Merge remote-tracking branch 'lsk/v3.10/topic/gator' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30
31 #include "xhci.h"
32
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 /*
43  * xhci_handshake - spin reading hc until handshake completes or fails
44  * @ptr: address of hc register to be read
45  * @mask: bits to look at in result of read
46  * @done: value of those bits when handshake succeeds
47  * @usec: timeout in microseconds
48  *
49  * Returns negative errno, or zero on success
50  *
51  * Success happens when the "mask" bits have the specified value (hardware
52  * handshake done).  There are two failure modes:  "usec" have passed (major
53  * hardware flakeout), or the register reads as all-ones (hardware removed).
54  */
55 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56                       u32 mask, u32 done, int usec)
57 {
58         u32     result;
59
60         do {
61                 result = xhci_readl(xhci, ptr);
62                 if (result == ~(u32)0)          /* card removed */
63                         return -ENODEV;
64                 result &= mask;
65                 if (result == done)
66                         return 0;
67                 udelay(1);
68                 usec--;
69         } while (usec > 0);
70         return -ETIMEDOUT;
71 }
72
73 /*
74  * Disable interrupts and begin the xHCI halting process.
75  */
76 void xhci_quiesce(struct xhci_hcd *xhci)
77 {
78         u32 halted;
79         u32 cmd;
80         u32 mask;
81
82         mask = ~(XHCI_IRQS);
83         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84         if (!halted)
85                 mask &= ~CMD_RUN;
86
87         cmd = xhci_readl(xhci, &xhci->op_regs->command);
88         cmd &= mask;
89         xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 }
91
92 /*
93  * Force HC into halt state.
94  *
95  * Disable any IRQs and clear the run/stop bit.
96  * HC will complete any current and actively pipelined transactions, and
97  * should halt within 16 ms of the run/stop bit being cleared.
98  * Read HC Halted bit in the status register to see when the HC is finished.
99  */
100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102         int ret;
103         xhci_dbg(xhci, "// Halt the HC\n");
104         xhci_quiesce(xhci);
105
106         ret = xhci_handshake(xhci, &xhci->op_regs->status,
107                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108         if (!ret) {
109                 xhci->xhc_state |= XHCI_STATE_HALTED;
110                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111         } else
112                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
113                                 XHCI_MAX_HALT_USEC);
114         return ret;
115 }
116
117 /*
118  * Set the run bit and wait for the host to be running.
119  */
120 static int xhci_start(struct xhci_hcd *xhci)
121 {
122         u32 temp;
123         int ret;
124
125         temp = xhci_readl(xhci, &xhci->op_regs->command);
126         temp |= (CMD_RUN);
127         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128                         temp);
129         xhci_writel(xhci, temp, &xhci->op_regs->command);
130
131         /*
132          * Wait for the HCHalted Status bit to be 0 to indicate the host is
133          * running.
134          */
135         ret = xhci_handshake(xhci, &xhci->op_regs->status,
136                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
137         if (ret == -ETIMEDOUT)
138                 xhci_err(xhci, "Host took too long to start, "
139                                 "waited %u microseconds.\n",
140                                 XHCI_MAX_HALT_USEC);
141         if (!ret)
142                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
143         return ret;
144 }
145
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155         u32 command;
156         u32 state;
157         int ret, i;
158
159         state = xhci_readl(xhci, &xhci->op_regs->status);
160         if ((state & STS_HALT) == 0) {
161                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
162                 return 0;
163         }
164
165         xhci_dbg(xhci, "// Reset the HC\n");
166         command = xhci_readl(xhci, &xhci->op_regs->command);
167         command |= CMD_RESET;
168         xhci_writel(xhci, command, &xhci->op_regs->command);
169
170         ret = xhci_handshake(xhci, &xhci->op_regs->command,
171                         CMD_RESET, 0, 10 * 1000 * 1000);
172         if (ret)
173                 return ret;
174
175         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176         /*
177          * xHCI cannot write to any doorbells or operational registers other
178          * than status until the "Controller Not Ready" flag is cleared.
179          */
180         ret = xhci_handshake(xhci, &xhci->op_regs->status,
181                         STS_CNR, 0, 10 * 1000 * 1000);
182
183         for (i = 0; i < 2; ++i) {
184                 xhci->bus_state[i].port_c_suspend = 0;
185                 xhci->bus_state[i].suspended_ports = 0;
186                 xhci->bus_state[i].resuming_ports = 0;
187         }
188
189         return ret;
190 }
191
192 #ifdef CONFIG_PCI
193 static int xhci_free_msi(struct xhci_hcd *xhci)
194 {
195         int i;
196
197         if (!xhci->msix_entries)
198                 return -EINVAL;
199
200         for (i = 0; i < xhci->msix_count; i++)
201                 if (xhci->msix_entries[i].vector)
202                         free_irq(xhci->msix_entries[i].vector,
203                                         xhci_to_hcd(xhci));
204         return 0;
205 }
206
207 /*
208  * Set up MSI
209  */
210 static int xhci_setup_msi(struct xhci_hcd *xhci)
211 {
212         int ret;
213         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
214
215         ret = pci_enable_msi(pdev);
216         if (ret) {
217                 xhci_dbg(xhci, "failed to allocate MSI entry\n");
218                 return ret;
219         }
220
221         ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
222                                 0, "xhci_hcd", xhci_to_hcd(xhci));
223         if (ret) {
224                 xhci_dbg(xhci, "disable MSI interrupt\n");
225                 pci_disable_msi(pdev);
226         }
227
228         return ret;
229 }
230
231 /*
232  * Free IRQs
233  * free all IRQs request
234  */
235 static void xhci_free_irq(struct xhci_hcd *xhci)
236 {
237         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
238         int ret;
239
240         /* return if using legacy interrupt */
241         if (xhci_to_hcd(xhci)->irq > 0)
242                 return;
243
244         ret = xhci_free_msi(xhci);
245         if (!ret)
246                 return;
247         if (pdev->irq > 0)
248                 free_irq(pdev->irq, xhci_to_hcd(xhci));
249
250         return;
251 }
252
253 /*
254  * Set up MSI-X
255  */
256 static int xhci_setup_msix(struct xhci_hcd *xhci)
257 {
258         int i, ret = 0;
259         struct usb_hcd *hcd = xhci_to_hcd(xhci);
260         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
261
262         /*
263          * calculate number of msi-x vectors supported.
264          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265          *   with max number of interrupters based on the xhci HCSPARAMS1.
266          * - num_online_cpus: maximum msi-x vectors per CPUs core.
267          *   Add additional 1 vector to ensure always available interrupt.
268          */
269         xhci->msix_count = min(num_online_cpus() + 1,
270                                 HCS_MAX_INTRS(xhci->hcs_params1));
271
272         xhci->msix_entries =
273                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
274                                 GFP_KERNEL);
275         if (!xhci->msix_entries) {
276                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
277                 return -ENOMEM;
278         }
279
280         for (i = 0; i < xhci->msix_count; i++) {
281                 xhci->msix_entries[i].entry = i;
282                 xhci->msix_entries[i].vector = 0;
283         }
284
285         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
286         if (ret) {
287                 xhci_dbg(xhci, "Failed to enable MSI-X\n");
288                 goto free_entries;
289         }
290
291         for (i = 0; i < xhci->msix_count; i++) {
292                 ret = request_irq(xhci->msix_entries[i].vector,
293                                 (irq_handler_t)xhci_msi_irq,
294                                 0, "xhci_hcd", xhci_to_hcd(xhci));
295                 if (ret)
296                         goto disable_msix;
297         }
298
299         hcd->msix_enabled = 1;
300         return ret;
301
302 disable_msix:
303         xhci_dbg(xhci, "disable MSI-X interrupt\n");
304         xhci_free_irq(xhci);
305         pci_disable_msix(pdev);
306 free_entries:
307         kfree(xhci->msix_entries);
308         xhci->msix_entries = NULL;
309         return ret;
310 }
311
312 /* Free any IRQs and disable MSI-X */
313 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
314 {
315         struct usb_hcd *hcd = xhci_to_hcd(xhci);
316         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
317
318         if (xhci->quirks & XHCI_PLAT)
319                 return;
320
321         xhci_free_irq(xhci);
322
323         if (xhci->msix_entries) {
324                 pci_disable_msix(pdev);
325                 kfree(xhci->msix_entries);
326                 xhci->msix_entries = NULL;
327         } else {
328                 pci_disable_msi(pdev);
329         }
330
331         hcd->msix_enabled = 0;
332         return;
333 }
334
335 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
336 {
337         int i;
338
339         if (xhci->msix_entries) {
340                 for (i = 0; i < xhci->msix_count; i++)
341                         synchronize_irq(xhci->msix_entries[i].vector);
342         }
343 }
344
345 static int xhci_try_enable_msi(struct usb_hcd *hcd)
346 {
347         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
348         struct pci_dev  *pdev;
349         int ret;
350
351         /* The xhci platform device has set up IRQs through usb_add_hcd. */
352         if (xhci->quirks & XHCI_PLAT)
353                 return 0;
354
355         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
356         /*
357          * Some Fresco Logic host controllers advertise MSI, but fail to
358          * generate interrupts.  Don't even try to enable MSI.
359          */
360         if (xhci->quirks & XHCI_BROKEN_MSI)
361                 goto legacy_irq;
362
363         /* unregister the legacy interrupt */
364         if (hcd->irq)
365                 free_irq(hcd->irq, hcd);
366         hcd->irq = 0;
367
368         ret = xhci_setup_msix(xhci);
369         if (ret)
370                 /* fall back to msi*/
371                 ret = xhci_setup_msi(xhci);
372
373         if (!ret)
374                 /* hcd->irq is 0, we have MSI */
375                 return 0;
376
377         if (!pdev->irq) {
378                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
379                 return -EINVAL;
380         }
381
382  legacy_irq:
383         /* fall back to legacy interrupt*/
384         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
385                         hcd->irq_descr, hcd);
386         if (ret) {
387                 xhci_err(xhci, "request interrupt %d failed\n",
388                                 pdev->irq);
389                 return ret;
390         }
391         hcd->irq = pdev->irq;
392         return 0;
393 }
394
395 #else
396
397 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
398 {
399         return 0;
400 }
401
402 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
403 {
404 }
405
406 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
407 {
408 }
409
410 #endif
411
412 static void compliance_mode_recovery(unsigned long arg)
413 {
414         struct xhci_hcd *xhci;
415         struct usb_hcd *hcd;
416         u32 temp;
417         int i;
418
419         xhci = (struct xhci_hcd *)arg;
420
421         for (i = 0; i < xhci->num_usb3_ports; i++) {
422                 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
423                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
424                         /*
425                          * Compliance Mode Detected. Letting USB Core
426                          * handle the Warm Reset
427                          */
428                         xhci_dbg(xhci, "Compliance mode detected->port %d\n",
429                                         i + 1);
430                         xhci_dbg(xhci, "Attempting compliance mode recovery\n");
431                         hcd = xhci->shared_hcd;
432
433                         if (hcd->state == HC_STATE_SUSPENDED)
434                                 usb_hcd_resume_root_hub(hcd);
435
436                         usb_hcd_poll_rh_status(hcd);
437                 }
438         }
439
440         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
441                 mod_timer(&xhci->comp_mode_recovery_timer,
442                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
443 }
444
445 /*
446  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
447  * that causes ports behind that hardware to enter compliance mode sometimes.
448  * The quirk creates a timer that polls every 2 seconds the link state of
449  * each host controller's port and recovers it by issuing a Warm reset
450  * if Compliance mode is detected, otherwise the port will become "dead" (no
451  * device connections or disconnections will be detected anymore). Becasue no
452  * status event is generated when entering compliance mode (per xhci spec),
453  * this quirk is needed on systems that have the failing hardware installed.
454  */
455 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
456 {
457         xhci->port_status_u0 = 0;
458         init_timer(&xhci->comp_mode_recovery_timer);
459
460         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
461         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
462         xhci->comp_mode_recovery_timer.expires = jiffies +
463                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
464
465         set_timer_slack(&xhci->comp_mode_recovery_timer,
466                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
467         add_timer(&xhci->comp_mode_recovery_timer);
468         xhci_dbg(xhci, "Compliance mode recovery timer initialized\n");
469 }
470
471 /*
472  * This function identifies the systems that have installed the SN65LVPE502CP
473  * USB3.0 re-driver and that need the Compliance Mode Quirk.
474  * Systems:
475  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
476  */
477 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
478 {
479         const char *dmi_product_name, *dmi_sys_vendor;
480
481         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
482         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
483         if (!dmi_product_name || !dmi_sys_vendor)
484                 return false;
485
486         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
487                 return false;
488
489         if (strstr(dmi_product_name, "Z420") ||
490                         strstr(dmi_product_name, "Z620") ||
491                         strstr(dmi_product_name, "Z820") ||
492                         strstr(dmi_product_name, "Z1 Workstation"))
493                 return true;
494
495         return false;
496 }
497
498 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
499 {
500         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
501 }
502
503
504 /*
505  * Initialize memory for HCD and xHC (one-time init).
506  *
507  * Program the PAGESIZE register, initialize the device context array, create
508  * device contexts (?), set up a command ring segment (or two?), create event
509  * ring (one for now).
510  */
511 int xhci_init(struct usb_hcd *hcd)
512 {
513         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
514         int retval = 0;
515
516         xhci_dbg(xhci, "xhci_init\n");
517         spin_lock_init(&xhci->lock);
518         if (xhci->hci_version == 0x95 && link_quirk) {
519                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
520                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
521         } else {
522                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
523         }
524         retval = xhci_mem_init(xhci, GFP_KERNEL);
525         xhci_dbg(xhci, "Finished xhci_init\n");
526
527         /* Initializing Compliance Mode Recovery Data If Needed */
528         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
529                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
530                 compliance_mode_recovery_timer_init(xhci);
531         }
532
533         return retval;
534 }
535
536 /*-------------------------------------------------------------------------*/
537
538
539 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
540 static void xhci_event_ring_work(unsigned long arg)
541 {
542         unsigned long flags;
543         int temp;
544         u64 temp_64;
545         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
546         int i, j;
547
548         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
549
550         spin_lock_irqsave(&xhci->lock, flags);
551         temp = xhci_readl(xhci, &xhci->op_regs->status);
552         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
553         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
554                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
555                 xhci_dbg(xhci, "HW died, polling stopped.\n");
556                 spin_unlock_irqrestore(&xhci->lock, flags);
557                 return;
558         }
559
560         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
561         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
562         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
563         xhci->error_bitmask = 0;
564         xhci_dbg(xhci, "Event ring:\n");
565         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
566         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
567         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
568         temp_64 &= ~ERST_PTR_MASK;
569         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
570         xhci_dbg(xhci, "Command ring:\n");
571         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
572         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
573         xhci_dbg_cmd_ptrs(xhci);
574         for (i = 0; i < MAX_HC_SLOTS; ++i) {
575                 if (!xhci->devs[i])
576                         continue;
577                 for (j = 0; j < 31; ++j) {
578                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
579                 }
580         }
581         spin_unlock_irqrestore(&xhci->lock, flags);
582
583         if (!xhci->zombie)
584                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
585         else
586                 xhci_dbg(xhci, "Quit polling the event ring.\n");
587 }
588 #endif
589
590 static int xhci_run_finished(struct xhci_hcd *xhci)
591 {
592         if (xhci_start(xhci)) {
593                 xhci_halt(xhci);
594                 return -ENODEV;
595         }
596         xhci->shared_hcd->state = HC_STATE_RUNNING;
597         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
598
599         if (xhci->quirks & XHCI_NEC_HOST)
600                 xhci_ring_cmd_db(xhci);
601
602         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
603         return 0;
604 }
605
606 /*
607  * Start the HC after it was halted.
608  *
609  * This function is called by the USB core when the HC driver is added.
610  * Its opposite is xhci_stop().
611  *
612  * xhci_init() must be called once before this function can be called.
613  * Reset the HC, enable device slot contexts, program DCBAAP, and
614  * set command ring pointer and event ring pointer.
615  *
616  * Setup MSI-X vectors and enable interrupts.
617  */
618 int xhci_run(struct usb_hcd *hcd)
619 {
620         u32 temp;
621         u64 temp_64;
622         int ret;
623         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
624
625         /* Start the xHCI host controller running only after the USB 2.0 roothub
626          * is setup.
627          */
628
629         hcd->uses_new_polling = 1;
630         if (!usb_hcd_is_primary_hcd(hcd))
631                 return xhci_run_finished(xhci);
632
633         xhci_dbg(xhci, "xhci_run\n");
634
635         ret = xhci_try_enable_msi(hcd);
636         if (ret)
637                 return ret;
638
639 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
640         init_timer(&xhci->event_ring_timer);
641         xhci->event_ring_timer.data = (unsigned long) xhci;
642         xhci->event_ring_timer.function = xhci_event_ring_work;
643         /* Poll the event ring */
644         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
645         xhci->zombie = 0;
646         xhci_dbg(xhci, "Setting event ring polling timer\n");
647         add_timer(&xhci->event_ring_timer);
648 #endif
649
650         xhci_dbg(xhci, "Command ring memory map follows:\n");
651         xhci_debug_ring(xhci, xhci->cmd_ring);
652         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
653         xhci_dbg_cmd_ptrs(xhci);
654
655         xhci_dbg(xhci, "ERST memory map follows:\n");
656         xhci_dbg_erst(xhci, &xhci->erst);
657         xhci_dbg(xhci, "Event ring:\n");
658         xhci_debug_ring(xhci, xhci->event_ring);
659         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
660         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
661         temp_64 &= ~ERST_PTR_MASK;
662         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
663
664         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
665         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
666         temp &= ~ER_IRQ_INTERVAL_MASK;
667         temp |= (u32) 160;
668         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
669
670         /* Set the HCD state before we enable the irqs */
671         temp = xhci_readl(xhci, &xhci->op_regs->command);
672         temp |= (CMD_EIE);
673         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
674                         temp);
675         xhci_writel(xhci, temp, &xhci->op_regs->command);
676
677         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
678         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
679                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
680         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
681                         &xhci->ir_set->irq_pending);
682         xhci_print_ir_set(xhci, 0);
683
684         if (xhci->quirks & XHCI_NEC_HOST)
685                 xhci_queue_vendor_command(xhci, 0, 0, 0,
686                                 TRB_TYPE(TRB_NEC_GET_FW));
687
688         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
689         return 0;
690 }
691
692 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
693 {
694         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
695
696         spin_lock_irq(&xhci->lock);
697         xhci_halt(xhci);
698
699         /* The shared_hcd is going to be deallocated shortly (the USB core only
700          * calls this function when allocation fails in usb_add_hcd(), or
701          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
702          */
703         xhci->shared_hcd = NULL;
704         spin_unlock_irq(&xhci->lock);
705 }
706
707 /*
708  * Stop xHCI driver.
709  *
710  * This function is called by the USB core when the HC driver is removed.
711  * Its opposite is xhci_run().
712  *
713  * Disable device contexts, disable IRQs, and quiesce the HC.
714  * Reset the HC, finish any completed transactions, and cleanup memory.
715  */
716 void xhci_stop(struct usb_hcd *hcd)
717 {
718         u32 temp;
719         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
720
721         if (!usb_hcd_is_primary_hcd(hcd)) {
722                 xhci_only_stop_hcd(xhci->shared_hcd);
723                 return;
724         }
725
726         spin_lock_irq(&xhci->lock);
727         /* Make sure the xHC is halted for a USB3 roothub
728          * (xhci_stop() could be called as part of failed init).
729          */
730         xhci_halt(xhci);
731         xhci_reset(xhci);
732         spin_unlock_irq(&xhci->lock);
733
734         xhci_cleanup_msix(xhci);
735
736 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
737         /* Tell the event ring poll function not to reschedule */
738         xhci->zombie = 1;
739         del_timer_sync(&xhci->event_ring_timer);
740 #endif
741
742         /* Deleting Compliance Mode Recovery Timer */
743         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
744                         (!(xhci_all_ports_seen_u0(xhci)))) {
745                 del_timer_sync(&xhci->comp_mode_recovery_timer);
746                 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
747                                 __func__);
748         }
749
750         if (xhci->quirks & XHCI_AMD_PLL_FIX)
751                 usb_amd_dev_put();
752
753         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
754         temp = xhci_readl(xhci, &xhci->op_regs->status);
755         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
756         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
757         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
758                         &xhci->ir_set->irq_pending);
759         xhci_print_ir_set(xhci, 0);
760
761         xhci_dbg(xhci, "cleaning up memory\n");
762         xhci_mem_cleanup(xhci);
763         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
764                     xhci_readl(xhci, &xhci->op_regs->status));
765 }
766
767 /*
768  * Shutdown HC (not bus-specific)
769  *
770  * This is called when the machine is rebooting or halting.  We assume that the
771  * machine will be powered off, and the HC's internal state will be reset.
772  * Don't bother to free memory.
773  *
774  * This will only ever be called with the main usb_hcd (the USB3 roothub).
775  */
776 void xhci_shutdown(struct usb_hcd *hcd)
777 {
778         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
779
780         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
781                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
782
783         spin_lock_irq(&xhci->lock);
784         xhci_halt(xhci);
785         spin_unlock_irq(&xhci->lock);
786
787         xhci_cleanup_msix(xhci);
788
789         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
790                     xhci_readl(xhci, &xhci->op_regs->status));
791 }
792
793 #ifdef CONFIG_PM
794 static void xhci_save_registers(struct xhci_hcd *xhci)
795 {
796         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
797         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
798         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
799         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
800         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
801         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
802         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
803         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
804         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
805 }
806
807 static void xhci_restore_registers(struct xhci_hcd *xhci)
808 {
809         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
810         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
811         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
812         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
813         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
814         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
815         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
816         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
817         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
818 }
819
820 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
821 {
822         u64     val_64;
823
824         /* step 2: initialize command ring buffer */
825         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
826         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
827                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
828                                       xhci->cmd_ring->dequeue) &
829                  (u64) ~CMD_RING_RSVD_BITS) |
830                 xhci->cmd_ring->cycle_state;
831         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
832                         (long unsigned long) val_64);
833         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
834 }
835
836 /*
837  * The whole command ring must be cleared to zero when we suspend the host.
838  *
839  * The host doesn't save the command ring pointer in the suspend well, so we
840  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
841  * aligned, because of the reserved bits in the command ring dequeue pointer
842  * register.  Therefore, we can't just set the dequeue pointer back in the
843  * middle of the ring (TRBs are 16-byte aligned).
844  */
845 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
846 {
847         struct xhci_ring *ring;
848         struct xhci_segment *seg;
849
850         ring = xhci->cmd_ring;
851         seg = ring->deq_seg;
852         do {
853                 memset(seg->trbs, 0,
854                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
855                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
856                         cpu_to_le32(~TRB_CYCLE);
857                 seg = seg->next;
858         } while (seg != ring->deq_seg);
859
860         /* Reset the software enqueue and dequeue pointers */
861         ring->deq_seg = ring->first_seg;
862         ring->dequeue = ring->first_seg->trbs;
863         ring->enq_seg = ring->deq_seg;
864         ring->enqueue = ring->dequeue;
865
866         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
867         /*
868          * Ring is now zeroed, so the HW should look for change of ownership
869          * when the cycle bit is set to 1.
870          */
871         ring->cycle_state = 1;
872
873         /*
874          * Reset the hardware dequeue pointer.
875          * Yes, this will need to be re-written after resume, but we're paranoid
876          * and want to make sure the hardware doesn't access bogus memory
877          * because, say, the BIOS or an SMI started the host without changing
878          * the command ring pointers.
879          */
880         xhci_set_cmd_ring_deq(xhci);
881 }
882
883 /*
884  * Stop HC (not bus-specific)
885  *
886  * This is called when the machine transition into S3/S4 mode.
887  *
888  */
889 int xhci_suspend(struct xhci_hcd *xhci)
890 {
891         int                     rc = 0;
892         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
893         u32                     command;
894
895         if (hcd->state != HC_STATE_SUSPENDED ||
896                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
897                 return -EINVAL;
898
899         /* Don't poll the roothubs on bus suspend. */
900         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
901         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
902         del_timer_sync(&hcd->rh_timer);
903
904         spin_lock_irq(&xhci->lock);
905         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
906         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
907         /* step 1: stop endpoint */
908         /* skipped assuming that port suspend has done */
909
910         /* step 2: clear Run/Stop bit */
911         command = xhci_readl(xhci, &xhci->op_regs->command);
912         command &= ~CMD_RUN;
913         xhci_writel(xhci, command, &xhci->op_regs->command);
914         if (xhci_handshake(xhci, &xhci->op_regs->status,
915                       STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
916                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
917                 spin_unlock_irq(&xhci->lock);
918                 return -ETIMEDOUT;
919         }
920         xhci_clear_command_ring(xhci);
921
922         /* step 3: save registers */
923         xhci_save_registers(xhci);
924
925         /* step 4: set CSS flag */
926         command = xhci_readl(xhci, &xhci->op_regs->command);
927         command |= CMD_CSS;
928         xhci_writel(xhci, command, &xhci->op_regs->command);
929         if (xhci_handshake(xhci, &xhci->op_regs->status,
930                                 STS_SAVE, 0, 10 * 1000)) {
931                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
932                 spin_unlock_irq(&xhci->lock);
933                 return -ETIMEDOUT;
934         }
935         spin_unlock_irq(&xhci->lock);
936
937         /*
938          * Deleting Compliance Mode Recovery Timer because the xHCI Host
939          * is about to be suspended.
940          */
941         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
942                         (!(xhci_all_ports_seen_u0(xhci)))) {
943                 del_timer_sync(&xhci->comp_mode_recovery_timer);
944                 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
945                                 __func__);
946         }
947
948         /* step 5: remove core well power */
949         /* synchronize irq when using MSI-X */
950         xhci_msix_sync_irqs(xhci);
951
952         return rc;
953 }
954
955 /*
956  * start xHC (not bus-specific)
957  *
958  * This is called when the machine transition from S3/S4 mode.
959  *
960  */
961 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
962 {
963         u32                     command, temp = 0, status;
964         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
965         struct usb_hcd          *secondary_hcd;
966         int                     retval = 0;
967         bool                    comp_timer_running = false;
968
969         /* Wait a bit if either of the roothubs need to settle from the
970          * transition into bus suspend.
971          */
972         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
973                         time_before(jiffies,
974                                 xhci->bus_state[1].next_statechange))
975                 msleep(100);
976
977         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
978         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
979
980         spin_lock_irq(&xhci->lock);
981         if (xhci->quirks & XHCI_RESET_ON_RESUME)
982                 hibernated = true;
983
984         if (!hibernated) {
985                 /* step 1: restore register */
986                 xhci_restore_registers(xhci);
987                 /* step 2: initialize command ring buffer */
988                 xhci_set_cmd_ring_deq(xhci);
989                 /* step 3: restore state and start state*/
990                 /* step 3: set CRS flag */
991                 command = xhci_readl(xhci, &xhci->op_regs->command);
992                 command |= CMD_CRS;
993                 xhci_writel(xhci, command, &xhci->op_regs->command);
994                 if (xhci_handshake(xhci, &xhci->op_regs->status,
995                               STS_RESTORE, 0, 10 * 1000)) {
996                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
997                         spin_unlock_irq(&xhci->lock);
998                         return -ETIMEDOUT;
999                 }
1000                 temp = xhci_readl(xhci, &xhci->op_regs->status);
1001         }
1002
1003         /* If restore operation fails, re-initialize the HC during resume */
1004         if ((temp & STS_SRE) || hibernated) {
1005
1006                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1007                                 !(xhci_all_ports_seen_u0(xhci))) {
1008                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1009                         xhci_dbg(xhci, "Compliance Mode Recovery Timer deleted!\n");
1010                 }
1011
1012                 /* Let the USB core know _both_ roothubs lost power. */
1013                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1014                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1015
1016                 xhci_dbg(xhci, "Stop HCD\n");
1017                 xhci_halt(xhci);
1018                 xhci_reset(xhci);
1019                 spin_unlock_irq(&xhci->lock);
1020                 xhci_cleanup_msix(xhci);
1021
1022 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
1023                 /* Tell the event ring poll function not to reschedule */
1024                 xhci->zombie = 1;
1025                 del_timer_sync(&xhci->event_ring_timer);
1026 #endif
1027
1028                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1029                 temp = xhci_readl(xhci, &xhci->op_regs->status);
1030                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1031                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1032                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1033                                 &xhci->ir_set->irq_pending);
1034                 xhci_print_ir_set(xhci, 0);
1035
1036                 xhci_dbg(xhci, "cleaning up memory\n");
1037                 xhci_mem_cleanup(xhci);
1038                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1039                             xhci_readl(xhci, &xhci->op_regs->status));
1040
1041                 /* USB core calls the PCI reinit and start functions twice:
1042                  * first with the primary HCD, and then with the secondary HCD.
1043                  * If we don't do the same, the host will never be started.
1044                  */
1045                 if (!usb_hcd_is_primary_hcd(hcd))
1046                         secondary_hcd = hcd;
1047                 else
1048                         secondary_hcd = xhci->shared_hcd;
1049
1050                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1051                 retval = xhci_init(hcd->primary_hcd);
1052                 if (retval)
1053                         return retval;
1054                 comp_timer_running = true;
1055
1056                 xhci_dbg(xhci, "Start the primary HCD\n");
1057                 retval = xhci_run(hcd->primary_hcd);
1058                 if (!retval) {
1059                         xhci_dbg(xhci, "Start the secondary HCD\n");
1060                         retval = xhci_run(secondary_hcd);
1061                 }
1062                 hcd->state = HC_STATE_SUSPENDED;
1063                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1064                 goto done;
1065         }
1066
1067         /* step 4: set Run/Stop bit */
1068         command = xhci_readl(xhci, &xhci->op_regs->command);
1069         command |= CMD_RUN;
1070         xhci_writel(xhci, command, &xhci->op_regs->command);
1071         xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1072                   0, 250 * 1000);
1073
1074         /* step 5: walk topology and initialize portsc,
1075          * portpmsc and portli
1076          */
1077         /* this is done in bus_resume */
1078
1079         /* step 6: restart each of the previously
1080          * Running endpoints by ringing their doorbells
1081          */
1082
1083         spin_unlock_irq(&xhci->lock);
1084
1085  done:
1086         if (retval == 0) {
1087                 /* Resume root hubs only when have pending events. */
1088                 status = readl(&xhci->op_regs->status);
1089                 if (status & STS_EINT) {
1090                         usb_hcd_resume_root_hub(hcd);
1091                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1092                 }
1093         }
1094
1095         /*
1096          * If system is subject to the Quirk, Compliance Mode Timer needs to
1097          * be re-initialized Always after a system resume. Ports are subject
1098          * to suffer the Compliance Mode issue again. It doesn't matter if
1099          * ports have entered previously to U0 before system's suspension.
1100          */
1101         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1102                 compliance_mode_recovery_timer_init(xhci);
1103
1104         /* Re-enable port polling. */
1105         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1106         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1107         usb_hcd_poll_rh_status(hcd);
1108
1109         return retval;
1110 }
1111 #endif  /* CONFIG_PM */
1112
1113 /*-------------------------------------------------------------------------*/
1114
1115 /**
1116  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1117  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1118  * value to right shift 1 for the bitmask.
1119  *
1120  * Index  = (epnum * 2) + direction - 1,
1121  * where direction = 0 for OUT, 1 for IN.
1122  * For control endpoints, the IN index is used (OUT index is unused), so
1123  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1124  */
1125 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1126 {
1127         unsigned int index;
1128         if (usb_endpoint_xfer_control(desc))
1129                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1130         else
1131                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1132                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1133         return index;
1134 }
1135
1136 /* Find the flag for this endpoint (for use in the control context).  Use the
1137  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1138  * bit 1, etc.
1139  */
1140 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1141 {
1142         return 1 << (xhci_get_endpoint_index(desc) + 1);
1143 }
1144
1145 /* Find the flag for this endpoint (for use in the control context).  Use the
1146  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1147  * bit 1, etc.
1148  */
1149 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1150 {
1151         return 1 << (ep_index + 1);
1152 }
1153
1154 /* Compute the last valid endpoint context index.  Basically, this is the
1155  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1156  * we find the most significant bit set in the added contexts flags.
1157  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1158  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1159  */
1160 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1161 {
1162         return fls(added_ctxs) - 1;
1163 }
1164
1165 /* Returns 1 if the arguments are OK;
1166  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1167  */
1168 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1169                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1170                 const char *func) {
1171         struct xhci_hcd *xhci;
1172         struct xhci_virt_device *virt_dev;
1173
1174         if (!hcd || (check_ep && !ep) || !udev) {
1175                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1176                                 func);
1177                 return -EINVAL;
1178         }
1179         if (!udev->parent) {
1180                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1181                                 func);
1182                 return 0;
1183         }
1184
1185         xhci = hcd_to_xhci(hcd);
1186         if (check_virt_dev) {
1187                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1188                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
1189                                                 "device\n", func);
1190                         return -EINVAL;
1191                 }
1192
1193                 virt_dev = xhci->devs[udev->slot_id];
1194                 if (virt_dev->udev != udev) {
1195                         printk(KERN_DEBUG "xHCI %s called with udev and "
1196                                           "virt_dev does not match\n", func);
1197                         return -EINVAL;
1198                 }
1199         }
1200
1201         if (xhci->xhc_state & XHCI_STATE_HALTED)
1202                 return -ENODEV;
1203
1204         return 1;
1205 }
1206
1207 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1208                 struct usb_device *udev, struct xhci_command *command,
1209                 bool ctx_change, bool must_succeed);
1210
1211 /*
1212  * Full speed devices may have a max packet size greater than 8 bytes, but the
1213  * USB core doesn't know that until it reads the first 8 bytes of the
1214  * descriptor.  If the usb_device's max packet size changes after that point,
1215  * we need to issue an evaluate context command and wait on it.
1216  */
1217 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1218                 unsigned int ep_index, struct urb *urb)
1219 {
1220         struct xhci_container_ctx *in_ctx;
1221         struct xhci_container_ctx *out_ctx;
1222         struct xhci_input_control_ctx *ctrl_ctx;
1223         struct xhci_ep_ctx *ep_ctx;
1224         int max_packet_size;
1225         int hw_max_packet_size;
1226         int ret = 0;
1227
1228         out_ctx = xhci->devs[slot_id]->out_ctx;
1229         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1230         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1231         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1232         if (hw_max_packet_size != max_packet_size) {
1233                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1234                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1235                                 max_packet_size);
1236                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1237                                 hw_max_packet_size);
1238                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1239
1240                 /* Set up the modified control endpoint 0 */
1241                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1242                                 xhci->devs[slot_id]->out_ctx, ep_index);
1243                 in_ctx = xhci->devs[slot_id]->in_ctx;
1244                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1245                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1246                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1247
1248                 /* Set up the input context flags for the command */
1249                 /* FIXME: This won't work if a non-default control endpoint
1250                  * changes max packet sizes.
1251                  */
1252                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1253                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1254                 ctrl_ctx->drop_flags = 0;
1255
1256                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1257                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1258                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1259                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1260
1261                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1262                                 true, false);
1263
1264                 /* Clean up the input context for later use by bandwidth
1265                  * functions.
1266                  */
1267                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1268         }
1269         return ret;
1270 }
1271
1272 /*
1273  * non-error returns are a promise to giveback() the urb later
1274  * we drop ownership so next owner (or urb unlink) can get it
1275  */
1276 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1277 {
1278         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1279         struct xhci_td *buffer;
1280         unsigned long flags;
1281         int ret = 0;
1282         unsigned int slot_id, ep_index;
1283         struct urb_priv *urb_priv;
1284         int size, i;
1285
1286         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1287                                         true, true, __func__) <= 0)
1288                 return -EINVAL;
1289
1290         slot_id = urb->dev->slot_id;
1291         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1292
1293         if (!HCD_HW_ACCESSIBLE(hcd)) {
1294                 if (!in_interrupt())
1295                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1296                 ret = -ESHUTDOWN;
1297                 goto exit;
1298         }
1299
1300         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1301                 size = urb->number_of_packets;
1302         else
1303                 size = 1;
1304
1305         urb_priv = kzalloc(sizeof(struct urb_priv) +
1306                                   size * sizeof(struct xhci_td *), mem_flags);
1307         if (!urb_priv)
1308                 return -ENOMEM;
1309
1310         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1311         if (!buffer) {
1312                 kfree(urb_priv);
1313                 return -ENOMEM;
1314         }
1315
1316         for (i = 0; i < size; i++) {
1317                 urb_priv->td[i] = buffer;
1318                 buffer++;
1319         }
1320
1321         urb_priv->length = size;
1322         urb_priv->td_cnt = 0;
1323         urb->hcpriv = urb_priv;
1324
1325         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1326                 /* Check to see if the max packet size for the default control
1327                  * endpoint changed during FS device enumeration
1328                  */
1329                 if (urb->dev->speed == USB_SPEED_FULL) {
1330                         ret = xhci_check_maxpacket(xhci, slot_id,
1331                                         ep_index, urb);
1332                         if (ret < 0) {
1333                                 xhci_urb_free_priv(xhci, urb_priv);
1334                                 urb->hcpriv = NULL;
1335                                 return ret;
1336                         }
1337                 }
1338
1339                 /* We have a spinlock and interrupts disabled, so we must pass
1340                  * atomic context to this function, which may allocate memory.
1341                  */
1342                 spin_lock_irqsave(&xhci->lock, flags);
1343                 if (xhci->xhc_state & XHCI_STATE_DYING)
1344                         goto dying;
1345                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1346                                 slot_id, ep_index);
1347                 if (ret)
1348                         goto free_priv;
1349                 spin_unlock_irqrestore(&xhci->lock, flags);
1350         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1351                 spin_lock_irqsave(&xhci->lock, flags);
1352                 if (xhci->xhc_state & XHCI_STATE_DYING)
1353                         goto dying;
1354                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1355                                 EP_GETTING_STREAMS) {
1356                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1357                                         "is transitioning to using streams.\n");
1358                         ret = -EINVAL;
1359                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1360                                 EP_GETTING_NO_STREAMS) {
1361                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1362                                         "is transitioning to "
1363                                         "not having streams.\n");
1364                         ret = -EINVAL;
1365                 } else {
1366                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1367                                         slot_id, ep_index);
1368                 }
1369                 if (ret)
1370                         goto free_priv;
1371                 spin_unlock_irqrestore(&xhci->lock, flags);
1372         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1373                 spin_lock_irqsave(&xhci->lock, flags);
1374                 if (xhci->xhc_state & XHCI_STATE_DYING)
1375                         goto dying;
1376                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1377                                 slot_id, ep_index);
1378                 if (ret)
1379                         goto free_priv;
1380                 spin_unlock_irqrestore(&xhci->lock, flags);
1381         } else {
1382                 spin_lock_irqsave(&xhci->lock, flags);
1383                 if (xhci->xhc_state & XHCI_STATE_DYING)
1384                         goto dying;
1385                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1386                                 slot_id, ep_index);
1387                 if (ret)
1388                         goto free_priv;
1389                 spin_unlock_irqrestore(&xhci->lock, flags);
1390         }
1391 exit:
1392         return ret;
1393 dying:
1394         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1395                         "non-responsive xHCI host.\n",
1396                         urb->ep->desc.bEndpointAddress, urb);
1397         ret = -ESHUTDOWN;
1398 free_priv:
1399         xhci_urb_free_priv(xhci, urb_priv);
1400         urb->hcpriv = NULL;
1401         spin_unlock_irqrestore(&xhci->lock, flags);
1402         return ret;
1403 }
1404
1405 /* Get the right ring for the given URB.
1406  * If the endpoint supports streams, boundary check the URB's stream ID.
1407  * If the endpoint doesn't support streams, return the singular endpoint ring.
1408  */
1409 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1410                 struct urb *urb)
1411 {
1412         unsigned int slot_id;
1413         unsigned int ep_index;
1414         unsigned int stream_id;
1415         struct xhci_virt_ep *ep;
1416
1417         slot_id = urb->dev->slot_id;
1418         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1419         stream_id = urb->stream_id;
1420         ep = &xhci->devs[slot_id]->eps[ep_index];
1421         /* Common case: no streams */
1422         if (!(ep->ep_state & EP_HAS_STREAMS))
1423                 return ep->ring;
1424
1425         if (stream_id == 0) {
1426                 xhci_warn(xhci,
1427                                 "WARN: Slot ID %u, ep index %u has streams, "
1428                                 "but URB has no stream ID.\n",
1429                                 slot_id, ep_index);
1430                 return NULL;
1431         }
1432
1433         if (stream_id < ep->stream_info->num_streams)
1434                 return ep->stream_info->stream_rings[stream_id];
1435
1436         xhci_warn(xhci,
1437                         "WARN: Slot ID %u, ep index %u has "
1438                         "stream IDs 1 to %u allocated, "
1439                         "but stream ID %u is requested.\n",
1440                         slot_id, ep_index,
1441                         ep->stream_info->num_streams - 1,
1442                         stream_id);
1443         return NULL;
1444 }
1445
1446 /*
1447  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1448  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1449  * should pick up where it left off in the TD, unless a Set Transfer Ring
1450  * Dequeue Pointer is issued.
1451  *
1452  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1453  * the ring.  Since the ring is a contiguous structure, they can't be physically
1454  * removed.  Instead, there are two options:
1455  *
1456  *  1) If the HC is in the middle of processing the URB to be canceled, we
1457  *     simply move the ring's dequeue pointer past those TRBs using the Set
1458  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1459  *     when drivers timeout on the last submitted URB and attempt to cancel.
1460  *
1461  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1462  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1463  *     HC will need to invalidate the any TRBs it has cached after the stop
1464  *     endpoint command, as noted in the xHCI 0.95 errata.
1465  *
1466  *  3) The TD may have completed by the time the Stop Endpoint Command
1467  *     completes, so software needs to handle that case too.
1468  *
1469  * This function should protect against the TD enqueueing code ringing the
1470  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1471  * It also needs to account for multiple cancellations on happening at the same
1472  * time for the same endpoint.
1473  *
1474  * Note that this function can be called in any context, or so says
1475  * usb_hcd_unlink_urb()
1476  */
1477 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1478 {
1479         unsigned long flags;
1480         int ret, i;
1481         u32 temp;
1482         struct xhci_hcd *xhci;
1483         struct urb_priv *urb_priv;
1484         struct xhci_td *td;
1485         unsigned int ep_index;
1486         struct xhci_ring *ep_ring;
1487         struct xhci_virt_ep *ep;
1488
1489         xhci = hcd_to_xhci(hcd);
1490         spin_lock_irqsave(&xhci->lock, flags);
1491         /* Make sure the URB hasn't completed or been unlinked already */
1492         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1493         if (ret || !urb->hcpriv)
1494                 goto done;
1495         temp = xhci_readl(xhci, &xhci->op_regs->status);
1496         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1497                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1498                 urb_priv = urb->hcpriv;
1499                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1500                         td = urb_priv->td[i];
1501                         if (!list_empty(&td->td_list))
1502                                 list_del_init(&td->td_list);
1503                         if (!list_empty(&td->cancelled_td_list))
1504                                 list_del_init(&td->cancelled_td_list);
1505                 }
1506
1507                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1508                 spin_unlock_irqrestore(&xhci->lock, flags);
1509                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1510                 xhci_urb_free_priv(xhci, urb_priv);
1511                 return ret;
1512         }
1513         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1514                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1515                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1516                                 "non-responsive xHCI host.\n",
1517                                 urb->ep->desc.bEndpointAddress, urb);
1518                 /* Let the stop endpoint command watchdog timer (which set this
1519                  * state) finish cleaning up the endpoint TD lists.  We must
1520                  * have caught it in the middle of dropping a lock and giving
1521                  * back an URB.
1522                  */
1523                 goto done;
1524         }
1525
1526         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1527         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1528         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1529         if (!ep_ring) {
1530                 ret = -EINVAL;
1531                 goto done;
1532         }
1533
1534         urb_priv = urb->hcpriv;
1535         i = urb_priv->td_cnt;
1536         if (i < urb_priv->length)
1537                 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1538                                 "starting at offset 0x%llx\n",
1539                                 urb, urb->dev->devpath,
1540                                 urb->ep->desc.bEndpointAddress,
1541                                 (unsigned long long) xhci_trb_virt_to_dma(
1542                                         urb_priv->td[i]->start_seg,
1543                                         urb_priv->td[i]->first_trb));
1544
1545         for (; i < urb_priv->length; i++) {
1546                 td = urb_priv->td[i];
1547                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1548         }
1549
1550         /* Queue a stop endpoint command, but only if this is
1551          * the first cancellation to be handled.
1552          */
1553         if (!(ep->ep_state & EP_HALT_PENDING)) {
1554                 ep->ep_state |= EP_HALT_PENDING;
1555                 ep->stop_cmds_pending++;
1556                 ep->stop_cmd_timer.expires = jiffies +
1557                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1558                 add_timer(&ep->stop_cmd_timer);
1559                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1560                 xhci_ring_cmd_db(xhci);
1561         }
1562 done:
1563         spin_unlock_irqrestore(&xhci->lock, flags);
1564         return ret;
1565 }
1566
1567 /* Drop an endpoint from a new bandwidth configuration for this device.
1568  * Only one call to this function is allowed per endpoint before
1569  * check_bandwidth() or reset_bandwidth() must be called.
1570  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1571  * add the endpoint to the schedule with possibly new parameters denoted by a
1572  * different endpoint descriptor in usb_host_endpoint.
1573  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1574  * not allowed.
1575  *
1576  * The USB core will not allow URBs to be queued to an endpoint that is being
1577  * disabled, so there's no need for mutual exclusion to protect
1578  * the xhci->devs[slot_id] structure.
1579  */
1580 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1581                 struct usb_host_endpoint *ep)
1582 {
1583         struct xhci_hcd *xhci;
1584         struct xhci_container_ctx *in_ctx, *out_ctx;
1585         struct xhci_input_control_ctx *ctrl_ctx;
1586         struct xhci_slot_ctx *slot_ctx;
1587         unsigned int last_ctx;
1588         unsigned int ep_index;
1589         struct xhci_ep_ctx *ep_ctx;
1590         u32 drop_flag;
1591         u32 new_add_flags, new_drop_flags, new_slot_info;
1592         int ret;
1593
1594         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1595         if (ret <= 0)
1596                 return ret;
1597         xhci = hcd_to_xhci(hcd);
1598         if (xhci->xhc_state & XHCI_STATE_DYING)
1599                 return -ENODEV;
1600
1601         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1602         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1603         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1604                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1605                                 __func__, drop_flag);
1606                 return 0;
1607         }
1608
1609         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1610         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1611         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1612         ep_index = xhci_get_endpoint_index(&ep->desc);
1613         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1614         /* If the HC already knows the endpoint is disabled,
1615          * or the HCD has noted it is disabled, ignore this request
1616          */
1617         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1618              cpu_to_le32(EP_STATE_DISABLED)) ||
1619             le32_to_cpu(ctrl_ctx->drop_flags) &
1620             xhci_get_endpoint_flag(&ep->desc)) {
1621                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1622                                 __func__, ep);
1623                 return 0;
1624         }
1625
1626         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1627         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1628
1629         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1630         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1631
1632         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1633         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1634         /* Update the last valid endpoint context, if we deleted the last one */
1635         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1636             LAST_CTX(last_ctx)) {
1637                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1638                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1639         }
1640         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1641
1642         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1643
1644         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1645                         (unsigned int) ep->desc.bEndpointAddress,
1646                         udev->slot_id,
1647                         (unsigned int) new_drop_flags,
1648                         (unsigned int) new_add_flags,
1649                         (unsigned int) new_slot_info);
1650         return 0;
1651 }
1652
1653 /* Add an endpoint to a new possible bandwidth configuration for this device.
1654  * Only one call to this function is allowed per endpoint before
1655  * check_bandwidth() or reset_bandwidth() must be called.
1656  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1657  * add the endpoint to the schedule with possibly new parameters denoted by a
1658  * different endpoint descriptor in usb_host_endpoint.
1659  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1660  * not allowed.
1661  *
1662  * The USB core will not allow URBs to be queued to an endpoint until the
1663  * configuration or alt setting is installed in the device, so there's no need
1664  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1665  */
1666 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1667                 struct usb_host_endpoint *ep)
1668 {
1669         struct xhci_hcd *xhci;
1670         struct xhci_container_ctx *in_ctx, *out_ctx;
1671         unsigned int ep_index;
1672         struct xhci_slot_ctx *slot_ctx;
1673         struct xhci_input_control_ctx *ctrl_ctx;
1674         u32 added_ctxs;
1675         unsigned int last_ctx;
1676         u32 new_add_flags, new_drop_flags, new_slot_info;
1677         struct xhci_virt_device *virt_dev;
1678         int ret = 0;
1679
1680         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1681         if (ret <= 0) {
1682                 /* So we won't queue a reset ep command for a root hub */
1683                 ep->hcpriv = NULL;
1684                 return ret;
1685         }
1686         xhci = hcd_to_xhci(hcd);
1687         if (xhci->xhc_state & XHCI_STATE_DYING)
1688                 return -ENODEV;
1689
1690         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1691         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1692         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1693                 /* FIXME when we have to issue an evaluate endpoint command to
1694                  * deal with ep0 max packet size changing once we get the
1695                  * descriptors
1696                  */
1697                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1698                                 __func__, added_ctxs);
1699                 return 0;
1700         }
1701
1702         virt_dev = xhci->devs[udev->slot_id];
1703         in_ctx = virt_dev->in_ctx;
1704         out_ctx = virt_dev->out_ctx;
1705         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1706         ep_index = xhci_get_endpoint_index(&ep->desc);
1707
1708         /* If this endpoint is already in use, and the upper layers are trying
1709          * to add it again without dropping it, reject the addition.
1710          */
1711         if (virt_dev->eps[ep_index].ring &&
1712                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1713                                 xhci_get_endpoint_flag(&ep->desc))) {
1714                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1715                                 "without dropping it.\n",
1716                                 (unsigned int) ep->desc.bEndpointAddress);
1717                 return -EINVAL;
1718         }
1719
1720         /* If the HCD has already noted the endpoint is enabled,
1721          * ignore this request.
1722          */
1723         if (le32_to_cpu(ctrl_ctx->add_flags) &
1724             xhci_get_endpoint_flag(&ep->desc)) {
1725                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1726                                 __func__, ep);
1727                 return 0;
1728         }
1729
1730         /*
1731          * Configuration and alternate setting changes must be done in
1732          * process context, not interrupt context (or so documenation
1733          * for usb_set_interface() and usb_set_configuration() claim).
1734          */
1735         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1736                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1737                                 __func__, ep->desc.bEndpointAddress);
1738                 return -ENOMEM;
1739         }
1740
1741         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1742         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1743
1744         /* If xhci_endpoint_disable() was called for this endpoint, but the
1745          * xHC hasn't been notified yet through the check_bandwidth() call,
1746          * this re-adds a new state for the endpoint from the new endpoint
1747          * descriptors.  We must drop and re-add this endpoint, so we leave the
1748          * drop flags alone.
1749          */
1750         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1751
1752         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1753         /* Update the last valid endpoint context, if we just added one past */
1754         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1755             LAST_CTX(last_ctx)) {
1756                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1757                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1758         }
1759         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1760
1761         /* Store the usb_device pointer for later use */
1762         ep->hcpriv = udev;
1763
1764         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1765                         (unsigned int) ep->desc.bEndpointAddress,
1766                         udev->slot_id,
1767                         (unsigned int) new_drop_flags,
1768                         (unsigned int) new_add_flags,
1769                         (unsigned int) new_slot_info);
1770         return 0;
1771 }
1772
1773 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1774 {
1775         struct xhci_input_control_ctx *ctrl_ctx;
1776         struct xhci_ep_ctx *ep_ctx;
1777         struct xhci_slot_ctx *slot_ctx;
1778         int i;
1779
1780         /* When a device's add flag and drop flag are zero, any subsequent
1781          * configure endpoint command will leave that endpoint's state
1782          * untouched.  Make sure we don't leave any old state in the input
1783          * endpoint contexts.
1784          */
1785         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1786         ctrl_ctx->drop_flags = 0;
1787         ctrl_ctx->add_flags = 0;
1788         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1789         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1790         /* Endpoint 0 is always valid */
1791         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1792         for (i = 1; i < 31; ++i) {
1793                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1794                 ep_ctx->ep_info = 0;
1795                 ep_ctx->ep_info2 = 0;
1796                 ep_ctx->deq = 0;
1797                 ep_ctx->tx_info = 0;
1798         }
1799 }
1800
1801 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1802                 struct usb_device *udev, u32 *cmd_status)
1803 {
1804         int ret;
1805
1806         switch (*cmd_status) {
1807         case COMP_ENOMEM:
1808                 dev_warn(&udev->dev, "Not enough host controller resources "
1809                                 "for new device state.\n");
1810                 ret = -ENOMEM;
1811                 /* FIXME: can we allocate more resources for the HC? */
1812                 break;
1813         case COMP_BW_ERR:
1814         case COMP_2ND_BW_ERR:
1815                 dev_warn(&udev->dev, "Not enough bandwidth "
1816                                 "for new device state.\n");
1817                 ret = -ENOSPC;
1818                 /* FIXME: can we go back to the old state? */
1819                 break;
1820         case COMP_TRB_ERR:
1821                 /* the HCD set up something wrong */
1822                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1823                                 "add flag = 1, "
1824                                 "and endpoint is not disabled.\n");
1825                 ret = -EINVAL;
1826                 break;
1827         case COMP_DEV_ERR:
1828                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1829                                 "configure command.\n");
1830                 ret = -ENODEV;
1831                 break;
1832         case COMP_SUCCESS:
1833                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1834                 ret = 0;
1835                 break;
1836         default:
1837                 xhci_err(xhci, "ERROR: unexpected command completion "
1838                                 "code 0x%x.\n", *cmd_status);
1839                 ret = -EINVAL;
1840                 break;
1841         }
1842         return ret;
1843 }
1844
1845 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1846                 struct usb_device *udev, u32 *cmd_status)
1847 {
1848         int ret;
1849         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1850
1851         switch (*cmd_status) {
1852         case COMP_EINVAL:
1853                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1854                                 "context command.\n");
1855                 ret = -EINVAL;
1856                 break;
1857         case COMP_EBADSLT:
1858                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1859                                 "evaluate context command.\n");
1860                 ret = -EINVAL;
1861                 break;
1862         case COMP_CTX_STATE:
1863                 dev_warn(&udev->dev, "WARN: invalid context state for "
1864                                 "evaluate context command.\n");
1865                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1866                 ret = -EINVAL;
1867                 break;
1868         case COMP_DEV_ERR:
1869                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1870                                 "context command.\n");
1871                 ret = -ENODEV;
1872                 break;
1873         case COMP_MEL_ERR:
1874                 /* Max Exit Latency too large error */
1875                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1876                 ret = -EINVAL;
1877                 break;
1878         case COMP_SUCCESS:
1879                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1880                 ret = 0;
1881                 break;
1882         default:
1883                 xhci_err(xhci, "ERROR: unexpected command completion "
1884                                 "code 0x%x.\n", *cmd_status);
1885                 ret = -EINVAL;
1886                 break;
1887         }
1888         return ret;
1889 }
1890
1891 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1892                 struct xhci_container_ctx *in_ctx)
1893 {
1894         struct xhci_input_control_ctx *ctrl_ctx;
1895         u32 valid_add_flags;
1896         u32 valid_drop_flags;
1897
1898         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1899         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1900          * (bit 1).  The default control endpoint is added during the Address
1901          * Device command and is never removed until the slot is disabled.
1902          */
1903         valid_add_flags = ctrl_ctx->add_flags >> 2;
1904         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1905
1906         /* Use hweight32 to count the number of ones in the add flags, or
1907          * number of endpoints added.  Don't count endpoints that are changed
1908          * (both added and dropped).
1909          */
1910         return hweight32(valid_add_flags) -
1911                 hweight32(valid_add_flags & valid_drop_flags);
1912 }
1913
1914 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1915                 struct xhci_container_ctx *in_ctx)
1916 {
1917         struct xhci_input_control_ctx *ctrl_ctx;
1918         u32 valid_add_flags;
1919         u32 valid_drop_flags;
1920
1921         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1922         valid_add_flags = ctrl_ctx->add_flags >> 2;
1923         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1924
1925         return hweight32(valid_drop_flags) -
1926                 hweight32(valid_add_flags & valid_drop_flags);
1927 }
1928
1929 /*
1930  * We need to reserve the new number of endpoints before the configure endpoint
1931  * command completes.  We can't subtract the dropped endpoints from the number
1932  * of active endpoints until the command completes because we can oversubscribe
1933  * the host in this case:
1934  *
1935  *  - the first configure endpoint command drops more endpoints than it adds
1936  *  - a second configure endpoint command that adds more endpoints is queued
1937  *  - the first configure endpoint command fails, so the config is unchanged
1938  *  - the second command may succeed, even though there isn't enough resources
1939  *
1940  * Must be called with xhci->lock held.
1941  */
1942 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1943                 struct xhci_container_ctx *in_ctx)
1944 {
1945         u32 added_eps;
1946
1947         added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1948         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1949                 xhci_dbg(xhci, "Not enough ep ctxs: "
1950                                 "%u active, need to add %u, limit is %u.\n",
1951                                 xhci->num_active_eps, added_eps,
1952                                 xhci->limit_active_eps);
1953                 return -ENOMEM;
1954         }
1955         xhci->num_active_eps += added_eps;
1956         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1957                         xhci->num_active_eps);
1958         return 0;
1959 }
1960
1961 /*
1962  * The configure endpoint was failed by the xHC for some other reason, so we
1963  * need to revert the resources that failed configuration would have used.
1964  *
1965  * Must be called with xhci->lock held.
1966  */
1967 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1968                 struct xhci_container_ctx *in_ctx)
1969 {
1970         u32 num_failed_eps;
1971
1972         num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1973         xhci->num_active_eps -= num_failed_eps;
1974         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1975                         num_failed_eps,
1976                         xhci->num_active_eps);
1977 }
1978
1979 /*
1980  * Now that the command has completed, clean up the active endpoint count by
1981  * subtracting out the endpoints that were dropped (but not changed).
1982  *
1983  * Must be called with xhci->lock held.
1984  */
1985 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1986                 struct xhci_container_ctx *in_ctx)
1987 {
1988         u32 num_dropped_eps;
1989
1990         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1991         xhci->num_active_eps -= num_dropped_eps;
1992         if (num_dropped_eps)
1993                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1994                                 num_dropped_eps,
1995                                 xhci->num_active_eps);
1996 }
1997
1998 static unsigned int xhci_get_block_size(struct usb_device *udev)
1999 {
2000         switch (udev->speed) {
2001         case USB_SPEED_LOW:
2002         case USB_SPEED_FULL:
2003                 return FS_BLOCK;
2004         case USB_SPEED_HIGH:
2005                 return HS_BLOCK;
2006         case USB_SPEED_SUPER:
2007                 return SS_BLOCK;
2008         case USB_SPEED_UNKNOWN:
2009         case USB_SPEED_WIRELESS:
2010         default:
2011                 /* Should never happen */
2012                 return 1;
2013         }
2014 }
2015
2016 static unsigned int
2017 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2018 {
2019         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2020                 return LS_OVERHEAD;
2021         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2022                 return FS_OVERHEAD;
2023         return HS_OVERHEAD;
2024 }
2025
2026 /* If we are changing a LS/FS device under a HS hub,
2027  * make sure (if we are activating a new TT) that the HS bus has enough
2028  * bandwidth for this new TT.
2029  */
2030 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2031                 struct xhci_virt_device *virt_dev,
2032                 int old_active_eps)
2033 {
2034         struct xhci_interval_bw_table *bw_table;
2035         struct xhci_tt_bw_info *tt_info;
2036
2037         /* Find the bandwidth table for the root port this TT is attached to. */
2038         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2039         tt_info = virt_dev->tt_info;
2040         /* If this TT already had active endpoints, the bandwidth for this TT
2041          * has already been added.  Removing all periodic endpoints (and thus
2042          * making the TT enactive) will only decrease the bandwidth used.
2043          */
2044         if (old_active_eps)
2045                 return 0;
2046         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2047                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2048                         return -ENOMEM;
2049                 return 0;
2050         }
2051         /* Not sure why we would have no new active endpoints...
2052          *
2053          * Maybe because of an Evaluate Context change for a hub update or a
2054          * control endpoint 0 max packet size change?
2055          * FIXME: skip the bandwidth calculation in that case.
2056          */
2057         return 0;
2058 }
2059
2060 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2061                 struct xhci_virt_device *virt_dev)
2062 {
2063         unsigned int bw_reserved;
2064
2065         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2066         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2067                 return -ENOMEM;
2068
2069         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2070         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2071                 return -ENOMEM;
2072
2073         return 0;
2074 }
2075
2076 /*
2077  * This algorithm is a very conservative estimate of the worst-case scheduling
2078  * scenario for any one interval.  The hardware dynamically schedules the
2079  * packets, so we can't tell which microframe could be the limiting factor in
2080  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2081  *
2082  * Obviously, we can't solve an NP complete problem to find the minimum worst
2083  * case scenario.  Instead, we come up with an estimate that is no less than
2084  * the worst case bandwidth used for any one microframe, but may be an
2085  * over-estimate.
2086  *
2087  * We walk the requirements for each endpoint by interval, starting with the
2088  * smallest interval, and place packets in the schedule where there is only one
2089  * possible way to schedule packets for that interval.  In order to simplify
2090  * this algorithm, we record the largest max packet size for each interval, and
2091  * assume all packets will be that size.
2092  *
2093  * For interval 0, we obviously must schedule all packets for each interval.
2094  * The bandwidth for interval 0 is just the amount of data to be transmitted
2095  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2096  * the number of packets).
2097  *
2098  * For interval 1, we have two possible microframes to schedule those packets
2099  * in.  For this algorithm, if we can schedule the same number of packets for
2100  * each possible scheduling opportunity (each microframe), we will do so.  The
2101  * remaining number of packets will be saved to be transmitted in the gaps in
2102  * the next interval's scheduling sequence.
2103  *
2104  * As we move those remaining packets to be scheduled with interval 2 packets,
2105  * we have to double the number of remaining packets to transmit.  This is
2106  * because the intervals are actually powers of 2, and we would be transmitting
2107  * the previous interval's packets twice in this interval.  We also have to be
2108  * sure that when we look at the largest max packet size for this interval, we
2109  * also look at the largest max packet size for the remaining packets and take
2110  * the greater of the two.
2111  *
2112  * The algorithm continues to evenly distribute packets in each scheduling
2113  * opportunity, and push the remaining packets out, until we get to the last
2114  * interval.  Then those packets and their associated overhead are just added
2115  * to the bandwidth used.
2116  */
2117 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2118                 struct xhci_virt_device *virt_dev,
2119                 int old_active_eps)
2120 {
2121         unsigned int bw_reserved;
2122         unsigned int max_bandwidth;
2123         unsigned int bw_used;
2124         unsigned int block_size;
2125         struct xhci_interval_bw_table *bw_table;
2126         unsigned int packet_size = 0;
2127         unsigned int overhead = 0;
2128         unsigned int packets_transmitted = 0;
2129         unsigned int packets_remaining = 0;
2130         unsigned int i;
2131
2132         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2133                 return xhci_check_ss_bw(xhci, virt_dev);
2134
2135         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2136                 max_bandwidth = HS_BW_LIMIT;
2137                 /* Convert percent of bus BW reserved to blocks reserved */
2138                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2139         } else {
2140                 max_bandwidth = FS_BW_LIMIT;
2141                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2142         }
2143
2144         bw_table = virt_dev->bw_table;
2145         /* We need to translate the max packet size and max ESIT payloads into
2146          * the units the hardware uses.
2147          */
2148         block_size = xhci_get_block_size(virt_dev->udev);
2149
2150         /* If we are manipulating a LS/FS device under a HS hub, double check
2151          * that the HS bus has enough bandwidth if we are activing a new TT.
2152          */
2153         if (virt_dev->tt_info) {
2154                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2155                                 virt_dev->real_port);
2156                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2157                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2158                                         "newly activated TT.\n");
2159                         return -ENOMEM;
2160                 }
2161                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2162                                 virt_dev->tt_info->slot_id,
2163                                 virt_dev->tt_info->ttport);
2164         } else {
2165                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2166                                 virt_dev->real_port);
2167         }
2168
2169         /* Add in how much bandwidth will be used for interval zero, or the
2170          * rounded max ESIT payload + number of packets * largest overhead.
2171          */
2172         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2173                 bw_table->interval_bw[0].num_packets *
2174                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2175
2176         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2177                 unsigned int bw_added;
2178                 unsigned int largest_mps;
2179                 unsigned int interval_overhead;
2180
2181                 /*
2182                  * How many packets could we transmit in this interval?
2183                  * If packets didn't fit in the previous interval, we will need
2184                  * to transmit that many packets twice within this interval.
2185                  */
2186                 packets_remaining = 2 * packets_remaining +
2187                         bw_table->interval_bw[i].num_packets;
2188
2189                 /* Find the largest max packet size of this or the previous
2190                  * interval.
2191                  */
2192                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2193                         largest_mps = 0;
2194                 else {
2195                         struct xhci_virt_ep *virt_ep;
2196                         struct list_head *ep_entry;
2197
2198                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2199                         virt_ep = list_entry(ep_entry,
2200                                         struct xhci_virt_ep, bw_endpoint_list);
2201                         /* Convert to blocks, rounding up */
2202                         largest_mps = DIV_ROUND_UP(
2203                                         virt_ep->bw_info.max_packet_size,
2204                                         block_size);
2205                 }
2206                 if (largest_mps > packet_size)
2207                         packet_size = largest_mps;
2208
2209                 /* Use the larger overhead of this or the previous interval. */
2210                 interval_overhead = xhci_get_largest_overhead(
2211                                 &bw_table->interval_bw[i]);
2212                 if (interval_overhead > overhead)
2213                         overhead = interval_overhead;
2214
2215                 /* How many packets can we evenly distribute across
2216                  * (1 << (i + 1)) possible scheduling opportunities?
2217                  */
2218                 packets_transmitted = packets_remaining >> (i + 1);
2219
2220                 /* Add in the bandwidth used for those scheduled packets */
2221                 bw_added = packets_transmitted * (overhead + packet_size);
2222
2223                 /* How many packets do we have remaining to transmit? */
2224                 packets_remaining = packets_remaining % (1 << (i + 1));
2225
2226                 /* What largest max packet size should those packets have? */
2227                 /* If we've transmitted all packets, don't carry over the
2228                  * largest packet size.
2229                  */
2230                 if (packets_remaining == 0) {
2231                         packet_size = 0;
2232                         overhead = 0;
2233                 } else if (packets_transmitted > 0) {
2234                         /* Otherwise if we do have remaining packets, and we've
2235                          * scheduled some packets in this interval, take the
2236                          * largest max packet size from endpoints with this
2237                          * interval.
2238                          */
2239                         packet_size = largest_mps;
2240                         overhead = interval_overhead;
2241                 }
2242                 /* Otherwise carry over packet_size and overhead from the last
2243                  * time we had a remainder.
2244                  */
2245                 bw_used += bw_added;
2246                 if (bw_used > max_bandwidth) {
2247                         xhci_warn(xhci, "Not enough bandwidth. "
2248                                         "Proposed: %u, Max: %u\n",
2249                                 bw_used, max_bandwidth);
2250                         return -ENOMEM;
2251                 }
2252         }
2253         /*
2254          * Ok, we know we have some packets left over after even-handedly
2255          * scheduling interval 15.  We don't know which microframes they will
2256          * fit into, so we over-schedule and say they will be scheduled every
2257          * microframe.
2258          */
2259         if (packets_remaining > 0)
2260                 bw_used += overhead + packet_size;
2261
2262         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2263                 unsigned int port_index = virt_dev->real_port - 1;
2264
2265                 /* OK, we're manipulating a HS device attached to a
2266                  * root port bandwidth domain.  Include the number of active TTs
2267                  * in the bandwidth used.
2268                  */
2269                 bw_used += TT_HS_OVERHEAD *
2270                         xhci->rh_bw[port_index].num_active_tts;
2271         }
2272
2273         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2274                 "Available: %u " "percent\n",
2275                 bw_used, max_bandwidth, bw_reserved,
2276                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2277                 max_bandwidth);
2278
2279         bw_used += bw_reserved;
2280         if (bw_used > max_bandwidth) {
2281                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2282                                 bw_used, max_bandwidth);
2283                 return -ENOMEM;
2284         }
2285
2286         bw_table->bw_used = bw_used;
2287         return 0;
2288 }
2289
2290 static bool xhci_is_async_ep(unsigned int ep_type)
2291 {
2292         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2293                                         ep_type != ISOC_IN_EP &&
2294                                         ep_type != INT_IN_EP);
2295 }
2296
2297 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2298 {
2299         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2300 }
2301
2302 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2303 {
2304         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2305
2306         if (ep_bw->ep_interval == 0)
2307                 return SS_OVERHEAD_BURST +
2308                         (ep_bw->mult * ep_bw->num_packets *
2309                                         (SS_OVERHEAD + mps));
2310         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2311                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2312                                 1 << ep_bw->ep_interval);
2313
2314 }
2315
2316 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2317                 struct xhci_bw_info *ep_bw,
2318                 struct xhci_interval_bw_table *bw_table,
2319                 struct usb_device *udev,
2320                 struct xhci_virt_ep *virt_ep,
2321                 struct xhci_tt_bw_info *tt_info)
2322 {
2323         struct xhci_interval_bw *interval_bw;
2324         int normalized_interval;
2325
2326         if (xhci_is_async_ep(ep_bw->type))
2327                 return;
2328
2329         if (udev->speed == USB_SPEED_SUPER) {
2330                 if (xhci_is_sync_in_ep(ep_bw->type))
2331                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2332                                 xhci_get_ss_bw_consumed(ep_bw);
2333                 else
2334                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2335                                 xhci_get_ss_bw_consumed(ep_bw);
2336                 return;
2337         }
2338
2339         /* SuperSpeed endpoints never get added to intervals in the table, so
2340          * this check is only valid for HS/FS/LS devices.
2341          */
2342         if (list_empty(&virt_ep->bw_endpoint_list))
2343                 return;
2344         /* For LS/FS devices, we need to translate the interval expressed in
2345          * microframes to frames.
2346          */
2347         if (udev->speed == USB_SPEED_HIGH)
2348                 normalized_interval = ep_bw->ep_interval;
2349         else
2350                 normalized_interval = ep_bw->ep_interval - 3;
2351
2352         if (normalized_interval == 0)
2353                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2354         interval_bw = &bw_table->interval_bw[normalized_interval];
2355         interval_bw->num_packets -= ep_bw->num_packets;
2356         switch (udev->speed) {
2357         case USB_SPEED_LOW:
2358                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2359                 break;
2360         case USB_SPEED_FULL:
2361                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2362                 break;
2363         case USB_SPEED_HIGH:
2364                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2365                 break;
2366         case USB_SPEED_SUPER:
2367         case USB_SPEED_UNKNOWN:
2368         case USB_SPEED_WIRELESS:
2369                 /* Should never happen because only LS/FS/HS endpoints will get
2370                  * added to the endpoint list.
2371                  */
2372                 return;
2373         }
2374         if (tt_info)
2375                 tt_info->active_eps -= 1;
2376         list_del_init(&virt_ep->bw_endpoint_list);
2377 }
2378
2379 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2380                 struct xhci_bw_info *ep_bw,
2381                 struct xhci_interval_bw_table *bw_table,
2382                 struct usb_device *udev,
2383                 struct xhci_virt_ep *virt_ep,
2384                 struct xhci_tt_bw_info *tt_info)
2385 {
2386         struct xhci_interval_bw *interval_bw;
2387         struct xhci_virt_ep *smaller_ep;
2388         int normalized_interval;
2389
2390         if (xhci_is_async_ep(ep_bw->type))
2391                 return;
2392
2393         if (udev->speed == USB_SPEED_SUPER) {
2394                 if (xhci_is_sync_in_ep(ep_bw->type))
2395                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2396                                 xhci_get_ss_bw_consumed(ep_bw);
2397                 else
2398                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2399                                 xhci_get_ss_bw_consumed(ep_bw);
2400                 return;
2401         }
2402
2403         /* For LS/FS devices, we need to translate the interval expressed in
2404          * microframes to frames.
2405          */
2406         if (udev->speed == USB_SPEED_HIGH)
2407                 normalized_interval = ep_bw->ep_interval;
2408         else
2409                 normalized_interval = ep_bw->ep_interval - 3;
2410
2411         if (normalized_interval == 0)
2412                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2413         interval_bw = &bw_table->interval_bw[normalized_interval];
2414         interval_bw->num_packets += ep_bw->num_packets;
2415         switch (udev->speed) {
2416         case USB_SPEED_LOW:
2417                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2418                 break;
2419         case USB_SPEED_FULL:
2420                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2421                 break;
2422         case USB_SPEED_HIGH:
2423                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2424                 break;
2425         case USB_SPEED_SUPER:
2426         case USB_SPEED_UNKNOWN:
2427         case USB_SPEED_WIRELESS:
2428                 /* Should never happen because only LS/FS/HS endpoints will get
2429                  * added to the endpoint list.
2430                  */
2431                 return;
2432         }
2433
2434         if (tt_info)
2435                 tt_info->active_eps += 1;
2436         /* Insert the endpoint into the list, largest max packet size first. */
2437         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2438                         bw_endpoint_list) {
2439                 if (ep_bw->max_packet_size >=
2440                                 smaller_ep->bw_info.max_packet_size) {
2441                         /* Add the new ep before the smaller endpoint */
2442                         list_add_tail(&virt_ep->bw_endpoint_list,
2443                                         &smaller_ep->bw_endpoint_list);
2444                         return;
2445                 }
2446         }
2447         /* Add the new endpoint at the end of the list. */
2448         list_add_tail(&virt_ep->bw_endpoint_list,
2449                         &interval_bw->endpoints);
2450 }
2451
2452 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2453                 struct xhci_virt_device *virt_dev,
2454                 int old_active_eps)
2455 {
2456         struct xhci_root_port_bw_info *rh_bw_info;
2457         if (!virt_dev->tt_info)
2458                 return;
2459
2460         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2461         if (old_active_eps == 0 &&
2462                                 virt_dev->tt_info->active_eps != 0) {
2463                 rh_bw_info->num_active_tts += 1;
2464                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2465         } else if (old_active_eps != 0 &&
2466                                 virt_dev->tt_info->active_eps == 0) {
2467                 rh_bw_info->num_active_tts -= 1;
2468                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2469         }
2470 }
2471
2472 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2473                 struct xhci_virt_device *virt_dev,
2474                 struct xhci_container_ctx *in_ctx)
2475 {
2476         struct xhci_bw_info ep_bw_info[31];
2477         int i;
2478         struct xhci_input_control_ctx *ctrl_ctx;
2479         int old_active_eps = 0;
2480
2481         if (virt_dev->tt_info)
2482                 old_active_eps = virt_dev->tt_info->active_eps;
2483
2484         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2485
2486         for (i = 0; i < 31; i++) {
2487                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2488                         continue;
2489
2490                 /* Make a copy of the BW info in case we need to revert this */
2491                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2492                                 sizeof(ep_bw_info[i]));
2493                 /* Drop the endpoint from the interval table if the endpoint is
2494                  * being dropped or changed.
2495                  */
2496                 if (EP_IS_DROPPED(ctrl_ctx, i))
2497                         xhci_drop_ep_from_interval_table(xhci,
2498                                         &virt_dev->eps[i].bw_info,
2499                                         virt_dev->bw_table,
2500                                         virt_dev->udev,
2501                                         &virt_dev->eps[i],
2502                                         virt_dev->tt_info);
2503         }
2504         /* Overwrite the information stored in the endpoints' bw_info */
2505         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2506         for (i = 0; i < 31; i++) {
2507                 /* Add any changed or added endpoints to the interval table */
2508                 if (EP_IS_ADDED(ctrl_ctx, i))
2509                         xhci_add_ep_to_interval_table(xhci,
2510                                         &virt_dev->eps[i].bw_info,
2511                                         virt_dev->bw_table,
2512                                         virt_dev->udev,
2513                                         &virt_dev->eps[i],
2514                                         virt_dev->tt_info);
2515         }
2516
2517         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2518                 /* Ok, this fits in the bandwidth we have.
2519                  * Update the number of active TTs.
2520                  */
2521                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2522                 return 0;
2523         }
2524
2525         /* We don't have enough bandwidth for this, revert the stored info. */
2526         for (i = 0; i < 31; i++) {
2527                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2528                         continue;
2529
2530                 /* Drop the new copies of any added or changed endpoints from
2531                  * the interval table.
2532                  */
2533                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2534                         xhci_drop_ep_from_interval_table(xhci,
2535                                         &virt_dev->eps[i].bw_info,
2536                                         virt_dev->bw_table,
2537                                         virt_dev->udev,
2538                                         &virt_dev->eps[i],
2539                                         virt_dev->tt_info);
2540                 }
2541                 /* Revert the endpoint back to its old information */
2542                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2543                                 sizeof(ep_bw_info[i]));
2544                 /* Add any changed or dropped endpoints back into the table */
2545                 if (EP_IS_DROPPED(ctrl_ctx, i))
2546                         xhci_add_ep_to_interval_table(xhci,
2547                                         &virt_dev->eps[i].bw_info,
2548                                         virt_dev->bw_table,
2549                                         virt_dev->udev,
2550                                         &virt_dev->eps[i],
2551                                         virt_dev->tt_info);
2552         }
2553         return -ENOMEM;
2554 }
2555
2556
2557 /* Issue a configure endpoint command or evaluate context command
2558  * and wait for it to finish.
2559  */
2560 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2561                 struct usb_device *udev,
2562                 struct xhci_command *command,
2563                 bool ctx_change, bool must_succeed)
2564 {
2565         int ret;
2566         int timeleft;
2567         unsigned long flags;
2568         struct xhci_container_ctx *in_ctx;
2569         struct completion *cmd_completion;
2570         u32 *cmd_status;
2571         struct xhci_virt_device *virt_dev;
2572         union xhci_trb *cmd_trb;
2573
2574         spin_lock_irqsave(&xhci->lock, flags);
2575         virt_dev = xhci->devs[udev->slot_id];
2576
2577         if (command)
2578                 in_ctx = command->in_ctx;
2579         else
2580                 in_ctx = virt_dev->in_ctx;
2581
2582         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2583                         xhci_reserve_host_resources(xhci, in_ctx)) {
2584                 spin_unlock_irqrestore(&xhci->lock, flags);
2585                 xhci_warn(xhci, "Not enough host resources, "
2586                                 "active endpoint contexts = %u\n",
2587                                 xhci->num_active_eps);
2588                 return -ENOMEM;
2589         }
2590         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2591                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2592                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2593                         xhci_free_host_resources(xhci, in_ctx);
2594                 spin_unlock_irqrestore(&xhci->lock, flags);
2595                 xhci_warn(xhci, "Not enough bandwidth\n");
2596                 return -ENOMEM;
2597         }
2598
2599         if (command) {
2600                 cmd_completion = command->completion;
2601                 cmd_status = &command->status;
2602                 command->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2603                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2604         } else {
2605                 cmd_completion = &virt_dev->cmd_completion;
2606                 cmd_status = &virt_dev->cmd_status;
2607         }
2608         init_completion(cmd_completion);
2609
2610         cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2611         if (!ctx_change)
2612                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2613                                 udev->slot_id, must_succeed);
2614         else
2615                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2616                                 udev->slot_id, must_succeed);
2617         if (ret < 0) {
2618                 if (command)
2619                         list_del(&command->cmd_list);
2620                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2621                         xhci_free_host_resources(xhci, in_ctx);
2622                 spin_unlock_irqrestore(&xhci->lock, flags);
2623                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2624                 return -ENOMEM;
2625         }
2626         xhci_ring_cmd_db(xhci);
2627         spin_unlock_irqrestore(&xhci->lock, flags);
2628
2629         /* Wait for the configure endpoint command to complete */
2630         timeleft = wait_for_completion_interruptible_timeout(
2631                         cmd_completion,
2632                         XHCI_CMD_DEFAULT_TIMEOUT);
2633         if (timeleft <= 0) {
2634                 xhci_warn(xhci, "%s while waiting for %s command\n",
2635                                 timeleft == 0 ? "Timeout" : "Signal",
2636                                 ctx_change == 0 ?
2637                                         "configure endpoint" :
2638                                         "evaluate context");
2639                 /* cancel the configure endpoint command */
2640                 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2641                 if (ret < 0)
2642                         return ret;
2643                 return -ETIME;
2644         }
2645
2646         if (!ctx_change)
2647                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2648         else
2649                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2650
2651         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2652                 spin_lock_irqsave(&xhci->lock, flags);
2653                 /* If the command failed, remove the reserved resources.
2654                  * Otherwise, clean up the estimate to include dropped eps.
2655                  */
2656                 if (ret)
2657                         xhci_free_host_resources(xhci, in_ctx);
2658                 else
2659                         xhci_finish_resource_reservation(xhci, in_ctx);
2660                 spin_unlock_irqrestore(&xhci->lock, flags);
2661         }
2662         return ret;
2663 }
2664
2665 /* Called after one or more calls to xhci_add_endpoint() or
2666  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2667  * to call xhci_reset_bandwidth().
2668  *
2669  * Since we are in the middle of changing either configuration or
2670  * installing a new alt setting, the USB core won't allow URBs to be
2671  * enqueued for any endpoint on the old config or interface.  Nothing
2672  * else should be touching the xhci->devs[slot_id] structure, so we
2673  * don't need to take the xhci->lock for manipulating that.
2674  */
2675 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2676 {
2677         int i;
2678         int ret = 0;
2679         struct xhci_hcd *xhci;
2680         struct xhci_virt_device *virt_dev;
2681         struct xhci_input_control_ctx *ctrl_ctx;
2682         struct xhci_slot_ctx *slot_ctx;
2683
2684         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2685         if (ret <= 0)
2686                 return ret;
2687         xhci = hcd_to_xhci(hcd);
2688         if (xhci->xhc_state & XHCI_STATE_DYING)
2689                 return -ENODEV;
2690
2691         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2692         virt_dev = xhci->devs[udev->slot_id];
2693
2694         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2695         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2696         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2697         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2698         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2699
2700         /* Don't issue the command if there's no endpoints to update. */
2701         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2702                         ctrl_ctx->drop_flags == 0)
2703                 return 0;
2704
2705         xhci_dbg(xhci, "New Input Control Context:\n");
2706         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2707         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2708                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2709
2710         ret = xhci_configure_endpoint(xhci, udev, NULL,
2711                         false, false);
2712         if (ret) {
2713                 /* Callee should call reset_bandwidth() */
2714                 return ret;
2715         }
2716
2717         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2718         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2719                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2720
2721         /* Free any rings that were dropped, but not changed. */
2722         for (i = 1; i < 31; ++i) {
2723                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2724                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2725                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2726         }
2727         xhci_zero_in_ctx(xhci, virt_dev);
2728         /*
2729          * Install any rings for completely new endpoints or changed endpoints,
2730          * and free or cache any old rings from changed endpoints.
2731          */
2732         for (i = 1; i < 31; ++i) {
2733                 if (!virt_dev->eps[i].new_ring)
2734                         continue;
2735                 /* Only cache or free the old ring if it exists.
2736                  * It may not if this is the first add of an endpoint.
2737                  */
2738                 if (virt_dev->eps[i].ring) {
2739                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2740                 }
2741                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2742                 virt_dev->eps[i].new_ring = NULL;
2743         }
2744
2745         return ret;
2746 }
2747
2748 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2749 {
2750         struct xhci_hcd *xhci;
2751         struct xhci_virt_device *virt_dev;
2752         int i, ret;
2753
2754         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2755         if (ret <= 0)
2756                 return;
2757         xhci = hcd_to_xhci(hcd);
2758
2759         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2760         virt_dev = xhci->devs[udev->slot_id];
2761         /* Free any rings allocated for added endpoints */
2762         for (i = 0; i < 31; ++i) {
2763                 if (virt_dev->eps[i].new_ring) {
2764                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2765                         virt_dev->eps[i].new_ring = NULL;
2766                 }
2767         }
2768         xhci_zero_in_ctx(xhci, virt_dev);
2769 }
2770
2771 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2772                 struct xhci_container_ctx *in_ctx,
2773                 struct xhci_container_ctx *out_ctx,
2774                 u32 add_flags, u32 drop_flags)
2775 {
2776         struct xhci_input_control_ctx *ctrl_ctx;
2777         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2778         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2779         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2780         xhci_slot_copy(xhci, in_ctx, out_ctx);
2781         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2782
2783         xhci_dbg(xhci, "Input Context:\n");
2784         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2785 }
2786
2787 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2788                 unsigned int slot_id, unsigned int ep_index,
2789                 struct xhci_dequeue_state *deq_state)
2790 {
2791         struct xhci_container_ctx *in_ctx;
2792         struct xhci_ep_ctx *ep_ctx;
2793         u32 added_ctxs;
2794         dma_addr_t addr;
2795
2796         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2797                         xhci->devs[slot_id]->out_ctx, ep_index);
2798         in_ctx = xhci->devs[slot_id]->in_ctx;
2799         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2800         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2801                         deq_state->new_deq_ptr);
2802         if (addr == 0) {
2803                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2804                                 "reset ep command\n");
2805                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2806                                 deq_state->new_deq_seg,
2807                                 deq_state->new_deq_ptr);
2808                 return;
2809         }
2810         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2811
2812         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2813         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2814                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2815 }
2816
2817 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2818                 struct usb_device *udev, unsigned int ep_index)
2819 {
2820         struct xhci_dequeue_state deq_state;
2821         struct xhci_virt_ep *ep;
2822
2823         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2824         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2825         /* We need to move the HW's dequeue pointer past this TD,
2826          * or it will attempt to resend it on the next doorbell ring.
2827          */
2828         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2829                         ep_index, ep->stopped_stream, ep->stopped_td,
2830                         &deq_state);
2831
2832         /* HW with the reset endpoint quirk will use the saved dequeue state to
2833          * issue a configure endpoint command later.
2834          */
2835         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2836                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2837                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2838                                 ep_index, ep->stopped_stream, &deq_state);
2839         } else {
2840                 /* Better hope no one uses the input context between now and the
2841                  * reset endpoint completion!
2842                  * XXX: No idea how this hardware will react when stream rings
2843                  * are enabled.
2844                  */
2845                 xhci_dbg(xhci, "Setting up input context for "
2846                                 "configure endpoint command\n");
2847                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2848                                 ep_index, &deq_state);
2849         }
2850 }
2851
2852 /* Deal with stalled endpoints.  The core should have sent the control message
2853  * to clear the halt condition.  However, we need to make the xHCI hardware
2854  * reset its sequence number, since a device will expect a sequence number of
2855  * zero after the halt condition is cleared.
2856  * Context: in_interrupt
2857  */
2858 void xhci_endpoint_reset(struct usb_hcd *hcd,
2859                 struct usb_host_endpoint *ep)
2860 {
2861         struct xhci_hcd *xhci;
2862         struct usb_device *udev;
2863         unsigned int ep_index;
2864         unsigned long flags;
2865         int ret;
2866         struct xhci_virt_ep *virt_ep;
2867
2868         xhci = hcd_to_xhci(hcd);
2869         udev = (struct usb_device *) ep->hcpriv;
2870         /* Called with a root hub endpoint (or an endpoint that wasn't added
2871          * with xhci_add_endpoint()
2872          */
2873         if (!ep->hcpriv)
2874                 return;
2875         ep_index = xhci_get_endpoint_index(&ep->desc);
2876         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2877         if (!virt_ep->stopped_td) {
2878                 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2879                                 ep->desc.bEndpointAddress);
2880                 return;
2881         }
2882         if (usb_endpoint_xfer_control(&ep->desc)) {
2883                 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2884                 return;
2885         }
2886
2887         xhci_dbg(xhci, "Queueing reset endpoint command\n");
2888         spin_lock_irqsave(&xhci->lock, flags);
2889         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2890         /*
2891          * Can't change the ring dequeue pointer until it's transitioned to the
2892          * stopped state, which is only upon a successful reset endpoint
2893          * command.  Better hope that last command worked!
2894          */
2895         if (!ret) {
2896                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2897                 kfree(virt_ep->stopped_td);
2898                 xhci_ring_cmd_db(xhci);
2899         }
2900         virt_ep->stopped_td = NULL;
2901         virt_ep->stopped_trb = NULL;
2902         virt_ep->stopped_stream = 0;
2903         spin_unlock_irqrestore(&xhci->lock, flags);
2904
2905         if (ret)
2906                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2907 }
2908
2909 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2910                 struct usb_device *udev, struct usb_host_endpoint *ep,
2911                 unsigned int slot_id)
2912 {
2913         int ret;
2914         unsigned int ep_index;
2915         unsigned int ep_state;
2916
2917         if (!ep)
2918                 return -EINVAL;
2919         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2920         if (ret <= 0)
2921                 return -EINVAL;
2922         if (ep->ss_ep_comp.bmAttributes == 0) {
2923                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2924                                 " descriptor for ep 0x%x does not support streams\n",
2925                                 ep->desc.bEndpointAddress);
2926                 return -EINVAL;
2927         }
2928
2929         ep_index = xhci_get_endpoint_index(&ep->desc);
2930         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2931         if (ep_state & EP_HAS_STREAMS ||
2932                         ep_state & EP_GETTING_STREAMS) {
2933                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2934                                 "already has streams set up.\n",
2935                                 ep->desc.bEndpointAddress);
2936                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2937                                 "dynamic stream context array reallocation.\n");
2938                 return -EINVAL;
2939         }
2940         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2941                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2942                                 "endpoint 0x%x; URBs are pending.\n",
2943                                 ep->desc.bEndpointAddress);
2944                 return -EINVAL;
2945         }
2946         return 0;
2947 }
2948
2949 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2950                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2951 {
2952         unsigned int max_streams;
2953
2954         /* The stream context array size must be a power of two */
2955         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2956         /*
2957          * Find out how many primary stream array entries the host controller
2958          * supports.  Later we may use secondary stream arrays (similar to 2nd
2959          * level page entries), but that's an optional feature for xHCI host
2960          * controllers. xHCs must support at least 4 stream IDs.
2961          */
2962         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2963         if (*num_stream_ctxs > max_streams) {
2964                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2965                                 max_streams);
2966                 *num_stream_ctxs = max_streams;
2967                 *num_streams = max_streams;
2968         }
2969 }
2970
2971 /* Returns an error code if one of the endpoint already has streams.
2972  * This does not change any data structures, it only checks and gathers
2973  * information.
2974  */
2975 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2976                 struct usb_device *udev,
2977                 struct usb_host_endpoint **eps, unsigned int num_eps,
2978                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2979 {
2980         unsigned int max_streams;
2981         unsigned int endpoint_flag;
2982         int i;
2983         int ret;
2984
2985         for (i = 0; i < num_eps; i++) {
2986                 ret = xhci_check_streams_endpoint(xhci, udev,
2987                                 eps[i], udev->slot_id);
2988                 if (ret < 0)
2989                         return ret;
2990
2991                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2992                 if (max_streams < (*num_streams - 1)) {
2993                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2994                                         eps[i]->desc.bEndpointAddress,
2995                                         max_streams);
2996                         *num_streams = max_streams+1;
2997                 }
2998
2999                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3000                 if (*changed_ep_bitmask & endpoint_flag)
3001                         return -EINVAL;
3002                 *changed_ep_bitmask |= endpoint_flag;
3003         }
3004         return 0;
3005 }
3006
3007 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3008                 struct usb_device *udev,
3009                 struct usb_host_endpoint **eps, unsigned int num_eps)
3010 {
3011         u32 changed_ep_bitmask = 0;
3012         unsigned int slot_id;
3013         unsigned int ep_index;
3014         unsigned int ep_state;
3015         int i;
3016
3017         slot_id = udev->slot_id;
3018         if (!xhci->devs[slot_id])
3019                 return 0;
3020
3021         for (i = 0; i < num_eps; i++) {
3022                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3023                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3024                 /* Are streams already being freed for the endpoint? */
3025                 if (ep_state & EP_GETTING_NO_STREAMS) {
3026                         xhci_warn(xhci, "WARN Can't disable streams for "
3027                                         "endpoint 0x%x\n, "
3028                                         "streams are being disabled already.",
3029                                         eps[i]->desc.bEndpointAddress);
3030                         return 0;
3031                 }
3032                 /* Are there actually any streams to free? */
3033                 if (!(ep_state & EP_HAS_STREAMS) &&
3034                                 !(ep_state & EP_GETTING_STREAMS)) {
3035                         xhci_warn(xhci, "WARN Can't disable streams for "
3036                                         "endpoint 0x%x\n, "
3037                                         "streams are already disabled!",
3038                                         eps[i]->desc.bEndpointAddress);
3039                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3040                                         "with non-streams endpoint\n");
3041                         return 0;
3042                 }
3043                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3044         }
3045         return changed_ep_bitmask;
3046 }
3047
3048 /*
3049  * The USB device drivers use this function (though the HCD interface in USB
3050  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3051  * coordinate mass storage command queueing across multiple endpoints (basically
3052  * a stream ID == a task ID).
3053  *
3054  * Setting up streams involves allocating the same size stream context array
3055  * for each endpoint and issuing a configure endpoint command for all endpoints.
3056  *
3057  * Don't allow the call to succeed if one endpoint only supports one stream
3058  * (which means it doesn't support streams at all).
3059  *
3060  * Drivers may get less stream IDs than they asked for, if the host controller
3061  * hardware or endpoints claim they can't support the number of requested
3062  * stream IDs.
3063  */
3064 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3065                 struct usb_host_endpoint **eps, unsigned int num_eps,
3066                 unsigned int num_streams, gfp_t mem_flags)
3067 {
3068         int i, ret;
3069         struct xhci_hcd *xhci;
3070         struct xhci_virt_device *vdev;
3071         struct xhci_command *config_cmd;
3072         unsigned int ep_index;
3073         unsigned int num_stream_ctxs;
3074         unsigned long flags;
3075         u32 changed_ep_bitmask = 0;
3076
3077         if (!eps)
3078                 return -EINVAL;
3079
3080         /* Add one to the number of streams requested to account for
3081          * stream 0 that is reserved for xHCI usage.
3082          */
3083         num_streams += 1;
3084         xhci = hcd_to_xhci(hcd);
3085         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3086                         num_streams);
3087
3088         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3089         if (!config_cmd) {
3090                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3091                 return -ENOMEM;
3092         }
3093
3094         /* Check to make sure all endpoints are not already configured for
3095          * streams.  While we're at it, find the maximum number of streams that
3096          * all the endpoints will support and check for duplicate endpoints.
3097          */
3098         spin_lock_irqsave(&xhci->lock, flags);
3099         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3100                         num_eps, &num_streams, &changed_ep_bitmask);
3101         if (ret < 0) {
3102                 xhci_free_command(xhci, config_cmd);
3103                 spin_unlock_irqrestore(&xhci->lock, flags);
3104                 return ret;
3105         }
3106         if (num_streams <= 1) {
3107                 xhci_warn(xhci, "WARN: endpoints can't handle "
3108                                 "more than one stream.\n");
3109                 xhci_free_command(xhci, config_cmd);
3110                 spin_unlock_irqrestore(&xhci->lock, flags);
3111                 return -EINVAL;
3112         }
3113         vdev = xhci->devs[udev->slot_id];
3114         /* Mark each endpoint as being in transition, so
3115          * xhci_urb_enqueue() will reject all URBs.
3116          */
3117         for (i = 0; i < num_eps; i++) {
3118                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3119                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3120         }
3121         spin_unlock_irqrestore(&xhci->lock, flags);
3122
3123         /* Setup internal data structures and allocate HW data structures for
3124          * streams (but don't install the HW structures in the input context
3125          * until we're sure all memory allocation succeeded).
3126          */
3127         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3128         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3129                         num_stream_ctxs, num_streams);
3130
3131         for (i = 0; i < num_eps; i++) {
3132                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3133                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3134                                 num_stream_ctxs,
3135                                 num_streams, mem_flags);
3136                 if (!vdev->eps[ep_index].stream_info)
3137                         goto cleanup;
3138                 /* Set maxPstreams in endpoint context and update deq ptr to
3139                  * point to stream context array. FIXME
3140                  */
3141         }
3142
3143         /* Set up the input context for a configure endpoint command. */
3144         for (i = 0; i < num_eps; i++) {
3145                 struct xhci_ep_ctx *ep_ctx;
3146
3147                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3148                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3149
3150                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3151                                 vdev->out_ctx, ep_index);
3152                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3153                                 vdev->eps[ep_index].stream_info);
3154         }
3155         /* Tell the HW to drop its old copy of the endpoint context info
3156          * and add the updated copy from the input context.
3157          */
3158         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3159                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3160
3161         /* Issue and wait for the configure endpoint command */
3162         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3163                         false, false);
3164
3165         /* xHC rejected the configure endpoint command for some reason, so we
3166          * leave the old ring intact and free our internal streams data
3167          * structure.
3168          */
3169         if (ret < 0)
3170                 goto cleanup;
3171
3172         spin_lock_irqsave(&xhci->lock, flags);
3173         for (i = 0; i < num_eps; i++) {
3174                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3175                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3176                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3177                          udev->slot_id, ep_index);
3178                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3179         }
3180         xhci_free_command(xhci, config_cmd);
3181         spin_unlock_irqrestore(&xhci->lock, flags);
3182
3183         /* Subtract 1 for stream 0, which drivers can't use */
3184         return num_streams - 1;
3185
3186 cleanup:
3187         /* If it didn't work, free the streams! */
3188         for (i = 0; i < num_eps; i++) {
3189                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3190                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3191                 vdev->eps[ep_index].stream_info = NULL;
3192                 /* FIXME Unset maxPstreams in endpoint context and
3193                  * update deq ptr to point to normal string ring.
3194                  */
3195                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3196                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3197                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3198         }
3199         xhci_free_command(xhci, config_cmd);
3200         return -ENOMEM;
3201 }
3202
3203 /* Transition the endpoint from using streams to being a "normal" endpoint
3204  * without streams.
3205  *
3206  * Modify the endpoint context state, submit a configure endpoint command,
3207  * and free all endpoint rings for streams if that completes successfully.
3208  */
3209 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3210                 struct usb_host_endpoint **eps, unsigned int num_eps,
3211                 gfp_t mem_flags)
3212 {
3213         int i, ret;
3214         struct xhci_hcd *xhci;
3215         struct xhci_virt_device *vdev;
3216         struct xhci_command *command;
3217         unsigned int ep_index;
3218         unsigned long flags;
3219         u32 changed_ep_bitmask;
3220
3221         xhci = hcd_to_xhci(hcd);
3222         vdev = xhci->devs[udev->slot_id];
3223
3224         /* Set up a configure endpoint command to remove the streams rings */
3225         spin_lock_irqsave(&xhci->lock, flags);
3226         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3227                         udev, eps, num_eps);
3228         if (changed_ep_bitmask == 0) {
3229                 spin_unlock_irqrestore(&xhci->lock, flags);
3230                 return -EINVAL;
3231         }
3232
3233         /* Use the xhci_command structure from the first endpoint.  We may have
3234          * allocated too many, but the driver may call xhci_free_streams() for
3235          * each endpoint it grouped into one call to xhci_alloc_streams().
3236          */
3237         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3238         command = vdev->eps[ep_index].stream_info->free_streams_command;
3239         for (i = 0; i < num_eps; i++) {
3240                 struct xhci_ep_ctx *ep_ctx;
3241
3242                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3243                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3244                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3245                         EP_GETTING_NO_STREAMS;
3246
3247                 xhci_endpoint_copy(xhci, command->in_ctx,
3248                                 vdev->out_ctx, ep_index);
3249                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3250                                 &vdev->eps[ep_index]);
3251         }
3252         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3253                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3254         spin_unlock_irqrestore(&xhci->lock, flags);
3255
3256         /* Issue and wait for the configure endpoint command,
3257          * which must succeed.
3258          */
3259         ret = xhci_configure_endpoint(xhci, udev, command,
3260                         false, true);
3261
3262         /* xHC rejected the configure endpoint command for some reason, so we
3263          * leave the streams rings intact.
3264          */
3265         if (ret < 0)
3266                 return ret;
3267
3268         spin_lock_irqsave(&xhci->lock, flags);
3269         for (i = 0; i < num_eps; i++) {
3270                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3271                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3272                 vdev->eps[ep_index].stream_info = NULL;
3273                 /* FIXME Unset maxPstreams in endpoint context and
3274                  * update deq ptr to point to normal string ring.
3275                  */
3276                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3277                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3278         }
3279         spin_unlock_irqrestore(&xhci->lock, flags);
3280
3281         return 0;
3282 }
3283
3284 /*
3285  * Deletes endpoint resources for endpoints that were active before a Reset
3286  * Device command, or a Disable Slot command.  The Reset Device command leaves
3287  * the control endpoint intact, whereas the Disable Slot command deletes it.
3288  *
3289  * Must be called with xhci->lock held.
3290  */
3291 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3292         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3293 {
3294         int i;
3295         unsigned int num_dropped_eps = 0;
3296         unsigned int drop_flags = 0;
3297
3298         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3299                 if (virt_dev->eps[i].ring) {
3300                         drop_flags |= 1 << i;
3301                         num_dropped_eps++;
3302                 }
3303         }
3304         xhci->num_active_eps -= num_dropped_eps;
3305         if (num_dropped_eps)
3306                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3307                                 "%u now active.\n",
3308                                 num_dropped_eps, drop_flags,
3309                                 xhci->num_active_eps);
3310 }
3311
3312 /*
3313  * This submits a Reset Device Command, which will set the device state to 0,
3314  * set the device address to 0, and disable all the endpoints except the default
3315  * control endpoint.  The USB core should come back and call
3316  * xhci_address_device(), and then re-set up the configuration.  If this is
3317  * called because of a usb_reset_and_verify_device(), then the old alternate
3318  * settings will be re-installed through the normal bandwidth allocation
3319  * functions.
3320  *
3321  * Wait for the Reset Device command to finish.  Remove all structures
3322  * associated with the endpoints that were disabled.  Clear the input device
3323  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3324  *
3325  * If the virt_dev to be reset does not exist or does not match the udev,
3326  * it means the device is lost, possibly due to the xHC restore error and
3327  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3328  * re-allocate the device.
3329  */
3330 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3331 {
3332         int ret, i;
3333         unsigned long flags;
3334         struct xhci_hcd *xhci;
3335         unsigned int slot_id;
3336         struct xhci_virt_device *virt_dev;
3337         struct xhci_command *reset_device_cmd;
3338         int timeleft;
3339         int last_freed_endpoint;
3340         struct xhci_slot_ctx *slot_ctx;
3341         int old_active_eps = 0;
3342
3343         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3344         if (ret <= 0)
3345                 return ret;
3346         xhci = hcd_to_xhci(hcd);
3347         slot_id = udev->slot_id;
3348         virt_dev = xhci->devs[slot_id];
3349         if (!virt_dev) {
3350                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3351                                 "not exist. Re-allocate the device\n", slot_id);
3352                 ret = xhci_alloc_dev(hcd, udev);
3353                 if (ret == 1)
3354                         return 0;
3355                 else
3356                         return -EINVAL;
3357         }
3358
3359         if (virt_dev->udev != udev) {
3360                 /* If the virt_dev and the udev does not match, this virt_dev
3361                  * may belong to another udev.
3362                  * Re-allocate the device.
3363                  */
3364                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3365                                 "not match the udev. Re-allocate the device\n",
3366                                 slot_id);
3367                 ret = xhci_alloc_dev(hcd, udev);
3368                 if (ret == 1)
3369                         return 0;
3370                 else
3371                         return -EINVAL;
3372         }
3373
3374         /* If device is not setup, there is no point in resetting it */
3375         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3376         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3377                                                 SLOT_STATE_DISABLED)
3378                 return 0;
3379
3380         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3381         /* Allocate the command structure that holds the struct completion.
3382          * Assume we're in process context, since the normal device reset
3383          * process has to wait for the device anyway.  Storage devices are
3384          * reset as part of error handling, so use GFP_NOIO instead of
3385          * GFP_KERNEL.
3386          */
3387         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3388         if (!reset_device_cmd) {
3389                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3390                 return -ENOMEM;
3391         }
3392
3393         /* Attempt to submit the Reset Device command to the command ring */
3394         spin_lock_irqsave(&xhci->lock, flags);
3395         reset_device_cmd->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3396
3397         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3398         ret = xhci_queue_reset_device(xhci, slot_id);
3399         if (ret) {
3400                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3401                 list_del(&reset_device_cmd->cmd_list);
3402                 spin_unlock_irqrestore(&xhci->lock, flags);
3403                 goto command_cleanup;
3404         }
3405         xhci_ring_cmd_db(xhci);
3406         spin_unlock_irqrestore(&xhci->lock, flags);
3407
3408         /* Wait for the Reset Device command to finish */
3409         timeleft = wait_for_completion_interruptible_timeout(
3410                         reset_device_cmd->completion,
3411                         USB_CTRL_SET_TIMEOUT);
3412         if (timeleft <= 0) {
3413                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3414                                 timeleft == 0 ? "Timeout" : "Signal");
3415                 spin_lock_irqsave(&xhci->lock, flags);
3416                 /* The timeout might have raced with the event ring handler, so
3417                  * only delete from the list if the item isn't poisoned.
3418                  */
3419                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3420                         list_del(&reset_device_cmd->cmd_list);
3421                 spin_unlock_irqrestore(&xhci->lock, flags);
3422                 ret = -ETIME;
3423                 goto command_cleanup;
3424         }
3425
3426         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3427          * unless we tried to reset a slot ID that wasn't enabled,
3428          * or the device wasn't in the addressed or configured state.
3429          */
3430         ret = reset_device_cmd->status;
3431         switch (ret) {
3432         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3433         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3434                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3435                                 slot_id,
3436                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3437                 xhci_info(xhci, "Not freeing device rings.\n");
3438                 /* Don't treat this as an error.  May change my mind later. */
3439                 ret = 0;
3440                 goto command_cleanup;
3441         case COMP_SUCCESS:
3442                 xhci_dbg(xhci, "Successful reset device command.\n");
3443                 break;
3444         default:
3445                 if (xhci_is_vendor_info_code(xhci, ret))
3446                         break;
3447                 xhci_warn(xhci, "Unknown completion code %u for "
3448                                 "reset device command.\n", ret);
3449                 ret = -EINVAL;
3450                 goto command_cleanup;
3451         }
3452
3453         /* Free up host controller endpoint resources */
3454         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3455                 spin_lock_irqsave(&xhci->lock, flags);
3456                 /* Don't delete the default control endpoint resources */
3457                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3458                 spin_unlock_irqrestore(&xhci->lock, flags);
3459         }
3460
3461         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3462         last_freed_endpoint = 1;
3463         for (i = 1; i < 31; ++i) {
3464                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3465
3466                 if (ep->ep_state & EP_HAS_STREAMS) {
3467                         xhci_free_stream_info(xhci, ep->stream_info);
3468                         ep->stream_info = NULL;
3469                         ep->ep_state &= ~EP_HAS_STREAMS;
3470                 }
3471
3472                 if (ep->ring) {
3473                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3474                         last_freed_endpoint = i;
3475                 }
3476                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3477                         xhci_drop_ep_from_interval_table(xhci,
3478                                         &virt_dev->eps[i].bw_info,
3479                                         virt_dev->bw_table,
3480                                         udev,
3481                                         &virt_dev->eps[i],
3482                                         virt_dev->tt_info);
3483                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3484         }
3485         /* If necessary, update the number of active TTs on this root port */
3486         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3487
3488         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3489         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3490         ret = 0;
3491
3492 command_cleanup:
3493         xhci_free_command(xhci, reset_device_cmd);
3494         return ret;
3495 }
3496
3497 /*
3498  * At this point, the struct usb_device is about to go away, the device has
3499  * disconnected, and all traffic has been stopped and the endpoints have been
3500  * disabled.  Free any HC data structures associated with that device.
3501  */
3502 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3503 {
3504         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3505         struct xhci_virt_device *virt_dev;
3506         struct device *dev = hcd->self.controller;
3507         unsigned long flags;
3508         u32 state;
3509         int i, ret;
3510
3511 #ifndef CONFIG_USB_DEFAULT_PERSIST
3512         /*
3513          * We called pm_runtime_get_noresume when the device was attached.
3514          * Decrement the counter here to allow controller to runtime suspend
3515          * if no devices remain.
3516          */
3517         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3518                 pm_runtime_put_noidle(dev);
3519 #endif
3520
3521         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3522         /* If the host is halted due to driver unload, we still need to free the
3523          * device.
3524          */
3525         if (ret <= 0 && ret != -ENODEV)
3526                 return;
3527
3528         virt_dev = xhci->devs[udev->slot_id];
3529
3530         /* Stop any wayward timer functions (which may grab the lock) */
3531         for (i = 0; i < 31; ++i) {
3532                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3533                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3534         }
3535
3536         if (udev->usb2_hw_lpm_enabled) {
3537                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3538                 udev->usb2_hw_lpm_enabled = 0;
3539         }
3540
3541         spin_lock_irqsave(&xhci->lock, flags);
3542         /* Don't disable the slot if the host controller is dead. */
3543         state = xhci_readl(xhci, &xhci->op_regs->status);
3544         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3545                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3546                 xhci_free_virt_device(xhci, udev->slot_id);
3547                 spin_unlock_irqrestore(&xhci->lock, flags);
3548                 return;
3549         }
3550
3551         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3552                 spin_unlock_irqrestore(&xhci->lock, flags);
3553                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3554                 return;
3555         }
3556         xhci_ring_cmd_db(xhci);
3557         spin_unlock_irqrestore(&xhci->lock, flags);
3558         /*
3559          * Event command completion handler will free any data structures
3560          * associated with the slot.  XXX Can free sleep?
3561          */
3562 }
3563
3564 /*
3565  * Checks if we have enough host controller resources for the default control
3566  * endpoint.
3567  *
3568  * Must be called with xhci->lock held.
3569  */
3570 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3571 {
3572         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3573                 xhci_dbg(xhci, "Not enough ep ctxs: "
3574                                 "%u active, need to add 1, limit is %u.\n",
3575                                 xhci->num_active_eps, xhci->limit_active_eps);
3576                 return -ENOMEM;
3577         }
3578         xhci->num_active_eps += 1;
3579         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3580                         xhci->num_active_eps);
3581         return 0;
3582 }
3583
3584
3585 /*
3586  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3587  * timed out, or allocating memory failed.  Returns 1 on success.
3588  */
3589 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3590 {
3591         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3592         struct device *dev = hcd->self.controller;
3593         unsigned long flags;
3594         int timeleft;
3595         int ret;
3596         union xhci_trb *cmd_trb;
3597
3598         spin_lock_irqsave(&xhci->lock, flags);
3599         cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3600         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3601         if (ret) {
3602                 spin_unlock_irqrestore(&xhci->lock, flags);
3603                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3604                 return 0;
3605         }
3606         xhci_ring_cmd_db(xhci);
3607         spin_unlock_irqrestore(&xhci->lock, flags);
3608
3609         /* XXX: how much time for xHC slot assignment? */
3610         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3611                         XHCI_CMD_DEFAULT_TIMEOUT);
3612         if (timeleft <= 0) {
3613                 xhci_warn(xhci, "%s while waiting for a slot\n",
3614                                 timeleft == 0 ? "Timeout" : "Signal");
3615                 /* cancel the enable slot request */
3616                 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3617         }
3618
3619         if (!xhci->slot_id) {
3620                 xhci_err(xhci, "Error while assigning device slot ID\n");
3621                 return 0;
3622         }
3623
3624         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3625                 spin_lock_irqsave(&xhci->lock, flags);
3626                 ret = xhci_reserve_host_control_ep_resources(xhci);
3627                 if (ret) {
3628                         spin_unlock_irqrestore(&xhci->lock, flags);
3629                         xhci_warn(xhci, "Not enough host resources, "
3630                                         "active endpoint contexts = %u\n",
3631                                         xhci->num_active_eps);
3632                         goto disable_slot;
3633                 }
3634                 spin_unlock_irqrestore(&xhci->lock, flags);
3635         }
3636         /* Use GFP_NOIO, since this function can be called from
3637          * xhci_discover_or_reset_device(), which may be called as part of
3638          * mass storage driver error handling.
3639          */
3640         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3641                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3642                 goto disable_slot;
3643         }
3644         udev->slot_id = xhci->slot_id;
3645
3646 #ifndef CONFIG_USB_DEFAULT_PERSIST
3647         /*
3648          * If resetting upon resume, we can't put the controller into runtime
3649          * suspend if there is a device attached.
3650          */
3651         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3652                 pm_runtime_get_noresume(dev);
3653 #endif
3654
3655         /* Is this a LS or FS device under a HS hub? */
3656         /* Hub or peripherial? */
3657         return 1;
3658
3659 disable_slot:
3660         /* Disable slot, if we can do it without mem alloc */
3661         spin_lock_irqsave(&xhci->lock, flags);
3662         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3663                 xhci_ring_cmd_db(xhci);
3664         spin_unlock_irqrestore(&xhci->lock, flags);
3665         return 0;
3666 }
3667
3668 /*
3669  * Issue an Address Device command (which will issue a SetAddress request to
3670  * the device).
3671  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3672  * we should only issue and wait on one address command at the same time.
3673  *
3674  * We add one to the device address issued by the hardware because the USB core
3675  * uses address 1 for the root hubs (even though they're not really devices).
3676  */
3677 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3678 {
3679         unsigned long flags;
3680         int timeleft;
3681         struct xhci_virt_device *virt_dev;
3682         int ret = 0;
3683         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3684         struct xhci_slot_ctx *slot_ctx;
3685         struct xhci_input_control_ctx *ctrl_ctx;
3686         u64 temp_64;
3687         union xhci_trb *cmd_trb;
3688
3689         if (!udev->slot_id) {
3690                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3691                 return -EINVAL;
3692         }
3693
3694         virt_dev = xhci->devs[udev->slot_id];
3695
3696         if (WARN_ON(!virt_dev)) {
3697                 /*
3698                  * In plug/unplug torture test with an NEC controller,
3699                  * a zero-dereference was observed once due to virt_dev = 0.
3700                  * Print useful debug rather than crash if it is observed again!
3701                  */
3702                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3703                         udev->slot_id);
3704                 return -EINVAL;
3705         }
3706
3707         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3708         /*
3709          * If this is the first Set Address since device plug-in or
3710          * virt_device realloaction after a resume with an xHCI power loss,
3711          * then set up the slot context.
3712          */
3713         if (!slot_ctx->dev_info)
3714                 xhci_setup_addressable_virt_dev(xhci, udev);
3715         /* Otherwise, update the control endpoint ring enqueue pointer. */
3716         else
3717                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3718         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3719         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3720         ctrl_ctx->drop_flags = 0;
3721
3722         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3723         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3724
3725         spin_lock_irqsave(&xhci->lock, flags);
3726         cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3727         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3728                                         udev->slot_id);
3729         if (ret) {
3730                 spin_unlock_irqrestore(&xhci->lock, flags);
3731                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3732                 return ret;
3733         }
3734         xhci_ring_cmd_db(xhci);
3735         spin_unlock_irqrestore(&xhci->lock, flags);
3736
3737         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3738         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3739                         XHCI_CMD_DEFAULT_TIMEOUT);
3740         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3741          * the SetAddress() "recovery interval" required by USB and aborting the
3742          * command on a timeout.
3743          */
3744         if (timeleft <= 0) {
3745                 xhci_warn(xhci, "%s while waiting for address device command\n",
3746                                 timeleft == 0 ? "Timeout" : "Signal");
3747                 /* cancel the address device command */
3748                 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3749                 if (ret < 0)
3750                         return ret;
3751                 return -ETIME;
3752         }
3753
3754         switch (virt_dev->cmd_status) {
3755         case COMP_CTX_STATE:
3756         case COMP_EBADSLT:
3757                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3758                                 udev->slot_id);
3759                 ret = -EINVAL;
3760                 break;
3761         case COMP_TX_ERR:
3762                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3763                 ret = -EPROTO;
3764                 break;
3765         case COMP_DEV_ERR:
3766                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3767                                 "device command.\n");
3768                 ret = -ENODEV;
3769                 break;
3770         case COMP_SUCCESS:
3771                 xhci_dbg(xhci, "Successful Address Device command\n");
3772                 break;
3773         default:
3774                 xhci_err(xhci, "ERROR: unexpected command completion "
3775                                 "code 0x%x.\n", virt_dev->cmd_status);
3776                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3777                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3778                 ret = -EINVAL;
3779                 break;
3780         }
3781         if (ret) {
3782                 return ret;
3783         }
3784         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3785         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3786         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3787                  udev->slot_id,
3788                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3789                  (unsigned long long)
3790                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3791         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3792                         (unsigned long long)virt_dev->out_ctx->dma);
3793         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3794         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3795         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3796         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3797         /*
3798          * USB core uses address 1 for the roothubs, so we add one to the
3799          * address given back to us by the HC.
3800          */
3801         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3802         /* Use kernel assigned address for devices; store xHC assigned
3803          * address locally. */
3804         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3805                 + 1;
3806         /* Zero the input context control for later use */
3807         ctrl_ctx->add_flags = 0;
3808         ctrl_ctx->drop_flags = 0;
3809
3810         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3811
3812         return 0;
3813 }
3814
3815 /*
3816  * Transfer the port index into real index in the HW port status
3817  * registers. Caculate offset between the port's PORTSC register
3818  * and port status base. Divide the number of per port register
3819  * to get the real index. The raw port number bases 1.
3820  */
3821 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3822 {
3823         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3824         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3825         __le32 __iomem *addr;
3826         int raw_port;
3827
3828         if (hcd->speed != HCD_USB3)
3829                 addr = xhci->usb2_ports[port1 - 1];
3830         else
3831                 addr = xhci->usb3_ports[port1 - 1];
3832
3833         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3834         return raw_port;
3835 }
3836
3837 #ifdef CONFIG_PM_RUNTIME
3838
3839 /* BESL to HIRD Encoding array for USB2 LPM */
3840 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3841         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3842
3843 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3844 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3845                                         struct usb_device *udev)
3846 {
3847         int u2del, besl, besl_host;
3848         int besl_device = 0;
3849         u32 field;
3850
3851         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3852         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3853
3854         if (field & USB_BESL_SUPPORT) {
3855                 for (besl_host = 0; besl_host < 16; besl_host++) {
3856                         if (xhci_besl_encoding[besl_host] >= u2del)
3857                                 break;
3858                 }
3859                 /* Use baseline BESL value as default */
3860                 if (field & USB_BESL_BASELINE_VALID)
3861                         besl_device = USB_GET_BESL_BASELINE(field);
3862                 else if (field & USB_BESL_DEEP_VALID)
3863                         besl_device = USB_GET_BESL_DEEP(field);
3864         } else {
3865                 if (u2del <= 50)
3866                         besl_host = 0;
3867                 else
3868                         besl_host = (u2del - 51) / 75 + 1;
3869         }
3870
3871         besl = besl_host + besl_device;
3872         if (besl > 15)
3873                 besl = 15;
3874
3875         return besl;
3876 }
3877
3878 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3879                                         struct usb_device *udev)
3880 {
3881         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3882         struct dev_info *dev_info;
3883         __le32 __iomem  **port_array;
3884         __le32 __iomem  *addr, *pm_addr;
3885         u32             temp, dev_id;
3886         unsigned int    port_num;
3887         unsigned long   flags;
3888         int             hird;
3889         int             ret;
3890
3891         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3892                         !udev->lpm_capable)
3893                 return -EINVAL;
3894
3895         /* we only support lpm for non-hub device connected to root hub yet */
3896         if (!udev->parent || udev->parent->parent ||
3897                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3898                 return -EINVAL;
3899
3900         spin_lock_irqsave(&xhci->lock, flags);
3901
3902         /* Look for devices in lpm_failed_devs list */
3903         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3904                         le16_to_cpu(udev->descriptor.idProduct);
3905         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3906                 if (dev_info->dev_id == dev_id) {
3907                         ret = -EINVAL;
3908                         goto finish;
3909                 }
3910         }
3911
3912         port_array = xhci->usb2_ports;
3913         port_num = udev->portnum - 1;
3914
3915         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3916                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3917                 ret = -EINVAL;
3918                 goto finish;
3919         }
3920
3921         /*
3922          * Test USB 2.0 software LPM.
3923          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3924          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3925          * in the June 2011 errata release.
3926          */
3927         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3928         /*
3929          * Set L1 Device Slot and HIRD/BESL.
3930          * Check device's USB 2.0 extension descriptor to determine whether
3931          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3932          */
3933         pm_addr = port_array[port_num] + 1;
3934         hird = xhci_calculate_hird_besl(xhci, udev);
3935         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3936         xhci_writel(xhci, temp, pm_addr);
3937
3938         /* Set port link state to U2(L1) */
3939         addr = port_array[port_num];
3940         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3941
3942         /* wait for ACK */
3943         spin_unlock_irqrestore(&xhci->lock, flags);
3944         msleep(10);
3945         spin_lock_irqsave(&xhci->lock, flags);
3946
3947         /* Check L1 Status */
3948         ret = xhci_handshake(xhci, pm_addr,
3949                         PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3950         if (ret != -ETIMEDOUT) {
3951                 /* enter L1 successfully */
3952                 temp = xhci_readl(xhci, addr);
3953                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3954                                 port_num, temp);
3955                 ret = 0;
3956         } else {
3957                 temp = xhci_readl(xhci, pm_addr);
3958                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3959                                 port_num, temp & PORT_L1S_MASK);
3960                 ret = -EINVAL;
3961         }
3962
3963         /* Resume the port */
3964         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3965
3966         spin_unlock_irqrestore(&xhci->lock, flags);
3967         msleep(10);
3968         spin_lock_irqsave(&xhci->lock, flags);
3969
3970         /* Clear PLC */
3971         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3972
3973         /* Check PORTSC to make sure the device is in the right state */
3974         if (!ret) {
3975                 temp = xhci_readl(xhci, addr);
3976                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3977                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3978                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
3979                         xhci_dbg(xhci, "port L1 resume fail\n");
3980                         ret = -EINVAL;
3981                 }
3982         }
3983
3984         if (ret) {
3985                 /* Insert dev to lpm_failed_devs list */
3986                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3987                                 "re-enumerate\n");
3988                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3989                 if (!dev_info) {
3990                         ret = -ENOMEM;
3991                         goto finish;
3992                 }
3993                 dev_info->dev_id = dev_id;
3994                 INIT_LIST_HEAD(&dev_info->list);
3995                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3996         } else {
3997                 xhci_ring_device(xhci, udev->slot_id);
3998         }
3999
4000 finish:
4001         spin_unlock_irqrestore(&xhci->lock, flags);
4002         return ret;
4003 }
4004
4005 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4006                         struct usb_device *udev, int enable)
4007 {
4008         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4009         __le32 __iomem  **port_array;
4010         __le32 __iomem  *pm_addr;
4011         u32             temp;
4012         unsigned int    port_num;
4013         unsigned long   flags;
4014         int             hird;
4015
4016         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4017                         !udev->lpm_capable)
4018                 return -EPERM;
4019
4020         if (!udev->parent || udev->parent->parent ||
4021                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4022                 return -EPERM;
4023
4024         if (udev->usb2_hw_lpm_capable != 1)
4025                 return -EPERM;
4026
4027         spin_lock_irqsave(&xhci->lock, flags);
4028
4029         port_array = xhci->usb2_ports;
4030         port_num = udev->portnum - 1;
4031         pm_addr = port_array[port_num] + 1;
4032         temp = xhci_readl(xhci, pm_addr);
4033
4034         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4035                         enable ? "enable" : "disable", port_num);
4036
4037         hird = xhci_calculate_hird_besl(xhci, udev);
4038
4039         if (enable) {
4040                 temp &= ~PORT_HIRD_MASK;
4041                 temp |= PORT_HIRD(hird) | PORT_RWE;
4042                 xhci_writel(xhci, temp, pm_addr);
4043                 temp = xhci_readl(xhci, pm_addr);
4044                 temp |= PORT_HLE;
4045                 xhci_writel(xhci, temp, pm_addr);
4046         } else {
4047                 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4048                 xhci_writel(xhci, temp, pm_addr);
4049         }
4050
4051         spin_unlock_irqrestore(&xhci->lock, flags);
4052         return 0;
4053 }
4054
4055 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4056 {
4057         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4058         int             ret;
4059
4060         ret = xhci_usb2_software_lpm_test(hcd, udev);
4061         if (!ret) {
4062                 xhci_dbg(xhci, "software LPM test succeed\n");
4063                 if (xhci->hw_lpm_support == 1) {
4064                         udev->usb2_hw_lpm_capable = 1;
4065                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4066                         if (!ret)
4067                                 udev->usb2_hw_lpm_enabled = 1;
4068                 }
4069         }
4070
4071         return 0;
4072 }
4073
4074 #else
4075
4076 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4077                                 struct usb_device *udev, int enable)
4078 {
4079         return 0;
4080 }
4081
4082 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4083 {
4084         return 0;
4085 }
4086
4087 #endif /* CONFIG_PM_RUNTIME */
4088
4089 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4090
4091 #ifdef CONFIG_PM
4092 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4093 static unsigned long long xhci_service_interval_to_ns(
4094                 struct usb_endpoint_descriptor *desc)
4095 {
4096         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4097 }
4098
4099 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4100                 enum usb3_link_state state)
4101 {
4102         unsigned long long sel;
4103         unsigned long long pel;
4104         unsigned int max_sel_pel;
4105         char *state_name;
4106
4107         switch (state) {
4108         case USB3_LPM_U1:
4109                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4110                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4111                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4112                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4113                 state_name = "U1";
4114                 break;
4115         case USB3_LPM_U2:
4116                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4117                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4118                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4119                 state_name = "U2";
4120                 break;
4121         default:
4122                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4123                                 __func__);
4124                 return USB3_LPM_DISABLED;
4125         }
4126
4127         if (sel <= max_sel_pel && pel <= max_sel_pel)
4128                 return USB3_LPM_DEVICE_INITIATED;
4129
4130         if (sel > max_sel_pel)
4131                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4132                                 "due to long SEL %llu ms\n",
4133                                 state_name, sel);
4134         else
4135                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4136                                 "due to long PEL %llu\n ms",
4137                                 state_name, pel);
4138         return USB3_LPM_DISABLED;
4139 }
4140
4141 /* Returns the hub-encoded U1 timeout value.
4142  * The U1 timeout should be the maximum of the following values:
4143  *  - For control endpoints, U1 system exit latency (SEL) * 3
4144  *  - For bulk endpoints, U1 SEL * 5
4145  *  - For interrupt endpoints:
4146  *    - Notification EPs, U1 SEL * 3
4147  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4148  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4149  */
4150 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4151                 struct usb_endpoint_descriptor *desc)
4152 {
4153         unsigned long long timeout_ns;
4154         int ep_type;
4155         int intr_type;
4156
4157         ep_type = usb_endpoint_type(desc);
4158         switch (ep_type) {
4159         case USB_ENDPOINT_XFER_CONTROL:
4160                 timeout_ns = udev->u1_params.sel * 3;
4161                 break;
4162         case USB_ENDPOINT_XFER_BULK:
4163                 timeout_ns = udev->u1_params.sel * 5;
4164                 break;
4165         case USB_ENDPOINT_XFER_INT:
4166                 intr_type = usb_endpoint_interrupt_type(desc);
4167                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4168                         timeout_ns = udev->u1_params.sel * 3;
4169                         break;
4170                 }
4171                 /* Otherwise the calculation is the same as isoc eps */
4172         case USB_ENDPOINT_XFER_ISOC:
4173                 timeout_ns = xhci_service_interval_to_ns(desc);
4174                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4175                 if (timeout_ns < udev->u1_params.sel * 2)
4176                         timeout_ns = udev->u1_params.sel * 2;
4177                 break;
4178         default:
4179                 return 0;
4180         }
4181
4182         /* The U1 timeout is encoded in 1us intervals. */
4183         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4184         /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4185         if (timeout_ns == USB3_LPM_DISABLED)
4186                 timeout_ns++;
4187
4188         /* If the necessary timeout value is bigger than what we can set in the
4189          * USB 3.0 hub, we have to disable hub-initiated U1.
4190          */
4191         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4192                 return timeout_ns;
4193         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4194                         "due to long timeout %llu ms\n", timeout_ns);
4195         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4196 }
4197
4198 /* Returns the hub-encoded U2 timeout value.
4199  * The U2 timeout should be the maximum of:
4200  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4201  *  - largest bInterval of any active periodic endpoint (to avoid going
4202  *    into lower power link states between intervals).
4203  *  - the U2 Exit Latency of the device
4204  */
4205 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4206                 struct usb_endpoint_descriptor *desc)
4207 {
4208         unsigned long long timeout_ns;
4209         unsigned long long u2_del_ns;
4210
4211         timeout_ns = 10 * 1000 * 1000;
4212
4213         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4214                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4215                 timeout_ns = xhci_service_interval_to_ns(desc);
4216
4217         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4218         if (u2_del_ns > timeout_ns)
4219                 timeout_ns = u2_del_ns;
4220
4221         /* The U2 timeout is encoded in 256us intervals */
4222         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4223         /* If the necessary timeout value is bigger than what we can set in the
4224          * USB 3.0 hub, we have to disable hub-initiated U2.
4225          */
4226         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4227                 return timeout_ns;
4228         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4229                         "due to long timeout %llu ms\n", timeout_ns);
4230         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4231 }
4232
4233 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4234                 struct usb_device *udev,
4235                 struct usb_endpoint_descriptor *desc,
4236                 enum usb3_link_state state,
4237                 u16 *timeout)
4238 {
4239         if (state == USB3_LPM_U1) {
4240                 if (xhci->quirks & XHCI_INTEL_HOST)
4241                         return xhci_calculate_intel_u1_timeout(udev, desc);
4242         } else {
4243                 if (xhci->quirks & XHCI_INTEL_HOST)
4244                         return xhci_calculate_intel_u2_timeout(udev, desc);
4245         }
4246
4247         return USB3_LPM_DISABLED;
4248 }
4249
4250 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4251                 struct usb_device *udev,
4252                 struct usb_endpoint_descriptor *desc,
4253                 enum usb3_link_state state,
4254                 u16 *timeout)
4255 {
4256         u16 alt_timeout;
4257
4258         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4259                 desc, state, timeout);
4260
4261         /* If we found we can't enable hub-initiated LPM, or
4262          * the U1 or U2 exit latency was too high to allow
4263          * device-initiated LPM as well, just stop searching.
4264          */
4265         if (alt_timeout == USB3_LPM_DISABLED ||
4266                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4267                 *timeout = alt_timeout;
4268                 return -E2BIG;
4269         }
4270         if (alt_timeout > *timeout)
4271                 *timeout = alt_timeout;
4272         return 0;
4273 }
4274
4275 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4276                 struct usb_device *udev,
4277                 struct usb_host_interface *alt,
4278                 enum usb3_link_state state,
4279                 u16 *timeout)
4280 {
4281         int j;
4282
4283         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4284                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4285                                         &alt->endpoint[j].desc, state, timeout))
4286                         return -E2BIG;
4287                 continue;
4288         }
4289         return 0;
4290 }
4291
4292 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4293                 enum usb3_link_state state)
4294 {
4295         struct usb_device *parent;
4296         unsigned int num_hubs;
4297
4298         if (state == USB3_LPM_U2)
4299                 return 0;
4300
4301         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4302         for (parent = udev->parent, num_hubs = 0; parent->parent;
4303                         parent = parent->parent)
4304                 num_hubs++;
4305
4306         if (num_hubs < 2)
4307                 return 0;
4308
4309         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4310                         " below second-tier hub.\n");
4311         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4312                         "to decrease power consumption.\n");
4313         return -E2BIG;
4314 }
4315
4316 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4317                 struct usb_device *udev,
4318                 enum usb3_link_state state)
4319 {
4320         if (xhci->quirks & XHCI_INTEL_HOST)
4321                 return xhci_check_intel_tier_policy(udev, state);
4322         return -EINVAL;
4323 }
4324
4325 /* Returns the U1 or U2 timeout that should be enabled.
4326  * If the tier check or timeout setting functions return with a non-zero exit
4327  * code, that means the timeout value has been finalized and we shouldn't look
4328  * at any more endpoints.
4329  */
4330 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4331                         struct usb_device *udev, enum usb3_link_state state)
4332 {
4333         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4334         struct usb_host_config *config;
4335         char *state_name;
4336         int i;
4337         u16 timeout = USB3_LPM_DISABLED;
4338
4339         if (state == USB3_LPM_U1)
4340                 state_name = "U1";
4341         else if (state == USB3_LPM_U2)
4342                 state_name = "U2";
4343         else {
4344                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4345                                 state);
4346                 return timeout;
4347         }
4348
4349         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4350                 return timeout;
4351
4352         /* Gather some information about the currently installed configuration
4353          * and alternate interface settings.
4354          */
4355         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4356                         state, &timeout))
4357                 return timeout;
4358
4359         config = udev->actconfig;
4360         if (!config)
4361                 return timeout;
4362
4363         for (i = 0; i < USB_MAXINTERFACES; i++) {
4364                 struct usb_driver *driver;
4365                 struct usb_interface *intf = config->interface[i];
4366
4367                 if (!intf)
4368                         continue;
4369
4370                 /* Check if any currently bound drivers want hub-initiated LPM
4371                  * disabled.
4372                  */
4373                 if (intf->dev.driver) {
4374                         driver = to_usb_driver(intf->dev.driver);
4375                         if (driver && driver->disable_hub_initiated_lpm) {
4376                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4377                                                 "at request of driver %s\n",
4378                                                 state_name, driver->name);
4379                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4380                         }
4381                 }
4382
4383                 /* Not sure how this could happen... */
4384                 if (!intf->cur_altsetting)
4385                         continue;
4386
4387                 if (xhci_update_timeout_for_interface(xhci, udev,
4388                                         intf->cur_altsetting,
4389                                         state, &timeout))
4390                         return timeout;
4391         }
4392         return timeout;
4393 }
4394
4395 /*
4396  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4397  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4398  */
4399 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4400                         struct usb_device *udev, u16 max_exit_latency)
4401 {
4402         struct xhci_virt_device *virt_dev;
4403         struct xhci_command *command;
4404         struct xhci_input_control_ctx *ctrl_ctx;
4405         struct xhci_slot_ctx *slot_ctx;
4406         unsigned long flags;
4407         int ret;
4408
4409         spin_lock_irqsave(&xhci->lock, flags);
4410         if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4411                 spin_unlock_irqrestore(&xhci->lock, flags);
4412                 return 0;
4413         }
4414
4415         /* Attempt to issue an Evaluate Context command to change the MEL. */
4416         virt_dev = xhci->devs[udev->slot_id];
4417         command = xhci->lpm_command;
4418         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4419         spin_unlock_irqrestore(&xhci->lock, flags);
4420
4421         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4422         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4423         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4424         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4425         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4426
4427         xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4428         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4429         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4430
4431         /* Issue and wait for the evaluate context command. */
4432         ret = xhci_configure_endpoint(xhci, udev, command,
4433                         true, true);
4434         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4435         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4436
4437         if (!ret) {
4438                 spin_lock_irqsave(&xhci->lock, flags);
4439                 virt_dev->current_mel = max_exit_latency;
4440                 spin_unlock_irqrestore(&xhci->lock, flags);
4441         }
4442         return ret;
4443 }
4444
4445 static int calculate_max_exit_latency(struct usb_device *udev,
4446                 enum usb3_link_state state_changed,
4447                 u16 hub_encoded_timeout)
4448 {
4449         unsigned long long u1_mel_us = 0;
4450         unsigned long long u2_mel_us = 0;
4451         unsigned long long mel_us = 0;
4452         bool disabling_u1;
4453         bool disabling_u2;
4454         bool enabling_u1;
4455         bool enabling_u2;
4456
4457         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4458                         hub_encoded_timeout == USB3_LPM_DISABLED);
4459         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4460                         hub_encoded_timeout == USB3_LPM_DISABLED);
4461
4462         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4463                         hub_encoded_timeout != USB3_LPM_DISABLED);
4464         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4465                         hub_encoded_timeout != USB3_LPM_DISABLED);
4466
4467         /* If U1 was already enabled and we're not disabling it,
4468          * or we're going to enable U1, account for the U1 max exit latency.
4469          */
4470         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4471                         enabling_u1)
4472                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4473         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4474                         enabling_u2)
4475                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4476
4477         if (u1_mel_us > u2_mel_us)
4478                 mel_us = u1_mel_us;
4479         else
4480                 mel_us = u2_mel_us;
4481         /* xHCI host controller max exit latency field is only 16 bits wide. */
4482         if (mel_us > MAX_EXIT) {
4483                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4484                                 "is too big.\n", mel_us);
4485                 return -E2BIG;
4486         }
4487         return mel_us;
4488 }
4489
4490 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4491 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4492                         struct usb_device *udev, enum usb3_link_state state)
4493 {
4494         struct xhci_hcd *xhci;
4495         u16 hub_encoded_timeout;
4496         int mel;
4497         int ret;
4498
4499         xhci = hcd_to_xhci(hcd);
4500         /* The LPM timeout values are pretty host-controller specific, so don't
4501          * enable hub-initiated timeouts unless the vendor has provided
4502          * information about their timeout algorithm.
4503          */
4504         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4505                         !xhci->devs[udev->slot_id])
4506                 return USB3_LPM_DISABLED;
4507
4508         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4509         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4510         if (mel < 0) {
4511                 /* Max Exit Latency is too big, disable LPM. */
4512                 hub_encoded_timeout = USB3_LPM_DISABLED;
4513                 mel = 0;
4514         }
4515
4516         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4517         if (ret)
4518                 return ret;
4519         return hub_encoded_timeout;
4520 }
4521
4522 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4523                         struct usb_device *udev, enum usb3_link_state state)
4524 {
4525         struct xhci_hcd *xhci;
4526         u16 mel;
4527         int ret;
4528
4529         xhci = hcd_to_xhci(hcd);
4530         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4531                         !xhci->devs[udev->slot_id])
4532                 return 0;
4533
4534         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4535         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4536         if (ret)
4537                 return ret;
4538         return 0;
4539 }
4540 #else /* CONFIG_PM */
4541
4542 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4543                         struct usb_device *udev, enum usb3_link_state state)
4544 {
4545         return USB3_LPM_DISABLED;
4546 }
4547
4548 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4549                         struct usb_device *udev, enum usb3_link_state state)
4550 {
4551         return 0;
4552 }
4553 #endif  /* CONFIG_PM */
4554
4555 /*-------------------------------------------------------------------------*/
4556
4557 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4558  * internal data structures for the device.
4559  */
4560 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4561                         struct usb_tt *tt, gfp_t mem_flags)
4562 {
4563         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4564         struct xhci_virt_device *vdev;
4565         struct xhci_command *config_cmd;
4566         struct xhci_input_control_ctx *ctrl_ctx;
4567         struct xhci_slot_ctx *slot_ctx;
4568         unsigned long flags;
4569         unsigned think_time;
4570         int ret;
4571
4572         /* Ignore root hubs */
4573         if (!hdev->parent)
4574                 return 0;
4575
4576         vdev = xhci->devs[hdev->slot_id];
4577         if (!vdev) {
4578                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4579                 return -EINVAL;
4580         }
4581         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4582         if (!config_cmd) {
4583                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4584                 return -ENOMEM;
4585         }
4586
4587         spin_lock_irqsave(&xhci->lock, flags);
4588         if (hdev->speed == USB_SPEED_HIGH &&
4589                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4590                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4591                 xhci_free_command(xhci, config_cmd);
4592                 spin_unlock_irqrestore(&xhci->lock, flags);
4593                 return -ENOMEM;
4594         }
4595
4596         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4597         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4598         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4599         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4600         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4601         if (tt->multi)
4602                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4603         if (xhci->hci_version > 0x95) {
4604                 xhci_dbg(xhci, "xHCI version %x needs hub "
4605                                 "TT think time and number of ports\n",
4606                                 (unsigned int) xhci->hci_version);
4607                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4608                 /* Set TT think time - convert from ns to FS bit times.
4609                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4610                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4611                  *
4612                  * xHCI 1.0: this field shall be 0 if the device is not a
4613                  * High-spped hub.
4614                  */
4615                 think_time = tt->think_time;
4616                 if (think_time != 0)
4617                         think_time = (think_time / 666) - 1;
4618                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4619                         slot_ctx->tt_info |=
4620                                 cpu_to_le32(TT_THINK_TIME(think_time));
4621         } else {
4622                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4623                                 "TT think time or number of ports\n",
4624                                 (unsigned int) xhci->hci_version);
4625         }
4626         slot_ctx->dev_state = 0;
4627         spin_unlock_irqrestore(&xhci->lock, flags);
4628
4629         xhci_dbg(xhci, "Set up %s for hub device.\n",
4630                         (xhci->hci_version > 0x95) ?
4631                         "configure endpoint" : "evaluate context");
4632         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4633         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4634
4635         /* Issue and wait for the configure endpoint or
4636          * evaluate context command.
4637          */
4638         if (xhci->hci_version > 0x95)
4639                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4640                                 false, false);
4641         else
4642                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4643                                 true, false);
4644
4645         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4646         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4647
4648         xhci_free_command(xhci, config_cmd);
4649         return ret;
4650 }
4651
4652 int xhci_get_frame(struct usb_hcd *hcd)
4653 {
4654         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4655         /* EHCI mods by the periodic size.  Why? */
4656         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4657 }
4658
4659 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4660 {
4661         struct xhci_hcd         *xhci;
4662         struct device           *dev = hcd->self.controller;
4663         int                     retval;
4664         u32                     temp;
4665
4666         /* Accept arbitrarily long scatter-gather lists */
4667         hcd->self.sg_tablesize = ~0;
4668         /* XHCI controllers don't stop the ep queue on short packets :| */
4669         hcd->self.no_stop_on_short = 1;
4670
4671         if (usb_hcd_is_primary_hcd(hcd)) {
4672                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4673                 if (!xhci)
4674                         return -ENOMEM;
4675                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4676                 xhci->main_hcd = hcd;
4677                 /* Mark the first roothub as being USB 2.0.
4678                  * The xHCI driver will register the USB 3.0 roothub.
4679                  */
4680                 hcd->speed = HCD_USB2;
4681                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4682                 /*
4683                  * USB 2.0 roothub under xHCI has an integrated TT,
4684                  * (rate matching hub) as opposed to having an OHCI/UHCI
4685                  * companion controller.
4686                  */
4687                 hcd->has_tt = 1;
4688         } else {
4689                 /* xHCI private pointer was set in xhci_pci_probe for the second
4690                  * registered roothub.
4691                  */
4692                 xhci = hcd_to_xhci(hcd);
4693                 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4694                 if (HCC_64BIT_ADDR(temp)) {
4695                         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4696                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4697                 } else {
4698                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4699                 }
4700                 return 0;
4701         }
4702
4703         xhci->cap_regs = hcd->regs;
4704         xhci->op_regs = hcd->regs +
4705                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4706         xhci->run_regs = hcd->regs +
4707                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4708         /* Cache read-only capability registers */
4709         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4710         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4711         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4712         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4713         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4714         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4715         xhci_print_registers(xhci);
4716
4717         get_quirks(dev, xhci);
4718
4719         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4720          * success event after a short transfer. This quirk will ignore such
4721          * spurious event.
4722          */
4723         if (xhci->hci_version > 0x96)
4724                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4725
4726         /* Make sure the HC is halted. */
4727         retval = xhci_halt(xhci);
4728         if (retval)
4729                 goto error;
4730
4731         xhci_dbg(xhci, "Resetting HCD\n");
4732         /* Reset the internal HC memory state and registers. */
4733         retval = xhci_reset(xhci);
4734         if (retval)
4735                 goto error;
4736         xhci_dbg(xhci, "Reset complete\n");
4737
4738         temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4739         if (HCC_64BIT_ADDR(temp)) {
4740                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4741                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4742         } else {
4743                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4744         }
4745
4746         xhci_dbg(xhci, "Calling HCD init\n");
4747         /* Initialize HCD and host controller data structures. */
4748         retval = xhci_init(hcd);
4749         if (retval)
4750                 goto error;
4751         xhci_dbg(xhci, "Called HCD init\n");
4752         return 0;
4753 error:
4754         kfree(xhci);
4755         return retval;
4756 }
4757
4758 MODULE_DESCRIPTION(DRIVER_DESC);
4759 MODULE_AUTHOR(DRIVER_AUTHOR);
4760 MODULE_LICENSE("GPL");
4761
4762 static int __init xhci_hcd_init(void)
4763 {
4764         int retval;
4765
4766         retval = xhci_register_pci();
4767         if (retval < 0) {
4768                 printk(KERN_DEBUG "Problem registering PCI driver.");
4769                 return retval;
4770         }
4771         retval = xhci_register_plat();
4772         if (retval < 0) {
4773                 printk(KERN_DEBUG "Problem registering platform driver.");
4774                 goto unreg_pci;
4775         }
4776         /*
4777          * Check the compiler generated sizes of structures that must be laid
4778          * out in specific ways for hardware access.
4779          */
4780         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4781         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4782         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4783         /* xhci_device_control has eight fields, and also
4784          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4785          */
4786         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4787         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4788         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4789         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4790         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4791         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4792         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4793         return 0;
4794 unreg_pci:
4795         xhci_unregister_pci();
4796         return retval;
4797 }
4798 module_init(xhci_hcd_init);
4799
4800 static void __exit xhci_hcd_cleanup(void)
4801 {
4802         xhci_unregister_pci();
4803         xhci_unregister_plat();
4804 }
4805 module_exit(xhci_hcd_cleanup);