adc169d2fd76b2def74d35de9aca38cd34e0e5d5
[firefly-linux-kernel-4.4.55.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
39
40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
41 static int link_quirk;
42 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
44
45 static unsigned int quirks;
46 module_param(quirks, uint, S_IRUGO);
47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
48
49 /* TODO: copied from ehci-hcd.c - can this be refactored? */
50 /*
51  * xhci_handshake - spin reading hc until handshake completes or fails
52  * @ptr: address of hc register to be read
53  * @mask: bits to look at in result of read
54  * @done: value of those bits when handshake succeeds
55  * @usec: timeout in microseconds
56  *
57  * Returns negative errno, or zero on success
58  *
59  * Success happens when the "mask" bits have the specified value (hardware
60  * handshake done).  There are two failure modes:  "usec" have passed (major
61  * hardware flakeout), or the register reads as all-ones (hardware removed).
62  */
63 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
64 {
65         u32     result;
66
67         do {
68                 result = readl(ptr);
69                 if (result == ~(u32)0)          /* card removed */
70                         return -ENODEV;
71                 result &= mask;
72                 if (result == done)
73                         return 0;
74                 udelay(1);
75                 usec--;
76         } while (usec > 0);
77         return -ETIMEDOUT;
78 }
79
80 /*
81  * Disable interrupts and begin the xHCI halting process.
82  */
83 void xhci_quiesce(struct xhci_hcd *xhci)
84 {
85         u32 halted;
86         u32 cmd;
87         u32 mask;
88
89         mask = ~(XHCI_IRQS);
90         halted = readl(&xhci->op_regs->status) & STS_HALT;
91         if (!halted)
92                 mask &= ~CMD_RUN;
93
94         cmd = readl(&xhci->op_regs->command);
95         cmd &= mask;
96         writel(cmd, &xhci->op_regs->command);
97 }
98
99 /*
100  * Force HC into halt state.
101  *
102  * Disable any IRQs and clear the run/stop bit.
103  * HC will complete any current and actively pipelined transactions, and
104  * should halt within 16 ms of the run/stop bit being cleared.
105  * Read HC Halted bit in the status register to see when the HC is finished.
106  */
107 int xhci_halt(struct xhci_hcd *xhci)
108 {
109         int ret;
110         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
111         xhci_quiesce(xhci);
112
113         ret = xhci_handshake(&xhci->op_regs->status,
114                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
115         if (!ret) {
116                 xhci->xhc_state |= XHCI_STATE_HALTED;
117                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
118         } else
119                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
120                                 XHCI_MAX_HALT_USEC);
121         return ret;
122 }
123
124 /*
125  * Set the run bit and wait for the host to be running.
126  */
127 static int xhci_start(struct xhci_hcd *xhci)
128 {
129         u32 temp;
130         int ret;
131
132         temp = readl(&xhci->op_regs->command);
133         temp |= (CMD_RUN);
134         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
135                         temp);
136         writel(temp, &xhci->op_regs->command);
137
138         /*
139          * Wait for the HCHalted Status bit to be 0 to indicate the host is
140          * running.
141          */
142         ret = xhci_handshake(&xhci->op_regs->status,
143                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
144         if (ret == -ETIMEDOUT)
145                 xhci_err(xhci, "Host took too long to start, "
146                                 "waited %u microseconds.\n",
147                                 XHCI_MAX_HALT_USEC);
148         if (!ret)
149                 /* clear state flags. Including dying, halted or removing */
150                 xhci->xhc_state = 0;
151
152         return ret;
153 }
154
155 /*
156  * Reset a halted HC.
157  *
158  * This resets pipelines, timers, counters, state machines, etc.
159  * Transactions will be terminated immediately, and operational registers
160  * will be set to their defaults.
161  */
162 int xhci_reset(struct xhci_hcd *xhci)
163 {
164         u32 command;
165         u32 state;
166         int ret, i;
167
168         state = readl(&xhci->op_regs->status);
169         if ((state & STS_HALT) == 0) {
170                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
171                 return 0;
172         }
173
174         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
175         command = readl(&xhci->op_regs->command);
176         command |= CMD_RESET;
177         writel(command, &xhci->op_regs->command);
178
179         /* Existing Intel xHCI controllers require a delay of 1 mS,
180          * after setting the CMD_RESET bit, and before accessing any
181          * HC registers. This allows the HC to complete the
182          * reset operation and be ready for HC register access.
183          * Without this delay, the subsequent HC register access,
184          * may result in a system hang very rarely.
185          */
186         if (xhci->quirks & XHCI_INTEL_HOST)
187                 udelay(1000);
188
189         ret = xhci_handshake(&xhci->op_regs->command,
190                         CMD_RESET, 0, 10 * 1000 * 1000);
191         if (ret)
192                 return ret;
193
194         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195                          "Wait for controller to be ready for doorbell rings");
196         /*
197          * xHCI cannot write to any doorbells or operational registers other
198          * than status until the "Controller Not Ready" flag is cleared.
199          */
200         ret = xhci_handshake(&xhci->op_regs->status,
201                         STS_CNR, 0, 10 * 1000 * 1000);
202
203         for (i = 0; i < 2; ++i) {
204                 xhci->bus_state[i].port_c_suspend = 0;
205                 xhci->bus_state[i].suspended_ports = 0;
206                 xhci->bus_state[i].resuming_ports = 0;
207         }
208
209         return ret;
210 }
211
212 #ifdef CONFIG_PCI
213 static int xhci_free_msi(struct xhci_hcd *xhci)
214 {
215         int i;
216
217         if (!xhci->msix_entries)
218                 return -EINVAL;
219
220         for (i = 0; i < xhci->msix_count; i++)
221                 if (xhci->msix_entries[i].vector)
222                         free_irq(xhci->msix_entries[i].vector,
223                                         xhci_to_hcd(xhci));
224         return 0;
225 }
226
227 /*
228  * Set up MSI
229  */
230 static int xhci_setup_msi(struct xhci_hcd *xhci)
231 {
232         int ret;
233         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
234
235         ret = pci_enable_msi(pdev);
236         if (ret) {
237                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238                                 "failed to allocate MSI entry");
239                 return ret;
240         }
241
242         ret = request_irq(pdev->irq, xhci_msi_irq,
243                                 0, "xhci_hcd", xhci_to_hcd(xhci));
244         if (ret) {
245                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
246                                 "disable MSI interrupt");
247                 pci_disable_msi(pdev);
248         }
249
250         return ret;
251 }
252
253 /*
254  * Free IRQs
255  * free all IRQs request
256  */
257 static void xhci_free_irq(struct xhci_hcd *xhci)
258 {
259         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
260         int ret;
261
262         /* return if using legacy interrupt */
263         if (xhci_to_hcd(xhci)->irq > 0)
264                 return;
265
266         ret = xhci_free_msi(xhci);
267         if (!ret)
268                 return;
269         if (pdev->irq > 0)
270                 free_irq(pdev->irq, xhci_to_hcd(xhci));
271
272         return;
273 }
274
275 /*
276  * Set up MSI-X
277  */
278 static int xhci_setup_msix(struct xhci_hcd *xhci)
279 {
280         int i, ret = 0;
281         struct usb_hcd *hcd = xhci_to_hcd(xhci);
282         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
283
284         /*
285          * calculate number of msi-x vectors supported.
286          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
287          *   with max number of interrupters based on the xhci HCSPARAMS1.
288          * - num_online_cpus: maximum msi-x vectors per CPUs core.
289          *   Add additional 1 vector to ensure always available interrupt.
290          */
291         xhci->msix_count = min(num_online_cpus() + 1,
292                                 HCS_MAX_INTRS(xhci->hcs_params1));
293
294         xhci->msix_entries =
295                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
296                                 GFP_KERNEL);
297         if (!xhci->msix_entries) {
298                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
299                 return -ENOMEM;
300         }
301
302         for (i = 0; i < xhci->msix_count; i++) {
303                 xhci->msix_entries[i].entry = i;
304                 xhci->msix_entries[i].vector = 0;
305         }
306
307         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
308         if (ret) {
309                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310                                 "Failed to enable MSI-X");
311                 goto free_entries;
312         }
313
314         for (i = 0; i < xhci->msix_count; i++) {
315                 ret = request_irq(xhci->msix_entries[i].vector,
316                                 xhci_msi_irq,
317                                 0, "xhci_hcd", xhci_to_hcd(xhci));
318                 if (ret)
319                         goto disable_msix;
320         }
321
322         hcd->msix_enabled = 1;
323         return ret;
324
325 disable_msix:
326         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
327         xhci_free_irq(xhci);
328         pci_disable_msix(pdev);
329 free_entries:
330         kfree(xhci->msix_entries);
331         xhci->msix_entries = NULL;
332         return ret;
333 }
334
335 /* Free any IRQs and disable MSI-X */
336 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
337 {
338         struct usb_hcd *hcd = xhci_to_hcd(xhci);
339         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
340
341         if (xhci->quirks & XHCI_PLAT)
342                 return;
343
344         xhci_free_irq(xhci);
345
346         if (xhci->msix_entries) {
347                 pci_disable_msix(pdev);
348                 kfree(xhci->msix_entries);
349                 xhci->msix_entries = NULL;
350         } else {
351                 pci_disable_msi(pdev);
352         }
353
354         hcd->msix_enabled = 0;
355         return;
356 }
357
358 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
359 {
360         int i;
361
362         if (xhci->msix_entries) {
363                 for (i = 0; i < xhci->msix_count; i++)
364                         synchronize_irq(xhci->msix_entries[i].vector);
365         }
366 }
367
368 static int xhci_try_enable_msi(struct usb_hcd *hcd)
369 {
370         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
371         struct pci_dev  *pdev;
372         int ret;
373
374         /* The xhci platform device has set up IRQs through usb_add_hcd. */
375         if (xhci->quirks & XHCI_PLAT)
376                 return 0;
377
378         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
379         /*
380          * Some Fresco Logic host controllers advertise MSI, but fail to
381          * generate interrupts.  Don't even try to enable MSI.
382          */
383         if (xhci->quirks & XHCI_BROKEN_MSI)
384                 goto legacy_irq;
385
386         /* unregister the legacy interrupt */
387         if (hcd->irq)
388                 free_irq(hcd->irq, hcd);
389         hcd->irq = 0;
390
391         ret = xhci_setup_msix(xhci);
392         if (ret)
393                 /* fall back to msi*/
394                 ret = xhci_setup_msi(xhci);
395
396         if (!ret)
397                 /* hcd->irq is 0, we have MSI */
398                 return 0;
399
400         if (!pdev->irq) {
401                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
402                 return -EINVAL;
403         }
404
405  legacy_irq:
406         if (!strlen(hcd->irq_descr))
407                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
408                          hcd->driver->description, hcd->self.busnum);
409
410         /* fall back to legacy interrupt*/
411         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
412                         hcd->irq_descr, hcd);
413         if (ret) {
414                 xhci_err(xhci, "request interrupt %d failed\n",
415                                 pdev->irq);
416                 return ret;
417         }
418         hcd->irq = pdev->irq;
419         return 0;
420 }
421
422 #else
423
424 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
425 {
426         return 0;
427 }
428
429 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
430 {
431 }
432
433 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
434 {
435 }
436
437 #endif
438
439 static void compliance_mode_recovery(unsigned long arg)
440 {
441         struct xhci_hcd *xhci;
442         struct usb_hcd *hcd;
443         u32 temp;
444         int i;
445
446         xhci = (struct xhci_hcd *)arg;
447
448         for (i = 0; i < xhci->num_usb3_ports; i++) {
449                 temp = readl(xhci->usb3_ports[i]);
450                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
451                         /*
452                          * Compliance Mode Detected. Letting USB Core
453                          * handle the Warm Reset
454                          */
455                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
456                                         "Compliance mode detected->port %d",
457                                         i + 1);
458                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
459                                         "Attempting compliance mode recovery");
460                         hcd = xhci->shared_hcd;
461
462                         if (hcd->state == HC_STATE_SUSPENDED)
463                                 usb_hcd_resume_root_hub(hcd);
464
465                         usb_hcd_poll_rh_status(hcd);
466                 }
467         }
468
469         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
470                 mod_timer(&xhci->comp_mode_recovery_timer,
471                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 }
473
474 /*
475  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
476  * that causes ports behind that hardware to enter compliance mode sometimes.
477  * The quirk creates a timer that polls every 2 seconds the link state of
478  * each host controller's port and recovers it by issuing a Warm reset
479  * if Compliance mode is detected, otherwise the port will become "dead" (no
480  * device connections or disconnections will be detected anymore). Becasue no
481  * status event is generated when entering compliance mode (per xhci spec),
482  * this quirk is needed on systems that have the failing hardware installed.
483  */
484 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
485 {
486         xhci->port_status_u0 = 0;
487         setup_timer(&xhci->comp_mode_recovery_timer,
488                     compliance_mode_recovery, (unsigned long)xhci);
489         xhci->comp_mode_recovery_timer.expires = jiffies +
490                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
491
492         set_timer_slack(&xhci->comp_mode_recovery_timer,
493                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
494         add_timer(&xhci->comp_mode_recovery_timer);
495         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496                         "Compliance mode recovery timer initialized");
497 }
498
499 /*
500  * This function identifies the systems that have installed the SN65LVPE502CP
501  * USB3.0 re-driver and that need the Compliance Mode Quirk.
502  * Systems:
503  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
504  */
505 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
506 {
507         const char *dmi_product_name, *dmi_sys_vendor;
508
509         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
510         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
511         if (!dmi_product_name || !dmi_sys_vendor)
512                 return false;
513
514         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
515                 return false;
516
517         if (strstr(dmi_product_name, "Z420") ||
518                         strstr(dmi_product_name, "Z620") ||
519                         strstr(dmi_product_name, "Z820") ||
520                         strstr(dmi_product_name, "Z1 Workstation"))
521                 return true;
522
523         return false;
524 }
525
526 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
527 {
528         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
529 }
530
531
532 /*
533  * Initialize memory for HCD and xHC (one-time init).
534  *
535  * Program the PAGESIZE register, initialize the device context array, create
536  * device contexts (?), set up a command ring segment (or two?), create event
537  * ring (one for now).
538  */
539 int xhci_init(struct usb_hcd *hcd)
540 {
541         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
542         int retval = 0;
543
544         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
545         spin_lock_init(&xhci->lock);
546         if (xhci->hci_version == 0x95 && link_quirk) {
547                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
548                                 "QUIRK: Not clearing Link TRB chain bits.");
549                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
550         } else {
551                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552                                 "xHCI doesn't need link TRB QUIRK");
553         }
554         retval = xhci_mem_init(xhci, GFP_KERNEL);
555         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
556
557         /* Initializing Compliance Mode Recovery Data If Needed */
558         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
559                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
560                 compliance_mode_recovery_timer_init(xhci);
561         }
562
563         return retval;
564 }
565
566 /*-------------------------------------------------------------------------*/
567
568
569 static int xhci_run_finished(struct xhci_hcd *xhci)
570 {
571         if (xhci_start(xhci)) {
572                 xhci_halt(xhci);
573                 return -ENODEV;
574         }
575         xhci->shared_hcd->state = HC_STATE_RUNNING;
576         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
577
578         if (xhci->quirks & XHCI_NEC_HOST)
579                 xhci_ring_cmd_db(xhci);
580
581         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
582                         "Finished xhci_run for USB3 roothub");
583         return 0;
584 }
585
586 /*
587  * Start the HC after it was halted.
588  *
589  * This function is called by the USB core when the HC driver is added.
590  * Its opposite is xhci_stop().
591  *
592  * xhci_init() must be called once before this function can be called.
593  * Reset the HC, enable device slot contexts, program DCBAAP, and
594  * set command ring pointer and event ring pointer.
595  *
596  * Setup MSI-X vectors and enable interrupts.
597  */
598 int xhci_run(struct usb_hcd *hcd)
599 {
600         u32 temp;
601         u64 temp_64;
602         int ret;
603         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
604
605         /* Start the xHCI host controller running only after the USB 2.0 roothub
606          * is setup.
607          */
608
609         hcd->uses_new_polling = 1;
610         if (!usb_hcd_is_primary_hcd(hcd))
611                 return xhci_run_finished(xhci);
612
613         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
614
615         ret = xhci_try_enable_msi(hcd);
616         if (ret)
617                 return ret;
618
619         xhci_dbg(xhci, "Command ring memory map follows:\n");
620         xhci_debug_ring(xhci, xhci->cmd_ring);
621         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
622         xhci_dbg_cmd_ptrs(xhci);
623
624         xhci_dbg(xhci, "ERST memory map follows:\n");
625         xhci_dbg_erst(xhci, &xhci->erst);
626         xhci_dbg(xhci, "Event ring:\n");
627         xhci_debug_ring(xhci, xhci->event_ring);
628         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
629         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
630         temp_64 &= ~ERST_PTR_MASK;
631         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
632                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
633
634         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635                         "// Set the interrupt modulation register");
636         temp = readl(&xhci->ir_set->irq_control);
637         temp &= ~ER_IRQ_INTERVAL_MASK;
638         temp |= (u32) 160;
639         writel(temp, &xhci->ir_set->irq_control);
640
641         /* Set the HCD state before we enable the irqs */
642         temp = readl(&xhci->op_regs->command);
643         temp |= (CMD_EIE);
644         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
645                         "// Enable interrupts, cmd = 0x%x.", temp);
646         writel(temp, &xhci->op_regs->command);
647
648         temp = readl(&xhci->ir_set->irq_pending);
649         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
650                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
651                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
652         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
653         xhci_print_ir_set(xhci, 0);
654
655         if (xhci->quirks & XHCI_NEC_HOST) {
656                 struct xhci_command *command;
657                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
658                 if (!command)
659                         return -ENOMEM;
660                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
661                                 TRB_TYPE(TRB_NEC_GET_FW));
662         }
663         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664                         "Finished xhci_run for USB2 roothub");
665         return 0;
666 }
667 EXPORT_SYMBOL_GPL(xhci_run);
668
669 /*
670  * Stop xHCI driver.
671  *
672  * This function is called by the USB core when the HC driver is removed.
673  * Its opposite is xhci_run().
674  *
675  * Disable device contexts, disable IRQs, and quiesce the HC.
676  * Reset the HC, finish any completed transactions, and cleanup memory.
677  */
678 void xhci_stop(struct usb_hcd *hcd)
679 {
680         u32 temp;
681         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
682
683         mutex_lock(&xhci->mutex);
684
685         if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
686                 spin_lock_irq(&xhci->lock);
687
688                 xhci->xhc_state |= XHCI_STATE_HALTED;
689                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
690                 xhci_halt(xhci);
691                 xhci_reset(xhci);
692
693                 spin_unlock_irq(&xhci->lock);
694         }
695
696         if (!usb_hcd_is_primary_hcd(hcd)) {
697                 mutex_unlock(&xhci->mutex);
698                 return;
699         }
700
701         xhci_cleanup_msix(xhci);
702
703         /* Deleting Compliance Mode Recovery Timer */
704         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
705                         (!(xhci_all_ports_seen_u0(xhci)))) {
706                 del_timer_sync(&xhci->comp_mode_recovery_timer);
707                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
708                                 "%s: compliance mode recovery timer deleted",
709                                 __func__);
710         }
711
712         if (xhci->quirks & XHCI_AMD_PLL_FIX)
713                 usb_amd_dev_put();
714
715         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
716                         "// Disabling event ring interrupts");
717         temp = readl(&xhci->op_regs->status);
718         writel(temp & ~STS_EINT, &xhci->op_regs->status);
719         temp = readl(&xhci->ir_set->irq_pending);
720         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
721         xhci_print_ir_set(xhci, 0);
722
723         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
724         xhci_mem_cleanup(xhci);
725         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
726                         "xhci_stop completed - status = %x",
727                         readl(&xhci->op_regs->status));
728         mutex_unlock(&xhci->mutex);
729 }
730
731 /*
732  * Shutdown HC (not bus-specific)
733  *
734  * This is called when the machine is rebooting or halting.  We assume that the
735  * machine will be powered off, and the HC's internal state will be reset.
736  * Don't bother to free memory.
737  *
738  * This will only ever be called with the main usb_hcd (the USB3 roothub).
739  */
740 void xhci_shutdown(struct usb_hcd *hcd)
741 {
742         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
743
744         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
745                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
746
747         spin_lock_irq(&xhci->lock);
748         xhci_halt(xhci);
749         /* Workaround for spurious wakeups at shutdown with HSW */
750         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
751                 xhci_reset(xhci);
752         spin_unlock_irq(&xhci->lock);
753
754         xhci_cleanup_msix(xhci);
755
756         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
757                         "xhci_shutdown completed - status = %x",
758                         readl(&xhci->op_regs->status));
759
760         /* Yet another workaround for spurious wakeups at shutdown with HSW */
761         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
762                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
763 }
764
765 #ifdef CONFIG_PM
766 static void xhci_save_registers(struct xhci_hcd *xhci)
767 {
768         xhci->s3.command = readl(&xhci->op_regs->command);
769         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
770         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
771         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
772         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
773         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
774         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
775         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
776         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
777 }
778
779 static void xhci_restore_registers(struct xhci_hcd *xhci)
780 {
781         writel(xhci->s3.command, &xhci->op_regs->command);
782         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
783         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
784         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
785         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
786         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
787         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
788         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
789         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
790 }
791
792 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
793 {
794         u64     val_64;
795
796         /* step 2: initialize command ring buffer */
797         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
798         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
799                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
800                                       xhci->cmd_ring->dequeue) &
801                  (u64) ~CMD_RING_RSVD_BITS) |
802                 xhci->cmd_ring->cycle_state;
803         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
804                         "// Setting command ring address to 0x%llx",
805                         (long unsigned long) val_64);
806         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
807 }
808
809 /*
810  * The whole command ring must be cleared to zero when we suspend the host.
811  *
812  * The host doesn't save the command ring pointer in the suspend well, so we
813  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
814  * aligned, because of the reserved bits in the command ring dequeue pointer
815  * register.  Therefore, we can't just set the dequeue pointer back in the
816  * middle of the ring (TRBs are 16-byte aligned).
817  */
818 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
819 {
820         struct xhci_ring *ring;
821         struct xhci_segment *seg;
822
823         ring = xhci->cmd_ring;
824         seg = ring->deq_seg;
825         do {
826                 memset(seg->trbs, 0,
827                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
828                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
829                         cpu_to_le32(~TRB_CYCLE);
830                 seg = seg->next;
831         } while (seg != ring->deq_seg);
832
833         /* Reset the software enqueue and dequeue pointers */
834         ring->deq_seg = ring->first_seg;
835         ring->dequeue = ring->first_seg->trbs;
836         ring->enq_seg = ring->deq_seg;
837         ring->enqueue = ring->dequeue;
838
839         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
840         /*
841          * Ring is now zeroed, so the HW should look for change of ownership
842          * when the cycle bit is set to 1.
843          */
844         ring->cycle_state = 1;
845
846         /*
847          * Reset the hardware dequeue pointer.
848          * Yes, this will need to be re-written after resume, but we're paranoid
849          * and want to make sure the hardware doesn't access bogus memory
850          * because, say, the BIOS or an SMI started the host without changing
851          * the command ring pointers.
852          */
853         xhci_set_cmd_ring_deq(xhci);
854 }
855
856 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
857 {
858         int port_index;
859         __le32 __iomem **port_array;
860         unsigned long flags;
861         u32 t1, t2;
862
863         spin_lock_irqsave(&xhci->lock, flags);
864
865         /* disble usb3 ports Wake bits*/
866         port_index = xhci->num_usb3_ports;
867         port_array = xhci->usb3_ports;
868         while (port_index--) {
869                 t1 = readl(port_array[port_index]);
870                 t1 = xhci_port_state_to_neutral(t1);
871                 t2 = t1 & ~PORT_WAKE_BITS;
872                 if (t1 != t2)
873                         writel(t2, port_array[port_index]);
874         }
875
876         /* disble usb2 ports Wake bits*/
877         port_index = xhci->num_usb2_ports;
878         port_array = xhci->usb2_ports;
879         while (port_index--) {
880                 t1 = readl(port_array[port_index]);
881                 t1 = xhci_port_state_to_neutral(t1);
882                 t2 = t1 & ~PORT_WAKE_BITS;
883                 if (t1 != t2)
884                         writel(t2, port_array[port_index]);
885         }
886
887         spin_unlock_irqrestore(&xhci->lock, flags);
888 }
889
890 /*
891  * Stop HC (not bus-specific)
892  *
893  * This is called when the machine transition into S3/S4 mode.
894  *
895  */
896 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
897 {
898         int                     rc = 0;
899         unsigned int            delay = XHCI_MAX_HALT_USEC;
900         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
901         u32                     command;
902
903         if (!hcd->state)
904                 return 0;
905
906         if (hcd->state != HC_STATE_SUSPENDED ||
907                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
908                 return -EINVAL;
909
910         /* Clear root port wake on bits if wakeup not allowed. */
911         if (!do_wakeup)
912                 xhci_disable_port_wake_on_bits(xhci);
913
914         /* Don't poll the roothubs on bus suspend. */
915         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
916         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
917         del_timer_sync(&hcd->rh_timer);
918         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
919         del_timer_sync(&xhci->shared_hcd->rh_timer);
920
921         spin_lock_irq(&xhci->lock);
922         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
923         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
924         /* step 1: stop endpoint */
925         /* skipped assuming that port suspend has done */
926
927         /* step 2: clear Run/Stop bit */
928         command = readl(&xhci->op_regs->command);
929         command &= ~CMD_RUN;
930         writel(command, &xhci->op_regs->command);
931
932         /* Some chips from Fresco Logic need an extraordinary delay */
933         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
934
935         if (xhci_handshake(&xhci->op_regs->status,
936                       STS_HALT, STS_HALT, delay)) {
937                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
938                 spin_unlock_irq(&xhci->lock);
939                 return -ETIMEDOUT;
940         }
941         xhci_clear_command_ring(xhci);
942
943         /* step 3: save registers */
944         xhci_save_registers(xhci);
945
946         /* step 4: set CSS flag */
947         command = readl(&xhci->op_regs->command);
948         command |= CMD_CSS;
949         writel(command, &xhci->op_regs->command);
950         if (xhci_handshake(&xhci->op_regs->status,
951                                 STS_SAVE, 0, 10 * 1000)) {
952                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
953                 spin_unlock_irq(&xhci->lock);
954                 return -ETIMEDOUT;
955         }
956         spin_unlock_irq(&xhci->lock);
957
958         /*
959          * Deleting Compliance Mode Recovery Timer because the xHCI Host
960          * is about to be suspended.
961          */
962         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
963                         (!(xhci_all_ports_seen_u0(xhci)))) {
964                 del_timer_sync(&xhci->comp_mode_recovery_timer);
965                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
966                                 "%s: compliance mode recovery timer deleted",
967                                 __func__);
968         }
969
970         /* step 5: remove core well power */
971         /* synchronize irq when using MSI-X */
972         xhci_msix_sync_irqs(xhci);
973
974         return rc;
975 }
976 EXPORT_SYMBOL_GPL(xhci_suspend);
977
978 /*
979  * start xHC (not bus-specific)
980  *
981  * This is called when the machine transition from S3/S4 mode.
982  *
983  */
984 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
985 {
986         u32                     command, temp = 0, status;
987         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
988         struct usb_hcd          *secondary_hcd;
989         int                     retval = 0;
990         bool                    comp_timer_running = false;
991
992         if (!hcd->state)
993                 return 0;
994
995         /* Wait a bit if either of the roothubs need to settle from the
996          * transition into bus suspend.
997          */
998         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
999                         time_before(jiffies,
1000                                 xhci->bus_state[1].next_statechange))
1001                 msleep(100);
1002
1003         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1004         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1005
1006         spin_lock_irq(&xhci->lock);
1007         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1008                 hibernated = true;
1009
1010         if (!hibernated) {
1011                 /* step 1: restore register */
1012                 xhci_restore_registers(xhci);
1013                 /* step 2: initialize command ring buffer */
1014                 xhci_set_cmd_ring_deq(xhci);
1015                 /* step 3: restore state and start state*/
1016                 /* step 3: set CRS flag */
1017                 command = readl(&xhci->op_regs->command);
1018                 command |= CMD_CRS;
1019                 writel(command, &xhci->op_regs->command);
1020                 if (xhci_handshake(&xhci->op_regs->status,
1021                               STS_RESTORE, 0, 10 * 1000)) {
1022                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1023                         spin_unlock_irq(&xhci->lock);
1024                         return -ETIMEDOUT;
1025                 }
1026                 temp = readl(&xhci->op_regs->status);
1027         }
1028
1029         /* If restore operation fails, re-initialize the HC during resume */
1030         if ((temp & STS_SRE) || hibernated) {
1031
1032                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1033                                 !(xhci_all_ports_seen_u0(xhci))) {
1034                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1035                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1036                                 "Compliance Mode Recovery Timer deleted!");
1037                 }
1038
1039                 /* Let the USB core know _both_ roothubs lost power. */
1040                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1041                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1042
1043                 xhci_dbg(xhci, "Stop HCD\n");
1044                 xhci_halt(xhci);
1045                 xhci_reset(xhci);
1046                 spin_unlock_irq(&xhci->lock);
1047                 xhci_cleanup_msix(xhci);
1048
1049                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1050                 temp = readl(&xhci->op_regs->status);
1051                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1052                 temp = readl(&xhci->ir_set->irq_pending);
1053                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1054                 xhci_print_ir_set(xhci, 0);
1055
1056                 xhci_dbg(xhci, "cleaning up memory\n");
1057                 xhci_mem_cleanup(xhci);
1058                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1059                             readl(&xhci->op_regs->status));
1060
1061                 /* USB core calls the PCI reinit and start functions twice:
1062                  * first with the primary HCD, and then with the secondary HCD.
1063                  * If we don't do the same, the host will never be started.
1064                  */
1065                 if (!usb_hcd_is_primary_hcd(hcd))
1066                         secondary_hcd = hcd;
1067                 else
1068                         secondary_hcd = xhci->shared_hcd;
1069
1070                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1071                 retval = xhci_init(hcd->primary_hcd);
1072                 if (retval)
1073                         return retval;
1074                 comp_timer_running = true;
1075
1076                 xhci_dbg(xhci, "Start the primary HCD\n");
1077                 retval = xhci_run(hcd->primary_hcd);
1078                 if (!retval) {
1079                         xhci_dbg(xhci, "Start the secondary HCD\n");
1080                         retval = xhci_run(secondary_hcd);
1081                 }
1082                 hcd->state = HC_STATE_SUSPENDED;
1083                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1084                 goto done;
1085         }
1086
1087         /* step 4: set Run/Stop bit */
1088         command = readl(&xhci->op_regs->command);
1089         command |= CMD_RUN;
1090         writel(command, &xhci->op_regs->command);
1091         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1092                   0, 250 * 1000);
1093
1094         /* step 5: walk topology and initialize portsc,
1095          * portpmsc and portli
1096          */
1097         /* this is done in bus_resume */
1098
1099         /* step 6: restart each of the previously
1100          * Running endpoints by ringing their doorbells
1101          */
1102
1103         spin_unlock_irq(&xhci->lock);
1104
1105  done:
1106         if (retval == 0) {
1107                 /* Resume root hubs only when have pending events. */
1108                 status = readl(&xhci->op_regs->status);
1109                 if (status & STS_EINT) {
1110                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1111                         usb_hcd_resume_root_hub(hcd);
1112                 }
1113         }
1114
1115         /*
1116          * If system is subject to the Quirk, Compliance Mode Timer needs to
1117          * be re-initialized Always after a system resume. Ports are subject
1118          * to suffer the Compliance Mode issue again. It doesn't matter if
1119          * ports have entered previously to U0 before system's suspension.
1120          */
1121         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1122                 compliance_mode_recovery_timer_init(xhci);
1123
1124         /* Re-enable port polling. */
1125         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1126         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1127         usb_hcd_poll_rh_status(xhci->shared_hcd);
1128         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1129         usb_hcd_poll_rh_status(hcd);
1130
1131         return retval;
1132 }
1133 EXPORT_SYMBOL_GPL(xhci_resume);
1134 #endif  /* CONFIG_PM */
1135
1136 /*-------------------------------------------------------------------------*/
1137
1138 /**
1139  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1140  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1141  * value to right shift 1 for the bitmask.
1142  *
1143  * Index  = (epnum * 2) + direction - 1,
1144  * where direction = 0 for OUT, 1 for IN.
1145  * For control endpoints, the IN index is used (OUT index is unused), so
1146  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1147  */
1148 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1149 {
1150         unsigned int index;
1151         if (usb_endpoint_xfer_control(desc))
1152                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1153         else
1154                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1155                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1156         return index;
1157 }
1158
1159 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1160  * address from the XHCI endpoint index.
1161  */
1162 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1163 {
1164         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1165         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1166         return direction | number;
1167 }
1168
1169 /* Find the flag for this endpoint (for use in the control context).  Use the
1170  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1171  * bit 1, etc.
1172  */
1173 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1174 {
1175         return 1 << (xhci_get_endpoint_index(desc) + 1);
1176 }
1177
1178 /* Find the flag for this endpoint (for use in the control context).  Use the
1179  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1180  * bit 1, etc.
1181  */
1182 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1183 {
1184         return 1 << (ep_index + 1);
1185 }
1186
1187 /* Compute the last valid endpoint context index.  Basically, this is the
1188  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1189  * we find the most significant bit set in the added contexts flags.
1190  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1191  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1192  */
1193 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1194 {
1195         return fls(added_ctxs) - 1;
1196 }
1197
1198 /* Returns 1 if the arguments are OK;
1199  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1200  */
1201 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1202                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1203                 const char *func) {
1204         struct xhci_hcd *xhci;
1205         struct xhci_virt_device *virt_dev;
1206
1207         if (!hcd || (check_ep && !ep) || !udev) {
1208                 pr_debug("xHCI %s called with invalid args\n", func);
1209                 return -EINVAL;
1210         }
1211         if (!udev->parent) {
1212                 pr_debug("xHCI %s called for root hub\n", func);
1213                 return 0;
1214         }
1215
1216         xhci = hcd_to_xhci(hcd);
1217         if (check_virt_dev) {
1218                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1219                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1220                                         func);
1221                         return -EINVAL;
1222                 }
1223
1224                 virt_dev = xhci->devs[udev->slot_id];
1225                 if (virt_dev->udev != udev) {
1226                         xhci_dbg(xhci, "xHCI %s called with udev and "
1227                                           "virt_dev does not match\n", func);
1228                         return -EINVAL;
1229                 }
1230         }
1231
1232         if (xhci->xhc_state & XHCI_STATE_HALTED)
1233                 return -ENODEV;
1234
1235         return 1;
1236 }
1237
1238 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1239                 struct usb_device *udev, struct xhci_command *command,
1240                 bool ctx_change, bool must_succeed);
1241
1242 /*
1243  * Full speed devices may have a max packet size greater than 8 bytes, but the
1244  * USB core doesn't know that until it reads the first 8 bytes of the
1245  * descriptor.  If the usb_device's max packet size changes after that point,
1246  * we need to issue an evaluate context command and wait on it.
1247  */
1248 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1249                 unsigned int ep_index, struct urb *urb)
1250 {
1251         struct xhci_container_ctx *out_ctx;
1252         struct xhci_input_control_ctx *ctrl_ctx;
1253         struct xhci_ep_ctx *ep_ctx;
1254         struct xhci_command *command;
1255         int max_packet_size;
1256         int hw_max_packet_size;
1257         int ret = 0;
1258
1259         out_ctx = xhci->devs[slot_id]->out_ctx;
1260         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1261         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1262         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1263         if (hw_max_packet_size != max_packet_size) {
1264                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1265                                 "Max Packet Size for ep 0 changed.");
1266                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1267                                 "Max packet size in usb_device = %d",
1268                                 max_packet_size);
1269                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1270                                 "Max packet size in xHCI HW = %d",
1271                                 hw_max_packet_size);
1272                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1273                                 "Issuing evaluate context command.");
1274
1275                 /* Set up the input context flags for the command */
1276                 /* FIXME: This won't work if a non-default control endpoint
1277                  * changes max packet sizes.
1278                  */
1279
1280                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1281                 if (!command)
1282                         return -ENOMEM;
1283
1284                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1285                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1286                 if (!ctrl_ctx) {
1287                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1288                                         __func__);
1289                         ret = -ENOMEM;
1290                         goto command_cleanup;
1291                 }
1292                 /* Set up the modified control endpoint 0 */
1293                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1294                                 xhci->devs[slot_id]->out_ctx, ep_index);
1295
1296                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1297                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1298                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1299
1300                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1301                 ctrl_ctx->drop_flags = 0;
1302
1303                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1304                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1305                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1306                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1307
1308                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1309                                 true, false);
1310
1311                 /* Clean up the input context for later use by bandwidth
1312                  * functions.
1313                  */
1314                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1315 command_cleanup:
1316                 kfree(command->completion);
1317                 kfree(command);
1318         }
1319         return ret;
1320 }
1321
1322 /*
1323  * non-error returns are a promise to giveback() the urb later
1324  * we drop ownership so next owner (or urb unlink) can get it
1325  */
1326 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1327 {
1328         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1329         struct xhci_td *buffer;
1330         unsigned long flags;
1331         int ret = 0;
1332         unsigned int slot_id, ep_index;
1333         struct urb_priv *urb_priv;
1334         int size, i;
1335
1336         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1337                                         true, true, __func__) <= 0)
1338                 return -EINVAL;
1339
1340         slot_id = urb->dev->slot_id;
1341         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1342
1343         if (!HCD_HW_ACCESSIBLE(hcd)) {
1344                 if (!in_interrupt())
1345                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1346                 ret = -ESHUTDOWN;
1347                 goto exit;
1348         }
1349
1350         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1351                 size = urb->number_of_packets;
1352         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1353             urb->transfer_buffer_length > 0 &&
1354             urb->transfer_flags & URB_ZERO_PACKET &&
1355             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1356                 size = 2;
1357         else
1358                 size = 1;
1359
1360         urb_priv = kzalloc(sizeof(struct urb_priv) +
1361                                   size * sizeof(struct xhci_td *), mem_flags);
1362         if (!urb_priv)
1363                 return -ENOMEM;
1364
1365         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1366         if (!buffer) {
1367                 kfree(urb_priv);
1368                 return -ENOMEM;
1369         }
1370
1371         for (i = 0; i < size; i++) {
1372                 urb_priv->td[i] = buffer;
1373                 buffer++;
1374         }
1375
1376         urb_priv->length = size;
1377         urb_priv->td_cnt = 0;
1378         urb->hcpriv = urb_priv;
1379
1380         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1381                 /* Check to see if the max packet size for the default control
1382                  * endpoint changed during FS device enumeration
1383                  */
1384                 if (urb->dev->speed == USB_SPEED_FULL) {
1385                         ret = xhci_check_maxpacket(xhci, slot_id,
1386                                         ep_index, urb);
1387                         if (ret < 0) {
1388                                 xhci_urb_free_priv(urb_priv);
1389                                 urb->hcpriv = NULL;
1390                                 return ret;
1391                         }
1392                 }
1393
1394                 /* We have a spinlock and interrupts disabled, so we must pass
1395                  * atomic context to this function, which may allocate memory.
1396                  */
1397                 spin_lock_irqsave(&xhci->lock, flags);
1398                 if (xhci->xhc_state & XHCI_STATE_DYING)
1399                         goto dying;
1400                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1401                                 slot_id, ep_index);
1402                 if (ret)
1403                         goto free_priv;
1404                 spin_unlock_irqrestore(&xhci->lock, flags);
1405         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1406                 spin_lock_irqsave(&xhci->lock, flags);
1407                 if (xhci->xhc_state & XHCI_STATE_DYING)
1408                         goto dying;
1409                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1410                                 EP_GETTING_STREAMS) {
1411                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1412                                         "is transitioning to using streams.\n");
1413                         ret = -EINVAL;
1414                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1415                                 EP_GETTING_NO_STREAMS) {
1416                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1417                                         "is transitioning to "
1418                                         "not having streams.\n");
1419                         ret = -EINVAL;
1420                 } else {
1421                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1422                                         slot_id, ep_index);
1423                 }
1424                 if (ret)
1425                         goto free_priv;
1426                 spin_unlock_irqrestore(&xhci->lock, flags);
1427         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1428                 spin_lock_irqsave(&xhci->lock, flags);
1429                 if (xhci->xhc_state & XHCI_STATE_DYING)
1430                         goto dying;
1431                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1432                                 slot_id, ep_index);
1433                 if (ret)
1434                         goto free_priv;
1435                 spin_unlock_irqrestore(&xhci->lock, flags);
1436         } else {
1437                 spin_lock_irqsave(&xhci->lock, flags);
1438                 if (xhci->xhc_state & XHCI_STATE_DYING)
1439                         goto dying;
1440                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1441                                 slot_id, ep_index);
1442                 if (ret)
1443                         goto free_priv;
1444                 spin_unlock_irqrestore(&xhci->lock, flags);
1445         }
1446 exit:
1447         return ret;
1448 dying:
1449         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1450                         "non-responsive xHCI host.\n",
1451                         urb->ep->desc.bEndpointAddress, urb);
1452         ret = -ESHUTDOWN;
1453 free_priv:
1454         xhci_urb_free_priv(urb_priv);
1455         urb->hcpriv = NULL;
1456         spin_unlock_irqrestore(&xhci->lock, flags);
1457         return ret;
1458 }
1459
1460 /* Get the right ring for the given URB.
1461  * If the endpoint supports streams, boundary check the URB's stream ID.
1462  * If the endpoint doesn't support streams, return the singular endpoint ring.
1463  */
1464 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1465                 struct urb *urb)
1466 {
1467         unsigned int slot_id;
1468         unsigned int ep_index;
1469         unsigned int stream_id;
1470         struct xhci_virt_ep *ep;
1471
1472         slot_id = urb->dev->slot_id;
1473         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1474         stream_id = urb->stream_id;
1475         ep = &xhci->devs[slot_id]->eps[ep_index];
1476         /* Common case: no streams */
1477         if (!(ep->ep_state & EP_HAS_STREAMS))
1478                 return ep->ring;
1479
1480         if (stream_id == 0) {
1481                 xhci_warn(xhci,
1482                                 "WARN: Slot ID %u, ep index %u has streams, "
1483                                 "but URB has no stream ID.\n",
1484                                 slot_id, ep_index);
1485                 return NULL;
1486         }
1487
1488         if (stream_id < ep->stream_info->num_streams)
1489                 return ep->stream_info->stream_rings[stream_id];
1490
1491         xhci_warn(xhci,
1492                         "WARN: Slot ID %u, ep index %u has "
1493                         "stream IDs 1 to %u allocated, "
1494                         "but stream ID %u is requested.\n",
1495                         slot_id, ep_index,
1496                         ep->stream_info->num_streams - 1,
1497                         stream_id);
1498         return NULL;
1499 }
1500
1501 /*
1502  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1503  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1504  * should pick up where it left off in the TD, unless a Set Transfer Ring
1505  * Dequeue Pointer is issued.
1506  *
1507  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1508  * the ring.  Since the ring is a contiguous structure, they can't be physically
1509  * removed.  Instead, there are two options:
1510  *
1511  *  1) If the HC is in the middle of processing the URB to be canceled, we
1512  *     simply move the ring's dequeue pointer past those TRBs using the Set
1513  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1514  *     when drivers timeout on the last submitted URB and attempt to cancel.
1515  *
1516  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1517  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1518  *     HC will need to invalidate the any TRBs it has cached after the stop
1519  *     endpoint command, as noted in the xHCI 0.95 errata.
1520  *
1521  *  3) The TD may have completed by the time the Stop Endpoint Command
1522  *     completes, so software needs to handle that case too.
1523  *
1524  * This function should protect against the TD enqueueing code ringing the
1525  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1526  * It also needs to account for multiple cancellations on happening at the same
1527  * time for the same endpoint.
1528  *
1529  * Note that this function can be called in any context, or so says
1530  * usb_hcd_unlink_urb()
1531  */
1532 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1533 {
1534         unsigned long flags;
1535         int ret, i;
1536         u32 temp;
1537         struct xhci_hcd *xhci;
1538         struct urb_priv *urb_priv;
1539         struct xhci_td *td;
1540         unsigned int ep_index;
1541         struct xhci_ring *ep_ring;
1542         struct xhci_virt_ep *ep;
1543         struct xhci_command *command;
1544
1545         xhci = hcd_to_xhci(hcd);
1546         spin_lock_irqsave(&xhci->lock, flags);
1547         /* Make sure the URB hasn't completed or been unlinked already */
1548         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1549         if (ret || !urb->hcpriv)
1550                 goto done;
1551         temp = readl(&xhci->op_regs->status);
1552         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1553                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1554                                 "HW died, freeing TD.");
1555                 urb_priv = urb->hcpriv;
1556                 for (i = urb_priv->td_cnt;
1557                      i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1558                      i++) {
1559                         td = urb_priv->td[i];
1560                         if (!list_empty(&td->td_list))
1561                                 list_del_init(&td->td_list);
1562                         if (!list_empty(&td->cancelled_td_list))
1563                                 list_del_init(&td->cancelled_td_list);
1564                 }
1565
1566                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1567                 spin_unlock_irqrestore(&xhci->lock, flags);
1568                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1569                 xhci_urb_free_priv(urb_priv);
1570                 return ret;
1571         }
1572         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1573                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1574                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1575                                 "Ep 0x%x: URB %p to be canceled on "
1576                                 "non-responsive xHCI host.",
1577                                 urb->ep->desc.bEndpointAddress, urb);
1578                 /* Let the stop endpoint command watchdog timer (which set this
1579                  * state) finish cleaning up the endpoint TD lists.  We must
1580                  * have caught it in the middle of dropping a lock and giving
1581                  * back an URB.
1582                  */
1583                 goto done;
1584         }
1585
1586         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1587         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1588         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1589         if (!ep_ring) {
1590                 ret = -EINVAL;
1591                 goto done;
1592         }
1593
1594         urb_priv = urb->hcpriv;
1595         i = urb_priv->td_cnt;
1596         if (i < urb_priv->length)
1597                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1598                                 "Cancel URB %p, dev %s, ep 0x%x, "
1599                                 "starting at offset 0x%llx",
1600                                 urb, urb->dev->devpath,
1601                                 urb->ep->desc.bEndpointAddress,
1602                                 (unsigned long long) xhci_trb_virt_to_dma(
1603                                         urb_priv->td[i]->start_seg,
1604                                         urb_priv->td[i]->first_trb));
1605
1606         for (; i < urb_priv->length; i++) {
1607                 td = urb_priv->td[i];
1608                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1609         }
1610
1611         /* Queue a stop endpoint command, but only if this is
1612          * the first cancellation to be handled.
1613          */
1614         if (!(ep->ep_state & EP_HALT_PENDING)) {
1615                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1616                 if (!command) {
1617                         ret = -ENOMEM;
1618                         goto done;
1619                 }
1620                 ep->ep_state |= EP_HALT_PENDING;
1621                 ep->stop_cmds_pending++;
1622                 ep->stop_cmd_timer.expires = jiffies +
1623                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1624                 add_timer(&ep->stop_cmd_timer);
1625                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1626                                          ep_index, 0);
1627                 xhci_ring_cmd_db(xhci);
1628         }
1629 done:
1630         spin_unlock_irqrestore(&xhci->lock, flags);
1631         return ret;
1632 }
1633
1634 /* Drop an endpoint from a new bandwidth configuration for this device.
1635  * Only one call to this function is allowed per endpoint before
1636  * check_bandwidth() or reset_bandwidth() must be called.
1637  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1638  * add the endpoint to the schedule with possibly new parameters denoted by a
1639  * different endpoint descriptor in usb_host_endpoint.
1640  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1641  * not allowed.
1642  *
1643  * The USB core will not allow URBs to be queued to an endpoint that is being
1644  * disabled, so there's no need for mutual exclusion to protect
1645  * the xhci->devs[slot_id] structure.
1646  */
1647 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1648                 struct usb_host_endpoint *ep)
1649 {
1650         struct xhci_hcd *xhci;
1651         struct xhci_container_ctx *in_ctx, *out_ctx;
1652         struct xhci_input_control_ctx *ctrl_ctx;
1653         unsigned int ep_index;
1654         struct xhci_ep_ctx *ep_ctx;
1655         u32 drop_flag;
1656         u32 new_add_flags, new_drop_flags;
1657         int ret;
1658
1659         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1660         if (ret <= 0)
1661                 return ret;
1662         xhci = hcd_to_xhci(hcd);
1663         if (xhci->xhc_state & XHCI_STATE_DYING)
1664                 return -ENODEV;
1665
1666         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1667         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1668         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1669                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1670                                 __func__, drop_flag);
1671                 return 0;
1672         }
1673
1674         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1675         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1676         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1677         if (!ctrl_ctx) {
1678                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1679                                 __func__);
1680                 return 0;
1681         }
1682
1683         ep_index = xhci_get_endpoint_index(&ep->desc);
1684         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1685         /* If the HC already knows the endpoint is disabled,
1686          * or the HCD has noted it is disabled, ignore this request
1687          */
1688         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1689              cpu_to_le32(EP_STATE_DISABLED)) ||
1690             le32_to_cpu(ctrl_ctx->drop_flags) &
1691             xhci_get_endpoint_flag(&ep->desc)) {
1692                 /* Do not warn when called after a usb_device_reset */
1693                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1694                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1695                                   __func__, ep);
1696                 return 0;
1697         }
1698
1699         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1700         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1701
1702         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1703         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1704
1705         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1706
1707         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1708                         (unsigned int) ep->desc.bEndpointAddress,
1709                         udev->slot_id,
1710                         (unsigned int) new_drop_flags,
1711                         (unsigned int) new_add_flags);
1712         return 0;
1713 }
1714
1715 /* Add an endpoint to a new possible bandwidth configuration for this device.
1716  * Only one call to this function is allowed per endpoint before
1717  * check_bandwidth() or reset_bandwidth() must be called.
1718  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1719  * add the endpoint to the schedule with possibly new parameters denoted by a
1720  * different endpoint descriptor in usb_host_endpoint.
1721  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1722  * not allowed.
1723  *
1724  * The USB core will not allow URBs to be queued to an endpoint until the
1725  * configuration or alt setting is installed in the device, so there's no need
1726  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1727  */
1728 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1729                 struct usb_host_endpoint *ep)
1730 {
1731         struct xhci_hcd *xhci;
1732         struct xhci_container_ctx *in_ctx;
1733         unsigned int ep_index;
1734         struct xhci_input_control_ctx *ctrl_ctx;
1735         u32 added_ctxs;
1736         u32 new_add_flags, new_drop_flags;
1737         struct xhci_virt_device *virt_dev;
1738         int ret = 0;
1739
1740         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1741         if (ret <= 0) {
1742                 /* So we won't queue a reset ep command for a root hub */
1743                 ep->hcpriv = NULL;
1744                 return ret;
1745         }
1746         xhci = hcd_to_xhci(hcd);
1747         if (xhci->xhc_state & XHCI_STATE_DYING)
1748                 return -ENODEV;
1749
1750         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1751         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1752                 /* FIXME when we have to issue an evaluate endpoint command to
1753                  * deal with ep0 max packet size changing once we get the
1754                  * descriptors
1755                  */
1756                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1757                                 __func__, added_ctxs);
1758                 return 0;
1759         }
1760
1761         virt_dev = xhci->devs[udev->slot_id];
1762         in_ctx = virt_dev->in_ctx;
1763         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1764         if (!ctrl_ctx) {
1765                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1766                                 __func__);
1767                 return 0;
1768         }
1769
1770         ep_index = xhci_get_endpoint_index(&ep->desc);
1771         /* If this endpoint is already in use, and the upper layers are trying
1772          * to add it again without dropping it, reject the addition.
1773          */
1774         if (virt_dev->eps[ep_index].ring &&
1775                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1776                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1777                                 "without dropping it.\n",
1778                                 (unsigned int) ep->desc.bEndpointAddress);
1779                 return -EINVAL;
1780         }
1781
1782         /* If the HCD has already noted the endpoint is enabled,
1783          * ignore this request.
1784          */
1785         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1786                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1787                                 __func__, ep);
1788                 return 0;
1789         }
1790
1791         /*
1792          * Configuration and alternate setting changes must be done in
1793          * process context, not interrupt context (or so documenation
1794          * for usb_set_interface() and usb_set_configuration() claim).
1795          */
1796         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1797                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1798                                 __func__, ep->desc.bEndpointAddress);
1799                 return -ENOMEM;
1800         }
1801
1802         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1803         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1804
1805         /* If xhci_endpoint_disable() was called for this endpoint, but the
1806          * xHC hasn't been notified yet through the check_bandwidth() call,
1807          * this re-adds a new state for the endpoint from the new endpoint
1808          * descriptors.  We must drop and re-add this endpoint, so we leave the
1809          * drop flags alone.
1810          */
1811         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1812
1813         /* Store the usb_device pointer for later use */
1814         ep->hcpriv = udev;
1815
1816         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1817                         (unsigned int) ep->desc.bEndpointAddress,
1818                         udev->slot_id,
1819                         (unsigned int) new_drop_flags,
1820                         (unsigned int) new_add_flags);
1821         return 0;
1822 }
1823
1824 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1825 {
1826         struct xhci_input_control_ctx *ctrl_ctx;
1827         struct xhci_ep_ctx *ep_ctx;
1828         struct xhci_slot_ctx *slot_ctx;
1829         int i;
1830
1831         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1832         if (!ctrl_ctx) {
1833                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1834                                 __func__);
1835                 return;
1836         }
1837
1838         /* When a device's add flag and drop flag are zero, any subsequent
1839          * configure endpoint command will leave that endpoint's state
1840          * untouched.  Make sure we don't leave any old state in the input
1841          * endpoint contexts.
1842          */
1843         ctrl_ctx->drop_flags = 0;
1844         ctrl_ctx->add_flags = 0;
1845         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1846         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1847         /* Endpoint 0 is always valid */
1848         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1849         for (i = 1; i < 31; ++i) {
1850                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1851                 ep_ctx->ep_info = 0;
1852                 ep_ctx->ep_info2 = 0;
1853                 ep_ctx->deq = 0;
1854                 ep_ctx->tx_info = 0;
1855         }
1856 }
1857
1858 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1859                 struct usb_device *udev, u32 *cmd_status)
1860 {
1861         int ret;
1862
1863         switch (*cmd_status) {
1864         case COMP_CMD_ABORT:
1865         case COMP_CMD_STOP:
1866                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1867                 ret = -ETIME;
1868                 break;
1869         case COMP_ENOMEM:
1870                 dev_warn(&udev->dev,
1871                          "Not enough host controller resources for new device state.\n");
1872                 ret = -ENOMEM;
1873                 /* FIXME: can we allocate more resources for the HC? */
1874                 break;
1875         case COMP_BW_ERR:
1876         case COMP_2ND_BW_ERR:
1877                 dev_warn(&udev->dev,
1878                          "Not enough bandwidth for new device state.\n");
1879                 ret = -ENOSPC;
1880                 /* FIXME: can we go back to the old state? */
1881                 break;
1882         case COMP_TRB_ERR:
1883                 /* the HCD set up something wrong */
1884                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1885                                 "add flag = 1, "
1886                                 "and endpoint is not disabled.\n");
1887                 ret = -EINVAL;
1888                 break;
1889         case COMP_DEV_ERR:
1890                 dev_warn(&udev->dev,
1891                          "ERROR: Incompatible device for endpoint configure command.\n");
1892                 ret = -ENODEV;
1893                 break;
1894         case COMP_SUCCESS:
1895                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1896                                 "Successful Endpoint Configure command");
1897                 ret = 0;
1898                 break;
1899         default:
1900                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1901                                 *cmd_status);
1902                 ret = -EINVAL;
1903                 break;
1904         }
1905         return ret;
1906 }
1907
1908 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1909                 struct usb_device *udev, u32 *cmd_status)
1910 {
1911         int ret;
1912         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1913
1914         switch (*cmd_status) {
1915         case COMP_CMD_ABORT:
1916         case COMP_CMD_STOP:
1917                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1918                 ret = -ETIME;
1919                 break;
1920         case COMP_EINVAL:
1921                 dev_warn(&udev->dev,
1922                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1923                 ret = -EINVAL;
1924                 break;
1925         case COMP_EBADSLT:
1926                 dev_warn(&udev->dev,
1927                         "WARN: slot not enabled for evaluate context command.\n");
1928                 ret = -EINVAL;
1929                 break;
1930         case COMP_CTX_STATE:
1931                 dev_warn(&udev->dev,
1932                         "WARN: invalid context state for evaluate context command.\n");
1933                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1934                 ret = -EINVAL;
1935                 break;
1936         case COMP_DEV_ERR:
1937                 dev_warn(&udev->dev,
1938                         "ERROR: Incompatible device for evaluate context command.\n");
1939                 ret = -ENODEV;
1940                 break;
1941         case COMP_MEL_ERR:
1942                 /* Max Exit Latency too large error */
1943                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1944                 ret = -EINVAL;
1945                 break;
1946         case COMP_SUCCESS:
1947                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1948                                 "Successful evaluate context command");
1949                 ret = 0;
1950                 break;
1951         default:
1952                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1953                         *cmd_status);
1954                 ret = -EINVAL;
1955                 break;
1956         }
1957         return ret;
1958 }
1959
1960 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1961                 struct xhci_input_control_ctx *ctrl_ctx)
1962 {
1963         u32 valid_add_flags;
1964         u32 valid_drop_flags;
1965
1966         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1967          * (bit 1).  The default control endpoint is added during the Address
1968          * Device command and is never removed until the slot is disabled.
1969          */
1970         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1971         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1972
1973         /* Use hweight32 to count the number of ones in the add flags, or
1974          * number of endpoints added.  Don't count endpoints that are changed
1975          * (both added and dropped).
1976          */
1977         return hweight32(valid_add_flags) -
1978                 hweight32(valid_add_flags & valid_drop_flags);
1979 }
1980
1981 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1982                 struct xhci_input_control_ctx *ctrl_ctx)
1983 {
1984         u32 valid_add_flags;
1985         u32 valid_drop_flags;
1986
1987         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1988         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1989
1990         return hweight32(valid_drop_flags) -
1991                 hweight32(valid_add_flags & valid_drop_flags);
1992 }
1993
1994 /*
1995  * We need to reserve the new number of endpoints before the configure endpoint
1996  * command completes.  We can't subtract the dropped endpoints from the number
1997  * of active endpoints until the command completes because we can oversubscribe
1998  * the host in this case:
1999  *
2000  *  - the first configure endpoint command drops more endpoints than it adds
2001  *  - a second configure endpoint command that adds more endpoints is queued
2002  *  - the first configure endpoint command fails, so the config is unchanged
2003  *  - the second command may succeed, even though there isn't enough resources
2004  *
2005  * Must be called with xhci->lock held.
2006  */
2007 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2008                 struct xhci_input_control_ctx *ctrl_ctx)
2009 {
2010         u32 added_eps;
2011
2012         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2013         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2014                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2015                                 "Not enough ep ctxs: "
2016                                 "%u active, need to add %u, limit is %u.",
2017                                 xhci->num_active_eps, added_eps,
2018                                 xhci->limit_active_eps);
2019                 return -ENOMEM;
2020         }
2021         xhci->num_active_eps += added_eps;
2022         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2023                         "Adding %u ep ctxs, %u now active.", added_eps,
2024                         xhci->num_active_eps);
2025         return 0;
2026 }
2027
2028 /*
2029  * The configure endpoint was failed by the xHC for some other reason, so we
2030  * need to revert the resources that failed configuration would have used.
2031  *
2032  * Must be called with xhci->lock held.
2033  */
2034 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2035                 struct xhci_input_control_ctx *ctrl_ctx)
2036 {
2037         u32 num_failed_eps;
2038
2039         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2040         xhci->num_active_eps -= num_failed_eps;
2041         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2042                         "Removing %u failed ep ctxs, %u now active.",
2043                         num_failed_eps,
2044                         xhci->num_active_eps);
2045 }
2046
2047 /*
2048  * Now that the command has completed, clean up the active endpoint count by
2049  * subtracting out the endpoints that were dropped (but not changed).
2050  *
2051  * Must be called with xhci->lock held.
2052  */
2053 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2054                 struct xhci_input_control_ctx *ctrl_ctx)
2055 {
2056         u32 num_dropped_eps;
2057
2058         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2059         xhci->num_active_eps -= num_dropped_eps;
2060         if (num_dropped_eps)
2061                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2062                                 "Removing %u dropped ep ctxs, %u now active.",
2063                                 num_dropped_eps,
2064                                 xhci->num_active_eps);
2065 }
2066
2067 static unsigned int xhci_get_block_size(struct usb_device *udev)
2068 {
2069         switch (udev->speed) {
2070         case USB_SPEED_LOW:
2071         case USB_SPEED_FULL:
2072                 return FS_BLOCK;
2073         case USB_SPEED_HIGH:
2074                 return HS_BLOCK;
2075         case USB_SPEED_SUPER:
2076         case USB_SPEED_SUPER_PLUS:
2077                 return SS_BLOCK;
2078         case USB_SPEED_UNKNOWN:
2079         case USB_SPEED_WIRELESS:
2080         default:
2081                 /* Should never happen */
2082                 return 1;
2083         }
2084 }
2085
2086 static unsigned int
2087 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2088 {
2089         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2090                 return LS_OVERHEAD;
2091         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2092                 return FS_OVERHEAD;
2093         return HS_OVERHEAD;
2094 }
2095
2096 /* If we are changing a LS/FS device under a HS hub,
2097  * make sure (if we are activating a new TT) that the HS bus has enough
2098  * bandwidth for this new TT.
2099  */
2100 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2101                 struct xhci_virt_device *virt_dev,
2102                 int old_active_eps)
2103 {
2104         struct xhci_interval_bw_table *bw_table;
2105         struct xhci_tt_bw_info *tt_info;
2106
2107         /* Find the bandwidth table for the root port this TT is attached to. */
2108         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2109         tt_info = virt_dev->tt_info;
2110         /* If this TT already had active endpoints, the bandwidth for this TT
2111          * has already been added.  Removing all periodic endpoints (and thus
2112          * making the TT enactive) will only decrease the bandwidth used.
2113          */
2114         if (old_active_eps)
2115                 return 0;
2116         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2117                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2118                         return -ENOMEM;
2119                 return 0;
2120         }
2121         /* Not sure why we would have no new active endpoints...
2122          *
2123          * Maybe because of an Evaluate Context change for a hub update or a
2124          * control endpoint 0 max packet size change?
2125          * FIXME: skip the bandwidth calculation in that case.
2126          */
2127         return 0;
2128 }
2129
2130 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2131                 struct xhci_virt_device *virt_dev)
2132 {
2133         unsigned int bw_reserved;
2134
2135         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2136         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2137                 return -ENOMEM;
2138
2139         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2140         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2141                 return -ENOMEM;
2142
2143         return 0;
2144 }
2145
2146 /*
2147  * This algorithm is a very conservative estimate of the worst-case scheduling
2148  * scenario for any one interval.  The hardware dynamically schedules the
2149  * packets, so we can't tell which microframe could be the limiting factor in
2150  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2151  *
2152  * Obviously, we can't solve an NP complete problem to find the minimum worst
2153  * case scenario.  Instead, we come up with an estimate that is no less than
2154  * the worst case bandwidth used for any one microframe, but may be an
2155  * over-estimate.
2156  *
2157  * We walk the requirements for each endpoint by interval, starting with the
2158  * smallest interval, and place packets in the schedule where there is only one
2159  * possible way to schedule packets for that interval.  In order to simplify
2160  * this algorithm, we record the largest max packet size for each interval, and
2161  * assume all packets will be that size.
2162  *
2163  * For interval 0, we obviously must schedule all packets for each interval.
2164  * The bandwidth for interval 0 is just the amount of data to be transmitted
2165  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2166  * the number of packets).
2167  *
2168  * For interval 1, we have two possible microframes to schedule those packets
2169  * in.  For this algorithm, if we can schedule the same number of packets for
2170  * each possible scheduling opportunity (each microframe), we will do so.  The
2171  * remaining number of packets will be saved to be transmitted in the gaps in
2172  * the next interval's scheduling sequence.
2173  *
2174  * As we move those remaining packets to be scheduled with interval 2 packets,
2175  * we have to double the number of remaining packets to transmit.  This is
2176  * because the intervals are actually powers of 2, and we would be transmitting
2177  * the previous interval's packets twice in this interval.  We also have to be
2178  * sure that when we look at the largest max packet size for this interval, we
2179  * also look at the largest max packet size for the remaining packets and take
2180  * the greater of the two.
2181  *
2182  * The algorithm continues to evenly distribute packets in each scheduling
2183  * opportunity, and push the remaining packets out, until we get to the last
2184  * interval.  Then those packets and their associated overhead are just added
2185  * to the bandwidth used.
2186  */
2187 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2188                 struct xhci_virt_device *virt_dev,
2189                 int old_active_eps)
2190 {
2191         unsigned int bw_reserved;
2192         unsigned int max_bandwidth;
2193         unsigned int bw_used;
2194         unsigned int block_size;
2195         struct xhci_interval_bw_table *bw_table;
2196         unsigned int packet_size = 0;
2197         unsigned int overhead = 0;
2198         unsigned int packets_transmitted = 0;
2199         unsigned int packets_remaining = 0;
2200         unsigned int i;
2201
2202         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2203                 return xhci_check_ss_bw(xhci, virt_dev);
2204
2205         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2206                 max_bandwidth = HS_BW_LIMIT;
2207                 /* Convert percent of bus BW reserved to blocks reserved */
2208                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2209         } else {
2210                 max_bandwidth = FS_BW_LIMIT;
2211                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2212         }
2213
2214         bw_table = virt_dev->bw_table;
2215         /* We need to translate the max packet size and max ESIT payloads into
2216          * the units the hardware uses.
2217          */
2218         block_size = xhci_get_block_size(virt_dev->udev);
2219
2220         /* If we are manipulating a LS/FS device under a HS hub, double check
2221          * that the HS bus has enough bandwidth if we are activing a new TT.
2222          */
2223         if (virt_dev->tt_info) {
2224                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2225                                 "Recalculating BW for rootport %u",
2226                                 virt_dev->real_port);
2227                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2228                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2229                                         "newly activated TT.\n");
2230                         return -ENOMEM;
2231                 }
2232                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2233                                 "Recalculating BW for TT slot %u port %u",
2234                                 virt_dev->tt_info->slot_id,
2235                                 virt_dev->tt_info->ttport);
2236         } else {
2237                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2238                                 "Recalculating BW for rootport %u",
2239                                 virt_dev->real_port);
2240         }
2241
2242         /* Add in how much bandwidth will be used for interval zero, or the
2243          * rounded max ESIT payload + number of packets * largest overhead.
2244          */
2245         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2246                 bw_table->interval_bw[0].num_packets *
2247                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2248
2249         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2250                 unsigned int bw_added;
2251                 unsigned int largest_mps;
2252                 unsigned int interval_overhead;
2253
2254                 /*
2255                  * How many packets could we transmit in this interval?
2256                  * If packets didn't fit in the previous interval, we will need
2257                  * to transmit that many packets twice within this interval.
2258                  */
2259                 packets_remaining = 2 * packets_remaining +
2260                         bw_table->interval_bw[i].num_packets;
2261
2262                 /* Find the largest max packet size of this or the previous
2263                  * interval.
2264                  */
2265                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2266                         largest_mps = 0;
2267                 else {
2268                         struct xhci_virt_ep *virt_ep;
2269                         struct list_head *ep_entry;
2270
2271                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2272                         virt_ep = list_entry(ep_entry,
2273                                         struct xhci_virt_ep, bw_endpoint_list);
2274                         /* Convert to blocks, rounding up */
2275                         largest_mps = DIV_ROUND_UP(
2276                                         virt_ep->bw_info.max_packet_size,
2277                                         block_size);
2278                 }
2279                 if (largest_mps > packet_size)
2280                         packet_size = largest_mps;
2281
2282                 /* Use the larger overhead of this or the previous interval. */
2283                 interval_overhead = xhci_get_largest_overhead(
2284                                 &bw_table->interval_bw[i]);
2285                 if (interval_overhead > overhead)
2286                         overhead = interval_overhead;
2287
2288                 /* How many packets can we evenly distribute across
2289                  * (1 << (i + 1)) possible scheduling opportunities?
2290                  */
2291                 packets_transmitted = packets_remaining >> (i + 1);
2292
2293                 /* Add in the bandwidth used for those scheduled packets */
2294                 bw_added = packets_transmitted * (overhead + packet_size);
2295
2296                 /* How many packets do we have remaining to transmit? */
2297                 packets_remaining = packets_remaining % (1 << (i + 1));
2298
2299                 /* What largest max packet size should those packets have? */
2300                 /* If we've transmitted all packets, don't carry over the
2301                  * largest packet size.
2302                  */
2303                 if (packets_remaining == 0) {
2304                         packet_size = 0;
2305                         overhead = 0;
2306                 } else if (packets_transmitted > 0) {
2307                         /* Otherwise if we do have remaining packets, and we've
2308                          * scheduled some packets in this interval, take the
2309                          * largest max packet size from endpoints with this
2310                          * interval.
2311                          */
2312                         packet_size = largest_mps;
2313                         overhead = interval_overhead;
2314                 }
2315                 /* Otherwise carry over packet_size and overhead from the last
2316                  * time we had a remainder.
2317                  */
2318                 bw_used += bw_added;
2319                 if (bw_used > max_bandwidth) {
2320                         xhci_warn(xhci, "Not enough bandwidth. "
2321                                         "Proposed: %u, Max: %u\n",
2322                                 bw_used, max_bandwidth);
2323                         return -ENOMEM;
2324                 }
2325         }
2326         /*
2327          * Ok, we know we have some packets left over after even-handedly
2328          * scheduling interval 15.  We don't know which microframes they will
2329          * fit into, so we over-schedule and say they will be scheduled every
2330          * microframe.
2331          */
2332         if (packets_remaining > 0)
2333                 bw_used += overhead + packet_size;
2334
2335         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2336                 unsigned int port_index = virt_dev->real_port - 1;
2337
2338                 /* OK, we're manipulating a HS device attached to a
2339                  * root port bandwidth domain.  Include the number of active TTs
2340                  * in the bandwidth used.
2341                  */
2342                 bw_used += TT_HS_OVERHEAD *
2343                         xhci->rh_bw[port_index].num_active_tts;
2344         }
2345
2346         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2347                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2348                 "Available: %u " "percent",
2349                 bw_used, max_bandwidth, bw_reserved,
2350                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2351                 max_bandwidth);
2352
2353         bw_used += bw_reserved;
2354         if (bw_used > max_bandwidth) {
2355                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2356                                 bw_used, max_bandwidth);
2357                 return -ENOMEM;
2358         }
2359
2360         bw_table->bw_used = bw_used;
2361         return 0;
2362 }
2363
2364 static bool xhci_is_async_ep(unsigned int ep_type)
2365 {
2366         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2367                                         ep_type != ISOC_IN_EP &&
2368                                         ep_type != INT_IN_EP);
2369 }
2370
2371 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2372 {
2373         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2374 }
2375
2376 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2377 {
2378         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2379
2380         if (ep_bw->ep_interval == 0)
2381                 return SS_OVERHEAD_BURST +
2382                         (ep_bw->mult * ep_bw->num_packets *
2383                                         (SS_OVERHEAD + mps));
2384         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2385                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2386                                 1 << ep_bw->ep_interval);
2387
2388 }
2389
2390 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2391                 struct xhci_bw_info *ep_bw,
2392                 struct xhci_interval_bw_table *bw_table,
2393                 struct usb_device *udev,
2394                 struct xhci_virt_ep *virt_ep,
2395                 struct xhci_tt_bw_info *tt_info)
2396 {
2397         struct xhci_interval_bw *interval_bw;
2398         int normalized_interval;
2399
2400         if (xhci_is_async_ep(ep_bw->type))
2401                 return;
2402
2403         if (udev->speed >= USB_SPEED_SUPER) {
2404                 if (xhci_is_sync_in_ep(ep_bw->type))
2405                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2406                                 xhci_get_ss_bw_consumed(ep_bw);
2407                 else
2408                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2409                                 xhci_get_ss_bw_consumed(ep_bw);
2410                 return;
2411         }
2412
2413         /* SuperSpeed endpoints never get added to intervals in the table, so
2414          * this check is only valid for HS/FS/LS devices.
2415          */
2416         if (list_empty(&virt_ep->bw_endpoint_list))
2417                 return;
2418         /* For LS/FS devices, we need to translate the interval expressed in
2419          * microframes to frames.
2420          */
2421         if (udev->speed == USB_SPEED_HIGH)
2422                 normalized_interval = ep_bw->ep_interval;
2423         else
2424                 normalized_interval = ep_bw->ep_interval - 3;
2425
2426         if (normalized_interval == 0)
2427                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2428         interval_bw = &bw_table->interval_bw[normalized_interval];
2429         interval_bw->num_packets -= ep_bw->num_packets;
2430         switch (udev->speed) {
2431         case USB_SPEED_LOW:
2432                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2433                 break;
2434         case USB_SPEED_FULL:
2435                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2436                 break;
2437         case USB_SPEED_HIGH:
2438                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2439                 break;
2440         case USB_SPEED_SUPER:
2441         case USB_SPEED_SUPER_PLUS:
2442         case USB_SPEED_UNKNOWN:
2443         case USB_SPEED_WIRELESS:
2444                 /* Should never happen because only LS/FS/HS endpoints will get
2445                  * added to the endpoint list.
2446                  */
2447                 return;
2448         }
2449         if (tt_info)
2450                 tt_info->active_eps -= 1;
2451         list_del_init(&virt_ep->bw_endpoint_list);
2452 }
2453
2454 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2455                 struct xhci_bw_info *ep_bw,
2456                 struct xhci_interval_bw_table *bw_table,
2457                 struct usb_device *udev,
2458                 struct xhci_virt_ep *virt_ep,
2459                 struct xhci_tt_bw_info *tt_info)
2460 {
2461         struct xhci_interval_bw *interval_bw;
2462         struct xhci_virt_ep *smaller_ep;
2463         int normalized_interval;
2464
2465         if (xhci_is_async_ep(ep_bw->type))
2466                 return;
2467
2468         if (udev->speed == USB_SPEED_SUPER) {
2469                 if (xhci_is_sync_in_ep(ep_bw->type))
2470                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2471                                 xhci_get_ss_bw_consumed(ep_bw);
2472                 else
2473                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2474                                 xhci_get_ss_bw_consumed(ep_bw);
2475                 return;
2476         }
2477
2478         /* For LS/FS devices, we need to translate the interval expressed in
2479          * microframes to frames.
2480          */
2481         if (udev->speed == USB_SPEED_HIGH)
2482                 normalized_interval = ep_bw->ep_interval;
2483         else
2484                 normalized_interval = ep_bw->ep_interval - 3;
2485
2486         if (normalized_interval == 0)
2487                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2488         interval_bw = &bw_table->interval_bw[normalized_interval];
2489         interval_bw->num_packets += ep_bw->num_packets;
2490         switch (udev->speed) {
2491         case USB_SPEED_LOW:
2492                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2493                 break;
2494         case USB_SPEED_FULL:
2495                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2496                 break;
2497         case USB_SPEED_HIGH:
2498                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2499                 break;
2500         case USB_SPEED_SUPER:
2501         case USB_SPEED_SUPER_PLUS:
2502         case USB_SPEED_UNKNOWN:
2503         case USB_SPEED_WIRELESS:
2504                 /* Should never happen because only LS/FS/HS endpoints will get
2505                  * added to the endpoint list.
2506                  */
2507                 return;
2508         }
2509
2510         if (tt_info)
2511                 tt_info->active_eps += 1;
2512         /* Insert the endpoint into the list, largest max packet size first. */
2513         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2514                         bw_endpoint_list) {
2515                 if (ep_bw->max_packet_size >=
2516                                 smaller_ep->bw_info.max_packet_size) {
2517                         /* Add the new ep before the smaller endpoint */
2518                         list_add_tail(&virt_ep->bw_endpoint_list,
2519                                         &smaller_ep->bw_endpoint_list);
2520                         return;
2521                 }
2522         }
2523         /* Add the new endpoint at the end of the list. */
2524         list_add_tail(&virt_ep->bw_endpoint_list,
2525                         &interval_bw->endpoints);
2526 }
2527
2528 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2529                 struct xhci_virt_device *virt_dev,
2530                 int old_active_eps)
2531 {
2532         struct xhci_root_port_bw_info *rh_bw_info;
2533         if (!virt_dev->tt_info)
2534                 return;
2535
2536         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2537         if (old_active_eps == 0 &&
2538                                 virt_dev->tt_info->active_eps != 0) {
2539                 rh_bw_info->num_active_tts += 1;
2540                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2541         } else if (old_active_eps != 0 &&
2542                                 virt_dev->tt_info->active_eps == 0) {
2543                 rh_bw_info->num_active_tts -= 1;
2544                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2545         }
2546 }
2547
2548 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2549                 struct xhci_virt_device *virt_dev,
2550                 struct xhci_container_ctx *in_ctx)
2551 {
2552         struct xhci_bw_info ep_bw_info[31];
2553         int i;
2554         struct xhci_input_control_ctx *ctrl_ctx;
2555         int old_active_eps = 0;
2556
2557         if (virt_dev->tt_info)
2558                 old_active_eps = virt_dev->tt_info->active_eps;
2559
2560         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2561         if (!ctrl_ctx) {
2562                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2563                                 __func__);
2564                 return -ENOMEM;
2565         }
2566
2567         for (i = 0; i < 31; i++) {
2568                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2569                         continue;
2570
2571                 /* Make a copy of the BW info in case we need to revert this */
2572                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2573                                 sizeof(ep_bw_info[i]));
2574                 /* Drop the endpoint from the interval table if the endpoint is
2575                  * being dropped or changed.
2576                  */
2577                 if (EP_IS_DROPPED(ctrl_ctx, i))
2578                         xhci_drop_ep_from_interval_table(xhci,
2579                                         &virt_dev->eps[i].bw_info,
2580                                         virt_dev->bw_table,
2581                                         virt_dev->udev,
2582                                         &virt_dev->eps[i],
2583                                         virt_dev->tt_info);
2584         }
2585         /* Overwrite the information stored in the endpoints' bw_info */
2586         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2587         for (i = 0; i < 31; i++) {
2588                 /* Add any changed or added endpoints to the interval table */
2589                 if (EP_IS_ADDED(ctrl_ctx, i))
2590                         xhci_add_ep_to_interval_table(xhci,
2591                                         &virt_dev->eps[i].bw_info,
2592                                         virt_dev->bw_table,
2593                                         virt_dev->udev,
2594                                         &virt_dev->eps[i],
2595                                         virt_dev->tt_info);
2596         }
2597
2598         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2599                 /* Ok, this fits in the bandwidth we have.
2600                  * Update the number of active TTs.
2601                  */
2602                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2603                 return 0;
2604         }
2605
2606         /* We don't have enough bandwidth for this, revert the stored info. */
2607         for (i = 0; i < 31; i++) {
2608                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2609                         continue;
2610
2611                 /* Drop the new copies of any added or changed endpoints from
2612                  * the interval table.
2613                  */
2614                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2615                         xhci_drop_ep_from_interval_table(xhci,
2616                                         &virt_dev->eps[i].bw_info,
2617                                         virt_dev->bw_table,
2618                                         virt_dev->udev,
2619                                         &virt_dev->eps[i],
2620                                         virt_dev->tt_info);
2621                 }
2622                 /* Revert the endpoint back to its old information */
2623                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2624                                 sizeof(ep_bw_info[i]));
2625                 /* Add any changed or dropped endpoints back into the table */
2626                 if (EP_IS_DROPPED(ctrl_ctx, i))
2627                         xhci_add_ep_to_interval_table(xhci,
2628                                         &virt_dev->eps[i].bw_info,
2629                                         virt_dev->bw_table,
2630                                         virt_dev->udev,
2631                                         &virt_dev->eps[i],
2632                                         virt_dev->tt_info);
2633         }
2634         return -ENOMEM;
2635 }
2636
2637
2638 /* Issue a configure endpoint command or evaluate context command
2639  * and wait for it to finish.
2640  */
2641 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2642                 struct usb_device *udev,
2643                 struct xhci_command *command,
2644                 bool ctx_change, bool must_succeed)
2645 {
2646         int ret;
2647         unsigned long flags;
2648         struct xhci_input_control_ctx *ctrl_ctx;
2649         struct xhci_virt_device *virt_dev;
2650
2651         if (!command)
2652                 return -EINVAL;
2653
2654         spin_lock_irqsave(&xhci->lock, flags);
2655         virt_dev = xhci->devs[udev->slot_id];
2656
2657         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2658         if (!ctrl_ctx) {
2659                 spin_unlock_irqrestore(&xhci->lock, flags);
2660                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2661                                 __func__);
2662                 return -ENOMEM;
2663         }
2664
2665         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2666                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2667                 spin_unlock_irqrestore(&xhci->lock, flags);
2668                 xhci_warn(xhci, "Not enough host resources, "
2669                                 "active endpoint contexts = %u\n",
2670                                 xhci->num_active_eps);
2671                 return -ENOMEM;
2672         }
2673         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2674             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2675                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2676                         xhci_free_host_resources(xhci, ctrl_ctx);
2677                 spin_unlock_irqrestore(&xhci->lock, flags);
2678                 xhci_warn(xhci, "Not enough bandwidth\n");
2679                 return -ENOMEM;
2680         }
2681
2682         if (!ctx_change)
2683                 ret = xhci_queue_configure_endpoint(xhci, command,
2684                                 command->in_ctx->dma,
2685                                 udev->slot_id, must_succeed);
2686         else
2687                 ret = xhci_queue_evaluate_context(xhci, command,
2688                                 command->in_ctx->dma,
2689                                 udev->slot_id, must_succeed);
2690         if (ret < 0) {
2691                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2692                         xhci_free_host_resources(xhci, ctrl_ctx);
2693                 spin_unlock_irqrestore(&xhci->lock, flags);
2694                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2695                                 "FIXME allocate a new ring segment");
2696                 return -ENOMEM;
2697         }
2698         xhci_ring_cmd_db(xhci);
2699         spin_unlock_irqrestore(&xhci->lock, flags);
2700
2701         /* Wait for the configure endpoint command to complete */
2702         wait_for_completion(command->completion);
2703
2704         if (!ctx_change)
2705                 ret = xhci_configure_endpoint_result(xhci, udev,
2706                                                      &command->status);
2707         else
2708                 ret = xhci_evaluate_context_result(xhci, udev,
2709                                                    &command->status);
2710
2711         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2712                 spin_lock_irqsave(&xhci->lock, flags);
2713                 /* If the command failed, remove the reserved resources.
2714                  * Otherwise, clean up the estimate to include dropped eps.
2715                  */
2716                 if (ret)
2717                         xhci_free_host_resources(xhci, ctrl_ctx);
2718                 else
2719                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2720                 spin_unlock_irqrestore(&xhci->lock, flags);
2721         }
2722         return ret;
2723 }
2724
2725 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2726         struct xhci_virt_device *vdev, int i)
2727 {
2728         struct xhci_virt_ep *ep = &vdev->eps[i];
2729
2730         if (ep->ep_state & EP_HAS_STREAMS) {
2731                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2732                                 xhci_get_endpoint_address(i));
2733                 xhci_free_stream_info(xhci, ep->stream_info);
2734                 ep->stream_info = NULL;
2735                 ep->ep_state &= ~EP_HAS_STREAMS;
2736         }
2737 }
2738
2739 /* Called after one or more calls to xhci_add_endpoint() or
2740  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2741  * to call xhci_reset_bandwidth().
2742  *
2743  * Since we are in the middle of changing either configuration or
2744  * installing a new alt setting, the USB core won't allow URBs to be
2745  * enqueued for any endpoint on the old config or interface.  Nothing
2746  * else should be touching the xhci->devs[slot_id] structure, so we
2747  * don't need to take the xhci->lock for manipulating that.
2748  */
2749 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2750 {
2751         int i;
2752         int ret = 0;
2753         struct xhci_hcd *xhci;
2754         struct xhci_virt_device *virt_dev;
2755         struct xhci_input_control_ctx *ctrl_ctx;
2756         struct xhci_slot_ctx *slot_ctx;
2757         struct xhci_command *command;
2758
2759         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2760         if (ret <= 0)
2761                 return ret;
2762         xhci = hcd_to_xhci(hcd);
2763         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2764                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2765                 return -ENODEV;
2766
2767         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2768         virt_dev = xhci->devs[udev->slot_id];
2769
2770         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2771         if (!command)
2772                 return -ENOMEM;
2773
2774         command->in_ctx = virt_dev->in_ctx;
2775
2776         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2777         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2778         if (!ctrl_ctx) {
2779                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2780                                 __func__);
2781                 ret = -ENOMEM;
2782                 goto command_cleanup;
2783         }
2784         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2785         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2786         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2787
2788         /* Don't issue the command if there's no endpoints to update. */
2789         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2790             ctrl_ctx->drop_flags == 0) {
2791                 ret = 0;
2792                 goto command_cleanup;
2793         }
2794         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2795         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2796         for (i = 31; i >= 1; i--) {
2797                 __le32 le32 = cpu_to_le32(BIT(i));
2798
2799                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2800                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2801                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2802                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2803                         break;
2804                 }
2805         }
2806         xhci_dbg(xhci, "New Input Control Context:\n");
2807         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2808                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2809
2810         ret = xhci_configure_endpoint(xhci, udev, command,
2811                         false, false);
2812         if (ret)
2813                 /* Callee should call reset_bandwidth() */
2814                 goto command_cleanup;
2815
2816         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2817         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2818                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2819
2820         /* Free any rings that were dropped, but not changed. */
2821         for (i = 1; i < 31; ++i) {
2822                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2823                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2824                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2825                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2826                 }
2827         }
2828         xhci_zero_in_ctx(xhci, virt_dev);
2829         /*
2830          * Install any rings for completely new endpoints or changed endpoints,
2831          * and free or cache any old rings from changed endpoints.
2832          */
2833         for (i = 1; i < 31; ++i) {
2834                 if (!virt_dev->eps[i].new_ring)
2835                         continue;
2836                 /* Only cache or free the old ring if it exists.
2837                  * It may not if this is the first add of an endpoint.
2838                  */
2839                 if (virt_dev->eps[i].ring) {
2840                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2841                 }
2842                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2843                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2844                 virt_dev->eps[i].new_ring = NULL;
2845         }
2846 command_cleanup:
2847         kfree(command->completion);
2848         kfree(command);
2849
2850         return ret;
2851 }
2852
2853 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2854 {
2855         struct xhci_hcd *xhci;
2856         struct xhci_virt_device *virt_dev;
2857         int i, ret;
2858
2859         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2860         if (ret <= 0)
2861                 return;
2862         xhci = hcd_to_xhci(hcd);
2863
2864         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2865         virt_dev = xhci->devs[udev->slot_id];
2866         /* Free any rings allocated for added endpoints */
2867         for (i = 0; i < 31; ++i) {
2868                 if (virt_dev->eps[i].new_ring) {
2869                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2870                         virt_dev->eps[i].new_ring = NULL;
2871                 }
2872         }
2873         xhci_zero_in_ctx(xhci, virt_dev);
2874 }
2875
2876 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2877                 struct xhci_container_ctx *in_ctx,
2878                 struct xhci_container_ctx *out_ctx,
2879                 struct xhci_input_control_ctx *ctrl_ctx,
2880                 u32 add_flags, u32 drop_flags)
2881 {
2882         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2883         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2884         xhci_slot_copy(xhci, in_ctx, out_ctx);
2885         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2886
2887         xhci_dbg(xhci, "Input Context:\n");
2888         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2889 }
2890
2891 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2892                 unsigned int slot_id, unsigned int ep_index,
2893                 struct xhci_dequeue_state *deq_state)
2894 {
2895         struct xhci_input_control_ctx *ctrl_ctx;
2896         struct xhci_container_ctx *in_ctx;
2897         struct xhci_ep_ctx *ep_ctx;
2898         u32 added_ctxs;
2899         dma_addr_t addr;
2900
2901         in_ctx = xhci->devs[slot_id]->in_ctx;
2902         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2903         if (!ctrl_ctx) {
2904                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2905                                 __func__);
2906                 return;
2907         }
2908
2909         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2910                         xhci->devs[slot_id]->out_ctx, ep_index);
2911         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2912         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2913                         deq_state->new_deq_ptr);
2914         if (addr == 0) {
2915                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2916                                 "reset ep command\n");
2917                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2918                                 deq_state->new_deq_seg,
2919                                 deq_state->new_deq_ptr);
2920                 return;
2921         }
2922         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2923
2924         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2925         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2926                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2927                         added_ctxs, added_ctxs);
2928 }
2929
2930 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2931                         unsigned int ep_index, struct xhci_td *td)
2932 {
2933         struct xhci_dequeue_state deq_state;
2934         struct xhci_virt_ep *ep;
2935         struct usb_device *udev = td->urb->dev;
2936
2937         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2938                         "Cleaning up stalled endpoint ring");
2939         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2940         /* We need to move the HW's dequeue pointer past this TD,
2941          * or it will attempt to resend it on the next doorbell ring.
2942          */
2943         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2944                         ep_index, ep->stopped_stream, td, &deq_state);
2945
2946         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2947                 return;
2948
2949         /* HW with the reset endpoint quirk will use the saved dequeue state to
2950          * issue a configure endpoint command later.
2951          */
2952         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2953                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2954                                 "Queueing new dequeue state");
2955                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2956                                 ep_index, ep->stopped_stream, &deq_state);
2957         } else {
2958                 /* Better hope no one uses the input context between now and the
2959                  * reset endpoint completion!
2960                  * XXX: No idea how this hardware will react when stream rings
2961                  * are enabled.
2962                  */
2963                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2964                                 "Setting up input context for "
2965                                 "configure endpoint command");
2966                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2967                                 ep_index, &deq_state);
2968         }
2969 }
2970
2971 /* Called when clearing halted device. The core should have sent the control
2972  * message to clear the device halt condition. The host side of the halt should
2973  * already be cleared with a reset endpoint command issued when the STALL tx
2974  * event was received.
2975  *
2976  * Context: in_interrupt
2977  */
2978
2979 void xhci_endpoint_reset(struct usb_hcd *hcd,
2980                 struct usb_host_endpoint *ep)
2981 {
2982         struct xhci_hcd *xhci;
2983
2984         xhci = hcd_to_xhci(hcd);
2985
2986         /*
2987          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2988          * The Reset Endpoint Command may only be issued to endpoints in the
2989          * Halted state. If software wishes reset the Data Toggle or Sequence
2990          * Number of an endpoint that isn't in the Halted state, then software
2991          * may issue a Configure Endpoint Command with the Drop and Add bits set
2992          * for the target endpoint. that is in the Stopped state.
2993          */
2994
2995         /* For now just print debug to follow the situation */
2996         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2997                  ep->desc.bEndpointAddress);
2998 }
2999
3000 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3001                 struct usb_device *udev, struct usb_host_endpoint *ep,
3002                 unsigned int slot_id)
3003 {
3004         int ret;
3005         unsigned int ep_index;
3006         unsigned int ep_state;
3007
3008         if (!ep)
3009                 return -EINVAL;
3010         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3011         if (ret <= 0)
3012                 return -EINVAL;
3013         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3014                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3015                                 " descriptor for ep 0x%x does not support streams\n",
3016                                 ep->desc.bEndpointAddress);
3017                 return -EINVAL;
3018         }
3019
3020         ep_index = xhci_get_endpoint_index(&ep->desc);
3021         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3022         if (ep_state & EP_HAS_STREAMS ||
3023                         ep_state & EP_GETTING_STREAMS) {
3024                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3025                                 "already has streams set up.\n",
3026                                 ep->desc.bEndpointAddress);
3027                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3028                                 "dynamic stream context array reallocation.\n");
3029                 return -EINVAL;
3030         }
3031         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3032                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3033                                 "endpoint 0x%x; URBs are pending.\n",
3034                                 ep->desc.bEndpointAddress);
3035                 return -EINVAL;
3036         }
3037         return 0;
3038 }
3039
3040 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3041                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3042 {
3043         unsigned int max_streams;
3044
3045         /* The stream context array size must be a power of two */
3046         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3047         /*
3048          * Find out how many primary stream array entries the host controller
3049          * supports.  Later we may use secondary stream arrays (similar to 2nd
3050          * level page entries), but that's an optional feature for xHCI host
3051          * controllers. xHCs must support at least 4 stream IDs.
3052          */
3053         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3054         if (*num_stream_ctxs > max_streams) {
3055                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3056                                 max_streams);
3057                 *num_stream_ctxs = max_streams;
3058                 *num_streams = max_streams;
3059         }
3060 }
3061
3062 /* Returns an error code if one of the endpoint already has streams.
3063  * This does not change any data structures, it only checks and gathers
3064  * information.
3065  */
3066 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3067                 struct usb_device *udev,
3068                 struct usb_host_endpoint **eps, unsigned int num_eps,
3069                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3070 {
3071         unsigned int max_streams;
3072         unsigned int endpoint_flag;
3073         int i;
3074         int ret;
3075
3076         for (i = 0; i < num_eps; i++) {
3077                 ret = xhci_check_streams_endpoint(xhci, udev,
3078                                 eps[i], udev->slot_id);
3079                 if (ret < 0)
3080                         return ret;
3081
3082                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3083                 if (max_streams < (*num_streams - 1)) {
3084                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3085                                         eps[i]->desc.bEndpointAddress,
3086                                         max_streams);
3087                         *num_streams = max_streams+1;
3088                 }
3089
3090                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3091                 if (*changed_ep_bitmask & endpoint_flag)
3092                         return -EINVAL;
3093                 *changed_ep_bitmask |= endpoint_flag;
3094         }
3095         return 0;
3096 }
3097
3098 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3099                 struct usb_device *udev,
3100                 struct usb_host_endpoint **eps, unsigned int num_eps)
3101 {
3102         u32 changed_ep_bitmask = 0;
3103         unsigned int slot_id;
3104         unsigned int ep_index;
3105         unsigned int ep_state;
3106         int i;
3107
3108         slot_id = udev->slot_id;
3109         if (!xhci->devs[slot_id])
3110                 return 0;
3111
3112         for (i = 0; i < num_eps; i++) {
3113                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3114                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3115                 /* Are streams already being freed for the endpoint? */
3116                 if (ep_state & EP_GETTING_NO_STREAMS) {
3117                         xhci_warn(xhci, "WARN Can't disable streams for "
3118                                         "endpoint 0x%x, "
3119                                         "streams are being disabled already\n",
3120                                         eps[i]->desc.bEndpointAddress);
3121                         return 0;
3122                 }
3123                 /* Are there actually any streams to free? */
3124                 if (!(ep_state & EP_HAS_STREAMS) &&
3125                                 !(ep_state & EP_GETTING_STREAMS)) {
3126                         xhci_warn(xhci, "WARN Can't disable streams for "
3127                                         "endpoint 0x%x, "
3128                                         "streams are already disabled!\n",
3129                                         eps[i]->desc.bEndpointAddress);
3130                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3131                                         "with non-streams endpoint\n");
3132                         return 0;
3133                 }
3134                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3135         }
3136         return changed_ep_bitmask;
3137 }
3138
3139 /*
3140  * The USB device drivers use this function (through the HCD interface in USB
3141  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3142  * coordinate mass storage command queueing across multiple endpoints (basically
3143  * a stream ID == a task ID).
3144  *
3145  * Setting up streams involves allocating the same size stream context array
3146  * for each endpoint and issuing a configure endpoint command for all endpoints.
3147  *
3148  * Don't allow the call to succeed if one endpoint only supports one stream
3149  * (which means it doesn't support streams at all).
3150  *
3151  * Drivers may get less stream IDs than they asked for, if the host controller
3152  * hardware or endpoints claim they can't support the number of requested
3153  * stream IDs.
3154  */
3155 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3156                 struct usb_host_endpoint **eps, unsigned int num_eps,
3157                 unsigned int num_streams, gfp_t mem_flags)
3158 {
3159         int i, ret;
3160         struct xhci_hcd *xhci;
3161         struct xhci_virt_device *vdev;
3162         struct xhci_command *config_cmd;
3163         struct xhci_input_control_ctx *ctrl_ctx;
3164         unsigned int ep_index;
3165         unsigned int num_stream_ctxs;
3166         unsigned long flags;
3167         u32 changed_ep_bitmask = 0;
3168
3169         if (!eps)
3170                 return -EINVAL;
3171
3172         /* Add one to the number of streams requested to account for
3173          * stream 0 that is reserved for xHCI usage.
3174          */
3175         num_streams += 1;
3176         xhci = hcd_to_xhci(hcd);
3177         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3178                         num_streams);
3179
3180         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3181         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3182                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3183                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3184                 return -ENOSYS;
3185         }
3186
3187         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3188         if (!config_cmd) {
3189                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3190                 return -ENOMEM;
3191         }
3192         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3193         if (!ctrl_ctx) {
3194                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3195                                 __func__);
3196                 xhci_free_command(xhci, config_cmd);
3197                 return -ENOMEM;
3198         }
3199
3200         /* Check to make sure all endpoints are not already configured for
3201          * streams.  While we're at it, find the maximum number of streams that
3202          * all the endpoints will support and check for duplicate endpoints.
3203          */
3204         spin_lock_irqsave(&xhci->lock, flags);
3205         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3206                         num_eps, &num_streams, &changed_ep_bitmask);
3207         if (ret < 0) {
3208                 xhci_free_command(xhci, config_cmd);
3209                 spin_unlock_irqrestore(&xhci->lock, flags);
3210                 return ret;
3211         }
3212         if (num_streams <= 1) {
3213                 xhci_warn(xhci, "WARN: endpoints can't handle "
3214                                 "more than one stream.\n");
3215                 xhci_free_command(xhci, config_cmd);
3216                 spin_unlock_irqrestore(&xhci->lock, flags);
3217                 return -EINVAL;
3218         }
3219         vdev = xhci->devs[udev->slot_id];
3220         /* Mark each endpoint as being in transition, so
3221          * xhci_urb_enqueue() will reject all URBs.
3222          */
3223         for (i = 0; i < num_eps; i++) {
3224                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3225                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3226         }
3227         spin_unlock_irqrestore(&xhci->lock, flags);
3228
3229         /* Setup internal data structures and allocate HW data structures for
3230          * streams (but don't install the HW structures in the input context
3231          * until we're sure all memory allocation succeeded).
3232          */
3233         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3234         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3235                         num_stream_ctxs, num_streams);
3236
3237         for (i = 0; i < num_eps; i++) {
3238                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3239                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3240                                 num_stream_ctxs,
3241                                 num_streams, mem_flags);
3242                 if (!vdev->eps[ep_index].stream_info)
3243                         goto cleanup;
3244                 /* Set maxPstreams in endpoint context and update deq ptr to
3245                  * point to stream context array. FIXME
3246                  */
3247         }
3248
3249         /* Set up the input context for a configure endpoint command. */
3250         for (i = 0; i < num_eps; i++) {
3251                 struct xhci_ep_ctx *ep_ctx;
3252
3253                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3254                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3255
3256                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3257                                 vdev->out_ctx, ep_index);
3258                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3259                                 vdev->eps[ep_index].stream_info);
3260         }
3261         /* Tell the HW to drop its old copy of the endpoint context info
3262          * and add the updated copy from the input context.
3263          */
3264         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3265                         vdev->out_ctx, ctrl_ctx,
3266                         changed_ep_bitmask, changed_ep_bitmask);
3267
3268         /* Issue and wait for the configure endpoint command */
3269         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3270                         false, false);
3271
3272         /* xHC rejected the configure endpoint command for some reason, so we
3273          * leave the old ring intact and free our internal streams data
3274          * structure.
3275          */
3276         if (ret < 0)
3277                 goto cleanup;
3278
3279         spin_lock_irqsave(&xhci->lock, flags);
3280         for (i = 0; i < num_eps; i++) {
3281                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3282                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3283                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3284                          udev->slot_id, ep_index);
3285                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3286         }
3287         xhci_free_command(xhci, config_cmd);
3288         spin_unlock_irqrestore(&xhci->lock, flags);
3289
3290         /* Subtract 1 for stream 0, which drivers can't use */
3291         return num_streams - 1;
3292
3293 cleanup:
3294         /* If it didn't work, free the streams! */
3295         for (i = 0; i < num_eps; i++) {
3296                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3297                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3298                 vdev->eps[ep_index].stream_info = NULL;
3299                 /* FIXME Unset maxPstreams in endpoint context and
3300                  * update deq ptr to point to normal string ring.
3301                  */
3302                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3303                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3304                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3305         }
3306         xhci_free_command(xhci, config_cmd);
3307         return -ENOMEM;
3308 }
3309
3310 /* Transition the endpoint from using streams to being a "normal" endpoint
3311  * without streams.
3312  *
3313  * Modify the endpoint context state, submit a configure endpoint command,
3314  * and free all endpoint rings for streams if that completes successfully.
3315  */
3316 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3317                 struct usb_host_endpoint **eps, unsigned int num_eps,
3318                 gfp_t mem_flags)
3319 {
3320         int i, ret;
3321         struct xhci_hcd *xhci;
3322         struct xhci_virt_device *vdev;
3323         struct xhci_command *command;
3324         struct xhci_input_control_ctx *ctrl_ctx;
3325         unsigned int ep_index;
3326         unsigned long flags;
3327         u32 changed_ep_bitmask;
3328
3329         xhci = hcd_to_xhci(hcd);
3330         vdev = xhci->devs[udev->slot_id];
3331
3332         /* Set up a configure endpoint command to remove the streams rings */
3333         spin_lock_irqsave(&xhci->lock, flags);
3334         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3335                         udev, eps, num_eps);
3336         if (changed_ep_bitmask == 0) {
3337                 spin_unlock_irqrestore(&xhci->lock, flags);
3338                 return -EINVAL;
3339         }
3340
3341         /* Use the xhci_command structure from the first endpoint.  We may have
3342          * allocated too many, but the driver may call xhci_free_streams() for
3343          * each endpoint it grouped into one call to xhci_alloc_streams().
3344          */
3345         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3346         command = vdev->eps[ep_index].stream_info->free_streams_command;
3347         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3348         if (!ctrl_ctx) {
3349                 spin_unlock_irqrestore(&xhci->lock, flags);
3350                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3351                                 __func__);
3352                 return -EINVAL;
3353         }
3354
3355         for (i = 0; i < num_eps; i++) {
3356                 struct xhci_ep_ctx *ep_ctx;
3357
3358                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3359                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3360                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3361                         EP_GETTING_NO_STREAMS;
3362
3363                 xhci_endpoint_copy(xhci, command->in_ctx,
3364                                 vdev->out_ctx, ep_index);
3365                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3366                                 &vdev->eps[ep_index]);
3367         }
3368         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3369                         vdev->out_ctx, ctrl_ctx,
3370                         changed_ep_bitmask, changed_ep_bitmask);
3371         spin_unlock_irqrestore(&xhci->lock, flags);
3372
3373         /* Issue and wait for the configure endpoint command,
3374          * which must succeed.
3375          */
3376         ret = xhci_configure_endpoint(xhci, udev, command,
3377                         false, true);
3378
3379         /* xHC rejected the configure endpoint command for some reason, so we
3380          * leave the streams rings intact.
3381          */
3382         if (ret < 0)
3383                 return ret;
3384
3385         spin_lock_irqsave(&xhci->lock, flags);
3386         for (i = 0; i < num_eps; i++) {
3387                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3388                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3389                 vdev->eps[ep_index].stream_info = NULL;
3390                 /* FIXME Unset maxPstreams in endpoint context and
3391                  * update deq ptr to point to normal string ring.
3392                  */
3393                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3394                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3395         }
3396         spin_unlock_irqrestore(&xhci->lock, flags);
3397
3398         return 0;
3399 }
3400
3401 /*
3402  * Deletes endpoint resources for endpoints that were active before a Reset
3403  * Device command, or a Disable Slot command.  The Reset Device command leaves
3404  * the control endpoint intact, whereas the Disable Slot command deletes it.
3405  *
3406  * Must be called with xhci->lock held.
3407  */
3408 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3409         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3410 {
3411         int i;
3412         unsigned int num_dropped_eps = 0;
3413         unsigned int drop_flags = 0;
3414
3415         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3416                 if (virt_dev->eps[i].ring) {
3417                         drop_flags |= 1 << i;
3418                         num_dropped_eps++;
3419                 }
3420         }
3421         xhci->num_active_eps -= num_dropped_eps;
3422         if (num_dropped_eps)
3423                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3424                                 "Dropped %u ep ctxs, flags = 0x%x, "
3425                                 "%u now active.",
3426                                 num_dropped_eps, drop_flags,
3427                                 xhci->num_active_eps);
3428 }
3429
3430 /*
3431  * This submits a Reset Device Command, which will set the device state to 0,
3432  * set the device address to 0, and disable all the endpoints except the default
3433  * control endpoint.  The USB core should come back and call
3434  * xhci_address_device(), and then re-set up the configuration.  If this is
3435  * called because of a usb_reset_and_verify_device(), then the old alternate
3436  * settings will be re-installed through the normal bandwidth allocation
3437  * functions.
3438  *
3439  * Wait for the Reset Device command to finish.  Remove all structures
3440  * associated with the endpoints that were disabled.  Clear the input device
3441  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3442  *
3443  * If the virt_dev to be reset does not exist or does not match the udev,
3444  * it means the device is lost, possibly due to the xHC restore error and
3445  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3446  * re-allocate the device.
3447  */
3448 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3449 {
3450         int ret, i;
3451         unsigned long flags;
3452         struct xhci_hcd *xhci;
3453         unsigned int slot_id;
3454         struct xhci_virt_device *virt_dev;
3455         struct xhci_command *reset_device_cmd;
3456         int last_freed_endpoint;
3457         struct xhci_slot_ctx *slot_ctx;
3458         int old_active_eps = 0;
3459
3460         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3461         if (ret <= 0)
3462                 return ret;
3463         xhci = hcd_to_xhci(hcd);
3464         slot_id = udev->slot_id;
3465         virt_dev = xhci->devs[slot_id];
3466         if (!virt_dev) {
3467                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3468                                 "not exist. Re-allocate the device\n", slot_id);
3469                 ret = xhci_alloc_dev(hcd, udev);
3470                 if (ret == 1)
3471                         return 0;
3472                 else
3473                         return -EINVAL;
3474         }
3475
3476         if (virt_dev->tt_info)
3477                 old_active_eps = virt_dev->tt_info->active_eps;
3478
3479         if (virt_dev->udev != udev) {
3480                 /* If the virt_dev and the udev does not match, this virt_dev
3481                  * may belong to another udev.
3482                  * Re-allocate the device.
3483                  */
3484                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3485                                 "not match the udev. Re-allocate the device\n",
3486                                 slot_id);
3487                 ret = xhci_alloc_dev(hcd, udev);
3488                 if (ret == 1)
3489                         return 0;
3490                 else
3491                         return -EINVAL;
3492         }
3493
3494         /* If device is not setup, there is no point in resetting it */
3495         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3496         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3497                                                 SLOT_STATE_DISABLED)
3498                 return 0;
3499
3500         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3501         /* Allocate the command structure that holds the struct completion.
3502          * Assume we're in process context, since the normal device reset
3503          * process has to wait for the device anyway.  Storage devices are
3504          * reset as part of error handling, so use GFP_NOIO instead of
3505          * GFP_KERNEL.
3506          */
3507         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3508         if (!reset_device_cmd) {
3509                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3510                 return -ENOMEM;
3511         }
3512
3513         /* Attempt to submit the Reset Device command to the command ring */
3514         spin_lock_irqsave(&xhci->lock, flags);
3515
3516         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3517         if (ret) {
3518                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3519                 spin_unlock_irqrestore(&xhci->lock, flags);
3520                 goto command_cleanup;
3521         }
3522         xhci_ring_cmd_db(xhci);
3523         spin_unlock_irqrestore(&xhci->lock, flags);
3524
3525         /* Wait for the Reset Device command to finish */
3526         wait_for_completion(reset_device_cmd->completion);
3527
3528         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3529          * unless we tried to reset a slot ID that wasn't enabled,
3530          * or the device wasn't in the addressed or configured state.
3531          */
3532         ret = reset_device_cmd->status;
3533         switch (ret) {
3534         case COMP_CMD_ABORT:
3535         case COMP_CMD_STOP:
3536                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3537                 ret = -ETIME;
3538                 goto command_cleanup;
3539         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3540         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3541                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3542                                 slot_id,
3543                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3544                 xhci_dbg(xhci, "Not freeing device rings.\n");
3545                 /* Don't treat this as an error.  May change my mind later. */
3546                 ret = 0;
3547                 goto command_cleanup;
3548         case COMP_SUCCESS:
3549                 xhci_dbg(xhci, "Successful reset device command.\n");
3550                 break;
3551         default:
3552                 if (xhci_is_vendor_info_code(xhci, ret))
3553                         break;
3554                 xhci_warn(xhci, "Unknown completion code %u for "
3555                                 "reset device command.\n", ret);
3556                 ret = -EINVAL;
3557                 goto command_cleanup;
3558         }
3559
3560         /* Free up host controller endpoint resources */
3561         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3562                 spin_lock_irqsave(&xhci->lock, flags);
3563                 /* Don't delete the default control endpoint resources */
3564                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3565                 spin_unlock_irqrestore(&xhci->lock, flags);
3566         }
3567
3568         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3569         last_freed_endpoint = 1;
3570         for (i = 1; i < 31; ++i) {
3571                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3572
3573                 if (ep->ep_state & EP_HAS_STREAMS) {
3574                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3575                                         xhci_get_endpoint_address(i));
3576                         xhci_free_stream_info(xhci, ep->stream_info);
3577                         ep->stream_info = NULL;
3578                         ep->ep_state &= ~EP_HAS_STREAMS;
3579                 }
3580
3581                 if (ep->ring) {
3582                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3583                         last_freed_endpoint = i;
3584                 }
3585                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3586                         xhci_drop_ep_from_interval_table(xhci,
3587                                         &virt_dev->eps[i].bw_info,
3588                                         virt_dev->bw_table,
3589                                         udev,
3590                                         &virt_dev->eps[i],
3591                                         virt_dev->tt_info);
3592                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3593         }
3594         /* If necessary, update the number of active TTs on this root port */
3595         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3596
3597         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3598         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3599         ret = 0;
3600
3601 command_cleanup:
3602         xhci_free_command(xhci, reset_device_cmd);
3603         return ret;
3604 }
3605
3606 /*
3607  * At this point, the struct usb_device is about to go away, the device has
3608  * disconnected, and all traffic has been stopped and the endpoints have been
3609  * disabled.  Free any HC data structures associated with that device.
3610  */
3611 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3612 {
3613         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3614         struct xhci_virt_device *virt_dev;
3615         unsigned long flags;
3616         u32 state;
3617         int i, ret;
3618         struct xhci_command *command;
3619
3620         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3621         if (!command)
3622                 return;
3623
3624 #ifndef CONFIG_USB_DEFAULT_PERSIST
3625         /*
3626          * We called pm_runtime_get_noresume when the device was attached.
3627          * Decrement the counter here to allow controller to runtime suspend
3628          * if no devices remain.
3629          */
3630         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3631                 pm_runtime_put_noidle(hcd->self.controller);
3632 #endif
3633
3634         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3635         /* If the host is halted due to driver unload, we still need to free the
3636          * device.
3637          */
3638         if (ret <= 0 && ret != -ENODEV) {
3639                 kfree(command);
3640                 return;
3641         }
3642
3643         virt_dev = xhci->devs[udev->slot_id];
3644
3645         /* Stop any wayward timer functions (which may grab the lock) */
3646         for (i = 0; i < 31; ++i) {
3647                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3648                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3649         }
3650
3651         spin_lock_irqsave(&xhci->lock, flags);
3652         /* Don't disable the slot if the host controller is dead. */
3653         state = readl(&xhci->op_regs->status);
3654         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3655                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3656                 xhci_free_virt_device(xhci, udev->slot_id);
3657                 spin_unlock_irqrestore(&xhci->lock, flags);
3658                 kfree(command);
3659                 return;
3660         }
3661
3662         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3663                                     udev->slot_id)) {
3664                 spin_unlock_irqrestore(&xhci->lock, flags);
3665                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3666                 return;
3667         }
3668         xhci_ring_cmd_db(xhci);
3669         spin_unlock_irqrestore(&xhci->lock, flags);
3670
3671         /*
3672          * Event command completion handler will free any data structures
3673          * associated with the slot.  XXX Can free sleep?
3674          */
3675 }
3676
3677 /*
3678  * Checks if we have enough host controller resources for the default control
3679  * endpoint.
3680  *
3681  * Must be called with xhci->lock held.
3682  */
3683 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3684 {
3685         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3686                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3687                                 "Not enough ep ctxs: "
3688                                 "%u active, need to add 1, limit is %u.",
3689                                 xhci->num_active_eps, xhci->limit_active_eps);
3690                 return -ENOMEM;
3691         }
3692         xhci->num_active_eps += 1;
3693         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3694                         "Adding 1 ep ctx, %u now active.",
3695                         xhci->num_active_eps);
3696         return 0;
3697 }
3698
3699
3700 /*
3701  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3702  * timed out, or allocating memory failed.  Returns 1 on success.
3703  */
3704 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3705 {
3706         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3707         unsigned long flags;
3708         int ret, slot_id;
3709         struct xhci_command *command;
3710
3711         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3712         if (!command)
3713                 return 0;
3714
3715         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3716         mutex_lock(&xhci->mutex);
3717         spin_lock_irqsave(&xhci->lock, flags);
3718         command->completion = &xhci->addr_dev;
3719         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3720         if (ret) {
3721                 spin_unlock_irqrestore(&xhci->lock, flags);
3722                 mutex_unlock(&xhci->mutex);
3723                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3724                 kfree(command);
3725                 return 0;
3726         }
3727         xhci_ring_cmd_db(xhci);
3728         spin_unlock_irqrestore(&xhci->lock, flags);
3729
3730         wait_for_completion(command->completion);
3731         slot_id = xhci->slot_id;
3732         mutex_unlock(&xhci->mutex);
3733
3734         if (!slot_id || command->status != COMP_SUCCESS) {
3735                 xhci_err(xhci, "Error while assigning device slot ID\n");
3736                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3737                                 HCS_MAX_SLOTS(
3738                                         readl(&xhci->cap_regs->hcs_params1)));
3739                 kfree(command);
3740                 return 0;
3741         }
3742
3743         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3744                 spin_lock_irqsave(&xhci->lock, flags);
3745                 ret = xhci_reserve_host_control_ep_resources(xhci);
3746                 if (ret) {
3747                         spin_unlock_irqrestore(&xhci->lock, flags);
3748                         xhci_warn(xhci, "Not enough host resources, "
3749                                         "active endpoint contexts = %u\n",
3750                                         xhci->num_active_eps);
3751                         goto disable_slot;
3752                 }
3753                 spin_unlock_irqrestore(&xhci->lock, flags);
3754         }
3755         /* Use GFP_NOIO, since this function can be called from
3756          * xhci_discover_or_reset_device(), which may be called as part of
3757          * mass storage driver error handling.
3758          */
3759         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3760                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3761                 goto disable_slot;
3762         }
3763         udev->slot_id = slot_id;
3764
3765 #ifndef CONFIG_USB_DEFAULT_PERSIST
3766         /*
3767          * If resetting upon resume, we can't put the controller into runtime
3768          * suspend if there is a device attached.
3769          */
3770         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3771                 pm_runtime_get_noresume(hcd->self.controller);
3772 #endif
3773
3774
3775         kfree(command);
3776         /* Is this a LS or FS device under a HS hub? */
3777         /* Hub or peripherial? */
3778         return 1;
3779
3780 disable_slot:
3781         /* Disable slot, if we can do it without mem alloc */
3782         spin_lock_irqsave(&xhci->lock, flags);
3783         command->completion = NULL;
3784         command->status = 0;
3785         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3786                                      udev->slot_id))
3787                 xhci_ring_cmd_db(xhci);
3788         spin_unlock_irqrestore(&xhci->lock, flags);
3789         return 0;
3790 }
3791
3792 /*
3793  * Issue an Address Device command and optionally send a corresponding
3794  * SetAddress request to the device.
3795  */
3796 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3797                              enum xhci_setup_dev setup)
3798 {
3799         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3800         unsigned long flags;
3801         struct xhci_virt_device *virt_dev;
3802         int ret = 0;
3803         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3804         struct xhci_slot_ctx *slot_ctx;
3805         struct xhci_input_control_ctx *ctrl_ctx;
3806         u64 temp_64;
3807         struct xhci_command *command = NULL;
3808
3809         mutex_lock(&xhci->mutex);
3810
3811         if (xhci->xhc_state)    /* dying, removing or halted */
3812                 goto out;
3813
3814         if (!udev->slot_id) {
3815                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3816                                 "Bad Slot ID %d", udev->slot_id);
3817                 ret = -EINVAL;
3818                 goto out;
3819         }
3820
3821         virt_dev = xhci->devs[udev->slot_id];
3822
3823         if (WARN_ON(!virt_dev)) {
3824                 /*
3825                  * In plug/unplug torture test with an NEC controller,
3826                  * a zero-dereference was observed once due to virt_dev = 0.
3827                  * Print useful debug rather than crash if it is observed again!
3828                  */
3829                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3830                         udev->slot_id);
3831                 ret = -EINVAL;
3832                 goto out;
3833         }
3834
3835         if (setup == SETUP_CONTEXT_ONLY) {
3836                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3837                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3838                     SLOT_STATE_DEFAULT) {
3839                         xhci_dbg(xhci, "Slot already in default state\n");
3840                         goto out;
3841                 }
3842         }
3843
3844         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3845         if (!command) {
3846                 ret = -ENOMEM;
3847                 goto out;
3848         }
3849
3850         command->in_ctx = virt_dev->in_ctx;
3851         command->completion = &xhci->addr_dev;
3852
3853         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3854         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3855         if (!ctrl_ctx) {
3856                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3857                                 __func__);
3858                 ret = -EINVAL;
3859                 goto out;
3860         }
3861         /*
3862          * If this is the first Set Address since device plug-in or
3863          * virt_device realloaction after a resume with an xHCI power loss,
3864          * then set up the slot context.
3865          */
3866         if (!slot_ctx->dev_info)
3867                 xhci_setup_addressable_virt_dev(xhci, udev);
3868         /* Otherwise, update the control endpoint ring enqueue pointer. */
3869         else
3870                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3871         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3872         ctrl_ctx->drop_flags = 0;
3873
3874         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3875         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3876         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3877                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3878
3879         spin_lock_irqsave(&xhci->lock, flags);
3880         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3881                                         udev->slot_id, setup);
3882         if (ret) {
3883                 spin_unlock_irqrestore(&xhci->lock, flags);
3884                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3885                                 "FIXME: allocate a command ring segment");
3886                 goto out;
3887         }
3888         xhci_ring_cmd_db(xhci);
3889         spin_unlock_irqrestore(&xhci->lock, flags);
3890
3891         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3892         wait_for_completion(command->completion);
3893
3894         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3895          * the SetAddress() "recovery interval" required by USB and aborting the
3896          * command on a timeout.
3897          */
3898         switch (command->status) {
3899         case COMP_CMD_ABORT:
3900         case COMP_CMD_STOP:
3901                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3902                 ret = -ETIME;
3903                 break;
3904         case COMP_CTX_STATE:
3905         case COMP_EBADSLT:
3906                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3907                          act, udev->slot_id);
3908                 ret = -EINVAL;
3909                 break;
3910         case COMP_TX_ERR:
3911                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3912                 ret = -EPROTO;
3913                 break;
3914         case COMP_DEV_ERR:
3915                 dev_warn(&udev->dev,
3916                          "ERROR: Incompatible device for setup %s command\n", act);
3917                 ret = -ENODEV;
3918                 break;
3919         case COMP_SUCCESS:
3920                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3921                                "Successful setup %s command", act);
3922                 break;
3923         default:
3924                 xhci_err(xhci,
3925                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3926                          act, command->status);
3927                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3928                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3929                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3930                 ret = -EINVAL;
3931                 break;
3932         }
3933         if (ret)
3934                 goto out;
3935         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3936         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3937                         "Op regs DCBAA ptr = %#016llx", temp_64);
3938         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3939                 "Slot ID %d dcbaa entry @%p = %#016llx",
3940                 udev->slot_id,
3941                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3942                 (unsigned long long)
3943                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3944         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3945                         "Output Context DMA address = %#08llx",
3946                         (unsigned long long)virt_dev->out_ctx->dma);
3947         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3948         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3949         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3950                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3951         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3952         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3953         /*
3954          * USB core uses address 1 for the roothubs, so we add one to the
3955          * address given back to us by the HC.
3956          */
3957         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3958         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3959                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3960         /* Zero the input context control for later use */
3961         ctrl_ctx->add_flags = 0;
3962         ctrl_ctx->drop_flags = 0;
3963
3964         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3965                        "Internal device address = %d",
3966                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3967 out:
3968         mutex_unlock(&xhci->mutex);
3969         kfree(command);
3970         return ret;
3971 }
3972
3973 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3974 {
3975         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3976 }
3977
3978 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3979 {
3980         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3981 }
3982
3983 /*
3984  * Transfer the port index into real index in the HW port status
3985  * registers. Caculate offset between the port's PORTSC register
3986  * and port status base. Divide the number of per port register
3987  * to get the real index. The raw port number bases 1.
3988  */
3989 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3990 {
3991         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3992         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3993         __le32 __iomem *addr;
3994         int raw_port;
3995
3996         if (hcd->speed < HCD_USB3)
3997                 addr = xhci->usb2_ports[port1 - 1];
3998         else
3999                 addr = xhci->usb3_ports[port1 - 1];
4000
4001         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4002         return raw_port;
4003 }
4004
4005 /*
4006  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4007  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4008  */
4009 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4010                         struct usb_device *udev, u16 max_exit_latency)
4011 {
4012         struct xhci_virt_device *virt_dev;
4013         struct xhci_command *command;
4014         struct xhci_input_control_ctx *ctrl_ctx;
4015         struct xhci_slot_ctx *slot_ctx;
4016         unsigned long flags;
4017         int ret;
4018
4019         spin_lock_irqsave(&xhci->lock, flags);
4020
4021         virt_dev = xhci->devs[udev->slot_id];
4022
4023         /*
4024          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4025          * xHC was re-initialized. Exit latency will be set later after
4026          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4027          */
4028
4029         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4030                 spin_unlock_irqrestore(&xhci->lock, flags);
4031                 return 0;
4032         }
4033
4034         /* Attempt to issue an Evaluate Context command to change the MEL. */
4035         command = xhci->lpm_command;
4036         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4037         if (!ctrl_ctx) {
4038                 spin_unlock_irqrestore(&xhci->lock, flags);
4039                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4040                                 __func__);
4041                 return -ENOMEM;
4042         }
4043
4044         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4045         spin_unlock_irqrestore(&xhci->lock, flags);
4046
4047         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4048         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4049         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4050         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4051         slot_ctx->dev_state = 0;
4052
4053         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4054                         "Set up evaluate context for LPM MEL change.");
4055         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4056         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4057
4058         /* Issue and wait for the evaluate context command. */
4059         ret = xhci_configure_endpoint(xhci, udev, command,
4060                         true, true);
4061         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4062         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4063
4064         if (!ret) {
4065                 spin_lock_irqsave(&xhci->lock, flags);
4066                 virt_dev->current_mel = max_exit_latency;
4067                 spin_unlock_irqrestore(&xhci->lock, flags);
4068         }
4069         return ret;
4070 }
4071
4072 #ifdef CONFIG_PM
4073
4074 /* BESL to HIRD Encoding array for USB2 LPM */
4075 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4076         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4077
4078 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4079 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4080                                         struct usb_device *udev)
4081 {
4082         int u2del, besl, besl_host;
4083         int besl_device = 0;
4084         u32 field;
4085
4086         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4087         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4088
4089         if (field & USB_BESL_SUPPORT) {
4090                 for (besl_host = 0; besl_host < 16; besl_host++) {
4091                         if (xhci_besl_encoding[besl_host] >= u2del)
4092                                 break;
4093                 }
4094                 /* Use baseline BESL value as default */
4095                 if (field & USB_BESL_BASELINE_VALID)
4096                         besl_device = USB_GET_BESL_BASELINE(field);
4097                 else if (field & USB_BESL_DEEP_VALID)
4098                         besl_device = USB_GET_BESL_DEEP(field);
4099         } else {
4100                 if (u2del <= 50)
4101                         besl_host = 0;
4102                 else
4103                         besl_host = (u2del - 51) / 75 + 1;
4104         }
4105
4106         besl = besl_host + besl_device;
4107         if (besl > 15)
4108                 besl = 15;
4109
4110         return besl;
4111 }
4112
4113 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4114 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4115 {
4116         u32 field;
4117         int l1;
4118         int besld = 0;
4119         int hirdm = 0;
4120
4121         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4122
4123         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4124         l1 = udev->l1_params.timeout / 256;
4125
4126         /* device has preferred BESLD */
4127         if (field & USB_BESL_DEEP_VALID) {
4128                 besld = USB_GET_BESL_DEEP(field);
4129                 hirdm = 1;
4130         }
4131
4132         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4133 }
4134
4135 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4136                         struct usb_device *udev, int enable)
4137 {
4138         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4139         __le32 __iomem  **port_array;
4140         __le32 __iomem  *pm_addr, *hlpm_addr;
4141         u32             pm_val, hlpm_val, field;
4142         unsigned int    port_num;
4143         unsigned long   flags;
4144         int             hird, exit_latency;
4145         int             ret;
4146
4147         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4148                         !udev->lpm_capable)
4149                 return -EPERM;
4150
4151         if (!udev->parent || udev->parent->parent ||
4152                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4153                 return -EPERM;
4154
4155         if (udev->usb2_hw_lpm_capable != 1)
4156                 return -EPERM;
4157
4158         spin_lock_irqsave(&xhci->lock, flags);
4159
4160         port_array = xhci->usb2_ports;
4161         port_num = udev->portnum - 1;
4162         pm_addr = port_array[port_num] + PORTPMSC;
4163         pm_val = readl(pm_addr);
4164         hlpm_addr = port_array[port_num] + PORTHLPMC;
4165         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4166
4167         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4168                         enable ? "enable" : "disable", port_num + 1);
4169
4170         if (enable) {
4171                 /* Host supports BESL timeout instead of HIRD */
4172                 if (udev->usb2_hw_lpm_besl_capable) {
4173                         /* if device doesn't have a preferred BESL value use a
4174                          * default one which works with mixed HIRD and BESL
4175                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4176                          */
4177                         if ((field & USB_BESL_SUPPORT) &&
4178                             (field & USB_BESL_BASELINE_VALID))
4179                                 hird = USB_GET_BESL_BASELINE(field);
4180                         else
4181                                 hird = udev->l1_params.besl;
4182
4183                         exit_latency = xhci_besl_encoding[hird];
4184                         spin_unlock_irqrestore(&xhci->lock, flags);
4185
4186                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4187                          * input context for link powermanagement evaluate
4188                          * context commands. It is protected by hcd->bandwidth
4189                          * mutex and is shared by all devices. We need to set
4190                          * the max ext latency in USB 2 BESL LPM as well, so
4191                          * use the same mutex and xhci_change_max_exit_latency()
4192                          */
4193                         mutex_lock(hcd->bandwidth_mutex);
4194                         ret = xhci_change_max_exit_latency(xhci, udev,
4195                                                            exit_latency);
4196                         mutex_unlock(hcd->bandwidth_mutex);
4197
4198                         if (ret < 0)
4199                                 return ret;
4200                         spin_lock_irqsave(&xhci->lock, flags);
4201
4202                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4203                         writel(hlpm_val, hlpm_addr);
4204                         /* flush write */
4205                         readl(hlpm_addr);
4206                 } else {
4207                         hird = xhci_calculate_hird_besl(xhci, udev);
4208                 }
4209
4210                 pm_val &= ~PORT_HIRD_MASK;
4211                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4212                 writel(pm_val, pm_addr);
4213                 pm_val = readl(pm_addr);
4214                 pm_val |= PORT_HLE;
4215                 writel(pm_val, pm_addr);
4216                 /* flush write */
4217                 readl(pm_addr);
4218         } else {
4219                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4220                 writel(pm_val, pm_addr);
4221                 /* flush write */
4222                 readl(pm_addr);
4223                 if (udev->usb2_hw_lpm_besl_capable) {
4224                         spin_unlock_irqrestore(&xhci->lock, flags);
4225                         mutex_lock(hcd->bandwidth_mutex);
4226                         xhci_change_max_exit_latency(xhci, udev, 0);
4227                         mutex_unlock(hcd->bandwidth_mutex);
4228                         return 0;
4229                 }
4230         }
4231
4232         spin_unlock_irqrestore(&xhci->lock, flags);
4233         return 0;
4234 }
4235
4236 /* check if a usb2 port supports a given extened capability protocol
4237  * only USB2 ports extended protocol capability values are cached.
4238  * Return 1 if capability is supported
4239  */
4240 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4241                                            unsigned capability)
4242 {
4243         u32 port_offset, port_count;
4244         int i;
4245
4246         for (i = 0; i < xhci->num_ext_caps; i++) {
4247                 if (xhci->ext_caps[i] & capability) {
4248                         /* port offsets starts at 1 */
4249                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4250                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4251                         if (port >= port_offset &&
4252                             port < port_offset + port_count)
4253                                 return 1;
4254                 }
4255         }
4256         return 0;
4257 }
4258
4259 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4260 {
4261         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4262         int             portnum = udev->portnum - 1;
4263
4264         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4265                         !udev->lpm_capable)
4266                 return 0;
4267
4268         /* we only support lpm for non-hub device connected to root hub yet */
4269         if (!udev->parent || udev->parent->parent ||
4270                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4271                 return 0;
4272
4273         if (xhci->hw_lpm_support == 1 &&
4274                         xhci_check_usb2_port_capability(
4275                                 xhci, portnum, XHCI_HLC)) {
4276                 udev->usb2_hw_lpm_capable = 1;
4277                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4278                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4279                 if (xhci_check_usb2_port_capability(xhci, portnum,
4280                                         XHCI_BLC))
4281                         udev->usb2_hw_lpm_besl_capable = 1;
4282         }
4283
4284         return 0;
4285 }
4286
4287 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4288
4289 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4290 static unsigned long long xhci_service_interval_to_ns(
4291                 struct usb_endpoint_descriptor *desc)
4292 {
4293         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4294 }
4295
4296 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4297                 enum usb3_link_state state)
4298 {
4299         unsigned long long sel;
4300         unsigned long long pel;
4301         unsigned int max_sel_pel;
4302         char *state_name;
4303
4304         switch (state) {
4305         case USB3_LPM_U1:
4306                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4307                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4308                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4309                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4310                 state_name = "U1";
4311                 break;
4312         case USB3_LPM_U2:
4313                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4314                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4315                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4316                 state_name = "U2";
4317                 break;
4318         default:
4319                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4320                                 __func__);
4321                 return USB3_LPM_DISABLED;
4322         }
4323
4324         if (sel <= max_sel_pel && pel <= max_sel_pel)
4325                 return USB3_LPM_DEVICE_INITIATED;
4326
4327         if (sel > max_sel_pel)
4328                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4329                                 "due to long SEL %llu ms\n",
4330                                 state_name, sel);
4331         else
4332                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4333                                 "due to long PEL %llu ms\n",
4334                                 state_name, pel);
4335         return USB3_LPM_DISABLED;
4336 }
4337
4338 /* The U1 timeout should be the maximum of the following values:
4339  *  - For control endpoints, U1 system exit latency (SEL) * 3
4340  *  - For bulk endpoints, U1 SEL * 5
4341  *  - For interrupt endpoints:
4342  *    - Notification EPs, U1 SEL * 3
4343  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4344  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4345  */
4346 static unsigned long long xhci_calculate_intel_u1_timeout(
4347                 struct usb_device *udev,
4348                 struct usb_endpoint_descriptor *desc)
4349 {
4350         unsigned long long timeout_ns;
4351         int ep_type;
4352         int intr_type;
4353
4354         ep_type = usb_endpoint_type(desc);
4355         switch (ep_type) {
4356         case USB_ENDPOINT_XFER_CONTROL:
4357                 timeout_ns = udev->u1_params.sel * 3;
4358                 break;
4359         case USB_ENDPOINT_XFER_BULK:
4360                 timeout_ns = udev->u1_params.sel * 5;
4361                 break;
4362         case USB_ENDPOINT_XFER_INT:
4363                 intr_type = usb_endpoint_interrupt_type(desc);
4364                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4365                         timeout_ns = udev->u1_params.sel * 3;
4366                         break;
4367                 }
4368                 /* Otherwise the calculation is the same as isoc eps */
4369         case USB_ENDPOINT_XFER_ISOC:
4370                 timeout_ns = xhci_service_interval_to_ns(desc);
4371                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4372                 if (timeout_ns < udev->u1_params.sel * 2)
4373                         timeout_ns = udev->u1_params.sel * 2;
4374                 break;
4375         default:
4376                 return 0;
4377         }
4378
4379         return timeout_ns;
4380 }
4381
4382 /* Returns the hub-encoded U1 timeout value. */
4383 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4384                 struct usb_device *udev,
4385                 struct usb_endpoint_descriptor *desc)
4386 {
4387         unsigned long long timeout_ns;
4388
4389         if (xhci->quirks & XHCI_INTEL_HOST)
4390                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4391         else
4392                 timeout_ns = udev->u1_params.sel;
4393
4394         /* The U1 timeout is encoded in 1us intervals.
4395          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4396          */
4397         if (timeout_ns == USB3_LPM_DISABLED)
4398                 timeout_ns = 1;
4399         else
4400                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4401
4402         /* If the necessary timeout value is bigger than what we can set in the
4403          * USB 3.0 hub, we have to disable hub-initiated U1.
4404          */
4405         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4406                 return timeout_ns;
4407         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4408                         "due to long timeout %llu ms\n", timeout_ns);
4409         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4410 }
4411
4412 /* The U2 timeout should be the maximum of:
4413  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4414  *  - largest bInterval of any active periodic endpoint (to avoid going
4415  *    into lower power link states between intervals).
4416  *  - the U2 Exit Latency of the device
4417  */
4418 static unsigned long long xhci_calculate_intel_u2_timeout(
4419                 struct usb_device *udev,
4420                 struct usb_endpoint_descriptor *desc)
4421 {
4422         unsigned long long timeout_ns;
4423         unsigned long long u2_del_ns;
4424
4425         timeout_ns = 10 * 1000 * 1000;
4426
4427         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4428                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4429                 timeout_ns = xhci_service_interval_to_ns(desc);
4430
4431         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4432         if (u2_del_ns > timeout_ns)
4433                 timeout_ns = u2_del_ns;
4434
4435         return timeout_ns;
4436 }
4437
4438 /* Returns the hub-encoded U2 timeout value. */
4439 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4440                 struct usb_device *udev,
4441                 struct usb_endpoint_descriptor *desc)
4442 {
4443         unsigned long long timeout_ns;
4444
4445         if (xhci->quirks & XHCI_INTEL_HOST)
4446                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4447         else
4448                 timeout_ns = udev->u2_params.sel;
4449
4450         /* The U2 timeout is encoded in 256us intervals */
4451         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4452         /* If the necessary timeout value is bigger than what we can set in the
4453          * USB 3.0 hub, we have to disable hub-initiated U2.
4454          */
4455         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4456                 return timeout_ns;
4457         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4458                         "due to long timeout %llu ms\n", timeout_ns);
4459         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4460 }
4461
4462 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4463                 struct usb_device *udev,
4464                 struct usb_endpoint_descriptor *desc,
4465                 enum usb3_link_state state,
4466                 u16 *timeout)
4467 {
4468         if (state == USB3_LPM_U1)
4469                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4470         else if (state == USB3_LPM_U2)
4471                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4472
4473         return USB3_LPM_DISABLED;
4474 }
4475
4476 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4477                 struct usb_device *udev,
4478                 struct usb_endpoint_descriptor *desc,
4479                 enum usb3_link_state state,
4480                 u16 *timeout)
4481 {
4482         u16 alt_timeout;
4483
4484         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4485                 desc, state, timeout);
4486
4487         /* If we found we can't enable hub-initiated LPM, or
4488          * the U1 or U2 exit latency was too high to allow
4489          * device-initiated LPM as well, just stop searching.
4490          */
4491         if (alt_timeout == USB3_LPM_DISABLED ||
4492                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4493                 *timeout = alt_timeout;
4494                 return -E2BIG;
4495         }
4496         if (alt_timeout > *timeout)
4497                 *timeout = alt_timeout;
4498         return 0;
4499 }
4500
4501 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4502                 struct usb_device *udev,
4503                 struct usb_host_interface *alt,
4504                 enum usb3_link_state state,
4505                 u16 *timeout)
4506 {
4507         int j;
4508
4509         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4510                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4511                                         &alt->endpoint[j].desc, state, timeout))
4512                         return -E2BIG;
4513                 continue;
4514         }
4515         return 0;
4516 }
4517
4518 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4519                 enum usb3_link_state state)
4520 {
4521         struct usb_device *parent;
4522         unsigned int num_hubs;
4523
4524         if (state == USB3_LPM_U2)
4525                 return 0;
4526
4527         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4528         for (parent = udev->parent, num_hubs = 0; parent->parent;
4529                         parent = parent->parent)
4530                 num_hubs++;
4531
4532         if (num_hubs < 2)
4533                 return 0;
4534
4535         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4536                         " below second-tier hub.\n");
4537         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4538                         "to decrease power consumption.\n");
4539         return -E2BIG;
4540 }
4541
4542 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4543                 struct usb_device *udev,
4544                 enum usb3_link_state state)
4545 {
4546         if (xhci->quirks & XHCI_INTEL_HOST)
4547                 return xhci_check_intel_tier_policy(udev, state);
4548         else
4549                 return 0;
4550 }
4551
4552 /* Returns the U1 or U2 timeout that should be enabled.
4553  * If the tier check or timeout setting functions return with a non-zero exit
4554  * code, that means the timeout value has been finalized and we shouldn't look
4555  * at any more endpoints.
4556  */
4557 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4558                         struct usb_device *udev, enum usb3_link_state state)
4559 {
4560         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4561         struct usb_host_config *config;
4562         char *state_name;
4563         int i;
4564         u16 timeout = USB3_LPM_DISABLED;
4565
4566         if (state == USB3_LPM_U1)
4567                 state_name = "U1";
4568         else if (state == USB3_LPM_U2)
4569                 state_name = "U2";
4570         else {
4571                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4572                                 state);
4573                 return timeout;
4574         }
4575
4576         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4577                 return timeout;
4578
4579         /* Gather some information about the currently installed configuration
4580          * and alternate interface settings.
4581          */
4582         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4583                         state, &timeout))
4584                 return timeout;
4585
4586         config = udev->actconfig;
4587         if (!config)
4588                 return timeout;
4589
4590         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4591                 struct usb_driver *driver;
4592                 struct usb_interface *intf = config->interface[i];
4593
4594                 if (!intf)
4595                         continue;
4596
4597                 /* Check if any currently bound drivers want hub-initiated LPM
4598                  * disabled.
4599                  */
4600                 if (intf->dev.driver) {
4601                         driver = to_usb_driver(intf->dev.driver);
4602                         if (driver && driver->disable_hub_initiated_lpm) {
4603                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4604                                                 "at request of driver %s\n",
4605                                                 state_name, driver->name);
4606                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4607                         }
4608                 }
4609
4610                 /* Not sure how this could happen... */
4611                 if (!intf->cur_altsetting)
4612                         continue;
4613
4614                 if (xhci_update_timeout_for_interface(xhci, udev,
4615                                         intf->cur_altsetting,
4616                                         state, &timeout))
4617                         return timeout;
4618         }
4619         return timeout;
4620 }
4621
4622 static int calculate_max_exit_latency(struct usb_device *udev,
4623                 enum usb3_link_state state_changed,
4624                 u16 hub_encoded_timeout)
4625 {
4626         unsigned long long u1_mel_us = 0;
4627         unsigned long long u2_mel_us = 0;
4628         unsigned long long mel_us = 0;
4629         bool disabling_u1;
4630         bool disabling_u2;
4631         bool enabling_u1;
4632         bool enabling_u2;
4633
4634         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4635                         hub_encoded_timeout == USB3_LPM_DISABLED);
4636         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4637                         hub_encoded_timeout == USB3_LPM_DISABLED);
4638
4639         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4640                         hub_encoded_timeout != USB3_LPM_DISABLED);
4641         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4642                         hub_encoded_timeout != USB3_LPM_DISABLED);
4643
4644         /* If U1 was already enabled and we're not disabling it,
4645          * or we're going to enable U1, account for the U1 max exit latency.
4646          */
4647         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4648                         enabling_u1)
4649                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4650         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4651                         enabling_u2)
4652                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4653
4654         if (u1_mel_us > u2_mel_us)
4655                 mel_us = u1_mel_us;
4656         else
4657                 mel_us = u2_mel_us;
4658         /* xHCI host controller max exit latency field is only 16 bits wide. */
4659         if (mel_us > MAX_EXIT) {
4660                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4661                                 "is too big.\n", mel_us);
4662                 return -E2BIG;
4663         }
4664         return mel_us;
4665 }
4666
4667 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4668 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4669                         struct usb_device *udev, enum usb3_link_state state)
4670 {
4671         struct xhci_hcd *xhci;
4672         u16 hub_encoded_timeout;
4673         int mel;
4674         int ret;
4675
4676         xhci = hcd_to_xhci(hcd);
4677         /* The LPM timeout values are pretty host-controller specific, so don't
4678          * enable hub-initiated timeouts unless the vendor has provided
4679          * information about their timeout algorithm.
4680          */
4681         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4682                         !xhci->devs[udev->slot_id])
4683                 return USB3_LPM_DISABLED;
4684
4685         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4686         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4687         if (mel < 0) {
4688                 /* Max Exit Latency is too big, disable LPM. */
4689                 hub_encoded_timeout = USB3_LPM_DISABLED;
4690                 mel = 0;
4691         }
4692
4693         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4694         if (ret)
4695                 return ret;
4696         return hub_encoded_timeout;
4697 }
4698
4699 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4700                         struct usb_device *udev, enum usb3_link_state state)
4701 {
4702         struct xhci_hcd *xhci;
4703         u16 mel;
4704
4705         xhci = hcd_to_xhci(hcd);
4706         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4707                         !xhci->devs[udev->slot_id])
4708                 return 0;
4709
4710         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4711         return xhci_change_max_exit_latency(xhci, udev, mel);
4712 }
4713 #else /* CONFIG_PM */
4714
4715 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4716                                 struct usb_device *udev, int enable)
4717 {
4718         return 0;
4719 }
4720
4721 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4722 {
4723         return 0;
4724 }
4725
4726 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4727                         struct usb_device *udev, enum usb3_link_state state)
4728 {
4729         return USB3_LPM_DISABLED;
4730 }
4731
4732 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4733                         struct usb_device *udev, enum usb3_link_state state)
4734 {
4735         return 0;
4736 }
4737 #endif  /* CONFIG_PM */
4738
4739 /*-------------------------------------------------------------------------*/
4740
4741 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4742  * internal data structures for the device.
4743  */
4744 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4745                         struct usb_tt *tt, gfp_t mem_flags)
4746 {
4747         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4748         struct xhci_virt_device *vdev;
4749         struct xhci_command *config_cmd;
4750         struct xhci_input_control_ctx *ctrl_ctx;
4751         struct xhci_slot_ctx *slot_ctx;
4752         unsigned long flags;
4753         unsigned think_time;
4754         int ret;
4755
4756         /* Ignore root hubs */
4757         if (!hdev->parent)
4758                 return 0;
4759
4760         vdev = xhci->devs[hdev->slot_id];
4761         if (!vdev) {
4762                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4763                 return -EINVAL;
4764         }
4765         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4766         if (!config_cmd) {
4767                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4768                 return -ENOMEM;
4769         }
4770         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4771         if (!ctrl_ctx) {
4772                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4773                                 __func__);
4774                 xhci_free_command(xhci, config_cmd);
4775                 return -ENOMEM;
4776         }
4777
4778         spin_lock_irqsave(&xhci->lock, flags);
4779         if (hdev->speed == USB_SPEED_HIGH &&
4780                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4781                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4782                 xhci_free_command(xhci, config_cmd);
4783                 spin_unlock_irqrestore(&xhci->lock, flags);
4784                 return -ENOMEM;
4785         }
4786
4787         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4788         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4789         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4790         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4791         /*
4792          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4793          * but it may be already set to 1 when setup an xHCI virtual
4794          * device, so clear it anyway.
4795          */
4796         if (tt->multi)
4797                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4798         else if (hdev->speed == USB_SPEED_FULL)
4799                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4800
4801         if (xhci->hci_version > 0x95) {
4802                 xhci_dbg(xhci, "xHCI version %x needs hub "
4803                                 "TT think time and number of ports\n",
4804                                 (unsigned int) xhci->hci_version);
4805                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4806                 /* Set TT think time - convert from ns to FS bit times.
4807                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4808                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4809                  *
4810                  * xHCI 1.0: this field shall be 0 if the device is not a
4811                  * High-spped hub.
4812                  */
4813                 think_time = tt->think_time;
4814                 if (think_time != 0)
4815                         think_time = (think_time / 666) - 1;
4816                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4817                         slot_ctx->tt_info |=
4818                                 cpu_to_le32(TT_THINK_TIME(think_time));
4819         } else {
4820                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4821                                 "TT think time or number of ports\n",
4822                                 (unsigned int) xhci->hci_version);
4823         }
4824         slot_ctx->dev_state = 0;
4825         spin_unlock_irqrestore(&xhci->lock, flags);
4826
4827         xhci_dbg(xhci, "Set up %s for hub device.\n",
4828                         (xhci->hci_version > 0x95) ?
4829                         "configure endpoint" : "evaluate context");
4830         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4831         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4832
4833         /* Issue and wait for the configure endpoint or
4834          * evaluate context command.
4835          */
4836         if (xhci->hci_version > 0x95)
4837                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4838                                 false, false);
4839         else
4840                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4841                                 true, false);
4842
4843         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4844         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4845
4846         xhci_free_command(xhci, config_cmd);
4847         return ret;
4848 }
4849
4850 int xhci_get_frame(struct usb_hcd *hcd)
4851 {
4852         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4853         /* EHCI mods by the periodic size.  Why? */
4854         return readl(&xhci->run_regs->microframe_index) >> 3;
4855 }
4856
4857 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4858 {
4859         struct xhci_hcd         *xhci;
4860         struct device           *dev = hcd->self.controller;
4861         int                     retval;
4862
4863         /* Accept arbitrarily long scatter-gather lists */
4864         hcd->self.sg_tablesize = ~0;
4865
4866         /* support to build packet from discontinuous buffers */
4867         hcd->self.no_sg_constraint = 1;
4868
4869         /* XHCI controllers don't stop the ep queue on short packets :| */
4870         hcd->self.no_stop_on_short = 1;
4871
4872         xhci = hcd_to_xhci(hcd);
4873
4874         if (usb_hcd_is_primary_hcd(hcd)) {
4875                 xhci->main_hcd = hcd;
4876                 /* Mark the first roothub as being USB 2.0.
4877                  * The xHCI driver will register the USB 3.0 roothub.
4878                  */
4879                 hcd->speed = HCD_USB2;
4880                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4881                 /*
4882                  * USB 2.0 roothub under xHCI has an integrated TT,
4883                  * (rate matching hub) as opposed to having an OHCI/UHCI
4884                  * companion controller.
4885                  */
4886                 hcd->has_tt = 1;
4887         } else {
4888                 if (xhci->sbrn == 0x31) {
4889                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4890                         hcd->speed = HCD_USB31;
4891                 }
4892                 /* xHCI private pointer was set in xhci_pci_probe for the second
4893                  * registered roothub.
4894                  */
4895                 return 0;
4896         }
4897
4898         mutex_init(&xhci->mutex);
4899         xhci->cap_regs = hcd->regs;
4900         xhci->op_regs = hcd->regs +
4901                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4902         xhci->run_regs = hcd->regs +
4903                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4904         /* Cache read-only capability registers */
4905         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4906         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4907         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4908         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4909         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4910         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4911         if (xhci->hci_version > 0x100)
4912                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4913         xhci_print_registers(xhci);
4914
4915         xhci->quirks = quirks;
4916
4917         get_quirks(dev, xhci);
4918
4919         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4920          * success event after a short transfer. This quirk will ignore such
4921          * spurious event.
4922          */
4923         if (xhci->hci_version > 0x96)
4924                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4925
4926         /* Make sure the HC is halted. */
4927         retval = xhci_halt(xhci);
4928         if (retval)
4929                 return retval;
4930
4931         xhci_dbg(xhci, "Resetting HCD\n");
4932         /* Reset the internal HC memory state and registers. */
4933         retval = xhci_reset(xhci);
4934         if (retval)
4935                 return retval;
4936         xhci_dbg(xhci, "Reset complete\n");
4937
4938         /* Set dma_mask and coherent_dma_mask to 64-bits,
4939          * if xHC supports 64-bit addressing */
4940         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4941                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4942                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4943                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4944         } else {
4945                 /*
4946                  * This is to avoid error in cases where a 32-bit USB
4947                  * controller is used on a 64-bit capable system.
4948                  */
4949                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4950                 if (retval)
4951                         return retval;
4952                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4953                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4954         }
4955
4956         xhci_dbg(xhci, "Calling HCD init\n");
4957         /* Initialize HCD and host controller data structures. */
4958         retval = xhci_init(hcd);
4959         if (retval)
4960                 return retval;
4961         xhci_dbg(xhci, "Called HCD init\n");
4962
4963         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4964                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4965
4966         return 0;
4967 }
4968 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4969
4970 static const struct hc_driver xhci_hc_driver = {
4971         .description =          "xhci-hcd",
4972         .product_desc =         "xHCI Host Controller",
4973         .hcd_priv_size =        sizeof(struct xhci_hcd *),
4974
4975         /*
4976          * generic hardware linkage
4977          */
4978         .irq =                  xhci_irq,
4979         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4980
4981         /*
4982          * basic lifecycle operations
4983          */
4984         .reset =                NULL, /* set in xhci_init_driver() */
4985         .start =                xhci_run,
4986         .stop =                 xhci_stop,
4987         .shutdown =             xhci_shutdown,
4988
4989         /*
4990          * managing i/o requests and associated device resources
4991          */
4992         .urb_enqueue =          xhci_urb_enqueue,
4993         .urb_dequeue =          xhci_urb_dequeue,
4994         .alloc_dev =            xhci_alloc_dev,
4995         .free_dev =             xhci_free_dev,
4996         .alloc_streams =        xhci_alloc_streams,
4997         .free_streams =         xhci_free_streams,
4998         .add_endpoint =         xhci_add_endpoint,
4999         .drop_endpoint =        xhci_drop_endpoint,
5000         .endpoint_reset =       xhci_endpoint_reset,
5001         .check_bandwidth =      xhci_check_bandwidth,
5002         .reset_bandwidth =      xhci_reset_bandwidth,
5003         .address_device =       xhci_address_device,
5004         .enable_device =        xhci_enable_device,
5005         .update_hub_device =    xhci_update_hub_device,
5006         .reset_device =         xhci_discover_or_reset_device,
5007
5008         /*
5009          * scheduling support
5010          */
5011         .get_frame_number =     xhci_get_frame,
5012
5013         /*
5014          * root hub support
5015          */
5016         .hub_control =          xhci_hub_control,
5017         .hub_status_data =      xhci_hub_status_data,
5018         .bus_suspend =          xhci_bus_suspend,
5019         .bus_resume =           xhci_bus_resume,
5020
5021         /*
5022          * call back when device connected and addressed
5023          */
5024         .update_device =        xhci_update_device,
5025         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5026         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5027         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5028         .find_raw_port_number = xhci_find_raw_port_number,
5029 };
5030
5031 void xhci_init_driver(struct hc_driver *drv,
5032                       const struct xhci_driver_overrides *over)
5033 {
5034         BUG_ON(!over);
5035
5036         /* Copy the generic table to drv then apply the overrides */
5037         *drv = xhci_hc_driver;
5038
5039         if (over) {
5040                 drv->hcd_priv_size += over->extra_priv_size;
5041                 if (over->reset)
5042                         drv->reset = over->reset;
5043                 if (over->start)
5044                         drv->start = over->start;
5045         }
5046 }
5047 EXPORT_SYMBOL_GPL(xhci_init_driver);
5048
5049 MODULE_DESCRIPTION(DRIVER_DESC);
5050 MODULE_AUTHOR(DRIVER_AUTHOR);
5051 MODULE_LICENSE("GPL");
5052
5053 static int __init xhci_hcd_init(void)
5054 {
5055         /*
5056          * Check the compiler generated sizes of structures that must be laid
5057          * out in specific ways for hardware access.
5058          */
5059         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5060         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5061         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5062         /* xhci_device_control has eight fields, and also
5063          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5064          */
5065         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5066         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5067         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5068         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5069         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5070         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5071         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5072
5073         if (usb_disabled())
5074                 return -ENODEV;
5075
5076         return 0;
5077 }
5078
5079 /*
5080  * If an init function is provided, an exit function must also be provided
5081  * to allow module unload.
5082  */
5083 static void __exit xhci_hcd_fini(void) { }
5084
5085 module_init(xhci_hcd_init);
5086 module_exit(xhci_hcd_fini);