Merge branch 'linux-linaro-lsk-v4.4-android' of git://git.linaro.org/kernel/linux...
[firefly-linux-kernel-4.4.55.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/usb/quirks.h>
32
33 #include "xhci.h"
34 #include "xhci-trace.h"
35
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38
39 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66         u32     result;
67
68         do {
69                 result = readl(ptr);
70                 if (result == ~(u32)0)          /* card removed */
71                         return -ENODEV;
72                 result &= mask;
73                 if (result == done)
74                         return 0;
75                 udelay(1);
76                 usec--;
77         } while (usec > 0);
78         return -ETIMEDOUT;
79 }
80
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86         u32 halted;
87         u32 cmd;
88         u32 mask;
89
90         mask = ~(XHCI_IRQS);
91         halted = readl(&xhci->op_regs->status) & STS_HALT;
92         if (!halted)
93                 mask &= ~CMD_RUN;
94
95         cmd = readl(&xhci->op_regs->command);
96         cmd &= mask;
97         writel(cmd, &xhci->op_regs->command);
98 }
99
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110         int ret;
111         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112         xhci_quiesce(xhci);
113
114         ret = xhci_handshake(&xhci->op_regs->status,
115                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116         if (!ret) {
117                 xhci->xhc_state |= XHCI_STATE_HALTED;
118                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
119         } else
120                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
121                                 XHCI_MAX_HALT_USEC);
122         return ret;
123 }
124
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130         u32 temp;
131         int ret;
132
133         temp = readl(&xhci->op_regs->command);
134         temp |= (CMD_RUN);
135         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136                         temp);
137         writel(temp, &xhci->op_regs->command);
138
139         /*
140          * Wait for the HCHalted Status bit to be 0 to indicate the host is
141          * running.
142          */
143         ret = xhci_handshake(&xhci->op_regs->status,
144                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
145         if (ret == -ETIMEDOUT)
146                 xhci_err(xhci, "Host took too long to start, "
147                                 "waited %u microseconds.\n",
148                                 XHCI_MAX_HALT_USEC);
149         if (!ret)
150                 /* clear state flags. Including dying, halted or removing */
151                 xhci->xhc_state = 0;
152
153         return ret;
154 }
155
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165         u32 command;
166         u32 state;
167         int ret, i;
168
169         state = readl(&xhci->op_regs->status);
170         if ((state & STS_HALT) == 0) {
171                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
172                 return 0;
173         }
174
175         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
176         command = readl(&xhci->op_regs->command);
177         command |= CMD_RESET;
178         writel(command, &xhci->op_regs->command);
179
180         /* Existing Intel xHCI controllers require a delay of 1 mS,
181          * after setting the CMD_RESET bit, and before accessing any
182          * HC registers. This allows the HC to complete the
183          * reset operation and be ready for HC register access.
184          * Without this delay, the subsequent HC register access,
185          * may result in a system hang very rarely.
186          */
187         if (xhci->quirks & XHCI_INTEL_HOST)
188                 udelay(1000);
189
190         ret = xhci_handshake(&xhci->op_regs->command,
191                         CMD_RESET, 0, 10 * 1000 * 1000);
192         if (ret)
193                 return ret;
194
195         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
196                          "Wait for controller to be ready for doorbell rings");
197         /*
198          * xHCI cannot write to any doorbells or operational registers other
199          * than status until the "Controller Not Ready" flag is cleared.
200          */
201         ret = xhci_handshake(&xhci->op_regs->status,
202                         STS_CNR, 0, 10 * 1000 * 1000);
203
204         for (i = 0; i < 2; ++i) {
205                 xhci->bus_state[i].port_c_suspend = 0;
206                 xhci->bus_state[i].suspended_ports = 0;
207                 xhci->bus_state[i].resuming_ports = 0;
208         }
209
210         return ret;
211 }
212
213 #ifdef CONFIG_PCI
214 static int xhci_free_msi(struct xhci_hcd *xhci)
215 {
216         int i;
217
218         if (!xhci->msix_entries)
219                 return -EINVAL;
220
221         for (i = 0; i < xhci->msix_count; i++)
222                 if (xhci->msix_entries[i].vector)
223                         free_irq(xhci->msix_entries[i].vector,
224                                         xhci_to_hcd(xhci));
225         return 0;
226 }
227
228 /*
229  * Set up MSI
230  */
231 static int xhci_setup_msi(struct xhci_hcd *xhci)
232 {
233         int ret;
234         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
235
236         ret = pci_enable_msi(pdev);
237         if (ret) {
238                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
239                                 "failed to allocate MSI entry");
240                 return ret;
241         }
242
243         ret = request_irq(pdev->irq, xhci_msi_irq,
244                                 0, "xhci_hcd", xhci_to_hcd(xhci));
245         if (ret) {
246                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
247                                 "disable MSI interrupt");
248                 pci_disable_msi(pdev);
249         }
250
251         return ret;
252 }
253
254 /*
255  * Free IRQs
256  * free all IRQs request
257  */
258 static void xhci_free_irq(struct xhci_hcd *xhci)
259 {
260         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
261         int ret;
262
263         /* return if using legacy interrupt */
264         if (xhci_to_hcd(xhci)->irq > 0)
265                 return;
266
267         ret = xhci_free_msi(xhci);
268         if (!ret)
269                 return;
270         if (pdev->irq > 0)
271                 free_irq(pdev->irq, xhci_to_hcd(xhci));
272
273         return;
274 }
275
276 /*
277  * Set up MSI-X
278  */
279 static int xhci_setup_msix(struct xhci_hcd *xhci)
280 {
281         int i, ret = 0;
282         struct usb_hcd *hcd = xhci_to_hcd(xhci);
283         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
284
285         /*
286          * calculate number of msi-x vectors supported.
287          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
288          *   with max number of interrupters based on the xhci HCSPARAMS1.
289          * - num_online_cpus: maximum msi-x vectors per CPUs core.
290          *   Add additional 1 vector to ensure always available interrupt.
291          */
292         xhci->msix_count = min(num_online_cpus() + 1,
293                                 HCS_MAX_INTRS(xhci->hcs_params1));
294
295         xhci->msix_entries =
296                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
297                                 GFP_KERNEL);
298         if (!xhci->msix_entries) {
299                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
300                 return -ENOMEM;
301         }
302
303         for (i = 0; i < xhci->msix_count; i++) {
304                 xhci->msix_entries[i].entry = i;
305                 xhci->msix_entries[i].vector = 0;
306         }
307
308         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
309         if (ret) {
310                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
311                                 "Failed to enable MSI-X");
312                 goto free_entries;
313         }
314
315         for (i = 0; i < xhci->msix_count; i++) {
316                 ret = request_irq(xhci->msix_entries[i].vector,
317                                 xhci_msi_irq,
318                                 0, "xhci_hcd", xhci_to_hcd(xhci));
319                 if (ret)
320                         goto disable_msix;
321         }
322
323         hcd->msix_enabled = 1;
324         return ret;
325
326 disable_msix:
327         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
328         xhci_free_irq(xhci);
329         pci_disable_msix(pdev);
330 free_entries:
331         kfree(xhci->msix_entries);
332         xhci->msix_entries = NULL;
333         return ret;
334 }
335
336 /* Free any IRQs and disable MSI-X */
337 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
338 {
339         struct usb_hcd *hcd = xhci_to_hcd(xhci);
340         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
341
342         if (xhci->quirks & XHCI_PLAT)
343                 return;
344
345         xhci_free_irq(xhci);
346
347         if (xhci->msix_entries) {
348                 pci_disable_msix(pdev);
349                 kfree(xhci->msix_entries);
350                 xhci->msix_entries = NULL;
351         } else {
352                 pci_disable_msi(pdev);
353         }
354
355         hcd->msix_enabled = 0;
356         return;
357 }
358
359 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
360 {
361         int i;
362
363         if (xhci->msix_entries) {
364                 for (i = 0; i < xhci->msix_count; i++)
365                         synchronize_irq(xhci->msix_entries[i].vector);
366         }
367 }
368
369 static int xhci_try_enable_msi(struct usb_hcd *hcd)
370 {
371         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
372         struct pci_dev  *pdev;
373         int ret;
374
375         /* The xhci platform device has set up IRQs through usb_add_hcd. */
376         if (xhci->quirks & XHCI_PLAT)
377                 return 0;
378
379         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
380         /*
381          * Some Fresco Logic host controllers advertise MSI, but fail to
382          * generate interrupts.  Don't even try to enable MSI.
383          */
384         if (xhci->quirks & XHCI_BROKEN_MSI)
385                 goto legacy_irq;
386
387         /* unregister the legacy interrupt */
388         if (hcd->irq)
389                 free_irq(hcd->irq, hcd);
390         hcd->irq = 0;
391
392         ret = xhci_setup_msix(xhci);
393         if (ret)
394                 /* fall back to msi*/
395                 ret = xhci_setup_msi(xhci);
396
397         if (!ret)
398                 /* hcd->irq is 0, we have MSI */
399                 return 0;
400
401         if (!pdev->irq) {
402                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
403                 return -EINVAL;
404         }
405
406  legacy_irq:
407         if (!strlen(hcd->irq_descr))
408                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
409                          hcd->driver->description, hcd->self.busnum);
410
411         /* fall back to legacy interrupt*/
412         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
413                         hcd->irq_descr, hcd);
414         if (ret) {
415                 xhci_err(xhci, "request interrupt %d failed\n",
416                                 pdev->irq);
417                 return ret;
418         }
419         hcd->irq = pdev->irq;
420         return 0;
421 }
422
423 #else
424
425 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
426 {
427         return 0;
428 }
429
430 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
431 {
432 }
433
434 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
435 {
436 }
437
438 #endif
439
440 static void compliance_mode_recovery(unsigned long arg)
441 {
442         struct xhci_hcd *xhci;
443         struct usb_hcd *hcd;
444         u32 temp;
445         int i;
446
447         xhci = (struct xhci_hcd *)arg;
448
449         for (i = 0; i < xhci->num_usb3_ports; i++) {
450                 temp = readl(xhci->usb3_ports[i]);
451                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
452                         /*
453                          * Compliance Mode Detected. Letting USB Core
454                          * handle the Warm Reset
455                          */
456                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
457                                         "Compliance mode detected->port %d",
458                                         i + 1);
459                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
460                                         "Attempting compliance mode recovery");
461                         hcd = xhci->shared_hcd;
462
463                         if (hcd->state == HC_STATE_SUSPENDED)
464                                 usb_hcd_resume_root_hub(hcd);
465
466                         usb_hcd_poll_rh_status(hcd);
467                 }
468         }
469
470         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
471                 mod_timer(&xhci->comp_mode_recovery_timer,
472                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
473 }
474
475 /*
476  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
477  * that causes ports behind that hardware to enter compliance mode sometimes.
478  * The quirk creates a timer that polls every 2 seconds the link state of
479  * each host controller's port and recovers it by issuing a Warm reset
480  * if Compliance mode is detected, otherwise the port will become "dead" (no
481  * device connections or disconnections will be detected anymore). Becasue no
482  * status event is generated when entering compliance mode (per xhci spec),
483  * this quirk is needed on systems that have the failing hardware installed.
484  */
485 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
486 {
487         xhci->port_status_u0 = 0;
488         setup_timer(&xhci->comp_mode_recovery_timer,
489                     compliance_mode_recovery, (unsigned long)xhci);
490         xhci->comp_mode_recovery_timer.expires = jiffies +
491                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
492
493         set_timer_slack(&xhci->comp_mode_recovery_timer,
494                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
495         add_timer(&xhci->comp_mode_recovery_timer);
496         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497                         "Compliance mode recovery timer initialized");
498 }
499
500 /*
501  * This function identifies the systems that have installed the SN65LVPE502CP
502  * USB3.0 re-driver and that need the Compliance Mode Quirk.
503  * Systems:
504  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
505  */
506 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
507 {
508         const char *dmi_product_name, *dmi_sys_vendor;
509
510         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
511         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
512         if (!dmi_product_name || !dmi_sys_vendor)
513                 return false;
514
515         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
516                 return false;
517
518         if (strstr(dmi_product_name, "Z420") ||
519                         strstr(dmi_product_name, "Z620") ||
520                         strstr(dmi_product_name, "Z820") ||
521                         strstr(dmi_product_name, "Z1 Workstation"))
522                 return true;
523
524         return false;
525 }
526
527 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
528 {
529         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
530 }
531
532
533 /*
534  * Initialize memory for HCD and xHC (one-time init).
535  *
536  * Program the PAGESIZE register, initialize the device context array, create
537  * device contexts (?), set up a command ring segment (or two?), create event
538  * ring (one for now).
539  */
540 int xhci_init(struct usb_hcd *hcd)
541 {
542         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
543         int retval = 0;
544
545         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
546         spin_lock_init(&xhci->lock);
547         if (xhci->hci_version == 0x95 && link_quirk) {
548                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
549                                 "QUIRK: Not clearing Link TRB chain bits.");
550                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
551         } else {
552                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
553                                 "xHCI doesn't need link TRB QUIRK");
554         }
555         retval = xhci_mem_init(xhci, GFP_KERNEL);
556         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
557
558         /* Initializing Compliance Mode Recovery Data If Needed */
559         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
560                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
561                 compliance_mode_recovery_timer_init(xhci);
562         }
563
564         return retval;
565 }
566
567 /*-------------------------------------------------------------------------*/
568
569
570 static int xhci_run_finished(struct xhci_hcd *xhci)
571 {
572         if (xhci_start(xhci)) {
573                 xhci_halt(xhci);
574                 return -ENODEV;
575         }
576         xhci->shared_hcd->state = HC_STATE_RUNNING;
577         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
578
579         if (xhci->quirks & XHCI_NEC_HOST)
580                 xhci_ring_cmd_db(xhci);
581
582         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
583                         "Finished xhci_run for USB3 roothub");
584         return 0;
585 }
586
587 /*
588  * Start the HC after it was halted.
589  *
590  * This function is called by the USB core when the HC driver is added.
591  * Its opposite is xhci_stop().
592  *
593  * xhci_init() must be called once before this function can be called.
594  * Reset the HC, enable device slot contexts, program DCBAAP, and
595  * set command ring pointer and event ring pointer.
596  *
597  * Setup MSI-X vectors and enable interrupts.
598  */
599 int xhci_run(struct usb_hcd *hcd)
600 {
601         u32 temp;
602         u64 temp_64;
603         int ret;
604         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
605
606         /* Start the xHCI host controller running only after the USB 2.0 roothub
607          * is setup.
608          */
609
610         hcd->uses_new_polling = 1;
611         if (!usb_hcd_is_primary_hcd(hcd))
612                 return xhci_run_finished(xhci);
613
614         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
615
616         ret = xhci_try_enable_msi(hcd);
617         if (ret)
618                 return ret;
619
620         xhci_dbg(xhci, "Command ring memory map follows:\n");
621         xhci_debug_ring(xhci, xhci->cmd_ring);
622         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
623         xhci_dbg_cmd_ptrs(xhci);
624
625         xhci_dbg(xhci, "ERST memory map follows:\n");
626         xhci_dbg_erst(xhci, &xhci->erst);
627         xhci_dbg(xhci, "Event ring:\n");
628         xhci_debug_ring(xhci, xhci->event_ring);
629         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
630         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
631         temp_64 &= ~ERST_PTR_MASK;
632         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
633                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
634
635         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
636                         "// Set the interrupt modulation register");
637         temp = readl(&xhci->ir_set->irq_control);
638         temp &= ~ER_IRQ_INTERVAL_MASK;
639         temp |= (u32) 160;
640         writel(temp, &xhci->ir_set->irq_control);
641
642         /* Set the HCD state before we enable the irqs */
643         temp = readl(&xhci->op_regs->command);
644         temp |= (CMD_EIE);
645         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
646                         "// Enable interrupts, cmd = 0x%x.", temp);
647         writel(temp, &xhci->op_regs->command);
648
649         temp = readl(&xhci->ir_set->irq_pending);
650         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
651                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
652                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
653         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
654         xhci_print_ir_set(xhci, 0);
655
656         if (xhci->quirks & XHCI_NEC_HOST) {
657                 struct xhci_command *command;
658                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
659                 if (!command)
660                         return -ENOMEM;
661                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
662                                 TRB_TYPE(TRB_NEC_GET_FW));
663         }
664         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
665                         "Finished xhci_run for USB2 roothub");
666         return 0;
667 }
668 EXPORT_SYMBOL_GPL(xhci_run);
669
670 /*
671  * Stop xHCI driver.
672  *
673  * This function is called by the USB core when the HC driver is removed.
674  * Its opposite is xhci_run().
675  *
676  * Disable device contexts, disable IRQs, and quiesce the HC.
677  * Reset the HC, finish any completed transactions, and cleanup memory.
678  */
679 void xhci_stop(struct usb_hcd *hcd)
680 {
681         u32 temp;
682         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
683
684         mutex_lock(&xhci->mutex);
685
686         if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
687                 spin_lock_irq(&xhci->lock);
688
689                 xhci->xhc_state |= XHCI_STATE_HALTED;
690                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
691                 xhci_halt(xhci);
692                 xhci_reset(xhci);
693
694                 spin_unlock_irq(&xhci->lock);
695         }
696
697         if (!usb_hcd_is_primary_hcd(hcd)) {
698                 mutex_unlock(&xhci->mutex);
699                 return;
700         }
701
702         xhci_cleanup_msix(xhci);
703
704         /* Deleting Compliance Mode Recovery Timer */
705         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
706                         (!(xhci_all_ports_seen_u0(xhci)))) {
707                 del_timer_sync(&xhci->comp_mode_recovery_timer);
708                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
709                                 "%s: compliance mode recovery timer deleted",
710                                 __func__);
711         }
712
713         if (xhci->quirks & XHCI_AMD_PLL_FIX)
714                 usb_amd_dev_put();
715
716         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
717                         "// Disabling event ring interrupts");
718         temp = readl(&xhci->op_regs->status);
719         writel(temp & ~STS_EINT, &xhci->op_regs->status);
720         temp = readl(&xhci->ir_set->irq_pending);
721         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
722         xhci_print_ir_set(xhci, 0);
723
724         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
725         xhci_mem_cleanup(xhci);
726         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
727                         "xhci_stop completed - status = %x",
728                         readl(&xhci->op_regs->status));
729         mutex_unlock(&xhci->mutex);
730 }
731
732 /*
733  * Shutdown HC (not bus-specific)
734  *
735  * This is called when the machine is rebooting or halting.  We assume that the
736  * machine will be powered off, and the HC's internal state will be reset.
737  * Don't bother to free memory.
738  *
739  * This will only ever be called with the main usb_hcd (the USB3 roothub).
740  */
741 void xhci_shutdown(struct usb_hcd *hcd)
742 {
743         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
744
745         if (!hcd->rh_registered)
746                 return;
747
748         /* Don't poll the roothubs on shutdown */
749         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
750         del_timer_sync(&hcd->rh_timer);
751         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
752         del_timer_sync(&xhci->shared_hcd->rh_timer);
753
754         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
755                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
756
757         spin_lock_irq(&xhci->lock);
758         xhci_halt(xhci);
759         /* Workaround for spurious wakeups at shutdown with HSW */
760         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
761                 xhci_reset(xhci);
762         spin_unlock_irq(&xhci->lock);
763
764         xhci_cleanup_msix(xhci);
765
766         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
767                         "xhci_shutdown completed - status = %x",
768                         readl(&xhci->op_regs->status));
769
770         /* Yet another workaround for spurious wakeups at shutdown with HSW */
771         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
772                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
773 }
774
775 #ifdef CONFIG_PM
776 static void xhci_save_registers(struct xhci_hcd *xhci)
777 {
778         xhci->s3.command = readl(&xhci->op_regs->command);
779         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
780         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
781         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
782         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
783         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
784         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
785         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
786         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
787 }
788
789 static void xhci_restore_registers(struct xhci_hcd *xhci)
790 {
791         writel(xhci->s3.command, &xhci->op_regs->command);
792         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
793         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
794         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
795         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
796         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
797         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
798         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
799         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
800 }
801
802 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
803 {
804         u64     val_64;
805
806         /* step 2: initialize command ring buffer */
807         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
808         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
809                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
810                                       xhci->cmd_ring->dequeue) &
811                  (u64) ~CMD_RING_RSVD_BITS) |
812                 xhci->cmd_ring->cycle_state;
813         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
814                         "// Setting command ring address to 0x%llx",
815                         (long unsigned long) val_64);
816         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
817 }
818
819 /*
820  * The whole command ring must be cleared to zero when we suspend the host.
821  *
822  * The host doesn't save the command ring pointer in the suspend well, so we
823  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
824  * aligned, because of the reserved bits in the command ring dequeue pointer
825  * register.  Therefore, we can't just set the dequeue pointer back in the
826  * middle of the ring (TRBs are 16-byte aligned).
827  */
828 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
829 {
830         struct xhci_ring *ring;
831         struct xhci_segment *seg;
832
833         ring = xhci->cmd_ring;
834         seg = ring->deq_seg;
835         do {
836                 memset(seg->trbs, 0,
837                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
838                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
839                         cpu_to_le32(~TRB_CYCLE);
840                 seg = seg->next;
841         } while (seg != ring->deq_seg);
842
843         /* Reset the software enqueue and dequeue pointers */
844         ring->deq_seg = ring->first_seg;
845         ring->dequeue = ring->first_seg->trbs;
846         ring->enq_seg = ring->deq_seg;
847         ring->enqueue = ring->dequeue;
848
849         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
850         /*
851          * Ring is now zeroed, so the HW should look for change of ownership
852          * when the cycle bit is set to 1.
853          */
854         ring->cycle_state = 1;
855
856         /*
857          * Reset the hardware dequeue pointer.
858          * Yes, this will need to be re-written after resume, but we're paranoid
859          * and want to make sure the hardware doesn't access bogus memory
860          * because, say, the BIOS or an SMI started the host without changing
861          * the command ring pointers.
862          */
863         xhci_set_cmd_ring_deq(xhci);
864 }
865
866 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
867 {
868         int port_index;
869         __le32 __iomem **port_array;
870         unsigned long flags;
871         u32 t1, t2;
872
873         spin_lock_irqsave(&xhci->lock, flags);
874
875         /* disble usb3 ports Wake bits*/
876         port_index = xhci->num_usb3_ports;
877         port_array = xhci->usb3_ports;
878         while (port_index--) {
879                 t1 = readl(port_array[port_index]);
880                 t1 = xhci_port_state_to_neutral(t1);
881                 t2 = t1 & ~PORT_WAKE_BITS;
882                 if (t1 != t2)
883                         writel(t2, port_array[port_index]);
884         }
885
886         /* disble usb2 ports Wake bits*/
887         port_index = xhci->num_usb2_ports;
888         port_array = xhci->usb2_ports;
889         while (port_index--) {
890                 t1 = readl(port_array[port_index]);
891                 t1 = xhci_port_state_to_neutral(t1);
892                 t2 = t1 & ~PORT_WAKE_BITS;
893                 if (t1 != t2)
894                         writel(t2, port_array[port_index]);
895         }
896
897         spin_unlock_irqrestore(&xhci->lock, flags);
898 }
899
900 /*
901  * Stop HC (not bus-specific)
902  *
903  * This is called when the machine transition into S3/S4 mode.
904  *
905  */
906 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
907 {
908         int                     rc = 0;
909         unsigned int            delay = XHCI_MAX_HALT_USEC;
910         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
911         u32                     command;
912
913         if (!hcd->state)
914                 return 0;
915
916         if (hcd->state != HC_STATE_SUSPENDED ||
917                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
918                 return -EINVAL;
919
920         /* Clear root port wake on bits if wakeup not allowed. */
921         if (!do_wakeup)
922                 xhci_disable_port_wake_on_bits(xhci);
923
924         /* Don't poll the roothubs on bus suspend. */
925         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
926         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
927         del_timer_sync(&hcd->rh_timer);
928         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
929         del_timer_sync(&xhci->shared_hcd->rh_timer);
930
931         spin_lock_irq(&xhci->lock);
932         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
933         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
934         /* step 1: stop endpoint */
935         /* skipped assuming that port suspend has done */
936
937         /* step 2: clear Run/Stop bit */
938         command = readl(&xhci->op_regs->command);
939         command &= ~CMD_RUN;
940         writel(command, &xhci->op_regs->command);
941
942         /* Some chips from Fresco Logic need an extraordinary delay */
943         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
944
945         if (xhci_handshake(&xhci->op_regs->status,
946                       STS_HALT, STS_HALT, delay)) {
947                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
948                 spin_unlock_irq(&xhci->lock);
949                 return -ETIMEDOUT;
950         }
951         xhci_clear_command_ring(xhci);
952
953         /* step 3: save registers */
954         xhci_save_registers(xhci);
955
956         /* step 4: set CSS flag */
957         command = readl(&xhci->op_regs->command);
958         command |= CMD_CSS;
959         writel(command, &xhci->op_regs->command);
960         if (xhci_handshake(&xhci->op_regs->status,
961                                 STS_SAVE, 0, 10 * 1000)) {
962                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
963                 spin_unlock_irq(&xhci->lock);
964                 return -ETIMEDOUT;
965         }
966         spin_unlock_irq(&xhci->lock);
967
968         /*
969          * Deleting Compliance Mode Recovery Timer because the xHCI Host
970          * is about to be suspended.
971          */
972         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
973                         (!(xhci_all_ports_seen_u0(xhci)))) {
974                 del_timer_sync(&xhci->comp_mode_recovery_timer);
975                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
976                                 "%s: compliance mode recovery timer deleted",
977                                 __func__);
978         }
979
980         /* step 5: remove core well power */
981         /* synchronize irq when using MSI-X */
982         xhci_msix_sync_irqs(xhci);
983
984         return rc;
985 }
986 EXPORT_SYMBOL_GPL(xhci_suspend);
987
988 /*
989  * start xHC (not bus-specific)
990  *
991  * This is called when the machine transition from S3/S4 mode.
992  *
993  */
994 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
995 {
996         u32                     command, temp = 0, status;
997         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
998         struct usb_hcd          *secondary_hcd;
999         int                     retval = 0;
1000         bool                    comp_timer_running = false;
1001
1002         if (!hcd->state)
1003                 return 0;
1004
1005         /* Wait a bit if either of the roothubs need to settle from the
1006          * transition into bus suspend.
1007          */
1008         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1009                         time_before(jiffies,
1010                                 xhci->bus_state[1].next_statechange))
1011                 msleep(100);
1012
1013         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1014         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1015
1016         spin_lock_irq(&xhci->lock);
1017         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1018                 hibernated = true;
1019
1020         if (!hibernated) {
1021                 /* step 1: restore register */
1022                 xhci_restore_registers(xhci);
1023                 /* step 2: initialize command ring buffer */
1024                 xhci_set_cmd_ring_deq(xhci);
1025                 /* step 3: restore state and start state*/
1026                 /* step 3: set CRS flag */
1027                 command = readl(&xhci->op_regs->command);
1028                 command |= CMD_CRS;
1029                 writel(command, &xhci->op_regs->command);
1030                 if (xhci_handshake(&xhci->op_regs->status,
1031                               STS_RESTORE, 0, 10 * 1000)) {
1032                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1033                         spin_unlock_irq(&xhci->lock);
1034                         return -ETIMEDOUT;
1035                 }
1036                 temp = readl(&xhci->op_regs->status);
1037         }
1038
1039         /* If restore operation fails, re-initialize the HC during resume */
1040         if ((temp & STS_SRE) || hibernated) {
1041
1042                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1043                                 !(xhci_all_ports_seen_u0(xhci))) {
1044                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1045                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1046                                 "Compliance Mode Recovery Timer deleted!");
1047                 }
1048
1049                 /* Let the USB core know _both_ roothubs lost power. */
1050                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1051                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1052
1053                 xhci_dbg(xhci, "Stop HCD\n");
1054                 xhci_halt(xhci);
1055                 xhci_reset(xhci);
1056                 spin_unlock_irq(&xhci->lock);
1057                 xhci_cleanup_msix(xhci);
1058
1059                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1060                 temp = readl(&xhci->op_regs->status);
1061                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1062                 temp = readl(&xhci->ir_set->irq_pending);
1063                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1064                 xhci_print_ir_set(xhci, 0);
1065
1066                 xhci_dbg(xhci, "cleaning up memory\n");
1067                 xhci_mem_cleanup(xhci);
1068                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1069                             readl(&xhci->op_regs->status));
1070
1071                 /* USB core calls the PCI reinit and start functions twice:
1072                  * first with the primary HCD, and then with the secondary HCD.
1073                  * If we don't do the same, the host will never be started.
1074                  */
1075                 if (!usb_hcd_is_primary_hcd(hcd))
1076                         secondary_hcd = hcd;
1077                 else
1078                         secondary_hcd = xhci->shared_hcd;
1079
1080                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1081                 retval = xhci_init(hcd->primary_hcd);
1082                 if (retval)
1083                         return retval;
1084                 comp_timer_running = true;
1085
1086                 xhci_dbg(xhci, "Start the primary HCD\n");
1087                 retval = xhci_run(hcd->primary_hcd);
1088                 if (!retval) {
1089                         xhci_dbg(xhci, "Start the secondary HCD\n");
1090                         retval = xhci_run(secondary_hcd);
1091                 }
1092                 hcd->state = HC_STATE_SUSPENDED;
1093                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1094                 goto done;
1095         }
1096
1097         /* step 4: set Run/Stop bit */
1098         command = readl(&xhci->op_regs->command);
1099         command |= CMD_RUN;
1100         writel(command, &xhci->op_regs->command);
1101         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1102                   0, 250 * 1000);
1103
1104         /* step 5: walk topology and initialize portsc,
1105          * portpmsc and portli
1106          */
1107         /* this is done in bus_resume */
1108
1109         /* step 6: restart each of the previously
1110          * Running endpoints by ringing their doorbells
1111          */
1112
1113         spin_unlock_irq(&xhci->lock);
1114
1115  done:
1116         if (retval == 0) {
1117                 /* Resume root hubs only when have pending events. */
1118                 status = readl(&xhci->op_regs->status);
1119                 if (status & STS_EINT) {
1120                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1121                         usb_hcd_resume_root_hub(hcd);
1122                 }
1123         }
1124
1125         /*
1126          * If system is subject to the Quirk, Compliance Mode Timer needs to
1127          * be re-initialized Always after a system resume. Ports are subject
1128          * to suffer the Compliance Mode issue again. It doesn't matter if
1129          * ports have entered previously to U0 before system's suspension.
1130          */
1131         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1132                 compliance_mode_recovery_timer_init(xhci);
1133
1134         /* Re-enable port polling. */
1135         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1136         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1137         usb_hcd_poll_rh_status(xhci->shared_hcd);
1138         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1139         usb_hcd_poll_rh_status(hcd);
1140
1141         return retval;
1142 }
1143 EXPORT_SYMBOL_GPL(xhci_resume);
1144 #endif  /* CONFIG_PM */
1145
1146 /*-------------------------------------------------------------------------*/
1147
1148 /**
1149  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1150  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1151  * value to right shift 1 for the bitmask.
1152  *
1153  * Index  = (epnum * 2) + direction - 1,
1154  * where direction = 0 for OUT, 1 for IN.
1155  * For control endpoints, the IN index is used (OUT index is unused), so
1156  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1157  */
1158 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1159 {
1160         unsigned int index;
1161         if (usb_endpoint_xfer_control(desc))
1162                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1163         else
1164                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1165                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1166         return index;
1167 }
1168
1169 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1170  * address from the XHCI endpoint index.
1171  */
1172 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1173 {
1174         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1175         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1176         return direction | number;
1177 }
1178
1179 /* Find the flag for this endpoint (for use in the control context).  Use the
1180  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1181  * bit 1, etc.
1182  */
1183 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1184 {
1185         return 1 << (xhci_get_endpoint_index(desc) + 1);
1186 }
1187
1188 /* Find the flag for this endpoint (for use in the control context).  Use the
1189  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1190  * bit 1, etc.
1191  */
1192 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1193 {
1194         return 1 << (ep_index + 1);
1195 }
1196
1197 /* Compute the last valid endpoint context index.  Basically, this is the
1198  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1199  * we find the most significant bit set in the added contexts flags.
1200  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1201  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1202  */
1203 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1204 {
1205         return fls(added_ctxs) - 1;
1206 }
1207
1208 /* Returns 1 if the arguments are OK;
1209  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1210  */
1211 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1212                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1213                 const char *func) {
1214         struct xhci_hcd *xhci;
1215         struct xhci_virt_device *virt_dev;
1216
1217         if (!hcd || (check_ep && !ep) || !udev) {
1218                 pr_debug("xHCI %s called with invalid args\n", func);
1219                 return -EINVAL;
1220         }
1221         if (!udev->parent) {
1222                 pr_debug("xHCI %s called for root hub\n", func);
1223                 return 0;
1224         }
1225
1226         xhci = hcd_to_xhci(hcd);
1227         if (check_virt_dev) {
1228                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1229                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1230                                         func);
1231                         return -EINVAL;
1232                 }
1233
1234                 virt_dev = xhci->devs[udev->slot_id];
1235                 if (virt_dev->udev != udev) {
1236                         xhci_dbg(xhci, "xHCI %s called with udev and "
1237                                           "virt_dev does not match\n", func);
1238                         return -EINVAL;
1239                 }
1240         }
1241
1242         if (xhci->xhc_state & XHCI_STATE_HALTED)
1243                 return -ENODEV;
1244
1245         return 1;
1246 }
1247
1248 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1249                 struct usb_device *udev, struct xhci_command *command,
1250                 bool ctx_change, bool must_succeed);
1251
1252 /*
1253  * Full speed devices may have a max packet size greater than 8 bytes, but the
1254  * USB core doesn't know that until it reads the first 8 bytes of the
1255  * descriptor.  If the usb_device's max packet size changes after that point,
1256  * we need to issue an evaluate context command and wait on it.
1257  */
1258 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1259                 unsigned int ep_index, struct urb *urb)
1260 {
1261         struct xhci_container_ctx *out_ctx;
1262         struct xhci_input_control_ctx *ctrl_ctx;
1263         struct xhci_ep_ctx *ep_ctx;
1264         struct xhci_command *command;
1265         int max_packet_size;
1266         int hw_max_packet_size;
1267         int ret = 0;
1268
1269         out_ctx = xhci->devs[slot_id]->out_ctx;
1270         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1271         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1272         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1273         if (hw_max_packet_size != max_packet_size) {
1274                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1275                                 "Max Packet Size for ep 0 changed.");
1276                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1277                                 "Max packet size in usb_device = %d",
1278                                 max_packet_size);
1279                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1280                                 "Max packet size in xHCI HW = %d",
1281                                 hw_max_packet_size);
1282                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1283                                 "Issuing evaluate context command.");
1284
1285                 /* Set up the input context flags for the command */
1286                 /* FIXME: This won't work if a non-default control endpoint
1287                  * changes max packet sizes.
1288                  */
1289
1290                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1291                 if (!command)
1292                         return -ENOMEM;
1293
1294                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1295                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1296                 if (!ctrl_ctx) {
1297                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1298                                         __func__);
1299                         ret = -ENOMEM;
1300                         goto command_cleanup;
1301                 }
1302                 /* Set up the modified control endpoint 0 */
1303                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1304                                 xhci->devs[slot_id]->out_ctx, ep_index);
1305
1306                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1307                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1308                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1309
1310                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1311                 ctrl_ctx->drop_flags = 0;
1312
1313                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1314                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1315                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1316                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1317
1318                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1319                                 true, false);
1320
1321                 /* Clean up the input context for later use by bandwidth
1322                  * functions.
1323                  */
1324                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1325 command_cleanup:
1326                 kfree(command->completion);
1327                 kfree(command);
1328         }
1329         return ret;
1330 }
1331
1332 /*
1333  * non-error returns are a promise to giveback() the urb later
1334  * we drop ownership so next owner (or urb unlink) can get it
1335  */
1336 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1337 {
1338         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1339         struct xhci_td *buffer;
1340         unsigned long flags;
1341         int ret = 0;
1342         unsigned int slot_id, ep_index;
1343         struct urb_priv *urb_priv;
1344         int size, i;
1345
1346         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1347                                         true, true, __func__) <= 0)
1348                 return -EINVAL;
1349
1350         slot_id = urb->dev->slot_id;
1351         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1352
1353         if (!HCD_HW_ACCESSIBLE(hcd)) {
1354                 if (!in_interrupt())
1355                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1356                 ret = -ESHUTDOWN;
1357                 goto exit;
1358         }
1359
1360         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1361                 size = urb->number_of_packets;
1362         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1363             urb->transfer_buffer_length > 0 &&
1364             urb->transfer_flags & URB_ZERO_PACKET &&
1365             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1366                 size = 2;
1367         else
1368                 size = 1;
1369
1370         urb_priv = kzalloc(sizeof(struct urb_priv) +
1371                                   size * sizeof(struct xhci_td *), mem_flags);
1372         if (!urb_priv)
1373                 return -ENOMEM;
1374
1375         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1376         if (!buffer) {
1377                 kfree(urb_priv);
1378                 return -ENOMEM;
1379         }
1380
1381         for (i = 0; i < size; i++) {
1382                 urb_priv->td[i] = buffer;
1383                 buffer++;
1384         }
1385
1386         urb_priv->length = size;
1387         urb_priv->td_cnt = 0;
1388         urb->hcpriv = urb_priv;
1389
1390         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1391                 /* Check to see if the max packet size for the default control
1392                  * endpoint changed during FS device enumeration
1393                  */
1394                 if (urb->dev->speed == USB_SPEED_FULL) {
1395                         ret = xhci_check_maxpacket(xhci, slot_id,
1396                                         ep_index, urb);
1397                         if (ret < 0) {
1398                                 xhci_urb_free_priv(urb_priv);
1399                                 urb->hcpriv = NULL;
1400                                 return ret;
1401                         }
1402                 }
1403
1404                 /* We have a spinlock and interrupts disabled, so we must pass
1405                  * atomic context to this function, which may allocate memory.
1406                  */
1407                 spin_lock_irqsave(&xhci->lock, flags);
1408                 if (xhci->xhc_state & XHCI_STATE_DYING)
1409                         goto dying;
1410                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1411                                 slot_id, ep_index);
1412                 if (ret)
1413                         goto free_priv;
1414                 spin_unlock_irqrestore(&xhci->lock, flags);
1415         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1416                 spin_lock_irqsave(&xhci->lock, flags);
1417                 if (xhci->xhc_state & XHCI_STATE_DYING)
1418                         goto dying;
1419                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1420                                 EP_GETTING_STREAMS) {
1421                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1422                                         "is transitioning to using streams.\n");
1423                         ret = -EINVAL;
1424                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1425                                 EP_GETTING_NO_STREAMS) {
1426                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1427                                         "is transitioning to "
1428                                         "not having streams.\n");
1429                         ret = -EINVAL;
1430                 } else {
1431                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1432                                         slot_id, ep_index);
1433                 }
1434                 if (ret)
1435                         goto free_priv;
1436                 spin_unlock_irqrestore(&xhci->lock, flags);
1437         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1438                 spin_lock_irqsave(&xhci->lock, flags);
1439                 if (xhci->xhc_state & XHCI_STATE_DYING)
1440                         goto dying;
1441                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1442                                 slot_id, ep_index);
1443                 if (ret)
1444                         goto free_priv;
1445                 spin_unlock_irqrestore(&xhci->lock, flags);
1446         } else {
1447                 spin_lock_irqsave(&xhci->lock, flags);
1448                 if (xhci->xhc_state & XHCI_STATE_DYING)
1449                         goto dying;
1450                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1451                                 slot_id, ep_index);
1452                 if (ret)
1453                         goto free_priv;
1454                 spin_unlock_irqrestore(&xhci->lock, flags);
1455         }
1456 exit:
1457         return ret;
1458 dying:
1459         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1460                         "non-responsive xHCI host.\n",
1461                         urb->ep->desc.bEndpointAddress, urb);
1462         ret = -ESHUTDOWN;
1463 free_priv:
1464         xhci_urb_free_priv(urb_priv);
1465         urb->hcpriv = NULL;
1466         spin_unlock_irqrestore(&xhci->lock, flags);
1467         return ret;
1468 }
1469
1470 /* Get the right ring for the given URB.
1471  * If the endpoint supports streams, boundary check the URB's stream ID.
1472  * If the endpoint doesn't support streams, return the singular endpoint ring.
1473  */
1474 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1475                 struct urb *urb)
1476 {
1477         unsigned int slot_id;
1478         unsigned int ep_index;
1479         unsigned int stream_id;
1480         struct xhci_virt_ep *ep;
1481
1482         slot_id = urb->dev->slot_id;
1483         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1484         stream_id = urb->stream_id;
1485         ep = &xhci->devs[slot_id]->eps[ep_index];
1486         /* Common case: no streams */
1487         if (!(ep->ep_state & EP_HAS_STREAMS))
1488                 return ep->ring;
1489
1490         if (stream_id == 0) {
1491                 xhci_warn(xhci,
1492                                 "WARN: Slot ID %u, ep index %u has streams, "
1493                                 "but URB has no stream ID.\n",
1494                                 slot_id, ep_index);
1495                 return NULL;
1496         }
1497
1498         if (stream_id < ep->stream_info->num_streams)
1499                 return ep->stream_info->stream_rings[stream_id];
1500
1501         xhci_warn(xhci,
1502                         "WARN: Slot ID %u, ep index %u has "
1503                         "stream IDs 1 to %u allocated, "
1504                         "but stream ID %u is requested.\n",
1505                         slot_id, ep_index,
1506                         ep->stream_info->num_streams - 1,
1507                         stream_id);
1508         return NULL;
1509 }
1510
1511 /*
1512  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1513  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1514  * should pick up where it left off in the TD, unless a Set Transfer Ring
1515  * Dequeue Pointer is issued.
1516  *
1517  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1518  * the ring.  Since the ring is a contiguous structure, they can't be physically
1519  * removed.  Instead, there are two options:
1520  *
1521  *  1) If the HC is in the middle of processing the URB to be canceled, we
1522  *     simply move the ring's dequeue pointer past those TRBs using the Set
1523  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1524  *     when drivers timeout on the last submitted URB and attempt to cancel.
1525  *
1526  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1527  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1528  *     HC will need to invalidate the any TRBs it has cached after the stop
1529  *     endpoint command, as noted in the xHCI 0.95 errata.
1530  *
1531  *  3) The TD may have completed by the time the Stop Endpoint Command
1532  *     completes, so software needs to handle that case too.
1533  *
1534  * This function should protect against the TD enqueueing code ringing the
1535  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1536  * It also needs to account for multiple cancellations on happening at the same
1537  * time for the same endpoint.
1538  *
1539  * Note that this function can be called in any context, or so says
1540  * usb_hcd_unlink_urb()
1541  */
1542 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1543 {
1544         unsigned long flags;
1545         int ret, i;
1546         u32 temp;
1547         struct xhci_hcd *xhci;
1548         struct urb_priv *urb_priv;
1549         struct xhci_td *td;
1550         unsigned int ep_index;
1551         struct xhci_ring *ep_ring;
1552         struct xhci_virt_ep *ep;
1553         struct xhci_command *command;
1554
1555         xhci = hcd_to_xhci(hcd);
1556         spin_lock_irqsave(&xhci->lock, flags);
1557         /* Make sure the URB hasn't completed or been unlinked already */
1558         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1559         if (ret || !urb->hcpriv)
1560                 goto done;
1561         temp = readl(&xhci->op_regs->status);
1562         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED) ||
1563             (xhci->xhc_state & XHCI_STATE_REMOVING)) {
1564                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1565                                 "HW died, freeing TD.");
1566                 urb_priv = urb->hcpriv;
1567                 for (i = urb_priv->td_cnt;
1568                      i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1569                      i++) {
1570                         td = urb_priv->td[i];
1571                         if (!list_empty(&td->td_list))
1572                                 list_del_init(&td->td_list);
1573                         if (!list_empty(&td->cancelled_td_list))
1574                                 list_del_init(&td->cancelled_td_list);
1575                 }
1576
1577                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1578                 spin_unlock_irqrestore(&xhci->lock, flags);
1579                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1580                 xhci_urb_free_priv(urb_priv);
1581                 return ret;
1582         }
1583
1584         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1585         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1586         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1587         if (!ep_ring) {
1588                 ret = -EINVAL;
1589                 goto done;
1590         }
1591
1592         urb_priv = urb->hcpriv;
1593         i = urb_priv->td_cnt;
1594         if (i < urb_priv->length)
1595                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1596                                 "Cancel URB %p, dev %s, ep 0x%x, "
1597                                 "starting at offset 0x%llx",
1598                                 urb, urb->dev->devpath,
1599                                 urb->ep->desc.bEndpointAddress,
1600                                 (unsigned long long) xhci_trb_virt_to_dma(
1601                                         urb_priv->td[i]->start_seg,
1602                                         urb_priv->td[i]->first_trb));
1603
1604         for (; i < urb_priv->length; i++) {
1605                 td = urb_priv->td[i];
1606                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1607         }
1608
1609         /* Queue a stop endpoint command, but only if this is
1610          * the first cancellation to be handled.
1611          */
1612         if (!(ep->ep_state & EP_HALT_PENDING)) {
1613                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1614                 if (!command) {
1615                         ret = -ENOMEM;
1616                         goto done;
1617                 }
1618                 ep->ep_state |= EP_HALT_PENDING;
1619                 ep->stop_cmds_pending++;
1620                 ep->stop_cmd_timer.expires = jiffies +
1621                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1622                 add_timer(&ep->stop_cmd_timer);
1623                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1624                                          ep_index, 0);
1625                 xhci_ring_cmd_db(xhci);
1626         }
1627 done:
1628         spin_unlock_irqrestore(&xhci->lock, flags);
1629         return ret;
1630 }
1631
1632 /* Drop an endpoint from a new bandwidth configuration for this device.
1633  * Only one call to this function is allowed per endpoint before
1634  * check_bandwidth() or reset_bandwidth() must be called.
1635  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1636  * add the endpoint to the schedule with possibly new parameters denoted by a
1637  * different endpoint descriptor in usb_host_endpoint.
1638  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1639  * not allowed.
1640  *
1641  * The USB core will not allow URBs to be queued to an endpoint that is being
1642  * disabled, so there's no need for mutual exclusion to protect
1643  * the xhci->devs[slot_id] structure.
1644  */
1645 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1646                 struct usb_host_endpoint *ep)
1647 {
1648         struct xhci_hcd *xhci;
1649         struct xhci_container_ctx *in_ctx, *out_ctx;
1650         struct xhci_input_control_ctx *ctrl_ctx;
1651         unsigned int ep_index;
1652         struct xhci_ep_ctx *ep_ctx;
1653         u32 drop_flag;
1654         u32 new_add_flags, new_drop_flags;
1655         int ret;
1656
1657         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1658         if (ret <= 0)
1659                 return ret;
1660         xhci = hcd_to_xhci(hcd);
1661         if (xhci->xhc_state & XHCI_STATE_DYING)
1662                 return -ENODEV;
1663
1664         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1665         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1666         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1667                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1668                                 __func__, drop_flag);
1669                 return 0;
1670         }
1671
1672         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1673         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1674         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1675         if (!ctrl_ctx) {
1676                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1677                                 __func__);
1678                 return 0;
1679         }
1680
1681         ep_index = xhci_get_endpoint_index(&ep->desc);
1682         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1683         /* If the HC already knows the endpoint is disabled,
1684          * or the HCD has noted it is disabled, ignore this request
1685          */
1686         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1687              cpu_to_le32(EP_STATE_DISABLED)) ||
1688             le32_to_cpu(ctrl_ctx->drop_flags) &
1689             xhci_get_endpoint_flag(&ep->desc)) {
1690                 /* Do not warn when called after a usb_device_reset */
1691                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1692                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1693                                   __func__, ep);
1694                 return 0;
1695         }
1696
1697         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1698         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1699
1700         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1701         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1702
1703         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1704
1705         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1706                         (unsigned int) ep->desc.bEndpointAddress,
1707                         udev->slot_id,
1708                         (unsigned int) new_drop_flags,
1709                         (unsigned int) new_add_flags);
1710         return 0;
1711 }
1712
1713 /* Add an endpoint to a new possible bandwidth configuration for this device.
1714  * Only one call to this function is allowed per endpoint before
1715  * check_bandwidth() or reset_bandwidth() must be called.
1716  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1717  * add the endpoint to the schedule with possibly new parameters denoted by a
1718  * different endpoint descriptor in usb_host_endpoint.
1719  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1720  * not allowed.
1721  *
1722  * The USB core will not allow URBs to be queued to an endpoint until the
1723  * configuration or alt setting is installed in the device, so there's no need
1724  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1725  */
1726 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1727                 struct usb_host_endpoint *ep)
1728 {
1729         struct xhci_hcd *xhci;
1730         struct xhci_container_ctx *in_ctx;
1731         unsigned int ep_index;
1732         struct xhci_input_control_ctx *ctrl_ctx;
1733         u32 added_ctxs;
1734         u32 new_add_flags, new_drop_flags;
1735         struct xhci_virt_device *virt_dev;
1736         int ret = 0;
1737
1738         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1739         if (ret <= 0) {
1740                 /* So we won't queue a reset ep command for a root hub */
1741                 ep->hcpriv = NULL;
1742                 return ret;
1743         }
1744         xhci = hcd_to_xhci(hcd);
1745         if (xhci->xhc_state & XHCI_STATE_DYING)
1746                 return -ENODEV;
1747
1748         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1749         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1750                 /* FIXME when we have to issue an evaluate endpoint command to
1751                  * deal with ep0 max packet size changing once we get the
1752                  * descriptors
1753                  */
1754                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1755                                 __func__, added_ctxs);
1756                 return 0;
1757         }
1758
1759         virt_dev = xhci->devs[udev->slot_id];
1760         in_ctx = virt_dev->in_ctx;
1761         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1762         if (!ctrl_ctx) {
1763                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1764                                 __func__);
1765                 return 0;
1766         }
1767
1768         ep_index = xhci_get_endpoint_index(&ep->desc);
1769         /* If this endpoint is already in use, and the upper layers are trying
1770          * to add it again without dropping it, reject the addition.
1771          */
1772         if (virt_dev->eps[ep_index].ring &&
1773                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1774                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1775                                 "without dropping it.\n",
1776                                 (unsigned int) ep->desc.bEndpointAddress);
1777                 return -EINVAL;
1778         }
1779
1780         /* If the HCD has already noted the endpoint is enabled,
1781          * ignore this request.
1782          */
1783         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1784                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1785                                 __func__, ep);
1786                 return 0;
1787         }
1788
1789         /*
1790          * Configuration and alternate setting changes must be done in
1791          * process context, not interrupt context (or so documenation
1792          * for usb_set_interface() and usb_set_configuration() claim).
1793          */
1794         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1795                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1796                                 __func__, ep->desc.bEndpointAddress);
1797                 return -ENOMEM;
1798         }
1799
1800         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1801         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1802
1803         /* If xhci_endpoint_disable() was called for this endpoint, but the
1804          * xHC hasn't been notified yet through the check_bandwidth() call,
1805          * this re-adds a new state for the endpoint from the new endpoint
1806          * descriptors.  We must drop and re-add this endpoint, so we leave the
1807          * drop flags alone.
1808          */
1809         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1810
1811         /* Store the usb_device pointer for later use */
1812         ep->hcpriv = udev;
1813
1814         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1815                         (unsigned int) ep->desc.bEndpointAddress,
1816                         udev->slot_id,
1817                         (unsigned int) new_drop_flags,
1818                         (unsigned int) new_add_flags);
1819         return 0;
1820 }
1821
1822 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1823 {
1824         struct xhci_input_control_ctx *ctrl_ctx;
1825         struct xhci_ep_ctx *ep_ctx;
1826         struct xhci_slot_ctx *slot_ctx;
1827         int i;
1828
1829         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1830         if (!ctrl_ctx) {
1831                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1832                                 __func__);
1833                 return;
1834         }
1835
1836         /* When a device's add flag and drop flag are zero, any subsequent
1837          * configure endpoint command will leave that endpoint's state
1838          * untouched.  Make sure we don't leave any old state in the input
1839          * endpoint contexts.
1840          */
1841         ctrl_ctx->drop_flags = 0;
1842         ctrl_ctx->add_flags = 0;
1843         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1844         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1845         /* Endpoint 0 is always valid */
1846         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1847         for (i = 1; i < 31; ++i) {
1848                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1849                 ep_ctx->ep_info = 0;
1850                 ep_ctx->ep_info2 = 0;
1851                 ep_ctx->deq = 0;
1852                 ep_ctx->tx_info = 0;
1853         }
1854 }
1855
1856 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1857                 struct usb_device *udev, u32 *cmd_status)
1858 {
1859         int ret;
1860
1861         switch (*cmd_status) {
1862         case COMP_CMD_ABORT:
1863         case COMP_CMD_STOP:
1864                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1865                 ret = -ETIME;
1866                 break;
1867         case COMP_ENOMEM:
1868                 dev_warn(&udev->dev,
1869                          "Not enough host controller resources for new device state.\n");
1870                 ret = -ENOMEM;
1871                 /* FIXME: can we allocate more resources for the HC? */
1872                 break;
1873         case COMP_BW_ERR:
1874         case COMP_2ND_BW_ERR:
1875                 dev_warn(&udev->dev,
1876                          "Not enough bandwidth for new device state.\n");
1877                 ret = -ENOSPC;
1878                 /* FIXME: can we go back to the old state? */
1879                 break;
1880         case COMP_TRB_ERR:
1881                 /* the HCD set up something wrong */
1882                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1883                                 "add flag = 1, "
1884                                 "and endpoint is not disabled.\n");
1885                 ret = -EINVAL;
1886                 break;
1887         case COMP_DEV_ERR:
1888                 dev_warn(&udev->dev,
1889                          "ERROR: Incompatible device for endpoint configure command.\n");
1890                 ret = -ENODEV;
1891                 break;
1892         case COMP_SUCCESS:
1893                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1894                                 "Successful Endpoint Configure command");
1895                 ret = 0;
1896                 break;
1897         default:
1898                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1899                                 *cmd_status);
1900                 ret = -EINVAL;
1901                 break;
1902         }
1903         return ret;
1904 }
1905
1906 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1907                 struct usb_device *udev, u32 *cmd_status)
1908 {
1909         int ret;
1910         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1911
1912         switch (*cmd_status) {
1913         case COMP_CMD_ABORT:
1914         case COMP_CMD_STOP:
1915                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1916                 ret = -ETIME;
1917                 break;
1918         case COMP_EINVAL:
1919                 dev_warn(&udev->dev,
1920                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1921                 ret = -EINVAL;
1922                 break;
1923         case COMP_EBADSLT:
1924                 dev_warn(&udev->dev,
1925                         "WARN: slot not enabled for evaluate context command.\n");
1926                 ret = -EINVAL;
1927                 break;
1928         case COMP_CTX_STATE:
1929                 dev_warn(&udev->dev,
1930                         "WARN: invalid context state for evaluate context command.\n");
1931                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1932                 ret = -EINVAL;
1933                 break;
1934         case COMP_DEV_ERR:
1935                 dev_warn(&udev->dev,
1936                         "ERROR: Incompatible device for evaluate context command.\n");
1937                 ret = -ENODEV;
1938                 break;
1939         case COMP_MEL_ERR:
1940                 /* Max Exit Latency too large error */
1941                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1942                 ret = -EINVAL;
1943                 break;
1944         case COMP_SUCCESS:
1945                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1946                                 "Successful evaluate context command");
1947                 ret = 0;
1948                 break;
1949         default:
1950                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1951                         *cmd_status);
1952                 ret = -EINVAL;
1953                 break;
1954         }
1955         return ret;
1956 }
1957
1958 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1959                 struct xhci_input_control_ctx *ctrl_ctx)
1960 {
1961         u32 valid_add_flags;
1962         u32 valid_drop_flags;
1963
1964         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1965          * (bit 1).  The default control endpoint is added during the Address
1966          * Device command and is never removed until the slot is disabled.
1967          */
1968         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1969         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1970
1971         /* Use hweight32 to count the number of ones in the add flags, or
1972          * number of endpoints added.  Don't count endpoints that are changed
1973          * (both added and dropped).
1974          */
1975         return hweight32(valid_add_flags) -
1976                 hweight32(valid_add_flags & valid_drop_flags);
1977 }
1978
1979 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1980                 struct xhci_input_control_ctx *ctrl_ctx)
1981 {
1982         u32 valid_add_flags;
1983         u32 valid_drop_flags;
1984
1985         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1986         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1987
1988         return hweight32(valid_drop_flags) -
1989                 hweight32(valid_add_flags & valid_drop_flags);
1990 }
1991
1992 /*
1993  * We need to reserve the new number of endpoints before the configure endpoint
1994  * command completes.  We can't subtract the dropped endpoints from the number
1995  * of active endpoints until the command completes because we can oversubscribe
1996  * the host in this case:
1997  *
1998  *  - the first configure endpoint command drops more endpoints than it adds
1999  *  - a second configure endpoint command that adds more endpoints is queued
2000  *  - the first configure endpoint command fails, so the config is unchanged
2001  *  - the second command may succeed, even though there isn't enough resources
2002  *
2003  * Must be called with xhci->lock held.
2004  */
2005 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2006                 struct xhci_input_control_ctx *ctrl_ctx)
2007 {
2008         u32 added_eps;
2009
2010         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2011         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2012                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2013                                 "Not enough ep ctxs: "
2014                                 "%u active, need to add %u, limit is %u.",
2015                                 xhci->num_active_eps, added_eps,
2016                                 xhci->limit_active_eps);
2017                 return -ENOMEM;
2018         }
2019         xhci->num_active_eps += added_eps;
2020         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2021                         "Adding %u ep ctxs, %u now active.", added_eps,
2022                         xhci->num_active_eps);
2023         return 0;
2024 }
2025
2026 /*
2027  * The configure endpoint was failed by the xHC for some other reason, so we
2028  * need to revert the resources that failed configuration would have used.
2029  *
2030  * Must be called with xhci->lock held.
2031  */
2032 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2033                 struct xhci_input_control_ctx *ctrl_ctx)
2034 {
2035         u32 num_failed_eps;
2036
2037         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2038         xhci->num_active_eps -= num_failed_eps;
2039         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2040                         "Removing %u failed ep ctxs, %u now active.",
2041                         num_failed_eps,
2042                         xhci->num_active_eps);
2043 }
2044
2045 /*
2046  * Now that the command has completed, clean up the active endpoint count by
2047  * subtracting out the endpoints that were dropped (but not changed).
2048  *
2049  * Must be called with xhci->lock held.
2050  */
2051 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2052                 struct xhci_input_control_ctx *ctrl_ctx)
2053 {
2054         u32 num_dropped_eps;
2055
2056         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2057         xhci->num_active_eps -= num_dropped_eps;
2058         if (num_dropped_eps)
2059                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2060                                 "Removing %u dropped ep ctxs, %u now active.",
2061                                 num_dropped_eps,
2062                                 xhci->num_active_eps);
2063 }
2064
2065 static unsigned int xhci_get_block_size(struct usb_device *udev)
2066 {
2067         switch (udev->speed) {
2068         case USB_SPEED_LOW:
2069         case USB_SPEED_FULL:
2070                 return FS_BLOCK;
2071         case USB_SPEED_HIGH:
2072                 return HS_BLOCK;
2073         case USB_SPEED_SUPER:
2074         case USB_SPEED_SUPER_PLUS:
2075                 return SS_BLOCK;
2076         case USB_SPEED_UNKNOWN:
2077         case USB_SPEED_WIRELESS:
2078         default:
2079                 /* Should never happen */
2080                 return 1;
2081         }
2082 }
2083
2084 static unsigned int
2085 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2086 {
2087         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2088                 return LS_OVERHEAD;
2089         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2090                 return FS_OVERHEAD;
2091         return HS_OVERHEAD;
2092 }
2093
2094 /* If we are changing a LS/FS device under a HS hub,
2095  * make sure (if we are activating a new TT) that the HS bus has enough
2096  * bandwidth for this new TT.
2097  */
2098 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2099                 struct xhci_virt_device *virt_dev,
2100                 int old_active_eps)
2101 {
2102         struct xhci_interval_bw_table *bw_table;
2103         struct xhci_tt_bw_info *tt_info;
2104
2105         /* Find the bandwidth table for the root port this TT is attached to. */
2106         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2107         tt_info = virt_dev->tt_info;
2108         /* If this TT already had active endpoints, the bandwidth for this TT
2109          * has already been added.  Removing all periodic endpoints (and thus
2110          * making the TT enactive) will only decrease the bandwidth used.
2111          */
2112         if (old_active_eps)
2113                 return 0;
2114         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2115                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2116                         return -ENOMEM;
2117                 return 0;
2118         }
2119         /* Not sure why we would have no new active endpoints...
2120          *
2121          * Maybe because of an Evaluate Context change for a hub update or a
2122          * control endpoint 0 max packet size change?
2123          * FIXME: skip the bandwidth calculation in that case.
2124          */
2125         return 0;
2126 }
2127
2128 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2129                 struct xhci_virt_device *virt_dev)
2130 {
2131         unsigned int bw_reserved;
2132
2133         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2134         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2135                 return -ENOMEM;
2136
2137         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2138         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2139                 return -ENOMEM;
2140
2141         return 0;
2142 }
2143
2144 /*
2145  * This algorithm is a very conservative estimate of the worst-case scheduling
2146  * scenario for any one interval.  The hardware dynamically schedules the
2147  * packets, so we can't tell which microframe could be the limiting factor in
2148  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2149  *
2150  * Obviously, we can't solve an NP complete problem to find the minimum worst
2151  * case scenario.  Instead, we come up with an estimate that is no less than
2152  * the worst case bandwidth used for any one microframe, but may be an
2153  * over-estimate.
2154  *
2155  * We walk the requirements for each endpoint by interval, starting with the
2156  * smallest interval, and place packets in the schedule where there is only one
2157  * possible way to schedule packets for that interval.  In order to simplify
2158  * this algorithm, we record the largest max packet size for each interval, and
2159  * assume all packets will be that size.
2160  *
2161  * For interval 0, we obviously must schedule all packets for each interval.
2162  * The bandwidth for interval 0 is just the amount of data to be transmitted
2163  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2164  * the number of packets).
2165  *
2166  * For interval 1, we have two possible microframes to schedule those packets
2167  * in.  For this algorithm, if we can schedule the same number of packets for
2168  * each possible scheduling opportunity (each microframe), we will do so.  The
2169  * remaining number of packets will be saved to be transmitted in the gaps in
2170  * the next interval's scheduling sequence.
2171  *
2172  * As we move those remaining packets to be scheduled with interval 2 packets,
2173  * we have to double the number of remaining packets to transmit.  This is
2174  * because the intervals are actually powers of 2, and we would be transmitting
2175  * the previous interval's packets twice in this interval.  We also have to be
2176  * sure that when we look at the largest max packet size for this interval, we
2177  * also look at the largest max packet size for the remaining packets and take
2178  * the greater of the two.
2179  *
2180  * The algorithm continues to evenly distribute packets in each scheduling
2181  * opportunity, and push the remaining packets out, until we get to the last
2182  * interval.  Then those packets and their associated overhead are just added
2183  * to the bandwidth used.
2184  */
2185 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2186                 struct xhci_virt_device *virt_dev,
2187                 int old_active_eps)
2188 {
2189         unsigned int bw_reserved;
2190         unsigned int max_bandwidth;
2191         unsigned int bw_used;
2192         unsigned int block_size;
2193         struct xhci_interval_bw_table *bw_table;
2194         unsigned int packet_size = 0;
2195         unsigned int overhead = 0;
2196         unsigned int packets_transmitted = 0;
2197         unsigned int packets_remaining = 0;
2198         unsigned int i;
2199
2200         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2201                 return xhci_check_ss_bw(xhci, virt_dev);
2202
2203         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2204                 max_bandwidth = HS_BW_LIMIT;
2205                 /* Convert percent of bus BW reserved to blocks reserved */
2206                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2207         } else {
2208                 max_bandwidth = FS_BW_LIMIT;
2209                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2210         }
2211
2212         bw_table = virt_dev->bw_table;
2213         /* We need to translate the max packet size and max ESIT payloads into
2214          * the units the hardware uses.
2215          */
2216         block_size = xhci_get_block_size(virt_dev->udev);
2217
2218         /* If we are manipulating a LS/FS device under a HS hub, double check
2219          * that the HS bus has enough bandwidth if we are activing a new TT.
2220          */
2221         if (virt_dev->tt_info) {
2222                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2223                                 "Recalculating BW for rootport %u",
2224                                 virt_dev->real_port);
2225                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2226                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2227                                         "newly activated TT.\n");
2228                         return -ENOMEM;
2229                 }
2230                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2231                                 "Recalculating BW for TT slot %u port %u",
2232                                 virt_dev->tt_info->slot_id,
2233                                 virt_dev->tt_info->ttport);
2234         } else {
2235                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2236                                 "Recalculating BW for rootport %u",
2237                                 virt_dev->real_port);
2238         }
2239
2240         /* Add in how much bandwidth will be used for interval zero, or the
2241          * rounded max ESIT payload + number of packets * largest overhead.
2242          */
2243         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2244                 bw_table->interval_bw[0].num_packets *
2245                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2246
2247         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2248                 unsigned int bw_added;
2249                 unsigned int largest_mps;
2250                 unsigned int interval_overhead;
2251
2252                 /*
2253                  * How many packets could we transmit in this interval?
2254                  * If packets didn't fit in the previous interval, we will need
2255                  * to transmit that many packets twice within this interval.
2256                  */
2257                 packets_remaining = 2 * packets_remaining +
2258                         bw_table->interval_bw[i].num_packets;
2259
2260                 /* Find the largest max packet size of this or the previous
2261                  * interval.
2262                  */
2263                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2264                         largest_mps = 0;
2265                 else {
2266                         struct xhci_virt_ep *virt_ep;
2267                         struct list_head *ep_entry;
2268
2269                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2270                         virt_ep = list_entry(ep_entry,
2271                                         struct xhci_virt_ep, bw_endpoint_list);
2272                         /* Convert to blocks, rounding up */
2273                         largest_mps = DIV_ROUND_UP(
2274                                         virt_ep->bw_info.max_packet_size,
2275                                         block_size);
2276                 }
2277                 if (largest_mps > packet_size)
2278                         packet_size = largest_mps;
2279
2280                 /* Use the larger overhead of this or the previous interval. */
2281                 interval_overhead = xhci_get_largest_overhead(
2282                                 &bw_table->interval_bw[i]);
2283                 if (interval_overhead > overhead)
2284                         overhead = interval_overhead;
2285
2286                 /* How many packets can we evenly distribute across
2287                  * (1 << (i + 1)) possible scheduling opportunities?
2288                  */
2289                 packets_transmitted = packets_remaining >> (i + 1);
2290
2291                 /* Add in the bandwidth used for those scheduled packets */
2292                 bw_added = packets_transmitted * (overhead + packet_size);
2293
2294                 /* How many packets do we have remaining to transmit? */
2295                 packets_remaining = packets_remaining % (1 << (i + 1));
2296
2297                 /* What largest max packet size should those packets have? */
2298                 /* If we've transmitted all packets, don't carry over the
2299                  * largest packet size.
2300                  */
2301                 if (packets_remaining == 0) {
2302                         packet_size = 0;
2303                         overhead = 0;
2304                 } else if (packets_transmitted > 0) {
2305                         /* Otherwise if we do have remaining packets, and we've
2306                          * scheduled some packets in this interval, take the
2307                          * largest max packet size from endpoints with this
2308                          * interval.
2309                          */
2310                         packet_size = largest_mps;
2311                         overhead = interval_overhead;
2312                 }
2313                 /* Otherwise carry over packet_size and overhead from the last
2314                  * time we had a remainder.
2315                  */
2316                 bw_used += bw_added;
2317                 if (bw_used > max_bandwidth) {
2318                         xhci_warn(xhci, "Not enough bandwidth. "
2319                                         "Proposed: %u, Max: %u\n",
2320                                 bw_used, max_bandwidth);
2321                         return -ENOMEM;
2322                 }
2323         }
2324         /*
2325          * Ok, we know we have some packets left over after even-handedly
2326          * scheduling interval 15.  We don't know which microframes they will
2327          * fit into, so we over-schedule and say they will be scheduled every
2328          * microframe.
2329          */
2330         if (packets_remaining > 0)
2331                 bw_used += overhead + packet_size;
2332
2333         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2334                 unsigned int port_index = virt_dev->real_port - 1;
2335
2336                 /* OK, we're manipulating a HS device attached to a
2337                  * root port bandwidth domain.  Include the number of active TTs
2338                  * in the bandwidth used.
2339                  */
2340                 bw_used += TT_HS_OVERHEAD *
2341                         xhci->rh_bw[port_index].num_active_tts;
2342         }
2343
2344         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2345                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2346                 "Available: %u " "percent",
2347                 bw_used, max_bandwidth, bw_reserved,
2348                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2349                 max_bandwidth);
2350
2351         bw_used += bw_reserved;
2352         if (bw_used > max_bandwidth) {
2353                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2354                                 bw_used, max_bandwidth);
2355                 return -ENOMEM;
2356         }
2357
2358         bw_table->bw_used = bw_used;
2359         return 0;
2360 }
2361
2362 static bool xhci_is_async_ep(unsigned int ep_type)
2363 {
2364         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2365                                         ep_type != ISOC_IN_EP &&
2366                                         ep_type != INT_IN_EP);
2367 }
2368
2369 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2370 {
2371         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2372 }
2373
2374 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2375 {
2376         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2377
2378         if (ep_bw->ep_interval == 0)
2379                 return SS_OVERHEAD_BURST +
2380                         (ep_bw->mult * ep_bw->num_packets *
2381                                         (SS_OVERHEAD + mps));
2382         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2383                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2384                                 1 << ep_bw->ep_interval);
2385
2386 }
2387
2388 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2389                 struct xhci_bw_info *ep_bw,
2390                 struct xhci_interval_bw_table *bw_table,
2391                 struct usb_device *udev,
2392                 struct xhci_virt_ep *virt_ep,
2393                 struct xhci_tt_bw_info *tt_info)
2394 {
2395         struct xhci_interval_bw *interval_bw;
2396         int normalized_interval;
2397
2398         if (xhci_is_async_ep(ep_bw->type))
2399                 return;
2400
2401         if (udev->speed >= USB_SPEED_SUPER) {
2402                 if (xhci_is_sync_in_ep(ep_bw->type))
2403                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2404                                 xhci_get_ss_bw_consumed(ep_bw);
2405                 else
2406                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2407                                 xhci_get_ss_bw_consumed(ep_bw);
2408                 return;
2409         }
2410
2411         /* SuperSpeed endpoints never get added to intervals in the table, so
2412          * this check is only valid for HS/FS/LS devices.
2413          */
2414         if (list_empty(&virt_ep->bw_endpoint_list))
2415                 return;
2416         /* For LS/FS devices, we need to translate the interval expressed in
2417          * microframes to frames.
2418          */
2419         if (udev->speed == USB_SPEED_HIGH)
2420                 normalized_interval = ep_bw->ep_interval;
2421         else
2422                 normalized_interval = ep_bw->ep_interval - 3;
2423
2424         if (normalized_interval == 0)
2425                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2426         interval_bw = &bw_table->interval_bw[normalized_interval];
2427         interval_bw->num_packets -= ep_bw->num_packets;
2428         switch (udev->speed) {
2429         case USB_SPEED_LOW:
2430                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2431                 break;
2432         case USB_SPEED_FULL:
2433                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2434                 break;
2435         case USB_SPEED_HIGH:
2436                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2437                 break;
2438         case USB_SPEED_SUPER:
2439         case USB_SPEED_SUPER_PLUS:
2440         case USB_SPEED_UNKNOWN:
2441         case USB_SPEED_WIRELESS:
2442                 /* Should never happen because only LS/FS/HS endpoints will get
2443                  * added to the endpoint list.
2444                  */
2445                 return;
2446         }
2447         if (tt_info)
2448                 tt_info->active_eps -= 1;
2449         list_del_init(&virt_ep->bw_endpoint_list);
2450 }
2451
2452 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2453                 struct xhci_bw_info *ep_bw,
2454                 struct xhci_interval_bw_table *bw_table,
2455                 struct usb_device *udev,
2456                 struct xhci_virt_ep *virt_ep,
2457                 struct xhci_tt_bw_info *tt_info)
2458 {
2459         struct xhci_interval_bw *interval_bw;
2460         struct xhci_virt_ep *smaller_ep;
2461         int normalized_interval;
2462
2463         if (xhci_is_async_ep(ep_bw->type))
2464                 return;
2465
2466         if (udev->speed == USB_SPEED_SUPER) {
2467                 if (xhci_is_sync_in_ep(ep_bw->type))
2468                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2469                                 xhci_get_ss_bw_consumed(ep_bw);
2470                 else
2471                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2472                                 xhci_get_ss_bw_consumed(ep_bw);
2473                 return;
2474         }
2475
2476         /* For LS/FS devices, we need to translate the interval expressed in
2477          * microframes to frames.
2478          */
2479         if (udev->speed == USB_SPEED_HIGH)
2480                 normalized_interval = ep_bw->ep_interval;
2481         else
2482                 normalized_interval = ep_bw->ep_interval - 3;
2483
2484         if (normalized_interval == 0)
2485                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2486         interval_bw = &bw_table->interval_bw[normalized_interval];
2487         interval_bw->num_packets += ep_bw->num_packets;
2488         switch (udev->speed) {
2489         case USB_SPEED_LOW:
2490                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2491                 break;
2492         case USB_SPEED_FULL:
2493                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2494                 break;
2495         case USB_SPEED_HIGH:
2496                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2497                 break;
2498         case USB_SPEED_SUPER:
2499         case USB_SPEED_SUPER_PLUS:
2500         case USB_SPEED_UNKNOWN:
2501         case USB_SPEED_WIRELESS:
2502                 /* Should never happen because only LS/FS/HS endpoints will get
2503                  * added to the endpoint list.
2504                  */
2505                 return;
2506         }
2507
2508         if (tt_info)
2509                 tt_info->active_eps += 1;
2510         /* Insert the endpoint into the list, largest max packet size first. */
2511         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2512                         bw_endpoint_list) {
2513                 if (ep_bw->max_packet_size >=
2514                                 smaller_ep->bw_info.max_packet_size) {
2515                         /* Add the new ep before the smaller endpoint */
2516                         list_add_tail(&virt_ep->bw_endpoint_list,
2517                                         &smaller_ep->bw_endpoint_list);
2518                         return;
2519                 }
2520         }
2521         /* Add the new endpoint at the end of the list. */
2522         list_add_tail(&virt_ep->bw_endpoint_list,
2523                         &interval_bw->endpoints);
2524 }
2525
2526 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2527                 struct xhci_virt_device *virt_dev,
2528                 int old_active_eps)
2529 {
2530         struct xhci_root_port_bw_info *rh_bw_info;
2531         if (!virt_dev->tt_info)
2532                 return;
2533
2534         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2535         if (old_active_eps == 0 &&
2536                                 virt_dev->tt_info->active_eps != 0) {
2537                 rh_bw_info->num_active_tts += 1;
2538                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2539         } else if (old_active_eps != 0 &&
2540                                 virt_dev->tt_info->active_eps == 0) {
2541                 rh_bw_info->num_active_tts -= 1;
2542                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2543         }
2544 }
2545
2546 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2547                 struct xhci_virt_device *virt_dev,
2548                 struct xhci_container_ctx *in_ctx)
2549 {
2550         struct xhci_bw_info ep_bw_info[31];
2551         int i;
2552         struct xhci_input_control_ctx *ctrl_ctx;
2553         int old_active_eps = 0;
2554
2555         if (virt_dev->tt_info)
2556                 old_active_eps = virt_dev->tt_info->active_eps;
2557
2558         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2559         if (!ctrl_ctx) {
2560                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2561                                 __func__);
2562                 return -ENOMEM;
2563         }
2564
2565         for (i = 0; i < 31; i++) {
2566                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2567                         continue;
2568
2569                 /* Make a copy of the BW info in case we need to revert this */
2570                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2571                                 sizeof(ep_bw_info[i]));
2572                 /* Drop the endpoint from the interval table if the endpoint is
2573                  * being dropped or changed.
2574                  */
2575                 if (EP_IS_DROPPED(ctrl_ctx, i))
2576                         xhci_drop_ep_from_interval_table(xhci,
2577                                         &virt_dev->eps[i].bw_info,
2578                                         virt_dev->bw_table,
2579                                         virt_dev->udev,
2580                                         &virt_dev->eps[i],
2581                                         virt_dev->tt_info);
2582         }
2583         /* Overwrite the information stored in the endpoints' bw_info */
2584         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2585         for (i = 0; i < 31; i++) {
2586                 /* Add any changed or added endpoints to the interval table */
2587                 if (EP_IS_ADDED(ctrl_ctx, i))
2588                         xhci_add_ep_to_interval_table(xhci,
2589                                         &virt_dev->eps[i].bw_info,
2590                                         virt_dev->bw_table,
2591                                         virt_dev->udev,
2592                                         &virt_dev->eps[i],
2593                                         virt_dev->tt_info);
2594         }
2595
2596         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2597                 /* Ok, this fits in the bandwidth we have.
2598                  * Update the number of active TTs.
2599                  */
2600                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2601                 return 0;
2602         }
2603
2604         /* We don't have enough bandwidth for this, revert the stored info. */
2605         for (i = 0; i < 31; i++) {
2606                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2607                         continue;
2608
2609                 /* Drop the new copies of any added or changed endpoints from
2610                  * the interval table.
2611                  */
2612                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2613                         xhci_drop_ep_from_interval_table(xhci,
2614                                         &virt_dev->eps[i].bw_info,
2615                                         virt_dev->bw_table,
2616                                         virt_dev->udev,
2617                                         &virt_dev->eps[i],
2618                                         virt_dev->tt_info);
2619                 }
2620                 /* Revert the endpoint back to its old information */
2621                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2622                                 sizeof(ep_bw_info[i]));
2623                 /* Add any changed or dropped endpoints back into the table */
2624                 if (EP_IS_DROPPED(ctrl_ctx, i))
2625                         xhci_add_ep_to_interval_table(xhci,
2626                                         &virt_dev->eps[i].bw_info,
2627                                         virt_dev->bw_table,
2628                                         virt_dev->udev,
2629                                         &virt_dev->eps[i],
2630                                         virt_dev->tt_info);
2631         }
2632         return -ENOMEM;
2633 }
2634
2635
2636 /* Issue a configure endpoint command or evaluate context command
2637  * and wait for it to finish.
2638  */
2639 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2640                 struct usb_device *udev,
2641                 struct xhci_command *command,
2642                 bool ctx_change, bool must_succeed)
2643 {
2644         int ret;
2645         unsigned long flags;
2646         struct xhci_input_control_ctx *ctrl_ctx;
2647         struct xhci_virt_device *virt_dev;
2648
2649         if (!command)
2650                 return -EINVAL;
2651
2652         spin_lock_irqsave(&xhci->lock, flags);
2653         virt_dev = xhci->devs[udev->slot_id];
2654
2655         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2656         if (!ctrl_ctx) {
2657                 spin_unlock_irqrestore(&xhci->lock, flags);
2658                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2659                                 __func__);
2660                 return -ENOMEM;
2661         }
2662
2663         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2664                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2665                 spin_unlock_irqrestore(&xhci->lock, flags);
2666                 xhci_warn(xhci, "Not enough host resources, "
2667                                 "active endpoint contexts = %u\n",
2668                                 xhci->num_active_eps);
2669                 return -ENOMEM;
2670         }
2671         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2672             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2673                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2674                         xhci_free_host_resources(xhci, ctrl_ctx);
2675                 spin_unlock_irqrestore(&xhci->lock, flags);
2676                 xhci_warn(xhci, "Not enough bandwidth\n");
2677                 return -ENOMEM;
2678         }
2679
2680         if (!ctx_change)
2681                 ret = xhci_queue_configure_endpoint(xhci, command,
2682                                 command->in_ctx->dma,
2683                                 udev->slot_id, must_succeed);
2684         else
2685                 ret = xhci_queue_evaluate_context(xhci, command,
2686                                 command->in_ctx->dma,
2687                                 udev->slot_id, must_succeed);
2688         if (ret < 0) {
2689                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2690                         xhci_free_host_resources(xhci, ctrl_ctx);
2691                 spin_unlock_irqrestore(&xhci->lock, flags);
2692                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2693                                 "FIXME allocate a new ring segment");
2694                 return -ENOMEM;
2695         }
2696         xhci_ring_cmd_db(xhci);
2697         spin_unlock_irqrestore(&xhci->lock, flags);
2698
2699         /* Wait for the configure endpoint command to complete */
2700         wait_for_completion(command->completion);
2701
2702         if (!ctx_change)
2703                 ret = xhci_configure_endpoint_result(xhci, udev,
2704                                                      &command->status);
2705         else
2706                 ret = xhci_evaluate_context_result(xhci, udev,
2707                                                    &command->status);
2708
2709         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2710                 spin_lock_irqsave(&xhci->lock, flags);
2711                 /* If the command failed, remove the reserved resources.
2712                  * Otherwise, clean up the estimate to include dropped eps.
2713                  */
2714                 if (ret)
2715                         xhci_free_host_resources(xhci, ctrl_ctx);
2716                 else
2717                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2718                 spin_unlock_irqrestore(&xhci->lock, flags);
2719         }
2720         return ret;
2721 }
2722
2723 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2724         struct xhci_virt_device *vdev, int i)
2725 {
2726         struct xhci_virt_ep *ep = &vdev->eps[i];
2727
2728         if (ep->ep_state & EP_HAS_STREAMS) {
2729                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2730                                 xhci_get_endpoint_address(i));
2731                 xhci_free_stream_info(xhci, ep->stream_info);
2732                 ep->stream_info = NULL;
2733                 ep->ep_state &= ~EP_HAS_STREAMS;
2734         }
2735 }
2736
2737 /* Called after one or more calls to xhci_add_endpoint() or
2738  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2739  * to call xhci_reset_bandwidth().
2740  *
2741  * Since we are in the middle of changing either configuration or
2742  * installing a new alt setting, the USB core won't allow URBs to be
2743  * enqueued for any endpoint on the old config or interface.  Nothing
2744  * else should be touching the xhci->devs[slot_id] structure, so we
2745  * don't need to take the xhci->lock for manipulating that.
2746  */
2747 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2748 {
2749         int i;
2750         int ret = 0;
2751         struct xhci_hcd *xhci;
2752         struct xhci_virt_device *virt_dev;
2753         struct xhci_input_control_ctx *ctrl_ctx;
2754         struct xhci_slot_ctx *slot_ctx;
2755         struct xhci_command *command;
2756
2757         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2758         if (ret <= 0)
2759                 return ret;
2760         xhci = hcd_to_xhci(hcd);
2761         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2762                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2763                 return -ENODEV;
2764
2765         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2766         virt_dev = xhci->devs[udev->slot_id];
2767
2768         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2769         if (!command)
2770                 return -ENOMEM;
2771
2772         command->in_ctx = virt_dev->in_ctx;
2773
2774         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2775         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2776         if (!ctrl_ctx) {
2777                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2778                                 __func__);
2779                 ret = -ENOMEM;
2780                 goto command_cleanup;
2781         }
2782         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2783         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2784         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2785
2786         /* Don't issue the command if there's no endpoints to update. */
2787         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2788             ctrl_ctx->drop_flags == 0) {
2789                 ret = 0;
2790                 goto command_cleanup;
2791         }
2792         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2793         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2794         for (i = 31; i >= 1; i--) {
2795                 __le32 le32 = cpu_to_le32(BIT(i));
2796
2797                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2798                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2799                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2800                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2801                         break;
2802                 }
2803         }
2804         xhci_dbg(xhci, "New Input Control Context:\n");
2805         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2806                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2807
2808         ret = xhci_configure_endpoint(xhci, udev, command,
2809                         false, false);
2810         if (ret)
2811                 /* Callee should call reset_bandwidth() */
2812                 goto command_cleanup;
2813
2814         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2815         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2816                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2817
2818         /* Free any rings that were dropped, but not changed. */
2819         for (i = 1; i < 31; ++i) {
2820                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2821                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2822                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2823                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2824                 }
2825         }
2826         xhci_zero_in_ctx(xhci, virt_dev);
2827         /*
2828          * Install any rings for completely new endpoints or changed endpoints,
2829          * and free or cache any old rings from changed endpoints.
2830          */
2831         for (i = 1; i < 31; ++i) {
2832                 if (!virt_dev->eps[i].new_ring)
2833                         continue;
2834                 /* Only cache or free the old ring if it exists.
2835                  * It may not if this is the first add of an endpoint.
2836                  */
2837                 if (virt_dev->eps[i].ring) {
2838                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2839                 }
2840                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2841                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2842                 virt_dev->eps[i].new_ring = NULL;
2843         }
2844 command_cleanup:
2845         kfree(command->completion);
2846         kfree(command);
2847
2848         return ret;
2849 }
2850
2851 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2852 {
2853         struct xhci_hcd *xhci;
2854         struct xhci_virt_device *virt_dev;
2855         int i, ret;
2856
2857         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2858         if (ret <= 0)
2859                 return;
2860         xhci = hcd_to_xhci(hcd);
2861
2862         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2863         virt_dev = xhci->devs[udev->slot_id];
2864         /* Free any rings allocated for added endpoints */
2865         for (i = 0; i < 31; ++i) {
2866                 if (virt_dev->eps[i].new_ring) {
2867                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2868                         virt_dev->eps[i].new_ring = NULL;
2869                 }
2870         }
2871         xhci_zero_in_ctx(xhci, virt_dev);
2872 }
2873
2874 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2875                 struct xhci_container_ctx *in_ctx,
2876                 struct xhci_container_ctx *out_ctx,
2877                 struct xhci_input_control_ctx *ctrl_ctx,
2878                 u32 add_flags, u32 drop_flags)
2879 {
2880         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2881         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2882         xhci_slot_copy(xhci, in_ctx, out_ctx);
2883         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2884
2885         xhci_dbg(xhci, "Input Context:\n");
2886         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2887 }
2888
2889 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2890                 unsigned int slot_id, unsigned int ep_index,
2891                 struct xhci_dequeue_state *deq_state)
2892 {
2893         struct xhci_input_control_ctx *ctrl_ctx;
2894         struct xhci_container_ctx *in_ctx;
2895         struct xhci_ep_ctx *ep_ctx;
2896         u32 added_ctxs;
2897         dma_addr_t addr;
2898
2899         in_ctx = xhci->devs[slot_id]->in_ctx;
2900         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2901         if (!ctrl_ctx) {
2902                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2903                                 __func__);
2904                 return;
2905         }
2906
2907         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2908                         xhci->devs[slot_id]->out_ctx, ep_index);
2909         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2910         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2911                         deq_state->new_deq_ptr);
2912         if (addr == 0) {
2913                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2914                                 "reset ep command\n");
2915                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2916                                 deq_state->new_deq_seg,
2917                                 deq_state->new_deq_ptr);
2918                 return;
2919         }
2920         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2921
2922         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2923         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2924                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2925                         added_ctxs, added_ctxs);
2926 }
2927
2928 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2929                         unsigned int ep_index, struct xhci_td *td)
2930 {
2931         struct xhci_dequeue_state deq_state;
2932         struct xhci_virt_ep *ep;
2933         struct usb_device *udev = td->urb->dev;
2934
2935         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2936                         "Cleaning up stalled endpoint ring");
2937         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2938         /* We need to move the HW's dequeue pointer past this TD,
2939          * or it will attempt to resend it on the next doorbell ring.
2940          */
2941         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2942                         ep_index, ep->stopped_stream, td, &deq_state);
2943
2944         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2945                 return;
2946
2947         /* HW with the reset endpoint quirk will use the saved dequeue state to
2948          * issue a configure endpoint command later.
2949          */
2950         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2951                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2952                                 "Queueing new dequeue state");
2953                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2954                                 ep_index, ep->stopped_stream, &deq_state);
2955         } else {
2956                 /* Better hope no one uses the input context between now and the
2957                  * reset endpoint completion!
2958                  * XXX: No idea how this hardware will react when stream rings
2959                  * are enabled.
2960                  */
2961                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2962                                 "Setting up input context for "
2963                                 "configure endpoint command");
2964                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2965                                 ep_index, &deq_state);
2966         }
2967 }
2968
2969 /* Called when clearing halted device. The core should have sent the control
2970  * message to clear the device halt condition. The host side of the halt should
2971  * already be cleared with a reset endpoint command issued when the STALL tx
2972  * event was received.
2973  *
2974  * Context: in_interrupt
2975  */
2976
2977 void xhci_endpoint_reset(struct usb_hcd *hcd,
2978                 struct usb_host_endpoint *ep)
2979 {
2980         struct xhci_hcd *xhci;
2981
2982         xhci = hcd_to_xhci(hcd);
2983
2984         /*
2985          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2986          * The Reset Endpoint Command may only be issued to endpoints in the
2987          * Halted state. If software wishes reset the Data Toggle or Sequence
2988          * Number of an endpoint that isn't in the Halted state, then software
2989          * may issue a Configure Endpoint Command with the Drop and Add bits set
2990          * for the target endpoint. that is in the Stopped state.
2991          */
2992
2993         /* For now just print debug to follow the situation */
2994         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2995                  ep->desc.bEndpointAddress);
2996 }
2997
2998 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2999                 struct usb_device *udev, struct usb_host_endpoint *ep,
3000                 unsigned int slot_id)
3001 {
3002         int ret;
3003         unsigned int ep_index;
3004         unsigned int ep_state;
3005
3006         if (!ep)
3007                 return -EINVAL;
3008         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3009         if (ret <= 0)
3010                 return -EINVAL;
3011         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3012                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3013                                 " descriptor for ep 0x%x does not support streams\n",
3014                                 ep->desc.bEndpointAddress);
3015                 return -EINVAL;
3016         }
3017
3018         ep_index = xhci_get_endpoint_index(&ep->desc);
3019         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3020         if (ep_state & EP_HAS_STREAMS ||
3021                         ep_state & EP_GETTING_STREAMS) {
3022                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3023                                 "already has streams set up.\n",
3024                                 ep->desc.bEndpointAddress);
3025                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3026                                 "dynamic stream context array reallocation.\n");
3027                 return -EINVAL;
3028         }
3029         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3030                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3031                                 "endpoint 0x%x; URBs are pending.\n",
3032                                 ep->desc.bEndpointAddress);
3033                 return -EINVAL;
3034         }
3035         return 0;
3036 }
3037
3038 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3039                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3040 {
3041         unsigned int max_streams;
3042
3043         /* The stream context array size must be a power of two */
3044         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3045         /*
3046          * Find out how many primary stream array entries the host controller
3047          * supports.  Later we may use secondary stream arrays (similar to 2nd
3048          * level page entries), but that's an optional feature for xHCI host
3049          * controllers. xHCs must support at least 4 stream IDs.
3050          */
3051         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3052         if (*num_stream_ctxs > max_streams) {
3053                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3054                                 max_streams);
3055                 *num_stream_ctxs = max_streams;
3056                 *num_streams = max_streams;
3057         }
3058 }
3059
3060 /* Returns an error code if one of the endpoint already has streams.
3061  * This does not change any data structures, it only checks and gathers
3062  * information.
3063  */
3064 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3065                 struct usb_device *udev,
3066                 struct usb_host_endpoint **eps, unsigned int num_eps,
3067                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3068 {
3069         unsigned int max_streams;
3070         unsigned int endpoint_flag;
3071         int i;
3072         int ret;
3073
3074         for (i = 0; i < num_eps; i++) {
3075                 ret = xhci_check_streams_endpoint(xhci, udev,
3076                                 eps[i], udev->slot_id);
3077                 if (ret < 0)
3078                         return ret;
3079
3080                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3081                 if (max_streams < (*num_streams - 1)) {
3082                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3083                                         eps[i]->desc.bEndpointAddress,
3084                                         max_streams);
3085                         *num_streams = max_streams+1;
3086                 }
3087
3088                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3089                 if (*changed_ep_bitmask & endpoint_flag)
3090                         return -EINVAL;
3091                 *changed_ep_bitmask |= endpoint_flag;
3092         }
3093         return 0;
3094 }
3095
3096 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3097                 struct usb_device *udev,
3098                 struct usb_host_endpoint **eps, unsigned int num_eps)
3099 {
3100         u32 changed_ep_bitmask = 0;
3101         unsigned int slot_id;
3102         unsigned int ep_index;
3103         unsigned int ep_state;
3104         int i;
3105
3106         slot_id = udev->slot_id;
3107         if (!xhci->devs[slot_id])
3108                 return 0;
3109
3110         for (i = 0; i < num_eps; i++) {
3111                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3112                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3113                 /* Are streams already being freed for the endpoint? */
3114                 if (ep_state & EP_GETTING_NO_STREAMS) {
3115                         xhci_warn(xhci, "WARN Can't disable streams for "
3116                                         "endpoint 0x%x, "
3117                                         "streams are being disabled already\n",
3118                                         eps[i]->desc.bEndpointAddress);
3119                         return 0;
3120                 }
3121                 /* Are there actually any streams to free? */
3122                 if (!(ep_state & EP_HAS_STREAMS) &&
3123                                 !(ep_state & EP_GETTING_STREAMS)) {
3124                         xhci_warn(xhci, "WARN Can't disable streams for "
3125                                         "endpoint 0x%x, "
3126                                         "streams are already disabled!\n",
3127                                         eps[i]->desc.bEndpointAddress);
3128                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3129                                         "with non-streams endpoint\n");
3130                         return 0;
3131                 }
3132                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3133         }
3134         return changed_ep_bitmask;
3135 }
3136
3137 /*
3138  * The USB device drivers use this function (through the HCD interface in USB
3139  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3140  * coordinate mass storage command queueing across multiple endpoints (basically
3141  * a stream ID == a task ID).
3142  *
3143  * Setting up streams involves allocating the same size stream context array
3144  * for each endpoint and issuing a configure endpoint command for all endpoints.
3145  *
3146  * Don't allow the call to succeed if one endpoint only supports one stream
3147  * (which means it doesn't support streams at all).
3148  *
3149  * Drivers may get less stream IDs than they asked for, if the host controller
3150  * hardware or endpoints claim they can't support the number of requested
3151  * stream IDs.
3152  */
3153 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3154                 struct usb_host_endpoint **eps, unsigned int num_eps,
3155                 unsigned int num_streams, gfp_t mem_flags)
3156 {
3157         int i, ret;
3158         struct xhci_hcd *xhci;
3159         struct xhci_virt_device *vdev;
3160         struct xhci_command *config_cmd;
3161         struct xhci_input_control_ctx *ctrl_ctx;
3162         unsigned int ep_index;
3163         unsigned int num_stream_ctxs;
3164         unsigned long flags;
3165         u32 changed_ep_bitmask = 0;
3166
3167         if (!eps)
3168                 return -EINVAL;
3169
3170         /* Add one to the number of streams requested to account for
3171          * stream 0 that is reserved for xHCI usage.
3172          */
3173         num_streams += 1;
3174         xhci = hcd_to_xhci(hcd);
3175         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3176                         num_streams);
3177
3178         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3179         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3180                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3181                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3182                 return -ENOSYS;
3183         }
3184
3185         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3186         if (!config_cmd) {
3187                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3188                 return -ENOMEM;
3189         }
3190         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3191         if (!ctrl_ctx) {
3192                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3193                                 __func__);
3194                 xhci_free_command(xhci, config_cmd);
3195                 return -ENOMEM;
3196         }
3197
3198         /* Check to make sure all endpoints are not already configured for
3199          * streams.  While we're at it, find the maximum number of streams that
3200          * all the endpoints will support and check for duplicate endpoints.
3201          */
3202         spin_lock_irqsave(&xhci->lock, flags);
3203         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3204                         num_eps, &num_streams, &changed_ep_bitmask);
3205         if (ret < 0) {
3206                 xhci_free_command(xhci, config_cmd);
3207                 spin_unlock_irqrestore(&xhci->lock, flags);
3208                 return ret;
3209         }
3210         if (num_streams <= 1) {
3211                 xhci_warn(xhci, "WARN: endpoints can't handle "
3212                                 "more than one stream.\n");
3213                 xhci_free_command(xhci, config_cmd);
3214                 spin_unlock_irqrestore(&xhci->lock, flags);
3215                 return -EINVAL;
3216         }
3217         vdev = xhci->devs[udev->slot_id];
3218         /* Mark each endpoint as being in transition, so
3219          * xhci_urb_enqueue() will reject all URBs.
3220          */
3221         for (i = 0; i < num_eps; i++) {
3222                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3223                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3224         }
3225         spin_unlock_irqrestore(&xhci->lock, flags);
3226
3227         /* Setup internal data structures and allocate HW data structures for
3228          * streams (but don't install the HW structures in the input context
3229          * until we're sure all memory allocation succeeded).
3230          */
3231         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3232         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3233                         num_stream_ctxs, num_streams);
3234
3235         for (i = 0; i < num_eps; i++) {
3236                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3237                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3238                                 num_stream_ctxs,
3239                                 num_streams, mem_flags);
3240                 if (!vdev->eps[ep_index].stream_info)
3241                         goto cleanup;
3242                 /* Set maxPstreams in endpoint context and update deq ptr to
3243                  * point to stream context array. FIXME
3244                  */
3245         }
3246
3247         /* Set up the input context for a configure endpoint command. */
3248         for (i = 0; i < num_eps; i++) {
3249                 struct xhci_ep_ctx *ep_ctx;
3250
3251                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3252                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3253
3254                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3255                                 vdev->out_ctx, ep_index);
3256                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3257                                 vdev->eps[ep_index].stream_info);
3258         }
3259         /* Tell the HW to drop its old copy of the endpoint context info
3260          * and add the updated copy from the input context.
3261          */
3262         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3263                         vdev->out_ctx, ctrl_ctx,
3264                         changed_ep_bitmask, changed_ep_bitmask);
3265
3266         /* Issue and wait for the configure endpoint command */
3267         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3268                         false, false);
3269
3270         /* xHC rejected the configure endpoint command for some reason, so we
3271          * leave the old ring intact and free our internal streams data
3272          * structure.
3273          */
3274         if (ret < 0)
3275                 goto cleanup;
3276
3277         spin_lock_irqsave(&xhci->lock, flags);
3278         for (i = 0; i < num_eps; i++) {
3279                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3280                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3281                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3282                          udev->slot_id, ep_index);
3283                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3284         }
3285         xhci_free_command(xhci, config_cmd);
3286         spin_unlock_irqrestore(&xhci->lock, flags);
3287
3288         /* Subtract 1 for stream 0, which drivers can't use */
3289         return num_streams - 1;
3290
3291 cleanup:
3292         /* If it didn't work, free the streams! */
3293         for (i = 0; i < num_eps; i++) {
3294                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3295                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3296                 vdev->eps[ep_index].stream_info = NULL;
3297                 /* FIXME Unset maxPstreams in endpoint context and
3298                  * update deq ptr to point to normal string ring.
3299                  */
3300                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3301                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3302                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3303         }
3304         xhci_free_command(xhci, config_cmd);
3305         return -ENOMEM;
3306 }
3307
3308 /* Transition the endpoint from using streams to being a "normal" endpoint
3309  * without streams.
3310  *
3311  * Modify the endpoint context state, submit a configure endpoint command,
3312  * and free all endpoint rings for streams if that completes successfully.
3313  */
3314 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3315                 struct usb_host_endpoint **eps, unsigned int num_eps,
3316                 gfp_t mem_flags)
3317 {
3318         int i, ret;
3319         struct xhci_hcd *xhci;
3320         struct xhci_virt_device *vdev;
3321         struct xhci_command *command;
3322         struct xhci_input_control_ctx *ctrl_ctx;
3323         unsigned int ep_index;
3324         unsigned long flags;
3325         u32 changed_ep_bitmask;
3326
3327         xhci = hcd_to_xhci(hcd);
3328         vdev = xhci->devs[udev->slot_id];
3329
3330         /* Set up a configure endpoint command to remove the streams rings */
3331         spin_lock_irqsave(&xhci->lock, flags);
3332         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3333                         udev, eps, num_eps);
3334         if (changed_ep_bitmask == 0) {
3335                 spin_unlock_irqrestore(&xhci->lock, flags);
3336                 return -EINVAL;
3337         }
3338
3339         /* Use the xhci_command structure from the first endpoint.  We may have
3340          * allocated too many, but the driver may call xhci_free_streams() for
3341          * each endpoint it grouped into one call to xhci_alloc_streams().
3342          */
3343         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3344         command = vdev->eps[ep_index].stream_info->free_streams_command;
3345         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3346         if (!ctrl_ctx) {
3347                 spin_unlock_irqrestore(&xhci->lock, flags);
3348                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3349                                 __func__);
3350                 return -EINVAL;
3351         }
3352
3353         for (i = 0; i < num_eps; i++) {
3354                 struct xhci_ep_ctx *ep_ctx;
3355
3356                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3357                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3358                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3359                         EP_GETTING_NO_STREAMS;
3360
3361                 xhci_endpoint_copy(xhci, command->in_ctx,
3362                                 vdev->out_ctx, ep_index);
3363                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3364                                 &vdev->eps[ep_index]);
3365         }
3366         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3367                         vdev->out_ctx, ctrl_ctx,
3368                         changed_ep_bitmask, changed_ep_bitmask);
3369         spin_unlock_irqrestore(&xhci->lock, flags);
3370
3371         /* Issue and wait for the configure endpoint command,
3372          * which must succeed.
3373          */
3374         ret = xhci_configure_endpoint(xhci, udev, command,
3375                         false, true);
3376
3377         /* xHC rejected the configure endpoint command for some reason, so we
3378          * leave the streams rings intact.
3379          */
3380         if (ret < 0)
3381                 return ret;
3382
3383         spin_lock_irqsave(&xhci->lock, flags);
3384         for (i = 0; i < num_eps; i++) {
3385                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3386                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3387                 vdev->eps[ep_index].stream_info = NULL;
3388                 /* FIXME Unset maxPstreams in endpoint context and
3389                  * update deq ptr to point to normal string ring.
3390                  */
3391                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3392                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3393         }
3394         spin_unlock_irqrestore(&xhci->lock, flags);
3395
3396         return 0;
3397 }
3398
3399 /*
3400  * Deletes endpoint resources for endpoints that were active before a Reset
3401  * Device command, or a Disable Slot command.  The Reset Device command leaves
3402  * the control endpoint intact, whereas the Disable Slot command deletes it.
3403  *
3404  * Must be called with xhci->lock held.
3405  */
3406 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3407         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3408 {
3409         int i;
3410         unsigned int num_dropped_eps = 0;
3411         unsigned int drop_flags = 0;
3412
3413         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3414                 if (virt_dev->eps[i].ring) {
3415                         drop_flags |= 1 << i;
3416                         num_dropped_eps++;
3417                 }
3418         }
3419         xhci->num_active_eps -= num_dropped_eps;
3420         if (num_dropped_eps)
3421                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3422                                 "Dropped %u ep ctxs, flags = 0x%x, "
3423                                 "%u now active.",
3424                                 num_dropped_eps, drop_flags,
3425                                 xhci->num_active_eps);
3426 }
3427
3428 /*
3429  * This submits a Reset Device Command, which will set the device state to 0,
3430  * set the device address to 0, and disable all the endpoints except the default
3431  * control endpoint.  The USB core should come back and call
3432  * xhci_address_device(), and then re-set up the configuration.  If this is
3433  * called because of a usb_reset_and_verify_device(), then the old alternate
3434  * settings will be re-installed through the normal bandwidth allocation
3435  * functions.
3436  *
3437  * Wait for the Reset Device command to finish.  Remove all structures
3438  * associated with the endpoints that were disabled.  Clear the input device
3439  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3440  *
3441  * If the virt_dev to be reset does not exist or does not match the udev,
3442  * it means the device is lost, possibly due to the xHC restore error and
3443  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3444  * re-allocate the device.
3445  */
3446 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3447 {
3448         int ret, i;
3449         unsigned long flags;
3450         struct xhci_hcd *xhci;
3451         unsigned int slot_id;
3452         struct xhci_virt_device *virt_dev;
3453         struct xhci_command *reset_device_cmd;
3454         int last_freed_endpoint;
3455         struct xhci_slot_ctx *slot_ctx;
3456         int old_active_eps = 0;
3457
3458         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3459         if (ret <= 0)
3460                 return ret;
3461         xhci = hcd_to_xhci(hcd);
3462         slot_id = udev->slot_id;
3463         virt_dev = xhci->devs[slot_id];
3464         if (!virt_dev) {
3465                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3466                                 "not exist. Re-allocate the device\n", slot_id);
3467                 ret = xhci_alloc_dev(hcd, udev);
3468                 if (ret == 1)
3469                         return 0;
3470                 else
3471                         return -EINVAL;
3472         }
3473
3474         if (virt_dev->tt_info)
3475                 old_active_eps = virt_dev->tt_info->active_eps;
3476
3477         if (virt_dev->udev != udev) {
3478                 /* If the virt_dev and the udev does not match, this virt_dev
3479                  * may belong to another udev.
3480                  * Re-allocate the device.
3481                  */
3482                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3483                                 "not match the udev. Re-allocate the device\n",
3484                                 slot_id);
3485                 ret = xhci_alloc_dev(hcd, udev);
3486                 if (ret == 1)
3487                         return 0;
3488                 else
3489                         return -EINVAL;
3490         }
3491
3492         /* If device is not setup, there is no point in resetting it */
3493         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3494         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3495                                                 SLOT_STATE_DISABLED)
3496                 return 0;
3497
3498         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3499         /* Allocate the command structure that holds the struct completion.
3500          * Assume we're in process context, since the normal device reset
3501          * process has to wait for the device anyway.  Storage devices are
3502          * reset as part of error handling, so use GFP_NOIO instead of
3503          * GFP_KERNEL.
3504          */
3505         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3506         if (!reset_device_cmd) {
3507                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3508                 return -ENOMEM;
3509         }
3510
3511         /* Attempt to submit the Reset Device command to the command ring */
3512         spin_lock_irqsave(&xhci->lock, flags);
3513
3514         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3515         if (ret) {
3516                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3517                 spin_unlock_irqrestore(&xhci->lock, flags);
3518                 goto command_cleanup;
3519         }
3520         xhci_ring_cmd_db(xhci);
3521         spin_unlock_irqrestore(&xhci->lock, flags);
3522
3523         /* Wait for the Reset Device command to finish */
3524         wait_for_completion(reset_device_cmd->completion);
3525
3526         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3527          * unless we tried to reset a slot ID that wasn't enabled,
3528          * or the device wasn't in the addressed or configured state.
3529          */
3530         ret = reset_device_cmd->status;
3531         switch (ret) {
3532         case COMP_CMD_ABORT:
3533         case COMP_CMD_STOP:
3534                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3535                 ret = -ETIME;
3536                 goto command_cleanup;
3537         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3538         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3539                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3540                                 slot_id,
3541                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3542                 xhci_dbg(xhci, "Not freeing device rings.\n");
3543                 /* Don't treat this as an error.  May change my mind later. */
3544                 ret = 0;
3545                 goto command_cleanup;
3546         case COMP_SUCCESS:
3547                 xhci_dbg(xhci, "Successful reset device command.\n");
3548                 break;
3549         default:
3550                 if (xhci_is_vendor_info_code(xhci, ret))
3551                         break;
3552                 xhci_warn(xhci, "Unknown completion code %u for "
3553                                 "reset device command.\n", ret);
3554                 ret = -EINVAL;
3555                 goto command_cleanup;
3556         }
3557
3558         /* Free up host controller endpoint resources */
3559         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3560                 spin_lock_irqsave(&xhci->lock, flags);
3561                 /* Don't delete the default control endpoint resources */
3562                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3563                 spin_unlock_irqrestore(&xhci->lock, flags);
3564         }
3565
3566         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3567         last_freed_endpoint = 1;
3568         for (i = 1; i < 31; ++i) {
3569                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3570
3571                 if (ep->ep_state & EP_HAS_STREAMS) {
3572                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3573                                         xhci_get_endpoint_address(i));
3574                         xhci_free_stream_info(xhci, ep->stream_info);
3575                         ep->stream_info = NULL;
3576                         ep->ep_state &= ~EP_HAS_STREAMS;
3577                 }
3578
3579                 if (ep->ring) {
3580                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3581                         last_freed_endpoint = i;
3582                 }
3583                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3584                         xhci_drop_ep_from_interval_table(xhci,
3585                                         &virt_dev->eps[i].bw_info,
3586                                         virt_dev->bw_table,
3587                                         udev,
3588                                         &virt_dev->eps[i],
3589                                         virt_dev->tt_info);
3590                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3591         }
3592         /* If necessary, update the number of active TTs on this root port */
3593         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3594
3595         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3596         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3597         ret = 0;
3598
3599 command_cleanup:
3600         xhci_free_command(xhci, reset_device_cmd);
3601         return ret;
3602 }
3603
3604 /*
3605  * At this point, the struct usb_device is about to go away, the device has
3606  * disconnected, and all traffic has been stopped and the endpoints have been
3607  * disabled.  Free any HC data structures associated with that device.
3608  */
3609 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3610 {
3611         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3612         struct xhci_virt_device *virt_dev;
3613         unsigned long flags;
3614         u32 state;
3615         int i, ret;
3616         struct xhci_command *command;
3617
3618         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3619         if (!command)
3620                 return;
3621
3622 #ifndef CONFIG_USB_DEFAULT_PERSIST
3623         /*
3624          * We called pm_runtime_get_noresume when the device was attached.
3625          * Decrement the counter here to allow controller to runtime suspend
3626          * if no devices remain.
3627          */
3628         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3629                 pm_runtime_put_noidle(hcd->self.controller);
3630 #endif
3631
3632         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3633         /* If the host is halted due to driver unload, we still need to free the
3634          * device.
3635          */
3636         if (ret <= 0 && ret != -ENODEV) {
3637                 kfree(command);
3638                 return;
3639         }
3640
3641         virt_dev = xhci->devs[udev->slot_id];
3642
3643         /* Stop any wayward timer functions (which may grab the lock) */
3644         for (i = 0; i < 31; ++i) {
3645                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3646                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3647         }
3648
3649         spin_lock_irqsave(&xhci->lock, flags);
3650         /* Don't disable the slot if the host controller is dead. */
3651         state = readl(&xhci->op_regs->status);
3652         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3653                         (xhci->xhc_state & XHCI_STATE_HALTED) ||
3654                         (xhci->xhc_state & XHCI_STATE_REMOVING)) {
3655                 xhci_free_virt_device(xhci, udev->slot_id);
3656                 spin_unlock_irqrestore(&xhci->lock, flags);
3657                 kfree(command);
3658                 return;
3659         }
3660
3661         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3662                                     udev->slot_id)) {
3663                 spin_unlock_irqrestore(&xhci->lock, flags);
3664                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3665                 return;
3666         }
3667         xhci_ring_cmd_db(xhci);
3668         spin_unlock_irqrestore(&xhci->lock, flags);
3669
3670         /*
3671          * Event command completion handler will free any data structures
3672          * associated with the slot.  XXX Can free sleep?
3673          */
3674 }
3675
3676 /*
3677  * Checks if we have enough host controller resources for the default control
3678  * endpoint.
3679  *
3680  * Must be called with xhci->lock held.
3681  */
3682 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3683 {
3684         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3685                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3686                                 "Not enough ep ctxs: "
3687                                 "%u active, need to add 1, limit is %u.",
3688                                 xhci->num_active_eps, xhci->limit_active_eps);
3689                 return -ENOMEM;
3690         }
3691         xhci->num_active_eps += 1;
3692         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3693                         "Adding 1 ep ctx, %u now active.",
3694                         xhci->num_active_eps);
3695         return 0;
3696 }
3697
3698
3699 /*
3700  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3701  * timed out, or allocating memory failed.  Returns 1 on success.
3702  */
3703 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3704 {
3705         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3706         unsigned long flags;
3707         int ret, slot_id;
3708         struct xhci_command *command;
3709
3710         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3711         if (!command)
3712                 return 0;
3713
3714         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3715         mutex_lock(&xhci->mutex);
3716         spin_lock_irqsave(&xhci->lock, flags);
3717         command->completion = &xhci->addr_dev;
3718         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3719         if (ret) {
3720                 spin_unlock_irqrestore(&xhci->lock, flags);
3721                 mutex_unlock(&xhci->mutex);
3722                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3723                 kfree(command);
3724                 return 0;
3725         }
3726         xhci_ring_cmd_db(xhci);
3727         spin_unlock_irqrestore(&xhci->lock, flags);
3728
3729         wait_for_completion(command->completion);
3730         slot_id = xhci->slot_id;
3731         mutex_unlock(&xhci->mutex);
3732
3733         if (!slot_id || command->status != COMP_SUCCESS) {
3734                 xhci_err(xhci, "Error while assigning device slot ID\n");
3735                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3736                                 HCS_MAX_SLOTS(
3737                                         readl(&xhci->cap_regs->hcs_params1)));
3738                 kfree(command);
3739                 return 0;
3740         }
3741
3742         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3743                 spin_lock_irqsave(&xhci->lock, flags);
3744                 ret = xhci_reserve_host_control_ep_resources(xhci);
3745                 if (ret) {
3746                         spin_unlock_irqrestore(&xhci->lock, flags);
3747                         xhci_warn(xhci, "Not enough host resources, "
3748                                         "active endpoint contexts = %u\n",
3749                                         xhci->num_active_eps);
3750                         goto disable_slot;
3751                 }
3752                 spin_unlock_irqrestore(&xhci->lock, flags);
3753         }
3754         /* Use GFP_NOIO, since this function can be called from
3755          * xhci_discover_or_reset_device(), which may be called as part of
3756          * mass storage driver error handling.
3757          */
3758         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3759                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3760                 goto disable_slot;
3761         }
3762         udev->slot_id = slot_id;
3763
3764 #ifndef CONFIG_USB_DEFAULT_PERSIST
3765         /*
3766          * If resetting upon resume, we can't put the controller into runtime
3767          * suspend if there is a device attached.
3768          */
3769         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3770                 pm_runtime_get_noresume(hcd->self.controller);
3771 #endif
3772
3773
3774         kfree(command);
3775         /* Is this a LS or FS device under a HS hub? */
3776         /* Hub or peripherial? */
3777         return 1;
3778
3779 disable_slot:
3780         /* Disable slot, if we can do it without mem alloc */
3781         spin_lock_irqsave(&xhci->lock, flags);
3782         command->completion = NULL;
3783         command->status = 0;
3784         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3785                                      udev->slot_id))
3786                 xhci_ring_cmd_db(xhci);
3787         spin_unlock_irqrestore(&xhci->lock, flags);
3788         return 0;
3789 }
3790
3791 /*
3792  * Issue an Address Device command and optionally send a corresponding
3793  * SetAddress request to the device.
3794  */
3795 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3796                              enum xhci_setup_dev setup)
3797 {
3798         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3799         unsigned long flags;
3800         struct xhci_virt_device *virt_dev;
3801         int ret = 0;
3802         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3803         struct xhci_slot_ctx *slot_ctx;
3804         struct xhci_input_control_ctx *ctrl_ctx;
3805         u64 temp_64;
3806         struct xhci_command *command = NULL;
3807
3808         mutex_lock(&xhci->mutex);
3809
3810         if (xhci->xhc_state) {  /* dying, removing or halted */
3811                 ret = -ESHUTDOWN;
3812                 goto out;
3813         }
3814
3815         if (!udev->slot_id) {
3816                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3817                                 "Bad Slot ID %d", udev->slot_id);
3818                 ret = -EINVAL;
3819                 goto out;
3820         }
3821
3822         virt_dev = xhci->devs[udev->slot_id];
3823
3824         if (WARN_ON(!virt_dev)) {
3825                 /*
3826                  * In plug/unplug torture test with an NEC controller,
3827                  * a zero-dereference was observed once due to virt_dev = 0.
3828                  * Print useful debug rather than crash if it is observed again!
3829                  */
3830                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3831                         udev->slot_id);
3832                 ret = -EINVAL;
3833                 goto out;
3834         }
3835
3836         if (setup == SETUP_CONTEXT_ONLY) {
3837                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3838                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3839                     SLOT_STATE_DEFAULT) {
3840                         xhci_dbg(xhci, "Slot already in default state\n");
3841                         goto out;
3842                 }
3843         }
3844
3845         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3846         if (!command) {
3847                 ret = -ENOMEM;
3848                 goto out;
3849         }
3850
3851         command->in_ctx = virt_dev->in_ctx;
3852         command->completion = &xhci->addr_dev;
3853
3854         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3855         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3856         if (!ctrl_ctx) {
3857                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3858                                 __func__);
3859                 ret = -EINVAL;
3860                 goto out;
3861         }
3862         /*
3863          * If this is the first Set Address since device plug-in or
3864          * virt_device realloaction after a resume with an xHCI power loss,
3865          * then set up the slot context.
3866          */
3867         if (!slot_ctx->dev_info)
3868                 xhci_setup_addressable_virt_dev(xhci, udev);
3869         /* Otherwise, update the control endpoint ring enqueue pointer. */
3870         else
3871                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3872         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3873         ctrl_ctx->drop_flags = 0;
3874
3875         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3876         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3877         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3878                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3879
3880         spin_lock_irqsave(&xhci->lock, flags);
3881         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3882                                         udev->slot_id, setup);
3883         if (ret) {
3884                 spin_unlock_irqrestore(&xhci->lock, flags);
3885                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3886                                 "FIXME: allocate a command ring segment");
3887                 goto out;
3888         }
3889         xhci_ring_cmd_db(xhci);
3890         spin_unlock_irqrestore(&xhci->lock, flags);
3891
3892         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3893         wait_for_completion(command->completion);
3894
3895         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3896          * the SetAddress() "recovery interval" required by USB and aborting the
3897          * command on a timeout.
3898          */
3899         switch (command->status) {
3900         case COMP_CMD_ABORT:
3901         case COMP_CMD_STOP:
3902                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3903                 ret = -ETIME;
3904                 break;
3905         case COMP_CTX_STATE:
3906         case COMP_EBADSLT:
3907                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3908                          act, udev->slot_id);
3909                 ret = -EINVAL;
3910                 break;
3911         case COMP_TX_ERR:
3912                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3913                 ret = -EPROTO;
3914                 break;
3915         case COMP_DEV_ERR:
3916                 dev_warn(&udev->dev,
3917                          "ERROR: Incompatible device for setup %s command\n", act);
3918                 ret = -ENODEV;
3919                 break;
3920         case COMP_SUCCESS:
3921                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3922                                "Successful setup %s command", act);
3923                 break;
3924         default:
3925                 xhci_err(xhci,
3926                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3927                          act, command->status);
3928                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3929                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3930                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3931                 ret = -EINVAL;
3932                 break;
3933         }
3934         if (ret)
3935                 goto out;
3936         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3937         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3938                         "Op regs DCBAA ptr = %#016llx", temp_64);
3939         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3940                 "Slot ID %d dcbaa entry @%p = %#016llx",
3941                 udev->slot_id,
3942                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3943                 (unsigned long long)
3944                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3945         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3946                         "Output Context DMA address = %#08llx",
3947                         (unsigned long long)virt_dev->out_ctx->dma);
3948         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3949         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3950         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3951                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3952         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3953         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3954         /*
3955          * USB core uses address 1 for the roothubs, so we add one to the
3956          * address given back to us by the HC.
3957          */
3958         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3959         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3960                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3961         /* Zero the input context control for later use */
3962         ctrl_ctx->add_flags = 0;
3963         ctrl_ctx->drop_flags = 0;
3964
3965         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3966                        "Internal device address = %d",
3967                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3968 out:
3969         mutex_unlock(&xhci->mutex);
3970         kfree(command);
3971         return ret;
3972 }
3973
3974 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3975 {
3976         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3977 }
3978
3979 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3980 {
3981         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3982 }
3983
3984 /*
3985  * Transfer the port index into real index in the HW port status
3986  * registers. Caculate offset between the port's PORTSC register
3987  * and port status base. Divide the number of per port register
3988  * to get the real index. The raw port number bases 1.
3989  */
3990 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3991 {
3992         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3993         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3994         __le32 __iomem *addr;
3995         int raw_port;
3996
3997         if (hcd->speed < HCD_USB3)
3998                 addr = xhci->usb2_ports[port1 - 1];
3999         else
4000                 addr = xhci->usb3_ports[port1 - 1];
4001
4002         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4003         return raw_port;
4004 }
4005
4006 /*
4007  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4008  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4009  */
4010 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4011                         struct usb_device *udev, u16 max_exit_latency)
4012 {
4013         struct xhci_virt_device *virt_dev;
4014         struct xhci_command *command;
4015         struct xhci_input_control_ctx *ctrl_ctx;
4016         struct xhci_slot_ctx *slot_ctx;
4017         unsigned long flags;
4018         int ret;
4019
4020         spin_lock_irqsave(&xhci->lock, flags);
4021
4022         virt_dev = xhci->devs[udev->slot_id];
4023
4024         /*
4025          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4026          * xHC was re-initialized. Exit latency will be set later after
4027          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4028          */
4029
4030         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4031                 spin_unlock_irqrestore(&xhci->lock, flags);
4032                 return 0;
4033         }
4034
4035         /* Attempt to issue an Evaluate Context command to change the MEL. */
4036         command = xhci->lpm_command;
4037         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4038         if (!ctrl_ctx) {
4039                 spin_unlock_irqrestore(&xhci->lock, flags);
4040                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4041                                 __func__);
4042                 return -ENOMEM;
4043         }
4044
4045         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4046         spin_unlock_irqrestore(&xhci->lock, flags);
4047
4048         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4049         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4050         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4051         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4052         slot_ctx->dev_state = 0;
4053
4054         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4055                         "Set up evaluate context for LPM MEL change.");
4056         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4057         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4058
4059         /* Issue and wait for the evaluate context command. */
4060         ret = xhci_configure_endpoint(xhci, udev, command,
4061                         true, true);
4062         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4063         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4064
4065         if (!ret) {
4066                 spin_lock_irqsave(&xhci->lock, flags);
4067                 virt_dev->current_mel = max_exit_latency;
4068                 spin_unlock_irqrestore(&xhci->lock, flags);
4069         }
4070         return ret;
4071 }
4072
4073 #ifdef CONFIG_PM
4074
4075 /* BESL to HIRD Encoding array for USB2 LPM */
4076 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4077         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4078
4079 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4080 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4081                                         struct usb_device *udev)
4082 {
4083         int u2del, besl, besl_host;
4084         int besl_device = 0;
4085         u32 field;
4086
4087         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4088         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4089
4090         if (field & USB_BESL_SUPPORT) {
4091                 for (besl_host = 0; besl_host < 16; besl_host++) {
4092                         if (xhci_besl_encoding[besl_host] >= u2del)
4093                                 break;
4094                 }
4095                 /* Use baseline BESL value as default */
4096                 if (field & USB_BESL_BASELINE_VALID)
4097                         besl_device = USB_GET_BESL_BASELINE(field);
4098                 else if (field & USB_BESL_DEEP_VALID)
4099                         besl_device = USB_GET_BESL_DEEP(field);
4100         } else {
4101                 if (u2del <= 50)
4102                         besl_host = 0;
4103                 else
4104                         besl_host = (u2del - 51) / 75 + 1;
4105         }
4106
4107         besl = besl_host + besl_device;
4108         if (besl > 15)
4109                 besl = 15;
4110
4111         return besl;
4112 }
4113
4114 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4115 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4116 {
4117         u32 field;
4118         int l1;
4119         int besld = 0;
4120         int hirdm = 0;
4121
4122         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4123
4124         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4125         l1 = udev->l1_params.timeout / 256;
4126
4127         /* device has preferred BESLD */
4128         if (field & USB_BESL_DEEP_VALID) {
4129                 besld = USB_GET_BESL_DEEP(field);
4130                 hirdm = 1;
4131         }
4132
4133         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4134 }
4135
4136 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4137                         struct usb_device *udev, int enable)
4138 {
4139         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4140         __le32 __iomem  **port_array;
4141         __le32 __iomem  *pm_addr, *hlpm_addr;
4142         u32             pm_val, hlpm_val, field;
4143         unsigned int    port_num;
4144         unsigned long   flags;
4145         int             hird, exit_latency;
4146         int             ret;
4147
4148         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4149                         !udev->lpm_capable)
4150                 return -EPERM;
4151
4152         if (!udev->parent || udev->parent->parent ||
4153                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4154                 return -EPERM;
4155
4156         if (udev->usb2_hw_lpm_capable != 1)
4157                 return -EPERM;
4158
4159         spin_lock_irqsave(&xhci->lock, flags);
4160
4161         port_array = xhci->usb2_ports;
4162         port_num = udev->portnum - 1;
4163         pm_addr = port_array[port_num] + PORTPMSC;
4164         pm_val = readl(pm_addr);
4165         hlpm_addr = port_array[port_num] + PORTHLPMC;
4166         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4167
4168         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4169                         enable ? "enable" : "disable", port_num + 1);
4170
4171         if (enable) {
4172                 /* Host supports BESL timeout instead of HIRD */
4173                 if (udev->usb2_hw_lpm_besl_capable) {
4174                         /* if device doesn't have a preferred BESL value use a
4175                          * default one which works with mixed HIRD and BESL
4176                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4177                          */
4178                         if ((field & USB_BESL_SUPPORT) &&
4179                             (field & USB_BESL_BASELINE_VALID))
4180                                 hird = USB_GET_BESL_BASELINE(field);
4181                         else
4182                                 hird = udev->l1_params.besl;
4183
4184                         exit_latency = xhci_besl_encoding[hird];
4185                         spin_unlock_irqrestore(&xhci->lock, flags);
4186
4187                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4188                          * input context for link powermanagement evaluate
4189                          * context commands. It is protected by hcd->bandwidth
4190                          * mutex and is shared by all devices. We need to set
4191                          * the max ext latency in USB 2 BESL LPM as well, so
4192                          * use the same mutex and xhci_change_max_exit_latency()
4193                          */
4194                         mutex_lock(hcd->bandwidth_mutex);
4195                         ret = xhci_change_max_exit_latency(xhci, udev,
4196                                                            exit_latency);
4197                         mutex_unlock(hcd->bandwidth_mutex);
4198
4199                         if (ret < 0)
4200                                 return ret;
4201                         spin_lock_irqsave(&xhci->lock, flags);
4202
4203                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4204                         writel(hlpm_val, hlpm_addr);
4205                         /* flush write */
4206                         readl(hlpm_addr);
4207                 } else {
4208                         hird = xhci_calculate_hird_besl(xhci, udev);
4209                 }
4210
4211                 pm_val &= ~PORT_HIRD_MASK;
4212                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4213                 writel(pm_val, pm_addr);
4214                 pm_val = readl(pm_addr);
4215                 pm_val |= PORT_HLE;
4216                 writel(pm_val, pm_addr);
4217                 /* flush write */
4218                 readl(pm_addr);
4219         } else {
4220                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4221                 writel(pm_val, pm_addr);
4222                 /* flush write */
4223                 readl(pm_addr);
4224                 if (udev->usb2_hw_lpm_besl_capable) {
4225                         spin_unlock_irqrestore(&xhci->lock, flags);
4226                         mutex_lock(hcd->bandwidth_mutex);
4227                         xhci_change_max_exit_latency(xhci, udev, 0);
4228                         mutex_unlock(hcd->bandwidth_mutex);
4229                         return 0;
4230                 }
4231         }
4232
4233         spin_unlock_irqrestore(&xhci->lock, flags);
4234         return 0;
4235 }
4236
4237 /* check if a usb2 port supports a given extened capability protocol
4238  * only USB2 ports extended protocol capability values are cached.
4239  * Return 1 if capability is supported
4240  */
4241 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4242                                            unsigned capability)
4243 {
4244         u32 port_offset, port_count;
4245         int i;
4246
4247         for (i = 0; i < xhci->num_ext_caps; i++) {
4248                 if (xhci->ext_caps[i] & capability) {
4249                         /* port offsets starts at 1 */
4250                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4251                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4252                         if (port >= port_offset &&
4253                             port < port_offset + port_count)
4254                                 return 1;
4255                 }
4256         }
4257         return 0;
4258 }
4259
4260 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4261 {
4262         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4263         int             portnum = udev->portnum - 1;
4264
4265         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4266                         !udev->lpm_capable)
4267                 return 0;
4268
4269         /* we only support lpm for non-hub device connected to root hub yet */
4270         if (!udev->parent || udev->parent->parent ||
4271                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4272                 return 0;
4273
4274         if (xhci->hw_lpm_support == 1 &&
4275                         xhci_check_usb2_port_capability(
4276                                 xhci, portnum, XHCI_HLC)) {
4277                 udev->usb2_hw_lpm_capable = 1;
4278                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4279                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4280                 if (xhci_check_usb2_port_capability(xhci, portnum,
4281                                         XHCI_BLC))
4282                         udev->usb2_hw_lpm_besl_capable = 1;
4283         }
4284
4285         return 0;
4286 }
4287
4288 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4289
4290 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4291 static unsigned long long xhci_service_interval_to_ns(
4292                 struct usb_endpoint_descriptor *desc)
4293 {
4294         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4295 }
4296
4297 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4298                 enum usb3_link_state state)
4299 {
4300         unsigned long long sel;
4301         unsigned long long pel;
4302         unsigned int max_sel_pel;
4303         char *state_name;
4304
4305         switch (state) {
4306         case USB3_LPM_U1:
4307                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4308                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4309                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4310                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4311                 state_name = "U1";
4312                 break;
4313         case USB3_LPM_U2:
4314                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4315                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4316                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4317                 state_name = "U2";
4318                 break;
4319         default:
4320                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4321                                 __func__);
4322                 return USB3_LPM_DISABLED;
4323         }
4324
4325         if (sel <= max_sel_pel && pel <= max_sel_pel)
4326                 return USB3_LPM_DEVICE_INITIATED;
4327
4328         if (sel > max_sel_pel)
4329                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4330                                 "due to long SEL %llu ms\n",
4331                                 state_name, sel);
4332         else
4333                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4334                                 "due to long PEL %llu ms\n",
4335                                 state_name, pel);
4336         return USB3_LPM_DISABLED;
4337 }
4338
4339 /* The U1 timeout should be the maximum of the following values:
4340  *  - For control endpoints, U1 system exit latency (SEL) * 3
4341  *  - For bulk endpoints, U1 SEL * 5
4342  *  - For interrupt endpoints:
4343  *    - Notification EPs, U1 SEL * 3
4344  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4345  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4346  */
4347 static unsigned long long xhci_calculate_intel_u1_timeout(
4348                 struct usb_device *udev,
4349                 struct usb_endpoint_descriptor *desc)
4350 {
4351         unsigned long long timeout_ns;
4352         int ep_type;
4353         int intr_type;
4354
4355         ep_type = usb_endpoint_type(desc);
4356         switch (ep_type) {
4357         case USB_ENDPOINT_XFER_CONTROL:
4358                 timeout_ns = udev->u1_params.sel * 3;
4359                 break;
4360         case USB_ENDPOINT_XFER_BULK:
4361                 timeout_ns = udev->u1_params.sel * 5;
4362                 break;
4363         case USB_ENDPOINT_XFER_INT:
4364                 intr_type = usb_endpoint_interrupt_type(desc);
4365                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4366                         timeout_ns = udev->u1_params.sel * 3;
4367                         break;
4368                 }
4369                 /* Otherwise the calculation is the same as isoc eps */
4370         case USB_ENDPOINT_XFER_ISOC:
4371                 timeout_ns = xhci_service_interval_to_ns(desc);
4372                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4373                 if (timeout_ns < udev->u1_params.sel * 2)
4374                         timeout_ns = udev->u1_params.sel * 2;
4375                 break;
4376         default:
4377                 return 0;
4378         }
4379
4380         return timeout_ns;
4381 }
4382
4383 /* Returns the hub-encoded U1 timeout value. */
4384 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4385                 struct usb_device *udev,
4386                 struct usb_endpoint_descriptor *desc)
4387 {
4388         unsigned long long timeout_ns;
4389
4390         if (xhci->quirks & XHCI_INTEL_HOST)
4391                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4392         else
4393                 timeout_ns = udev->u1_params.sel;
4394
4395         /* The U1 timeout is encoded in 1us intervals.
4396          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4397          */
4398         if (timeout_ns == USB3_LPM_DISABLED)
4399                 timeout_ns = 1;
4400         else
4401                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4402
4403         /* If the necessary timeout value is bigger than what we can set in the
4404          * USB 3.0 hub, we have to disable hub-initiated U1.
4405          */
4406         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4407                 return timeout_ns;
4408         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4409                         "due to long timeout %llu ms\n", timeout_ns);
4410         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4411 }
4412
4413 /* The U2 timeout should be the maximum of:
4414  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4415  *  - largest bInterval of any active periodic endpoint (to avoid going
4416  *    into lower power link states between intervals).
4417  *  - the U2 Exit Latency of the device
4418  */
4419 static unsigned long long xhci_calculate_intel_u2_timeout(
4420                 struct usb_device *udev,
4421                 struct usb_endpoint_descriptor *desc)
4422 {
4423         unsigned long long timeout_ns;
4424         unsigned long long u2_del_ns;
4425
4426         timeout_ns = 10 * 1000 * 1000;
4427
4428         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4429                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4430                 timeout_ns = xhci_service_interval_to_ns(desc);
4431
4432         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4433         if (u2_del_ns > timeout_ns)
4434                 timeout_ns = u2_del_ns;
4435
4436         return timeout_ns;
4437 }
4438
4439 /* Returns the hub-encoded U2 timeout value. */
4440 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4441                 struct usb_device *udev,
4442                 struct usb_endpoint_descriptor *desc)
4443 {
4444         unsigned long long timeout_ns;
4445
4446         if (xhci->quirks & XHCI_INTEL_HOST)
4447                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4448         else
4449                 timeout_ns = udev->u2_params.sel;
4450
4451         /* The U2 timeout is encoded in 256us intervals */
4452         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4453         /* If the necessary timeout value is bigger than what we can set in the
4454          * USB 3.0 hub, we have to disable hub-initiated U2.
4455          */
4456         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4457                 return timeout_ns;
4458         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4459                         "due to long timeout %llu ms\n", timeout_ns);
4460         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4461 }
4462
4463 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4464                 struct usb_device *udev,
4465                 struct usb_endpoint_descriptor *desc,
4466                 enum usb3_link_state state,
4467                 u16 *timeout)
4468 {
4469         if (state == USB3_LPM_U1)
4470                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4471         else if (state == USB3_LPM_U2)
4472                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4473
4474         return USB3_LPM_DISABLED;
4475 }
4476
4477 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4478                 struct usb_device *udev,
4479                 struct usb_endpoint_descriptor *desc,
4480                 enum usb3_link_state state,
4481                 u16 *timeout)
4482 {
4483         u16 alt_timeout;
4484
4485         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4486                 desc, state, timeout);
4487
4488         /* If we found we can't enable hub-initiated LPM, or
4489          * the U1 or U2 exit latency was too high to allow
4490          * device-initiated LPM as well, just stop searching.
4491          */
4492         if (alt_timeout == USB3_LPM_DISABLED ||
4493                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4494                 *timeout = alt_timeout;
4495                 return -E2BIG;
4496         }
4497         if (alt_timeout > *timeout)
4498                 *timeout = alt_timeout;
4499         return 0;
4500 }
4501
4502 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4503                 struct usb_device *udev,
4504                 struct usb_host_interface *alt,
4505                 enum usb3_link_state state,
4506                 u16 *timeout)
4507 {
4508         int j;
4509
4510         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4511                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4512                                         &alt->endpoint[j].desc, state, timeout))
4513                         return -E2BIG;
4514                 continue;
4515         }
4516         return 0;
4517 }
4518
4519 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4520                 enum usb3_link_state state)
4521 {
4522         struct usb_device *parent;
4523         unsigned int num_hubs;
4524
4525         if (state == USB3_LPM_U2)
4526                 return 0;
4527
4528         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4529         for (parent = udev->parent, num_hubs = 0; parent->parent;
4530                         parent = parent->parent)
4531                 num_hubs++;
4532
4533         if (num_hubs < 2)
4534                 return 0;
4535
4536         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4537                         " below second-tier hub.\n");
4538         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4539                         "to decrease power consumption.\n");
4540         return -E2BIG;
4541 }
4542
4543 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4544                 struct usb_device *udev,
4545                 enum usb3_link_state state)
4546 {
4547         if (xhci->quirks & XHCI_INTEL_HOST)
4548                 return xhci_check_intel_tier_policy(udev, state);
4549         else
4550                 return 0;
4551 }
4552
4553 /* Returns the U1 or U2 timeout that should be enabled.
4554  * If the tier check or timeout setting functions return with a non-zero exit
4555  * code, that means the timeout value has been finalized and we shouldn't look
4556  * at any more endpoints.
4557  */
4558 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4559                         struct usb_device *udev, enum usb3_link_state state)
4560 {
4561         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4562         struct usb_host_config *config;
4563         char *state_name;
4564         int i;
4565         u16 timeout = USB3_LPM_DISABLED;
4566
4567         if (state == USB3_LPM_U1)
4568                 state_name = "U1";
4569         else if (state == USB3_LPM_U2)
4570                 state_name = "U2";
4571         else {
4572                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4573                                 state);
4574                 return timeout;
4575         }
4576
4577         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4578                 return timeout;
4579
4580         /* Gather some information about the currently installed configuration
4581          * and alternate interface settings.
4582          */
4583         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4584                         state, &timeout))
4585                 return timeout;
4586
4587         config = udev->actconfig;
4588         if (!config)
4589                 return timeout;
4590
4591         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4592                 struct usb_driver *driver;
4593                 struct usb_interface *intf = config->interface[i];
4594
4595                 if (!intf)
4596                         continue;
4597
4598                 /* Check if any currently bound drivers want hub-initiated LPM
4599                  * disabled.
4600                  */
4601                 if (intf->dev.driver) {
4602                         driver = to_usb_driver(intf->dev.driver);
4603                         if (driver && driver->disable_hub_initiated_lpm) {
4604                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4605                                                 "at request of driver %s\n",
4606                                                 state_name, driver->name);
4607                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4608                         }
4609                 }
4610
4611                 /* Not sure how this could happen... */
4612                 if (!intf->cur_altsetting)
4613                         continue;
4614
4615                 if (xhci_update_timeout_for_interface(xhci, udev,
4616                                         intf->cur_altsetting,
4617                                         state, &timeout))
4618                         return timeout;
4619         }
4620         return timeout;
4621 }
4622
4623 static int calculate_max_exit_latency(struct usb_device *udev,
4624                 enum usb3_link_state state_changed,
4625                 u16 hub_encoded_timeout)
4626 {
4627         unsigned long long u1_mel_us = 0;
4628         unsigned long long u2_mel_us = 0;
4629         unsigned long long mel_us = 0;
4630         bool disabling_u1;
4631         bool disabling_u2;
4632         bool enabling_u1;
4633         bool enabling_u2;
4634
4635         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4636                         hub_encoded_timeout == USB3_LPM_DISABLED);
4637         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4638                         hub_encoded_timeout == USB3_LPM_DISABLED);
4639
4640         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4641                         hub_encoded_timeout != USB3_LPM_DISABLED);
4642         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4643                         hub_encoded_timeout != USB3_LPM_DISABLED);
4644
4645         /* If U1 was already enabled and we're not disabling it,
4646          * or we're going to enable U1, account for the U1 max exit latency.
4647          */
4648         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4649                         enabling_u1)
4650                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4651         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4652                         enabling_u2)
4653                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4654
4655         if (u1_mel_us > u2_mel_us)
4656                 mel_us = u1_mel_us;
4657         else
4658                 mel_us = u2_mel_us;
4659         /* xHCI host controller max exit latency field is only 16 bits wide. */
4660         if (mel_us > MAX_EXIT) {
4661                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4662                                 "is too big.\n", mel_us);
4663                 return -E2BIG;
4664         }
4665         return mel_us;
4666 }
4667
4668 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4669 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4670                         struct usb_device *udev, enum usb3_link_state state)
4671 {
4672         struct xhci_hcd *xhci;
4673         u16 hub_encoded_timeout;
4674         int mel;
4675         int ret;
4676
4677         xhci = hcd_to_xhci(hcd);
4678         /* The LPM timeout values are pretty host-controller specific, so don't
4679          * enable hub-initiated timeouts unless the vendor has provided
4680          * information about their timeout algorithm.
4681          */
4682         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4683                         !xhci->devs[udev->slot_id])
4684                 return USB3_LPM_DISABLED;
4685
4686         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4687         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4688         if (mel < 0) {
4689                 /* Max Exit Latency is too big, disable LPM. */
4690                 hub_encoded_timeout = USB3_LPM_DISABLED;
4691                 mel = 0;
4692         }
4693
4694         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4695         if (ret)
4696                 return ret;
4697         return hub_encoded_timeout;
4698 }
4699
4700 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4701                         struct usb_device *udev, enum usb3_link_state state)
4702 {
4703         struct xhci_hcd *xhci;
4704         u16 mel;
4705
4706         xhci = hcd_to_xhci(hcd);
4707         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4708                         !xhci->devs[udev->slot_id])
4709                 return 0;
4710
4711         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4712         return xhci_change_max_exit_latency(xhci, udev, mel);
4713 }
4714 #else /* CONFIG_PM */
4715
4716 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4717                                 struct usb_device *udev, int enable)
4718 {
4719         return 0;
4720 }
4721
4722 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4723 {
4724         return 0;
4725 }
4726
4727 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4728                         struct usb_device *udev, enum usb3_link_state state)
4729 {
4730         return USB3_LPM_DISABLED;
4731 }
4732
4733 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4734                         struct usb_device *udev, enum usb3_link_state state)
4735 {
4736         return 0;
4737 }
4738 #endif  /* CONFIG_PM */
4739
4740 /*-------------------------------------------------------------------------*/
4741
4742 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4743  * internal data structures for the device.
4744  */
4745 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4746                         struct usb_tt *tt, gfp_t mem_flags)
4747 {
4748         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4749         struct xhci_virt_device *vdev;
4750         struct xhci_command *config_cmd;
4751         struct xhci_input_control_ctx *ctrl_ctx;
4752         struct xhci_slot_ctx *slot_ctx;
4753         unsigned long flags;
4754         unsigned think_time;
4755         int ret;
4756
4757         /* Ignore root hubs */
4758         if (!hdev->parent)
4759                 return 0;
4760
4761         vdev = xhci->devs[hdev->slot_id];
4762         if (!vdev) {
4763                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4764                 return -EINVAL;
4765         }
4766         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4767         if (!config_cmd) {
4768                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4769                 return -ENOMEM;
4770         }
4771         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4772         if (!ctrl_ctx) {
4773                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4774                                 __func__);
4775                 xhci_free_command(xhci, config_cmd);
4776                 return -ENOMEM;
4777         }
4778
4779         spin_lock_irqsave(&xhci->lock, flags);
4780         if (hdev->speed == USB_SPEED_HIGH &&
4781                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4782                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4783                 xhci_free_command(xhci, config_cmd);
4784                 spin_unlock_irqrestore(&xhci->lock, flags);
4785                 return -ENOMEM;
4786         }
4787
4788         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4789         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4790         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4791         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4792         /*
4793          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4794          * but it may be already set to 1 when setup an xHCI virtual
4795          * device, so clear it anyway.
4796          */
4797         if (tt->multi)
4798                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4799         else if (hdev->speed == USB_SPEED_FULL)
4800                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4801
4802         if (xhci->hci_version > 0x95) {
4803                 xhci_dbg(xhci, "xHCI version %x needs hub "
4804                                 "TT think time and number of ports\n",
4805                                 (unsigned int) xhci->hci_version);
4806                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4807                 /* Set TT think time - convert from ns to FS bit times.
4808                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4809                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4810                  *
4811                  * xHCI 1.0: this field shall be 0 if the device is not a
4812                  * High-spped hub.
4813                  */
4814                 think_time = tt->think_time;
4815                 if (think_time != 0)
4816                         think_time = (think_time / 666) - 1;
4817                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4818                         slot_ctx->tt_info |=
4819                                 cpu_to_le32(TT_THINK_TIME(think_time));
4820         } else {
4821                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4822                                 "TT think time or number of ports\n",
4823                                 (unsigned int) xhci->hci_version);
4824         }
4825         slot_ctx->dev_state = 0;
4826         spin_unlock_irqrestore(&xhci->lock, flags);
4827
4828         xhci_dbg(xhci, "Set up %s for hub device.\n",
4829                         (xhci->hci_version > 0x95) ?
4830                         "configure endpoint" : "evaluate context");
4831         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4832         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4833
4834         /* Issue and wait for the configure endpoint or
4835          * evaluate context command.
4836          */
4837         if (xhci->hci_version > 0x95)
4838                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4839                                 false, false);
4840         else
4841                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4842                                 true, false);
4843
4844         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4845         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4846
4847         xhci_free_command(xhci, config_cmd);
4848         return ret;
4849 }
4850
4851 int xhci_get_frame(struct usb_hcd *hcd)
4852 {
4853         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4854         /* EHCI mods by the periodic size.  Why? */
4855         return readl(&xhci->run_regs->microframe_index) >> 3;
4856 }
4857
4858 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4859 {
4860         struct xhci_hcd         *xhci;
4861         struct device           *dev = hcd->self.controller;
4862         int                     retval;
4863
4864         /* Accept arbitrarily long scatter-gather lists */
4865         hcd->self.sg_tablesize = ~0;
4866
4867         /* support to build packet from discontinuous buffers */
4868         hcd->self.no_sg_constraint = 1;
4869
4870         /* XHCI controllers don't stop the ep queue on short packets :| */
4871         hcd->self.no_stop_on_short = 1;
4872
4873         xhci = hcd_to_xhci(hcd);
4874
4875         if (usb_hcd_is_primary_hcd(hcd)) {
4876                 xhci->main_hcd = hcd;
4877                 /* Mark the first roothub as being USB 2.0.
4878                  * The xHCI driver will register the USB 3.0 roothub.
4879                  */
4880                 hcd->speed = HCD_USB2;
4881                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4882                 /*
4883                  * USB 2.0 roothub under xHCI has an integrated TT,
4884                  * (rate matching hub) as opposed to having an OHCI/UHCI
4885                  * companion controller.
4886                  */
4887                 hcd->has_tt = 1;
4888         } else {
4889                 if (xhci->sbrn == 0x31) {
4890                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4891                         hcd->speed = HCD_USB31;
4892                 }
4893                 /* xHCI private pointer was set in xhci_pci_probe for the second
4894                  * registered roothub.
4895                  */
4896                 if (xhci->quirks & XHCI_DIS_AUTOSUSPEND)
4897                         xhci->shared_hcd->self.root_hub->quirks |=
4898                                 USB_QUIRK_AUTO_SUSPEND;
4899
4900                 return 0;
4901         }
4902
4903         mutex_init(&xhci->mutex);
4904         xhci->cap_regs = hcd->regs;
4905         xhci->op_regs = hcd->regs +
4906                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4907         xhci->run_regs = hcd->regs +
4908                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4909         /* Cache read-only capability registers */
4910         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4911         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4912         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4913         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4914         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4915         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4916         if (xhci->hci_version > 0x100)
4917                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4918         xhci_print_registers(xhci);
4919
4920         xhci->quirks |= quirks;
4921
4922         get_quirks(dev, xhci);
4923
4924         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4925          * success event after a short transfer. This quirk will ignore such
4926          * spurious event.
4927          */
4928         if (xhci->hci_version > 0x96)
4929                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4930
4931         /* Make sure the HC is halted. */
4932         retval = xhci_halt(xhci);
4933         if (retval)
4934                 return retval;
4935
4936         xhci_dbg(xhci, "Resetting HCD\n");
4937         /* Reset the internal HC memory state and registers. */
4938         retval = xhci_reset(xhci);
4939         if (retval)
4940                 return retval;
4941         xhci_dbg(xhci, "Reset complete\n");
4942
4943         /* Set dma_mask and coherent_dma_mask to 64-bits,
4944          * if xHC supports 64-bit addressing */
4945         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4946                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4947                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4948                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4949         } else {
4950                 /*
4951                  * This is to avoid error in cases where a 32-bit USB
4952                  * controller is used on a 64-bit capable system.
4953                  */
4954                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4955                 if (retval)
4956                         return retval;
4957                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4958                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4959         }
4960
4961         xhci_dbg(xhci, "Calling HCD init\n");
4962         /* Initialize HCD and host controller data structures. */
4963         retval = xhci_init(hcd);
4964         if (retval)
4965                 return retval;
4966         xhci_dbg(xhci, "Called HCD init\n");
4967
4968         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4969                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4970
4971         return 0;
4972 }
4973 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4974
4975 static const struct hc_driver xhci_hc_driver = {
4976         .description =          "xhci-hcd",
4977         .product_desc =         "xHCI Host Controller",
4978         .hcd_priv_size =        sizeof(struct xhci_hcd *),
4979
4980         /*
4981          * generic hardware linkage
4982          */
4983         .irq =                  xhci_irq,
4984         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4985
4986         /*
4987          * basic lifecycle operations
4988          */
4989         .reset =                NULL, /* set in xhci_init_driver() */
4990         .start =                xhci_run,
4991         .stop =                 xhci_stop,
4992         .shutdown =             xhci_shutdown,
4993
4994         /*
4995          * managing i/o requests and associated device resources
4996          */
4997         .urb_enqueue =          xhci_urb_enqueue,
4998         .urb_dequeue =          xhci_urb_dequeue,
4999         .alloc_dev =            xhci_alloc_dev,
5000         .free_dev =             xhci_free_dev,
5001         .alloc_streams =        xhci_alloc_streams,
5002         .free_streams =         xhci_free_streams,
5003         .add_endpoint =         xhci_add_endpoint,
5004         .drop_endpoint =        xhci_drop_endpoint,
5005         .endpoint_reset =       xhci_endpoint_reset,
5006         .check_bandwidth =      xhci_check_bandwidth,
5007         .reset_bandwidth =      xhci_reset_bandwidth,
5008         .address_device =       xhci_address_device,
5009         .enable_device =        xhci_enable_device,
5010         .update_hub_device =    xhci_update_hub_device,
5011         .reset_device =         xhci_discover_or_reset_device,
5012
5013         /*
5014          * scheduling support
5015          */
5016         .get_frame_number =     xhci_get_frame,
5017
5018         /*
5019          * root hub support
5020          */
5021         .hub_control =          xhci_hub_control,
5022         .hub_status_data =      xhci_hub_status_data,
5023         .bus_suspend =          xhci_bus_suspend,
5024         .bus_resume =           xhci_bus_resume,
5025
5026         /*
5027          * call back when device connected and addressed
5028          */
5029         .update_device =        xhci_update_device,
5030         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5031         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5032         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5033         .find_raw_port_number = xhci_find_raw_port_number,
5034 };
5035
5036 void xhci_init_driver(struct hc_driver *drv,
5037                       const struct xhci_driver_overrides *over)
5038 {
5039         BUG_ON(!over);
5040
5041         /* Copy the generic table to drv then apply the overrides */
5042         *drv = xhci_hc_driver;
5043
5044         if (over) {
5045                 drv->hcd_priv_size += over->extra_priv_size;
5046                 if (over->reset)
5047                         drv->reset = over->reset;
5048                 if (over->start)
5049                         drv->start = over->start;
5050         }
5051 }
5052 EXPORT_SYMBOL_GPL(xhci_init_driver);
5053
5054 MODULE_DESCRIPTION(DRIVER_DESC);
5055 MODULE_AUTHOR(DRIVER_AUTHOR);
5056 MODULE_LICENSE("GPL");
5057
5058 static int __init xhci_hcd_init(void)
5059 {
5060         /*
5061          * Check the compiler generated sizes of structures that must be laid
5062          * out in specific ways for hardware access.
5063          */
5064         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5065         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5066         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5067         /* xhci_device_control has eight fields, and also
5068          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5069          */
5070         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5071         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5072         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5073         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5074         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5075         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5076         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5077
5078         if (usb_disabled())
5079                 return -ENODEV;
5080
5081         return 0;
5082 }
5083
5084 /*
5085  * If an init function is provided, an exit function must also be provided
5086  * to allow module unload.
5087  */
5088 static void __exit xhci_hcd_fini(void) { }
5089
5090 module_init(xhci_hcd_init);
5091 module_exit(xhci_hcd_fini);