ARM: KVM: vgic: take distributor lock on sync_hwstate path
[firefly-linux-kernel-4.4.55.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      alloc_tty_struct        -       allocate a tty object
161  *
162  *      Return a new empty tty structure. The data fields have not
163  *      been initialized in any way but has been zeroed
164  *
165  *      Locking: none
166  */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174  *      free_tty_struct         -       free a disused tty
175  *      @tty: tty struct to free
176  *
177  *      Free the write buffers, tty queue and tty memory itself.
178  *
179  *      Locking: none. Must be called after tty is definitely unused
180  */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184         if (!tty)
185                 return;
186         if (tty->dev)
187                 put_device(tty->dev);
188         kfree(tty->write_buf);
189         tty->magic = 0xDEADDEAD;
190         kfree(tty);
191 }
192
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195         return ((struct tty_file_private *)file->private_data)->tty;
196 }
197
198 int tty_alloc_file(struct file *file)
199 {
200         struct tty_file_private *priv;
201
202         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203         if (!priv)
204                 return -ENOMEM;
205
206         file->private_data = priv;
207
208         return 0;
209 }
210
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214         struct tty_file_private *priv = file->private_data;
215
216         priv->tty = tty;
217         priv->file = file;
218
219         spin_lock(&tty_files_lock);
220         list_add(&priv->list, &tty->tty_files);
221         spin_unlock(&tty_files_lock);
222 }
223
224 /**
225  * tty_free_file - free file->private_data
226  *
227  * This shall be used only for fail path handling when tty_add_file was not
228  * called yet.
229  */
230 void tty_free_file(struct file *file)
231 {
232         struct tty_file_private *priv = file->private_data;
233
234         file->private_data = NULL;
235         kfree(priv);
236 }
237
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241         struct tty_file_private *priv = file->private_data;
242
243         spin_lock(&tty_files_lock);
244         list_del(&priv->list);
245         spin_unlock(&tty_files_lock);
246         tty_free_file(file);
247 }
248
249
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251
252 /**
253  *      tty_name        -       return tty naming
254  *      @tty: tty structure
255  *      @buf: buffer for output
256  *
257  *      Convert a tty structure into a name. The name reflects the kernel
258  *      naming policy and if udev is in use may not reflect user space
259  *
260  *      Locking: none
261  */
262
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
266                 strcpy(buf, "NULL tty");
267         else
268                 strcpy(buf, tty->name);
269         return buf;
270 }
271
272 EXPORT_SYMBOL(tty_name);
273
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275                               const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278         if (!tty) {
279                 printk(KERN_WARNING
280                         "null TTY for (%d:%d) in %s\n",
281                         imajor(inode), iminor(inode), routine);
282                 return 1;
283         }
284         if (tty->magic != TTY_MAGIC) {
285                 printk(KERN_WARNING
286                         "bad magic number for tty struct (%d:%d) in %s\n",
287                         imajor(inode), iminor(inode), routine);
288                 return 1;
289         }
290 #endif
291         return 0;
292 }
293
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297         struct list_head *p;
298         int count = 0;
299
300         spin_lock(&tty_files_lock);
301         list_for_each(p, &tty->tty_files) {
302                 count++;
303         }
304         spin_unlock(&tty_files_lock);
305         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306             tty->driver->subtype == PTY_TYPE_SLAVE &&
307             tty->link && tty->link->count)
308                 count++;
309         if (tty->count != count) {
310                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311                                     "!= #fd's(%d) in %s\n",
312                        tty->name, tty->count, count, routine);
313                 return count;
314         }
315 #endif
316         return 0;
317 }
318
319 /**
320  *      get_tty_driver          -       find device of a tty
321  *      @dev_t: device identifier
322  *      @index: returns the index of the tty
323  *
324  *      This routine returns a tty driver structure, given a device number
325  *      and also passes back the index number.
326  *
327  *      Locking: caller must hold tty_mutex
328  */
329
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332         struct tty_driver *p;
333
334         list_for_each_entry(p, &tty_drivers, tty_drivers) {
335                 dev_t base = MKDEV(p->major, p->minor_start);
336                 if (device < base || device >= base + p->num)
337                         continue;
338                 *index = device - base;
339                 return tty_driver_kref_get(p);
340         }
341         return NULL;
342 }
343
344 #ifdef CONFIG_CONSOLE_POLL
345
346 /**
347  *      tty_find_polling_driver -       find device of a polled tty
348  *      @name: name string to match
349  *      @line: pointer to resulting tty line nr
350  *
351  *      This routine returns a tty driver structure, given a name
352  *      and the condition that the tty driver is capable of polled
353  *      operation.
354  */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357         struct tty_driver *p, *res = NULL;
358         int tty_line = 0;
359         int len;
360         char *str, *stp;
361
362         for (str = name; *str; str++)
363                 if ((*str >= '0' && *str <= '9') || *str == ',')
364                         break;
365         if (!*str)
366                 return NULL;
367
368         len = str - name;
369         tty_line = simple_strtoul(str, &str, 10);
370
371         mutex_lock(&tty_mutex);
372         /* Search through the tty devices to look for a match */
373         list_for_each_entry(p, &tty_drivers, tty_drivers) {
374                 if (strncmp(name, p->name, len) != 0)
375                         continue;
376                 stp = str;
377                 if (*stp == ',')
378                         stp++;
379                 if (*stp == '\0')
380                         stp = NULL;
381
382                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384                         res = tty_driver_kref_get(p);
385                         *line = tty_line;
386                         break;
387                 }
388         }
389         mutex_unlock(&tty_mutex);
390
391         return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395
396 /**
397  *      tty_check_change        -       check for POSIX terminal changes
398  *      @tty: tty to check
399  *
400  *      If we try to write to, or set the state of, a terminal and we're
401  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
402  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
403  *
404  *      Locking: ctrl_lock
405  */
406
407 int tty_check_change(struct tty_struct *tty)
408 {
409         unsigned long flags;
410         int ret = 0;
411
412         if (current->signal->tty != tty)
413                 return 0;
414
415         spin_lock_irqsave(&tty->ctrl_lock, flags);
416
417         if (!tty->pgrp) {
418                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419                 goto out_unlock;
420         }
421         if (task_pgrp(current) == tty->pgrp)
422                 goto out_unlock;
423         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424         if (is_ignored(SIGTTOU))
425                 goto out;
426         if (is_current_pgrp_orphaned()) {
427                 ret = -EIO;
428                 goto out;
429         }
430         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431         set_thread_flag(TIF_SIGPENDING);
432         ret = -ERESTARTSYS;
433 out:
434         return ret;
435 out_unlock:
436         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437         return ret;
438 }
439
440 EXPORT_SYMBOL(tty_check_change);
441
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443                                 size_t count, loff_t *ppos)
444 {
445         return 0;
446 }
447
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449                                  size_t count, loff_t *ppos)
450 {
451         return -EIO;
452 }
453
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461                 unsigned long arg)
462 {
463         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465
466 static long hung_up_tty_compat_ioctl(struct file *file,
467                                      unsigned int cmd, unsigned long arg)
468 {
469         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471
472 static const struct file_operations tty_fops = {
473         .llseek         = no_llseek,
474         .read           = tty_read,
475         .write          = tty_write,
476         .poll           = tty_poll,
477         .unlocked_ioctl = tty_ioctl,
478         .compat_ioctl   = tty_compat_ioctl,
479         .open           = tty_open,
480         .release        = tty_release,
481         .fasync         = tty_fasync,
482 };
483
484 static const struct file_operations console_fops = {
485         .llseek         = no_llseek,
486         .read           = tty_read,
487         .write          = redirected_tty_write,
488         .poll           = tty_poll,
489         .unlocked_ioctl = tty_ioctl,
490         .compat_ioctl   = tty_compat_ioctl,
491         .open           = tty_open,
492         .release        = tty_release,
493         .fasync         = tty_fasync,
494 };
495
496 static const struct file_operations hung_up_tty_fops = {
497         .llseek         = no_llseek,
498         .read           = hung_up_tty_read,
499         .write          = hung_up_tty_write,
500         .poll           = hung_up_tty_poll,
501         .unlocked_ioctl = hung_up_tty_ioctl,
502         .compat_ioctl   = hung_up_tty_compat_ioctl,
503         .release        = tty_release,
504 };
505
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508
509 /**
510  *      tty_wakeup      -       request more data
511  *      @tty: terminal
512  *
513  *      Internal and external helper for wakeups of tty. This function
514  *      informs the line discipline if present that the driver is ready
515  *      to receive more output data.
516  */
517
518 void tty_wakeup(struct tty_struct *tty)
519 {
520         struct tty_ldisc *ld;
521
522         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523                 ld = tty_ldisc_ref(tty);
524                 if (ld) {
525                         if (ld->ops->write_wakeup)
526                                 ld->ops->write_wakeup(tty);
527                         tty_ldisc_deref(ld);
528                 }
529         }
530         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534
535 /**
536  *      __tty_hangup            -       actual handler for hangup events
537  *      @work: tty device
538  *
539  *      This can be called by a "kworker" kernel thread.  That is process
540  *      synchronous but doesn't hold any locks, so we need to make sure we
541  *      have the appropriate locks for what we're doing.
542  *
543  *      The hangup event clears any pending redirections onto the hung up
544  *      device. It ensures future writes will error and it does the needed
545  *      line discipline hangup and signal delivery. The tty object itself
546  *      remains intact.
547  *
548  *      Locking:
549  *              BTM
550  *                redirect lock for undoing redirection
551  *                file list lock for manipulating list of ttys
552  *                tty_ldisc_lock from called functions
553  *                termios_mutex resetting termios data
554  *                tasklist_lock to walk task list for hangup event
555  *                  ->siglock to protect ->signal/->sighand
556  */
557 static void __tty_hangup(struct tty_struct *tty)
558 {
559         struct file *cons_filp = NULL;
560         struct file *filp, *f = NULL;
561         struct task_struct *p;
562         struct tty_file_private *priv;
563         int    closecount = 0, n;
564         unsigned long flags;
565         int refs = 0;
566
567         if (!tty)
568                 return;
569
570
571         spin_lock(&redirect_lock);
572         if (redirect && file_tty(redirect) == tty) {
573                 f = redirect;
574                 redirect = NULL;
575         }
576         spin_unlock(&redirect_lock);
577
578         tty_lock(tty);
579
580         /* some functions below drop BTM, so we need this bit */
581         set_bit(TTY_HUPPING, &tty->flags);
582
583         /* inuse_filps is protected by the single tty lock,
584            this really needs to change if we want to flush the
585            workqueue with the lock held */
586         check_tty_count(tty, "tty_hangup");
587
588         spin_lock(&tty_files_lock);
589         /* This breaks for file handles being sent over AF_UNIX sockets ? */
590         list_for_each_entry(priv, &tty->tty_files, list) {
591                 filp = priv->file;
592                 if (filp->f_op->write == redirected_tty_write)
593                         cons_filp = filp;
594                 if (filp->f_op->write != tty_write)
595                         continue;
596                 closecount++;
597                 __tty_fasync(-1, filp, 0);      /* can't block */
598                 filp->f_op = &hung_up_tty_fops;
599         }
600         spin_unlock(&tty_files_lock);
601
602         /*
603          * it drops BTM and thus races with reopen
604          * we protect the race by TTY_HUPPING
605          */
606         tty_ldisc_hangup(tty);
607
608         read_lock(&tasklist_lock);
609         if (tty->session) {
610                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
611                         spin_lock_irq(&p->sighand->siglock);
612                         if (p->signal->tty == tty) {
613                                 p->signal->tty = NULL;
614                                 /* We defer the dereferences outside fo
615                                    the tasklist lock */
616                                 refs++;
617                         }
618                         if (!p->signal->leader) {
619                                 spin_unlock_irq(&p->sighand->siglock);
620                                 continue;
621                         }
622                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
623                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
624                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
625                         spin_lock_irqsave(&tty->ctrl_lock, flags);
626                         if (tty->pgrp)
627                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
628                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
629                         spin_unlock_irq(&p->sighand->siglock);
630                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
631         }
632         read_unlock(&tasklist_lock);
633
634         spin_lock_irqsave(&tty->ctrl_lock, flags);
635         clear_bit(TTY_THROTTLED, &tty->flags);
636         clear_bit(TTY_PUSH, &tty->flags);
637         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
638         put_pid(tty->session);
639         put_pid(tty->pgrp);
640         tty->session = NULL;
641         tty->pgrp = NULL;
642         tty->ctrl_status = 0;
643         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
644
645         /* Account for the p->signal references we killed */
646         while (refs--)
647                 tty_kref_put(tty);
648
649         /*
650          * If one of the devices matches a console pointer, we
651          * cannot just call hangup() because that will cause
652          * tty->count and state->count to go out of sync.
653          * So we just call close() the right number of times.
654          */
655         if (cons_filp) {
656                 if (tty->ops->close)
657                         for (n = 0; n < closecount; n++)
658                                 tty->ops->close(tty, cons_filp);
659         } else if (tty->ops->hangup)
660                 (tty->ops->hangup)(tty);
661         /*
662          * We don't want to have driver/ldisc interactions beyond
663          * the ones we did here. The driver layer expects no
664          * calls after ->hangup() from the ldisc side. However we
665          * can't yet guarantee all that.
666          */
667         set_bit(TTY_HUPPED, &tty->flags);
668         clear_bit(TTY_HUPPING, &tty->flags);
669         tty_ldisc_enable(tty);
670
671         tty_unlock(tty);
672
673         if (f)
674                 fput(f);
675 }
676
677 static void do_tty_hangup(struct work_struct *work)
678 {
679         struct tty_struct *tty =
680                 container_of(work, struct tty_struct, hangup_work);
681
682         __tty_hangup(tty);
683 }
684
685 /**
686  *      tty_hangup              -       trigger a hangup event
687  *      @tty: tty to hangup
688  *
689  *      A carrier loss (virtual or otherwise) has occurred on this like
690  *      schedule a hangup sequence to run after this event.
691  */
692
693 void tty_hangup(struct tty_struct *tty)
694 {
695 #ifdef TTY_DEBUG_HANGUP
696         char    buf[64];
697         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
698 #endif
699         schedule_work(&tty->hangup_work);
700 }
701
702 EXPORT_SYMBOL(tty_hangup);
703
704 /**
705  *      tty_vhangup             -       process vhangup
706  *      @tty: tty to hangup
707  *
708  *      The user has asked via system call for the terminal to be hung up.
709  *      We do this synchronously so that when the syscall returns the process
710  *      is complete. That guarantee is necessary for security reasons.
711  */
712
713 void tty_vhangup(struct tty_struct *tty)
714 {
715 #ifdef TTY_DEBUG_HANGUP
716         char    buf[64];
717
718         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
719 #endif
720         __tty_hangup(tty);
721 }
722
723 EXPORT_SYMBOL(tty_vhangup);
724
725
726 /**
727  *      tty_vhangup_self        -       process vhangup for own ctty
728  *
729  *      Perform a vhangup on the current controlling tty
730  */
731
732 void tty_vhangup_self(void)
733 {
734         struct tty_struct *tty;
735
736         tty = get_current_tty();
737         if (tty) {
738                 tty_vhangup(tty);
739                 tty_kref_put(tty);
740         }
741 }
742
743 /**
744  *      tty_hung_up_p           -       was tty hung up
745  *      @filp: file pointer of tty
746  *
747  *      Return true if the tty has been subject to a vhangup or a carrier
748  *      loss
749  */
750
751 int tty_hung_up_p(struct file *filp)
752 {
753         return (filp->f_op == &hung_up_tty_fops);
754 }
755
756 EXPORT_SYMBOL(tty_hung_up_p);
757
758 static void session_clear_tty(struct pid *session)
759 {
760         struct task_struct *p;
761         do_each_pid_task(session, PIDTYPE_SID, p) {
762                 proc_clear_tty(p);
763         } while_each_pid_task(session, PIDTYPE_SID, p);
764 }
765
766 /**
767  *      disassociate_ctty       -       disconnect controlling tty
768  *      @on_exit: true if exiting so need to "hang up" the session
769  *
770  *      This function is typically called only by the session leader, when
771  *      it wants to disassociate itself from its controlling tty.
772  *
773  *      It performs the following functions:
774  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
775  *      (2)  Clears the tty from being controlling the session
776  *      (3)  Clears the controlling tty for all processes in the
777  *              session group.
778  *
779  *      The argument on_exit is set to 1 if called when a process is
780  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
781  *
782  *      Locking:
783  *              BTM is taken for hysterical raisins, and held when
784  *                called from no_tty().
785  *                tty_mutex is taken to protect tty
786  *                ->siglock is taken to protect ->signal/->sighand
787  *                tasklist_lock is taken to walk process list for sessions
788  *                  ->siglock is taken to protect ->signal/->sighand
789  */
790
791 void disassociate_ctty(int on_exit)
792 {
793         struct tty_struct *tty;
794
795         if (!current->signal->leader)
796                 return;
797
798         tty = get_current_tty();
799         if (tty) {
800                 struct pid *tty_pgrp = get_pid(tty->pgrp);
801                 if (on_exit) {
802                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
803                                 tty_vhangup(tty);
804                 }
805                 tty_kref_put(tty);
806                 if (tty_pgrp) {
807                         kill_pgrp(tty_pgrp, SIGHUP, on_exit);
808                         if (!on_exit)
809                                 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
810                         put_pid(tty_pgrp);
811                 }
812         } else if (on_exit) {
813                 struct pid *old_pgrp;
814                 spin_lock_irq(&current->sighand->siglock);
815                 old_pgrp = current->signal->tty_old_pgrp;
816                 current->signal->tty_old_pgrp = NULL;
817                 spin_unlock_irq(&current->sighand->siglock);
818                 if (old_pgrp) {
819                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
820                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
821                         put_pid(old_pgrp);
822                 }
823                 return;
824         }
825
826         spin_lock_irq(&current->sighand->siglock);
827         put_pid(current->signal->tty_old_pgrp);
828         current->signal->tty_old_pgrp = NULL;
829         spin_unlock_irq(&current->sighand->siglock);
830
831         tty = get_current_tty();
832         if (tty) {
833                 unsigned long flags;
834                 spin_lock_irqsave(&tty->ctrl_lock, flags);
835                 put_pid(tty->session);
836                 put_pid(tty->pgrp);
837                 tty->session = NULL;
838                 tty->pgrp = NULL;
839                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
840                 tty_kref_put(tty);
841         } else {
842 #ifdef TTY_DEBUG_HANGUP
843                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
844                        " = NULL", tty);
845 #endif
846         }
847
848         /* Now clear signal->tty under the lock */
849         read_lock(&tasklist_lock);
850         session_clear_tty(task_session(current));
851         read_unlock(&tasklist_lock);
852 }
853
854 /**
855  *
856  *      no_tty  - Ensure the current process does not have a controlling tty
857  */
858 void no_tty(void)
859 {
860         /* FIXME: Review locking here. The tty_lock never covered any race
861            between a new association and proc_clear_tty but possible we need
862            to protect against this anyway */
863         struct task_struct *tsk = current;
864         disassociate_ctty(0);
865         proc_clear_tty(tsk);
866 }
867
868
869 /**
870  *      stop_tty        -       propagate flow control
871  *      @tty: tty to stop
872  *
873  *      Perform flow control to the driver. For PTY/TTY pairs we
874  *      must also propagate the TIOCKPKT status. May be called
875  *      on an already stopped device and will not re-call the driver
876  *      method.
877  *
878  *      This functionality is used by both the line disciplines for
879  *      halting incoming flow and by the driver. It may therefore be
880  *      called from any context, may be under the tty atomic_write_lock
881  *      but not always.
882  *
883  *      Locking:
884  *              Uses the tty control lock internally
885  */
886
887 void stop_tty(struct tty_struct *tty)
888 {
889         unsigned long flags;
890         spin_lock_irqsave(&tty->ctrl_lock, flags);
891         if (tty->stopped) {
892                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
893                 return;
894         }
895         tty->stopped = 1;
896         if (tty->link && tty->link->packet) {
897                 tty->ctrl_status &= ~TIOCPKT_START;
898                 tty->ctrl_status |= TIOCPKT_STOP;
899                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
900         }
901         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
902         if (tty->ops->stop)
903                 (tty->ops->stop)(tty);
904 }
905
906 EXPORT_SYMBOL(stop_tty);
907
908 /**
909  *      start_tty       -       propagate flow control
910  *      @tty: tty to start
911  *
912  *      Start a tty that has been stopped if at all possible. Perform
913  *      any necessary wakeups and propagate the TIOCPKT status. If this
914  *      is the tty was previous stopped and is being started then the
915  *      driver start method is invoked and the line discipline woken.
916  *
917  *      Locking:
918  *              ctrl_lock
919  */
920
921 void start_tty(struct tty_struct *tty)
922 {
923         unsigned long flags;
924         spin_lock_irqsave(&tty->ctrl_lock, flags);
925         if (!tty->stopped || tty->flow_stopped) {
926                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
927                 return;
928         }
929         tty->stopped = 0;
930         if (tty->link && tty->link->packet) {
931                 tty->ctrl_status &= ~TIOCPKT_STOP;
932                 tty->ctrl_status |= TIOCPKT_START;
933                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
934         }
935         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
936         if (tty->ops->start)
937                 (tty->ops->start)(tty);
938         /* If we have a running line discipline it may need kicking */
939         tty_wakeup(tty);
940 }
941
942 EXPORT_SYMBOL(start_tty);
943
944 /**
945  *      tty_read        -       read method for tty device files
946  *      @file: pointer to tty file
947  *      @buf: user buffer
948  *      @count: size of user buffer
949  *      @ppos: unused
950  *
951  *      Perform the read system call function on this terminal device. Checks
952  *      for hung up devices before calling the line discipline method.
953  *
954  *      Locking:
955  *              Locks the line discipline internally while needed. Multiple
956  *      read calls may be outstanding in parallel.
957  */
958
959 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
960                         loff_t *ppos)
961 {
962         int i;
963         struct inode *inode = file->f_path.dentry->d_inode;
964         struct tty_struct *tty = file_tty(file);
965         struct tty_ldisc *ld;
966
967         if (tty_paranoia_check(tty, inode, "tty_read"))
968                 return -EIO;
969         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
970                 return -EIO;
971
972         /* We want to wait for the line discipline to sort out in this
973            situation */
974         ld = tty_ldisc_ref_wait(tty);
975         if (ld->ops->read)
976                 i = (ld->ops->read)(tty, file, buf, count);
977         else
978                 i = -EIO;
979         tty_ldisc_deref(ld);
980
981         return i;
982 }
983
984 void tty_write_unlock(struct tty_struct *tty)
985         __releases(&tty->atomic_write_lock)
986 {
987         mutex_unlock(&tty->atomic_write_lock);
988         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
989 }
990
991 int tty_write_lock(struct tty_struct *tty, int ndelay)
992         __acquires(&tty->atomic_write_lock)
993 {
994         if (!mutex_trylock(&tty->atomic_write_lock)) {
995                 if (ndelay)
996                         return -EAGAIN;
997                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
998                         return -ERESTARTSYS;
999         }
1000         return 0;
1001 }
1002
1003 /*
1004  * Split writes up in sane blocksizes to avoid
1005  * denial-of-service type attacks
1006  */
1007 static inline ssize_t do_tty_write(
1008         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1009         struct tty_struct *tty,
1010         struct file *file,
1011         const char __user *buf,
1012         size_t count)
1013 {
1014         ssize_t ret, written = 0;
1015         unsigned int chunk;
1016
1017         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1018         if (ret < 0)
1019                 return ret;
1020
1021         /*
1022          * We chunk up writes into a temporary buffer. This
1023          * simplifies low-level drivers immensely, since they
1024          * don't have locking issues and user mode accesses.
1025          *
1026          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1027          * big chunk-size..
1028          *
1029          * The default chunk-size is 2kB, because the NTTY
1030          * layer has problems with bigger chunks. It will
1031          * claim to be able to handle more characters than
1032          * it actually does.
1033          *
1034          * FIXME: This can probably go away now except that 64K chunks
1035          * are too likely to fail unless switched to vmalloc...
1036          */
1037         chunk = 2048;
1038         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1039                 chunk = 65536;
1040         if (count < chunk)
1041                 chunk = count;
1042
1043         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1044         if (tty->write_cnt < chunk) {
1045                 unsigned char *buf_chunk;
1046
1047                 if (chunk < 1024)
1048                         chunk = 1024;
1049
1050                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1051                 if (!buf_chunk) {
1052                         ret = -ENOMEM;
1053                         goto out;
1054                 }
1055                 kfree(tty->write_buf);
1056                 tty->write_cnt = chunk;
1057                 tty->write_buf = buf_chunk;
1058         }
1059
1060         /* Do the write .. */
1061         for (;;) {
1062                 size_t size = count;
1063                 if (size > chunk)
1064                         size = chunk;
1065                 ret = -EFAULT;
1066                 if (copy_from_user(tty->write_buf, buf, size))
1067                         break;
1068                 ret = write(tty, file, tty->write_buf, size);
1069                 if (ret <= 0)
1070                         break;
1071                 written += ret;
1072                 buf += ret;
1073                 count -= ret;
1074                 if (!count)
1075                         break;
1076                 ret = -ERESTARTSYS;
1077                 if (signal_pending(current))
1078                         break;
1079                 cond_resched();
1080         }
1081         if (written)
1082                 ret = written;
1083 out:
1084         tty_write_unlock(tty);
1085         return ret;
1086 }
1087
1088 /**
1089  * tty_write_message - write a message to a certain tty, not just the console.
1090  * @tty: the destination tty_struct
1091  * @msg: the message to write
1092  *
1093  * This is used for messages that need to be redirected to a specific tty.
1094  * We don't put it into the syslog queue right now maybe in the future if
1095  * really needed.
1096  *
1097  * We must still hold the BTM and test the CLOSING flag for the moment.
1098  */
1099
1100 void tty_write_message(struct tty_struct *tty, char *msg)
1101 {
1102         if (tty) {
1103                 mutex_lock(&tty->atomic_write_lock);
1104                 tty_lock(tty);
1105                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1106                         tty_unlock(tty);
1107                         tty->ops->write(tty, msg, strlen(msg));
1108                 } else
1109                         tty_unlock(tty);
1110                 tty_write_unlock(tty);
1111         }
1112         return;
1113 }
1114
1115
1116 /**
1117  *      tty_write               -       write method for tty device file
1118  *      @file: tty file pointer
1119  *      @buf: user data to write
1120  *      @count: bytes to write
1121  *      @ppos: unused
1122  *
1123  *      Write data to a tty device via the line discipline.
1124  *
1125  *      Locking:
1126  *              Locks the line discipline as required
1127  *              Writes to the tty driver are serialized by the atomic_write_lock
1128  *      and are then processed in chunks to the device. The line discipline
1129  *      write method will not be invoked in parallel for each device.
1130  */
1131
1132 static ssize_t tty_write(struct file *file, const char __user *buf,
1133                                                 size_t count, loff_t *ppos)
1134 {
1135         struct inode *inode = file->f_path.dentry->d_inode;
1136         struct tty_struct *tty = file_tty(file);
1137         struct tty_ldisc *ld;
1138         ssize_t ret;
1139
1140         if (tty_paranoia_check(tty, inode, "tty_write"))
1141                 return -EIO;
1142         if (!tty || !tty->ops->write ||
1143                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1144                         return -EIO;
1145         /* Short term debug to catch buggy drivers */
1146         if (tty->ops->write_room == NULL)
1147                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1148                         tty->driver->name);
1149         ld = tty_ldisc_ref_wait(tty);
1150         if (!ld->ops->write)
1151                 ret = -EIO;
1152         else
1153                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1154         tty_ldisc_deref(ld);
1155         return ret;
1156 }
1157
1158 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1159                                                 size_t count, loff_t *ppos)
1160 {
1161         struct file *p = NULL;
1162
1163         spin_lock(&redirect_lock);
1164         if (redirect)
1165                 p = get_file(redirect);
1166         spin_unlock(&redirect_lock);
1167
1168         if (p) {
1169                 ssize_t res;
1170                 res = vfs_write(p, buf, count, &p->f_pos);
1171                 fput(p);
1172                 return res;
1173         }
1174         return tty_write(file, buf, count, ppos);
1175 }
1176
1177 static char ptychar[] = "pqrstuvwxyzabcde";
1178
1179 /**
1180  *      pty_line_name   -       generate name for a pty
1181  *      @driver: the tty driver in use
1182  *      @index: the minor number
1183  *      @p: output buffer of at least 6 bytes
1184  *
1185  *      Generate a name from a driver reference and write it to the output
1186  *      buffer.
1187  *
1188  *      Locking: None
1189  */
1190 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1191 {
1192         int i = index + driver->name_base;
1193         /* ->name is initialized to "ttyp", but "tty" is expected */
1194         sprintf(p, "%s%c%x",
1195                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1196                 ptychar[i >> 4 & 0xf], i & 0xf);
1197 }
1198
1199 /**
1200  *      tty_line_name   -       generate name for a tty
1201  *      @driver: the tty driver in use
1202  *      @index: the minor number
1203  *      @p: output buffer of at least 7 bytes
1204  *
1205  *      Generate a name from a driver reference and write it to the output
1206  *      buffer.
1207  *
1208  *      Locking: None
1209  */
1210 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1211 {
1212         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1213                 strcpy(p, driver->name);
1214         else
1215                 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1216 }
1217
1218 /**
1219  *      tty_driver_lookup_tty() - find an existing tty, if any
1220  *      @driver: the driver for the tty
1221  *      @idx:    the minor number
1222  *
1223  *      Return the tty, if found or ERR_PTR() otherwise.
1224  *
1225  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1226  *      be held until the 'fast-open' is also done. Will change once we
1227  *      have refcounting in the driver and per driver locking
1228  */
1229 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1230                 struct inode *inode, int idx)
1231 {
1232         if (driver->ops->lookup)
1233                 return driver->ops->lookup(driver, inode, idx);
1234
1235         return driver->ttys[idx];
1236 }
1237
1238 /**
1239  *      tty_init_termios        -  helper for termios setup
1240  *      @tty: the tty to set up
1241  *
1242  *      Initialise the termios structures for this tty. Thus runs under
1243  *      the tty_mutex currently so we can be relaxed about ordering.
1244  */
1245
1246 int tty_init_termios(struct tty_struct *tty)
1247 {
1248         struct ktermios *tp;
1249         int idx = tty->index;
1250
1251         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1252                 tty->termios = tty->driver->init_termios;
1253         else {
1254                 /* Check for lazy saved data */
1255                 tp = tty->driver->termios[idx];
1256                 if (tp != NULL)
1257                         tty->termios = *tp;
1258                 else
1259                         tty->termios = tty->driver->init_termios;
1260         }
1261         /* Compatibility until drivers always set this */
1262         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1263         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1264         return 0;
1265 }
1266 EXPORT_SYMBOL_GPL(tty_init_termios);
1267
1268 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1269 {
1270         int ret = tty_init_termios(tty);
1271         if (ret)
1272                 return ret;
1273
1274         tty_driver_kref_get(driver);
1275         tty->count++;
1276         driver->ttys[tty->index] = tty;
1277         return 0;
1278 }
1279 EXPORT_SYMBOL_GPL(tty_standard_install);
1280
1281 /**
1282  *      tty_driver_install_tty() - install a tty entry in the driver
1283  *      @driver: the driver for the tty
1284  *      @tty: the tty
1285  *
1286  *      Install a tty object into the driver tables. The tty->index field
1287  *      will be set by the time this is called. This method is responsible
1288  *      for ensuring any need additional structures are allocated and
1289  *      configured.
1290  *
1291  *      Locking: tty_mutex for now
1292  */
1293 static int tty_driver_install_tty(struct tty_driver *driver,
1294                                                 struct tty_struct *tty)
1295 {
1296         return driver->ops->install ? driver->ops->install(driver, tty) :
1297                 tty_standard_install(driver, tty);
1298 }
1299
1300 /**
1301  *      tty_driver_remove_tty() - remove a tty from the driver tables
1302  *      @driver: the driver for the tty
1303  *      @idx:    the minor number
1304  *
1305  *      Remvoe a tty object from the driver tables. The tty->index field
1306  *      will be set by the time this is called.
1307  *
1308  *      Locking: tty_mutex for now
1309  */
1310 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1311 {
1312         if (driver->ops->remove)
1313                 driver->ops->remove(driver, tty);
1314         else
1315                 driver->ttys[tty->index] = NULL;
1316 }
1317
1318 /*
1319  *      tty_reopen()    - fast re-open of an open tty
1320  *      @tty    - the tty to open
1321  *
1322  *      Return 0 on success, -errno on error.
1323  *
1324  *      Locking: tty_mutex must be held from the time the tty was found
1325  *               till this open completes.
1326  */
1327 static int tty_reopen(struct tty_struct *tty)
1328 {
1329         struct tty_driver *driver = tty->driver;
1330
1331         if (test_bit(TTY_CLOSING, &tty->flags) ||
1332                         test_bit(TTY_HUPPING, &tty->flags) ||
1333                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1334                 return -EIO;
1335
1336         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1337             driver->subtype == PTY_TYPE_MASTER) {
1338                 /*
1339                  * special case for PTY masters: only one open permitted,
1340                  * and the slave side open count is incremented as well.
1341                  */
1342                 if (tty->count)
1343                         return -EIO;
1344
1345                 tty->link->count++;
1346         }
1347         tty->count++;
1348
1349         mutex_lock(&tty->ldisc_mutex);
1350         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1351         mutex_unlock(&tty->ldisc_mutex);
1352
1353         return 0;
1354 }
1355
1356 /**
1357  *      tty_init_dev            -       initialise a tty device
1358  *      @driver: tty driver we are opening a device on
1359  *      @idx: device index
1360  *      @ret_tty: returned tty structure
1361  *
1362  *      Prepare a tty device. This may not be a "new" clean device but
1363  *      could also be an active device. The pty drivers require special
1364  *      handling because of this.
1365  *
1366  *      Locking:
1367  *              The function is called under the tty_mutex, which
1368  *      protects us from the tty struct or driver itself going away.
1369  *
1370  *      On exit the tty device has the line discipline attached and
1371  *      a reference count of 1. If a pair was created for pty/tty use
1372  *      and the other was a pty master then it too has a reference count of 1.
1373  *
1374  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1375  * failed open.  The new code protects the open with a mutex, so it's
1376  * really quite straightforward.  The mutex locking can probably be
1377  * relaxed for the (most common) case of reopening a tty.
1378  */
1379
1380 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1381 {
1382         struct tty_struct *tty;
1383         int retval;
1384
1385         /*
1386          * First time open is complex, especially for PTY devices.
1387          * This code guarantees that either everything succeeds and the
1388          * TTY is ready for operation, or else the table slots are vacated
1389          * and the allocated memory released.  (Except that the termios
1390          * and locked termios may be retained.)
1391          */
1392
1393         if (!try_module_get(driver->owner))
1394                 return ERR_PTR(-ENODEV);
1395
1396         tty = alloc_tty_struct();
1397         if (!tty) {
1398                 retval = -ENOMEM;
1399                 goto err_module_put;
1400         }
1401         initialize_tty_struct(tty, driver, idx);
1402
1403         tty_lock(tty);
1404         retval = tty_driver_install_tty(driver, tty);
1405         if (retval < 0)
1406                 goto err_deinit_tty;
1407
1408         if (!tty->port)
1409                 tty->port = driver->ports[idx];
1410
1411         WARN_RATELIMIT(!tty->port,
1412                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1413                         __func__, tty->driver->name);
1414
1415         tty->port->itty = tty;
1416
1417         /*
1418          * Structures all installed ... call the ldisc open routines.
1419          * If we fail here just call release_tty to clean up.  No need
1420          * to decrement the use counts, as release_tty doesn't care.
1421          */
1422         retval = tty_ldisc_setup(tty, tty->link);
1423         if (retval)
1424                 goto err_release_tty;
1425         /* Return the tty locked so that it cannot vanish under the caller */
1426         return tty;
1427
1428 err_deinit_tty:
1429         tty_unlock(tty);
1430         deinitialize_tty_struct(tty);
1431         free_tty_struct(tty);
1432 err_module_put:
1433         module_put(driver->owner);
1434         return ERR_PTR(retval);
1435
1436         /* call the tty release_tty routine to clean out this slot */
1437 err_release_tty:
1438         tty_unlock(tty);
1439         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1440                                  "clearing slot %d\n", idx);
1441         release_tty(tty, idx);
1442         return ERR_PTR(retval);
1443 }
1444
1445 void tty_free_termios(struct tty_struct *tty)
1446 {
1447         struct ktermios *tp;
1448         int idx = tty->index;
1449
1450         /* If the port is going to reset then it has no termios to save */
1451         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1452                 return;
1453
1454         /* Stash the termios data */
1455         tp = tty->driver->termios[idx];
1456         if (tp == NULL) {
1457                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1458                 if (tp == NULL) {
1459                         pr_warn("tty: no memory to save termios state.\n");
1460                         return;
1461                 }
1462                 tty->driver->termios[idx] = tp;
1463         }
1464         *tp = tty->termios;
1465 }
1466 EXPORT_SYMBOL(tty_free_termios);
1467
1468
1469 /**
1470  *      release_one_tty         -       release tty structure memory
1471  *      @kref: kref of tty we are obliterating
1472  *
1473  *      Releases memory associated with a tty structure, and clears out the
1474  *      driver table slots. This function is called when a device is no longer
1475  *      in use. It also gets called when setup of a device fails.
1476  *
1477  *      Locking:
1478  *              takes the file list lock internally when working on the list
1479  *      of ttys that the driver keeps.
1480  *
1481  *      This method gets called from a work queue so that the driver private
1482  *      cleanup ops can sleep (needed for USB at least)
1483  */
1484 static void release_one_tty(struct work_struct *work)
1485 {
1486         struct tty_struct *tty =
1487                 container_of(work, struct tty_struct, hangup_work);
1488         struct tty_driver *driver = tty->driver;
1489
1490         if (tty->ops->cleanup)
1491                 tty->ops->cleanup(tty);
1492
1493         tty->magic = 0;
1494         tty_driver_kref_put(driver);
1495         module_put(driver->owner);
1496
1497         spin_lock(&tty_files_lock);
1498         list_del_init(&tty->tty_files);
1499         spin_unlock(&tty_files_lock);
1500
1501         put_pid(tty->pgrp);
1502         put_pid(tty->session);
1503         free_tty_struct(tty);
1504 }
1505
1506 static void queue_release_one_tty(struct kref *kref)
1507 {
1508         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1509
1510         /* The hangup queue is now free so we can reuse it rather than
1511            waste a chunk of memory for each port */
1512         INIT_WORK(&tty->hangup_work, release_one_tty);
1513         schedule_work(&tty->hangup_work);
1514 }
1515
1516 /**
1517  *      tty_kref_put            -       release a tty kref
1518  *      @tty: tty device
1519  *
1520  *      Release a reference to a tty device and if need be let the kref
1521  *      layer destruct the object for us
1522  */
1523
1524 void tty_kref_put(struct tty_struct *tty)
1525 {
1526         if (tty)
1527                 kref_put(&tty->kref, queue_release_one_tty);
1528 }
1529 EXPORT_SYMBOL(tty_kref_put);
1530
1531 /**
1532  *      release_tty             -       release tty structure memory
1533  *
1534  *      Release both @tty and a possible linked partner (think pty pair),
1535  *      and decrement the refcount of the backing module.
1536  *
1537  *      Locking:
1538  *              tty_mutex
1539  *              takes the file list lock internally when working on the list
1540  *      of ttys that the driver keeps.
1541  *
1542  */
1543 static void release_tty(struct tty_struct *tty, int idx)
1544 {
1545         /* This should always be true but check for the moment */
1546         WARN_ON(tty->index != idx);
1547         WARN_ON(!mutex_is_locked(&tty_mutex));
1548         if (tty->ops->shutdown)
1549                 tty->ops->shutdown(tty);
1550         tty_free_termios(tty);
1551         tty_driver_remove_tty(tty->driver, tty);
1552         tty->port->itty = NULL;
1553
1554         if (tty->link)
1555                 tty_kref_put(tty->link);
1556         tty_kref_put(tty);
1557 }
1558
1559 /**
1560  *      tty_release_checks - check a tty before real release
1561  *      @tty: tty to check
1562  *      @o_tty: link of @tty (if any)
1563  *      @idx: index of the tty
1564  *
1565  *      Performs some paranoid checking before true release of the @tty.
1566  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1567  */
1568 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1569                 int idx)
1570 {
1571 #ifdef TTY_PARANOIA_CHECK
1572         if (idx < 0 || idx >= tty->driver->num) {
1573                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1574                                 __func__, tty->name);
1575                 return -1;
1576         }
1577
1578         /* not much to check for devpts */
1579         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1580                 return 0;
1581
1582         if (tty != tty->driver->ttys[idx]) {
1583                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1584                                 __func__, idx, tty->name);
1585                 return -1;
1586         }
1587         if (tty->driver->other) {
1588                 if (o_tty != tty->driver->other->ttys[idx]) {
1589                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1590                                         __func__, idx, tty->name);
1591                         return -1;
1592                 }
1593                 if (o_tty->link != tty) {
1594                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1595                         return -1;
1596                 }
1597         }
1598 #endif
1599         return 0;
1600 }
1601
1602 /**
1603  *      tty_release             -       vfs callback for close
1604  *      @inode: inode of tty
1605  *      @filp: file pointer for handle to tty
1606  *
1607  *      Called the last time each file handle is closed that references
1608  *      this tty. There may however be several such references.
1609  *
1610  *      Locking:
1611  *              Takes bkl. See tty_release_dev
1612  *
1613  * Even releasing the tty structures is a tricky business.. We have
1614  * to be very careful that the structures are all released at the
1615  * same time, as interrupts might otherwise get the wrong pointers.
1616  *
1617  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1618  * lead to double frees or releasing memory still in use.
1619  */
1620
1621 int tty_release(struct inode *inode, struct file *filp)
1622 {
1623         struct tty_struct *tty = file_tty(filp);
1624         struct tty_struct *o_tty;
1625         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1626         int     idx;
1627         char    buf[64];
1628
1629         if (tty_paranoia_check(tty, inode, __func__))
1630                 return 0;
1631
1632         tty_lock(tty);
1633         check_tty_count(tty, __func__);
1634
1635         __tty_fasync(-1, filp, 0);
1636
1637         idx = tty->index;
1638         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1639                       tty->driver->subtype == PTY_TYPE_MASTER);
1640         /* Review: parallel close */
1641         o_tty = tty->link;
1642
1643         if (tty_release_checks(tty, o_tty, idx)) {
1644                 tty_unlock(tty);
1645                 return 0;
1646         }
1647
1648 #ifdef TTY_DEBUG_HANGUP
1649         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1650                         tty_name(tty, buf), tty->count);
1651 #endif
1652
1653         if (tty->ops->close)
1654                 tty->ops->close(tty, filp);
1655
1656         tty_unlock(tty);
1657         /*
1658          * Sanity check: if tty->count is going to zero, there shouldn't be
1659          * any waiters on tty->read_wait or tty->write_wait.  We test the
1660          * wait queues and kick everyone out _before_ actually starting to
1661          * close.  This ensures that we won't block while releasing the tty
1662          * structure.
1663          *
1664          * The test for the o_tty closing is necessary, since the master and
1665          * slave sides may close in any order.  If the slave side closes out
1666          * first, its count will be one, since the master side holds an open.
1667          * Thus this test wouldn't be triggered at the time the slave closes,
1668          * so we do it now.
1669          *
1670          * Note that it's possible for the tty to be opened again while we're
1671          * flushing out waiters.  By recalculating the closing flags before
1672          * each iteration we avoid any problems.
1673          */
1674         while (1) {
1675                 /* Guard against races with tty->count changes elsewhere and
1676                    opens on /dev/tty */
1677
1678                 mutex_lock(&tty_mutex);
1679                 tty_lock_pair(tty, o_tty);
1680                 tty_closing = tty->count <= 1;
1681                 o_tty_closing = o_tty &&
1682                         (o_tty->count <= (pty_master ? 1 : 0));
1683                 do_sleep = 0;
1684
1685                 if (tty_closing) {
1686                         if (waitqueue_active(&tty->read_wait)) {
1687                                 wake_up_poll(&tty->read_wait, POLLIN);
1688                                 do_sleep++;
1689                         }
1690                         if (waitqueue_active(&tty->write_wait)) {
1691                                 wake_up_poll(&tty->write_wait, POLLOUT);
1692                                 do_sleep++;
1693                         }
1694                 }
1695                 if (o_tty_closing) {
1696                         if (waitqueue_active(&o_tty->read_wait)) {
1697                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1698                                 do_sleep++;
1699                         }
1700                         if (waitqueue_active(&o_tty->write_wait)) {
1701                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1702                                 do_sleep++;
1703                         }
1704                 }
1705                 if (!do_sleep)
1706                         break;
1707
1708                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1709                                 __func__, tty_name(tty, buf));
1710                 tty_unlock_pair(tty, o_tty);
1711                 mutex_unlock(&tty_mutex);
1712                 schedule();
1713         }
1714
1715         /*
1716          * The closing flags are now consistent with the open counts on
1717          * both sides, and we've completed the last operation that could
1718          * block, so it's safe to proceed with closing.
1719          *
1720          * We must *not* drop the tty_mutex until we ensure that a further
1721          * entry into tty_open can not pick up this tty.
1722          */
1723         if (pty_master) {
1724                 if (--o_tty->count < 0) {
1725                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1726                                 __func__, o_tty->count, tty_name(o_tty, buf));
1727                         o_tty->count = 0;
1728                 }
1729         }
1730         if (--tty->count < 0) {
1731                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1732                                 __func__, tty->count, tty_name(tty, buf));
1733                 tty->count = 0;
1734         }
1735
1736         /*
1737          * We've decremented tty->count, so we need to remove this file
1738          * descriptor off the tty->tty_files list; this serves two
1739          * purposes:
1740          *  - check_tty_count sees the correct number of file descriptors
1741          *    associated with this tty.
1742          *  - do_tty_hangup no longer sees this file descriptor as
1743          *    something that needs to be handled for hangups.
1744          */
1745         tty_del_file(filp);
1746
1747         /*
1748          * Perform some housekeeping before deciding whether to return.
1749          *
1750          * Set the TTY_CLOSING flag if this was the last open.  In the
1751          * case of a pty we may have to wait around for the other side
1752          * to close, and TTY_CLOSING makes sure we can't be reopened.
1753          */
1754         if (tty_closing)
1755                 set_bit(TTY_CLOSING, &tty->flags);
1756         if (o_tty_closing)
1757                 set_bit(TTY_CLOSING, &o_tty->flags);
1758
1759         /*
1760          * If _either_ side is closing, make sure there aren't any
1761          * processes that still think tty or o_tty is their controlling
1762          * tty.
1763          */
1764         if (tty_closing || o_tty_closing) {
1765                 read_lock(&tasklist_lock);
1766                 session_clear_tty(tty->session);
1767                 if (o_tty)
1768                         session_clear_tty(o_tty->session);
1769                 read_unlock(&tasklist_lock);
1770         }
1771
1772         mutex_unlock(&tty_mutex);
1773         tty_unlock_pair(tty, o_tty);
1774         /* At this point the TTY_CLOSING flag should ensure a dead tty
1775            cannot be re-opened by a racing opener */
1776
1777         /* check whether both sides are closing ... */
1778         if (!tty_closing || (o_tty && !o_tty_closing))
1779                 return 0;
1780
1781 #ifdef TTY_DEBUG_HANGUP
1782         printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1783 #endif
1784         /*
1785          * Ask the line discipline code to release its structures
1786          */
1787         tty_ldisc_release(tty, o_tty);
1788         /*
1789          * The release_tty function takes care of the details of clearing
1790          * the slots and preserving the termios structure. The tty_unlock_pair
1791          * should be safe as we keep a kref while the tty is locked (so the
1792          * unlock never unlocks a freed tty).
1793          */
1794         mutex_lock(&tty_mutex);
1795         release_tty(tty, idx);
1796         mutex_unlock(&tty_mutex);
1797
1798         return 0;
1799 }
1800
1801 /**
1802  *      tty_open_current_tty - get tty of current task for open
1803  *      @device: device number
1804  *      @filp: file pointer to tty
1805  *      @return: tty of the current task iff @device is /dev/tty
1806  *
1807  *      We cannot return driver and index like for the other nodes because
1808  *      devpts will not work then. It expects inodes to be from devpts FS.
1809  *
1810  *      We need to move to returning a refcounted object from all the lookup
1811  *      paths including this one.
1812  */
1813 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1814 {
1815         struct tty_struct *tty;
1816
1817         if (device != MKDEV(TTYAUX_MAJOR, 0))
1818                 return NULL;
1819
1820         tty = get_current_tty();
1821         if (!tty)
1822                 return ERR_PTR(-ENXIO);
1823
1824         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1825         /* noctty = 1; */
1826         tty_kref_put(tty);
1827         /* FIXME: we put a reference and return a TTY! */
1828         /* This is only safe because the caller holds tty_mutex */
1829         return tty;
1830 }
1831
1832 /**
1833  *      tty_lookup_driver - lookup a tty driver for a given device file
1834  *      @device: device number
1835  *      @filp: file pointer to tty
1836  *      @noctty: set if the device should not become a controlling tty
1837  *      @index: index for the device in the @return driver
1838  *      @return: driver for this inode (with increased refcount)
1839  *
1840  *      If @return is not erroneous, the caller is responsible to decrement the
1841  *      refcount by tty_driver_kref_put.
1842  *
1843  *      Locking: tty_mutex protects get_tty_driver
1844  */
1845 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1846                 int *noctty, int *index)
1847 {
1848         struct tty_driver *driver;
1849
1850         switch (device) {
1851 #ifdef CONFIG_VT
1852         case MKDEV(TTY_MAJOR, 0): {
1853                 extern struct tty_driver *console_driver;
1854                 driver = tty_driver_kref_get(console_driver);
1855                 *index = fg_console;
1856                 *noctty = 1;
1857                 break;
1858         }
1859 #endif
1860         case MKDEV(TTYAUX_MAJOR, 1): {
1861                 struct tty_driver *console_driver = console_device(index);
1862                 if (console_driver) {
1863                         driver = tty_driver_kref_get(console_driver);
1864                         if (driver) {
1865                                 /* Don't let /dev/console block */
1866                                 filp->f_flags |= O_NONBLOCK;
1867                                 *noctty = 1;
1868                                 break;
1869                         }
1870                 }
1871                 return ERR_PTR(-ENODEV);
1872         }
1873         default:
1874                 driver = get_tty_driver(device, index);
1875                 if (!driver)
1876                         return ERR_PTR(-ENODEV);
1877                 break;
1878         }
1879         return driver;
1880 }
1881
1882 /**
1883  *      tty_open                -       open a tty device
1884  *      @inode: inode of device file
1885  *      @filp: file pointer to tty
1886  *
1887  *      tty_open and tty_release keep up the tty count that contains the
1888  *      number of opens done on a tty. We cannot use the inode-count, as
1889  *      different inodes might point to the same tty.
1890  *
1891  *      Open-counting is needed for pty masters, as well as for keeping
1892  *      track of serial lines: DTR is dropped when the last close happens.
1893  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1894  *
1895  *      The termios state of a pty is reset on first open so that
1896  *      settings don't persist across reuse.
1897  *
1898  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1899  *               tty->count should protect the rest.
1900  *               ->siglock protects ->signal/->sighand
1901  *
1902  *      Note: the tty_unlock/lock cases without a ref are only safe due to
1903  *      tty_mutex
1904  */
1905
1906 static int tty_open(struct inode *inode, struct file *filp)
1907 {
1908         struct tty_struct *tty;
1909         int noctty, retval;
1910         struct tty_driver *driver = NULL;
1911         int index;
1912         dev_t device = inode->i_rdev;
1913         unsigned saved_flags = filp->f_flags;
1914
1915         nonseekable_open(inode, filp);
1916
1917 retry_open:
1918         retval = tty_alloc_file(filp);
1919         if (retval)
1920                 return -ENOMEM;
1921
1922         noctty = filp->f_flags & O_NOCTTY;
1923         index  = -1;
1924         retval = 0;
1925
1926         mutex_lock(&tty_mutex);
1927         /* This is protected by the tty_mutex */
1928         tty = tty_open_current_tty(device, filp);
1929         if (IS_ERR(tty)) {
1930                 retval = PTR_ERR(tty);
1931                 goto err_unlock;
1932         } else if (!tty) {
1933                 driver = tty_lookup_driver(device, filp, &noctty, &index);
1934                 if (IS_ERR(driver)) {
1935                         retval = PTR_ERR(driver);
1936                         goto err_unlock;
1937                 }
1938
1939                 /* check whether we're reopening an existing tty */
1940                 tty = tty_driver_lookup_tty(driver, inode, index);
1941                 if (IS_ERR(tty)) {
1942                         retval = PTR_ERR(tty);
1943                         goto err_unlock;
1944                 }
1945         }
1946
1947         if (tty) {
1948                 tty_lock(tty);
1949                 retval = tty_reopen(tty);
1950                 if (retval < 0) {
1951                         tty_unlock(tty);
1952                         tty = ERR_PTR(retval);
1953                 }
1954         } else  /* Returns with the tty_lock held for now */
1955                 tty = tty_init_dev(driver, index);
1956
1957         mutex_unlock(&tty_mutex);
1958         if (driver)
1959                 tty_driver_kref_put(driver);
1960         if (IS_ERR(tty)) {
1961                 retval = PTR_ERR(tty);
1962                 goto err_file;
1963         }
1964
1965         tty_add_file(tty, filp);
1966
1967         check_tty_count(tty, __func__);
1968         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1969             tty->driver->subtype == PTY_TYPE_MASTER)
1970                 noctty = 1;
1971 #ifdef TTY_DEBUG_HANGUP
1972         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1973 #endif
1974         if (tty->ops->open)
1975                 retval = tty->ops->open(tty, filp);
1976         else
1977                 retval = -ENODEV;
1978         filp->f_flags = saved_flags;
1979
1980         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1981                                                 !capable(CAP_SYS_ADMIN))
1982                 retval = -EBUSY;
1983
1984         if (retval) {
1985 #ifdef TTY_DEBUG_HANGUP
1986                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1987                                 retval, tty->name);
1988 #endif
1989                 tty_unlock(tty); /* need to call tty_release without BTM */
1990                 tty_release(inode, filp);
1991                 if (retval != -ERESTARTSYS)
1992                         return retval;
1993
1994                 if (signal_pending(current))
1995                         return retval;
1996
1997                 schedule();
1998                 /*
1999                  * Need to reset f_op in case a hangup happened.
2000                  */
2001                 if (filp->f_op == &hung_up_tty_fops)
2002                         filp->f_op = &tty_fops;
2003                 goto retry_open;
2004         }
2005         tty_unlock(tty);
2006
2007
2008         mutex_lock(&tty_mutex);
2009         tty_lock(tty);
2010         spin_lock_irq(&current->sighand->siglock);
2011         if (!noctty &&
2012             current->signal->leader &&
2013             !current->signal->tty &&
2014             tty->session == NULL)
2015                 __proc_set_tty(current, tty);
2016         spin_unlock_irq(&current->sighand->siglock);
2017         tty_unlock(tty);
2018         mutex_unlock(&tty_mutex);
2019         return 0;
2020 err_unlock:
2021         mutex_unlock(&tty_mutex);
2022         /* after locks to avoid deadlock */
2023         if (!IS_ERR_OR_NULL(driver))
2024                 tty_driver_kref_put(driver);
2025 err_file:
2026         tty_free_file(filp);
2027         return retval;
2028 }
2029
2030
2031
2032 /**
2033  *      tty_poll        -       check tty status
2034  *      @filp: file being polled
2035  *      @wait: poll wait structures to update
2036  *
2037  *      Call the line discipline polling method to obtain the poll
2038  *      status of the device.
2039  *
2040  *      Locking: locks called line discipline but ldisc poll method
2041  *      may be re-entered freely by other callers.
2042  */
2043
2044 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2045 {
2046         struct tty_struct *tty = file_tty(filp);
2047         struct tty_ldisc *ld;
2048         int ret = 0;
2049
2050         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2051                 return 0;
2052
2053         ld = tty_ldisc_ref_wait(tty);
2054         if (ld->ops->poll)
2055                 ret = (ld->ops->poll)(tty, filp, wait);
2056         tty_ldisc_deref(ld);
2057         return ret;
2058 }
2059
2060 static int __tty_fasync(int fd, struct file *filp, int on)
2061 {
2062         struct tty_struct *tty = file_tty(filp);
2063         unsigned long flags;
2064         int retval = 0;
2065
2066         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2067                 goto out;
2068
2069         retval = fasync_helper(fd, filp, on, &tty->fasync);
2070         if (retval <= 0)
2071                 goto out;
2072
2073         if (on) {
2074                 enum pid_type type;
2075                 struct pid *pid;
2076                 if (!waitqueue_active(&tty->read_wait))
2077                         tty->minimum_to_wake = 1;
2078                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2079                 if (tty->pgrp) {
2080                         pid = tty->pgrp;
2081                         type = PIDTYPE_PGID;
2082                 } else {
2083                         pid = task_pid(current);
2084                         type = PIDTYPE_PID;
2085                 }
2086                 get_pid(pid);
2087                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2088                 retval = __f_setown(filp, pid, type, 0);
2089                 put_pid(pid);
2090                 if (retval)
2091                         goto out;
2092         } else {
2093                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2094                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2095         }
2096         retval = 0;
2097 out:
2098         return retval;
2099 }
2100
2101 static int tty_fasync(int fd, struct file *filp, int on)
2102 {
2103         struct tty_struct *tty = file_tty(filp);
2104         int retval;
2105
2106         tty_lock(tty);
2107         retval = __tty_fasync(fd, filp, on);
2108         tty_unlock(tty);
2109
2110         return retval;
2111 }
2112
2113 /**
2114  *      tiocsti                 -       fake input character
2115  *      @tty: tty to fake input into
2116  *      @p: pointer to character
2117  *
2118  *      Fake input to a tty device. Does the necessary locking and
2119  *      input management.
2120  *
2121  *      FIXME: does not honour flow control ??
2122  *
2123  *      Locking:
2124  *              Called functions take tty_ldisc_lock
2125  *              current->signal->tty check is safe without locks
2126  *
2127  *      FIXME: may race normal receive processing
2128  */
2129
2130 static int tiocsti(struct tty_struct *tty, char __user *p)
2131 {
2132         char ch, mbz = 0;
2133         struct tty_ldisc *ld;
2134
2135         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2136                 return -EPERM;
2137         if (get_user(ch, p))
2138                 return -EFAULT;
2139         tty_audit_tiocsti(tty, ch);
2140         ld = tty_ldisc_ref_wait(tty);
2141         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2142         tty_ldisc_deref(ld);
2143         return 0;
2144 }
2145
2146 /**
2147  *      tiocgwinsz              -       implement window query ioctl
2148  *      @tty; tty
2149  *      @arg: user buffer for result
2150  *
2151  *      Copies the kernel idea of the window size into the user buffer.
2152  *
2153  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2154  *              is consistent.
2155  */
2156
2157 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2158 {
2159         int err;
2160
2161         mutex_lock(&tty->termios_mutex);
2162         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2163         mutex_unlock(&tty->termios_mutex);
2164
2165         return err ? -EFAULT: 0;
2166 }
2167
2168 /**
2169  *      tty_do_resize           -       resize event
2170  *      @tty: tty being resized
2171  *      @rows: rows (character)
2172  *      @cols: cols (character)
2173  *
2174  *      Update the termios variables and send the necessary signals to
2175  *      peform a terminal resize correctly
2176  */
2177
2178 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2179 {
2180         struct pid *pgrp;
2181         unsigned long flags;
2182
2183         /* Lock the tty */
2184         mutex_lock(&tty->termios_mutex);
2185         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2186                 goto done;
2187         /* Get the PID values and reference them so we can
2188            avoid holding the tty ctrl lock while sending signals */
2189         spin_lock_irqsave(&tty->ctrl_lock, flags);
2190         pgrp = get_pid(tty->pgrp);
2191         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2192
2193         if (pgrp)
2194                 kill_pgrp(pgrp, SIGWINCH, 1);
2195         put_pid(pgrp);
2196
2197         tty->winsize = *ws;
2198 done:
2199         mutex_unlock(&tty->termios_mutex);
2200         return 0;
2201 }
2202 EXPORT_SYMBOL(tty_do_resize);
2203
2204 /**
2205  *      tiocswinsz              -       implement window size set ioctl
2206  *      @tty; tty side of tty
2207  *      @arg: user buffer for result
2208  *
2209  *      Copies the user idea of the window size to the kernel. Traditionally
2210  *      this is just advisory information but for the Linux console it
2211  *      actually has driver level meaning and triggers a VC resize.
2212  *
2213  *      Locking:
2214  *              Driver dependent. The default do_resize method takes the
2215  *      tty termios mutex and ctrl_lock. The console takes its own lock
2216  *      then calls into the default method.
2217  */
2218
2219 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2220 {
2221         struct winsize tmp_ws;
2222         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2223                 return -EFAULT;
2224
2225         if (tty->ops->resize)
2226                 return tty->ops->resize(tty, &tmp_ws);
2227         else
2228                 return tty_do_resize(tty, &tmp_ws);
2229 }
2230
2231 /**
2232  *      tioccons        -       allow admin to move logical console
2233  *      @file: the file to become console
2234  *
2235  *      Allow the administrator to move the redirected console device
2236  *
2237  *      Locking: uses redirect_lock to guard the redirect information
2238  */
2239
2240 static int tioccons(struct file *file)
2241 {
2242         if (!capable(CAP_SYS_ADMIN))
2243                 return -EPERM;
2244         if (file->f_op->write == redirected_tty_write) {
2245                 struct file *f;
2246                 spin_lock(&redirect_lock);
2247                 f = redirect;
2248                 redirect = NULL;
2249                 spin_unlock(&redirect_lock);
2250                 if (f)
2251                         fput(f);
2252                 return 0;
2253         }
2254         spin_lock(&redirect_lock);
2255         if (redirect) {
2256                 spin_unlock(&redirect_lock);
2257                 return -EBUSY;
2258         }
2259         redirect = get_file(file);
2260         spin_unlock(&redirect_lock);
2261         return 0;
2262 }
2263
2264 /**
2265  *      fionbio         -       non blocking ioctl
2266  *      @file: file to set blocking value
2267  *      @p: user parameter
2268  *
2269  *      Historical tty interfaces had a blocking control ioctl before
2270  *      the generic functionality existed. This piece of history is preserved
2271  *      in the expected tty API of posix OS's.
2272  *
2273  *      Locking: none, the open file handle ensures it won't go away.
2274  */
2275
2276 static int fionbio(struct file *file, int __user *p)
2277 {
2278         int nonblock;
2279
2280         if (get_user(nonblock, p))
2281                 return -EFAULT;
2282
2283         spin_lock(&file->f_lock);
2284         if (nonblock)
2285                 file->f_flags |= O_NONBLOCK;
2286         else
2287                 file->f_flags &= ~O_NONBLOCK;
2288         spin_unlock(&file->f_lock);
2289         return 0;
2290 }
2291
2292 /**
2293  *      tiocsctty       -       set controlling tty
2294  *      @tty: tty structure
2295  *      @arg: user argument
2296  *
2297  *      This ioctl is used to manage job control. It permits a session
2298  *      leader to set this tty as the controlling tty for the session.
2299  *
2300  *      Locking:
2301  *              Takes tty_mutex() to protect tty instance
2302  *              Takes tasklist_lock internally to walk sessions
2303  *              Takes ->siglock() when updating signal->tty
2304  */
2305
2306 static int tiocsctty(struct tty_struct *tty, int arg)
2307 {
2308         int ret = 0;
2309         if (current->signal->leader && (task_session(current) == tty->session))
2310                 return ret;
2311
2312         mutex_lock(&tty_mutex);
2313         /*
2314          * The process must be a session leader and
2315          * not have a controlling tty already.
2316          */
2317         if (!current->signal->leader || current->signal->tty) {
2318                 ret = -EPERM;
2319                 goto unlock;
2320         }
2321
2322         if (tty->session) {
2323                 /*
2324                  * This tty is already the controlling
2325                  * tty for another session group!
2326                  */
2327                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2328                         /*
2329                          * Steal it away
2330                          */
2331                         read_lock(&tasklist_lock);
2332                         session_clear_tty(tty->session);
2333                         read_unlock(&tasklist_lock);
2334                 } else {
2335                         ret = -EPERM;
2336                         goto unlock;
2337                 }
2338         }
2339         proc_set_tty(current, tty);
2340 unlock:
2341         mutex_unlock(&tty_mutex);
2342         return ret;
2343 }
2344
2345 /**
2346  *      tty_get_pgrp    -       return a ref counted pgrp pid
2347  *      @tty: tty to read
2348  *
2349  *      Returns a refcounted instance of the pid struct for the process
2350  *      group controlling the tty.
2351  */
2352
2353 struct pid *tty_get_pgrp(struct tty_struct *tty)
2354 {
2355         unsigned long flags;
2356         struct pid *pgrp;
2357
2358         spin_lock_irqsave(&tty->ctrl_lock, flags);
2359         pgrp = get_pid(tty->pgrp);
2360         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2361
2362         return pgrp;
2363 }
2364 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2365
2366 /**
2367  *      tiocgpgrp               -       get process group
2368  *      @tty: tty passed by user
2369  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2370  *      @p: returned pid
2371  *
2372  *      Obtain the process group of the tty. If there is no process group
2373  *      return an error.
2374  *
2375  *      Locking: none. Reference to current->signal->tty is safe.
2376  */
2377
2378 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2379 {
2380         struct pid *pid;
2381         int ret;
2382         /*
2383          * (tty == real_tty) is a cheap way of
2384          * testing if the tty is NOT a master pty.
2385          */
2386         if (tty == real_tty && current->signal->tty != real_tty)
2387                 return -ENOTTY;
2388         pid = tty_get_pgrp(real_tty);
2389         ret =  put_user(pid_vnr(pid), p);
2390         put_pid(pid);
2391         return ret;
2392 }
2393
2394 /**
2395  *      tiocspgrp               -       attempt to set process group
2396  *      @tty: tty passed by user
2397  *      @real_tty: tty side device matching tty passed by user
2398  *      @p: pid pointer
2399  *
2400  *      Set the process group of the tty to the session passed. Only
2401  *      permitted where the tty session is our session.
2402  *
2403  *      Locking: RCU, ctrl lock
2404  */
2405
2406 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2407 {
2408         struct pid *pgrp;
2409         pid_t pgrp_nr;
2410         int retval = tty_check_change(real_tty);
2411         unsigned long flags;
2412
2413         if (retval == -EIO)
2414                 return -ENOTTY;
2415         if (retval)
2416                 return retval;
2417         if (!current->signal->tty ||
2418             (current->signal->tty != real_tty) ||
2419             (real_tty->session != task_session(current)))
2420                 return -ENOTTY;
2421         if (get_user(pgrp_nr, p))
2422                 return -EFAULT;
2423         if (pgrp_nr < 0)
2424                 return -EINVAL;
2425         rcu_read_lock();
2426         pgrp = find_vpid(pgrp_nr);
2427         retval = -ESRCH;
2428         if (!pgrp)
2429                 goto out_unlock;
2430         retval = -EPERM;
2431         if (session_of_pgrp(pgrp) != task_session(current))
2432                 goto out_unlock;
2433         retval = 0;
2434         spin_lock_irqsave(&tty->ctrl_lock, flags);
2435         put_pid(real_tty->pgrp);
2436         real_tty->pgrp = get_pid(pgrp);
2437         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2438 out_unlock:
2439         rcu_read_unlock();
2440         return retval;
2441 }
2442
2443 /**
2444  *      tiocgsid                -       get session id
2445  *      @tty: tty passed by user
2446  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2447  *      @p: pointer to returned session id
2448  *
2449  *      Obtain the session id of the tty. If there is no session
2450  *      return an error.
2451  *
2452  *      Locking: none. Reference to current->signal->tty is safe.
2453  */
2454
2455 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2456 {
2457         /*
2458          * (tty == real_tty) is a cheap way of
2459          * testing if the tty is NOT a master pty.
2460         */
2461         if (tty == real_tty && current->signal->tty != real_tty)
2462                 return -ENOTTY;
2463         if (!real_tty->session)
2464                 return -ENOTTY;
2465         return put_user(pid_vnr(real_tty->session), p);
2466 }
2467
2468 /**
2469  *      tiocsetd        -       set line discipline
2470  *      @tty: tty device
2471  *      @p: pointer to user data
2472  *
2473  *      Set the line discipline according to user request.
2474  *
2475  *      Locking: see tty_set_ldisc, this function is just a helper
2476  */
2477
2478 static int tiocsetd(struct tty_struct *tty, int __user *p)
2479 {
2480         int ldisc;
2481         int ret;
2482
2483         if (get_user(ldisc, p))
2484                 return -EFAULT;
2485
2486         ret = tty_set_ldisc(tty, ldisc);
2487
2488         return ret;
2489 }
2490
2491 /**
2492  *      send_break      -       performed time break
2493  *      @tty: device to break on
2494  *      @duration: timeout in mS
2495  *
2496  *      Perform a timed break on hardware that lacks its own driver level
2497  *      timed break functionality.
2498  *
2499  *      Locking:
2500  *              atomic_write_lock serializes
2501  *
2502  */
2503
2504 static int send_break(struct tty_struct *tty, unsigned int duration)
2505 {
2506         int retval;
2507
2508         if (tty->ops->break_ctl == NULL)
2509                 return 0;
2510
2511         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2512                 retval = tty->ops->break_ctl(tty, duration);
2513         else {
2514                 /* Do the work ourselves */
2515                 if (tty_write_lock(tty, 0) < 0)
2516                         return -EINTR;
2517                 retval = tty->ops->break_ctl(tty, -1);
2518                 if (retval)
2519                         goto out;
2520                 if (!signal_pending(current))
2521                         msleep_interruptible(duration);
2522                 retval = tty->ops->break_ctl(tty, 0);
2523 out:
2524                 tty_write_unlock(tty);
2525                 if (signal_pending(current))
2526                         retval = -EINTR;
2527         }
2528         return retval;
2529 }
2530
2531 /**
2532  *      tty_tiocmget            -       get modem status
2533  *      @tty: tty device
2534  *      @file: user file pointer
2535  *      @p: pointer to result
2536  *
2537  *      Obtain the modem status bits from the tty driver if the feature
2538  *      is supported. Return -EINVAL if it is not available.
2539  *
2540  *      Locking: none (up to the driver)
2541  */
2542
2543 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2544 {
2545         int retval = -EINVAL;
2546
2547         if (tty->ops->tiocmget) {
2548                 retval = tty->ops->tiocmget(tty);
2549
2550                 if (retval >= 0)
2551                         retval = put_user(retval, p);
2552         }
2553         return retval;
2554 }
2555
2556 /**
2557  *      tty_tiocmset            -       set modem status
2558  *      @tty: tty device
2559  *      @cmd: command - clear bits, set bits or set all
2560  *      @p: pointer to desired bits
2561  *
2562  *      Set the modem status bits from the tty driver if the feature
2563  *      is supported. Return -EINVAL if it is not available.
2564  *
2565  *      Locking: none (up to the driver)
2566  */
2567
2568 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2569              unsigned __user *p)
2570 {
2571         int retval;
2572         unsigned int set, clear, val;
2573
2574         if (tty->ops->tiocmset == NULL)
2575                 return -EINVAL;
2576
2577         retval = get_user(val, p);
2578         if (retval)
2579                 return retval;
2580         set = clear = 0;
2581         switch (cmd) {
2582         case TIOCMBIS:
2583                 set = val;
2584                 break;
2585         case TIOCMBIC:
2586                 clear = val;
2587                 break;
2588         case TIOCMSET:
2589                 set = val;
2590                 clear = ~val;
2591                 break;
2592         }
2593         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2594         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2595         return tty->ops->tiocmset(tty, set, clear);
2596 }
2597
2598 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2599 {
2600         int retval = -EINVAL;
2601         struct serial_icounter_struct icount;
2602         memset(&icount, 0, sizeof(icount));
2603         if (tty->ops->get_icount)
2604                 retval = tty->ops->get_icount(tty, &icount);
2605         if (retval != 0)
2606                 return retval;
2607         if (copy_to_user(arg, &icount, sizeof(icount)))
2608                 return -EFAULT;
2609         return 0;
2610 }
2611
2612 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2613 {
2614         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2615             tty->driver->subtype == PTY_TYPE_MASTER)
2616                 tty = tty->link;
2617         return tty;
2618 }
2619 EXPORT_SYMBOL(tty_pair_get_tty);
2620
2621 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2622 {
2623         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2624             tty->driver->subtype == PTY_TYPE_MASTER)
2625             return tty;
2626         return tty->link;
2627 }
2628 EXPORT_SYMBOL(tty_pair_get_pty);
2629
2630 /*
2631  * Split this up, as gcc can choke on it otherwise..
2632  */
2633 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2634 {
2635         struct tty_struct *tty = file_tty(file);
2636         struct tty_struct *real_tty;
2637         void __user *p = (void __user *)arg;
2638         int retval;
2639         struct tty_ldisc *ld;
2640         struct inode *inode = file->f_dentry->d_inode;
2641
2642         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2643                 return -EINVAL;
2644
2645         real_tty = tty_pair_get_tty(tty);
2646
2647         /*
2648          * Factor out some common prep work
2649          */
2650         switch (cmd) {
2651         case TIOCSETD:
2652         case TIOCSBRK:
2653         case TIOCCBRK:
2654         case TCSBRK:
2655         case TCSBRKP:
2656                 retval = tty_check_change(tty);
2657                 if (retval)
2658                         return retval;
2659                 if (cmd != TIOCCBRK) {
2660                         tty_wait_until_sent(tty, 0);
2661                         if (signal_pending(current))
2662                                 return -EINTR;
2663                 }
2664                 break;
2665         }
2666
2667         /*
2668          *      Now do the stuff.
2669          */
2670         switch (cmd) {
2671         case TIOCSTI:
2672                 return tiocsti(tty, p);
2673         case TIOCGWINSZ:
2674                 return tiocgwinsz(real_tty, p);
2675         case TIOCSWINSZ:
2676                 return tiocswinsz(real_tty, p);
2677         case TIOCCONS:
2678                 return real_tty != tty ? -EINVAL : tioccons(file);
2679         case FIONBIO:
2680                 return fionbio(file, p);
2681         case TIOCEXCL:
2682                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2683                 return 0;
2684         case TIOCNXCL:
2685                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2686                 return 0;
2687         case TIOCGEXCL:
2688         {
2689                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2690                 return put_user(excl, (int __user *)p);
2691         }
2692         case TIOCNOTTY:
2693                 if (current->signal->tty != tty)
2694                         return -ENOTTY;
2695                 no_tty();
2696                 return 0;
2697         case TIOCSCTTY:
2698                 return tiocsctty(tty, arg);
2699         case TIOCGPGRP:
2700                 return tiocgpgrp(tty, real_tty, p);
2701         case TIOCSPGRP:
2702                 return tiocspgrp(tty, real_tty, p);
2703         case TIOCGSID:
2704                 return tiocgsid(tty, real_tty, p);
2705         case TIOCGETD:
2706                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2707         case TIOCSETD:
2708                 return tiocsetd(tty, p);
2709         case TIOCVHANGUP:
2710                 if (!capable(CAP_SYS_ADMIN))
2711                         return -EPERM;
2712                 tty_vhangup(tty);
2713                 return 0;
2714         case TIOCGDEV:
2715         {
2716                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2717                 return put_user(ret, (unsigned int __user *)p);
2718         }
2719         /*
2720          * Break handling
2721          */
2722         case TIOCSBRK:  /* Turn break on, unconditionally */
2723                 if (tty->ops->break_ctl)
2724                         return tty->ops->break_ctl(tty, -1);
2725                 return 0;
2726         case TIOCCBRK:  /* Turn break off, unconditionally */
2727                 if (tty->ops->break_ctl)
2728                         return tty->ops->break_ctl(tty, 0);
2729                 return 0;
2730         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2731                 /* non-zero arg means wait for all output data
2732                  * to be sent (performed above) but don't send break.
2733                  * This is used by the tcdrain() termios function.
2734                  */
2735                 if (!arg)
2736                         return send_break(tty, 250);
2737                 return 0;
2738         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2739                 return send_break(tty, arg ? arg*100 : 250);
2740
2741         case TIOCMGET:
2742                 return tty_tiocmget(tty, p);
2743         case TIOCMSET:
2744         case TIOCMBIC:
2745         case TIOCMBIS:
2746                 return tty_tiocmset(tty, cmd, p);
2747         case TIOCGICOUNT:
2748                 retval = tty_tiocgicount(tty, p);
2749                 /* For the moment allow fall through to the old method */
2750                 if (retval != -EINVAL)
2751                         return retval;
2752                 break;
2753         case TCFLSH:
2754                 switch (arg) {
2755                 case TCIFLUSH:
2756                 case TCIOFLUSH:
2757                 /* flush tty buffer and allow ldisc to process ioctl */
2758                         tty_buffer_flush(tty);
2759                         break;
2760                 }
2761                 break;
2762         }
2763         if (tty->ops->ioctl) {
2764                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2765                 if (retval != -ENOIOCTLCMD)
2766                         return retval;
2767         }
2768         ld = tty_ldisc_ref_wait(tty);
2769         retval = -EINVAL;
2770         if (ld->ops->ioctl) {
2771                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2772                 if (retval == -ENOIOCTLCMD)
2773                         retval = -ENOTTY;
2774         }
2775         tty_ldisc_deref(ld);
2776         return retval;
2777 }
2778
2779 #ifdef CONFIG_COMPAT
2780 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2781                                 unsigned long arg)
2782 {
2783         struct inode *inode = file->f_dentry->d_inode;
2784         struct tty_struct *tty = file_tty(file);
2785         struct tty_ldisc *ld;
2786         int retval = -ENOIOCTLCMD;
2787
2788         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2789                 return -EINVAL;
2790
2791         if (tty->ops->compat_ioctl) {
2792                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2793                 if (retval != -ENOIOCTLCMD)
2794                         return retval;
2795         }
2796
2797         ld = tty_ldisc_ref_wait(tty);
2798         if (ld->ops->compat_ioctl)
2799                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2800         else
2801                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2802         tty_ldisc_deref(ld);
2803
2804         return retval;
2805 }
2806 #endif
2807
2808 static int this_tty(const void *t, struct file *file, unsigned fd)
2809 {
2810         if (likely(file->f_op->read != tty_read))
2811                 return 0;
2812         return file_tty(file) != t ? 0 : fd + 1;
2813 }
2814         
2815 /*
2816  * This implements the "Secure Attention Key" ---  the idea is to
2817  * prevent trojan horses by killing all processes associated with this
2818  * tty when the user hits the "Secure Attention Key".  Required for
2819  * super-paranoid applications --- see the Orange Book for more details.
2820  *
2821  * This code could be nicer; ideally it should send a HUP, wait a few
2822  * seconds, then send a INT, and then a KILL signal.  But you then
2823  * have to coordinate with the init process, since all processes associated
2824  * with the current tty must be dead before the new getty is allowed
2825  * to spawn.
2826  *
2827  * Now, if it would be correct ;-/ The current code has a nasty hole -
2828  * it doesn't catch files in flight. We may send the descriptor to ourselves
2829  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2830  *
2831  * Nasty bug: do_SAK is being called in interrupt context.  This can
2832  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2833  */
2834 void __do_SAK(struct tty_struct *tty)
2835 {
2836 #ifdef TTY_SOFT_SAK
2837         tty_hangup(tty);
2838 #else
2839         struct task_struct *g, *p;
2840         struct pid *session;
2841         int             i;
2842
2843         if (!tty)
2844                 return;
2845         session = tty->session;
2846
2847         tty_ldisc_flush(tty);
2848
2849         tty_driver_flush_buffer(tty);
2850
2851         read_lock(&tasklist_lock);
2852         /* Kill the entire session */
2853         do_each_pid_task(session, PIDTYPE_SID, p) {
2854                 printk(KERN_NOTICE "SAK: killed process %d"
2855                         " (%s): task_session(p)==tty->session\n",
2856                         task_pid_nr(p), p->comm);
2857                 send_sig(SIGKILL, p, 1);
2858         } while_each_pid_task(session, PIDTYPE_SID, p);
2859         /* Now kill any processes that happen to have the
2860          * tty open.
2861          */
2862         do_each_thread(g, p) {
2863                 if (p->signal->tty == tty) {
2864                         printk(KERN_NOTICE "SAK: killed process %d"
2865                             " (%s): task_session(p)==tty->session\n",
2866                             task_pid_nr(p), p->comm);
2867                         send_sig(SIGKILL, p, 1);
2868                         continue;
2869                 }
2870                 task_lock(p);
2871                 i = iterate_fd(p->files, 0, this_tty, tty);
2872                 if (i != 0) {
2873                         printk(KERN_NOTICE "SAK: killed process %d"
2874                             " (%s): fd#%d opened to the tty\n",
2875                                     task_pid_nr(p), p->comm, i - 1);
2876                         force_sig(SIGKILL, p);
2877                 }
2878                 task_unlock(p);
2879         } while_each_thread(g, p);
2880         read_unlock(&tasklist_lock);
2881 #endif
2882 }
2883
2884 static void do_SAK_work(struct work_struct *work)
2885 {
2886         struct tty_struct *tty =
2887                 container_of(work, struct tty_struct, SAK_work);
2888         __do_SAK(tty);
2889 }
2890
2891 /*
2892  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2893  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2894  * the values which we write to it will be identical to the values which it
2895  * already has. --akpm
2896  */
2897 void do_SAK(struct tty_struct *tty)
2898 {
2899         if (!tty)
2900                 return;
2901         schedule_work(&tty->SAK_work);
2902 }
2903
2904 EXPORT_SYMBOL(do_SAK);
2905
2906 static int dev_match_devt(struct device *dev, const void *data)
2907 {
2908         const dev_t *devt = data;
2909         return dev->devt == *devt;
2910 }
2911
2912 /* Must put_device() after it's unused! */
2913 static struct device *tty_get_device(struct tty_struct *tty)
2914 {
2915         dev_t devt = tty_devnum(tty);
2916         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2917 }
2918
2919
2920 /**
2921  *      initialize_tty_struct
2922  *      @tty: tty to initialize
2923  *
2924  *      This subroutine initializes a tty structure that has been newly
2925  *      allocated.
2926  *
2927  *      Locking: none - tty in question must not be exposed at this point
2928  */
2929
2930 void initialize_tty_struct(struct tty_struct *tty,
2931                 struct tty_driver *driver, int idx)
2932 {
2933         memset(tty, 0, sizeof(struct tty_struct));
2934         kref_init(&tty->kref);
2935         tty->magic = TTY_MAGIC;
2936         tty_ldisc_init(tty);
2937         tty->session = NULL;
2938         tty->pgrp = NULL;
2939         mutex_init(&tty->legacy_mutex);
2940         mutex_init(&tty->termios_mutex);
2941         mutex_init(&tty->ldisc_mutex);
2942         init_waitqueue_head(&tty->write_wait);
2943         init_waitqueue_head(&tty->read_wait);
2944         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2945         mutex_init(&tty->atomic_write_lock);
2946         spin_lock_init(&tty->ctrl_lock);
2947         INIT_LIST_HEAD(&tty->tty_files);
2948         INIT_WORK(&tty->SAK_work, do_SAK_work);
2949
2950         tty->driver = driver;
2951         tty->ops = driver->ops;
2952         tty->index = idx;
2953         tty_line_name(driver, idx, tty->name);
2954         tty->dev = tty_get_device(tty);
2955 }
2956
2957 /**
2958  *      deinitialize_tty_struct
2959  *      @tty: tty to deinitialize
2960  *
2961  *      This subroutine deinitializes a tty structure that has been newly
2962  *      allocated but tty_release cannot be called on that yet.
2963  *
2964  *      Locking: none - tty in question must not be exposed at this point
2965  */
2966 void deinitialize_tty_struct(struct tty_struct *tty)
2967 {
2968         tty_ldisc_deinit(tty);
2969 }
2970
2971 /**
2972  *      tty_put_char    -       write one character to a tty
2973  *      @tty: tty
2974  *      @ch: character
2975  *
2976  *      Write one byte to the tty using the provided put_char method
2977  *      if present. Returns the number of characters successfully output.
2978  *
2979  *      Note: the specific put_char operation in the driver layer may go
2980  *      away soon. Don't call it directly, use this method
2981  */
2982
2983 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2984 {
2985         if (tty->ops->put_char)
2986                 return tty->ops->put_char(tty, ch);
2987         return tty->ops->write(tty, &ch, 1);
2988 }
2989 EXPORT_SYMBOL_GPL(tty_put_char);
2990
2991 struct class *tty_class;
2992
2993 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
2994                 unsigned int index, unsigned int count)
2995 {
2996         /* init here, since reused cdevs cause crashes */
2997         cdev_init(&driver->cdevs[index], &tty_fops);
2998         driver->cdevs[index].owner = driver->owner;
2999         return cdev_add(&driver->cdevs[index], dev, count);
3000 }
3001
3002 /**
3003  *      tty_register_device - register a tty device
3004  *      @driver: the tty driver that describes the tty device
3005  *      @index: the index in the tty driver for this tty device
3006  *      @device: a struct device that is associated with this tty device.
3007  *              This field is optional, if there is no known struct device
3008  *              for this tty device it can be set to NULL safely.
3009  *
3010  *      Returns a pointer to the struct device for this tty device
3011  *      (or ERR_PTR(-EFOO) on error).
3012  *
3013  *      This call is required to be made to register an individual tty device
3014  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3015  *      that bit is not set, this function should not be called by a tty
3016  *      driver.
3017  *
3018  *      Locking: ??
3019  */
3020
3021 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3022                                    struct device *device)
3023 {
3024         return tty_register_device_attr(driver, index, device, NULL, NULL);
3025 }
3026 EXPORT_SYMBOL(tty_register_device);
3027
3028 static void tty_device_create_release(struct device *dev)
3029 {
3030         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3031         kfree(dev);
3032 }
3033
3034 /**
3035  *      tty_register_device_attr - register a tty device
3036  *      @driver: the tty driver that describes the tty device
3037  *      @index: the index in the tty driver for this tty device
3038  *      @device: a struct device that is associated with this tty device.
3039  *              This field is optional, if there is no known struct device
3040  *              for this tty device it can be set to NULL safely.
3041  *      @drvdata: Driver data to be set to device.
3042  *      @attr_grp: Attribute group to be set on device.
3043  *
3044  *      Returns a pointer to the struct device for this tty device
3045  *      (or ERR_PTR(-EFOO) on error).
3046  *
3047  *      This call is required to be made to register an individual tty device
3048  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3049  *      that bit is not set, this function should not be called by a tty
3050  *      driver.
3051  *
3052  *      Locking: ??
3053  */
3054 struct device *tty_register_device_attr(struct tty_driver *driver,
3055                                    unsigned index, struct device *device,
3056                                    void *drvdata,
3057                                    const struct attribute_group **attr_grp)
3058 {
3059         char name[64];
3060         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3061         struct device *dev = NULL;
3062         int retval = -ENODEV;
3063         bool cdev = false;
3064
3065         if (index >= driver->num) {
3066                 printk(KERN_ERR "Attempt to register invalid tty line number "
3067                        " (%d).\n", index);
3068                 return ERR_PTR(-EINVAL);
3069         }
3070
3071         if (driver->type == TTY_DRIVER_TYPE_PTY)
3072                 pty_line_name(driver, index, name);
3073         else
3074                 tty_line_name(driver, index, name);
3075
3076         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3077                 retval = tty_cdev_add(driver, devt, index, 1);
3078                 if (retval)
3079                         goto error;
3080                 cdev = true;
3081         }
3082
3083         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3084         if (!dev) {
3085                 retval = -ENOMEM;
3086                 goto error;
3087         }
3088
3089         dev->devt = devt;
3090         dev->class = tty_class;
3091         dev->parent = device;
3092         dev->release = tty_device_create_release;
3093         dev_set_name(dev, "%s", name);
3094         dev->groups = attr_grp;
3095         dev_set_drvdata(dev, drvdata);
3096
3097         retval = device_register(dev);
3098         if (retval)
3099                 goto error;
3100
3101         return dev;
3102
3103 error:
3104         put_device(dev);
3105         if (cdev)
3106                 cdev_del(&driver->cdevs[index]);
3107         return ERR_PTR(retval);
3108 }
3109 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3110
3111 /**
3112  *      tty_unregister_device - unregister a tty device
3113  *      @driver: the tty driver that describes the tty device
3114  *      @index: the index in the tty driver for this tty device
3115  *
3116  *      If a tty device is registered with a call to tty_register_device() then
3117  *      this function must be called when the tty device is gone.
3118  *
3119  *      Locking: ??
3120  */
3121
3122 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3123 {
3124         device_destroy(tty_class,
3125                 MKDEV(driver->major, driver->minor_start) + index);
3126         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3127                 cdev_del(&driver->cdevs[index]);
3128 }
3129 EXPORT_SYMBOL(tty_unregister_device);
3130
3131 /**
3132  * __tty_alloc_driver -- allocate tty driver
3133  * @lines: count of lines this driver can handle at most
3134  * @owner: module which is repsonsible for this driver
3135  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3136  *
3137  * This should not be called directly, some of the provided macros should be
3138  * used instead. Use IS_ERR and friends on @retval.
3139  */
3140 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3141                 unsigned long flags)
3142 {
3143         struct tty_driver *driver;
3144         unsigned int cdevs = 1;
3145         int err;
3146
3147         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3148                 return ERR_PTR(-EINVAL);
3149
3150         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3151         if (!driver)
3152                 return ERR_PTR(-ENOMEM);
3153
3154         kref_init(&driver->kref);
3155         driver->magic = TTY_DRIVER_MAGIC;
3156         driver->num = lines;
3157         driver->owner = owner;
3158         driver->flags = flags;
3159
3160         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3161                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3162                                 GFP_KERNEL);
3163                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3164                                 GFP_KERNEL);
3165                 if (!driver->ttys || !driver->termios) {
3166                         err = -ENOMEM;
3167                         goto err_free_all;
3168                 }
3169         }
3170
3171         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3172                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3173                                 GFP_KERNEL);
3174                 if (!driver->ports) {
3175                         err = -ENOMEM;
3176                         goto err_free_all;
3177                 }
3178                 cdevs = lines;
3179         }
3180
3181         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3182         if (!driver->cdevs) {
3183                 err = -ENOMEM;
3184                 goto err_free_all;
3185         }
3186
3187         return driver;
3188 err_free_all:
3189         kfree(driver->ports);
3190         kfree(driver->ttys);
3191         kfree(driver->termios);
3192         kfree(driver);
3193         return ERR_PTR(err);
3194 }
3195 EXPORT_SYMBOL(__tty_alloc_driver);
3196
3197 static void destruct_tty_driver(struct kref *kref)
3198 {
3199         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3200         int i;
3201         struct ktermios *tp;
3202
3203         if (driver->flags & TTY_DRIVER_INSTALLED) {
3204                 /*
3205                  * Free the termios and termios_locked structures because
3206                  * we don't want to get memory leaks when modular tty
3207                  * drivers are removed from the kernel.
3208                  */
3209                 for (i = 0; i < driver->num; i++) {
3210                         tp = driver->termios[i];
3211                         if (tp) {
3212                                 driver->termios[i] = NULL;
3213                                 kfree(tp);
3214                         }
3215                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3216                                 tty_unregister_device(driver, i);
3217                 }
3218                 proc_tty_unregister_driver(driver);
3219                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3220                         cdev_del(&driver->cdevs[0]);
3221         }
3222         kfree(driver->cdevs);
3223         kfree(driver->ports);
3224         kfree(driver->termios);
3225         kfree(driver->ttys);
3226         kfree(driver);
3227 }
3228
3229 void tty_driver_kref_put(struct tty_driver *driver)
3230 {
3231         kref_put(&driver->kref, destruct_tty_driver);
3232 }
3233 EXPORT_SYMBOL(tty_driver_kref_put);
3234
3235 void tty_set_operations(struct tty_driver *driver,
3236                         const struct tty_operations *op)
3237 {
3238         driver->ops = op;
3239 };
3240 EXPORT_SYMBOL(tty_set_operations);
3241
3242 void put_tty_driver(struct tty_driver *d)
3243 {
3244         tty_driver_kref_put(d);
3245 }
3246 EXPORT_SYMBOL(put_tty_driver);
3247
3248 /*
3249  * Called by a tty driver to register itself.
3250  */
3251 int tty_register_driver(struct tty_driver *driver)
3252 {
3253         int error;
3254         int i;
3255         dev_t dev;
3256         struct device *d;
3257
3258         if (!driver->major) {
3259                 error = alloc_chrdev_region(&dev, driver->minor_start,
3260                                                 driver->num, driver->name);
3261                 if (!error) {
3262                         driver->major = MAJOR(dev);
3263                         driver->minor_start = MINOR(dev);
3264                 }
3265         } else {
3266                 dev = MKDEV(driver->major, driver->minor_start);
3267                 error = register_chrdev_region(dev, driver->num, driver->name);
3268         }
3269         if (error < 0)
3270                 goto err;
3271
3272         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3273                 error = tty_cdev_add(driver, dev, 0, driver->num);
3274                 if (error)
3275                         goto err_unreg_char;
3276         }
3277
3278         mutex_lock(&tty_mutex);
3279         list_add(&driver->tty_drivers, &tty_drivers);
3280         mutex_unlock(&tty_mutex);
3281
3282         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3283                 for (i = 0; i < driver->num; i++) {
3284                         d = tty_register_device(driver, i, NULL);
3285                         if (IS_ERR(d)) {
3286                                 error = PTR_ERR(d);
3287                                 goto err_unreg_devs;
3288                         }
3289                 }
3290         }
3291         proc_tty_register_driver(driver);
3292         driver->flags |= TTY_DRIVER_INSTALLED;
3293         return 0;
3294
3295 err_unreg_devs:
3296         for (i--; i >= 0; i--)
3297                 tty_unregister_device(driver, i);
3298
3299         mutex_lock(&tty_mutex);
3300         list_del(&driver->tty_drivers);
3301         mutex_unlock(&tty_mutex);
3302
3303 err_unreg_char:
3304         unregister_chrdev_region(dev, driver->num);
3305 err:
3306         return error;
3307 }
3308 EXPORT_SYMBOL(tty_register_driver);
3309
3310 /*
3311  * Called by a tty driver to unregister itself.
3312  */
3313 int tty_unregister_driver(struct tty_driver *driver)
3314 {
3315 #if 0
3316         /* FIXME */
3317         if (driver->refcount)
3318                 return -EBUSY;
3319 #endif
3320         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3321                                 driver->num);
3322         mutex_lock(&tty_mutex);
3323         list_del(&driver->tty_drivers);
3324         mutex_unlock(&tty_mutex);
3325         return 0;
3326 }
3327
3328 EXPORT_SYMBOL(tty_unregister_driver);
3329
3330 dev_t tty_devnum(struct tty_struct *tty)
3331 {
3332         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3333 }
3334 EXPORT_SYMBOL(tty_devnum);
3335
3336 void proc_clear_tty(struct task_struct *p)
3337 {
3338         unsigned long flags;
3339         struct tty_struct *tty;
3340         spin_lock_irqsave(&p->sighand->siglock, flags);
3341         tty = p->signal->tty;
3342         p->signal->tty = NULL;
3343         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3344         tty_kref_put(tty);
3345 }
3346
3347 /* Called under the sighand lock */
3348
3349 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3350 {
3351         if (tty) {
3352                 unsigned long flags;
3353                 /* We should not have a session or pgrp to put here but.... */
3354                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3355                 put_pid(tty->session);
3356                 put_pid(tty->pgrp);
3357                 tty->pgrp = get_pid(task_pgrp(tsk));
3358                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3359                 tty->session = get_pid(task_session(tsk));
3360                 if (tsk->signal->tty) {
3361                         printk(KERN_DEBUG "tty not NULL!!\n");
3362                         tty_kref_put(tsk->signal->tty);
3363                 }
3364         }
3365         put_pid(tsk->signal->tty_old_pgrp);
3366         tsk->signal->tty = tty_kref_get(tty);
3367         tsk->signal->tty_old_pgrp = NULL;
3368 }
3369
3370 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3371 {
3372         spin_lock_irq(&tsk->sighand->siglock);
3373         __proc_set_tty(tsk, tty);
3374         spin_unlock_irq(&tsk->sighand->siglock);
3375 }
3376
3377 struct tty_struct *get_current_tty(void)
3378 {
3379         struct tty_struct *tty;
3380         unsigned long flags;
3381
3382         spin_lock_irqsave(&current->sighand->siglock, flags);
3383         tty = tty_kref_get(current->signal->tty);
3384         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3385         return tty;
3386 }
3387 EXPORT_SYMBOL_GPL(get_current_tty);
3388
3389 void tty_default_fops(struct file_operations *fops)
3390 {
3391         *fops = tty_fops;
3392 }
3393
3394 /*
3395  * Initialize the console device. This is called *early*, so
3396  * we can't necessarily depend on lots of kernel help here.
3397  * Just do some early initializations, and do the complex setup
3398  * later.
3399  */
3400 void __init console_init(void)
3401 {
3402         initcall_t *call;
3403
3404         /* Setup the default TTY line discipline. */
3405         tty_ldisc_begin();
3406
3407         /*
3408          * set up the console device so that later boot sequences can
3409          * inform about problems etc..
3410          */
3411         call = __con_initcall_start;
3412         while (call < __con_initcall_end) {
3413                 (*call)();
3414                 call++;
3415         }
3416 }
3417
3418 static char *tty_devnode(struct device *dev, umode_t *mode)
3419 {
3420         if (!mode)
3421                 return NULL;
3422         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3423             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3424                 *mode = 0666;
3425         return NULL;
3426 }
3427
3428 static int __init tty_class_init(void)
3429 {
3430         tty_class = class_create(THIS_MODULE, "tty");
3431         if (IS_ERR(tty_class))
3432                 return PTR_ERR(tty_class);
3433         tty_class->devnode = tty_devnode;
3434         return 0;
3435 }
3436
3437 postcore_initcall(tty_class_init);
3438
3439 /* 3/2004 jmc: why do these devices exist? */
3440 static struct cdev tty_cdev, console_cdev;
3441
3442 static ssize_t show_cons_active(struct device *dev,
3443                                 struct device_attribute *attr, char *buf)
3444 {
3445         struct console *cs[16];
3446         int i = 0;
3447         struct console *c;
3448         ssize_t count = 0;
3449
3450         console_lock();
3451         for_each_console(c) {
3452                 if (!c->device)
3453                         continue;
3454                 if (!c->write)
3455                         continue;
3456                 if ((c->flags & CON_ENABLED) == 0)
3457                         continue;
3458                 cs[i++] = c;
3459                 if (i >= ARRAY_SIZE(cs))
3460                         break;
3461         }
3462         while (i--)
3463                 count += sprintf(buf + count, "%s%d%c",
3464                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3465         console_unlock();
3466
3467         return count;
3468 }
3469 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3470
3471 static struct device *consdev;
3472
3473 void console_sysfs_notify(void)
3474 {
3475         if (consdev)
3476                 sysfs_notify(&consdev->kobj, NULL, "active");
3477 }
3478
3479 /*
3480  * Ok, now we can initialize the rest of the tty devices and can count
3481  * on memory allocations, interrupts etc..
3482  */
3483 int __init tty_init(void)
3484 {
3485         cdev_init(&tty_cdev, &tty_fops);
3486         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3487             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3488                 panic("Couldn't register /dev/tty driver\n");
3489         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3490
3491         cdev_init(&console_cdev, &console_fops);
3492         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3493             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3494                 panic("Couldn't register /dev/console driver\n");
3495         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3496                               "console");
3497         if (IS_ERR(consdev))
3498                 consdev = NULL;
3499         else
3500                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3501
3502 #ifdef CONFIG_VT
3503         vty_init(&console_fops);
3504 #endif
3505         return 0;
3506 }
3507