xhci->xhc_state = 0;
151
152         return ret;
153 }
154
155 /*
156  * Reset a halted HC.
157  *
158  * This resets pipelines, timers, counters, state machines, etc.
159  * Transactions will be terminated immediately, and operational registers
160  * will be set to their defaults.
161  */
162 int xhci_reset(struct xhci_hcd *xhci)
163 {
164         u32 command;
165         u32 state;
166         int ret, i;
167
168         state = readl(&xhci->op_regs->status);
169         if ((state & STS_HALT) == 0) {
170                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
171                 return 0;
172         }
173
174         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
175         command = readl(&xhci->op_regs->command);
176         command |= CMD_RESET;
177         writel(command, &xhci->op_regs->command);
178
179         /* Existing Intel xHCI controllers require a delay of 1 mS,
180          * after setting the CMD_RESET bit, and before accessing any
181          * HC registers. This allows the HC to complete the
182          * reset operation and be ready for HC register access.
183          * Without this delay, the subsequent HC register access,
184          * may result in a system hang very rarely.
185          */
186         if (xhci->quirks & XHCI_INTEL_HOST)
187                 udelay(1000);
188
189         ret = xhci_handshake(&xhci->op_regs->command,
190                         CMD_RESET, 0, 10 * 1000 * 1000);
191         if (ret)
192                 return ret;
193
194         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195                          "Wait for controller to be ready for doorbell rings");
196         /*
197          * xHCI cannot write to any doorbells or operational registers other
198          * than status until the "Controller Not Ready" flag is cleared.
199          */
200         ret = xhci_handshake(&xhci->op_regs->status,
201                         STS_CNR, 0, 10 * 1000 * 1000);
202
203         for (i = 0; i < 2; ++i) {
204                 xhci->bus_state[i].port_c_suspend = 0;
205                 xhci->bus_state[i].suspended_ports = 0;
206                 xhci->bus_state[i].resuming_ports = 0;
207         }
208
209         return ret;
210 }
211
212 #ifdef CONFIG_PCI
213 static int xhci_free_msi(struct xhci_hcd *xhci)
214 {
215         int i;
216
217         if (!xhci->msix_entries)
218                 return -EINVAL;
219
220         for (i = 0; i < xhci->msix_count; i++)
221                 if (xhci->msix_entries[i].vector)
222                         free_irq(xhci->msix_entries[i].vector,
223                                         xhci_to_hcd(xhci));
224         return 0;
225 }
226
227 /*
228  * Set up MSI
229  */
230 static int xhci_setup_msi(struct xhci_hcd *xhci)
231 {
232         int ret;
233         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
234
235         ret = pci_enable_msi(pdev);
236         if (ret) {
237                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238                                 "failed to allocate MSI entry");
239                 return ret;
240         }
241
242         ret = request_irq(pdev->irq, xhci_msi_irq,
243                                 0, "xhci_hcd", xhci_to_hcd(xhci));
244         if (ret) {
245                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
246                                 "disable MSI interrupt");
247                 pci_disable_msi(pdev);
248         }
249
250         return ret;
251 }
252
253 /*
254  * Free IRQs
255  * free all IRQs request
256  */
257 static void xhci_free_irq(struct xhci_hcd *xhci)
258 {
259         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
260         int ret;
261
262         /* return if using legacy interrupt */
263         if (xhci_to_hcd(xhci)->irq > 0)
264                 return;
265
266         ret = xhci_free_msi(xhci);
267         if (!ret)
268                 return;
269         if (pdev->irq > 0)
270                 free_irq(pdev->irq, xhci_to_hcd(xhci));
271
272         return;
273 }
274
275 /*
276  * Set up MSI-X
277  */
278 static int xhci_setup_msix(struct xhci_hcd *xhci)
279 {
280         int i, ret = 0;
281         struct usb_hcd *hcd = xhci_to_hcd(xhci);
282         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
283
284         /*
285          * calculate number of msi-x vectors supported.
286          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
287          *   with max number of interrupters based on the xhci HCSPARAMS1.
288          * - num_online_cpus: maximum msi-x vectors per CPUs core.
289          *   Add additional 1 vector to ensure always available interrupt.
290          */
291         xhci->msix_count = min(num_online_cpus() + 1,
292                                 HCS_MAX_INTRS(xhci->hcs_params1));
293
294         xhci->msix_entries =
295                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
296                                 GFP_KERNEL);
297         if (!xhci->msix_entries) {
298                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
299                 return -ENOMEM;
300         }
301
302         for (i = 0; i < xhci->msix_count; i++) {
303                 xhci->msix_entries[i].entry = i;
304                 xhci->msix_entries[i].vector = 0;
305         }
306
307         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
308         if (ret) {
309                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310                                 "Failed to enable MSI-X");
311                 goto free_entries;
312         }
313
314         for (i = 0; i < xhci->msix_count; i++) {
315                 ret = request_irq(xhci->msix_entries[i].vector,
316                                 xhci_msi_irq,
317                                 0, "xhci_hcd", xhci_to_hcd(xhci));
318                 if (ret)
319                         goto disable_msix;
320         }
321
322         hcd->msix_enabled = 1;
323         return ret;
324
325 disable_msix:
326         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
327         xhci_free_irq(xhci);
328         pci_disable_msix(pdev);
329 free_entries:
330         kfree(xhci->msix_entries);
331         xhci->msix_entries = NULL;
332         return ret;
333 }
334
335 /* Free any IRQs and disable MSI-X */
336 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
337 {
338         struct usb_hcd *hcd = xhci_to_hcd(xhci);
339         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
340
341         if (xhci->quirks & XHCI_PLAT)
342                 return;
343
344         xhci_free_irq(xhci);
345
346         if (xhci->msix_entries) {
347                 pci_disable_msix(pdev);
348                 kfree(xhci->msix_entries);
349                 xhci->msix_entries = NULL;
350         } else {
351                 pci_disable_msi(pdev);
352         }
353
354         hcd->msix_enabled = 0;
355         return;
356 }
357
358 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
359 {
360         int i;
361
362         if (xhci->msix_entries) {
363                 for (i = 0; i < xhci->msix_count; i++)
364                         synchronize_irq(xhci->msix_entries[i].vector);
365         }
366 }
367
368 static int xhci_try_enable_msi(struct usb_hcd *hcd)
369 {
370         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
371         struct pci_dev  *pdev;
372         int ret;
373
374         /* The xhci platform device has set up IRQs through usb_add_hcd. */
375         if (xhci->quirks & XHCI_PLAT)
376                 return 0;
377
378         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
379         /*
380          * Some Fresco Logic host controllers advertise MSI, but fail to
381          * generate interrupts.  Don't even try to enable MSI.
382          */
383         if (xhci->quirks & XHCI_BROKEN_MSI)
384                 goto legacy_irq;
385
386         /* unregister the legacy interrupt */
387         if (hcd->irq)
388                 free_irq(hcd->irq, hcd);
389         hcd->irq = 0;
390
391         ret = xhci_setup_msix(xhci);
392         if (ret)
393                 /* fall back to msi*/
394                 ret = xhci_setup_msi(xhci);
395
396         if (!ret)
397                 /* hcd->irq is 0, we have MSI */
398                 return 0;
399
400         if (!pdev->irq) {
401                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
402                 return -EINVAL;
403         }
404
405  legacy_irq:
406         if (!strlen(hcd->irq_descr))
407                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
408                          hcd->driver->description, hcd->self.busnum);
409
410         /* fall back to legacy interrupt*/
411         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
412                         hcd->irq_descr, hcd);
413         if (ret) {
414                 xhci_err(xhci, "request interrupt %d failed\n",
415                                 pdev->irq);
416                 return ret;
417         }
418         hcd->irq = pdev->irq;
419         return 0;
420 }
421
422 #else
423
424 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
425 {
426         return 0;
427 }
428
429 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
430 {
431 }
432
433 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
434 {
435 }
436
437 #endif
438
439 static void compliance_mode_recovery(unsigned long arg)
440 {
441         struct xhci_hcd *xhci;
442         struct usb_hcd *hcd;
443         u32 temp;
444         int i;
445
446         xhci = (struct xhci_hcd *)arg;
447
448         for (i = 0; i < xhci->num_usb3_ports; i++) {
449                 temp = readl(xhci->usb3_ports[i]);
450                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
451                         /*
452                          * Compliance Mode Detected. Letting USB Core
453                          * handle the Warm Reset
454                          */
455                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
456                                         "Compliance mode detected->port %d",
457                                         i + 1);
458                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
459                                         "Attempting compliance mode recovery");
460                         hcd = xhci->shared_hcd;
461
462                         if (hcd->state == HC_STATE_SUSPENDED)
463                                 usb_hcd_resume_root_hub(hcd);
464
465                         usb_hcd_poll_rh_status(hcd);
466                 }
467         }
468
469         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
470                 mod_timer(&xhci->comp_mode_recovery_timer,
471                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 }
473
474 /*
475  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
476  * that causes ports behind that hardware to enter compliance mode sometimes.
477  * The quirk creates a timer that polls every 2 seconds the link state of
478  * each host controller's port and recovers it by issuing a Warm reset
479  * if Compliance mode is detected, otherwise the port will become "dead" (no
480  * device connections or disconnections will be detected anymore). Becasue no
481  * status event is generated when entering compliance mode (per xhci spec),
482  * this quirk is needed on systems that have the failing hardware installed.
483  */
484 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
485 {
486         xhci->port_status_u0 = 0;
487         setup_timer(&xhci->comp_mode_recovery_timer,
488                     compliance_mode_recovery, (unsigned long)xhci);
489         xhci->comp_mode_recovery_timer.expires = jiffies +
490                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
491
492         set_timer_slack(&xhci->comp_mode_recovery_timer,
493                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
494         add_timer(&xhci->comp_mode_recovery_timer);
495         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496                         "Compliance mode recovery timer initialized");
497 }
498
499 /*
500  * This function identifies the systems that have installed the SN65LVPE502CP
501  * USB3.0 re-driver and that need the Compliance Mode Quirk.
502  * Systems:
503  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
504  */
505 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
506 {
507         const char *dmi_product_name, *dmi_sys_vendor;
508
509         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
510         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
511         if (!dmi_product_name || !dmi_sys_vendor)
512                 return false;
513
514         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
515                 return false;
516
517         if (strstr(dmi_product_name, "Z420") ||
518                         strstr(dmi_product_name, "Z620") ||
519                         strstr(dmi_product_name, "Z820") ||
520                         strstr(dmi_product_name, "Z1 Workstation"))
521                 return true;
522
523         return false;
524 }
525
526 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
527 {
528         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
529 }
530
531
532 /*
533  * Initialize memory for HCD and xHC (one-time init).
534  *
535  * Program the PAGESIZE register, initialize the device context array, create
536  * device contexts (?), set up a command ring segment (or two?), create event
537  * ring (one for now).
538  */
539 int xhci_init(struct usb_hcd *hcd)
540 {
541         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
542         int retval = 0;
543
544         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
545         spin_lock_init(&xhci->lock);
546         if (xhci->hci_version == 0x95 && link_quirk) {
547                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
548                                 "QUIRK: Not clearing Link TRB chain bits.");
549                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
550         } else {
551                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552                                 "xHCI doesn't need link TRB QUIRK");
553         }
554         retval = xhci_mem_init(xhci, GFP_KERNEL);
555         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
556
557         /* Initializing Compliance Mode Recovery Data If Needed */
558         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
559                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
560                 compliance_mode_recovery_timer_init(xhci);
561         }
562
563         return retval;
564 }
565
566 /*-------------------------------------------------------------------------*/
567
568
569 static int xhci_run_finished(struct xhci_hcd *xhci)
570 {
571         if (xhci_start(xhci)) {
572                 xhci_halt(xhci);
573                 return -ENODEV;
574         }
575         xhci->shared_hcd->state = HC_STATE_RUNNING;
576         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
577
578         if (xhci->quirks & XHCI_NEC_HOST)
579                 xhci_ring_cmd_db(xhci);
580
581         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
582                         "Finished xhci_run for USB3 roothub");
583         return 0;
584 }
585
586 /*
587  * Start the HC after it was halted.
588  *
589  * This function is called by the USB core when the HC driver is added.
590  * Its opposite is xhci_stop().
591  *
592  * xhci_init() must be called once before this function can be called.
593  * Reset the HC, enable device slot contexts, program DCBAAP, and
594  * set command ring pointer and event ring pointer.
595  *
596  * Setup MSI-X vectors and enable interrupts.
597  */
598 int xhci_run(struct usb_hcd *hcd)
599 {
600         u32 temp;
601         u64 temp_64;
602         int ret;
603         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
604
605         /* Start the xHCI host controller running only after the USB 2.0 roothub
606          * is setup.
607          */
608
609         hcd->uses_new_polling = 1;
610         if (!usb_hcd_is_primary_hcd(hcd))
611                 return xhci_run_finished(xhci);
612
613         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
614
615         ret = xhci_try_enable_msi(hcd);
616         if (ret)
617                 return ret;
618
619         xhci_dbg(xhci, "Command ring memory map follows:\n");
620         xhci_debug_ring(xhci, xhci->cmd_ring);
621         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
622         xhci_dbg_cmd_ptrs(xhci);
623
624         xhci_dbg(xhci, "ERST memory map follows:\n");
625         xhci_dbg_erst(xhci, &xhci->erst);
626         xhci_dbg(xhci, "Event ring:\n");
627         xhci_debug_ring(xhci, xhci->event_ring);
628         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
629         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
630         temp_64 &= ~ERST_PTR_MASK;
631         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
632                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
633
634         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635                         "// Set the interrupt modulation register");
636         temp = readl(&xhci->ir_set->irq_control);
637         temp &= ~ER_IRQ_INTERVAL_MASK;
638         temp |= (u32) 160;
639         writel(temp, &xhci->ir_set->irq_control);
640
641         /* Set the HCD state before we enable the irqs */
642         temp = readl(&xhci->op_regs->command);
643         temp |= (CMD_EIE);
644         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
645                         "// Enable interrupts, cmd = 0x%x.", temp);
646         writel(temp, &xhci->op_regs->command);
647
648         temp = readl(&xhci->ir_set->irq_pending);
649         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
650                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
651                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
652         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
653         xhci_print_ir_set(xhci, 0);
654
655         if (xhci->quirks & XHCI_NEC_HOST) {
656                 struct xhci_command *command;
657                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
658                 if (!command)
659                         return -ENOMEM;
660                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
661                                 TRB_TYPE(TRB_NEC_GET_FW));
662         }
663         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664                         "Finished xhci_run for USB2 roothub");
665         return 0;
666 }
667 EXPORT_SYMBOL_GPL(xhci_run);
668
669 /*
670  * Stop xHCI driver.
671  *
672  * This function is called by the USB core when the HC driver is removed.
673  * Its opposite is xhci_run().
674  *
675  * Disable device contexts, disable IRQs, and quiesce the HC.
676  * Reset the HC, finish any completed transactions, and cleanup memory.
677  */
678 void xhci_stop(struct usb_hcd *hcd)
679 {
680         u32 temp;
681         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
682
683         mutex_lock(&xhci->mutex);
684
685         if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
686                 spin_lock_irq(&xhci->lock);
687
688                 xhci->xhc_state |= XHCI_STATE_HALTED;
689                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
690                 xhci_halt(xhci);
691                 xhci_reset(xhci);
692
693                 spin_unlock_irq(&xhci->lock);
694         }
695
696         if (!usb_hcd_is_primary_hcd(hcd)) {
697                 mutex_unlock(&xhci->mutex);
698                 return;
699         }
700
701         xhci_cleanup_msix(xhci);
702
703         /* Deleting Compliance Mode Recovery Timer */
704         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
705                         (!(xhci_all_ports_seen_u0(xhci)))) {
706                 del_timer_sync(&xhci->comp_mode_recovery_timer);
707                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
708                                 "%s: compliance mode recovery timer deleted",
709                                 __func__);
710         }
711
712         if (xhci->quirks & XHCI_AMD_PLL_FIX)
713                 usb_amd_dev_put();
714
715         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
716                         "// Disabling event ring interrupts");
717         temp = readl(&xhci->op_regs->status);
718         writel(temp & ~STS_EINT, &xhci->op_regs->status);
719         temp = readl(&xhci->ir_set->irq_pending);
720         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
721         xhci_print_ir_set(xhci, 0);
722
723         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
724         xhci_mem_cleanup(xhci);
725         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
726                         "xhci_stop completed - status = %x",
727                         readl(&xhci->op_regs->status));
728         mutex_unlock(&xhci->mutex);
729 }
730
731 /*
732  * Shutdown HC (not bus-specific)
733  *
734  * This is called when the machine is rebooting or halting.  We assume that the
735  * machine will be powered off, and the HC's internal state will be reset.
736  * Don't bother to free memory.
737  *
738  * This will only ever be called with the main usb_hcd (the USB3 roothub).
739  */
740 void xhci_shutdown(struct usb_hcd *hcd)
741 {
742         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
743
744         if (!hcd->rh_registered)
745                 return;
746
747         /* Don't poll the roothubs on shutdown */
748         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
749         del_timer_sync(&hcd->rh_timer);
750         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
751         del_timer_sync(&xhci->shared_hcd->rh_timer);
752
753         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
754                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
755
756         spin_lock_irq(&xhci->lock);
757         xhci_halt(xhci);
758         /* Workaround for spurious wakeups at shutdown with HSW */
759         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
760                 xhci_reset(xhci);
761         spin_unlock_irq(&xhci->lock);
762
763         xhci_cleanup_msix(xhci);
764
765         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
766                         "xhci_shutdown completed - status = %x",
767                         readl(&xhci->op_regs->status));
768
769         /* Yet another workaround for spurious wakeups at shutdown with HSW */
770         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
771                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
772 }
773
774 #ifdef CONFIG_PM
775 static void xhci_save_registers(struct xhci_hcd *xhci)
776 {
777         xhci->s3.command = readl(&xhci->op_regs->command);
778         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
779         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
780         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
781         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
782         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
783         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
784         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
785         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
786 }
787
788 static void xhci_restore_registers(struct xhci_hcd *xhci)
789 {
790         writel(xhci->s3.command, &xhci->op_regs->command);
791         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
792         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
793         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
794         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
795         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
796         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
797         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
798         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
799 }
800
801 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
802 {
803         u64     val_64;
804
805         /* step 2: initialize command ring buffer */
806         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
807         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
808                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
809                                       xhci->cmd_ring->dequeue) &
810                  (u64) ~CMD_RING_RSVD_BITS) |
811                 xhci->cmd_ring->cycle_state;
812         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
813                         "// Setting command ring address to 0x%llx",
814                         (long unsigned long) val_64);
815         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
816 }
817
818 /*
819  * The whole command ring must be cleared to zero when we suspend the host.
820  *
821  * The host doesn't save the command ring pointer in the suspend well, so we
822  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
823  * aligned, because of the reserved bits in the command ring dequeue pointer
824  * register.  Therefore, we can't just set the dequeue pointer back in the
825  * middle of the ring (TRBs are 16-byte aligned).
826  */
827 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
828 {
829         struct xhci_ring *ring;
830         struct xhci_segment *seg;
831
832         ring = xhci->cmd_ring;
833         seg = ring->deq_seg;
834         do {
835                 memset(seg->trbs, 0,
836                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
837                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
838                         cpu_to_le32(~TRB_CYCLE);
839                 seg = seg->next;
840         } while (seg != ring->deq_seg);
841
842         /* Reset the software enqueue and dequeue pointers */
843         ring->deq_seg = ring->first_seg;
844         ring->dequeue = ring->first_seg->trbs;
845         ring->enq_seg = ring->deq_seg;
846         ring->enqueue = ring->dequeue;
847
848         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
849         /*
850          * Ring is now zeroed, so the HW should look for change of ownership
851          * when the cycle bit is set to 1.
852          */
853         ring->cycle_state = 1;
854
855         /*
856          * Reset the hardware dequeue pointer.
857          * Yes, this will need to be re-written after resume, but we're paranoid
858          * and want to make sure the hardware doesn't access bogus memory
859          * because, say, the BIOS or an SMI started the host without changing
860          * the command ring pointers.
861          */
862         xhci_set_cmd_ring_deq(xhci);
863 }
864
865 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
866 {
867         int port_index;
868         __le32 __iomem **port_array;
869         unsigned long flags;
870         u32 t1, t2;
871
872         spin_lock_irqsave(&xhci->lock, flags);
873
874         /* disble usb3 ports Wake bits*/
875         port_index = xhci->num_usb3_ports;
876         port_array = xhci->usb3_ports;
877         while (port_index--) {
878                 t1 = readl(port_array[port_index]);
879                 t1 = xhci_port_state_to_neutral(t1);
880                 t2 = t1 & ~PORT_WAKE_BITS;
881                 if (t1 != t2)
882                         writel(t2, port_array[port_index]);
883         }
884
885         /* disble usb2 ports Wake bits*/
886         port_index = xhci->num_usb2_ports;
887         port_array = xhci->usb2_ports;
888         while (port_index--) {
889                 t1 = readl(port_array[port_index]);
890                 t1 = xhci_port_state_to_neutral(t1);
891                 t2 = t1 & ~PORT_WAKE_BITS;
892                 if (t1 != t2)
893                         writel(t2, port_array[port_index]);
894         }
895
896         spin_unlock_irqrestore(&xhci->lock, flags);
897 }
898
899 /*
900  * Stop HC (not bus-specific)
901  *
902  * This is called when the machine transition into S3/S4 mode.
903  *
904  */
905 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
906 {
907         int                     rc = 0;
908         unsigned int            delay = XHCI_MAX_HALT_USEC;
909         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
910         u32                     command;
911
912         if (!hcd->state)
913                 return 0;
914
915         if (hcd->state != HC_STATE_SUSPENDED ||
916                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
917                 return -EINVAL;
918
919         /* Clear root port wake on bits if wakeup not allowed. */
920         if (!do_wakeup)
921                 xhci_disable_port_wake_on_bits(xhci);
922
923         /* Don't poll the roothubs on bus suspend. */
924         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
925         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
926         del_timer_sync(&hcd->rh_timer);
927         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
928         del_timer_sync(&xhci->shared_hcd->rh_timer);
929
930         spin_lock_irq(&xhci->lock);
931         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
932         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
933         /* step 1: stop endpoint */
934         /* skipped assuming that port suspend has done */
935
936         /* step 2: clear Run/Stop bit */
937         command = readl(&xhci->op_regs->command);
938         command &= ~CMD_RUN;
939         writel(command, &xhci->op_regs->command);
940
941         /* Some chips from Fresco Logic need an extraordinary delay */
942         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
943
944         if (xhci_handshake(&xhci->op_regs->status,
945                       STS_HALT, STS_HALT, delay)) {
946                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
947                 spin_unlock_irq(&xhci->lock);
948                 return -ETIMEDOUT;
949         }
950         xhci_clear_command_ring(xhci);
951
952         /* step 3: save registers */
953         xhci_save_registers(xhci);
954
955         /* step 4: set CSS flag */
956         command = readl(&xhci->op_regs->command);
957         command |= CMD_CSS;
958         writel(command, &xhci->op_regs->command);
959         if (xhci_handshake(&xhci->op_regs->status,
960                                 STS_SAVE, 0, 10 * 1000)) {
961                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
962                 spin_unlock_irq(&xhci->lock);
963                 return -ETIMEDOUT;
964         }
965         spin_unlock_irq(&xhci->lock);
966
967         /*
968          * Deleting Compliance Mode Recovery Timer because the xHCI Host
969          * is about to be suspended.
970          */
971         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
972                         (!(xhci_all_ports_seen_u0(xhci)))) {
973                 del_timer_sync(&xhci->comp_mode_recovery_timer);
974                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
975                                 "%s: compliance mode recovery timer deleted",
976                                 __func__);
977         }
978
979         /* step 5: remove core well power */
980         /* synchronize irq when using MSI-X */
981         xhci_msix_sync_irqs(xhci);
982
983         return rc;
984 }
985 EXPORT_SYMBOL_GPL(xhci_suspend);
986
987 /*
988  * start xHC (not bus-specific)
989  *
990  * This is called when the machine transition from S3/S4 mode.
991  *
992  */
993 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
994 {
995         u32                     command, temp = 0, status;
996         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
997         struct usb_hcd          *secondary_hcd;
998         int                     retval = 0;
999         bool                    comp_timer_running = false;
1000
1001         if (!hcd->state)
1002                 return 0;
1003
1004         /* Wait a bit if either of the roothubs need to settle from the
1005          * transition into bus suspend.
1006          */
1007         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1008                         time_before(jiffies,
1009                                 xhci->bus_state[1].next_statechange))
1010                 msleep(100);
1011
1012         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1013         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1014
1015         spin_lock_irq(&xhci->lock);
1016         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1017                 hibernated = true;
1018
1019         if (!hibernated) {
1020                 /* step 1: restore register */
1021                 xhci_restore_registers(xhci);
1022                 /* step 2: initialize command ring buffer */
1023                 xhci_set_cmd_ring_deq(xhci);
1024                 /* step 3: restore state and start state*/
1025                 /* step 3: set CRS flag */
1026                 command = readl(&xhci->op_regs->command);
1027                 command |= CMD_CRS;
1028                 writel(command, &xhci->op_regs->command);
1029                 if (xhci_handshake(&xhci->op_regs->status,
1030                               STS_RESTORE, 0, 10 * 1000)) {
1031                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1032                         spin_unlock_irq(&xhci->lock);
1033                         return -ETIMEDOUT;
1034                 }
1035                 temp = readl(&xhci->op_regs->status);
1036         }
1037
1038         /* If restore operation fails, re-initialize the HC during resume */
1039         if ((temp & STS_SRE) || hibernated) {
1040
1041                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1042                                 !(xhci_all_ports_seen_u0(xhci))) {
1043                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1044                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1045                                 "Compliance Mode Recovery Timer deleted!");
1046                 }
1047
1048                 /* Let the USB core know _both_ roothubs lost power. */
1049                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1050                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1051
1052                 xhci_dbg(xhci, "Stop HCD\n");
1053                 xhci_halt(xhci);
1054                 xhci_reset(xhci);
1055                 spin_unlock_irq(&xhci->lock);
1056                 xhci_cleanup_msix(xhci);
1057
1058                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1059                 temp = readl(&xhci->op_regs->status);
1060                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1061                 temp = readl(&xhci->ir_set->irq_pending);
1062                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1063                 xhci_print_ir_set(xhci, 0);
1064
1065                 xhci_dbg(xhci, "cleaning up memory\n");
1066                 xhci_mem_cleanup(xhci);
1067                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1068                             readl(&xhci->op_regs->status));
1069
1070                 /* USB core calls the PCI reinit and start functions twice:
1071                  * first with the primary HCD, and then with the secondary HCD.
1072                  * If we don't do the same, the host will never be started.
1073                  */
1074                 if (!usb_hcd_is_primary_hcd(hcd))
1075                         secondary_hcd = hcd;
1076                 else
1077                         secondary_hcd = xhci->shared_hcd;
1078
1079                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1080                 retval = xhci_init(hcd->primary_hcd);
1081                 if (retval)
1082                         return retval;
1083                 comp_timer_running = true;
1084
1085                 xhci_dbg(xhci, "Start the primary HCD\n");
1086                 retval = xhci_run(hcd->primary_hcd);
1087                 if (!retval) {
1088                         xhci_dbg(xhci, "Start the secondary HCD\n");
1089                         retval = xhci_run(secondary_hcd);
1090                 }
1091                 hcd->state = HC_STATE_SUSPENDED;
1092                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1093                 goto done;
1094         }
1095
1096         /* step 4: set Run/Stop bit */
1097         command = readl(&xhci->op_regs->command);
1098         command |= CMD_RUN;
1099         writel(command, &xhci->op_regs->command);
1100         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1101                   0, 250 * 1000);
1102
1103         /* step 5: walk topology and initialize portsc,
1104          * portpmsc and portli
1105          */
1106         /* this is done in bus_resume */
1107
1108         /* step 6: restart each of the previously
1109          * Running endpoints by ringing their doorbells
1110          */
1111
1112         spin_unlock_irq(&xhci->lock);
1113
1114  done:
1115         if (retval == 0) {
1116                 /* Resume root hubs only when have pending events. */
1117                 status = readl(&xhci->op_regs->status);
1118                 if (status & STS_EINT) {
1119                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1120                         usb_hcd_resume_root_hub(hcd);
1121                 }
1122         }
1123
1124         /*
1125          * If system is subject to the Quirk, Compliance Mode Timer needs to
1126          * be re-initialized Always after a system resume. Ports are subject
1127          * to suffer the Compliance Mode issue again. It doesn't matter if
1128          * ports have entered previously to U0 before system's suspension.
1129          */
1130         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1131                 compliance_mode_recovery_timer_init(xhci);
1132
1133         /* Re-enable port polling. */
1134         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1135         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1136         usb_hcd_poll_rh_status(xhci->shared_hcd);
1137         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1138         usb_hcd_poll_rh_status(hcd);
1139
1140         return retval;
1141 }
1142 EXPORT_SYMBOL_GPL(xhci_resume);
1143 #endif  /* CONFIG_PM */
1144
1145 /*-------------------------------------------------------------------------*/
1146
1147 /**
1148  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1149  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1150  * value to right shift 1 for the bitmask.
1151  *
1152  * Index  = (epnum * 2) + direction - 1,
1153  * where direction = 0 for OUT, 1 for IN.
1154  * For control endpoints, the IN index is used (OUT index is unused), so
1155  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1156  */
1157 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1158 {
1159         unsigned int index;
1160         if (usb_endpoint_xfer_control(desc))
1161                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1162         else
1163                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1164                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1165         return index;
1166 }
1167
1168 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1169  * address from the XHCI endpoint index.
1170  */
1171 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1172 {
1173         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1174         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1175         return direction | number;
1176 }
1177
1178 /* Find the flag for this endpoint (for use in the control context).  Use the
1179  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1180  * bit 1, etc.
1181  */
1182 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1183 {
1184         return 1 << (xhci_get_endpoint_index(desc) + 1);
1185 }
1186
1187 /* Find the flag for this endpoint (for use in the control context).  Use the
1188  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1189  * bit 1, etc.
1190  */
1191 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1192 {
1193         return 1 << (ep_index + 1);
1194 }
1195
1196 /* Compute the last valid endpoint context index.  Basically, this is the
1197  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1198  * we find the most significant bit set in the added contexts flags.
1199  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1200  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1201  */
1202 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1203 {
1204         return fls(added_ctxs) - 1;
1205 }
1206
1207 /* Returns 1 if the arguments are OK;
1208  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1209  */
1210 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1211                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1212                 const char *func) {
1213         struct xhci_hcd *xhci;
1214         struct xhci_virt_device *virt_dev;
1215
1216         if (!hcd || (check_ep && !ep) || !udev) {
1217                 pr_debug("xHCI %s called with invalid args\n", func);
1218                 return -EINVAL;
1219         }
1220         if (!udev->parent) {
1221                 pr_debug("xHCI %s called for root hub\n", func);
1222                 return 0;
1223         }
1224
1225         xhci = hcd_to_xhci(hcd);
1226         if (check_virt_dev) {
1227                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1228                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1229                                         func);
1230                         return -EINVAL;
1231                 }
1232
1233                 virt_dev = xhci->devs[udev->slot_id];
1234                 if (virt_dev->udev != udev) {
1235                         xhci_dbg(xhci, "xHCI %s called with udev and "
1236                                           "virt_dev does not match\n", func);
1237                         return -EINVAL;
1238                 }
1239         }
1240
1241         if (xhci->xhc_state & XHCI_STATE_HALTED)
1242                 return -ENODEV;
1243
1244         return 1;
1245 }
1246
1247 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1248                 struct usb_device *udev, struct xhci_command *command,
1249                 bool ctx_change, bool must_succeed);
1250
1251 /*
1252  * Full speed devices may have a max packet size greater than 8 bytes, but the
1253  * USB core doesn't know that until it reads the first 8 bytes of the
1254  * descriptor.  If the usb_device's max packet size changes after that point,
1255  * we need to issue an evaluate context command and wait on it.
1256  */
1257 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1258                 unsigned int ep_index, struct urb *urb)
1259 {
1260         struct xhci_container_ctx *out_ctx;
1261         struct xhci_input_control_ctx *ctrl_ctx;
1262         struct xhci_ep_ctx *ep_ctx;
1263         struct xhci_command *command;
1264         int max_packet_size;
1265         int hw_max_packet_size;
1266         int ret = 0;
1267
1268         out_ctx = xhci->devs[slot_id]->out_ctx;
1269         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1270         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1271         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1272         if (hw_max_packet_size != max_packet_size) {
1273                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1274                                 "Max Packet Size for ep 0 changed.");
1275                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1276                                 "Max packet size in usb_device = %d",
1277                                 max_packet_size);
1278                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1279                                 "Max packet size in xHCI HW = %d",
1280                                 hw_max_packet_size);
1281                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1282                                 "Issuing evaluate context command.");
1283
1284                 /* Set up the input context flags for the command */
1285                 /* FIXME: This won't work if a non-default control endpoint
1286                  * changes max packet sizes.
1287                  */
1288
1289                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1290                 if (!command)
1291                         return -ENOMEM;
1292
1293                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1294                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1295                 if (!ctrl_ctx) {
1296                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1297                                         __func__);
1298                         ret = -ENOMEM;
1299                         goto command_cleanup;
1300                 }
1301                 /* Set up the modified control endpoint 0 */
1302                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1303                                 xhci->devs[slot_id]->out_ctx, ep_index);
1304
1305                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1306                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1307                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1308
1309                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1310                 ctrl_ctx->drop_flags = 0;
1311
1312                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1313                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1314                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1315                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1316
1317                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1318                                 true, false);
1319
1320                 /* Clean up the input context for later use by bandwidth
1321                  * functions.
1322                  */
1323                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1324 command_cleanup:
1325                 kfree(command->completion);
1326                 kfree(command);
1327         }
1328         return ret;
1329 }
1330
1331 /*
1332  * non-error returns are a promise to giveback() the urb later
1333  * we drop ownership so next owner (or urb unlink) can get it
1334  */
1335 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1336 {
1337         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1338         struct xhci_td *buffer;
1339         unsigned long flags;
1340         int ret = 0;
1341         unsigned int slot_id, ep_index;
1342         struct urb_priv *urb_priv;
1343         int size, i;
1344
1345         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1346                                         true, true, __func__) <= 0)
1347                 return -EINVAL;
1348
1349         slot_id = urb->dev->slot_id;
1350         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1351
1352         if (!HCD_HW_ACCESSIBLE(hcd)) {
1353                 if (!in_interrupt())
1354                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1355                 ret = -ESHUTDOWN;
1356                 goto exit;
1357         }
1358
1359         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1360                 size = urb->number_of_packets;
1361         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1362             urb->transfer_buffer_length > 0 &&
1363             urb->transfer_flags & URB_ZERO_PACKET &&
1364             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1365                 size = 2;
1366         else
1367                 size = 1;
1368
1369         urb_priv = kzalloc(sizeof(struct urb_priv) +
1370                                   size * sizeof(struct xhci_td *), mem_flags);
1371         if (!urb_priv)
1372                 return -ENOMEM;
1373
1374         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1375         if (!buffer) {
1376                 kfree(urb_priv);
1377                 return -ENOMEM;
1378         }
1379
1380         for (i = 0; i < size; i++) {
1381                 urb_priv->td[i] = buffer;
1382                 buffer++;
1383         }
1384
1385         urb_priv->length = size;
1386         urb_priv->td_cnt = 0;
1387         urb->hcpriv = urb_priv;
1388
1389         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1390                 /* Check to see if the max packet size for the default control
1391                  * endpoint changed during FS device enumeration
1392                  */
1393                 if (urb->dev->speed == USB_SPEED_FULL) {
1394                         ret = xhci_check_maxpacket(xhci, slot_id,
1395                                         ep_index, urb);
1396                         if (ret < 0) {
1397                                 xhci_urb_free_priv(urb_priv);
1398                                 urb->hcpriv = NULL;
1399                                 return ret;
1400                         }
1401                 }
1402
1403                 /* We have a spinlock and interrupts disabled, so we must pass
1404                  * atomic context to this function, which may allocate memory.
1405                  */
1406                 spin_lock_irqsave(&xhci->lock, flags);
1407                 if (xhci->xhc_state & XHCI_STATE_DYING)
1408                         goto dying;
1409                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1410                                 slot_id, ep_index);
1411                 if (ret)
1412                         goto free_priv;
1413                 spin_unlock_irqrestore(&xhci->lock, flags);
1414         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1415                 spin_lock_irqsave(&xhci->lock, flags);
1416                 if (xhci->xhc_state & XHCI_STATE_DYING)
1417                         goto dying;
1418                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1419                                 EP_GETTING_STREAMS) {
1420                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1421                                         "is transitioning to using streams.\n");
1422                         ret = -EINVAL;
1423                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1424                                 EP_GETTING_NO_STREAMS) {
1425                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1426                                         "is transitioning to "
1427                                         "not having streams.\n");
1428                         ret = -EINVAL;
1429                 } else {
1430                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1431                                         slot_id, ep_index);
1432                 }
1433                 if (ret)
1434                         goto free_priv;
1435                 spin_unlock_irqrestore(&xhci->lock, flags);
1436         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1437                 spin_lock_irqsave(&xhci->lock, flags);
1438                 if (xhci->xhc_state & XHCI_STATE_DYING)
1439                         goto dying;
1440                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1441                                 slot_id, ep_index);
1442                 if (ret)
1443                         goto free_priv;
1444                 spin_unlock_irqrestore(&xhci->lock, flags);
1445         } else {
1446                 spin_lock_irqsave(&xhci->lock, flags);
1447                 if (xhci->xhc_state & XHCI_STATE_DYING)
1448                         goto dying;
1449                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1450                                 slot_id, ep_index);
1451                 if (ret)
1452                         goto free_priv;
1453                 spin_unlock_irqrestore(&xhci->lock, flags);
1454         }
1455 exit:
1456         return ret;
1457 dying:
1458         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1459                         "non-responsive xHCI host.\n",
1460                         urb->ep->desc.bEndpointAddress, urb);
1461         ret = -ESHUTDOWN;
1462 free_priv:
1463         xhci_urb_free_priv(urb_priv);
1464         urb->hcpriv = NULL;
1465         spin_unlock_irqrestore(&xhci->lock, flags);
1466         return ret;
1467 }
1468
1469 /* Get the right ring for the given URB.
1470  * If the endpoint supports streams, boundary check the URB's stream ID.
1471  * If the endpoint doesn't support streams, return the singular endpoint ring.
1472  */
1473 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1474                 struct urb *urb)
1475 {
1476         unsigned int slot_id;
1477         unsigned int ep_index;
1478         unsigned int stream_id;
1479         struct xhci_virt_ep *ep;
1480
1481         slot_id = urb->dev->slot_id;
1482         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1483         stream_id = urb->stream_id;
1484         ep = &xhci->devs[slot_id]->eps[ep_index];
1485         /* Common case: no streams */
1486         if (!(ep->ep_state & EP_HAS_STREAMS))
1487                 return ep->ring;
1488
1489         if (stream_id == 0) {
1490                 xhci_warn(xhci,
1491                                 "WARN: Slot ID %u, ep index %u has streams, "
1492                                 "but URB has no stream ID.\n",
1493                                 slot_id, ep_index);
1494                 return NULL;
1495         }
1496
1497         if (stream_id < ep->stream_info->num_streams)
1498                 return ep->stream_info->stream_rings[stream_id];
1499
1500         xhci_warn(xhci,
1501                         "WARN: Slot ID %u, ep index %u has "
1502                         "stream IDs 1 to %u allocated, "
1503                         "but stream ID %u is requested.\n",
1504                         slot_id, ep_index,
1505                         ep->stream_info->num_streams - 1,
1506                         stream_id);
1507         return NULL;
1508 }
1509
1510 /*
1511  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1512  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1513  * should pick up where it left off in the TD, unless a Set Transfer Ring
1514  * Dequeue Pointer is issued.
1515  *
1516  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1517  * the ring.  Since the ring is a contiguous structure, they can't be physically
1518  * removed.  Instead, there are two options:
1519  *
1520  *  1) If the HC is in the middle of processing the URB to be canceled, we
1521  *     simply move the ring's dequeue pointer past those TRBs using the Set
1522  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1523  *     when drivers timeout on the last submitted URB and attempt to cancel.
1524  *
1525  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1526  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1527  *     HC will need to invalidate the any TRBs it has cached after the stop
1528  *     endpoint command, as noted in the xHCI 0.95 errata.
1529  *
1530  *  3) The TD may have completed by the time the Stop Endpoint Command
1531  *     completes, so software needs to handle that case too.
1532  *
1533  * This function should protect against the TD enqueueing code ringing the
1534  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1535  * It also needs to account for multiple cancellations on happening at the same
1536  * time for the same endpoint.
1537  *
1538  * Note that this function can be called in any context, or so says
1539  * usb_hcd_unlink_urb()
1540  */
1541 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1542 {
1543         unsigned long flags;
1544         int ret, i;
1545         u32 temp;
1546         struct xhci_hcd *xhci;
1547         struct urb_priv *urb_priv;
1548         struct xhci_td *td;
1549         unsigned int ep_index;
1550         struct xhci_ring *ep_ring;
1551         struct xhci_virt_ep *ep;
1552         struct xhci_command *command;
1553
1554         xhci = hcd_to_xhci(hcd);
1555         spin_lock_irqsave(&xhci->lock, flags);
1556         /* Make sure the URB hasn't completed or been unlinked already */
1557         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1558         if (ret || !urb->hcpriv)
1559                 goto done;
1560         temp = readl(&xhci->op_regs->status);
1561         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1562                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1563                                 "HW died, freeing TD.");
1564                 urb_priv = urb->hcpriv;
1565                 for (i = urb_priv->td_cnt;
1566                      i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1567                      i++) {
1568                         td = urb_priv->td[i];
1569                         if (!list_empty(&td->td_list))
1570                                 list_del_init(&td->td_list);
1571                         if (!list_empty(&td->cancelled_td_list))
1572                                 list_del_init(&td->cancelled_td_list);
1573                 }
1574
1575                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1576                 spin_unlock_irqrestore(&xhci->lock, flags);
1577                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1578                 xhci_urb_free_priv(urb_priv);
1579                 return ret;
1580         }
1581         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1582                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1583                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1584                                 "Ep 0x%x: URB %p to be canceled on "
1585                                 "non-responsive xHCI host.",
1586                                 urb->ep->desc.bEndpointAddress, urb);
1587                 /* Let the stop endpoint command watchdog timer (which set this
1588                  * state) finish cleaning up the endpoint TD lists.  We must
1589                  * have caught it in the middle of dropping a lock and giving
1590                  * back an URB.
1591                  */
1592                 goto done;
1593         }
1594
1595         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1596         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1597         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1598         if (!ep_ring) {
1599                 ret = -EINVAL;
1600                 goto done;
1601         }
1602
1603         urb_priv = urb->hcpriv;
1604         i = urb_priv->td_cnt;
1605         if (i < urb_priv->length)
1606                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1607                                 "Cancel URB %p, dev %s, ep 0x%x, "
1608                                 "starting at offset 0x%llx",
1609                                 urb, urb->dev->devpath,
1610                                 urb->ep->desc.bEndpointAddress,
1611                                 (unsigned long long) xhci_trb_virt_to_dma(
1612                                         urb_priv->td[i]->start_seg,
1613                                         urb_priv->td[i]->first_trb));
1614
1615         for (; i < urb_priv->length; i++) {
1616                 td = urb_priv->td[i];
1617                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1618         }
1619
1620         /* Queue a stop endpoint command, but only if this is
1621          * the first cancellation to be handled.
1622          */
1623         if (!(ep->ep_state & EP_HALT_PENDING)) {
1624                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1625                 if (!command) {
1626                         ret = -ENOMEM;
1627                         goto done;
1628                 }
1629                 ep->ep_state |= EP_HALT_PENDING;
1630                 ep->stop_cmds_pending++;
1631                 ep->stop_cmd_timer.expires = jiffies +
1632                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1633                 add_timer(&ep->stop_cmd_timer);
1634                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1635                                          ep_index, 0);
1636                 xhci_ring_cmd_db(xhci);
1637         }
1638 done:
1639         spin_unlock_irqrestore(&xhci->lock, flags);
1640         return ret;
1641 }
1642
1643 /* Drop an endpoint from a new bandwidth configuration for this device.
1644  * Only one call to this function is allowed per endpoint before
1645  * check_bandwidth() or reset_bandwidth() must be called.
1646  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1647  * add the endpoint to the schedule with possibly new parameters denoted by a
1648  * different endpoint descriptor in usb_host_endpoint.
1649  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1650  * not allowed.
1651  *
1652  * The USB core will not allow URBs to be queued to an endpoint that is being
1653  * disabled, so there's no need for mutual exclusion to protect
1654  * the xhci->devs[slot_id] structure.
1655  */
1656 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1657                 struct usb_host_endpoint *ep)
1658 {
1659         struct xhci_hcd *xhci;
1660         struct xhci_container_ctx *in_ctx, *out_ctx;
1661         struct xhci_input_control_ctx *ctrl_ctx;
1662         unsigned int ep_index;
1663         struct xhci_ep_ctx *ep_ctx;
1664         u32 drop_flag;
1665         u32 new_add_flags, new_drop_flags;
1666         int ret;
1667
1668         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1669         if (ret <= 0)
1670                 return ret;
1671         xhci = hcd_to_xhci(hcd);
1672         if (xhci->xhc_state & XHCI_STATE_DYING)
1673                 return -ENODEV;
1674
1675         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1676         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1677         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1678                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1679                                 __func__, drop_flag);
1680                 return 0;
1681         }
1682
1683         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1684         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1685         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1686         if (!ctrl_ctx) {
1687                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1688                                 __func__);
1689                 return 0;
1690         }
1691
1692         ep_index = xhci_get_endpoint_index(&ep->desc);
1693         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1694         /* If the HC already knows the endpoint is disabled,
1695          * or the HCD has noted it is disabled, ignore this request
1696          */
1697         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1698              cpu_to_le32(EP_STATE_DISABLED)) ||
1699             le32_to_cpu(ctrl_ctx->drop_flags) &
1700             xhci_get_endpoint_flag(&ep->desc)) {
1701                 /* Do not warn when called after a usb_device_reset */
1702                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1703                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1704                                   __func__, ep);
1705                 return 0;
1706         }
1707
1708         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1709         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1710
1711         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1712         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1713
1714         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1715
1716         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1717                         (unsigned int) ep->desc.bEndpointAddress,
1718                         udev->slot_id,
1719                         (unsigned int) new_drop_flags,
1720                         (unsigned int) new_add_flags);
1721         return 0;
1722 }
1723
1724 /* Add an endpoint to a new possible bandwidth configuration for this device.
1725  * Only one call to this function is allowed per endpoint before
1726  * check_bandwidth() or reset_bandwidth() must be called.
1727  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1728  * add the endpoint to the schedule with possibly new parameters denoted by a
1729  * different endpoint descriptor in usb_host_endpoint.
1730  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1731  * not allowed.
1732  *
1733  * The USB core will not allow URBs to be queued to an endpoint until the
1734  * configuration or alt setting is installed in the device, so there's no need
1735  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1736  */
1737 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1738                 struct usb_host_endpoint *ep)
1739 {
1740         struct xhci_hcd *xhci;
1741         struct xhci_container_ctx *in_ctx;
1742         unsigned int ep_index;
1743         struct xhci_input_control_ctx *ctrl_ctx;
1744         u32 added_ctxs;
1745         u32 new_add_flags, new_drop_flags;
1746         struct xhci_virt_device *virt_dev;
1747         int ret = 0;
1748
1749         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1750         if (ret <= 0) {
1751                 /* So we won't queue a reset ep command for a root hub */
1752                 ep->hcpriv = NULL;
1753                 return ret;
1754         }
1755         xhci = hcd_to_xhci(hcd);
1756         if (xhci->xhc_state & XHCI_STATE_DYING)
1757                 return -ENODEV;
1758
1759         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1760         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1761                 /* FIXME when we have to issue an evaluate endpoint command to
1762                  * deal with ep0 max packet size changing once we get the
1763                  * descriptors
1764                  */
1765                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1766                                 __func__, added_ctxs);
1767                 return 0;
1768         }
1769
1770         virt_dev = xhci->devs[udev->slot_id];
1771         in_ctx = virt_dev->in_ctx;
1772         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1773         if (!ctrl_ctx) {
1774                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1775                                 __func__);
1776                 return 0;
1777         }
1778
1779         ep_index = xhci_get_endpoint_index(&ep->desc);
1780         /* If this endpoint is already in use, and the upper layers are trying
1781          * to add it again without dropping it, reject the addition.
1782          */
1783         if (virt_dev->eps[ep_index].ring &&
1784                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1785                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1786                                 "without dropping it.\n",
1787                                 (unsigned int) ep->desc.bEndpointAddress);
1788                 return -EINVAL;
1789         }
1790
1791         /* If the HCD has already noted the endpoint is enabled,
1792          * ignore this request.
1793          */
1794         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1795                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1796                                 __func__, ep);
1797                 return 0;
1798         }
1799
1800         /*
1801          * Configuration and alternate setting changes must be done in
1802          * process context, not interrupt context (or so documenation
1803          * for usb_set_interface() and usb_set_configuration() claim).
1804          */
1805         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1806                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1807                                 __func__, ep->desc.bEndpointAddress);
1808                 return -ENOMEM;
1809         }
1810
1811         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1812         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1813
1814         /* If xhci_endpoint_disable() was called for this endpoint, but the
1815          * xHC hasn't been notified yet through the check_bandwidth() call,
1816          * this re-adds a new state for the endpoint from the new endpoint
1817          * descriptors.  We must drop and re-add this endpoint, so we leave the
1818          * drop flags alone.
1819          */
1820         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1821
1822         /* Store the usb_device pointer for later use */
1823         ep->hcpriv = udev;
1824
1825         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1826                         (unsigned int) ep->desc.bEndpointAddress,
1827                         udev->slot_id,
1828                         (unsigned int) new_drop_flags,
1829                         (unsigned int) new_add_flags);
1830         return 0;
1831 }
1832
1833 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1834 {
1835         struct xhci_input_control_ctx *ctrl_ctx;
1836         struct xhci_ep_ctx *ep_ctx;
1837         struct xhci_slot_ctx *slot_ctx;
1838         int i;
1839
1840         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1841         if (!ctrl_ctx) {
1842                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1843                                 __func__);
1844                 return;
1845         }
1846
1847         /* When a device's add flag and drop flag are zero, any subsequent
1848          * configure endpoint command will leave that endpoint's state
1849          * untouched.  Make sure we don't leave any old state in the input
1850          * endpoint contexts.
1851          */
1852         ctrl_ctx->drop_flags = 0;
1853         ctrl_ctx->add_flags = 0;
1854         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1855         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1856         /* Endpoint 0 is always valid */
1857         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1858         for (i = 1; i < 31; ++i) {
1859                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1860                 ep_ctx->ep_info = 0;
1861                 ep_ctx->ep_info2 = 0;
1862                 ep_ctx->deq = 0;
1863                 ep_ctx->tx_info = 0;
1864         }
1865 }
1866
1867 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1868                 struct usb_device *udev, u32 *cmd_status)
1869 {
1870         int ret;
1871
1872         switch (*cmd_status) {
1873         case COMP_CMD_ABORT:
1874         case COMP_CMD_STOP:
1875                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1876                 ret = -ETIME;
1877                 break;
1878         case COMP_ENOMEM:
1879                 dev_warn(&udev->dev,
1880                          "Not enough host controller resources for new device state.\n");
1881                 ret = -ENOMEM;
1882                 /* FIXME: can we allocate more resources for the HC? */
1883                 break;
1884         case COMP_BW_ERR:
1885         case COMP_2ND_BW_ERR:
1886                 dev_warn(&udev->dev,
1887                          "Not enough bandwidth for new device state.\n");
1888                 ret = -ENOSPC;
1889                 /* FIXME: can we go back to the old state? */
1890                 break;
1891         case COMP_TRB_ERR:
1892                 /* the HCD set up something wrong */
1893                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1894                                 "add flag = 1, "
1895                                 "and endpoint is not disabled.\n");
1896                 ret = -EINVAL;
1897                 break;
1898         case COMP_DEV_ERR:
1899                 dev_warn(&udev->dev,
1900                          "ERROR: Incompatible device for endpoint configure command.\n");
1901                 ret = -ENODEV;
1902                 break;
1903         case COMP_SUCCESS:
1904                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1905                                 "Successful Endpoint Configure command");
1906                 ret = 0;
1907                 break;
1908         default:
1909                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1910                                 *cmd_status);
1911                 ret = -EINVAL;
1912                 break;
1913         }
1914         return ret;
1915 }
1916
1917 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1918                 struct usb_device *udev, u32 *cmd_status)
1919 {
1920         int ret;
1921         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1922
1923         switch (*cmd_status) {
1924         case COMP_CMD_ABORT:
1925         case COMP_CMD_STOP:
1926                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1927                 ret = -ETIME;
1928                 break;
1929         case COMP_EINVAL:
1930                 dev_warn(&udev->dev,
1931                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1932                 ret = -EINVAL;
1933                 break;
1934         case COMP_EBADSLT:
1935                 dev_warn(&udev->dev,
1936                         "WARN: slot not enabled for evaluate context command.\n");
1937                 ret = -EINVAL;
1938                 break;
1939         case COMP_CTX_STATE:
1940                 dev_warn(&udev->dev,
1941                         "WARN: invalid context state for evaluate context command.\n");
1942                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1943                 ret = -EINVAL;
1944                 break;
1945         case COMP_DEV_ERR:
1946                 dev_warn(&udev->dev,
1947                         "ERROR: Incompatible device for evaluate context command.\n");
1948                 ret = -ENODEV;
1949                 break;
1950         case COMP_MEL_ERR:
1951                 /* Max Exit Latency too large error */
1952                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1953                 ret = -EINVAL;
1954                 break;
1955         case COMP_SUCCESS:
1956                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1957                                 "Successful evaluate context command");
1958                 ret = 0;
1959                 break;
1960         default:
1961                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1962                         *cmd_status);
1963                 ret = -EINVAL;
1964                 break;
1965         }
1966         return ret;
1967 }
1968
1969 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1970                 struct xhci_input_control_ctx *ctrl_ctx)
1971 {
1972         u32 valid_add_flags;
1973         u32 valid_drop_flags;
1974
1975         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1976          * (bit 1).  The default control endpoint is added during the Address
1977          * Device command and is never removed until the slot is disabled.
1978          */
1979         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1980         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1981
1982         /* Use hweight32 to count the number of ones in the add flags, or
1983          * number of endpoints added.  Don't count endpoints that are changed
1984          * (both added and dropped).
1985          */
1986         return hweight32(valid_add_flags) -
1987                 hweight32(valid_add_flags & valid_drop_flags);
1988 }
1989
1990 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1991                 struct xhci_input_control_ctx *ctrl_ctx)
1992 {
1993         u32 valid_add_flags;
1994         u32 valid_drop_flags;
1995
1996         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1997         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1998
1999         return hweight32(valid_drop_flags) -
2000                 hweight32(valid_add_flags & valid_drop_flags);
2001 }
2002
2003 /*
2004  * We need to reserve the new number of endpoints before the configure endpoint
2005  * command completes.  We can't subtract the dropped endpoints from the number
2006  * of active endpoints until the command completes because we can oversubscribe
2007  * the host in this case:
2008  *
2009  *  - the first configure endpoint command drops more endpoints than it adds
2010  *  - a second configure endpoint command that adds more endpoints is queued
2011  *  - the first configure endpoint command fails, so the config is unchanged
2012  *  - the second command may succeed, even though there isn't enough resources
2013  *
2014  * Must be called with xhci->lock held.
2015  */
2016 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2017                 struct xhci_input_control_ctx *ctrl_ctx)
2018 {
2019         u32 added_eps;
2020
2021         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2022         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2023                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2024                                 "Not enough ep ctxs: "
2025                                 "%u active, need to add %u, limit is %u.",
2026                                 xhci->num_active_eps, added_eps,
2027                                 xhci->limit_active_eps);
2028                 return -ENOMEM;
2029         }
2030         xhci->num_active_eps += added_eps;
2031         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2032                         "Adding %u ep ctxs, %u now active.", added_eps,
2033                         xhci->num_active_eps);
2034         return 0;
2035 }
2036
2037 /*
2038  * The configure endpoint was failed by the xHC for some other reason, so we
2039  * need to revert the resources that failed configuration would have used.
2040  *
2041  * Must be called with xhci->lock held.
2042  */
2043 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2044                 struct xhci_input_control_ctx *ctrl_ctx)
2045 {
2046         u32 num_failed_eps;
2047
2048         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2049         xhci->num_active_eps -= num_failed_eps;
2050         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2051                         "Removing %u failed ep ctxs, %u now active.",
2052                         num_failed_eps,
2053                         xhci->num_active_eps);
2054 }
2055
2056 /*
2057  * Now that the command has completed, clean up the active endpoint count by
2058  * subtracting out the endpoints that were dropped (but not changed).
2059  *
2060  * Must be called with xhci->lock held.
2061  */
2062 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2063                 struct xhci_input_control_ctx *ctrl_ctx)
2064 {
2065         u32 num_dropped_eps;
2066
2067         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2068         xhci->num_active_eps -= num_dropped_eps;
2069         if (num_dropped_eps)
2070                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2071                                 "Removing %u dropped ep ctxs, %u now active.",
2072                                 num_dropped_eps,
2073                                 xhci->num_active_eps);
2074 }
2075
2076 static unsigned int xhci_get_block_size(struct usb_device *udev)
2077 {
2078         switch (udev->speed) {
2079         case USB_SPEED_LOW:
2080         case USB_SPEED_FULL:
2081                 return FS_BLOCK;
2082         case USB_SPEED_HIGH:
2083                 return HS_BLOCK;
2084         case USB_SPEED_SUPER:
2085         case USB_SPEED_SUPER_PLUS:
2086                 return SS_BLOCK;
2087         case USB_SPEED_UNKNOWN:
2088         case USB_SPEED_WIRELESS:
2089         default:
2090                 /* Should never happen */
2091                 return 1;
2092         }
2093 }
2094
2095 static unsigned int
2096 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2097 {
2098         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2099                 return LS_OVERHEAD;
2100         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2101                 return FS_OVERHEAD;
2102         return HS_OVERHEAD;
2103 }
2104
2105 /* If we are changing a LS/FS device under a HS hub,
2106  * make sure (if we are activating a new TT) that the HS bus has enough
2107  * bandwidth for this new TT.
2108  */
2109 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2110                 struct xhci_virt_device *virt_dev,
2111                 int old_active_eps)
2112 {
2113         struct xhci_interval_bw_table *bw_table;
2114         struct xhci_tt_bw_info *tt_info;
2115
2116         /* Find the bandwidth table for the root port this TT is attached to. */
2117         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2118         tt_info = virt_dev->tt_info;
2119         /* If this TT already had active endpoints, the bandwidth for this TT
2120          * has already been added.  Removing all periodic endpoints (and thus
2121          * making the TT enactive) will only decrease the bandwidth used.
2122          */
2123         if (old_active_eps)
2124                 return 0;
2125         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2126                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2127                         return -ENOMEM;
2128                 return 0;
2129         }
2130         /* Not sure why we would have no new active endpoints...
2131          *
2132          * Maybe because of an Evaluate Context change for a hub update or a
2133          * control endpoint 0 max packet size change?
2134          * FIXME: skip the bandwidth calculation in that case.
2135          */
2136         return 0;
2137 }
2138
2139 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2140                 struct xhci_virt_device *virt_dev)
2141 {
2142         unsigned int bw_reserved;
2143
2144         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2145         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2146                 return -ENOMEM;
2147
2148         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2149         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2150                 return -ENOMEM;
2151
2152         return 0;
2153 }
2154
2155 /*
2156  * This algorithm is a very conservative estimate of the worst-case scheduling
2157  * scenario for any one interval.  The hardware dynamically schedules the
2158  * packets, so we can't tell which microframe could be the limiting factor in
2159  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2160  *
2161  * Obviously, we can't solve an NP complete problem to find the minimum worst
2162  * case scenario.  Instead, we come up with an estimate that is no less than
2163  * the worst case bandwidth used for any one microframe, but may be an
2164  * over-estimate.
2165  *
2166  * We walk the requirements for each endpoint by interval, starting with the
2167  * smallest interval, and place packets in the schedule where there is only one
2168  * possible way to schedule packets for that interval.  In order to simplify
2169  * this algorithm, we record the largest max packet size for each interval, and
2170  * assume all packets will be that size.
2171  *
2172  * For interval 0, we obviously must schedule all packets for each interval.
2173  * The bandwidth for interval 0 is just the amount of data to be transmitted
2174  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2175  * the number of packets).
2176  *
2177  * For interval 1, we have two possible microframes to schedule those packets
2178  * in.  For this algorithm, if we can schedule the same number of packets for
2179  * each possible scheduling opportunity (each microframe), we will do so.  The
2180  * remaining number of packets will be saved to be transmitted in the gaps in
2181  * the next interval's scheduling sequence.
2182  *
2183  * As we move those remaining packets to be scheduled with interval 2 packets,
2184  * we have to double the number of remaining packets to transmit.  This is
2185  * because the intervals are actually powers of 2, and we would be transmitting
2186  * the previous interval's packets twice in this interval.  We also have to be
2187  * sure that when we look at the largest max packet size for this interval, we
2188  * also look at the largest max packet size for the remaining packets and take
2189  * the greater of the two.
2190  *
2191  * The algorithm continues to evenly distribute packets in each scheduling
2192  * opportunity, and push the remaining packets out, until we get to the last
2193  * interval.  Then those packets and their associated overhead are just added
2194  * to the bandwidth used.
2195  */
2196 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2197                 struct xhci_virt_device *virt_dev,
2198                 int old_active_eps)
2199 {
2200         unsigned int bw_reserved;
2201         unsigned int max_bandwidth;
2202         unsigned int bw_used;
2203         unsigned int block_size;
2204         struct xhci_interval_bw_table *bw_table;
2205         unsigned int packet_size = 0;
2206         unsigned int overhead = 0;
2207         unsigned int packets_transmitted = 0;
2208         unsigned int packets_remaining = 0;
2209         unsigned int i;
2210
2211         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2212                 return xhci_check_ss_bw(xhci, virt_dev);
2213
2214         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2215                 max_bandwidth = HS_BW_LIMIT;
2216                 /* Convert percent of bus BW reserved to blocks reserved */
2217                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2218         } else {
2219                 max_bandwidth = FS_BW_LIMIT;
2220                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2221         }
2222
2223         bw_table = virt_dev->bw_table;
2224         /* We need to translate the max packet size and max ESIT payloads into
2225          * the units the hardware uses.
2226          */
2227         block_size = xhci_get_block_size(virt_dev->udev);
2228
2229         /* If we are manipulating a LS/FS device under a HS hub, double check
2230          * that the HS bus has enough bandwidth if we are activing a new TT.
2231          */
2232         if (virt_dev->tt_info) {
2233                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2234                                 "Recalculating BW for rootport %u",
2235                                 virt_dev->real_port);
2236                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2237                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2238                                         "newly activated TT.\n");
2239                         return -ENOMEM;
2240                 }
2241                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2242                                 "Recalculating BW for TT slot %u port %u",
2243                                 virt_dev->tt_info->slot_id,
2244                                 virt_dev->tt_info->ttport);
2245         } else {
2246                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2247                                 "Recalculating BW for rootport %u",
2248                                 virt_dev->real_port);
2249         }
2250
2251         /* Add in how much bandwidth will be used for interval zero, or the
2252          * rounded max ESIT payload + number of packets * largest overhead.
2253          */
2254         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2255                 bw_table->interval_bw[0].num_packets *
2256                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2257
2258         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2259                 unsigned int bw_added;
2260                 unsigned int largest_mps;
2261                 unsigned int interval_overhead;
2262
2263                 /*
2264                  * How many packets could we transmit in this interval?
2265                  * If packets didn't fit in the previous interval, we will need
2266                  * to transmit that many packets twice within this interval.
2267                  */
2268                 packets_remaining = 2 * packets_remaining +
2269                         bw_table->interval_bw[i].num_packets;
2270
2271                 /* Find the largest max packet size of this or the previous
2272                  * interval.
2273                  */
2274                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2275                         largest_mps = 0;
2276                 else {
2277                         struct xhci_virt_ep *virt_ep;
2278                         struct list_head *ep_entry;
2279
2280                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2281                         virt_ep = list_entry(ep_entry,
2282                                         struct xhci_virt_ep, bw_endpoint_list);
2283                         /* Convert to blocks, rounding up */
2284                         largest_mps = DIV_ROUND_UP(
2285                                         virt_ep->bw_info.max_packet_size,
2286                                         block_size);
2287                 }
2288                 if (largest_mps > packet_size)
2289                         packet_size = largest_mps;
2290
2291                 /* Use the larger overhead of this or the previous interval. */
2292                 interval_overhead = xhci_get_largest_overhead(
2293                                 &bw_table->interval_bw[i]);
2294                 if (interval_overhead > overhead)
2295                         overhead = interval_overhead;
2296
2297                 /* How many packets can we evenly distribute across
2298                  * (1 << (i + 1)) possible scheduling opportunities?
2299                  */
2300                 packets_transmitted = packets_remaining >> (i + 1);
2301
2302                 /* Add in the bandwidth used for those scheduled packets */
2303                 bw_added = packets_transmitted * (overhead + packet_size);
2304
2305                 /* How many packets do we have remaining to transmit? */
2306                 packets_remaining = packets_remaining % (1 << (i + 1));
2307
2308                 /* What largest max packet size should those packets have? */
2309                 /* If we've transmitted all packets, don't carry over the
2310                  * largest packet size.
2311                  */
2312                 if (packets_remaining == 0) {
2313                         packet_size = 0;
2314                         overhead = 0;
2315                 } else if (packets_transmitted > 0) {
2316                         /* Otherwise if we do have remaining packets, and we've
2317                          * scheduled some packets in this interval, take the
2318                          * largest max packet size from endpoints with this
2319                          * interval.
2320                          */
2321                         packet_size = largest_mps;
2322                         overhead = interval_overhead;
2323                 }
2324                 /* Otherwise carry over packet_size and overhead from the last
2325                  * time we had a remainder.
2326                  */
2327                 bw_used += bw_added;
2328                 if (bw_used > max_bandwidth) {
2329                         xhci_warn(xhci, "Not enough bandwidth. "
2330                                         "Proposed: %u, Max: %u\n",
2331                                 bw_used, max_bandwidth);
2332                         return -ENOMEM;
2333                 }
2334         }
2335         /*
2336          * Ok, we know we have some packets left over after even-handedly
2337          * scheduling interval 15.  We don't know which microframes they will
2338          * fit into, so we over-schedule and say they will be scheduled every
2339          * microframe.
2340          */
2341         if (packets_remaining > 0)
2342                 bw_used += overhead + packet_size;
2343
2344         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2345                 unsigned int port_index = virt_dev->real_port - 1;
2346
2347                 /* OK, we're manipulating a HS device attached to a
2348                  * root port bandwidth domain.  Include the number of active TTs
2349                  * in the bandwidth used.
2350                  */
2351                 bw_used += TT_HS_OVERHEAD *
2352                         xhci->rh_bw[port_index].num_active_tts;
2353         }
2354
2355         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2356                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2357                 "Available: %u " "percent",
2358                 bw_used, max_bandwidth, bw_reserved,
2359                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2360                 max_bandwidth);
2361
2362         bw_used += bw_reserved;
2363         if (bw_used > max_bandwidth) {
2364                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2365                                 bw_used, max_bandwidth);
2366                 return -ENOMEM;
2367         }
2368
2369         bw_table->bw_used = bw_used;
2370         return 0;
2371 }
2372
2373 static bool xhci_is_async_ep(unsigned int ep_type)
2374 {
2375         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2376                                         ep_type != ISOC_IN_EP &&
2377                                         ep_type != INT_IN_EP);
2378 }
2379
2380 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2381 {
2382         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2383 }
2384
2385 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2386 {
2387         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2388
2389         if (ep_bw->ep_interval == 0)
2390                 return SS_OVERHEAD_BURST +
2391                         (ep_bw->mult * ep_bw->num_packets *
2392                                         (SS_OVERHEAD + mps));
2393         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2394                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2395                                 1 << ep_bw->ep_interval);
2396
2397 }
2398
2399 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2400                 struct xhci_bw_info *ep_bw,
2401                 struct xhci_interval_bw_table *bw_table,
2402                 struct usb_device *udev,
2403                 struct xhci_virt_ep *virt_ep,
2404                 struct xhci_tt_bw_info *tt_info)
2405 {
2406         struct xhci_interval_bw *interval_bw;
2407         int normalized_interval;
2408
2409         if (xhci_is_async_ep(ep_bw->type))
2410                 return;
2411
2412         if (udev->speed >= USB_SPEED_SUPER) {
2413                 if (xhci_is_sync_in_ep(ep_bw->type))
2414                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2415                                 xhci_get_ss_bw_consumed(ep_bw);
2416                 else
2417                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2418                                 xhci_get_ss_bw_consumed(ep_bw);
2419                 return;
2420         }
2421
2422         /* SuperSpeed endpoints never get added to intervals in the table, so
2423          * this check is only valid for HS/FS/LS devices.
2424          */
2425         if (list_empty(&virt_ep->bw_endpoint_list))
2426                 return;
2427         /* For LS/FS devices, we need to translate the interval expressed in
2428          * microframes to frames.
2429          */
2430         if (udev->speed == USB_SPEED_HIGH)
2431                 normalized_interval = ep_bw->ep_interval;
2432         else
2433                 normalized_interval = ep_bw->ep_interval - 3;
2434
2435         if (normalized_interval == 0)
2436                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2437         interval_bw = &bw_table->interval_bw[normalized_interval];
2438         interval_bw->num_packets -= ep_bw->num_packets;
2439         switch (udev->speed) {
2440         case USB_SPEED_LOW:
2441                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2442                 break;
2443         case USB_SPEED_FULL:
2444                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2445                 break;
2446         case USB_SPEED_HIGH:
2447                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2448                 break;
2449         case USB_SPEED_SUPER:
2450         case USB_SPEED_SUPER_PLUS:
2451         case USB_SPEED_UNKNOWN:
2452         case USB_SPEED_WIRELESS:
2453                 /* Should never happen because only LS/FS/HS endpoints will get
2454                  * added to the endpoint list.
2455                  */
2456                 return;
2457         }
2458         if (tt_info)
2459                 tt_info->active_eps -= 1;
2460         list_del_init(&virt_ep->bw_endpoint_list);
2461 }
2462
2463 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2464                 struct xhci_bw_info *ep_bw,
2465                 struct xhci_interval_bw_table *bw_table,
2466                 struct usb_device *udev,
2467                 struct xhci_virt_ep *virt_ep,
2468                 struct xhci_tt_bw_info *tt_info)
2469 {
2470         struct xhci_interval_bw *interval_bw;
2471         struct xhci_virt_ep *smaller_ep;
2472         int normalized_interval;
2473
2474         if (xhci_is_async_ep(ep_bw->type))
2475                 return;
2476
2477         if (udev->speed == USB_SPEED_SUPER) {
2478                 if (xhci_is_sync_in_ep(ep_bw->type))
2479                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2480                                 xhci_get_ss_bw_consumed(ep_bw);
2481                 else
2482                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2483                                 xhci_get_ss_bw_consumed(ep_bw);
2484                 return;
2485         }
2486
2487         /* For LS/FS devices, we need to translate the interval expressed in
2488          * microframes to frames.
2489          */
2490         if (udev->speed == USB_SPEED_HIGH)
2491                 normalized_interval = ep_bw->ep_interval;
2492         else
2493                 normalized_interval = ep_bw->ep_interval - 3;
2494
2495         if (normalized_interval == 0)
2496                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2497         interval_bw = &bw_table->interval_bw[normalized_interval];
2498         interval_bw->num_packets += ep_bw->num_packets;
2499         switch (udev->speed) {
2500         case USB_SPEED_LOW:
2501                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2502                 break;
2503         case USB_SPEED_FULL:
2504                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2505                 break;
2506         case USB_SPEED_HIGH:
2507                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2508                 break;
2509         case USB_SPEED_SUPER:
2510         case USB_SPEED_SUPER_PLUS:
2511         case USB_SPEED_UNKNOWN:
2512         case USB_SPEED_WIRELESS:
2513                 /* Should never happen because only LS/FS/HS endpoints will get
2514                  * added to the endpoint list.
2515                  */
2516                 return;
2517         }
2518
2519         if (tt_info)
2520                 tt_info->active_eps += 1;
2521         /* Insert the endpoint into the list, largest max packet size first. */
2522         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2523                         bw_endpoint_list) {
2524                 if (ep_bw->max_packet_size >=
2525                                 smaller_ep->bw_info.max_packet_size) {
2526                         /* Add the new ep before the smaller endpoint */
2527                         list_add_tail(&virt_ep->bw_endpoint_list,
2528                                         &smaller_ep->bw_endpoint_list);
2529                         return;
2530                 }
2531         }
2532         /* Add the new endpoint at the end of the list. */
2533         list_add_tail(&virt_ep->bw_endpoint_list,
2534                         &interval_bw->endpoints);
2535 }
2536
2537 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2538                 struct xhci_virt_device *virt_dev,
2539                 int old_active_eps)
2540 {
2541         struct xhci_root_port_bw_info *rh_bw_info;
2542         if (!virt_dev->tt_info)
2543                 return;
2544
2545         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2546         if (old_active_eps == 0 &&
2547                                 virt_dev->tt_info->active_eps != 0) {
2548                 rh_bw_info->num_active_tts += 1;
2549                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2550         } else if (old_active_eps != 0 &&
2551                                 virt_dev->tt_info->active_eps == 0) {
2552                 rh_bw_info->num_active_tts -= 1;
2553                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2554         }
2555 }
2556
2557 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2558                 struct xhci_virt_device *virt_dev,
2559                 struct xhci_container_ctx *in_ctx)
2560 {
2561         struct xhci_bw_info ep_bw_info[31];
2562         int i;
2563         struct xhci_input_control_ctx *ctrl_ctx;
2564         int old_active_eps = 0;
2565
2566         if (virt_dev->tt_info)
2567                 old_active_eps = virt_dev->tt_info->active_eps;
2568
2569         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2570         if (!ctrl_ctx) {
2571                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2572                                 __func__);
2573                 return -ENOMEM;
2574         }
2575
2576         for (i = 0; i < 31; i++) {
2577                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2578                         continue;
2579
2580                 /* Make a copy of the BW info in case we need to revert this */
2581                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2582                                 sizeof(ep_bw_info[i]));
2583                 /* Drop the endpoint from the interval table if the endpoint is
2584                  * being dropped or changed.
2585                  */
2586                 if (EP_IS_DROPPED(ctrl_ctx, i))
2587                         xhci_drop_ep_from_interval_table(xhci,
2588                                         &virt_dev->eps[i].bw_info,
2589                                         virt_dev->bw_table,
2590                                         virt_dev->udev,
2591                                         &virt_dev->eps[i],
2592                                         virt_dev->tt_info);
2593         }
2594         /* Overwrite the information stored in the endpoints' bw_info */
2595         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2596         for (i = 0; i < 31; i++) {
2597                 /* Add any changed or added endpoints to the interval table */
2598                 if (EP_IS_ADDED(ctrl_ctx, i))
2599                         xhci_add_ep_to_interval_table(xhci,
2600                                         &virt_dev->eps[i].bw_info,
2601                                         virt_dev->bw_table,
2602                                         virt_dev->udev,
2603                                         &virt_dev->eps[i],
2604                                         virt_dev->tt_info);
2605         }
2606
2607         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2608                 /* Ok, this fits in the bandwidth we have.
2609                  * Update the number of active TTs.
2610                  */
2611                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2612                 return 0;
2613         }
2614
2615         /* We don't have enough bandwidth for this, revert the stored info. */
2616         for (i = 0; i < 31; i++) {
2617                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2618                         continue;
2619
2620                 /* Drop the new copies of any added or changed endpoints from
2621                  * the interval table.
2622                  */
2623                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2624                         xhci_drop_ep_from_interval_table(xhci,
2625                                         &virt_dev->eps[i].bw_info,
2626                                         virt_dev->bw_table,
2627                                         virt_dev->udev,
2628                                         &virt_dev->eps[i],
2629                                         virt_dev->tt_info);
2630                 }
2631                 /* Revert the endpoint back to its old information */
2632                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2633                                 sizeof(ep_bw_info[i]));
2634                 /* Add any changed or dropped endpoints back into the table */
2635                 if (EP_IS_DROPPED(ctrl_ctx, i))
2636                         xhci_add_ep_to_interval_table(xhci,
2637                                         &virt_dev->eps[i].bw_info,
2638                                         virt_dev->bw_table,
2639                                         virt_dev->udev,
2640                                         &virt_dev->eps[i],
2641                                         virt_dev->tt_info);
2642         }
2643         return -ENOMEM;
2644 }
2645
2646
2647 /* Issue a configure endpoint command or evaluate context command
2648  * and wait for it to finish.
2649  */
2650 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2651                 struct usb_device *udev,
2652                 struct xhci_command *command,
2653                 bool ctx_change, bool must_succeed)
2654 {
2655         int ret;
2656         unsigned long flags;
2657         struct xhci_input_control_ctx *ctrl_ctx;
2658         struct xhci_virt_device *virt_dev;
2659
2660         if (!command)
2661                 return -EINVAL;
2662
2663         spin_lock_irqsave(&xhci->lock, flags);
2664         virt_dev = xhci->devs[udev->slot_id];
2665
2666         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2667         if (!ctrl_ctx) {
2668                 spin_unlock_irqrestore(&xhci->lock, flags);
2669                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2670                                 __func__);
2671                 return -ENOMEM;
2672         }
2673
2674         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2675                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2676                 spin_unlock_irqrestore(&xhci->lock, flags);
2677                 xhci_warn(xhci, "Not enough host resources, "
2678                                 "active endpoint contexts = %u\n",
2679                                 xhci->num_active_eps);
2680                 return -ENOMEM;
2681         }
2682         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2683             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2684                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2685                         xhci_free_host_resources(xhci, ctrl_ctx);
2686                 spin_unlock_irqrestore(&xhci->lock, flags);
2687                 xhci_warn(xhci, "Not enough bandwidth\n");
2688                 return -ENOMEM;
2689         }
2690
2691         if (!ctx_change)
2692                 ret = xhci_queue_configure_endpoint(xhci, command,
2693                                 command->in_ctx->dma,
2694                                 udev->slot_id, must_succeed);
2695         else
2696                 ret = xhci_queue_evaluate_context(xhci, command,
2697                                 command->in_ctx->dma,
2698                                 udev->slot_id, must_succeed);
2699         if (ret < 0) {
2700                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2701                         xhci_free_host_resources(xhci, ctrl_ctx);
2702                 spin_unlock_irqrestore(&xhci->lock, flags);
2703                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2704                                 "FIXME allocate a new ring segment");
2705                 return -ENOMEM;
2706         }
2707         xhci_ring_cmd_db(xhci);
2708         spin_unlock_irqrestore(&xhci->lock, flags);
2709
2710         /* Wait for the configure endpoint command to complete */
2711         wait_for_completion(command->completion);
2712
2713         if (!ctx_change)
2714                 ret = xhci_configure_endpoint_result(xhci, udev,
2715                                                      &command->status);
2716         else
2717                 ret = xhci_evaluate_context_result(xhci, udev,
2718                                                    &command->status);
2719
2720         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2721                 spin_lock_irqsave(&xhci->lock, flags);
2722                 /* If the command failed, remove the reserved resources.
2723                  * Otherwise, clean up the estimate to include dropped eps.
2724                  */
2725                 if (ret)
2726                         xhci_free_host_resources(xhci, ctrl_ctx);
2727                 else
2728                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2729                 spin_unlock_irqrestore(&xhci->lock, flags);
2730         }
2731         return ret;
2732 }
2733
2734 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2735         struct xhci_virt_device *vdev, int i)
2736 {
2737         struct xhci_virt_ep *ep = &vdev->eps[i];
2738
2739         if (ep->ep_state & EP_HAS_STREAMS) {
2740                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2741                                 xhci_get_endpoint_address(i));
2742                 xhci_free_stream_info(xhci, ep->stream_info);
2743                 ep->stream_info = NULL;
2744                 ep->ep_state &= ~EP_HAS_STREAMS;
2745         }
2746 }
2747
2748 /* Called after one or more calls to xhci_add_endpoint() or
2749  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2750  * to call xhci_reset_bandwidth().
2751  *
2752  * Since we are in the middle of changing either configuration or
2753  * installing a new alt setting, the USB core won't allow URBs to be
2754  * enqueued for any endpoint on the old config or interface.  Nothing
2755  * else should be touching the xhci->devs[slot_id] structure, so we
2756  * don't need to take the xhci->lock for manipulating that.
2757  */
2758 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2759 {
2760         int i;
2761         int ret = 0;
2762         struct xhci_hcd *xhci;
2763         struct xhci_virt_device *virt_dev;
2764         struct xhci_input_control_ctx *ctrl_ctx;
2765         struct xhci_slot_ctx *slot_ctx;
2766         struct xhci_command *command;
2767
2768         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2769         if (ret <= 0)
2770                 return ret;
2771         xhci = hcd_to_xhci(hcd);
2772         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2773                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2774                 return -ENODEV;
2775
2776         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2777         virt_dev = xhci->devs[udev->slot_id];
2778
2779         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2780         if (!command)
2781                 return -ENOMEM;
2782
2783         command->in_ctx = virt_dev->in_ctx;
2784
2785         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2786         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2787         if (!ctrl_ctx) {
2788                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2789                                 __func__);
2790                 ret = -ENOMEM;
2791                 goto command_cleanup;
2792         }
2793         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2794         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2795         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2796
2797         /* Don't issue the command if there's no endpoints to update. */
2798         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2799             ctrl_ctx->drop_flags == 0) {
2800                 ret = 0;
2801                 goto command_cleanup;
2802         }
2803         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2804         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2805         for (i = 31; i >= 1; i--) {
2806                 __le32 le32 = cpu_to_le32(BIT(i));
2807
2808                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2809                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2810                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2811                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2812                         break;
2813                 }
2814         }
2815         xhci_dbg(xhci, "New Input Control Context:\n");
2816         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2817                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2818
2819         ret = xhci_configure_endpoint(xhci, udev, command,
2820                         false, false);
2821         if (ret)
2822                 /* Callee should call reset_bandwidth() */
2823                 goto command_cleanup;
2824
2825         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2826         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2827                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2828
2829         /* Free any rings that were dropped, but not changed. */
2830         for (i = 1; i < 31; ++i) {
2831                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2832                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2833                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2834                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2835                 }
2836         }
2837         xhci_zero_in_ctx(xhci, virt_dev);
2838         /*
2839          * Install any rings for completely new endpoints or changed endpoints,
2840          * and free or cache any old rings from changed endpoints.
2841          */
2842         for (i = 1; i < 31; ++i) {
2843                 if (!virt_dev->eps[i].new_ring)
2844                         continue;
2845                 /* Only cache or free the old ring if it exists.
2846                  * It may not if this is the first add of an endpoint.
2847                  */
2848                 if (virt_dev->eps[i].ring) {
2849                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2850                 }
2851                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2852                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2853                 virt_dev->eps[i].new_ring = NULL;
2854         }
2855 command_cleanup:
2856         kfree(command->completion);
2857         kfree(command);
2858
2859         return ret;
2860 }
2861
2862 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2863 {
2864         struct xhci_hcd *xhci;
2865         struct xhci_virt_device *virt_dev;
2866         int i, ret;
2867
2868         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2869         if (ret <= 0)
2870                 return;
2871         xhci = hcd_to_xhci(hcd);
2872
2873         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2874         virt_dev = xhci->devs[udev->slot_id];
2875         /* Free any rings allocated for added endpoints */
2876         for (i = 0; i < 31; ++i) {
2877                 if (virt_dev->eps[i].new_ring) {
2878                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2879                         virt_dev->eps[i].new_ring = NULL;
2880                 }
2881         }
2882         xhci_zero_in_ctx(xhci, virt_dev);
2883 }
2884
2885 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2886                 struct xhci_container_ctx *in_ctx,
2887                 struct xhci_container_ctx *out_ctx,
2888                 struct xhci_input_control_ctx *ctrl_ctx,
2889                 u32 add_flags, u32 drop_flags)
2890 {
2891         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2892         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2893         xhci_slot_copy(xhci, in_ctx, out_ctx);
2894         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2895
2896         xhci_dbg(xhci, "Input Context:\n");
2897         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2898 }
2899
2900 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2901                 unsigned int slot_id, unsigned int ep_index,
2902                 struct xhci_dequeue_state *deq_state)
2903 {
2904         struct xhci_input_control_ctx *ctrl_ctx;
2905         struct xhci_container_ctx *in_ctx;
2906         struct xhci_ep_ctx *ep_ctx;
2907         u32 added_ctxs;
2908         dma_addr_t addr;
2909
2910         in_ctx = xhci->devs[slot_id]->in_ctx;
2911         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2912         if (!ctrl_ctx) {
2913                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2914                                 __func__);
2915                 return;
2916         }
2917
2918         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2919                         xhci->devs[slot_id]->out_ctx, ep_index);
2920         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2921         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2922                         deq_state->new_deq_ptr);
2923         if (addr == 0) {
2924                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2925                                 "reset ep command\n");
2926                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2927                                 deq_state->new_deq_seg,
2928                                 deq_state->new_deq_ptr);
2929                 return;
2930         }
2931         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2932
2933         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2934         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2935                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2936                         added_ctxs, added_ctxs);
2937 }
2938
2939 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2940                         unsigned int ep_index, struct xhci_td *td)
2941 {
2942         struct xhci_dequeue_state deq_state;
2943         struct xhci_virt_ep *ep;
2944         struct usb_device *udev = td->urb->dev;
2945
2946         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2947                         "Cleaning up stalled endpoint ring");
2948         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2949         /* We need to move the HW's dequeue pointer past this TD,
2950          * or it will attempt to resend it on the next doorbell ring.
2951          */
2952         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2953                         ep_index, ep->stopped_stream, td, &deq_state);
2954
2955         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2956                 return;
2957
2958         /* HW with the reset endpoint quirk will use the saved dequeue state to
2959          * issue a configure endpoint command later.
2960          */
2961         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2962                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2963                                 "Queueing new dequeue state");
2964                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2965                                 ep_index, ep->stopped_stream, &deq_state);
2966         } else {
2967                 /* Better hope no one uses the input context between now and the
2968                  * reset endpoint completion!
2969                  * XXX: No idea how this hardware will react when stream rings
2970                  * are enabled.
2971                  */
2972                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2973                                 "Setting up input context for "
2974                                 "configure endpoint command");
2975                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2976                                 ep_index, &deq_state);
2977         }
2978 }
2979
2980 /* Called when clearing halted device. The core should have sent the control
2981  * message to clear the device halt condition. The host side of the halt should
2982  * already be cleared with a reset endpoint command issued when the STALL tx
2983  * event was received.
2984  *
2985  * Context: in_interrupt
2986  */
2987
2988 void xhci_endpoint_reset(struct usb_hcd *hcd,
2989                 struct usb_host_endpoint *ep)
2990 {
2991         struct xhci_hcd *xhci;
2992
2993         xhci = hcd_to_xhci(hcd);
2994
2995         /*
2996          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2997          * The Reset Endpoint Command may only be issued to endpoints in the
2998          * Halted state. If software wishes reset the Data Toggle or Sequence
2999          * Number of an endpoint that isn't in the Halted state, then software
3000          * may issue a Configure Endpoint Command with the Drop and Add bits set
3001          * for the target endpoint. that is in the Stopped state.
3002          */
3003
3004         /* For now just print debug to follow the situation */
3005         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3006                  ep->desc.bEndpointAddress);
3007 }
3008
3009 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3010                 struct usb_device *udev, struct usb_host_endpoint *ep,
3011                 unsigned int slot_id)
3012 {
3013         int ret;
3014         unsigned int ep_index;
3015         unsigned int ep_state;
3016
3017         if (!ep)
3018                 return -EINVAL;
3019         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3020         if (ret <= 0)
3021                 return -EINVAL;
3022         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3023                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3024                                 " descriptor for ep 0x%x does not support streams\n",
3025                                 ep->desc.bEndpointAddress);
3026                 return -EINVAL;
3027         }
3028
3029         ep_index = xhci_get_endpoint_index(&ep->desc);
3030         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3031         if (ep_state & EP_HAS_STREAMS ||
3032                         ep_state & EP_GETTING_STREAMS) {
3033                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3034                                 "already has streams set up.\n",
3035                                 ep->desc.bEndpointAddress);
3036                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3037                                 "dynamic stream context array reallocation.\n");
3038                 return -EINVAL;
3039         }
3040         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3041                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3042                                 "endpoint 0x%x; URBs are pending.\n",
3043                                 ep->desc.bEndpointAddress);
3044                 return -EINVAL;
3045         }
3046         return 0;
3047 }
3048
3049 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3050                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3051 {
3052         unsigned int max_streams;
3053
3054         /* The stream context array size must be a power of two */
3055         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3056         /*
3057          * Find out how many primary stream array entries the host controller
3058          * supports.  Later we may use secondary stream arrays (similar to 2nd
3059          * level page entries), but that's an optional feature for xHCI host
3060          * controllers. xHCs must support at least 4 stream IDs.
3061          */
3062         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3063         if (*num_stream_ctxs > max_streams) {
3064                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3065                                 max_streams);
3066                 *num_stream_ctxs = max_streams;
3067                 *num_streams = max_streams;
3068         }
3069 }
3070
3071 /* Returns an error code if one of the endpoint already has streams.
3072  * This does not change any data structures, it only checks and gathers
3073  * information.
3074  */
3075 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3076                 struct usb_device *udev,
3077                 struct usb_host_endpoint **eps, unsigned int num_eps,
3078                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3079 {
3080         unsigned int max_streams;
3081         unsigned int endpoint_flag;
3082         int i;
3083         int ret;
3084
3085         for (i = 0; i < num_eps; i++) {
3086                 ret = xhci_check_streams_endpoint(xhci, udev,
3087                                 eps[i], udev->slot_id);
3088                 if (ret < 0)
3089                         return ret;
3090
3091                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3092                 if (max_streams < (*num_streams - 1)) {
3093                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3094                                         eps[i]->desc.bEndpointAddress,
3095                                         max_streams);
3096                         *num_streams = max_streams+1;
3097                 }
3098
3099                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3100                 if (*changed_ep_bitmask & endpoint_flag)
3101                         return -EINVAL;
3102                 *changed_ep_bitmask |= endpoint_flag;
3103         }
3104         return 0;
3105 }
3106
3107 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3108                 struct usb_device *udev,
3109                 struct usb_host_endpoint **eps, unsigned int num_eps)
3110 {
3111         u32 changed_ep_bitmask = 0;
3112         unsigned int slot_id;
3113         unsigned int ep_index;
3114         unsigned int ep_state;
3115         int i;
3116
3117         slot_id = udev->slot_id;
3118         if (!xhci->devs[slot_id])
3119                 return 0;
3120
3121         for (i = 0; i < num_eps; i++) {
3122                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3123                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3124                 /* Are streams already being freed for the endpoint? */
3125                 if (ep_state & EP_GETTING_NO_STREAMS) {
3126                         xhci_warn(xhci, "WARN Can't disable streams for "
3127                                         "endpoint 0x%x, "
3128                                         "streams are being disabled already\n",
3129                                         eps[i]->desc.bEndpointAddress);
3130                         return 0;
3131                 }
3132                 /* Are there actually any streams to free? */
3133                 if (!(ep_state & EP_HAS_STREAMS) &&
3134                                 !(ep_state & EP_GETTING_STREAMS)) {
3135                         xhci_warn(xhci, "WARN Can't disable streams for "
3136                                         "endpoint 0x%x, "
3137                                         "streams are already disabled!\n",
3138                                         eps[i]->desc.bEndpointAddress);
3139                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3140                                         "with non-streams endpoint\n");
3141                         return 0;
3142                 }
3143                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3144         }
3145         return changed_ep_bitmask;
3146 }
3147
3148 /*
3149  * The USB device drivers use this function (through the HCD interface in USB
3150  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3151  * coordinate mass storage command queueing across multiple endpoints (basically
3152  * a stream ID == a task ID).
3153  *
3154  * Setting up streams involves allocating the same size stream context array
3155  * for each endpoint and issuing a configure endpoint command for all endpoints.
3156  *
3157  * Don't allow the call to succeed if one endpoint only supports one stream
3158  * (which means it doesn't support streams at all).
3159  *
3160  * Drivers may get less stream IDs than they asked for, if the host controller
3161  * hardware or endpoints claim they can't support the number of requested
3162  * stream IDs.
3163  */
3164 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3165                 struct usb_host_endpoint **eps, unsigned int num_eps,
3166                 unsigned int num_streams, gfp_t mem_flags)
3167 {
3168         int i, ret;
3169         struct xhci_hcd *xhci;
3170         struct xhci_virt_device *vdev;
3171         struct xhci_command *config_cmd;
3172         struct xhci_input_control_ctx *ctrl_ctx;
3173         unsigned int ep_index;
3174         unsigned int num_stream_ctxs;
3175         unsigned long flags;
3176         u32 changed_ep_bitmask = 0;
3177
3178         if (!eps)
3179                 return -EINVAL;
3180
3181         /* Add one to the number of streams requested to account for
3182          * stream 0 that is reserved for xHCI usage.
3183          */
3184         num_streams += 1;
3185         xhci = hcd_to_xhci(hcd);
3186         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3187                         num_streams);
3188
3189         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3190         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3191                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3192                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3193                 return -ENOSYS;
3194         }
3195
3196         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3197         if (!config_cmd) {
3198                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3199                 return -ENOMEM;
3200         }
3201         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3202         if (!ctrl_ctx) {
3203                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3204                                 __func__);
3205                 xhci_free_command(xhci, config_cmd);
3206                 return -ENOMEM;
3207         }
3208
3209         /* Check to make sure all endpoints are not already configured for
3210          * streams.  While we're at it, find the maximum number of streams that
3211          * all the endpoints will support and check for duplicate endpoints.
3212          */
3213         spin_lock_irqsave(&xhci->lock, flags);
3214         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3215                         num_eps, &num_streams, &changed_ep_bitmask);
3216         if (ret < 0) {
3217                 xhci_free_command(xhci, config_cmd);
3218                 spin_unlock_irqrestore(&xhci->lock, flags);
3219                 return ret;
3220         }
3221         if (num_streams <= 1) {
3222                 xhci_warn(xhci, "WARN: endpoints can't handle "
3223                                 "more than one stream.\n");
3224                 xhci_free_command(xhci, config_cmd);
3225                 spin_unlock_irqrestore(&xhci->lock, flags);
3226                 return -EINVAL;
3227         }
3228         vdev = xhci->devs[udev->slot_id];
3229         /* Mark each endpoint as being in transition, so
3230          * xhci_urb_enqueue() will reject all URBs.
3231          */
3232         for (i = 0; i < num_eps; i++) {
3233                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3234                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3235         }
3236         spin_unlock_irqrestore(&xhci->lock, flags);
3237
3238         /* Setup internal data structures and allocate HW data structures for
3239          * streams (but don't install the HW structures in the input context
3240          * until we're sure all memory allocation succeeded).
3241          */
3242         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3243         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3244                         num_stream_ctxs, num_streams);
3245
3246         for (i = 0; i < num_eps; i++) {
3247                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3248                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3249                                 num_stream_ctxs,
3250                                 num_streams, mem_flags);
3251                 if (!vdev->eps[ep_index].stream_info)
3252                         goto cleanup;
3253                 /* Set maxPstreams in endpoint context and update deq ptr to
3254                  * point to stream context array. FIXME
3255                  */
3256         }
3257
3258         /* Set up the input context for a configure endpoint command. */
3259         for (i = 0; i < num_eps; i++) {
3260                 struct xhci_ep_ctx *ep_ctx;
3261
3262                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3263                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3264
3265                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3266                                 vdev->out_ctx, ep_index);
3267                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3268                                 vdev->eps[ep_index].stream_info);
3269         }
3270         /* Tell the HW to drop its old copy of the endpoint context info
3271          * and add the updated copy from the input context.
3272          */
3273         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3274                         vdev->out_ctx, ctrl_ctx,
3275                         changed_ep_bitmask, changed_ep_bitmask);
3276
3277         /* Issue and wait for the configure endpoint command */
3278         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3279                         false, false);
3280
3281         /* xHC rejected the configure endpoint command for some reason, so we
3282          * leave the old ring intact and free our internal streams data
3283          * structure.
3284          */
3285         if (ret < 0)
3286                 goto cleanup;
3287
3288         spin_lock_irqsave(&xhci->lock, flags);
3289         for (i = 0; i < num_eps; i++) {
3290                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3291                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3292                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3293                          udev->slot_id, ep_index);
3294                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3295         }
3296         xhci_free_command(xhci, config_cmd);
3297         spin_unlock_irqrestore(&xhci->lock, flags);
3298
3299         /* Subtract 1 for stream 0, which drivers can't use */
3300         return num_streams - 1;
3301
3302 cleanup:
3303         /* If it didn't work, free the streams! */
3304         for (i = 0; i < num_eps; i++) {
3305                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3306                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3307                 vdev->eps[ep_index].stream_info = NULL;
3308                 /* FIXME Unset maxPstreams in endpoint context and
3309                  * update deq ptr to point to normal string ring.
3310                  */
3311                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3312                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3313                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3314         }
3315         xhci_free_command(xhci, config_cmd);
3316         return -ENOMEM;
3317 }
3318
3319 /* Transition the endpoint from using streams to being a "normal" endpoint
3320  * without streams.
3321  *
3322  * Modify the endpoint context state, submit a configure endpoint command,
3323  * and free all endpoint rings for streams if that completes successfully.
3324  */
3325 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3326                 struct usb_host_endpoint **eps, unsigned int num_eps,
3327                 gfp_t mem_flags)
3328 {
3329         int i, ret;
3330         struct xhci_hcd *xhci;
3331         struct xhci_virt_device *vdev;
3332         struct xhci_command *command;
3333         struct xhci_input_control_ctx *ctrl_ctx;
3334         unsigned int ep_index;
3335         unsigned long flags;
3336         u32 changed_ep_bitmask;
3337
3338         xhci = hcd_to_xhci(hcd);
3339         vdev = xhci->devs[udev->slot_id];
3340
3341         /* Set up a configure endpoint command to remove the streams rings */
3342         spin_lock_irqsave(&xhci->lock, flags);
3343         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3344                         udev, eps, num_eps);
3345         if (changed_ep_bitmask == 0) {
3346                 spin_unlock_irqrestore(&xhci->lock, flags);
3347                 return -EINVAL;
3348         }
3349
3350         /* Use the xhci_command structure from the first endpoint.  We may have
3351          * allocated too many, but the driver may call xhci_free_streams() for
3352          * each endpoint it grouped into one call to xhci_alloc_streams().
3353          */
3354         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3355         command = vdev->eps[ep_index].stream_info->free_streams_command;
3356         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3357         if (!ctrl_ctx) {
3358                 spin_unlock_irqrestore(&xhci->lock, flags);
3359                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3360                                 __func__);
3361                 return -EINVAL;
3362         }
3363
3364         for (i = 0; i < num_eps; i++) {
3365                 struct xhci_ep_ctx *ep_ctx;
3366
3367                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3368                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3369                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3370                         EP_GETTING_NO_STREAMS;
3371
3372                 xhci_endpoint_copy(xhci, command->in_ctx,
3373                                 vdev->out_ctx, ep_index);
3374                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3375                                 &vdev->eps[ep_index]);
3376         }
3377         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3378                         vdev->out_ctx, ctrl_ctx,
3379                         changed_ep_bitmask, changed_ep_bitmask);
3380         spin_unlock_irqrestore(&xhci->lock, flags);
3381
3382         /* Issue and wait for the configure endpoint command,
3383          * which must succeed.
3384          */
3385         ret = xhci_configure_endpoint(xhci, udev, command,
3386                         false, true);
3387
3388         /* xHC rejected the configure endpoint command for some reason, so we
3389          * leave the streams rings intact.
3390          */
3391         if (ret < 0)
3392                 return ret;
3393
3394         spin_lock_irqsave(&xhci->lock, flags);
3395         for (i = 0; i < num_eps; i++) {
3396                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3397                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3398                 vdev->eps[ep_index].stream_info = NULL;
3399                 /* FIXME Unset maxPstreams in endpoint context and
3400                  * update deq ptr to point to normal string ring.
3401                  */
3402                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3403                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3404         }
3405         spin_unlock_irqrestore(&xhci->lock, flags);
3406
3407         return 0;
3408 }
3409
3410 /*
3411  * Deletes endpoint resources for endpoints that were active before a Reset
3412  * Device command, or a Disable Slot command.  The Reset Device command leaves
3413  * the control endpoint intact, whereas the Disable Slot command deletes it.
3414  *
3415  * Must be called with xhci->lock held.
3416  */
3417 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3418         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3419 {
3420         int i;
3421         unsigned int num_dropped_eps = 0;
3422         unsigned int drop_flags = 0;
3423
3424         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3425                 if (virt_dev->eps[i].ring) {
3426                         drop_flags |= 1 << i;
3427                         num_dropped_eps++;
3428                 }
3429         }
3430         xhci->num_active_eps -= num_dropped_eps;
3431         if (num_dropped_eps)
3432                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3433                                 "Dropped %u ep ctxs, flags = 0x%x, "
3434                                 "%u now active.",
3435                                 num_dropped_eps, drop_flags,
3436                                 xhci->num_active_eps);
3437 }
3438
3439 /*
3440  * This submits a Reset Device Command, which will set the device state to 0,
3441  * set the device address to 0, and disable all the endpoints except the default
3442  * control endpoint.  The USB core should come back and call
3443  * xhci_address_device(), and then re-set up the configuration.  If this is
3444  * called because of a usb_reset_and_verify_device(), then the old alternate
3445  * settings will be re-installed through the normal bandwidth allocation
3446  * functions.
3447  *
3448  * Wait for the Reset Device command to finish.  Remove all structures
3449  * associated with the endpoints that were disabled.  Clear the input device
3450  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3451  *
3452  * If the virt_dev to be reset does not exist or does not match the udev,
3453  * it means the device is lost, possibly due to the xHC restore error and
3454  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3455  * re-allocate the device.
3456  */
3457 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3458 {
3459         int ret, i;
3460         unsigned long flags;
3461         struct xhci_hcd *xhci;
3462         unsigned int slot_id;
3463         struct xhci_virt_device *virt_dev;
3464         struct xhci_command *reset_device_cmd;
3465         int last_freed_endpoint;
3466         struct xhci_slot_ctx *slot_ctx;
3467         int old_active_eps = 0;
3468
3469         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3470         if (ret <= 0)
3471                 return ret;
3472         xhci = hcd_to_xhci(hcd);
3473         slot_id = udev->slot_id;
3474         virt_dev = xhci->devs[slot_id];
3475         if (!virt_dev) {
3476                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3477                                 "not exist. Re-allocate the device\n", slot_id);
3478                 ret = xhci_alloc_dev(hcd, udev);
3479                 if (ret == 1)
3480                         return 0;
3481                 else
3482                         return -EINVAL;
3483         }
3484
3485         if (virt_dev->tt_info)
3486                 old_active_eps = virt_dev->tt_info->active_eps;
3487
3488         if (virt_dev->udev != udev) {
3489                 /* If the virt_dev and the udev does not match, this virt_dev
3490                  * may belong to another udev.
3491                  * Re-allocate the device.
3492                  */
3493                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3494                                 "not match the udev. Re-allocate the device\n",
3495                                 slot_id);
3496                 ret = xhci_alloc_dev(hcd, udev);
3497                 if (ret == 1)
3498                         return 0;
3499                 else
3500                         return -EINVAL;
3501         }
3502
3503         /* If device is not setup, there is no point in resetting it */
3504         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3505         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3506                                                 SLOT_STATE_DISABLED)
3507                 return 0;
3508
3509         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3510         /* Allocate the command structure that holds the struct completion.
3511          * Assume we're in process context, since the normal device reset
3512          * process has to wait for the device anyway.  Storage devices are
3513          * reset as part of error handling, so use GFP_NOIO instead of
3514          * GFP_KERNEL.
3515          */
3516         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3517         if (!reset_device_cmd) {
3518                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3519                 return -ENOMEM;
3520         }
3521
3522         /* Attempt to submit the Reset Device command to the command ring */
3523         spin_lock_irqsave(&xhci->lock, flags);
3524
3525         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3526         if (ret) {
3527                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3528                 spin_unlock_irqrestore(&xhci->lock, flags);
3529                 goto command_cleanup;
3530         }
3531         xhci_ring_cmd_db(xhci);
3532         spin_unlock_irqrestore(&xhci->lock, flags);
3533
3534         /* Wait for the Reset Device command to finish */
3535         wait_for_completion(reset_device_cmd->completion);
3536
3537         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3538          * unless we tried to reset a slot ID that wasn't enabled,
3539          * or the device wasn't in the addressed or configured state.
3540          */
3541         ret = reset_device_cmd->status;
3542         switch (ret) {
3543         case COMP_CMD_ABORT:
3544         case COMP_CMD_STOP:
3545                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3546                 ret = -ETIME;
3547                 goto command_cleanup;
3548         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3549         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3550                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3551                                 slot_id,
3552                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3553                 xhci_dbg(xhci, "Not freeing device rings.\n");
3554                 /* Don't treat this as an error.  May change my mind later. */
3555                 ret = 0;
3556                 goto command_cleanup;
3557         case COMP_SUCCESS:
3558                 xhci_dbg(xhci, "Successful reset device command.\n");
3559                 break;
3560         default:
3561                 if (xhci_is_vendor_info_code(xhci, ret))
3562                         break;
3563                 xhci_warn(xhci, "Unknown completion code %u for "
3564                                 "reset device command.\n", ret);
3565                 ret = -EINVAL;
3566                 goto command_cleanup;
3567         }
3568
3569         /* Free up host controller endpoint resources */
3570         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3571                 spin_lock_irqsave(&xhci->lock, flags);
3572                 /* Don't delete the default control endpoint resources */
3573                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3574                 spin_unlock_irqrestore(&xhci->lock, flags);
3575         }
3576
3577         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3578         last_freed_endpoint = 1;
3579         for (i = 1; i < 31; ++i) {
3580                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3581
3582                 if (ep->ep_state & EP_HAS_STREAMS) {
3583                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3584                                         xhci_get_endpoint_address(i));
3585                         xhci_free_stream_info(xhci, ep->stream_info);
3586                         ep->stream_info = NULL;
3587                         ep->ep_state &= ~EP_HAS_STREAMS;
3588                 }
3589
3590                 if (ep->ring) {
3591                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3592                         last_freed_endpoint = i;
3593                 }
3594                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3595                         xhci_drop_ep_from_interval_table(xhci,
3596                                         &virt_dev->eps[i].bw_info,
3597                                         virt_dev->bw_table,
3598                                         udev,
3599                                         &virt_dev->eps[i],
3600                                         virt_dev->tt_info);
3601                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3602         }
3603         /* If necessary, update the number of active TTs on this root port */
3604         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3605
3606         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3607         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3608         ret = 0;
3609
3610 command_cleanup:
3611         xhci_free_command(xhci, reset_device_cmd);
3612         return ret;
3613 }
3614
3615 /*
3616  * At this point, the struct usb_device is about to go away, the device has
3617  * disconnected, and all traffic has been stopped and the endpoints have been
3618  * disabled.  Free any HC data structures associated with that device.
3619  */
3620 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3621 {
3622         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3623         struct xhci_virt_device *virt_dev;
3624         unsigned long flags;
3625         u32 state;
3626         int i, ret;
3627         struct xhci_command *command;
3628
3629         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3630         if (!command)
3631                 return;
3632
3633 #ifndef CONFIG_USB_DEFAULT_PERSIST
3634         /*
3635          * We called pm_runtime_get_noresume when the device was attached.
3636          * Decrement the counter here to allow controller to runtime suspend
3637          * if no devices remain.
3638          */
3639         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3640                 pm_runtime_put_noidle(hcd->self.controller);
3641 #endif
3642
3643         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3644         /* If the host is halted due to driver unload, we still need to free the
3645          * device.
3646          */
3647         if (ret <= 0 && ret != -ENODEV) {
3648                 kfree(command);
3649                 return;
3650         }
3651
3652         virt_dev = xhci->devs[udev->slot_id];
3653
3654         /* Stop any wayward timer functions (which may grab the lock) */
3655         for (i = 0; i < 31; ++i) {
3656                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3657                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3658         }
3659
3660         spin_lock_irqsave(&xhci->lock, flags);
3661         /* Don't disable the slot if the host controller is dead. */
3662         state = readl(&xhci->op_regs->status);
3663         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3664                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3665                 xhci_free_virt_device(xhci, udev->slot_id);
3666                 spin_unlock_irqrestore(&xhci->lock, flags);
3667                 kfree(command);
3668                 return;
3669         }
3670
3671         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3672                                     udev->slot_id)) {
3673                 spin_unlock_irqrestore(&xhci->lock, flags);
3674                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3675                 return;
3676         }
3677         xhci_ring_cmd_db(xhci);
3678         spin_unlock_irqrestore(&xhci->lock, flags);
3679
3680         /*
3681          * Event command completion handler will free any data structures
3682          * associated with the slot.  XXX Can free sleep?
3683          */
3684 }
3685
3686 /*
3687  * Checks if we have enough host controller resources for the default control
3688  * endpoint.
3689  *
3690  * Must be called with xhci->lock held.
3691  */
3692 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3693 {
3694         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3695                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3696                                 "Not enough ep ctxs: "
3697                                 "%u active, need to add 1, limit is %u.",
3698                                 xhci->num_active_eps, xhci->limit_active_eps);
3699                 return -ENOMEM;
3700         }
3701         xhci->num_active_eps += 1;
3702         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3703                         "Adding 1 ep ctx, %u now active.",
3704                         xhci->num_active_eps);
3705         return 0;
3706 }
3707
3708
3709 /*
3710  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3711  * timed out, or allocating memory failed.  Returns 1 on success.
3712  */
3713 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3714 {
3715         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3716         unsigned long flags;
3717         int ret, slot_id;
3718         struct xhci_command *command;
3719
3720         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3721         if (!command)
3722                 return 0;
3723
3724         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3725         mutex_lock(&xhci->mutex);
3726         spin_lock_irqsave(&xhci->lock, flags);
3727         command->completion = &xhci->addr_dev;
3728         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3729         if (ret) {
3730                 spin_unlock_irqrestore(&xhci->lock, flags);
3731                 mutex_unlock(&xhci->mutex);
3732                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3733                 kfree(command);
3734                 return 0;
3735         }
3736         xhci_ring_cmd_db(xhci);
3737         spin_unlock_irqrestore(&xhci->lock, flags);
3738
3739         wait_for_completion(command->completion);
3740         slot_id = xhci->slot_id;
3741         mutex_unlock(&xhci->mutex);
3742
3743         if (!slot_id || command->status != COMP_SUCCESS) {
3744                 xhci_err(xhci, "Error while assigning device slot ID\n");
3745                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3746                                 HCS_MAX_SLOTS(
3747                                         readl(&xhci->cap_regs->hcs_params1)));
3748                 kfree(command);
3749                 return 0;
3750         }
3751
3752         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3753                 spin_lock_irqsave(&xhci->lock, flags);
3754                 ret = xhci_reserve_host_control_ep_resources(xhci);
3755                 if (ret) {
3756                         spin_unlock_irqrestore(&xhci->lock, flags);
3757                         xhci_warn(xhci, "Not enough host resources, "
3758                                         "active endpoint contexts = %u\n",
3759                                         xhci->num_active_eps);
3760                         goto disable_slot;
3761                 }
3762                 spin_unlock_irqrestore(&xhci->lock, flags);
3763         }
3764         /* Use GFP_NOIO, since this function can be called from
3765          * xhci_discover_or_reset_device(), which may be called as part of
3766          * mass storage driver error handling.
3767          */
3768         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3769                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3770                 goto disable_slot;
3771         }
3772         udev->slot_id = slot_id;
3773
3774 #ifndef CONFIG_USB_DEFAULT_PERSIST
3775         /*
3776          * If resetting upon resume, we can't put the controller into runtime
3777          * suspend if there is a device attached.
3778          */
3779         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3780                 pm_runtime_get_noresume(hcd->self.controller);
3781 #endif
3782
3783
3784         kfree(command);
3785         /* Is this a LS or FS device under a HS hub? */
3786         /* Hub or peripherial? */
3787         return 1;
3788
3789 disable_slot:
3790         /* Disable slot, if we can do it without mem alloc */
3791         spin_lock_irqsave(&xhci->lock, flags);
3792         command->completion = NULL;
3793         command->status = 0;
3794         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3795                                      udev->slot_id))
3796                 xhci_ring_cmd_db(xhci);
3797         spin_unlock_irqrestore(&xhci->lock, flags);
3798         return 0;
3799 }
3800
3801 /*
3802  * Issue an Address Device command and optionally send a corresponding
3803  * SetAddress request to the device.
3804  */
3805 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3806                              enum xhci_setup_dev setup)
3807 {
3808         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3809         unsigned long flags;
3810         struct xhci_virt_device *virt_dev;
3811         int ret = 0;
3812         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3813         struct xhci_slot_ctx *slot_ctx;
3814         struct xhci_input_control_ctx *ctrl_ctx;
3815         u64 temp_64;
3816         struct xhci_command *command = NULL;
3817
3818         mutex_lock(&xhci->mutex);
3819
3820         if (xhci->xhc_state)    /* dying, removing or halted */
3821                 goto out;
3822
3823         if (!udev->slot_id) {
3824                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3825                                 "Bad Slot ID %d", udev->slot_id);
3826                 ret = -EINVAL;
3827                 goto out;
3828         }
3829
3830         virt_dev = xhci->devs[udev->slot_id];
3831
3832         if (WARN_ON(!virt_dev)) {
3833                 /*
3834                  * In plug/unplug torture test with an NEC controller,
3835                  * a zero-dereference was observed once due to virt_dev = 0.
3836                  * Print useful debug rather than crash if it is observed again!
3837                  */
3838                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3839                         udev->slot_id);
3840                 ret = -EINVAL;
3841                 goto out;
3842         }
3843
3844         if (setup == SETUP_CONTEXT_ONLY) {
3845                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3846                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3847                     SLOT_STATE_DEFAULT) {
3848                         xhci_dbg(xhci, "Slot already in default state\n");
3849                         goto out;
3850                 }
3851         }
3852
3853         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3854         if (!command) {
3855                 ret = -ENOMEM;
3856                 goto out;
3857         }
3858
3859         command->in_ctx = virt_dev->in_ctx;
3860         command->completion = &xhci->addr_dev;
3861
3862         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3863         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3864         if (!ctrl_ctx) {
3865                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3866                                 __func__);
3867                 ret = -EINVAL;
3868                 goto out;
3869         }
3870         /*
3871          * If this is the first Set Address since device plug-in or
3872          * virt_device realloaction after a resume with an xHCI power loss,
3873          * then set up the slot context.
3874          */
3875         if (!slot_ctx->dev_info)
3876                 xhci_setup_addressable_virt_dev(xhci, udev);
3877         /* Otherwise, update the control endpoint ring enqueue pointer. */
3878         else
3879                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3880         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3881         ctrl_ctx->drop_flags = 0;
3882
3883         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3884         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3885         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3886                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3887
3888         spin_lock_irqsave(&xhci->lock, flags);
3889         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3890                                         udev->slot_id, setup);
3891         if (ret) {
3892                 spin_unlock_irqrestore(&xhci->lock, flags);
3893                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3894                                 "FIXME: allocate a command ring segment");
3895                 goto out;
3896         }
3897         xhci_ring_cmd_db(xhci);
3898         spin_unlock_irqrestore(&xhci->lock, flags);
3899
3900         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3901         wait_for_completion(command->completion);
3902
3903         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3904          * the SetAddress() "recovery interval" required by USB and aborting the
3905          * command on a timeout.
3906          */
3907         switch (command->status) {
3908         case COMP_CMD_ABORT:
3909         case COMP_CMD_STOP:
3910                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3911                 ret = -ETIME;
3912                 break;
3913         case COMP_CTX_STATE:
3914         case COMP_EBADSLT:
3915                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3916                          act, udev->slot_id);
3917                 ret = -EINVAL;
3918                 break;
3919         case COMP_TX_ERR:
3920                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3921                 ret = -EPROTO;
3922                 break;
3923         case COMP_DEV_ERR:
3924                 dev_warn(&udev->dev,
3925                          "ERROR: Incompatible device for setup %s command\n", act);
3926                 ret = -ENODEV;
3927                 break;
3928         case COMP_SUCCESS:
3929                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3930                                "Successful setup %s command", act);
3931                 break;
3932         default:
3933                 xhci_err(xhci,
3934                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3935                          act, command->status);
3936                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3937                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3938                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3939                 ret = -EINVAL;
3940                 break;
3941         }
3942         if (ret)
3943                 goto out;
3944         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3945         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3946                         "Op regs DCBAA ptr = %#016llx", temp_64);
3947         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3948                 "Slot ID %d dcbaa entry @%p = %#016llx",
3949                 udev->slot_id,
3950                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3951                 (unsigned long long)
3952                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3953         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3954                         "Output Context DMA address = %#08llx",
3955                         (unsigned long long)virt_dev->out_ctx->dma);
3956         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3957         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3958         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3959                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3960         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3961         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3962         /*
3963          * USB core uses address 1 for the roothubs, so we add one to the
3964          * address given back to us by the HC.
3965          */
3966         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3967         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3968                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3969         /* Zero the input context control for later use */
3970         ctrl_ctx->add_flags = 0;
3971         ctrl_ctx->drop_flags = 0;
3972
3973         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3974                        "Internal device address = %d",
3975                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3976 out:
3977         mutex_unlock(&xhci->mutex);
3978         kfree(command);
3979         return ret;
3980 }
3981
3982 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3983 {
3984         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3985 }
3986
3987 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3988 {
3989         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3990 }
3991
3992 /*
3993  * Transfer the port index into real index in the HW port status
3994  * registers. Caculate offset between the port's PORTSC register
3995  * and port status base. Divide the number of per port register
3996  * to get the real index. The raw port number bases 1.
3997  */
3998 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3999 {
4000         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4001         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
4002         __le32 __iomem *addr;
4003         int raw_port;
4004
4005         if (hcd->speed < HCD_USB3)
4006                 addr = xhci->usb2_ports[port1 - 1];
4007         else
4008                 addr = xhci->usb3_ports[port1 - 1];
4009
4010         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4011         return raw_port;
4012 }
4013
4014 /*
4015  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4016  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4017  */
4018 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4019                         struct usb_device *udev, u16 max_exit_latency)
4020 {
4021         struct xhci_virt_device *virt_dev;
4022         struct xhci_command *command;
4023         struct xhci_input_control_ctx *ctrl_ctx;
4024         struct xhci_slot_ctx *slot_ctx;
4025         unsigned long flags;
4026         int ret;
4027
4028         spin_lock_irqsave(&xhci->lock, flags);
4029
4030         virt_dev = xhci->devs[udev->slot_id];
4031
4032         /*
4033          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4034          * xHC was re-initialized. Exit latency will be set later after
4035          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4036          */
4037
4038         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4039                 spin_unlock_irqrestore(&xhci->lock, flags);
4040                 return 0;
4041         }
4042
4043         /* Attempt to issue an Evaluate Context command to change the MEL. */
4044         command = xhci->lpm_command;
4045         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4046         if (!ctrl_ctx) {
4047                 spin_unlock_irqrestore(&xhci->lock, flags);
4048                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4049                                 __func__);
4050                 return -ENOMEM;
4051         }
4052
4053         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4054         spin_unlock_irqrestore(&xhci->lock, flags);
4055
4056         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4057         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4058         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4059         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4060         slot_ctx->dev_state = 0;
4061
4062         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4063                         "Set up evaluate context for LPM MEL change.");
4064         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4065         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4066
4067         /* Issue and wait for the evaluate context command. */
4068         ret = xhci_configure_endpoint(xhci, udev, command,
4069                         true, true);
4070         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4071         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4072
4073         if (!ret) {
4074                 spin_lock_irqsave(&xhci->lock, flags);
4075                 virt_dev->current_mel = max_exit_latency;
4076                 spin_unlock_irqrestore(&xhci->lock, flags);
4077         }
4078         return ret;
4079 }
4080
4081 #ifdef CONFIG_PM
4082
4083 /* BESL to HIRD Encoding array for USB2 LPM */
4084 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4085         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4086
4087 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4088 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4089                                         struct usb_device *udev)
4090 {
4091         int u2del, besl, besl_host;
4092         int besl_device = 0;
4093         u32 field;
4094
4095         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4096         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4097
4098         if (field & USB_BESL_SUPPORT) {
4099                 for (besl_host = 0; besl_host < 16; besl_host++) {
4100                         if (xhci_besl_encoding[besl_host] >= u2del)
4101                                 break;
4102                 }
4103                 /* Use baseline BESL value as default */
4104                 if (field & USB_BESL_BASELINE_VALID)
4105                         besl_device = USB_GET_BESL_BASELINE(field);
4106                 else if (field & USB_BESL_DEEP_VALID)
4107                         besl_device = USB_GET_BESL_DEEP(field);
4108         } else {
4109                 if (u2del <= 50)
4110                         besl_host = 0;
4111                 else
4112                         besl_host = (u2del - 51) / 75 + 1;
4113         }
4114
4115         besl = besl_host + besl_device;
4116         if (besl > 15)
4117                 besl = 15;
4118
4119         return besl;
4120 }
4121
4122 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4123 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4124 {
4125         u32 field;
4126         int l1;
4127         int besld = 0;
4128         int hirdm = 0;
4129
4130         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4131
4132         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4133         l1 = udev->l1_params.timeout / 256;
4134
4135         /* device has preferred BESLD */
4136         if (field & USB_BESL_DEEP_VALID) {
4137                 besld = USB_GET_BESL_DEEP(field);
4138                 hirdm = 1;
4139         }
4140
4141         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4142 }
4143
4144 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4145                         struct usb_device *udev, int enable)
4146 {
4147         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4148         __le32 __iomem  **port_array;
4149         __le32 __iomem  *pm_addr, *hlpm_addr;
4150         u32             pm_val, hlpm_val, field;
4151         unsigned int    port_num;
4152         unsigned long   flags;
4153         int             hird, exit_latency;
4154         int             ret;
4155
4156         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4157                         !udev->lpm_capable)
4158                 return -EPERM;
4159
4160         if (!udev->parent || udev->parent->parent ||
4161                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4162                 return -EPERM;
4163
4164         if (udev->usb2_hw_lpm_capable != 1)
4165                 return -EPERM;
4166
4167         spin_lock_irqsave(&xhci->lock, flags);
4168
4169         port_array = xhci->usb2_ports;
4170         port_num = udev->portnum - 1;
4171         pm_addr = port_array[port_num] + PORTPMSC;
4172         pm_val = readl(pm_addr);
4173         hlpm_addr = port_array[port_num] + PORTHLPMC;
4174         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4175
4176         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4177                         enable ? "enable" : "disable", port_num + 1);
4178
4179         if (enable) {
4180                 /* Host supports BESL timeout instead of HIRD */
4181                 if (udev->usb2_hw_lpm_besl_capable) {
4182                         /* if device doesn't have a preferred BESL value use a
4183                          * default one which works with mixed HIRD and BESL
4184                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4185                          */
4186                         if ((field & USB_BESL_SUPPORT) &&
4187                             (field & USB_BESL_BASELINE_VALID))
4188                                 hird = USB_GET_BESL_BASELINE(field);
4189                         else
4190                                 hird = udev->l1_params.besl;
4191
4192                         exit_latency = xhci_besl_encoding[hird];
4193                         spin_unlock_irqrestore(&xhci->lock, flags);
4194
4195                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4196                          * input context for link powermanagement evaluate
4197                          * context commands. It is protected by hcd->bandwidth
4198                          * mutex and is shared by all devices. We need to set
4199                          * the max ext latency in USB 2 BESL LPM as well, so
4200                          * use the same mutex and xhci_change_max_exit_latency()
4201                          */
4202                         mutex_lock(hcd->bandwidth_mutex);
4203                         ret = xhci_change_max_exit_latency(xhci, udev,
4204                                                            exit_latency);
4205                         mutex_unlock(hcd->bandwidth_mutex);
4206
4207                         if (ret < 0)
4208                                 return ret;
4209                         spin_lock_irqsave(&xhci->lock, flags);
4210
4211                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4212                         writel(hlpm_val, hlpm_addr);
4213                         /* flush write */
4214                         readl(hlpm_addr);
4215                 } else {
4216                         hird = xhci_calculate_hird_besl(xhci, udev);
4217                 }
4218
4219                 pm_val &= ~PORT_HIRD_MASK;
4220                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4221                 writel(pm_val, pm_addr);
4222                 pm_val = readl(pm_addr);
4223                 pm_val |= PORT_HLE;
4224                 writel(pm_val, pm_addr);
4225                 /* flush write */
4226                 readl(pm_addr);
4227         } else {
4228                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4229                 writel(pm_val, pm_addr);
4230                 /* flush write */
4231                 readl(pm_addr);
4232                 if (udev->usb2_hw_lpm_besl_capable) {
4233                         spin_unlock_irqrestore(&xhci->lock, flags);
4234                         mutex_lock(hcd->bandwidth_mutex);
4235                         xhci_change_max_exit_latency(xhci, udev, 0);
4236                         mutex_unlock(hcd->bandwidth_mutex);
4237                         return 0;
4238                 }
4239         }
4240
4241         spin_unlock_irqrestore(&xhci->lock, flags);
4242         return 0;
4243 }
4244
4245 /* check if a usb2 port supports a given extened capability protocol
4246  * only USB2 ports extended protocol capability values are cached.
4247  * Return 1 if capability is supported
4248  */
4249 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4250                                            unsigned capability)
4251 {
4252         u32 port_offset, port_count;
4253         int i;
4254
4255         for (i = 0; i < xhci->num_ext_caps; i++) {
4256                 if (xhci->ext_caps[i] & capability) {
4257                         /* port offsets starts at 1 */
4258                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4259                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4260                         if (port >= port_offset &&
4261                             port < port_offset + port_count)
4262                                 return 1;
4263                 }
4264         }
4265         return 0;
4266 }
4267
4268 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4269 {
4270         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4271         int             portnum = udev->portnum - 1;
4272
4273         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4274                         !udev->lpm_capable)
4275                 return 0;
4276
4277         /* we only support lpm for non-hub device connected to root hub yet */
4278         if (!udev->parent || udev->parent->parent ||
4279                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4280                 return 0;
4281
4282         if (xhci->hw_lpm_support == 1 &&
4283                         xhci_check_usb2_port_capability(
4284                                 xhci, portnum, XHCI_HLC)) {
4285                 udev->usb2_hw_lpm_capable = 1;
4286                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4287                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4288                 if (xhci_check_usb2_port_capability(xhci, portnum,
4289                                         XHCI_BLC))
4290                         udev->usb2_hw_lpm_besl_capable = 1;
4291         }
4292
4293         return 0;
4294 }
4295
4296 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4297
4298 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4299 static unsigned long long xhci_service_interval_to_ns(
4300                 struct usb_endpoint_descriptor *desc)
4301 {
4302         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4303 }
4304
4305 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4306                 enum usb3_link_state state)
4307 {
4308         unsigned long long sel;
4309         unsigned long long pel;
4310         unsigned int max_sel_pel;
4311         char *state_name;
4312
4313         switch (state) {
4314         case USB3_LPM_U1:
4315                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4316                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4317                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4318                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4319                 state_name = "U1";
4320                 break;
4321         case USB3_LPM_U2:
4322                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4323                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4324                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4325                 state_name = "U2";
4326                 break;
4327         default:
4328                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4329                                 __func__);
4330                 return USB3_LPM_DISABLED;
4331         }
4332
4333         if (sel <= max_sel_pel && pel <= max_sel_pel)
4334                 return USB3_LPM_DEVICE_INITIATED;
4335
4336         if (sel > max_sel_pel)
4337                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4338                                 "due to long SEL %llu ms\n",
4339                                 state_name, sel);
4340         else
4341                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4342                                 "due to long PEL %llu ms\n",
4343                                 state_name, pel);
4344         return USB3_LPM_DISABLED;
4345 }
4346
4347 /* The U1 timeout should be the maximum of the following values:
4348  *  - For control endpoints, U1 system exit latency (SEL) * 3
4349  *  - For bulk endpoints, U1 SEL * 5
4350  *  - For interrupt endpoints:
4351  *    - Notification EPs, U1 SEL * 3
4352  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4353  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4354  */
4355 static unsigned long long xhci_calculate_intel_u1_timeout(
4356                 struct usb_device *udev,
4357                 struct usb_endpoint_descriptor *desc)
4358 {
4359         unsigned long long timeout_ns;
4360         int ep_type;
4361         int intr_type;
4362
4363         ep_type = usb_endpoint_type(desc);
4364         switch (ep_type) {
4365         case USB_ENDPOINT_XFER_CONTROL:
4366                 timeout_ns = udev->u1_params.sel * 3;
4367                 break;
4368         case USB_ENDPOINT_XFER_BULK:
4369                 timeout_ns = udev->u1_params.sel * 5;
4370                 break;
4371         case USB_ENDPOINT_XFER_INT:
4372                 intr_type = usb_endpoint_interrupt_type(desc);
4373                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4374                         timeout_ns = udev->u1_params.sel * 3;
4375                         break;
4376                 }
4377                 /* Otherwise the calculation is the same as isoc eps */
4378         case USB_ENDPOINT_XFER_ISOC:
4379                 timeout_ns = xhci_service_interval_to_ns(desc);
4380                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4381                 if (timeout_ns < udev->u1_params.sel * 2)
4382                         timeout_ns = udev->u1_params.sel * 2;
4383                 break;
4384         default:
4385                 return 0;
4386         }
4387
4388         return timeout_ns;
4389 }
4390
4391 /* Returns the hub-encoded U1 timeout value. */
4392 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4393                 struct usb_device *udev,
4394                 struct usb_endpoint_descriptor *desc)
4395 {
4396         unsigned long long timeout_ns;
4397
4398         if (xhci->quirks & XHCI_INTEL_HOST)
4399                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4400         else
4401                 timeout_ns = udev->u1_params.sel;
4402
4403         /* The U1 timeout is encoded in 1us intervals.
4404          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4405          */
4406         if (timeout_ns == USB3_LPM_DISABLED)
4407                 timeout_ns = 1;
4408         else
4409                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4410
4411         /* If the necessary timeout value is bigger than what we can set in the
4412          * USB 3.0 hub, we have to disable hub-initiated U1.
4413          */
4414         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4415                 return timeout_ns;
4416         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4417                         "due to long timeout %llu ms\n", timeout_ns);
4418         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4419 }
4420
4421 /* The U2 timeout should be the maximum of:
4422  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4423  *  - largest bInterval of any active periodic endpoint (to avoid going
4424  *    into lower power link states between intervals).
4425  *  - the U2 Exit Latency of the device
4426  */
4427 static unsigned long long xhci_calculate_intel_u2_timeout(
4428                 struct usb_device *udev,
4429                 struct usb_endpoint_descriptor *desc)
4430 {
4431         unsigned long long timeout_ns;
4432         unsigned long long u2_del_ns;
4433
4434         timeout_ns = 10 * 1000 * 1000;
4435
4436         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4437                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4438                 timeout_ns = xhci_service_interval_to_ns(desc);
4439
4440         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4441         if (u2_del_ns > timeout_ns)
4442                 timeout_ns = u2_del_ns;
4443
4444         return timeout_ns;
4445 }
4446
4447 /* Returns the hub-encoded U2 timeout value. */
4448 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4449                 struct usb_device *udev,
4450                 struct usb_endpoint_descriptor *desc)
4451 {
4452         unsigned long long timeout_ns;
4453
4454         if (xhci->quirks & XHCI_INTEL_HOST)
4455                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4456         else
4457                 timeout_ns = udev->u2_params.sel;
4458
4459         /* The U2 timeout is encoded in 256us intervals */
4460         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4461         /* If the necessary timeout value is bigger than what we can set in the
4462          * USB 3.0 hub, we have to disable hub-initiated U2.
4463          */
4464         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4465                 return timeout_ns;
4466         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4467                         "due to long timeout %llu ms\n", timeout_ns);
4468         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4469 }
4470
4471 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4472                 struct usb_device *udev,
4473                 struct usb_endpoint_descriptor *desc,
4474                 enum usb3_link_state state,
4475                 u16 *timeout)
4476 {
4477         if (state == USB3_LPM_U1)
4478                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4479         else if (state == USB3_LPM_U2)
4480                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4481
4482         return USB3_LPM_DISABLED;
4483 }
4484
4485 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4486                 struct usb_device *udev,
4487                 struct usb_endpoint_descriptor *desc,
4488                 enum usb3_link_state state,
4489                 u16 *timeout)
4490 {
4491         u16 alt_timeout;
4492
4493         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4494                 desc, state, timeout);
4495
4496         /* If we found we can't enable hub-initiated LPM, or
4497          * the U1 or U2 exit latency was too high to allow
4498          * device-initiated LPM as well, just stop searching.
4499          */
4500         if (alt_timeout == USB3_LPM_DISABLED ||
4501                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4502                 *timeout = alt_timeout;
4503                 return -E2BIG;
4504         }
4505         if (alt_timeout > *timeout)
4506                 *timeout = alt_timeout;
4507         return 0;
4508 }
4509
4510 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4511                 struct usb_device *udev,
4512                 struct usb_host_interface *alt,
4513                 enum usb3_link_state state,
4514                 u16 *timeout)
4515 {
4516         int j;
4517
4518         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4519                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4520                                         &alt->endpoint[j].desc, state, timeout))
4521                         return -E2BIG;
4522                 continue;
4523         }
4524         return 0;
4525 }
4526
4527 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4528                 enum usb3_link_state state)
4529 {
4530         struct usb_device *parent;
4531         unsigned int num_hubs;
4532
4533         if (state == USB3_LPM_U2)
4534                 return 0;
4535
4536         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4537         for (parent = udev->parent, num_hubs = 0; parent->parent;
4538                         parent = parent->parent)
4539                 num_hubs++;
4540
4541         if (num_hubs < 2)
4542                 return 0;
4543
4544         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4545                         " below second-tier hub.\n");
4546         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4547                         "to decrease power consumption.\n");
4548         return -E2BIG;
4549 }
4550
4551 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4552                 struct usb_device *udev,
4553                 enum usb3_link_state state)
4554 {
4555         if (xhci->quirks & XHCI_INTEL_HOST)
4556                 return xhci_check_intel_tier_policy(udev, state);
4557         else
4558                 return 0;
4559 }
4560
4561 /* Returns the U1 or U2 timeout that should be enabled.
4562  * If the tier check or timeout setting functions return with a non-zero exit
4563  * code, that means the timeout value has been finalized and we shouldn't look
4564  * at any more endpoints.
4565  */
4566 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4567                         struct usb_device *udev, enum usb3_link_state state)
4568 {
4569         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4570         struct usb_host_config *config;
4571         char *state_name;
4572         int i;
4573         u16 timeout = USB3_LPM_DISABLED;
4574
4575         if (state == USB3_LPM_U1)
4576                 state_name = "U1";
4577         else if (state == USB3_LPM_U2)
4578                 state_name = "U2";
4579         else {
4580                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4581                                 state);
4582                 return timeout;
4583         }
4584
4585         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4586                 return timeout;
4587
4588         /* Gather some information about the currently installed configuration
4589          * and alternate interface settings.
4590          */
4591         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4592                         state, &timeout))
4593                 return timeout;
4594
4595         config = udev->actconfig;
4596         if (!config)
4597                 return timeout;
4598
4599         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4600                 struct usb_driver *driver;
4601                 struct usb_interface *intf = config->interface[i];
4602
4603                 if (!intf)
4604                         continue;
4605
4606                 /* Check if any currently bound drivers want hub-initiated LPM
4607                  * disabled.
4608                  */
4609                 if (intf->dev.driver) {
4610                         driver = to_usb_driver(intf->dev.driver);
4611                         if (driver && driver->disable_hub_initiated_lpm) {
4612                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4613                                                 "at request of driver %s\n",
4614                                                 state_name, driver->name);
4615                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4616                         }
4617                 }
4618
4619                 /* Not sure how this could happen... */
4620                 if (!intf->cur_altsetting)
4621                         continue;
4622
4623                 if (xhci_update_timeout_for_interface(xhci, udev,
4624                                         intf->cur_altsetting,
4625                                         state, &timeout))
4626                         return timeout;
4627         }
4628         return timeout;
4629 }
4630
4631 static int calculate_max_exit_latency(struct usb_device *udev,
4632                 enum usb3_link_state state_changed,
4633                 u16 hub_encoded_timeout)
4634 {
4635         unsigned long long u1_mel_us = 0;
4636         unsigned long long u2_mel_us = 0;
4637         unsigned long long mel_us = 0;
4638         bool disabling_u1;
4639         bool disabling_u2;
4640         bool enabling_u1;
4641         bool enabling_u2;
4642
4643         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4644                         hub_encoded_timeout == USB3_LPM_DISABLED);
4645         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4646                         hub_encoded_timeout == USB3_LPM_DISABLED);
4647
4648         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4649                         hub_encoded_timeout != USB3_LPM_DISABLED);
4650         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4651                         hub_encoded_timeout != USB3_LPM_DISABLED);
4652
4653         /* If U1 was already enabled and we're not disabling it,
4654          * or we're going to enable U1, account for the U1 max exit latency.
4655          */
4656         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4657                         enabling_u1)
4658                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4659         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4660                         enabling_u2)
4661                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4662
4663         if (u1_mel_us > u2_mel_us)
4664                 mel_us = u1_mel_us;
4665         else
4666                 mel_us = u2_mel_us;
4667         /* xHCI host controller max exit latency field is only 16 bits wide. */
4668         if (mel_us > MAX_EXIT) {
4669                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4670                                 "is too big.\n", mel_us);
4671                 return -E2BIG;
4672         }
4673         return mel_us;
4674 }
4675
4676 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4677 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4678                         struct usb_device *udev, enum usb3_link_state state)
4679 {
4680         struct xhci_hcd *xhci;
4681         u16 hub_encoded_timeout;
4682         int mel;
4683         int ret;
4684
4685         xhci = hcd_to_xhci(hcd);
4686         /* The LPM timeout values are pretty host-controller specific, so don't
4687          * enable hub-initiated timeouts unless the vendor has provided
4688          * information about their timeout algorithm.
4689          */
4690         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4691                         !xhci->devs[udev->slot_id])
4692                 return USB3_LPM_DISABLED;
4693
4694         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4695         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4696         if (mel < 0) {
4697                 /* Max Exit Latency is too big, disable LPM. */
4698                 hub_encoded_timeout = USB3_LPM_DISABLED;
4699                 mel = 0;
4700         }
4701
4702         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4703         if (ret)
4704                 return ret;
4705         return hub_encoded_timeout;
4706 }
4707
4708 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4709                         struct usb_device *udev, enum usb3_link_state state)
4710 {
4711         struct xhci_hcd *xhci;
4712         u16 mel;
4713
4714         xhci = hcd_to_xhci(hcd);
4715         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4716                         !xhci->devs[udev->slot_id])
4717                 return 0;
4718
4719         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4720         return xhci_change_max_exit_latency(xhci, udev, mel);
4721 }
4722 #else /* CONFIG_PM */
4723
4724 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4725                                 struct usb_device *udev, int enable)
4726 {
4727         return 0;
4728 }
4729
4730 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4731 {
4732         return 0;
4733 }
4734
4735 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4736                         struct usb_device *udev, enum usb3_link_state state)
4737 {
4738         return USB3_LPM_DISABLED;
4739 }
4740
4741 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4742                         struct usb_device *udev, enum usb3_link_state state)
4743 {
4744         return 0;
4745 }
4746 #endif  /* CONFIG_PM */
4747
4748 /*-------------------------------------------------------------------------*/
4749
4750 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4751  * internal data structures for the device.
4752  */
4753 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4754                         struct usb_tt *tt, gfp_t mem_flags)
4755 {
4756         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4757         struct xhci_virt_device *vdev;
4758         struct xhci_command *config_cmd;
4759         struct xhci_input_control_ctx *ctrl_ctx;
4760         struct xhci_slot_ctx *slot_ctx;
4761         unsigned long flags;
4762         unsigned think_time;
4763         int ret;
4764
4765         /* Ignore root hubs */
4766         if (!hdev->parent)
4767                 return 0;
4768
4769         vdev = xhci->devs[hdev->slot_id];
4770         if (!vdev) {
4771                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4772                 return -EINVAL;
4773         }
4774         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4775         if (!config_cmd) {
4776                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4777                 return -ENOMEM;
4778         }
4779         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4780         if (!ctrl_ctx) {
4781                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4782                                 __func__);
4783                 xhci_free_command(xhci, config_cmd);
4784                 return -ENOMEM;
4785         }
4786
4787         spin_lock_irqsave(&xhci->lock, flags);
4788         if (hdev->speed == USB_SPEED_HIGH &&
4789                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4790                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4791                 xhci_free_command(xhci, config_cmd);
4792                 spin_unlock_irqrestore(&xhci->lock, flags);
4793                 return -ENOMEM;
4794         }
4795
4796         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4797         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4798         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4799         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4800         /*
4801          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4802          * but it may be already set to 1 when setup an xHCI virtual
4803          * device, so clear it anyway.
4804          */
4805         if (tt->multi)
4806                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4807         else if (hdev->speed == USB_SPEED_FULL)
4808                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4809
4810         if (xhci->hci_version > 0x95) {
4811                 xhci_dbg(xhci, "xHCI version %x needs hub "
4812                                 "TT think time and number of ports\n",
4813                                 (unsigned int) xhci->hci_version);
4814                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4815                 /* Set TT think time - convert from ns to FS bit times.
4816                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4817                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4818                  *
4819                  * xHCI 1.0: this field shall be 0 if the device is not a
4820                  * High-spped hub.
4821                  */
4822                 think_time = tt->think_time;
4823                 if (think_time != 0)
4824                         think_time = (think_time / 666) - 1;
4825                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4826                         slot_ctx->tt_info |=
4827                                 cpu_to_le32(TT_THINK_TIME(think_time));
4828         } else {
4829                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4830                                 "TT think time or number of ports\n",
4831                                 (unsigned int) xhci->hci_version);
4832         }
4833         slot_ctx->dev_state = 0;
4834         spin_unlock_irqrestore(&xhci->lock, flags);
4835
4836         xhci_dbg(xhci, "Set up %s for hub device.\n",
4837                         (xhci->hci_version > 0x95) ?
4838                         "configure endpoint" : "evaluate context");
4839         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4840         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4841
4842         /* Issue and wait for the configure endpoint or
4843          * evaluate context command.
4844          */
4845         if (xhci->hci_version > 0x95)
4846                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4847                                 false, false);
4848         else
4849                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4850                                 true, false);
4851
4852         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4853         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4854
4855         xhci_free_command(xhci, config_cmd);
4856         return ret;
4857 }
4858
4859 int xhci_get_frame(struct usb_hcd *hcd)
4860 {
4861         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4862         /* EHCI mods by the periodic size.  Why? */
4863         return readl(&xhci->run_regs->microframe_index) >> 3;
4864 }
4865
4866 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4867 {
4868         struct xhci_hcd         *xhci;
4869         struct device           *dev = hcd->self.controller;
4870         int                     retval;
4871
4872         /* Accept arbitrarily long scatter-gather lists */
4873         hcd->self.sg_tablesize = ~0;
4874
4875         /* support to build packet from discontinuous buffers */
4876         hcd->self.no_sg_constraint = 1;
4877
4878         /* XHCI controllers don't stop the ep queue on short packets :| */
4879         hcd->self.no_stop_on_short = 1;
4880
4881         xhci = hcd_to_xhci(hcd);
4882
4883         if (usb_hcd_is_primary_hcd(hcd)) {
4884                 xhci->main_hcd = hcd;
4885                 /* Mark the first roothub as being USB 2.0.
4886                  * The xHCI driver will register the USB 3.0 roothub.
4887                  */
4888                 hcd->speed = HCD_USB2;
4889                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4890                 /*
4891                  * USB 2.0 roothub under xHCI has an integrated TT,
4892                  * (rate matching hub) as opposed to having an OHCI/UHCI
4893                  * companion controller.
4894                  */
4895                 hcd->has_tt = 1;
4896         } else {
4897                 if (xhci->sbrn == 0x31) {
4898                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4899                         hcd->speed = HCD_USB31;
4900                 }
4901                 /* xHCI private pointer was set in xhci_pci_probe for the second
4902                  * registered roothub.
4903                  */
4904                 return 0;
4905         }
4906
4907         mutex_init(&xhci->mutex);
4908         xhci->cap_regs = hcd->regs;
4909         xhci->op_regs = hcd->regs +
4910                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4911         xhci->run_regs = hcd->regs +
4912                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4913         /* Cache read-only capability registers */
4914         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4915         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4916         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4917         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4918         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4919         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4920         if (xhci->hci_version > 0x100)
4921                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4922         xhci_print_registers(xhci);
4923
4924         xhci->quirks |= quirks;
4925
4926         get_quirks(dev, xhci);
4927
4928         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4929          * success event after a short transfer. This quirk will ignore such
4930          * spurious event.
4931          */
4932         if (xhci->hci_version > 0x96)
4933                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4934
4935         /* Make sure the HC is halted. */
4936         retval = xhci_halt(xhci);
4937         if (retval)
4938                 return retval;
4939
4940         xhci_dbg(xhci, "Resetting HCD\n");
4941         /* Reset the internal HC memory state and registers. */
4942         retval = xhci_reset(xhci);
4943         if (retval)
4944                 return retval;
4945         xhci_dbg(xhci, "Reset complete\n");
4946
4947         /* Set dma_mask and coherent_dma_mask to 64-bits,
4948          * if xHC supports 64-bit addressing */
4949         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4950                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4951                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4952                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4953         } else {
4954                 /*
4955                  * This is to avoid error in cases where a 32-bit USB
4956                  * controller is used on a 64-bit capable system.
4957                  */
4958                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4959                 if (retval)
4960                         return retval;
4961                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4962                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4963         }
4964
4965         xhci_dbg(xhci, "Calling HCD init\n");
4966         /* Initialize HCD and host controller data structures. */
4967         retval = xhci_init(hcd);
4968         if (retval)
4969                 return retval;
4970         xhci_dbg(xhci, "Called HCD init\n");
4971
4972         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4973                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4974
4975         return 0;
4976 }
4977 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4978
4979 static const struct hc_driver xhci_hc_driver = {
4980         .description =          "xhci-hcd",
4981         .product_desc =         "xHCI Host Controller",
4982         .hcd_priv_size =        sizeof(struct xhci_hcd *),
4983
4984         /*
4985          * generic hardware linkage
4986          */
4987         .irq =                  xhci_irq,
4988         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4989
4990         /*
4991          * basic lifecycle operations
4992          */
4993         .reset =                NULL, /* set in xhci_init_driver() */
4994         .start =                xhci_run,
4995         .stop =                 xhci_stop,
4996         .shutdown =             xhci_shutdown,
4997
4998         /*
4999          * managing i/o requests and associated device resources
5000          */
5001         .urb_enqueue =          xhci_urb_enqueue,
5002         .urb_dequeue =          xhci_urb_dequeue,
5003         .alloc_dev =            xhci_alloc_dev,
5004         .free_dev =             xhci_free_dev,
5005         .alloc_streams =        xhci_alloc_streams,
5006         .free_streams =         xhci_free_streams,
5007         .add_endpoint =         xhci_add_endpoint,
5008         .drop_endpoint =        xhci_drop_endpoint,
5009         .endpoint_reset =       xhci_endpoint_reset,
5010         .check_bandwidth =      xhci_check_bandwidth,
5011         .reset_bandwidth =      xhci_reset_bandwidth,
5012         .address_device =       xhci_address_device,
5013         .enable_device =        xhci_enable_device,
5014         .update_hub_device =    xhci_update_hub_device,
5015         .reset_device =         xhci_discover_or_reset_device,
5016
5017         /*
5018          * scheduling support
5019          */
5020         .get_frame_number =     xhci_get_frame,
5021
5022         /*
5023          * root hub support
5024          */
5025         .hub_control =          xhci_hub_control,
5026         .hub_status_data =      xhci_hub_status_data,
5027         .bus_suspend =          xhci_bus_suspend,
5028         .bus_resume =           xhci_bus_resume,
5029
5030         /*
5031          * call back when device connected and addressed
5032          */
5033         .update_device =        xhci_update_device,
5034         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5035         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5036         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5037         .find_raw_port_number = xhci_find_raw_port_number,
5038 };
5039
5040 void xhci_init_driver(struct hc_driver *drv,
5041                       const struct xhci_driver_overrides *over)
5042 {
5043         BUG_ON(!over);
5044
5045         /* Copy the generic table to drv then apply the overrides */
5046         *drv = xhci_hc_driver;
5047
5048         if (over) {
5049                 drv->hcd_priv_size += over->extra_priv_size;
5050                 if (over->reset)
5051                         drv->reset = over->reset;
5052                 if (over->start)
5053                         drv->start = over->start;
5054         }
5055 }
5056 EXPORT_SYMBOL_GPL(xhci_init_driver);
5057
5058 MODULE_DESCRIPTION(DRIVER_DESC);
5059 MODULE_AUTHOR(DRIVER_AUTHOR);
5060 MODULE_LICENSE("GPL");
5061
5062 static int __init xhci_hcd_init(void)
5063 {
5064         /*
5065          * Check the compiler generated sizes of structures that must be laid
5066          * out in specific ways for hardware access.
5067          */
5068         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5069         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5070         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5071         /* xhci_device_control has eight fields, and also
5072          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5073          */
5074         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5075         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5076         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5077         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5078         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5079         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5080         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5081
5082         if (usb_disabled())
5083                 return -ENODEV;
5084
5085         return 0;
5086 }
5087
5088 /*
5089  * If an init function is provided, an exit function must also be provided
5090  * to allow module unload.
5091  */
5092 static void __exit xhci_hcd_fini(void) { }
5093
5094 module_init(xhci_hcd_init);
5095 module_exit(xhci_hcd_fini);