Merge commit 'ed30f24e8d07d30aa3e69d1f508f4d7bd2e8ea14' of git://git.linaro.org/landi...
[firefly-linux-kernel-4.4.55.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      alloc_tty_struct        -       allocate a tty object
161  *
162  *      Return a new empty tty structure. The data fields have not
163  *      been initialized in any way but has been zeroed
164  *
165  *      Locking: none
166  */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174  *      free_tty_struct         -       free a disused tty
175  *      @tty: tty struct to free
176  *
177  *      Free the write buffers, tty queue and tty memory itself.
178  *
179  *      Locking: none. Must be called after tty is definitely unused
180  */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184         if (!tty)
185                 return;
186         if (tty->dev)
187                 put_device(tty->dev);
188         kfree(tty->write_buf);
189         tty->magic = 0xDEADDEAD;
190         kfree(tty);
191 }
192
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195         return ((struct tty_file_private *)file->private_data)->tty;
196 }
197
198 int tty_alloc_file(struct file *file)
199 {
200         struct tty_file_private *priv;
201
202         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203         if (!priv)
204                 return -ENOMEM;
205
206         file->private_data = priv;
207
208         return 0;
209 }
210
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214         struct tty_file_private *priv = file->private_data;
215
216         priv->tty = tty;
217         priv->file = file;
218
219         spin_lock(&tty_files_lock);
220         list_add(&priv->list, &tty->tty_files);
221         spin_unlock(&tty_files_lock);
222 }
223
224 /**
225  * tty_free_file - free file->private_data
226  *
227  * This shall be used only for fail path handling when tty_add_file was not
228  * called yet.
229  */
230 void tty_free_file(struct file *file)
231 {
232         struct tty_file_private *priv = file->private_data;
233
234         file->private_data = NULL;
235         kfree(priv);
236 }
237
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241         struct tty_file_private *priv = file->private_data;
242
243         spin_lock(&tty_files_lock);
244         list_del(&priv->list);
245         spin_unlock(&tty_files_lock);
246         tty_free_file(file);
247 }
248
249
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251
252 /**
253  *      tty_name        -       return tty naming
254  *      @tty: tty structure
255  *      @buf: buffer for output
256  *
257  *      Convert a tty structure into a name. The name reflects the kernel
258  *      naming policy and if udev is in use may not reflect user space
259  *
260  *      Locking: none
261  */
262
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
266                 strcpy(buf, "NULL tty");
267         else
268                 strcpy(buf, tty->name);
269         return buf;
270 }
271
272 EXPORT_SYMBOL(tty_name);
273
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275                               const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278         if (!tty) {
279                 printk(KERN_WARNING
280                         "null TTY for (%d:%d) in %s\n",
281                         imajor(inode), iminor(inode), routine);
282                 return 1;
283         }
284         if (tty->magic != TTY_MAGIC) {
285                 printk(KERN_WARNING
286                         "bad magic number for tty struct (%d:%d) in %s\n",
287                         imajor(inode), iminor(inode), routine);
288                 return 1;
289         }
290 #endif
291         return 0;
292 }
293
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297         struct list_head *p;
298         int count = 0;
299
300         spin_lock(&tty_files_lock);
301         list_for_each(p, &tty->tty_files) {
302                 count++;
303         }
304         spin_unlock(&tty_files_lock);
305         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306             tty->driver->subtype == PTY_TYPE_SLAVE &&
307             tty->link && tty->link->count)
308                 count++;
309         if (tty->count != count) {
310                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311                                     "!= #fd's(%d) in %s\n",
312                        tty->name, tty->count, count, routine);
313                 return count;
314         }
315 #endif
316         return 0;
317 }
318
319 /**
320  *      get_tty_driver          -       find device of a tty
321  *      @dev_t: device identifier
322  *      @index: returns the index of the tty
323  *
324  *      This routine returns a tty driver structure, given a device number
325  *      and also passes back the index number.
326  *
327  *      Locking: caller must hold tty_mutex
328  */
329
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332         struct tty_driver *p;
333
334         list_for_each_entry(p, &tty_drivers, tty_drivers) {
335                 dev_t base = MKDEV(p->major, p->minor_start);
336                 if (device < base || device >= base + p->num)
337                         continue;
338                 *index = device - base;
339                 return tty_driver_kref_get(p);
340         }
341         return NULL;
342 }
343
344 #ifdef CONFIG_CONSOLE_POLL
345
346 /**
347  *      tty_find_polling_driver -       find device of a polled tty
348  *      @name: name string to match
349  *      @line: pointer to resulting tty line nr
350  *
351  *      This routine returns a tty driver structure, given a name
352  *      and the condition that the tty driver is capable of polled
353  *      operation.
354  */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357         struct tty_driver *p, *res = NULL;
358         int tty_line = 0;
359         int len;
360         char *str, *stp;
361
362         for (str = name; *str; str++)
363                 if ((*str >= '0' && *str <= '9') || *str == ',')
364                         break;
365         if (!*str)
366                 return NULL;
367
368         len = str - name;
369         tty_line = simple_strtoul(str, &str, 10);
370
371         mutex_lock(&tty_mutex);
372         /* Search through the tty devices to look for a match */
373         list_for_each_entry(p, &tty_drivers, tty_drivers) {
374                 if (strncmp(name, p->name, len) != 0)
375                         continue;
376                 stp = str;
377                 if (*stp == ',')
378                         stp++;
379                 if (*stp == '\0')
380                         stp = NULL;
381
382                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384                         res = tty_driver_kref_get(p);
385                         *line = tty_line;
386                         break;
387                 }
388         }
389         mutex_unlock(&tty_mutex);
390
391         return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395
396 /**
397  *      tty_check_change        -       check for POSIX terminal changes
398  *      @tty: tty to check
399  *
400  *      If we try to write to, or set the state of, a terminal and we're
401  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
402  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
403  *
404  *      Locking: ctrl_lock
405  */
406
407 int tty_check_change(struct tty_struct *tty)
408 {
409         unsigned long flags;
410         int ret = 0;
411
412         if (current->signal->tty != tty)
413                 return 0;
414
415         spin_lock_irqsave(&tty->ctrl_lock, flags);
416
417         if (!tty->pgrp) {
418                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419                 goto out_unlock;
420         }
421         if (task_pgrp(current) == tty->pgrp)
422                 goto out_unlock;
423         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424         if (is_ignored(SIGTTOU))
425                 goto out;
426         if (is_current_pgrp_orphaned()) {
427                 ret = -EIO;
428                 goto out;
429         }
430         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431         set_thread_flag(TIF_SIGPENDING);
432         ret = -ERESTARTSYS;
433 out:
434         return ret;
435 out_unlock:
436         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437         return ret;
438 }
439
440 EXPORT_SYMBOL(tty_check_change);
441
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443                                 size_t count, loff_t *ppos)
444 {
445         return 0;
446 }
447
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449                                  size_t count, loff_t *ppos)
450 {
451         return -EIO;
452 }
453
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461                 unsigned long arg)
462 {
463         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465
466 static long hung_up_tty_compat_ioctl(struct file *file,
467                                      unsigned int cmd, unsigned long arg)
468 {
469         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471
472 static const struct file_operations tty_fops = {
473         .llseek         = no_llseek,
474         .read           = tty_read,
475         .write          = tty_write,
476         .poll           = tty_poll,
477         .unlocked_ioctl = tty_ioctl,
478         .compat_ioctl   = tty_compat_ioctl,
479         .open           = tty_open,
480         .release        = tty_release,
481         .fasync         = tty_fasync,
482 };
483
484 static const struct file_operations console_fops = {
485         .llseek         = no_llseek,
486         .read           = tty_read,
487         .write          = redirected_tty_write,
488         .poll           = tty_poll,
489         .unlocked_ioctl = tty_ioctl,
490         .compat_ioctl   = tty_compat_ioctl,
491         .open           = tty_open,
492         .release        = tty_release,
493         .fasync         = tty_fasync,
494 };
495
496 static const struct file_operations hung_up_tty_fops = {
497         .llseek         = no_llseek,
498         .read           = hung_up_tty_read,
499         .write          = hung_up_tty_write,
500         .poll           = hung_up_tty_poll,
501         .unlocked_ioctl = hung_up_tty_ioctl,
502         .compat_ioctl   = hung_up_tty_compat_ioctl,
503         .release        = tty_release,
504 };
505
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508
509 /**
510  *      tty_wakeup      -       request more data
511  *      @tty: terminal
512  *
513  *      Internal and external helper for wakeups of tty. This function
514  *      informs the line discipline if present that the driver is ready
515  *      to receive more output data.
516  */
517
518 void tty_wakeup(struct tty_struct *tty)
519 {
520         struct tty_ldisc *ld;
521
522         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523                 ld = tty_ldisc_ref(tty);
524                 if (ld) {
525                         if (ld->ops->write_wakeup)
526                                 ld->ops->write_wakeup(tty);
527                         tty_ldisc_deref(ld);
528                 }
529         }
530         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534
535 /**
536  *      tty_signal_session_leader       - sends SIGHUP to session leader
537  *      @tty            controlling tty
538  *      @exit_session   if non-zero, signal all foreground group processes
539  *
540  *      Send SIGHUP and SIGCONT to the session leader and its process group.
541  *      Optionally, signal all processes in the foreground process group.
542  *
543  *      Returns the number of processes in the session with this tty
544  *      as their controlling terminal. This value is used to drop
545  *      tty references for those processes.
546  */
547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
548 {
549         struct task_struct *p;
550         int refs = 0;
551         struct pid *tty_pgrp = NULL;
552
553         read_lock(&tasklist_lock);
554         if (tty->session) {
555                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556                         spin_lock_irq(&p->sighand->siglock);
557                         if (p->signal->tty == tty) {
558                                 p->signal->tty = NULL;
559                                 /* We defer the dereferences outside fo
560                                    the tasklist lock */
561                                 refs++;
562                         }
563                         if (!p->signal->leader) {
564                                 spin_unlock_irq(&p->sighand->siglock);
565                                 continue;
566                         }
567                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
570                         spin_lock(&tty->ctrl_lock);
571                         tty_pgrp = get_pid(tty->pgrp);
572                         if (tty->pgrp)
573                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574                         spin_unlock(&tty->ctrl_lock);
575                         spin_unlock_irq(&p->sighand->siglock);
576                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
577         }
578         read_unlock(&tasklist_lock);
579
580         if (tty_pgrp) {
581                 if (exit_session)
582                         kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583                 put_pid(tty_pgrp);
584         }
585
586         return refs;
587 }
588
589 /**
590  *      __tty_hangup            -       actual handler for hangup events
591  *      @work: tty device
592  *
593  *      This can be called by a "kworker" kernel thread.  That is process
594  *      synchronous but doesn't hold any locks, so we need to make sure we
595  *      have the appropriate locks for what we're doing.
596  *
597  *      The hangup event clears any pending redirections onto the hung up
598  *      device. It ensures future writes will error and it does the needed
599  *      line discipline hangup and signal delivery. The tty object itself
600  *      remains intact.
601  *
602  *      Locking:
603  *              BTM
604  *                redirect lock for undoing redirection
605  *                file list lock for manipulating list of ttys
606  *                tty_ldisc_lock from called functions
607  *                termios_mutex resetting termios data
608  *                tasklist_lock to walk task list for hangup event
609  *                  ->siglock to protect ->signal/->sighand
610  */
611 static void __tty_hangup(struct tty_struct *tty, int exit_session)
612 {
613         struct file *cons_filp = NULL;
614         struct file *filp, *f = NULL;
615         struct tty_file_private *priv;
616         int    closecount = 0, n;
617         int refs;
618
619         if (!tty)
620                 return;
621
622
623         spin_lock(&redirect_lock);
624         if (redirect && file_tty(redirect) == tty) {
625                 f = redirect;
626                 redirect = NULL;
627         }
628         spin_unlock(&redirect_lock);
629
630         tty_lock(tty);
631
632         /* some functions below drop BTM, so we need this bit */
633         set_bit(TTY_HUPPING, &tty->flags);
634
635         /* inuse_filps is protected by the single tty lock,
636            this really needs to change if we want to flush the
637            workqueue with the lock held */
638         check_tty_count(tty, "tty_hangup");
639
640         spin_lock(&tty_files_lock);
641         /* This breaks for file handles being sent over AF_UNIX sockets ? */
642         list_for_each_entry(priv, &tty->tty_files, list) {
643                 filp = priv->file;
644                 if (filp->f_op->write == redirected_tty_write)
645                         cons_filp = filp;
646                 if (filp->f_op->write != tty_write)
647                         continue;
648                 closecount++;
649                 __tty_fasync(-1, filp, 0);      /* can't block */
650                 filp->f_op = &hung_up_tty_fops;
651         }
652         spin_unlock(&tty_files_lock);
653
654         refs = tty_signal_session_leader(tty, exit_session);
655         /* Account for the p->signal references we killed */
656         while (refs--)
657                 tty_kref_put(tty);
658
659         /*
660          * it drops BTM and thus races with reopen
661          * we protect the race by TTY_HUPPING
662          */
663         tty_ldisc_hangup(tty);
664
665         spin_lock_irq(&tty->ctrl_lock);
666         clear_bit(TTY_THROTTLED, &tty->flags);
667         clear_bit(TTY_PUSH, &tty->flags);
668         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
669         put_pid(tty->session);
670         put_pid(tty->pgrp);
671         tty->session = NULL;
672         tty->pgrp = NULL;
673         tty->ctrl_status = 0;
674         spin_unlock_irq(&tty->ctrl_lock);
675
676         /*
677          * If one of the devices matches a console pointer, we
678          * cannot just call hangup() because that will cause
679          * tty->count and state->count to go out of sync.
680          * So we just call close() the right number of times.
681          */
682         if (cons_filp) {
683                 if (tty->ops->close)
684                         for (n = 0; n < closecount; n++)
685                                 tty->ops->close(tty, cons_filp);
686         } else if (tty->ops->hangup)
687                 (tty->ops->hangup)(tty);
688         /*
689          * We don't want to have driver/ldisc interactions beyond
690          * the ones we did here. The driver layer expects no
691          * calls after ->hangup() from the ldisc side. However we
692          * can't yet guarantee all that.
693          */
694         set_bit(TTY_HUPPED, &tty->flags);
695         clear_bit(TTY_HUPPING, &tty->flags);
696
697         tty_unlock(tty);
698
699         if (f)
700                 fput(f);
701 }
702
703 static void do_tty_hangup(struct work_struct *work)
704 {
705         struct tty_struct *tty =
706                 container_of(work, struct tty_struct, hangup_work);
707
708         __tty_hangup(tty, 0);
709 }
710
711 /**
712  *      tty_hangup              -       trigger a hangup event
713  *      @tty: tty to hangup
714  *
715  *      A carrier loss (virtual or otherwise) has occurred on this like
716  *      schedule a hangup sequence to run after this event.
717  */
718
719 void tty_hangup(struct tty_struct *tty)
720 {
721 #ifdef TTY_DEBUG_HANGUP
722         char    buf[64];
723         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
724 #endif
725         schedule_work(&tty->hangup_work);
726 }
727
728 EXPORT_SYMBOL(tty_hangup);
729
730 /**
731  *      tty_vhangup             -       process vhangup
732  *      @tty: tty to hangup
733  *
734  *      The user has asked via system call for the terminal to be hung up.
735  *      We do this synchronously so that when the syscall returns the process
736  *      is complete. That guarantee is necessary for security reasons.
737  */
738
739 void tty_vhangup(struct tty_struct *tty)
740 {
741 #ifdef TTY_DEBUG_HANGUP
742         char    buf[64];
743
744         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
745 #endif
746         __tty_hangup(tty, 0);
747 }
748
749 EXPORT_SYMBOL(tty_vhangup);
750
751
752 /**
753  *      tty_vhangup_self        -       process vhangup for own ctty
754  *
755  *      Perform a vhangup on the current controlling tty
756  */
757
758 void tty_vhangup_self(void)
759 {
760         struct tty_struct *tty;
761
762         tty = get_current_tty();
763         if (tty) {
764                 tty_vhangup(tty);
765                 tty_kref_put(tty);
766         }
767 }
768
769 /**
770  *      tty_vhangup_session             -       hangup session leader exit
771  *      @tty: tty to hangup
772  *
773  *      The session leader is exiting and hanging up its controlling terminal.
774  *      Every process in the foreground process group is signalled SIGHUP.
775  *
776  *      We do this synchronously so that when the syscall returns the process
777  *      is complete. That guarantee is necessary for security reasons.
778  */
779
780 static void tty_vhangup_session(struct tty_struct *tty)
781 {
782 #ifdef TTY_DEBUG_HANGUP
783         char    buf[64];
784
785         printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
786 #endif
787         __tty_hangup(tty, 1);
788 }
789
790 /**
791  *      tty_hung_up_p           -       was tty hung up
792  *      @filp: file pointer of tty
793  *
794  *      Return true if the tty has been subject to a vhangup or a carrier
795  *      loss
796  */
797
798 int tty_hung_up_p(struct file *filp)
799 {
800         return (filp->f_op == &hung_up_tty_fops);
801 }
802
803 EXPORT_SYMBOL(tty_hung_up_p);
804
805 static void session_clear_tty(struct pid *session)
806 {
807         struct task_struct *p;
808         do_each_pid_task(session, PIDTYPE_SID, p) {
809                 proc_clear_tty(p);
810         } while_each_pid_task(session, PIDTYPE_SID, p);
811 }
812
813 /**
814  *      disassociate_ctty       -       disconnect controlling tty
815  *      @on_exit: true if exiting so need to "hang up" the session
816  *
817  *      This function is typically called only by the session leader, when
818  *      it wants to disassociate itself from its controlling tty.
819  *
820  *      It performs the following functions:
821  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
822  *      (2)  Clears the tty from being controlling the session
823  *      (3)  Clears the controlling tty for all processes in the
824  *              session group.
825  *
826  *      The argument on_exit is set to 1 if called when a process is
827  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
828  *
829  *      Locking:
830  *              BTM is taken for hysterical raisins, and held when
831  *                called from no_tty().
832  *                tty_mutex is taken to protect tty
833  *                ->siglock is taken to protect ->signal/->sighand
834  *                tasklist_lock is taken to walk process list for sessions
835  *                  ->siglock is taken to protect ->signal/->sighand
836  */
837
838 void disassociate_ctty(int on_exit)
839 {
840         struct tty_struct *tty;
841
842         if (!current->signal->leader)
843                 return;
844
845         tty = get_current_tty();
846         if (tty) {
847                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
848                         tty_vhangup_session(tty);
849                 } else {
850                         struct pid *tty_pgrp = tty_get_pgrp(tty);
851                         if (tty_pgrp) {
852                                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
853                                 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
854                                 put_pid(tty_pgrp);
855                         }
856                 }
857                 tty_kref_put(tty);
858
859         } else if (on_exit) {
860                 struct pid *old_pgrp;
861                 spin_lock_irq(&current->sighand->siglock);
862                 old_pgrp = current->signal->tty_old_pgrp;
863                 current->signal->tty_old_pgrp = NULL;
864                 spin_unlock_irq(&current->sighand->siglock);
865                 if (old_pgrp) {
866                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
867                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
868                         put_pid(old_pgrp);
869                 }
870                 return;
871         }
872
873         spin_lock_irq(&current->sighand->siglock);
874         put_pid(current->signal->tty_old_pgrp);
875         current->signal->tty_old_pgrp = NULL;
876         spin_unlock_irq(&current->sighand->siglock);
877
878         tty = get_current_tty();
879         if (tty) {
880                 unsigned long flags;
881                 spin_lock_irqsave(&tty->ctrl_lock, flags);
882                 put_pid(tty->session);
883                 put_pid(tty->pgrp);
884                 tty->session = NULL;
885                 tty->pgrp = NULL;
886                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
887                 tty_kref_put(tty);
888         } else {
889 #ifdef TTY_DEBUG_HANGUP
890                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
891                        " = NULL", tty);
892 #endif
893         }
894
895         /* Now clear signal->tty under the lock */
896         read_lock(&tasklist_lock);
897         session_clear_tty(task_session(current));
898         read_unlock(&tasklist_lock);
899 }
900
901 /**
902  *
903  *      no_tty  - Ensure the current process does not have a controlling tty
904  */
905 void no_tty(void)
906 {
907         /* FIXME: Review locking here. The tty_lock never covered any race
908            between a new association and proc_clear_tty but possible we need
909            to protect against this anyway */
910         struct task_struct *tsk = current;
911         disassociate_ctty(0);
912         proc_clear_tty(tsk);
913 }
914
915
916 /**
917  *      stop_tty        -       propagate flow control
918  *      @tty: tty to stop
919  *
920  *      Perform flow control to the driver. For PTY/TTY pairs we
921  *      must also propagate the TIOCKPKT status. May be called
922  *      on an already stopped device and will not re-call the driver
923  *      method.
924  *
925  *      This functionality is used by both the line disciplines for
926  *      halting incoming flow and by the driver. It may therefore be
927  *      called from any context, may be under the tty atomic_write_lock
928  *      but not always.
929  *
930  *      Locking:
931  *              Uses the tty control lock internally
932  */
933
934 void stop_tty(struct tty_struct *tty)
935 {
936         unsigned long flags;
937         spin_lock_irqsave(&tty->ctrl_lock, flags);
938         if (tty->stopped) {
939                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
940                 return;
941         }
942         tty->stopped = 1;
943         if (tty->link && tty->link->packet) {
944                 tty->ctrl_status &= ~TIOCPKT_START;
945                 tty->ctrl_status |= TIOCPKT_STOP;
946                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
947         }
948         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
949         if (tty->ops->stop)
950                 (tty->ops->stop)(tty);
951 }
952
953 EXPORT_SYMBOL(stop_tty);
954
955 /**
956  *      start_tty       -       propagate flow control
957  *      @tty: tty to start
958  *
959  *      Start a tty that has been stopped if at all possible. Perform
960  *      any necessary wakeups and propagate the TIOCPKT status. If this
961  *      is the tty was previous stopped and is being started then the
962  *      driver start method is invoked and the line discipline woken.
963  *
964  *      Locking:
965  *              ctrl_lock
966  */
967
968 void start_tty(struct tty_struct *tty)
969 {
970         unsigned long flags;
971         spin_lock_irqsave(&tty->ctrl_lock, flags);
972         if (!tty->stopped || tty->flow_stopped) {
973                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
974                 return;
975         }
976         tty->stopped = 0;
977         if (tty->link && tty->link->packet) {
978                 tty->ctrl_status &= ~TIOCPKT_STOP;
979                 tty->ctrl_status |= TIOCPKT_START;
980                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
981         }
982         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
983         if (tty->ops->start)
984                 (tty->ops->start)(tty);
985         /* If we have a running line discipline it may need kicking */
986         tty_wakeup(tty);
987 }
988
989 EXPORT_SYMBOL(start_tty);
990
991 /* We limit tty time update visibility to every 8 seconds or so. */
992 static void tty_update_time(struct timespec *time)
993 {
994         unsigned long sec = get_seconds() & ~7;
995         if ((long)(sec - time->tv_sec) > 0)
996                 time->tv_sec = sec;
997 }
998
999 /**
1000  *      tty_read        -       read method for tty device files
1001  *      @file: pointer to tty file
1002  *      @buf: user buffer
1003  *      @count: size of user buffer
1004  *      @ppos: unused
1005  *
1006  *      Perform the read system call function on this terminal device. Checks
1007  *      for hung up devices before calling the line discipline method.
1008  *
1009  *      Locking:
1010  *              Locks the line discipline internally while needed. Multiple
1011  *      read calls may be outstanding in parallel.
1012  */
1013
1014 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1015                         loff_t *ppos)
1016 {
1017         int i;
1018         struct inode *inode = file_inode(file);
1019         struct tty_struct *tty = file_tty(file);
1020         struct tty_ldisc *ld;
1021
1022         if (tty_paranoia_check(tty, inode, "tty_read"))
1023                 return -EIO;
1024         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1025                 return -EIO;
1026
1027         /* We want to wait for the line discipline to sort out in this
1028            situation */
1029         ld = tty_ldisc_ref_wait(tty);
1030         if (ld->ops->read)
1031                 i = (ld->ops->read)(tty, file, buf, count);
1032         else
1033                 i = -EIO;
1034         tty_ldisc_deref(ld);
1035
1036         if (i > 0)
1037                 tty_update_time(&inode->i_atime);
1038
1039         return i;
1040 }
1041
1042 void tty_write_unlock(struct tty_struct *tty)
1043         __releases(&tty->atomic_write_lock)
1044 {
1045         mutex_unlock(&tty->atomic_write_lock);
1046         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1047 }
1048
1049 int tty_write_lock(struct tty_struct *tty, int ndelay)
1050         __acquires(&tty->atomic_write_lock)
1051 {
1052         if (!mutex_trylock(&tty->atomic_write_lock)) {
1053                 if (ndelay)
1054                         return -EAGAIN;
1055                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1056                         return -ERESTARTSYS;
1057         }
1058         return 0;
1059 }
1060
1061 /*
1062  * Split writes up in sane blocksizes to avoid
1063  * denial-of-service type attacks
1064  */
1065 static inline ssize_t do_tty_write(
1066         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1067         struct tty_struct *tty,
1068         struct file *file,
1069         const char __user *buf,
1070         size_t count)
1071 {
1072         ssize_t ret, written = 0;
1073         unsigned int chunk;
1074
1075         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1076         if (ret < 0)
1077                 return ret;
1078
1079         /*
1080          * We chunk up writes into a temporary buffer. This
1081          * simplifies low-level drivers immensely, since they
1082          * don't have locking issues and user mode accesses.
1083          *
1084          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1085          * big chunk-size..
1086          *
1087          * The default chunk-size is 2kB, because the NTTY
1088          * layer has problems with bigger chunks. It will
1089          * claim to be able to handle more characters than
1090          * it actually does.
1091          *
1092          * FIXME: This can probably go away now except that 64K chunks
1093          * are too likely to fail unless switched to vmalloc...
1094          */
1095         chunk = 2048;
1096         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1097                 chunk = 65536;
1098         if (count < chunk)
1099                 chunk = count;
1100
1101         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1102         if (tty->write_cnt < chunk) {
1103                 unsigned char *buf_chunk;
1104
1105                 if (chunk < 1024)
1106                         chunk = 1024;
1107
1108                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1109                 if (!buf_chunk) {
1110                         ret = -ENOMEM;
1111                         goto out;
1112                 }
1113                 kfree(tty->write_buf);
1114                 tty->write_cnt = chunk;
1115                 tty->write_buf = buf_chunk;
1116         }
1117
1118         /* Do the write .. */
1119         for (;;) {
1120                 size_t size = count;
1121                 if (size > chunk)
1122                         size = chunk;
1123                 ret = -EFAULT;
1124                 if (copy_from_user(tty->write_buf, buf, size))
1125                         break;
1126                 ret = write(tty, file, tty->write_buf, size);
1127                 if (ret <= 0)
1128                         break;
1129                 written += ret;
1130                 buf += ret;
1131                 count -= ret;
1132                 if (!count)
1133                         break;
1134                 ret = -ERESTARTSYS;
1135                 if (signal_pending(current))
1136                         break;
1137                 cond_resched();
1138         }
1139         if (written) {
1140                 tty_update_time(&file_inode(file)->i_mtime);
1141                 ret = written;
1142         }
1143 out:
1144         tty_write_unlock(tty);
1145         return ret;
1146 }
1147
1148 /**
1149  * tty_write_message - write a message to a certain tty, not just the console.
1150  * @tty: the destination tty_struct
1151  * @msg: the message to write
1152  *
1153  * This is used for messages that need to be redirected to a specific tty.
1154  * We don't put it into the syslog queue right now maybe in the future if
1155  * really needed.
1156  *
1157  * We must still hold the BTM and test the CLOSING flag for the moment.
1158  */
1159
1160 void tty_write_message(struct tty_struct *tty, char *msg)
1161 {
1162         if (tty) {
1163                 mutex_lock(&tty->atomic_write_lock);
1164                 tty_lock(tty);
1165                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1166                         tty_unlock(tty);
1167                         tty->ops->write(tty, msg, strlen(msg));
1168                 } else
1169                         tty_unlock(tty);
1170                 tty_write_unlock(tty);
1171         }
1172         return;
1173 }
1174
1175
1176 /**
1177  *      tty_write               -       write method for tty device file
1178  *      @file: tty file pointer
1179  *      @buf: user data to write
1180  *      @count: bytes to write
1181  *      @ppos: unused
1182  *
1183  *      Write data to a tty device via the line discipline.
1184  *
1185  *      Locking:
1186  *              Locks the line discipline as required
1187  *              Writes to the tty driver are serialized by the atomic_write_lock
1188  *      and are then processed in chunks to the device. The line discipline
1189  *      write method will not be invoked in parallel for each device.
1190  */
1191
1192 static ssize_t tty_write(struct file *file, const char __user *buf,
1193                                                 size_t count, loff_t *ppos)
1194 {
1195         struct tty_struct *tty = file_tty(file);
1196         struct tty_ldisc *ld;
1197         ssize_t ret;
1198
1199         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1200                 return -EIO;
1201         if (!tty || !tty->ops->write ||
1202                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1203                         return -EIO;
1204         /* Short term debug to catch buggy drivers */
1205         if (tty->ops->write_room == NULL)
1206                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1207                         tty->driver->name);
1208         ld = tty_ldisc_ref_wait(tty);
1209         if (!ld->ops->write)
1210                 ret = -EIO;
1211         else
1212                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1213         tty_ldisc_deref(ld);
1214         return ret;
1215 }
1216
1217 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1218                                                 size_t count, loff_t *ppos)
1219 {
1220         struct file *p = NULL;
1221
1222         spin_lock(&redirect_lock);
1223         if (redirect)
1224                 p = get_file(redirect);
1225         spin_unlock(&redirect_lock);
1226
1227         if (p) {
1228                 ssize_t res;
1229                 res = vfs_write(p, buf, count, &p->f_pos);
1230                 fput(p);
1231                 return res;
1232         }
1233         return tty_write(file, buf, count, ppos);
1234 }
1235
1236 static char ptychar[] = "pqrstuvwxyzabcde";
1237
1238 /**
1239  *      pty_line_name   -       generate name for a pty
1240  *      @driver: the tty driver in use
1241  *      @index: the minor number
1242  *      @p: output buffer of at least 6 bytes
1243  *
1244  *      Generate a name from a driver reference and write it to the output
1245  *      buffer.
1246  *
1247  *      Locking: None
1248  */
1249 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1250 {
1251         int i = index + driver->name_base;
1252         /* ->name is initialized to "ttyp", but "tty" is expected */
1253         sprintf(p, "%s%c%x",
1254                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1255                 ptychar[i >> 4 & 0xf], i & 0xf);
1256 }
1257
1258 /**
1259  *      tty_line_name   -       generate name for a tty
1260  *      @driver: the tty driver in use
1261  *      @index: the minor number
1262  *      @p: output buffer of at least 7 bytes
1263  *
1264  *      Generate a name from a driver reference and write it to the output
1265  *      buffer.
1266  *
1267  *      Locking: None
1268  */
1269 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1270 {
1271         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1272                 strcpy(p, driver->name);
1273         else
1274                 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1275 }
1276
1277 /**
1278  *      tty_driver_lookup_tty() - find an existing tty, if any
1279  *      @driver: the driver for the tty
1280  *      @idx:    the minor number
1281  *
1282  *      Return the tty, if found or ERR_PTR() otherwise.
1283  *
1284  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1285  *      be held until the 'fast-open' is also done. Will change once we
1286  *      have refcounting in the driver and per driver locking
1287  */
1288 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1289                 struct inode *inode, int idx)
1290 {
1291         if (driver->ops->lookup)
1292                 return driver->ops->lookup(driver, inode, idx);
1293
1294         return driver->ttys[idx];
1295 }
1296
1297 /**
1298  *      tty_init_termios        -  helper for termios setup
1299  *      @tty: the tty to set up
1300  *
1301  *      Initialise the termios structures for this tty. Thus runs under
1302  *      the tty_mutex currently so we can be relaxed about ordering.
1303  */
1304
1305 int tty_init_termios(struct tty_struct *tty)
1306 {
1307         struct ktermios *tp;
1308         int idx = tty->index;
1309
1310         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1311                 tty->termios = tty->driver->init_termios;
1312         else {
1313                 /* Check for lazy saved data */
1314                 tp = tty->driver->termios[idx];
1315                 if (tp != NULL)
1316                         tty->termios = *tp;
1317                 else
1318                         tty->termios = tty->driver->init_termios;
1319         }
1320         /* Compatibility until drivers always set this */
1321         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1322         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1323         return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(tty_init_termios);
1326
1327 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1328 {
1329         int ret = tty_init_termios(tty);
1330         if (ret)
1331                 return ret;
1332
1333         tty_driver_kref_get(driver);
1334         tty->count++;
1335         driver->ttys[tty->index] = tty;
1336         return 0;
1337 }
1338 EXPORT_SYMBOL_GPL(tty_standard_install);
1339
1340 /**
1341  *      tty_driver_install_tty() - install a tty entry in the driver
1342  *      @driver: the driver for the tty
1343  *      @tty: the tty
1344  *
1345  *      Install a tty object into the driver tables. The tty->index field
1346  *      will be set by the time this is called. This method is responsible
1347  *      for ensuring any need additional structures are allocated and
1348  *      configured.
1349  *
1350  *      Locking: tty_mutex for now
1351  */
1352 static int tty_driver_install_tty(struct tty_driver *driver,
1353                                                 struct tty_struct *tty)
1354 {
1355         return driver->ops->install ? driver->ops->install(driver, tty) :
1356                 tty_standard_install(driver, tty);
1357 }
1358
1359 /**
1360  *      tty_driver_remove_tty() - remove a tty from the driver tables
1361  *      @driver: the driver for the tty
1362  *      @idx:    the minor number
1363  *
1364  *      Remvoe a tty object from the driver tables. The tty->index field
1365  *      will be set by the time this is called.
1366  *
1367  *      Locking: tty_mutex for now
1368  */
1369 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1370 {
1371         if (driver->ops->remove)
1372                 driver->ops->remove(driver, tty);
1373         else
1374                 driver->ttys[tty->index] = NULL;
1375 }
1376
1377 /*
1378  *      tty_reopen()    - fast re-open of an open tty
1379  *      @tty    - the tty to open
1380  *
1381  *      Return 0 on success, -errno on error.
1382  *
1383  *      Locking: tty_mutex must be held from the time the tty was found
1384  *               till this open completes.
1385  */
1386 static int tty_reopen(struct tty_struct *tty)
1387 {
1388         struct tty_driver *driver = tty->driver;
1389
1390         if (test_bit(TTY_CLOSING, &tty->flags) ||
1391                         test_bit(TTY_HUPPING, &tty->flags) ||
1392                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1393                 return -EIO;
1394
1395         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1396             driver->subtype == PTY_TYPE_MASTER) {
1397                 /*
1398                  * special case for PTY masters: only one open permitted,
1399                  * and the slave side open count is incremented as well.
1400                  */
1401                 if (tty->count)
1402                         return -EIO;
1403
1404                 tty->link->count++;
1405         }
1406         tty->count++;
1407
1408         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1409
1410         return 0;
1411 }
1412
1413 /**
1414  *      tty_init_dev            -       initialise a tty device
1415  *      @driver: tty driver we are opening a device on
1416  *      @idx: device index
1417  *      @ret_tty: returned tty structure
1418  *
1419  *      Prepare a tty device. This may not be a "new" clean device but
1420  *      could also be an active device. The pty drivers require special
1421  *      handling because of this.
1422  *
1423  *      Locking:
1424  *              The function is called under the tty_mutex, which
1425  *      protects us from the tty struct or driver itself going away.
1426  *
1427  *      On exit the tty device has the line discipline attached and
1428  *      a reference count of 1. If a pair was created for pty/tty use
1429  *      and the other was a pty master then it too has a reference count of 1.
1430  *
1431  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1432  * failed open.  The new code protects the open with a mutex, so it's
1433  * really quite straightforward.  The mutex locking can probably be
1434  * relaxed for the (most common) case of reopening a tty.
1435  */
1436
1437 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1438 {
1439         struct tty_struct *tty;
1440         int retval;
1441
1442         /*
1443          * First time open is complex, especially for PTY devices.
1444          * This code guarantees that either everything succeeds and the
1445          * TTY is ready for operation, or else the table slots are vacated
1446          * and the allocated memory released.  (Except that the termios
1447          * and locked termios may be retained.)
1448          */
1449
1450         if (!try_module_get(driver->owner))
1451                 return ERR_PTR(-ENODEV);
1452
1453         tty = alloc_tty_struct();
1454         if (!tty) {
1455                 retval = -ENOMEM;
1456                 goto err_module_put;
1457         }
1458         initialize_tty_struct(tty, driver, idx);
1459
1460         tty_lock(tty);
1461         retval = tty_driver_install_tty(driver, tty);
1462         if (retval < 0)
1463                 goto err_deinit_tty;
1464
1465         if (!tty->port)
1466                 tty->port = driver->ports[idx];
1467
1468         WARN_RATELIMIT(!tty->port,
1469                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1470                         __func__, tty->driver->name);
1471
1472         tty->port->itty = tty;
1473
1474         /*
1475          * Structures all installed ... call the ldisc open routines.
1476          * If we fail here just call release_tty to clean up.  No need
1477          * to decrement the use counts, as release_tty doesn't care.
1478          */
1479         retval = tty_ldisc_setup(tty, tty->link);
1480         if (retval)
1481                 goto err_release_tty;
1482         /* Return the tty locked so that it cannot vanish under the caller */
1483         return tty;
1484
1485 err_deinit_tty:
1486         tty_unlock(tty);
1487         deinitialize_tty_struct(tty);
1488         free_tty_struct(tty);
1489 err_module_put:
1490         module_put(driver->owner);
1491         return ERR_PTR(retval);
1492
1493         /* call the tty release_tty routine to clean out this slot */
1494 err_release_tty:
1495         tty_unlock(tty);
1496         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1497                                  "clearing slot %d\n", idx);
1498         release_tty(tty, idx);
1499         return ERR_PTR(retval);
1500 }
1501
1502 void tty_free_termios(struct tty_struct *tty)
1503 {
1504         struct ktermios *tp;
1505         int idx = tty->index;
1506
1507         /* If the port is going to reset then it has no termios to save */
1508         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1509                 return;
1510
1511         /* Stash the termios data */
1512         tp = tty->driver->termios[idx];
1513         if (tp == NULL) {
1514                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1515                 if (tp == NULL) {
1516                         pr_warn("tty: no memory to save termios state.\n");
1517                         return;
1518                 }
1519                 tty->driver->termios[idx] = tp;
1520         }
1521         *tp = tty->termios;
1522 }
1523 EXPORT_SYMBOL(tty_free_termios);
1524
1525 /**
1526  *      tty_flush_works         -       flush all works of a tty
1527  *      @tty: tty device to flush works for
1528  *
1529  *      Sync flush all works belonging to @tty.
1530  */
1531 static void tty_flush_works(struct tty_struct *tty)
1532 {
1533         flush_work(&tty->SAK_work);
1534         flush_work(&tty->hangup_work);
1535 }
1536
1537 /**
1538  *      release_one_tty         -       release tty structure memory
1539  *      @kref: kref of tty we are obliterating
1540  *
1541  *      Releases memory associated with a tty structure, and clears out the
1542  *      driver table slots. This function is called when a device is no longer
1543  *      in use. It also gets called when setup of a device fails.
1544  *
1545  *      Locking:
1546  *              takes the file list lock internally when working on the list
1547  *      of ttys that the driver keeps.
1548  *
1549  *      This method gets called from a work queue so that the driver private
1550  *      cleanup ops can sleep (needed for USB at least)
1551  */
1552 static void release_one_tty(struct work_struct *work)
1553 {
1554         struct tty_struct *tty =
1555                 container_of(work, struct tty_struct, hangup_work);
1556         struct tty_driver *driver = tty->driver;
1557
1558         if (tty->ops->cleanup)
1559                 tty->ops->cleanup(tty);
1560
1561         tty->magic = 0;
1562         tty_driver_kref_put(driver);
1563         module_put(driver->owner);
1564
1565         spin_lock(&tty_files_lock);
1566         list_del_init(&tty->tty_files);
1567         spin_unlock(&tty_files_lock);
1568
1569         put_pid(tty->pgrp);
1570         put_pid(tty->session);
1571         free_tty_struct(tty);
1572 }
1573
1574 static void queue_release_one_tty(struct kref *kref)
1575 {
1576         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1577
1578         /* The hangup queue is now free so we can reuse it rather than
1579            waste a chunk of memory for each port */
1580         INIT_WORK(&tty->hangup_work, release_one_tty);
1581         schedule_work(&tty->hangup_work);
1582 }
1583
1584 /**
1585  *      tty_kref_put            -       release a tty kref
1586  *      @tty: tty device
1587  *
1588  *      Release a reference to a tty device and if need be let the kref
1589  *      layer destruct the object for us
1590  */
1591
1592 void tty_kref_put(struct tty_struct *tty)
1593 {
1594         if (tty)
1595                 kref_put(&tty->kref, queue_release_one_tty);
1596 }
1597 EXPORT_SYMBOL(tty_kref_put);
1598
1599 /**
1600  *      release_tty             -       release tty structure memory
1601  *
1602  *      Release both @tty and a possible linked partner (think pty pair),
1603  *      and decrement the refcount of the backing module.
1604  *
1605  *      Locking:
1606  *              tty_mutex
1607  *              takes the file list lock internally when working on the list
1608  *      of ttys that the driver keeps.
1609  *
1610  */
1611 static void release_tty(struct tty_struct *tty, int idx)
1612 {
1613         /* This should always be true but check for the moment */
1614         WARN_ON(tty->index != idx);
1615         WARN_ON(!mutex_is_locked(&tty_mutex));
1616         if (tty->ops->shutdown)
1617                 tty->ops->shutdown(tty);
1618         tty_free_termios(tty);
1619         tty_driver_remove_tty(tty->driver, tty);
1620         tty->port->itty = NULL;
1621         cancel_work_sync(&tty->port->buf.work);
1622
1623         if (tty->link)
1624                 tty_kref_put(tty->link);
1625         tty_kref_put(tty);
1626 }
1627
1628 /**
1629  *      tty_release_checks - check a tty before real release
1630  *      @tty: tty to check
1631  *      @o_tty: link of @tty (if any)
1632  *      @idx: index of the tty
1633  *
1634  *      Performs some paranoid checking before true release of the @tty.
1635  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1636  */
1637 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1638                 int idx)
1639 {
1640 #ifdef TTY_PARANOIA_CHECK
1641         if (idx < 0 || idx >= tty->driver->num) {
1642                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1643                                 __func__, tty->name);
1644                 return -1;
1645         }
1646
1647         /* not much to check for devpts */
1648         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1649                 return 0;
1650
1651         if (tty != tty->driver->ttys[idx]) {
1652                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1653                                 __func__, idx, tty->name);
1654                 return -1;
1655         }
1656         if (tty->driver->other) {
1657                 if (o_tty != tty->driver->other->ttys[idx]) {
1658                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1659                                         __func__, idx, tty->name);
1660                         return -1;
1661                 }
1662                 if (o_tty->link != tty) {
1663                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1664                         return -1;
1665                 }
1666         }
1667 #endif
1668         return 0;
1669 }
1670
1671 /**
1672  *      tty_release             -       vfs callback for close
1673  *      @inode: inode of tty
1674  *      @filp: file pointer for handle to tty
1675  *
1676  *      Called the last time each file handle is closed that references
1677  *      this tty. There may however be several such references.
1678  *
1679  *      Locking:
1680  *              Takes bkl. See tty_release_dev
1681  *
1682  * Even releasing the tty structures is a tricky business.. We have
1683  * to be very careful that the structures are all released at the
1684  * same time, as interrupts might otherwise get the wrong pointers.
1685  *
1686  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1687  * lead to double frees or releasing memory still in use.
1688  */
1689
1690 int tty_release(struct inode *inode, struct file *filp)
1691 {
1692         struct tty_struct *tty = file_tty(filp);
1693         struct tty_struct *o_tty;
1694         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1695         int     idx;
1696         char    buf[64];
1697
1698         if (tty_paranoia_check(tty, inode, __func__))
1699                 return 0;
1700
1701         tty_lock(tty);
1702         check_tty_count(tty, __func__);
1703
1704         __tty_fasync(-1, filp, 0);
1705
1706         idx = tty->index;
1707         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1708                       tty->driver->subtype == PTY_TYPE_MASTER);
1709         /* Review: parallel close */
1710         o_tty = tty->link;
1711
1712         if (tty_release_checks(tty, o_tty, idx)) {
1713                 tty_unlock(tty);
1714                 return 0;
1715         }
1716
1717 #ifdef TTY_DEBUG_HANGUP
1718         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1719                         tty_name(tty, buf), tty->count);
1720 #endif
1721
1722         if (tty->ops->close)
1723                 tty->ops->close(tty, filp);
1724
1725         tty_unlock(tty);
1726         /*
1727          * Sanity check: if tty->count is going to zero, there shouldn't be
1728          * any waiters on tty->read_wait or tty->write_wait.  We test the
1729          * wait queues and kick everyone out _before_ actually starting to
1730          * close.  This ensures that we won't block while releasing the tty
1731          * structure.
1732          *
1733          * The test for the o_tty closing is necessary, since the master and
1734          * slave sides may close in any order.  If the slave side closes out
1735          * first, its count will be one, since the master side holds an open.
1736          * Thus this test wouldn't be triggered at the time the slave closes,
1737          * so we do it now.
1738          *
1739          * Note that it's possible for the tty to be opened again while we're
1740          * flushing out waiters.  By recalculating the closing flags before
1741          * each iteration we avoid any problems.
1742          */
1743         while (1) {
1744                 /* Guard against races with tty->count changes elsewhere and
1745                    opens on /dev/tty */
1746
1747                 mutex_lock(&tty_mutex);
1748                 tty_lock_pair(tty, o_tty);
1749                 tty_closing = tty->count <= 1;
1750                 o_tty_closing = o_tty &&
1751                         (o_tty->count <= (pty_master ? 1 : 0));
1752                 do_sleep = 0;
1753
1754                 if (tty_closing) {
1755                         if (waitqueue_active(&tty->read_wait)) {
1756                                 wake_up_poll(&tty->read_wait, POLLIN);
1757                                 do_sleep++;
1758                         }
1759                         if (waitqueue_active(&tty->write_wait)) {
1760                                 wake_up_poll(&tty->write_wait, POLLOUT);
1761                                 do_sleep++;
1762                         }
1763                 }
1764                 if (o_tty_closing) {
1765                         if (waitqueue_active(&o_tty->read_wait)) {
1766                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1767                                 do_sleep++;
1768                         }
1769                         if (waitqueue_active(&o_tty->write_wait)) {
1770                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1771                                 do_sleep++;
1772                         }
1773                 }
1774                 if (!do_sleep)
1775                         break;
1776
1777                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1778                                 __func__, tty_name(tty, buf));
1779                 tty_unlock_pair(tty, o_tty);
1780                 mutex_unlock(&tty_mutex);
1781                 schedule();
1782         }
1783
1784         /*
1785          * The closing flags are now consistent with the open counts on
1786          * both sides, and we've completed the last operation that could
1787          * block, so it's safe to proceed with closing.
1788          *
1789          * We must *not* drop the tty_mutex until we ensure that a further
1790          * entry into tty_open can not pick up this tty.
1791          */
1792         if (pty_master) {
1793                 if (--o_tty->count < 0) {
1794                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1795                                 __func__, o_tty->count, tty_name(o_tty, buf));
1796                         o_tty->count = 0;
1797                 }
1798         }
1799         if (--tty->count < 0) {
1800                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1801                                 __func__, tty->count, tty_name(tty, buf));
1802                 tty->count = 0;
1803         }
1804
1805         /*
1806          * We've decremented tty->count, so we need to remove this file
1807          * descriptor off the tty->tty_files list; this serves two
1808          * purposes:
1809          *  - check_tty_count sees the correct number of file descriptors
1810          *    associated with this tty.
1811          *  - do_tty_hangup no longer sees this file descriptor as
1812          *    something that needs to be handled for hangups.
1813          */
1814         tty_del_file(filp);
1815
1816         /*
1817          * Perform some housekeeping before deciding whether to return.
1818          *
1819          * Set the TTY_CLOSING flag if this was the last open.  In the
1820          * case of a pty we may have to wait around for the other side
1821          * to close, and TTY_CLOSING makes sure we can't be reopened.
1822          */
1823         if (tty_closing)
1824                 set_bit(TTY_CLOSING, &tty->flags);
1825         if (o_tty_closing)
1826                 set_bit(TTY_CLOSING, &o_tty->flags);
1827
1828         /*
1829          * If _either_ side is closing, make sure there aren't any
1830          * processes that still think tty or o_tty is their controlling
1831          * tty.
1832          */
1833         if (tty_closing || o_tty_closing) {
1834                 read_lock(&tasklist_lock);
1835                 session_clear_tty(tty->session);
1836                 if (o_tty)
1837                         session_clear_tty(o_tty->session);
1838                 read_unlock(&tasklist_lock);
1839         }
1840
1841         mutex_unlock(&tty_mutex);
1842         tty_unlock_pair(tty, o_tty);
1843         /* At this point the TTY_CLOSING flag should ensure a dead tty
1844            cannot be re-opened by a racing opener */
1845
1846         /* check whether both sides are closing ... */
1847         if (!tty_closing || (o_tty && !o_tty_closing))
1848                 return 0;
1849
1850 #ifdef TTY_DEBUG_HANGUP
1851         printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1852 #endif
1853         /*
1854          * Ask the line discipline code to release its structures
1855          */
1856         tty_ldisc_release(tty, o_tty);
1857
1858         /* Wait for pending work before tty destruction commmences */
1859         tty_flush_works(tty);
1860         if (o_tty)
1861                 tty_flush_works(o_tty);
1862
1863 #ifdef TTY_DEBUG_HANGUP
1864         printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1865 #endif
1866         /*
1867          * The release_tty function takes care of the details of clearing
1868          * the slots and preserving the termios structure. The tty_unlock_pair
1869          * should be safe as we keep a kref while the tty is locked (so the
1870          * unlock never unlocks a freed tty).
1871          */
1872         mutex_lock(&tty_mutex);
1873         release_tty(tty, idx);
1874         mutex_unlock(&tty_mutex);
1875
1876         return 0;
1877 }
1878
1879 /**
1880  *      tty_open_current_tty - get tty of current task for open
1881  *      @device: device number
1882  *      @filp: file pointer to tty
1883  *      @return: tty of the current task iff @device is /dev/tty
1884  *
1885  *      We cannot return driver and index like for the other nodes because
1886  *      devpts will not work then. It expects inodes to be from devpts FS.
1887  *
1888  *      We need to move to returning a refcounted object from all the lookup
1889  *      paths including this one.
1890  */
1891 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1892 {
1893         struct tty_struct *tty;
1894
1895         if (device != MKDEV(TTYAUX_MAJOR, 0))
1896                 return NULL;
1897
1898         tty = get_current_tty();
1899         if (!tty)
1900                 return ERR_PTR(-ENXIO);
1901
1902         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1903         /* noctty = 1; */
1904         tty_kref_put(tty);
1905         /* FIXME: we put a reference and return a TTY! */
1906         /* This is only safe because the caller holds tty_mutex */
1907         return tty;
1908 }
1909
1910 /**
1911  *      tty_lookup_driver - lookup a tty driver for a given device file
1912  *      @device: device number
1913  *      @filp: file pointer to tty
1914  *      @noctty: set if the device should not become a controlling tty
1915  *      @index: index for the device in the @return driver
1916  *      @return: driver for this inode (with increased refcount)
1917  *
1918  *      If @return is not erroneous, the caller is responsible to decrement the
1919  *      refcount by tty_driver_kref_put.
1920  *
1921  *      Locking: tty_mutex protects get_tty_driver
1922  */
1923 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1924                 int *noctty, int *index)
1925 {
1926         struct tty_driver *driver;
1927
1928         switch (device) {
1929 #ifdef CONFIG_VT
1930         case MKDEV(TTY_MAJOR, 0): {
1931                 extern struct tty_driver *console_driver;
1932                 driver = tty_driver_kref_get(console_driver);
1933                 *index = fg_console;
1934                 *noctty = 1;
1935                 break;
1936         }
1937 #endif
1938         case MKDEV(TTYAUX_MAJOR, 1): {
1939                 struct tty_driver *console_driver = console_device(index);
1940                 if (console_driver) {
1941                         driver = tty_driver_kref_get(console_driver);
1942                         if (driver) {
1943                                 /* Don't let /dev/console block */
1944                                 filp->f_flags |= O_NONBLOCK;
1945                                 *noctty = 1;
1946                                 break;
1947                         }
1948                 }
1949                 return ERR_PTR(-ENODEV);
1950         }
1951         default:
1952                 driver = get_tty_driver(device, index);
1953                 if (!driver)
1954                         return ERR_PTR(-ENODEV);
1955                 break;
1956         }
1957         return driver;
1958 }
1959
1960 /**
1961  *      tty_open                -       open a tty device
1962  *      @inode: inode of device file
1963  *      @filp: file pointer to tty
1964  *
1965  *      tty_open and tty_release keep up the tty count that contains the
1966  *      number of opens done on a tty. We cannot use the inode-count, as
1967  *      different inodes might point to the same tty.
1968  *
1969  *      Open-counting is needed for pty masters, as well as for keeping
1970  *      track of serial lines: DTR is dropped when the last close happens.
1971  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1972  *
1973  *      The termios state of a pty is reset on first open so that
1974  *      settings don't persist across reuse.
1975  *
1976  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1977  *               tty->count should protect the rest.
1978  *               ->siglock protects ->signal/->sighand
1979  *
1980  *      Note: the tty_unlock/lock cases without a ref are only safe due to
1981  *      tty_mutex
1982  */
1983
1984 static int tty_open(struct inode *inode, struct file *filp)
1985 {
1986         struct tty_struct *tty;
1987         int noctty, retval;
1988         struct tty_driver *driver = NULL;
1989         int index;
1990         dev_t device = inode->i_rdev;
1991         unsigned saved_flags = filp->f_flags;
1992
1993         nonseekable_open(inode, filp);
1994
1995 retry_open:
1996         retval = tty_alloc_file(filp);
1997         if (retval)
1998                 return -ENOMEM;
1999
2000         noctty = filp->f_flags & O_NOCTTY;
2001         index  = -1;
2002         retval = 0;
2003
2004         mutex_lock(&tty_mutex);
2005         /* This is protected by the tty_mutex */
2006         tty = tty_open_current_tty(device, filp);
2007         if (IS_ERR(tty)) {
2008                 retval = PTR_ERR(tty);
2009                 goto err_unlock;
2010         } else if (!tty) {
2011                 driver = tty_lookup_driver(device, filp, &noctty, &index);
2012                 if (IS_ERR(driver)) {
2013                         retval = PTR_ERR(driver);
2014                         goto err_unlock;
2015                 }
2016
2017                 /* check whether we're reopening an existing tty */
2018                 tty = tty_driver_lookup_tty(driver, inode, index);
2019                 if (IS_ERR(tty)) {
2020                         retval = PTR_ERR(tty);
2021                         goto err_unlock;
2022                 }
2023         }
2024
2025         if (tty) {
2026                 tty_lock(tty);
2027                 retval = tty_reopen(tty);
2028                 if (retval < 0) {
2029                         tty_unlock(tty);
2030                         tty = ERR_PTR(retval);
2031                 }
2032         } else  /* Returns with the tty_lock held for now */
2033                 tty = tty_init_dev(driver, index);
2034
2035         mutex_unlock(&tty_mutex);
2036         if (driver)
2037                 tty_driver_kref_put(driver);
2038         if (IS_ERR(tty)) {
2039                 retval = PTR_ERR(tty);
2040                 goto err_file;
2041         }
2042
2043         tty_add_file(tty, filp);
2044
2045         check_tty_count(tty, __func__);
2046         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2047             tty->driver->subtype == PTY_TYPE_MASTER)
2048                 noctty = 1;
2049 #ifdef TTY_DEBUG_HANGUP
2050         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2051 #endif
2052         if (tty->ops->open)
2053                 retval = tty->ops->open(tty, filp);
2054         else
2055                 retval = -ENODEV;
2056         filp->f_flags = saved_flags;
2057
2058         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2059                                                 !capable(CAP_SYS_ADMIN))
2060                 retval = -EBUSY;
2061
2062         if (retval) {
2063 #ifdef TTY_DEBUG_HANGUP
2064                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2065                                 retval, tty->name);
2066 #endif
2067                 tty_unlock(tty); /* need to call tty_release without BTM */
2068                 tty_release(inode, filp);
2069                 if (retval != -ERESTARTSYS)
2070                         return retval;
2071
2072                 if (signal_pending(current))
2073                         return retval;
2074
2075                 schedule();
2076                 /*
2077                  * Need to reset f_op in case a hangup happened.
2078                  */
2079                 if (filp->f_op == &hung_up_tty_fops)
2080                         filp->f_op = &tty_fops;
2081                 goto retry_open;
2082         }
2083         tty_unlock(tty);
2084
2085
2086         mutex_lock(&tty_mutex);
2087         tty_lock(tty);
2088         spin_lock_irq(&current->sighand->siglock);
2089         if (!noctty &&
2090             current->signal->leader &&
2091             !current->signal->tty &&
2092             tty->session == NULL)
2093                 __proc_set_tty(current, tty);
2094         spin_unlock_irq(&current->sighand->siglock);
2095         tty_unlock(tty);
2096         mutex_unlock(&tty_mutex);
2097         return 0;
2098 err_unlock:
2099         mutex_unlock(&tty_mutex);
2100         /* after locks to avoid deadlock */
2101         if (!IS_ERR_OR_NULL(driver))
2102                 tty_driver_kref_put(driver);
2103 err_file:
2104         tty_free_file(filp);
2105         return retval;
2106 }
2107
2108
2109
2110 /**
2111  *      tty_poll        -       check tty status
2112  *      @filp: file being polled
2113  *      @wait: poll wait structures to update
2114  *
2115  *      Call the line discipline polling method to obtain the poll
2116  *      status of the device.
2117  *
2118  *      Locking: locks called line discipline but ldisc poll method
2119  *      may be re-entered freely by other callers.
2120  */
2121
2122 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2123 {
2124         struct tty_struct *tty = file_tty(filp);
2125         struct tty_ldisc *ld;
2126         int ret = 0;
2127
2128         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2129                 return 0;
2130
2131         ld = tty_ldisc_ref_wait(tty);
2132         if (ld->ops->poll)
2133                 ret = (ld->ops->poll)(tty, filp, wait);
2134         tty_ldisc_deref(ld);
2135         return ret;
2136 }
2137
2138 static int __tty_fasync(int fd, struct file *filp, int on)
2139 {
2140         struct tty_struct *tty = file_tty(filp);
2141         unsigned long flags;
2142         int retval = 0;
2143
2144         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2145                 goto out;
2146
2147         retval = fasync_helper(fd, filp, on, &tty->fasync);
2148         if (retval <= 0)
2149                 goto out;
2150
2151         if (on) {
2152                 enum pid_type type;
2153                 struct pid *pid;
2154                 if (!waitqueue_active(&tty->read_wait))
2155                         tty->minimum_to_wake = 1;
2156                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2157                 if (tty->pgrp) {
2158                         pid = tty->pgrp;
2159                         type = PIDTYPE_PGID;
2160                 } else {
2161                         pid = task_pid(current);
2162                         type = PIDTYPE_PID;
2163                 }
2164                 get_pid(pid);
2165                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2166                 retval = __f_setown(filp, pid, type, 0);
2167                 put_pid(pid);
2168                 if (retval)
2169                         goto out;
2170         } else {
2171                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2172                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2173         }
2174         retval = 0;
2175 out:
2176         return retval;
2177 }
2178
2179 static int tty_fasync(int fd, struct file *filp, int on)
2180 {
2181         struct tty_struct *tty = file_tty(filp);
2182         int retval;
2183
2184         tty_lock(tty);
2185         retval = __tty_fasync(fd, filp, on);
2186         tty_unlock(tty);
2187
2188         return retval;
2189 }
2190
2191 /**
2192  *      tiocsti                 -       fake input character
2193  *      @tty: tty to fake input into
2194  *      @p: pointer to character
2195  *
2196  *      Fake input to a tty device. Does the necessary locking and
2197  *      input management.
2198  *
2199  *      FIXME: does not honour flow control ??
2200  *
2201  *      Locking:
2202  *              Called functions take tty_ldisc_lock
2203  *              current->signal->tty check is safe without locks
2204  *
2205  *      FIXME: may race normal receive processing
2206  */
2207
2208 static int tiocsti(struct tty_struct *tty, char __user *p)
2209 {
2210         char ch, mbz = 0;
2211         struct tty_ldisc *ld;
2212
2213         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2214                 return -EPERM;
2215         if (get_user(ch, p))
2216                 return -EFAULT;
2217         tty_audit_tiocsti(tty, ch);
2218         ld = tty_ldisc_ref_wait(tty);
2219         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2220         tty_ldisc_deref(ld);
2221         return 0;
2222 }
2223
2224 /**
2225  *      tiocgwinsz              -       implement window query ioctl
2226  *      @tty; tty
2227  *      @arg: user buffer for result
2228  *
2229  *      Copies the kernel idea of the window size into the user buffer.
2230  *
2231  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2232  *              is consistent.
2233  */
2234
2235 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2236 {
2237         int err;
2238
2239         mutex_lock(&tty->termios_mutex);
2240         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2241         mutex_unlock(&tty->termios_mutex);
2242
2243         return err ? -EFAULT: 0;
2244 }
2245
2246 /**
2247  *      tty_do_resize           -       resize event
2248  *      @tty: tty being resized
2249  *      @rows: rows (character)
2250  *      @cols: cols (character)
2251  *
2252  *      Update the termios variables and send the necessary signals to
2253  *      peform a terminal resize correctly
2254  */
2255
2256 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2257 {
2258         struct pid *pgrp;
2259         unsigned long flags;
2260
2261         /* Lock the tty */
2262         mutex_lock(&tty->termios_mutex);
2263         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2264                 goto done;
2265         /* Get the PID values and reference them so we can
2266            avoid holding the tty ctrl lock while sending signals */
2267         spin_lock_irqsave(&tty->ctrl_lock, flags);
2268         pgrp = get_pid(tty->pgrp);
2269         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2270
2271         if (pgrp)
2272                 kill_pgrp(pgrp, SIGWINCH, 1);
2273         put_pid(pgrp);
2274
2275         tty->winsize = *ws;
2276 done:
2277         mutex_unlock(&tty->termios_mutex);
2278         return 0;
2279 }
2280 EXPORT_SYMBOL(tty_do_resize);
2281
2282 /**
2283  *      tiocswinsz              -       implement window size set ioctl
2284  *      @tty; tty side of tty
2285  *      @arg: user buffer for result
2286  *
2287  *      Copies the user idea of the window size to the kernel. Traditionally
2288  *      this is just advisory information but for the Linux console it
2289  *      actually has driver level meaning and triggers a VC resize.
2290  *
2291  *      Locking:
2292  *              Driver dependent. The default do_resize method takes the
2293  *      tty termios mutex and ctrl_lock. The console takes its own lock
2294  *      then calls into the default method.
2295  */
2296
2297 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2298 {
2299         struct winsize tmp_ws;
2300         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2301                 return -EFAULT;
2302
2303         if (tty->ops->resize)
2304                 return tty->ops->resize(tty, &tmp_ws);
2305         else
2306                 return tty_do_resize(tty, &tmp_ws);
2307 }
2308
2309 /**
2310  *      tioccons        -       allow admin to move logical console
2311  *      @file: the file to become console
2312  *
2313  *      Allow the administrator to move the redirected console device
2314  *
2315  *      Locking: uses redirect_lock to guard the redirect information
2316  */
2317
2318 static int tioccons(struct file *file)
2319 {
2320         if (!capable(CAP_SYS_ADMIN))
2321                 return -EPERM;
2322         if (file->f_op->write == redirected_tty_write) {
2323                 struct file *f;
2324                 spin_lock(&redirect_lock);
2325                 f = redirect;
2326                 redirect = NULL;
2327                 spin_unlock(&redirect_lock);
2328                 if (f)
2329                         fput(f);
2330                 return 0;
2331         }
2332         spin_lock(&redirect_lock);
2333         if (redirect) {
2334                 spin_unlock(&redirect_lock);
2335                 return -EBUSY;
2336         }
2337         redirect = get_file(file);
2338         spin_unlock(&redirect_lock);
2339         return 0;
2340 }
2341
2342 /**
2343  *      fionbio         -       non blocking ioctl
2344  *      @file: file to set blocking value
2345  *      @p: user parameter
2346  *
2347  *      Historical tty interfaces had a blocking control ioctl before
2348  *      the generic functionality existed. This piece of history is preserved
2349  *      in the expected tty API of posix OS's.
2350  *
2351  *      Locking: none, the open file handle ensures it won't go away.
2352  */
2353
2354 static int fionbio(struct file *file, int __user *p)
2355 {
2356         int nonblock;
2357
2358         if (get_user(nonblock, p))
2359                 return -EFAULT;
2360
2361         spin_lock(&file->f_lock);
2362         if (nonblock)
2363                 file->f_flags |= O_NONBLOCK;
2364         else
2365                 file->f_flags &= ~O_NONBLOCK;
2366         spin_unlock(&file->f_lock);
2367         return 0;
2368 }
2369
2370 /**
2371  *      tiocsctty       -       set controlling tty
2372  *      @tty: tty structure
2373  *      @arg: user argument
2374  *
2375  *      This ioctl is used to manage job control. It permits a session
2376  *      leader to set this tty as the controlling tty for the session.
2377  *
2378  *      Locking:
2379  *              Takes tty_mutex() to protect tty instance
2380  *              Takes tasklist_lock internally to walk sessions
2381  *              Takes ->siglock() when updating signal->tty
2382  */
2383
2384 static int tiocsctty(struct tty_struct *tty, int arg)
2385 {
2386         int ret = 0;
2387         if (current->signal->leader && (task_session(current) == tty->session))
2388                 return ret;
2389
2390         mutex_lock(&tty_mutex);
2391         /*
2392          * The process must be a session leader and
2393          * not have a controlling tty already.
2394          */
2395         if (!current->signal->leader || current->signal->tty) {
2396                 ret = -EPERM;
2397                 goto unlock;
2398         }
2399
2400         if (tty->session) {
2401                 /*
2402                  * This tty is already the controlling
2403                  * tty for another session group!
2404                  */
2405                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2406                         /*
2407                          * Steal it away
2408                          */
2409                         read_lock(&tasklist_lock);
2410                         session_clear_tty(tty->session);
2411                         read_unlock(&tasklist_lock);
2412                 } else {
2413                         ret = -EPERM;
2414                         goto unlock;
2415                 }
2416         }
2417         proc_set_tty(current, tty);
2418 unlock:
2419         mutex_unlock(&tty_mutex);
2420         return ret;
2421 }
2422
2423 /**
2424  *      tty_get_pgrp    -       return a ref counted pgrp pid
2425  *      @tty: tty to read
2426  *
2427  *      Returns a refcounted instance of the pid struct for the process
2428  *      group controlling the tty.
2429  */
2430
2431 struct pid *tty_get_pgrp(struct tty_struct *tty)
2432 {
2433         unsigned long flags;
2434         struct pid *pgrp;
2435
2436         spin_lock_irqsave(&tty->ctrl_lock, flags);
2437         pgrp = get_pid(tty->pgrp);
2438         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2439
2440         return pgrp;
2441 }
2442 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2443
2444 /**
2445  *      tiocgpgrp               -       get process group
2446  *      @tty: tty passed by user
2447  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2448  *      @p: returned pid
2449  *
2450  *      Obtain the process group of the tty. If there is no process group
2451  *      return an error.
2452  *
2453  *      Locking: none. Reference to current->signal->tty is safe.
2454  */
2455
2456 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2457 {
2458         struct pid *pid;
2459         int ret;
2460         /*
2461          * (tty == real_tty) is a cheap way of
2462          * testing if the tty is NOT a master pty.
2463          */
2464         if (tty == real_tty && current->signal->tty != real_tty)
2465                 return -ENOTTY;
2466         pid = tty_get_pgrp(real_tty);
2467         ret =  put_user(pid_vnr(pid), p);
2468         put_pid(pid);
2469         return ret;
2470 }
2471
2472 /**
2473  *      tiocspgrp               -       attempt to set process group
2474  *      @tty: tty passed by user
2475  *      @real_tty: tty side device matching tty passed by user
2476  *      @p: pid pointer
2477  *
2478  *      Set the process group of the tty to the session passed. Only
2479  *      permitted where the tty session is our session.
2480  *
2481  *      Locking: RCU, ctrl lock
2482  */
2483
2484 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2485 {
2486         struct pid *pgrp;
2487         pid_t pgrp_nr;
2488         int retval = tty_check_change(real_tty);
2489         unsigned long flags;
2490
2491         if (retval == -EIO)
2492                 return -ENOTTY;
2493         if (retval)
2494                 return retval;
2495         if (!current->signal->tty ||
2496             (current->signal->tty != real_tty) ||
2497             (real_tty->session != task_session(current)))
2498                 return -ENOTTY;
2499         if (get_user(pgrp_nr, p))
2500                 return -EFAULT;
2501         if (pgrp_nr < 0)
2502                 return -EINVAL;
2503         rcu_read_lock();
2504         pgrp = find_vpid(pgrp_nr);
2505         retval = -ESRCH;
2506         if (!pgrp)
2507                 goto out_unlock;
2508         retval = -EPERM;
2509         if (session_of_pgrp(pgrp) != task_session(current))
2510                 goto out_unlock;
2511         retval = 0;
2512         spin_lock_irqsave(&tty->ctrl_lock, flags);
2513         put_pid(real_tty->pgrp);
2514         real_tty->pgrp = get_pid(pgrp);
2515         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2516 out_unlock:
2517         rcu_read_unlock();
2518         return retval;
2519 }
2520
2521 /**
2522  *      tiocgsid                -       get session id
2523  *      @tty: tty passed by user
2524  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2525  *      @p: pointer to returned session id
2526  *
2527  *      Obtain the session id of the tty. If there is no session
2528  *      return an error.
2529  *
2530  *      Locking: none. Reference to current->signal->tty is safe.
2531  */
2532
2533 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2534 {
2535         /*
2536          * (tty == real_tty) is a cheap way of
2537          * testing if the tty is NOT a master pty.
2538         */
2539         if (tty == real_tty && current->signal->tty != real_tty)
2540                 return -ENOTTY;
2541         if (!real_tty->session)
2542                 return -ENOTTY;
2543         return put_user(pid_vnr(real_tty->session), p);
2544 }
2545
2546 /**
2547  *      tiocsetd        -       set line discipline
2548  *      @tty: tty device
2549  *      @p: pointer to user data
2550  *
2551  *      Set the line discipline according to user request.
2552  *
2553  *      Locking: see tty_set_ldisc, this function is just a helper
2554  */
2555
2556 static int tiocsetd(struct tty_struct *tty, int __user *p)
2557 {
2558         int ldisc;
2559         int ret;
2560
2561         if (get_user(ldisc, p))
2562                 return -EFAULT;
2563
2564         ret = tty_set_ldisc(tty, ldisc);
2565
2566         return ret;
2567 }
2568
2569 /**
2570  *      send_break      -       performed time break
2571  *      @tty: device to break on
2572  *      @duration: timeout in mS
2573  *
2574  *      Perform a timed break on hardware that lacks its own driver level
2575  *      timed break functionality.
2576  *
2577  *      Locking:
2578  *              atomic_write_lock serializes
2579  *
2580  */
2581
2582 static int send_break(struct tty_struct *tty, unsigned int duration)
2583 {
2584         int retval;
2585
2586         if (tty->ops->break_ctl == NULL)
2587                 return 0;
2588
2589         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2590                 retval = tty->ops->break_ctl(tty, duration);
2591         else {
2592                 /* Do the work ourselves */
2593                 if (tty_write_lock(tty, 0) < 0)
2594                         return -EINTR;
2595                 retval = tty->ops->break_ctl(tty, -1);
2596                 if (retval)
2597                         goto out;
2598                 if (!signal_pending(current))
2599                         msleep_interruptible(duration);
2600                 retval = tty->ops->break_ctl(tty, 0);
2601 out:
2602                 tty_write_unlock(tty);
2603                 if (signal_pending(current))
2604                         retval = -EINTR;
2605         }
2606         return retval;
2607 }
2608
2609 /**
2610  *      tty_tiocmget            -       get modem status
2611  *      @tty: tty device
2612  *      @file: user file pointer
2613  *      @p: pointer to result
2614  *
2615  *      Obtain the modem status bits from the tty driver if the feature
2616  *      is supported. Return -EINVAL if it is not available.
2617  *
2618  *      Locking: none (up to the driver)
2619  */
2620
2621 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2622 {
2623         int retval = -EINVAL;
2624
2625         if (tty->ops->tiocmget) {
2626                 retval = tty->ops->tiocmget(tty);
2627
2628                 if (retval >= 0)
2629                         retval = put_user(retval, p);
2630         }
2631         return retval;
2632 }
2633
2634 /**
2635  *      tty_tiocmset            -       set modem status
2636  *      @tty: tty device
2637  *      @cmd: command - clear bits, set bits or set all
2638  *      @p: pointer to desired bits
2639  *
2640  *      Set the modem status bits from the tty driver if the feature
2641  *      is supported. Return -EINVAL if it is not available.
2642  *
2643  *      Locking: none (up to the driver)
2644  */
2645
2646 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2647              unsigned __user *p)
2648 {
2649         int retval;
2650         unsigned int set, clear, val;
2651
2652         if (tty->ops->tiocmset == NULL)
2653                 return -EINVAL;
2654
2655         retval = get_user(val, p);
2656         if (retval)
2657                 return retval;
2658         set = clear = 0;
2659         switch (cmd) {
2660         case TIOCMBIS:
2661                 set = val;
2662                 break;
2663         case TIOCMBIC:
2664                 clear = val;
2665                 break;
2666         case TIOCMSET:
2667                 set = val;
2668                 clear = ~val;
2669                 break;
2670         }
2671         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2672         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2673         return tty->ops->tiocmset(tty, set, clear);
2674 }
2675
2676 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2677 {
2678         int retval = -EINVAL;
2679         struct serial_icounter_struct icount;
2680         memset(&icount, 0, sizeof(icount));
2681         if (tty->ops->get_icount)
2682                 retval = tty->ops->get_icount(tty, &icount);
2683         if (retval != 0)
2684                 return retval;
2685         if (copy_to_user(arg, &icount, sizeof(icount)))
2686                 return -EFAULT;
2687         return 0;
2688 }
2689
2690 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2691 {
2692         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2693             tty->driver->subtype == PTY_TYPE_MASTER)
2694                 tty = tty->link;
2695         return tty;
2696 }
2697 EXPORT_SYMBOL(tty_pair_get_tty);
2698
2699 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2700 {
2701         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2702             tty->driver->subtype == PTY_TYPE_MASTER)
2703             return tty;
2704         return tty->link;
2705 }
2706 EXPORT_SYMBOL(tty_pair_get_pty);
2707
2708 /*
2709  * Split this up, as gcc can choke on it otherwise..
2710  */
2711 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2712 {
2713         struct tty_struct *tty = file_tty(file);
2714         struct tty_struct *real_tty;
2715         void __user *p = (void __user *)arg;
2716         int retval;
2717         struct tty_ldisc *ld;
2718
2719         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2720                 return -EINVAL;
2721
2722         real_tty = tty_pair_get_tty(tty);
2723
2724         /*
2725          * Factor out some common prep work
2726          */
2727         switch (cmd) {
2728         case TIOCSETD:
2729         case TIOCSBRK:
2730         case TIOCCBRK:
2731         case TCSBRK:
2732         case TCSBRKP:
2733                 retval = tty_check_change(tty);
2734                 if (retval)
2735                         return retval;
2736                 if (cmd != TIOCCBRK) {
2737                         tty_wait_until_sent(tty, 0);
2738                         if (signal_pending(current))
2739                                 return -EINTR;
2740                 }
2741                 break;
2742         }
2743
2744         /*
2745          *      Now do the stuff.
2746          */
2747         switch (cmd) {
2748         case TIOCSTI:
2749                 return tiocsti(tty, p);
2750         case TIOCGWINSZ:
2751                 return tiocgwinsz(real_tty, p);
2752         case TIOCSWINSZ:
2753                 return tiocswinsz(real_tty, p);
2754         case TIOCCONS:
2755                 return real_tty != tty ? -EINVAL : tioccons(file);
2756         case FIONBIO:
2757                 return fionbio(file, p);
2758         case TIOCEXCL:
2759                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2760                 return 0;
2761         case TIOCNXCL:
2762                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2763                 return 0;
2764         case TIOCGEXCL:
2765         {
2766                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2767                 return put_user(excl, (int __user *)p);
2768         }
2769         case TIOCNOTTY:
2770                 if (current->signal->tty != tty)
2771                         return -ENOTTY;
2772                 no_tty();
2773                 return 0;
2774         case TIOCSCTTY:
2775                 return tiocsctty(tty, arg);
2776         case TIOCGPGRP:
2777                 return tiocgpgrp(tty, real_tty, p);
2778         case TIOCSPGRP:
2779                 return tiocspgrp(tty, real_tty, p);
2780         case TIOCGSID:
2781                 return tiocgsid(tty, real_tty, p);
2782         case TIOCGETD:
2783                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2784         case TIOCSETD:
2785                 return tiocsetd(tty, p);
2786         case TIOCVHANGUP:
2787                 if (!capable(CAP_SYS_ADMIN))
2788                         return -EPERM;
2789                 tty_vhangup(tty);
2790                 return 0;
2791         case TIOCGDEV:
2792         {
2793                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2794                 return put_user(ret, (unsigned int __user *)p);
2795         }
2796         /*
2797          * Break handling
2798          */
2799         case TIOCSBRK:  /* Turn break on, unconditionally */
2800                 if (tty->ops->break_ctl)
2801                         return tty->ops->break_ctl(tty, -1);
2802                 return 0;
2803         case TIOCCBRK:  /* Turn break off, unconditionally */
2804                 if (tty->ops->break_ctl)
2805                         return tty->ops->break_ctl(tty, 0);
2806                 return 0;
2807         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2808                 /* non-zero arg means wait for all output data
2809                  * to be sent (performed above) but don't send break.
2810                  * This is used by the tcdrain() termios function.
2811                  */
2812                 if (!arg)
2813                         return send_break(tty, 250);
2814                 return 0;
2815         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2816                 return send_break(tty, arg ? arg*100 : 250);
2817
2818         case TIOCMGET:
2819                 return tty_tiocmget(tty, p);
2820         case TIOCMSET:
2821         case TIOCMBIC:
2822         case TIOCMBIS:
2823                 return tty_tiocmset(tty, cmd, p);
2824         case TIOCGICOUNT:
2825                 retval = tty_tiocgicount(tty, p);
2826                 /* For the moment allow fall through to the old method */
2827                 if (retval != -EINVAL)
2828                         return retval;
2829                 break;
2830         case TCFLSH:
2831                 switch (arg) {
2832                 case TCIFLUSH:
2833                 case TCIOFLUSH:
2834                 /* flush tty buffer and allow ldisc to process ioctl */
2835                         tty_buffer_flush(tty);
2836                         break;
2837                 }
2838                 break;
2839         }
2840         if (tty->ops->ioctl) {
2841                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2842                 if (retval != -ENOIOCTLCMD)
2843                         return retval;
2844         }
2845         ld = tty_ldisc_ref_wait(tty);
2846         retval = -EINVAL;
2847         if (ld->ops->ioctl) {
2848                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2849                 if (retval == -ENOIOCTLCMD)
2850                         retval = -ENOTTY;
2851         }
2852         tty_ldisc_deref(ld);
2853         return retval;
2854 }
2855
2856 #ifdef CONFIG_COMPAT
2857 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2858                                 unsigned long arg)
2859 {
2860         struct tty_struct *tty = file_tty(file);
2861         struct tty_ldisc *ld;
2862         int retval = -ENOIOCTLCMD;
2863
2864         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2865                 return -EINVAL;
2866
2867         if (tty->ops->compat_ioctl) {
2868                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2869                 if (retval != -ENOIOCTLCMD)
2870                         return retval;
2871         }
2872
2873         ld = tty_ldisc_ref_wait(tty);
2874         if (ld->ops->compat_ioctl)
2875                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2876         else
2877                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2878         tty_ldisc_deref(ld);
2879
2880         return retval;
2881 }
2882 #endif
2883
2884 static int this_tty(const void *t, struct file *file, unsigned fd)
2885 {
2886         if (likely(file->f_op->read != tty_read))
2887                 return 0;
2888         return file_tty(file) != t ? 0 : fd + 1;
2889 }
2890         
2891 /*
2892  * This implements the "Secure Attention Key" ---  the idea is to
2893  * prevent trojan horses by killing all processes associated with this
2894  * tty when the user hits the "Secure Attention Key".  Required for
2895  * super-paranoid applications --- see the Orange Book for more details.
2896  *
2897  * This code could be nicer; ideally it should send a HUP, wait a few
2898  * seconds, then send a INT, and then a KILL signal.  But you then
2899  * have to coordinate with the init process, since all processes associated
2900  * with the current tty must be dead before the new getty is allowed
2901  * to spawn.
2902  *
2903  * Now, if it would be correct ;-/ The current code has a nasty hole -
2904  * it doesn't catch files in flight. We may send the descriptor to ourselves
2905  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2906  *
2907  * Nasty bug: do_SAK is being called in interrupt context.  This can
2908  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2909  */
2910 void __do_SAK(struct tty_struct *tty)
2911 {
2912 #ifdef TTY_SOFT_SAK
2913         tty_hangup(tty);
2914 #else
2915         struct task_struct *g, *p;
2916         struct pid *session;
2917         int             i;
2918
2919         if (!tty)
2920                 return;
2921         session = tty->session;
2922
2923         tty_ldisc_flush(tty);
2924
2925         tty_driver_flush_buffer(tty);
2926
2927         read_lock(&tasklist_lock);
2928         /* Kill the entire session */
2929         do_each_pid_task(session, PIDTYPE_SID, p) {
2930                 printk(KERN_NOTICE "SAK: killed process %d"
2931                         " (%s): task_session(p)==tty->session\n",
2932                         task_pid_nr(p), p->comm);
2933                 send_sig(SIGKILL, p, 1);
2934         } while_each_pid_task(session, PIDTYPE_SID, p);
2935         /* Now kill any processes that happen to have the
2936          * tty open.
2937          */
2938         do_each_thread(g, p) {
2939                 if (p->signal->tty == tty) {
2940                         printk(KERN_NOTICE "SAK: killed process %d"
2941                             " (%s): task_session(p)==tty->session\n",
2942                             task_pid_nr(p), p->comm);
2943                         send_sig(SIGKILL, p, 1);
2944                         continue;
2945                 }
2946                 task_lock(p);
2947                 i = iterate_fd(p->files, 0, this_tty, tty);
2948                 if (i != 0) {
2949                         printk(KERN_NOTICE "SAK: killed process %d"
2950                             " (%s): fd#%d opened to the tty\n",
2951                                     task_pid_nr(p), p->comm, i - 1);
2952                         force_sig(SIGKILL, p);
2953                 }
2954                 task_unlock(p);
2955         } while_each_thread(g, p);
2956         read_unlock(&tasklist_lock);
2957 #endif
2958 }
2959
2960 static void do_SAK_work(struct work_struct *work)
2961 {
2962         struct tty_struct *tty =
2963                 container_of(work, struct tty_struct, SAK_work);
2964         __do_SAK(tty);
2965 }
2966
2967 /*
2968  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2969  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2970  * the values which we write to it will be identical to the values which it
2971  * already has. --akpm
2972  */
2973 void do_SAK(struct tty_struct *tty)
2974 {
2975         if (!tty)
2976                 return;
2977         schedule_work(&tty->SAK_work);
2978 }
2979
2980 EXPORT_SYMBOL(do_SAK);
2981
2982 static int dev_match_devt(struct device *dev, const void *data)
2983 {
2984         const dev_t *devt = data;
2985         return dev->devt == *devt;
2986 }
2987
2988 /* Must put_device() after it's unused! */
2989 static struct device *tty_get_device(struct tty_struct *tty)
2990 {
2991         dev_t devt = tty_devnum(tty);
2992         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2993 }
2994
2995
2996 /**
2997  *      initialize_tty_struct
2998  *      @tty: tty to initialize
2999  *
3000  *      This subroutine initializes a tty structure that has been newly
3001  *      allocated.
3002  *
3003  *      Locking: none - tty in question must not be exposed at this point
3004  */
3005
3006 void initialize_tty_struct(struct tty_struct *tty,
3007                 struct tty_driver *driver, int idx)
3008 {
3009         memset(tty, 0, sizeof(struct tty_struct));
3010         kref_init(&tty->kref);
3011         tty->magic = TTY_MAGIC;
3012         tty_ldisc_init(tty);
3013         tty->session = NULL;
3014         tty->pgrp = NULL;
3015         mutex_init(&tty->legacy_mutex);
3016         mutex_init(&tty->termios_mutex);
3017         mutex_init(&tty->ldisc_mutex);
3018         init_waitqueue_head(&tty->write_wait);
3019         init_waitqueue_head(&tty->read_wait);
3020         INIT_WORK(&tty->hangup_work, do_tty_hangup);
3021         mutex_init(&tty->atomic_write_lock);
3022         spin_lock_init(&tty->ctrl_lock);
3023         INIT_LIST_HEAD(&tty->tty_files);
3024         INIT_WORK(&tty->SAK_work, do_SAK_work);
3025
3026         tty->driver = driver;
3027         tty->ops = driver->ops;
3028         tty->index = idx;
3029         tty_line_name(driver, idx, tty->name);
3030         tty->dev = tty_get_device(tty);
3031 }
3032
3033 /**
3034  *      deinitialize_tty_struct
3035  *      @tty: tty to deinitialize
3036  *
3037  *      This subroutine deinitializes a tty structure that has been newly
3038  *      allocated but tty_release cannot be called on that yet.
3039  *
3040  *      Locking: none - tty in question must not be exposed at this point
3041  */
3042 void deinitialize_tty_struct(struct tty_struct *tty)
3043 {
3044         tty_ldisc_deinit(tty);
3045 }
3046
3047 /**
3048  *      tty_put_char    -       write one character to a tty
3049  *      @tty: tty
3050  *      @ch: character
3051  *
3052  *      Write one byte to the tty using the provided put_char method
3053  *      if present. Returns the number of characters successfully output.
3054  *
3055  *      Note: the specific put_char operation in the driver layer may go
3056  *      away soon. Don't call it directly, use this method
3057  */
3058
3059 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3060 {
3061         if (tty->ops->put_char)
3062                 return tty->ops->put_char(tty, ch);
3063         return tty->ops->write(tty, &ch, 1);
3064 }
3065 EXPORT_SYMBOL_GPL(tty_put_char);
3066
3067 struct class *tty_class;
3068
3069 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3070                 unsigned int index, unsigned int count)
3071 {
3072         /* init here, since reused cdevs cause crashes */
3073         cdev_init(&driver->cdevs[index], &tty_fops);
3074         driver->cdevs[index].owner = driver->owner;
3075         return cdev_add(&driver->cdevs[index], dev, count);
3076 }
3077
3078 /**
3079  *      tty_register_device - register a tty device
3080  *      @driver: the tty driver that describes the tty device
3081  *      @index: the index in the tty driver for this tty device
3082  *      @device: a struct device that is associated with this tty device.
3083  *              This field is optional, if there is no known struct device
3084  *              for this tty device it can be set to NULL safely.
3085  *
3086  *      Returns a pointer to the struct device for this tty device
3087  *      (or ERR_PTR(-EFOO) on error).
3088  *
3089  *      This call is required to be made to register an individual tty device
3090  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3091  *      that bit is not set, this function should not be called by a tty
3092  *      driver.
3093  *
3094  *      Locking: ??
3095  */
3096
3097 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3098                                    struct device *device)
3099 {
3100         return tty_register_device_attr(driver, index, device, NULL, NULL);
3101 }
3102 EXPORT_SYMBOL(tty_register_device);
3103
3104 static void tty_device_create_release(struct device *dev)
3105 {
3106         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3107         kfree(dev);
3108 }
3109
3110 /**
3111  *      tty_register_device_attr - register a tty device
3112  *      @driver: the tty driver that describes the tty device
3113  *      @index: the index in the tty driver for this tty device
3114  *      @device: a struct device that is associated with this tty device.
3115  *              This field is optional, if there is no known struct device
3116  *              for this tty device it can be set to NULL safely.
3117  *      @drvdata: Driver data to be set to device.
3118  *      @attr_grp: Attribute group to be set on device.
3119  *
3120  *      Returns a pointer to the struct device for this tty device
3121  *      (or ERR_PTR(-EFOO) on error).
3122  *
3123  *      This call is required to be made to register an individual tty device
3124  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3125  *      that bit is not set, this function should not be called by a tty
3126  *      driver.
3127  *
3128  *      Locking: ??
3129  */
3130 struct device *tty_register_device_attr(struct tty_driver *driver,
3131                                    unsigned index, struct device *device,
3132                                    void *drvdata,
3133                                    const struct attribute_group **attr_grp)
3134 {
3135         char name[64];
3136         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3137         struct device *dev = NULL;
3138         int retval = -ENODEV;
3139         bool cdev = false;
3140
3141         if (index >= driver->num) {
3142                 printk(KERN_ERR "Attempt to register invalid tty line number "
3143                        " (%d).\n", index);
3144                 return ERR_PTR(-EINVAL);
3145         }
3146
3147         if (driver->type == TTY_DRIVER_TYPE_PTY)
3148                 pty_line_name(driver, index, name);
3149         else
3150                 tty_line_name(driver, index, name);
3151
3152         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3153                 retval = tty_cdev_add(driver, devt, index, 1);
3154                 if (retval)
3155                         goto error;
3156                 cdev = true;
3157         }
3158
3159         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3160         if (!dev) {
3161                 retval = -ENOMEM;
3162                 goto error;
3163         }
3164
3165         dev->devt = devt;
3166         dev->class = tty_class;
3167         dev->parent = device;
3168         dev->release = tty_device_create_release;
3169         dev_set_name(dev, "%s", name);
3170         dev->groups = attr_grp;
3171         dev_set_drvdata(dev, drvdata);
3172
3173         retval = device_register(dev);
3174         if (retval)
3175                 goto error;
3176
3177         return dev;
3178
3179 error:
3180         put_device(dev);
3181         if (cdev)
3182                 cdev_del(&driver->cdevs[index]);
3183         return ERR_PTR(retval);
3184 }
3185 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3186
3187 /**
3188  *      tty_unregister_device - unregister a tty device
3189  *      @driver: the tty driver that describes the tty device
3190  *      @index: the index in the tty driver for this tty device
3191  *
3192  *      If a tty device is registered with a call to tty_register_device() then
3193  *      this function must be called when the tty device is gone.
3194  *
3195  *      Locking: ??
3196  */
3197
3198 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3199 {
3200         device_destroy(tty_class,
3201                 MKDEV(driver->major, driver->minor_start) + index);
3202         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3203                 cdev_del(&driver->cdevs[index]);
3204 }
3205 EXPORT_SYMBOL(tty_unregister_device);
3206
3207 /**
3208  * __tty_alloc_driver -- allocate tty driver
3209  * @lines: count of lines this driver can handle at most
3210  * @owner: module which is repsonsible for this driver
3211  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3212  *
3213  * This should not be called directly, some of the provided macros should be
3214  * used instead. Use IS_ERR and friends on @retval.
3215  */
3216 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3217                 unsigned long flags)
3218 {
3219         struct tty_driver *driver;
3220         unsigned int cdevs = 1;
3221         int err;
3222
3223         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3224                 return ERR_PTR(-EINVAL);
3225
3226         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3227         if (!driver)
3228                 return ERR_PTR(-ENOMEM);
3229
3230         kref_init(&driver->kref);
3231         driver->magic = TTY_DRIVER_MAGIC;
3232         driver->num = lines;
3233         driver->owner = owner;
3234         driver->flags = flags;
3235
3236         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3237                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3238                                 GFP_KERNEL);
3239                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3240                                 GFP_KERNEL);
3241                 if (!driver->ttys || !driver->termios) {
3242                         err = -ENOMEM;
3243                         goto err_free_all;
3244                 }
3245         }
3246
3247         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3248                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3249                                 GFP_KERNEL);
3250                 if (!driver->ports) {
3251                         err = -ENOMEM;
3252                         goto err_free_all;
3253                 }
3254                 cdevs = lines;
3255         }
3256
3257         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3258         if (!driver->cdevs) {
3259                 err = -ENOMEM;
3260                 goto err_free_all;
3261         }
3262
3263         return driver;
3264 err_free_all:
3265         kfree(driver->ports);
3266         kfree(driver->ttys);
3267         kfree(driver->termios);
3268         kfree(driver);
3269         return ERR_PTR(err);
3270 }
3271 EXPORT_SYMBOL(__tty_alloc_driver);
3272
3273 static void destruct_tty_driver(struct kref *kref)
3274 {
3275         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3276         int i;
3277         struct ktermios *tp;
3278
3279         if (driver->flags & TTY_DRIVER_INSTALLED) {
3280                 /*
3281                  * Free the termios and termios_locked structures because
3282                  * we don't want to get memory leaks when modular tty
3283                  * drivers are removed from the kernel.
3284                  */
3285                 for (i = 0; i < driver->num; i++) {
3286                         tp = driver->termios[i];
3287                         if (tp) {
3288                                 driver->termios[i] = NULL;
3289                                 kfree(tp);
3290                         }
3291                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3292                                 tty_unregister_device(driver, i);
3293                 }
3294                 proc_tty_unregister_driver(driver);
3295                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3296                         cdev_del(&driver->cdevs[0]);
3297         }
3298         kfree(driver->cdevs);
3299         kfree(driver->ports);
3300         kfree(driver->termios);
3301         kfree(driver->ttys);
3302         kfree(driver);
3303 }
3304
3305 void tty_driver_kref_put(struct tty_driver *driver)
3306 {
3307         kref_put(&driver->kref, destruct_tty_driver);
3308 }
3309 EXPORT_SYMBOL(tty_driver_kref_put);
3310
3311 void tty_set_operations(struct tty_driver *driver,
3312                         const struct tty_operations *op)
3313 {
3314         driver->ops = op;
3315 };
3316 EXPORT_SYMBOL(tty_set_operations);
3317
3318 void put_tty_driver(struct tty_driver *d)
3319 {
3320         tty_driver_kref_put(d);
3321 }
3322 EXPORT_SYMBOL(put_tty_driver);
3323
3324 /*
3325  * Called by a tty driver to register itself.
3326  */
3327 int tty_register_driver(struct tty_driver *driver)
3328 {
3329         int error;
3330         int i;
3331         dev_t dev;
3332         struct device *d;
3333
3334         if (!driver->major) {
3335                 error = alloc_chrdev_region(&dev, driver->minor_start,
3336                                                 driver->num, driver->name);
3337                 if (!error) {
3338                         driver->major = MAJOR(dev);
3339                         driver->minor_start = MINOR(dev);
3340                 }
3341         } else {
3342                 dev = MKDEV(driver->major, driver->minor_start);
3343                 error = register_chrdev_region(dev, driver->num, driver->name);
3344         }
3345         if (error < 0)
3346                 goto err;
3347
3348         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3349                 error = tty_cdev_add(driver, dev, 0, driver->num);
3350                 if (error)
3351                         goto err_unreg_char;
3352         }
3353
3354         mutex_lock(&tty_mutex);
3355         list_add(&driver->tty_drivers, &tty_drivers);
3356         mutex_unlock(&tty_mutex);
3357
3358         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3359                 for (i = 0; i < driver->num; i++) {
3360                         d = tty_register_device(driver, i, NULL);
3361                         if (IS_ERR(d)) {
3362                                 error = PTR_ERR(d);
3363                                 goto err_unreg_devs;
3364                         }
3365                 }
3366         }
3367         proc_tty_register_driver(driver);
3368         driver->flags |= TTY_DRIVER_INSTALLED;
3369         return 0;
3370
3371 err_unreg_devs:
3372         for (i--; i >= 0; i--)
3373                 tty_unregister_device(driver, i);
3374
3375         mutex_lock(&tty_mutex);
3376         list_del(&driver->tty_drivers);
3377         mutex_unlock(&tty_mutex);
3378
3379 err_unreg_char:
3380         unregister_chrdev_region(dev, driver->num);
3381 err:
3382         return error;
3383 }
3384 EXPORT_SYMBOL(tty_register_driver);
3385
3386 /*
3387  * Called by a tty driver to unregister itself.
3388  */
3389 int tty_unregister_driver(struct tty_driver *driver)
3390 {
3391 #if 0
3392         /* FIXME */
3393         if (driver->refcount)
3394                 return -EBUSY;
3395 #endif
3396         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3397                                 driver->num);
3398         mutex_lock(&tty_mutex);
3399         list_del(&driver->tty_drivers);
3400         mutex_unlock(&tty_mutex);
3401         return 0;
3402 }
3403
3404 EXPORT_SYMBOL(tty_unregister_driver);
3405
3406 dev_t tty_devnum(struct tty_struct *tty)
3407 {
3408         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3409 }
3410 EXPORT_SYMBOL(tty_devnum);
3411
3412 void proc_clear_tty(struct task_struct *p)
3413 {
3414         unsigned long flags;
3415         struct tty_struct *tty;
3416         spin_lock_irqsave(&p->sighand->siglock, flags);
3417         tty = p->signal->tty;
3418         p->signal->tty = NULL;
3419         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3420         tty_kref_put(tty);
3421 }
3422
3423 /* Called under the sighand lock */
3424
3425 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3426 {
3427         if (tty) {
3428                 unsigned long flags;
3429                 /* We should not have a session or pgrp to put here but.... */
3430                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3431                 put_pid(tty->session);
3432                 put_pid(tty->pgrp);
3433                 tty->pgrp = get_pid(task_pgrp(tsk));
3434                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3435                 tty->session = get_pid(task_session(tsk));
3436                 if (tsk->signal->tty) {
3437                         printk(KERN_DEBUG "tty not NULL!!\n");
3438                         tty_kref_put(tsk->signal->tty);
3439                 }
3440         }
3441         put_pid(tsk->signal->tty_old_pgrp);
3442         tsk->signal->tty = tty_kref_get(tty);
3443         tsk->signal->tty_old_pgrp = NULL;
3444 }
3445
3446 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3447 {
3448         spin_lock_irq(&tsk->sighand->siglock);
3449         __proc_set_tty(tsk, tty);
3450         spin_unlock_irq(&tsk->sighand->siglock);
3451 }
3452
3453 struct tty_struct *get_current_tty(void)
3454 {
3455         struct tty_struct *tty;
3456         unsigned long flags;
3457
3458         spin_lock_irqsave(&current->sighand->siglock, flags);
3459         tty = tty_kref_get(current->signal->tty);
3460         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3461         return tty;
3462 }
3463 EXPORT_SYMBOL_GPL(get_current_tty);
3464
3465 void tty_default_fops(struct file_operations *fops)
3466 {
3467         *fops = tty_fops;
3468 }
3469
3470 /*
3471  * Initialize the console device. This is called *early*, so
3472  * we can't necessarily depend on lots of kernel help here.
3473  * Just do some early initializations, and do the complex setup
3474  * later.
3475  */
3476 void __init console_init(void)
3477 {
3478         initcall_t *call;
3479
3480         /* Setup the default TTY line discipline. */
3481         tty_ldisc_begin();
3482
3483         /*
3484          * set up the console device so that later boot sequences can
3485          * inform about problems etc..
3486          */
3487         call = __con_initcall_start;
3488         while (call < __con_initcall_end) {
3489                 (*call)();
3490                 call++;
3491         }
3492 }
3493
3494 static char *tty_devnode(struct device *dev, umode_t *mode)
3495 {
3496         if (!mode)
3497                 return NULL;
3498         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3499             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3500                 *mode = 0666;
3501         return NULL;
3502 }
3503
3504 static int __init tty_class_init(void)
3505 {
3506         tty_class = class_create(THIS_MODULE, "tty");
3507         if (IS_ERR(tty_class))
3508                 return PTR_ERR(tty_class);
3509         tty_class->devnode = tty_devnode;
3510         return 0;
3511 }
3512
3513 postcore_initcall(tty_class_init);
3514
3515 /* 3/2004 jmc: why do these devices exist? */
3516 static struct cdev tty_cdev, console_cdev;
3517
3518 static ssize_t show_cons_active(struct device *dev,
3519                                 struct device_attribute *attr, char *buf)
3520 {
3521         struct console *cs[16];
3522         int i = 0;
3523         struct console *c;
3524         ssize_t count = 0;
3525
3526         console_lock();
3527         for_each_console(c) {
3528                 if (!c->device)
3529                         continue;
3530                 if (!c->write)
3531                         continue;
3532                 if ((c->flags & CON_ENABLED) == 0)
3533                         continue;
3534                 cs[i++] = c;
3535                 if (i >= ARRAY_SIZE(cs))
3536                         break;
3537         }
3538         while (i--)
3539                 count += sprintf(buf + count, "%s%d%c",
3540                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3541         console_unlock();
3542
3543         return count;
3544 }
3545 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3546
3547 static struct device *consdev;
3548
3549 void console_sysfs_notify(void)
3550 {
3551         if (consdev)
3552                 sysfs_notify(&consdev->kobj, NULL, "active");
3553 }
3554
3555 /*
3556  * Ok, now we can initialize the rest of the tty devices and can count
3557  * on memory allocations, interrupts etc..
3558  */
3559 int __init tty_init(void)
3560 {
3561         cdev_init(&tty_cdev, &tty_fops);
3562         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3563             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3564                 panic("Couldn't register /dev/tty driver\n");
3565         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3566
3567         cdev_init(&console_cdev, &console_fops);
3568         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3569             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3570                 panic("Couldn't register /dev/console driver\n");
3571         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3572                               "console");
3573         if (IS_ERR(consdev))
3574                 consdev = NULL;
3575         else
3576                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3577
3578 #ifdef CONFIG_VT
3579         vty_init(&console_fops);
3580 #endif
3581         return 0;
3582 }
3583