Merge SCSI misc branch into isci-for-3.6 tag
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE         2
38
39 struct scsi_host_sg_pool {
40         size_t          size;
41         char            *name;
42         struct kmem_cache       *slab;
43         mempool_t       *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51         SP(8),
52         SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54         SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56         SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58         SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65         SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 #ifdef CONFIG_ACPI
72 #include <acpi/acpi_bus.h>
73
74 int scsi_register_acpi_bus_type(struct acpi_bus_type *bus)
75 {
76         bus->bus = &scsi_bus_type;
77         return register_acpi_bus_type(bus);
78 }
79 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type);
80
81 void scsi_unregister_acpi_bus_type(struct acpi_bus_type *bus)
82 {
83         unregister_acpi_bus_type(bus);
84 }
85 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type);
86 #endif
87
88 /*
89  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
90  * not change behaviour from the previous unplug mechanism, experimentation
91  * may prove this needs changing.
92  */
93 #define SCSI_QUEUE_DELAY        3
94
95 /*
96  * Function:    scsi_unprep_request()
97  *
98  * Purpose:     Remove all preparation done for a request, including its
99  *              associated scsi_cmnd, so that it can be requeued.
100  *
101  * Arguments:   req     - request to unprepare
102  *
103  * Lock status: Assumed that no locks are held upon entry.
104  *
105  * Returns:     Nothing.
106  */
107 static void scsi_unprep_request(struct request *req)
108 {
109         struct scsi_cmnd *cmd = req->special;
110
111         blk_unprep_request(req);
112         req->special = NULL;
113
114         scsi_put_command(cmd);
115 }
116
117 /**
118  * __scsi_queue_insert - private queue insertion
119  * @cmd: The SCSI command being requeued
120  * @reason:  The reason for the requeue
121  * @unbusy: Whether the queue should be unbusied
122  *
123  * This is a private queue insertion.  The public interface
124  * scsi_queue_insert() always assumes the queue should be unbusied
125  * because it's always called before the completion.  This function is
126  * for a requeue after completion, which should only occur in this
127  * file.
128  */
129 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
130 {
131         struct Scsi_Host *host = cmd->device->host;
132         struct scsi_device *device = cmd->device;
133         struct scsi_target *starget = scsi_target(device);
134         struct request_queue *q = device->request_queue;
135         unsigned long flags;
136
137         SCSI_LOG_MLQUEUE(1,
138                  printk("Inserting command %p into mlqueue\n", cmd));
139
140         /*
141          * Set the appropriate busy bit for the device/host.
142          *
143          * If the host/device isn't busy, assume that something actually
144          * completed, and that we should be able to queue a command now.
145          *
146          * Note that the prior mid-layer assumption that any host could
147          * always queue at least one command is now broken.  The mid-layer
148          * will implement a user specifiable stall (see
149          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
150          * if a command is requeued with no other commands outstanding
151          * either for the device or for the host.
152          */
153         switch (reason) {
154         case SCSI_MLQUEUE_HOST_BUSY:
155                 host->host_blocked = host->max_host_blocked;
156                 break;
157         case SCSI_MLQUEUE_DEVICE_BUSY:
158         case SCSI_MLQUEUE_EH_RETRY:
159                 device->device_blocked = device->max_device_blocked;
160                 break;
161         case SCSI_MLQUEUE_TARGET_BUSY:
162                 starget->target_blocked = starget->max_target_blocked;
163                 break;
164         }
165
166         /*
167          * Decrement the counters, since these commands are no longer
168          * active on the host/device.
169          */
170         if (unbusy)
171                 scsi_device_unbusy(device);
172
173         /*
174          * Requeue this command.  It will go before all other commands
175          * that are already in the queue. Schedule requeue work under
176          * lock such that the kblockd_schedule_work() call happens
177          * before blk_cleanup_queue() finishes.
178          */
179         spin_lock_irqsave(q->queue_lock, flags);
180         blk_requeue_request(q, cmd->request);
181         kblockd_schedule_work(q, &device->requeue_work);
182         spin_unlock_irqrestore(q->queue_lock, flags);
183 }
184
185 /*
186  * Function:    scsi_queue_insert()
187  *
188  * Purpose:     Insert a command in the midlevel queue.
189  *
190  * Arguments:   cmd    - command that we are adding to queue.
191  *              reason - why we are inserting command to queue.
192  *
193  * Lock status: Assumed that lock is not held upon entry.
194  *
195  * Returns:     Nothing.
196  *
197  * Notes:       We do this for one of two cases.  Either the host is busy
198  *              and it cannot accept any more commands for the time being,
199  *              or the device returned QUEUE_FULL and can accept no more
200  *              commands.
201  * Notes:       This could be called either from an interrupt context or a
202  *              normal process context.
203  */
204 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
205 {
206         __scsi_queue_insert(cmd, reason, 1);
207 }
208 /**
209  * scsi_execute - insert request and wait for the result
210  * @sdev:       scsi device
211  * @cmd:        scsi command
212  * @data_direction: data direction
213  * @buffer:     data buffer
214  * @bufflen:    len of buffer
215  * @sense:      optional sense buffer
216  * @timeout:    request timeout in seconds
217  * @retries:    number of times to retry request
218  * @flags:      or into request flags;
219  * @resid:      optional residual length
220  *
221  * returns the req->errors value which is the scsi_cmnd result
222  * field.
223  */
224 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
225                  int data_direction, void *buffer, unsigned bufflen,
226                  unsigned char *sense, int timeout, int retries, int flags,
227                  int *resid)
228 {
229         struct request *req;
230         int write = (data_direction == DMA_TO_DEVICE);
231         int ret = DRIVER_ERROR << 24;
232
233         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
234         if (!req)
235                 return ret;
236
237         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
238                                         buffer, bufflen, __GFP_WAIT))
239                 goto out;
240
241         req->cmd_len = COMMAND_SIZE(cmd[0]);
242         memcpy(req->cmd, cmd, req->cmd_len);
243         req->sense = sense;
244         req->sense_len = 0;
245         req->retries = retries;
246         req->timeout = timeout;
247         req->cmd_type = REQ_TYPE_BLOCK_PC;
248         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
249
250         /*
251          * head injection *required* here otherwise quiesce won't work
252          */
253         blk_execute_rq(req->q, NULL, req, 1);
254
255         /*
256          * Some devices (USB mass-storage in particular) may transfer
257          * garbage data together with a residue indicating that the data
258          * is invalid.  Prevent the garbage from being misinterpreted
259          * and prevent security leaks by zeroing out the excess data.
260          */
261         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
262                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
263
264         if (resid)
265                 *resid = req->resid_len;
266         ret = req->errors;
267  out:
268         blk_put_request(req);
269
270         return ret;
271 }
272 EXPORT_SYMBOL(scsi_execute);
273
274
275 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
276                      int data_direction, void *buffer, unsigned bufflen,
277                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
278                      int *resid)
279 {
280         char *sense = NULL;
281         int result;
282         
283         if (sshdr) {
284                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
285                 if (!sense)
286                         return DRIVER_ERROR << 24;
287         }
288         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
289                               sense, timeout, retries, 0, resid);
290         if (sshdr)
291                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
292
293         kfree(sense);
294         return result;
295 }
296 EXPORT_SYMBOL(scsi_execute_req);
297
298 /*
299  * Function:    scsi_init_cmd_errh()
300  *
301  * Purpose:     Initialize cmd fields related to error handling.
302  *
303  * Arguments:   cmd     - command that is ready to be queued.
304  *
305  * Notes:       This function has the job of initializing a number of
306  *              fields related to error handling.   Typically this will
307  *              be called once for each command, as required.
308  */
309 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
310 {
311         cmd->serial_number = 0;
312         scsi_set_resid(cmd, 0);
313         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
314         if (cmd->cmd_len == 0)
315                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
316 }
317
318 void scsi_device_unbusy(struct scsi_device *sdev)
319 {
320         struct Scsi_Host *shost = sdev->host;
321         struct scsi_target *starget = scsi_target(sdev);
322         unsigned long flags;
323
324         spin_lock_irqsave(shost->host_lock, flags);
325         shost->host_busy--;
326         starget->target_busy--;
327         if (unlikely(scsi_host_in_recovery(shost) &&
328                      (shost->host_failed || shost->host_eh_scheduled)))
329                 scsi_eh_wakeup(shost);
330         spin_unlock(shost->host_lock);
331         spin_lock(sdev->request_queue->queue_lock);
332         sdev->device_busy--;
333         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
334 }
335
336 /*
337  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
338  * and call blk_run_queue for all the scsi_devices on the target -
339  * including current_sdev first.
340  *
341  * Called with *no* scsi locks held.
342  */
343 static void scsi_single_lun_run(struct scsi_device *current_sdev)
344 {
345         struct Scsi_Host *shost = current_sdev->host;
346         struct scsi_device *sdev, *tmp;
347         struct scsi_target *starget = scsi_target(current_sdev);
348         unsigned long flags;
349
350         spin_lock_irqsave(shost->host_lock, flags);
351         starget->starget_sdev_user = NULL;
352         spin_unlock_irqrestore(shost->host_lock, flags);
353
354         /*
355          * Call blk_run_queue for all LUNs on the target, starting with
356          * current_sdev. We race with others (to set starget_sdev_user),
357          * but in most cases, we will be first. Ideally, each LU on the
358          * target would get some limited time or requests on the target.
359          */
360         blk_run_queue(current_sdev->request_queue);
361
362         spin_lock_irqsave(shost->host_lock, flags);
363         if (starget->starget_sdev_user)
364                 goto out;
365         list_for_each_entry_safe(sdev, tmp, &starget->devices,
366                         same_target_siblings) {
367                 if (sdev == current_sdev)
368                         continue;
369                 if (scsi_device_get(sdev))
370                         continue;
371
372                 spin_unlock_irqrestore(shost->host_lock, flags);
373                 blk_run_queue(sdev->request_queue);
374                 spin_lock_irqsave(shost->host_lock, flags);
375         
376                 scsi_device_put(sdev);
377         }
378  out:
379         spin_unlock_irqrestore(shost->host_lock, flags);
380 }
381
382 static inline int scsi_device_is_busy(struct scsi_device *sdev)
383 {
384         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
385                 return 1;
386
387         return 0;
388 }
389
390 static inline int scsi_target_is_busy(struct scsi_target *starget)
391 {
392         return ((starget->can_queue > 0 &&
393                  starget->target_busy >= starget->can_queue) ||
394                  starget->target_blocked);
395 }
396
397 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
398 {
399         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
400             shost->host_blocked || shost->host_self_blocked)
401                 return 1;
402
403         return 0;
404 }
405
406 /*
407  * Function:    scsi_run_queue()
408  *
409  * Purpose:     Select a proper request queue to serve next
410  *
411  * Arguments:   q       - last request's queue
412  *
413  * Returns:     Nothing
414  *
415  * Notes:       The previous command was completely finished, start
416  *              a new one if possible.
417  */
418 static void scsi_run_queue(struct request_queue *q)
419 {
420         struct scsi_device *sdev = q->queuedata;
421         struct Scsi_Host *shost;
422         LIST_HEAD(starved_list);
423         unsigned long flags;
424
425         shost = sdev->host;
426         if (scsi_target(sdev)->single_lun)
427                 scsi_single_lun_run(sdev);
428
429         spin_lock_irqsave(shost->host_lock, flags);
430         list_splice_init(&shost->starved_list, &starved_list);
431
432         while (!list_empty(&starved_list)) {
433                 /*
434                  * As long as shost is accepting commands and we have
435                  * starved queues, call blk_run_queue. scsi_request_fn
436                  * drops the queue_lock and can add us back to the
437                  * starved_list.
438                  *
439                  * host_lock protects the starved_list and starved_entry.
440                  * scsi_request_fn must get the host_lock before checking
441                  * or modifying starved_list or starved_entry.
442                  */
443                 if (scsi_host_is_busy(shost))
444                         break;
445
446                 sdev = list_entry(starved_list.next,
447                                   struct scsi_device, starved_entry);
448                 list_del_init(&sdev->starved_entry);
449                 if (scsi_target_is_busy(scsi_target(sdev))) {
450                         list_move_tail(&sdev->starved_entry,
451                                        &shost->starved_list);
452                         continue;
453                 }
454
455                 spin_unlock(shost->host_lock);
456                 spin_lock(sdev->request_queue->queue_lock);
457                 __blk_run_queue(sdev->request_queue);
458                 spin_unlock(sdev->request_queue->queue_lock);
459                 spin_lock(shost->host_lock);
460         }
461         /* put any unprocessed entries back */
462         list_splice(&starved_list, &shost->starved_list);
463         spin_unlock_irqrestore(shost->host_lock, flags);
464
465         blk_run_queue(q);
466 }
467
468 void scsi_requeue_run_queue(struct work_struct *work)
469 {
470         struct scsi_device *sdev;
471         struct request_queue *q;
472
473         sdev = container_of(work, struct scsi_device, requeue_work);
474         q = sdev->request_queue;
475         scsi_run_queue(q);
476 }
477
478 /*
479  * Function:    scsi_requeue_command()
480  *
481  * Purpose:     Handle post-processing of completed commands.
482  *
483  * Arguments:   q       - queue to operate on
484  *              cmd     - command that may need to be requeued.
485  *
486  * Returns:     Nothing
487  *
488  * Notes:       After command completion, there may be blocks left
489  *              over which weren't finished by the previous command
490  *              this can be for a number of reasons - the main one is
491  *              I/O errors in the middle of the request, in which case
492  *              we need to request the blocks that come after the bad
493  *              sector.
494  * Notes:       Upon return, cmd is a stale pointer.
495  */
496 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
497 {
498         struct scsi_device *sdev = cmd->device;
499         struct request *req = cmd->request;
500         unsigned long flags;
501
502         /*
503          * We need to hold a reference on the device to avoid the queue being
504          * killed after the unlock and before scsi_run_queue is invoked which
505          * may happen because scsi_unprep_request() puts the command which
506          * releases its reference on the device.
507          */
508         get_device(&sdev->sdev_gendev);
509
510         spin_lock_irqsave(q->queue_lock, flags);
511         scsi_unprep_request(req);
512         blk_requeue_request(q, req);
513         spin_unlock_irqrestore(q->queue_lock, flags);
514
515         scsi_run_queue(q);
516
517         put_device(&sdev->sdev_gendev);
518 }
519
520 void scsi_next_command(struct scsi_cmnd *cmd)
521 {
522         struct scsi_device *sdev = cmd->device;
523         struct request_queue *q = sdev->request_queue;
524
525         /* need to hold a reference on the device before we let go of the cmd */
526         get_device(&sdev->sdev_gendev);
527
528         scsi_put_command(cmd);
529         scsi_run_queue(q);
530
531         /* ok to remove device now */
532         put_device(&sdev->sdev_gendev);
533 }
534
535 void scsi_run_host_queues(struct Scsi_Host *shost)
536 {
537         struct scsi_device *sdev;
538
539         shost_for_each_device(sdev, shost)
540                 scsi_run_queue(sdev->request_queue);
541 }
542
543 static void __scsi_release_buffers(struct scsi_cmnd *, int);
544
545 /*
546  * Function:    scsi_end_request()
547  *
548  * Purpose:     Post-processing of completed commands (usually invoked at end
549  *              of upper level post-processing and scsi_io_completion).
550  *
551  * Arguments:   cmd      - command that is complete.
552  *              error    - 0 if I/O indicates success, < 0 for I/O error.
553  *              bytes    - number of bytes of completed I/O
554  *              requeue  - indicates whether we should requeue leftovers.
555  *
556  * Lock status: Assumed that lock is not held upon entry.
557  *
558  * Returns:     cmd if requeue required, NULL otherwise.
559  *
560  * Notes:       This is called for block device requests in order to
561  *              mark some number of sectors as complete.
562  * 
563  *              We are guaranteeing that the request queue will be goosed
564  *              at some point during this call.
565  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
566  */
567 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
568                                           int bytes, int requeue)
569 {
570         struct request_queue *q = cmd->device->request_queue;
571         struct request *req = cmd->request;
572
573         /*
574          * If there are blocks left over at the end, set up the command
575          * to queue the remainder of them.
576          */
577         if (blk_end_request(req, error, bytes)) {
578                 /* kill remainder if no retrys */
579                 if (error && scsi_noretry_cmd(cmd))
580                         blk_end_request_all(req, error);
581                 else {
582                         if (requeue) {
583                                 /*
584                                  * Bleah.  Leftovers again.  Stick the
585                                  * leftovers in the front of the
586                                  * queue, and goose the queue again.
587                                  */
588                                 scsi_release_buffers(cmd);
589                                 scsi_requeue_command(q, cmd);
590                                 cmd = NULL;
591                         }
592                         return cmd;
593                 }
594         }
595
596         /*
597          * This will goose the queue request function at the end, so we don't
598          * need to worry about launching another command.
599          */
600         __scsi_release_buffers(cmd, 0);
601         scsi_next_command(cmd);
602         return NULL;
603 }
604
605 static inline unsigned int scsi_sgtable_index(unsigned short nents)
606 {
607         unsigned int index;
608
609         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
610
611         if (nents <= 8)
612                 index = 0;
613         else
614                 index = get_count_order(nents) - 3;
615
616         return index;
617 }
618
619 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
620 {
621         struct scsi_host_sg_pool *sgp;
622
623         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
624         mempool_free(sgl, sgp->pool);
625 }
626
627 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
628 {
629         struct scsi_host_sg_pool *sgp;
630
631         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
632         return mempool_alloc(sgp->pool, gfp_mask);
633 }
634
635 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
636                               gfp_t gfp_mask)
637 {
638         int ret;
639
640         BUG_ON(!nents);
641
642         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
643                                gfp_mask, scsi_sg_alloc);
644         if (unlikely(ret))
645                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
646                                 scsi_sg_free);
647
648         return ret;
649 }
650
651 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
652 {
653         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
654 }
655
656 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
657 {
658
659         if (cmd->sdb.table.nents)
660                 scsi_free_sgtable(&cmd->sdb);
661
662         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
663
664         if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
665                 struct scsi_data_buffer *bidi_sdb =
666                         cmd->request->next_rq->special;
667                 scsi_free_sgtable(bidi_sdb);
668                 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
669                 cmd->request->next_rq->special = NULL;
670         }
671
672         if (scsi_prot_sg_count(cmd))
673                 scsi_free_sgtable(cmd->prot_sdb);
674 }
675
676 /*
677  * Function:    scsi_release_buffers()
678  *
679  * Purpose:     Completion processing for block device I/O requests.
680  *
681  * Arguments:   cmd     - command that we are bailing.
682  *
683  * Lock status: Assumed that no lock is held upon entry.
684  *
685  * Returns:     Nothing
686  *
687  * Notes:       In the event that an upper level driver rejects a
688  *              command, we must release resources allocated during
689  *              the __init_io() function.  Primarily this would involve
690  *              the scatter-gather table, and potentially any bounce
691  *              buffers.
692  */
693 void scsi_release_buffers(struct scsi_cmnd *cmd)
694 {
695         __scsi_release_buffers(cmd, 1);
696 }
697 EXPORT_SYMBOL(scsi_release_buffers);
698
699 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
700 {
701         int error = 0;
702
703         switch(host_byte(result)) {
704         case DID_TRANSPORT_FAILFAST:
705                 error = -ENOLINK;
706                 break;
707         case DID_TARGET_FAILURE:
708                 set_host_byte(cmd, DID_OK);
709                 error = -EREMOTEIO;
710                 break;
711         case DID_NEXUS_FAILURE:
712                 set_host_byte(cmd, DID_OK);
713                 error = -EBADE;
714                 break;
715         default:
716                 error = -EIO;
717                 break;
718         }
719
720         return error;
721 }
722
723 /*
724  * Function:    scsi_io_completion()
725  *
726  * Purpose:     Completion processing for block device I/O requests.
727  *
728  * Arguments:   cmd   - command that is finished.
729  *
730  * Lock status: Assumed that no lock is held upon entry.
731  *
732  * Returns:     Nothing
733  *
734  * Notes:       This function is matched in terms of capabilities to
735  *              the function that created the scatter-gather list.
736  *              In other words, if there are no bounce buffers
737  *              (the normal case for most drivers), we don't need
738  *              the logic to deal with cleaning up afterwards.
739  *
740  *              We must call scsi_end_request().  This will finish off
741  *              the specified number of sectors.  If we are done, the
742  *              command block will be released and the queue function
743  *              will be goosed.  If we are not done then we have to
744  *              figure out what to do next:
745  *
746  *              a) We can call scsi_requeue_command().  The request
747  *                 will be unprepared and put back on the queue.  Then
748  *                 a new command will be created for it.  This should
749  *                 be used if we made forward progress, or if we want
750  *                 to switch from READ(10) to READ(6) for example.
751  *
752  *              b) We can call scsi_queue_insert().  The request will
753  *                 be put back on the queue and retried using the same
754  *                 command as before, possibly after a delay.
755  *
756  *              c) We can call blk_end_request() with -EIO to fail
757  *                 the remainder of the request.
758  */
759 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
760 {
761         int result = cmd->result;
762         struct request_queue *q = cmd->device->request_queue;
763         struct request *req = cmd->request;
764         int error = 0;
765         struct scsi_sense_hdr sshdr;
766         int sense_valid = 0;
767         int sense_deferred = 0;
768         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
769               ACTION_DELAYED_RETRY} action;
770         char *description = NULL;
771
772         if (result) {
773                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
774                 if (sense_valid)
775                         sense_deferred = scsi_sense_is_deferred(&sshdr);
776         }
777
778         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
779                 if (result) {
780                         if (sense_valid && req->sense) {
781                                 /*
782                                  * SG_IO wants current and deferred errors
783                                  */
784                                 int len = 8 + cmd->sense_buffer[7];
785
786                                 if (len > SCSI_SENSE_BUFFERSIZE)
787                                         len = SCSI_SENSE_BUFFERSIZE;
788                                 memcpy(req->sense, cmd->sense_buffer,  len);
789                                 req->sense_len = len;
790                         }
791                         if (!sense_deferred)
792                                 error = __scsi_error_from_host_byte(cmd, result);
793                 }
794                 /*
795                  * __scsi_error_from_host_byte may have reset the host_byte
796                  */
797                 req->errors = cmd->result;
798
799                 req->resid_len = scsi_get_resid(cmd);
800
801                 if (scsi_bidi_cmnd(cmd)) {
802                         /*
803                          * Bidi commands Must be complete as a whole,
804                          * both sides at once.
805                          */
806                         req->next_rq->resid_len = scsi_in(cmd)->resid;
807
808                         scsi_release_buffers(cmd);
809                         blk_end_request_all(req, 0);
810
811                         scsi_next_command(cmd);
812                         return;
813                 }
814         }
815
816         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
817         BUG_ON(blk_bidi_rq(req));
818
819         /*
820          * Next deal with any sectors which we were able to correctly
821          * handle.
822          */
823         SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
824                                       "%d bytes done.\n",
825                                       blk_rq_sectors(req), good_bytes));
826
827         /*
828          * Recovered errors need reporting, but they're always treated
829          * as success, so fiddle the result code here.  For BLOCK_PC
830          * we already took a copy of the original into rq->errors which
831          * is what gets returned to the user
832          */
833         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
834                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
835                  * print since caller wants ATA registers. Only occurs on
836                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
837                  */
838                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
839                         ;
840                 else if (!(req->cmd_flags & REQ_QUIET))
841                         scsi_print_sense("", cmd);
842                 result = 0;
843                 /* BLOCK_PC may have set error */
844                 error = 0;
845         }
846
847         /*
848          * A number of bytes were successfully read.  If there
849          * are leftovers and there is some kind of error
850          * (result != 0), retry the rest.
851          */
852         if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
853                 return;
854
855         error = __scsi_error_from_host_byte(cmd, result);
856
857         if (host_byte(result) == DID_RESET) {
858                 /* Third party bus reset or reset for error recovery
859                  * reasons.  Just retry the command and see what
860                  * happens.
861                  */
862                 action = ACTION_RETRY;
863         } else if (sense_valid && !sense_deferred) {
864                 switch (sshdr.sense_key) {
865                 case UNIT_ATTENTION:
866                         if (cmd->device->removable) {
867                                 /* Detected disc change.  Set a bit
868                                  * and quietly refuse further access.
869                                  */
870                                 cmd->device->changed = 1;
871                                 description = "Media Changed";
872                                 action = ACTION_FAIL;
873                         } else {
874                                 /* Must have been a power glitch, or a
875                                  * bus reset.  Could not have been a
876                                  * media change, so we just retry the
877                                  * command and see what happens.
878                                  */
879                                 action = ACTION_RETRY;
880                         }
881                         break;
882                 case ILLEGAL_REQUEST:
883                         /* If we had an ILLEGAL REQUEST returned, then
884                          * we may have performed an unsupported
885                          * command.  The only thing this should be
886                          * would be a ten byte read where only a six
887                          * byte read was supported.  Also, on a system
888                          * where READ CAPACITY failed, we may have
889                          * read past the end of the disk.
890                          */
891                         if ((cmd->device->use_10_for_rw &&
892                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
893                             (cmd->cmnd[0] == READ_10 ||
894                              cmd->cmnd[0] == WRITE_10)) {
895                                 /* This will issue a new 6-byte command. */
896                                 cmd->device->use_10_for_rw = 0;
897                                 action = ACTION_REPREP;
898                         } else if (sshdr.asc == 0x10) /* DIX */ {
899                                 description = "Host Data Integrity Failure";
900                                 action = ACTION_FAIL;
901                                 error = -EILSEQ;
902                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
903                         } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
904                                    (cmd->cmnd[0] == UNMAP ||
905                                     cmd->cmnd[0] == WRITE_SAME_16 ||
906                                     cmd->cmnd[0] == WRITE_SAME)) {
907                                 description = "Discard failure";
908                                 action = ACTION_FAIL;
909                                 error = -EREMOTEIO;
910                         } else
911                                 action = ACTION_FAIL;
912                         break;
913                 case ABORTED_COMMAND:
914                         action = ACTION_FAIL;
915                         if (sshdr.asc == 0x10) { /* DIF */
916                                 description = "Target Data Integrity Failure";
917                                 error = -EILSEQ;
918                         }
919                         break;
920                 case NOT_READY:
921                         /* If the device is in the process of becoming
922                          * ready, or has a temporary blockage, retry.
923                          */
924                         if (sshdr.asc == 0x04) {
925                                 switch (sshdr.ascq) {
926                                 case 0x01: /* becoming ready */
927                                 case 0x04: /* format in progress */
928                                 case 0x05: /* rebuild in progress */
929                                 case 0x06: /* recalculation in progress */
930                                 case 0x07: /* operation in progress */
931                                 case 0x08: /* Long write in progress */
932                                 case 0x09: /* self test in progress */
933                                 case 0x14: /* space allocation in progress */
934                                         action = ACTION_DELAYED_RETRY;
935                                         break;
936                                 default:
937                                         description = "Device not ready";
938                                         action = ACTION_FAIL;
939                                         break;
940                                 }
941                         } else {
942                                 description = "Device not ready";
943                                 action = ACTION_FAIL;
944                         }
945                         break;
946                 case VOLUME_OVERFLOW:
947                         /* See SSC3rXX or current. */
948                         action = ACTION_FAIL;
949                         break;
950                 default:
951                         description = "Unhandled sense code";
952                         action = ACTION_FAIL;
953                         break;
954                 }
955         } else {
956                 description = "Unhandled error code";
957                 action = ACTION_FAIL;
958         }
959
960         switch (action) {
961         case ACTION_FAIL:
962                 /* Give up and fail the remainder of the request */
963                 scsi_release_buffers(cmd);
964                 if (!(req->cmd_flags & REQ_QUIET)) {
965                         if (description)
966                                 scmd_printk(KERN_INFO, cmd, "%s\n",
967                                             description);
968                         scsi_print_result(cmd);
969                         if (driver_byte(result) & DRIVER_SENSE)
970                                 scsi_print_sense("", cmd);
971                         scsi_print_command(cmd);
972                 }
973                 if (blk_end_request_err(req, error))
974                         scsi_requeue_command(q, cmd);
975                 else
976                         scsi_next_command(cmd);
977                 break;
978         case ACTION_REPREP:
979                 /* Unprep the request and put it back at the head of the queue.
980                  * A new command will be prepared and issued.
981                  */
982                 scsi_release_buffers(cmd);
983                 scsi_requeue_command(q, cmd);
984                 break;
985         case ACTION_RETRY:
986                 /* Retry the same command immediately */
987                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
988                 break;
989         case ACTION_DELAYED_RETRY:
990                 /* Retry the same command after a delay */
991                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
992                 break;
993         }
994 }
995
996 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
997                              gfp_t gfp_mask)
998 {
999         int count;
1000
1001         /*
1002          * If sg table allocation fails, requeue request later.
1003          */
1004         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1005                                         gfp_mask))) {
1006                 return BLKPREP_DEFER;
1007         }
1008
1009         req->buffer = NULL;
1010
1011         /* 
1012          * Next, walk the list, and fill in the addresses and sizes of
1013          * each segment.
1014          */
1015         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1016         BUG_ON(count > sdb->table.nents);
1017         sdb->table.nents = count;
1018         sdb->length = blk_rq_bytes(req);
1019         return BLKPREP_OK;
1020 }
1021
1022 /*
1023  * Function:    scsi_init_io()
1024  *
1025  * Purpose:     SCSI I/O initialize function.
1026  *
1027  * Arguments:   cmd   - Command descriptor we wish to initialize
1028  *
1029  * Returns:     0 on success
1030  *              BLKPREP_DEFER if the failure is retryable
1031  *              BLKPREP_KILL if the failure is fatal
1032  */
1033 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1034 {
1035         struct request *rq = cmd->request;
1036
1037         int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1038         if (error)
1039                 goto err_exit;
1040
1041         if (blk_bidi_rq(rq)) {
1042                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1043                         scsi_sdb_cache, GFP_ATOMIC);
1044                 if (!bidi_sdb) {
1045                         error = BLKPREP_DEFER;
1046                         goto err_exit;
1047                 }
1048
1049                 rq->next_rq->special = bidi_sdb;
1050                 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1051                 if (error)
1052                         goto err_exit;
1053         }
1054
1055         if (blk_integrity_rq(rq)) {
1056                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1057                 int ivecs, count;
1058
1059                 BUG_ON(prot_sdb == NULL);
1060                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1061
1062                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1063                         error = BLKPREP_DEFER;
1064                         goto err_exit;
1065                 }
1066
1067                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1068                                                 prot_sdb->table.sgl);
1069                 BUG_ON(unlikely(count > ivecs));
1070                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1071
1072                 cmd->prot_sdb = prot_sdb;
1073                 cmd->prot_sdb->table.nents = count;
1074         }
1075
1076         return BLKPREP_OK ;
1077
1078 err_exit:
1079         scsi_release_buffers(cmd);
1080         cmd->request->special = NULL;
1081         scsi_put_command(cmd);
1082         return error;
1083 }
1084 EXPORT_SYMBOL(scsi_init_io);
1085
1086 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1087                 struct request *req)
1088 {
1089         struct scsi_cmnd *cmd;
1090
1091         if (!req->special) {
1092                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1093                 if (unlikely(!cmd))
1094                         return NULL;
1095                 req->special = cmd;
1096         } else {
1097                 cmd = req->special;
1098         }
1099
1100         /* pull a tag out of the request if we have one */
1101         cmd->tag = req->tag;
1102         cmd->request = req;
1103
1104         cmd->cmnd = req->cmd;
1105         cmd->prot_op = SCSI_PROT_NORMAL;
1106
1107         return cmd;
1108 }
1109
1110 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1111 {
1112         struct scsi_cmnd *cmd;
1113         int ret = scsi_prep_state_check(sdev, req);
1114
1115         if (ret != BLKPREP_OK)
1116                 return ret;
1117
1118         cmd = scsi_get_cmd_from_req(sdev, req);
1119         if (unlikely(!cmd))
1120                 return BLKPREP_DEFER;
1121
1122         /*
1123          * BLOCK_PC requests may transfer data, in which case they must
1124          * a bio attached to them.  Or they might contain a SCSI command
1125          * that does not transfer data, in which case they may optionally
1126          * submit a request without an attached bio.
1127          */
1128         if (req->bio) {
1129                 int ret;
1130
1131                 BUG_ON(!req->nr_phys_segments);
1132
1133                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1134                 if (unlikely(ret))
1135                         return ret;
1136         } else {
1137                 BUG_ON(blk_rq_bytes(req));
1138
1139                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1140                 req->buffer = NULL;
1141         }
1142
1143         cmd->cmd_len = req->cmd_len;
1144         if (!blk_rq_bytes(req))
1145                 cmd->sc_data_direction = DMA_NONE;
1146         else if (rq_data_dir(req) == WRITE)
1147                 cmd->sc_data_direction = DMA_TO_DEVICE;
1148         else
1149                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1150         
1151         cmd->transfersize = blk_rq_bytes(req);
1152         cmd->allowed = req->retries;
1153         return BLKPREP_OK;
1154 }
1155 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1156
1157 /*
1158  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1159  * from filesystems that still need to be translated to SCSI CDBs from
1160  * the ULD.
1161  */
1162 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1163 {
1164         struct scsi_cmnd *cmd;
1165         int ret = scsi_prep_state_check(sdev, req);
1166
1167         if (ret != BLKPREP_OK)
1168                 return ret;
1169
1170         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1171                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1172                 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1173                 if (ret != BLKPREP_OK)
1174                         return ret;
1175         }
1176
1177         /*
1178          * Filesystem requests must transfer data.
1179          */
1180         BUG_ON(!req->nr_phys_segments);
1181
1182         cmd = scsi_get_cmd_from_req(sdev, req);
1183         if (unlikely(!cmd))
1184                 return BLKPREP_DEFER;
1185
1186         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1187         return scsi_init_io(cmd, GFP_ATOMIC);
1188 }
1189 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1190
1191 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1192 {
1193         int ret = BLKPREP_OK;
1194
1195         /*
1196          * If the device is not in running state we will reject some
1197          * or all commands.
1198          */
1199         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1200                 switch (sdev->sdev_state) {
1201                 case SDEV_OFFLINE:
1202                 case SDEV_TRANSPORT_OFFLINE:
1203                         /*
1204                          * If the device is offline we refuse to process any
1205                          * commands.  The device must be brought online
1206                          * before trying any recovery commands.
1207                          */
1208                         sdev_printk(KERN_ERR, sdev,
1209                                     "rejecting I/O to offline device\n");
1210                         ret = BLKPREP_KILL;
1211                         break;
1212                 case SDEV_DEL:
1213                         /*
1214                          * If the device is fully deleted, we refuse to
1215                          * process any commands as well.
1216                          */
1217                         sdev_printk(KERN_ERR, sdev,
1218                                     "rejecting I/O to dead device\n");
1219                         ret = BLKPREP_KILL;
1220                         break;
1221                 case SDEV_QUIESCE:
1222                 case SDEV_BLOCK:
1223                 case SDEV_CREATED_BLOCK:
1224                         /*
1225                          * If the devices is blocked we defer normal commands.
1226                          */
1227                         if (!(req->cmd_flags & REQ_PREEMPT))
1228                                 ret = BLKPREP_DEFER;
1229                         break;
1230                 default:
1231                         /*
1232                          * For any other not fully online state we only allow
1233                          * special commands.  In particular any user initiated
1234                          * command is not allowed.
1235                          */
1236                         if (!(req->cmd_flags & REQ_PREEMPT))
1237                                 ret = BLKPREP_KILL;
1238                         break;
1239                 }
1240         }
1241         return ret;
1242 }
1243 EXPORT_SYMBOL(scsi_prep_state_check);
1244
1245 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1246 {
1247         struct scsi_device *sdev = q->queuedata;
1248
1249         switch (ret) {
1250         case BLKPREP_KILL:
1251                 req->errors = DID_NO_CONNECT << 16;
1252                 /* release the command and kill it */
1253                 if (req->special) {
1254                         struct scsi_cmnd *cmd = req->special;
1255                         scsi_release_buffers(cmd);
1256                         scsi_put_command(cmd);
1257                         req->special = NULL;
1258                 }
1259                 break;
1260         case BLKPREP_DEFER:
1261                 /*
1262                  * If we defer, the blk_peek_request() returns NULL, but the
1263                  * queue must be restarted, so we schedule a callback to happen
1264                  * shortly.
1265                  */
1266                 if (sdev->device_busy == 0)
1267                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1268                 break;
1269         default:
1270                 req->cmd_flags |= REQ_DONTPREP;
1271         }
1272
1273         return ret;
1274 }
1275 EXPORT_SYMBOL(scsi_prep_return);
1276
1277 int scsi_prep_fn(struct request_queue *q, struct request *req)
1278 {
1279         struct scsi_device *sdev = q->queuedata;
1280         int ret = BLKPREP_KILL;
1281
1282         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1283                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1284         return scsi_prep_return(q, req, ret);
1285 }
1286 EXPORT_SYMBOL(scsi_prep_fn);
1287
1288 /*
1289  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1290  * return 0.
1291  *
1292  * Called with the queue_lock held.
1293  */
1294 static inline int scsi_dev_queue_ready(struct request_queue *q,
1295                                   struct scsi_device *sdev)
1296 {
1297         if (sdev->device_busy == 0 && sdev->device_blocked) {
1298                 /*
1299                  * unblock after device_blocked iterates to zero
1300                  */
1301                 if (--sdev->device_blocked == 0) {
1302                         SCSI_LOG_MLQUEUE(3,
1303                                    sdev_printk(KERN_INFO, sdev,
1304                                    "unblocking device at zero depth\n"));
1305                 } else {
1306                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1307                         return 0;
1308                 }
1309         }
1310         if (scsi_device_is_busy(sdev))
1311                 return 0;
1312
1313         return 1;
1314 }
1315
1316
1317 /*
1318  * scsi_target_queue_ready: checks if there we can send commands to target
1319  * @sdev: scsi device on starget to check.
1320  *
1321  * Called with the host lock held.
1322  */
1323 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1324                                            struct scsi_device *sdev)
1325 {
1326         struct scsi_target *starget = scsi_target(sdev);
1327
1328         if (starget->single_lun) {
1329                 if (starget->starget_sdev_user &&
1330                     starget->starget_sdev_user != sdev)
1331                         return 0;
1332                 starget->starget_sdev_user = sdev;
1333         }
1334
1335         if (starget->target_busy == 0 && starget->target_blocked) {
1336                 /*
1337                  * unblock after target_blocked iterates to zero
1338                  */
1339                 if (--starget->target_blocked == 0) {
1340                         SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1341                                          "unblocking target at zero depth\n"));
1342                 } else
1343                         return 0;
1344         }
1345
1346         if (scsi_target_is_busy(starget)) {
1347                 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1348                 return 0;
1349         }
1350
1351         return 1;
1352 }
1353
1354 /*
1355  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1356  * return 0. We must end up running the queue again whenever 0 is
1357  * returned, else IO can hang.
1358  *
1359  * Called with host_lock held.
1360  */
1361 static inline int scsi_host_queue_ready(struct request_queue *q,
1362                                    struct Scsi_Host *shost,
1363                                    struct scsi_device *sdev)
1364 {
1365         if (scsi_host_in_recovery(shost))
1366                 return 0;
1367         if (shost->host_busy == 0 && shost->host_blocked) {
1368                 /*
1369                  * unblock after host_blocked iterates to zero
1370                  */
1371                 if (--shost->host_blocked == 0) {
1372                         SCSI_LOG_MLQUEUE(3,
1373                                 printk("scsi%d unblocking host at zero depth\n",
1374                                         shost->host_no));
1375                 } else {
1376                         return 0;
1377                 }
1378         }
1379         if (scsi_host_is_busy(shost)) {
1380                 if (list_empty(&sdev->starved_entry))
1381                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1382                 return 0;
1383         }
1384
1385         /* We're OK to process the command, so we can't be starved */
1386         if (!list_empty(&sdev->starved_entry))
1387                 list_del_init(&sdev->starved_entry);
1388
1389         return 1;
1390 }
1391
1392 /*
1393  * Busy state exporting function for request stacking drivers.
1394  *
1395  * For efficiency, no lock is taken to check the busy state of
1396  * shost/starget/sdev, since the returned value is not guaranteed and
1397  * may be changed after request stacking drivers call the function,
1398  * regardless of taking lock or not.
1399  *
1400  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1401  * needs to return 'not busy'. Otherwise, request stacking drivers
1402  * may hold requests forever.
1403  */
1404 static int scsi_lld_busy(struct request_queue *q)
1405 {
1406         struct scsi_device *sdev = q->queuedata;
1407         struct Scsi_Host *shost;
1408
1409         if (blk_queue_dead(q))
1410                 return 0;
1411
1412         shost = sdev->host;
1413
1414         /*
1415          * Ignore host/starget busy state.
1416          * Since block layer does not have a concept of fairness across
1417          * multiple queues, congestion of host/starget needs to be handled
1418          * in SCSI layer.
1419          */
1420         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1421                 return 1;
1422
1423         return 0;
1424 }
1425
1426 /*
1427  * Kill a request for a dead device
1428  */
1429 static void scsi_kill_request(struct request *req, struct request_queue *q)
1430 {
1431         struct scsi_cmnd *cmd = req->special;
1432         struct scsi_device *sdev;
1433         struct scsi_target *starget;
1434         struct Scsi_Host *shost;
1435
1436         blk_start_request(req);
1437
1438         scmd_printk(KERN_INFO, cmd, "killing request\n");
1439
1440         sdev = cmd->device;
1441         starget = scsi_target(sdev);
1442         shost = sdev->host;
1443         scsi_init_cmd_errh(cmd);
1444         cmd->result = DID_NO_CONNECT << 16;
1445         atomic_inc(&cmd->device->iorequest_cnt);
1446
1447         /*
1448          * SCSI request completion path will do scsi_device_unbusy(),
1449          * bump busy counts.  To bump the counters, we need to dance
1450          * with the locks as normal issue path does.
1451          */
1452         sdev->device_busy++;
1453         spin_unlock(sdev->request_queue->queue_lock);
1454         spin_lock(shost->host_lock);
1455         shost->host_busy++;
1456         starget->target_busy++;
1457         spin_unlock(shost->host_lock);
1458         spin_lock(sdev->request_queue->queue_lock);
1459
1460         blk_complete_request(req);
1461 }
1462
1463 static void scsi_softirq_done(struct request *rq)
1464 {
1465         struct scsi_cmnd *cmd = rq->special;
1466         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1467         int disposition;
1468
1469         INIT_LIST_HEAD(&cmd->eh_entry);
1470
1471         atomic_inc(&cmd->device->iodone_cnt);
1472         if (cmd->result)
1473                 atomic_inc(&cmd->device->ioerr_cnt);
1474
1475         disposition = scsi_decide_disposition(cmd);
1476         if (disposition != SUCCESS &&
1477             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1478                 sdev_printk(KERN_ERR, cmd->device,
1479                             "timing out command, waited %lus\n",
1480                             wait_for/HZ);
1481                 disposition = SUCCESS;
1482         }
1483                         
1484         scsi_log_completion(cmd, disposition);
1485
1486         switch (disposition) {
1487                 case SUCCESS:
1488                         scsi_finish_command(cmd);
1489                         break;
1490                 case NEEDS_RETRY:
1491                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1492                         break;
1493                 case ADD_TO_MLQUEUE:
1494                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1495                         break;
1496                 default:
1497                         if (!scsi_eh_scmd_add(cmd, 0))
1498                                 scsi_finish_command(cmd);
1499         }
1500 }
1501
1502 /*
1503  * Function:    scsi_request_fn()
1504  *
1505  * Purpose:     Main strategy routine for SCSI.
1506  *
1507  * Arguments:   q       - Pointer to actual queue.
1508  *
1509  * Returns:     Nothing
1510  *
1511  * Lock status: IO request lock assumed to be held when called.
1512  */
1513 static void scsi_request_fn(struct request_queue *q)
1514 {
1515         struct scsi_device *sdev = q->queuedata;
1516         struct Scsi_Host *shost;
1517         struct scsi_cmnd *cmd;
1518         struct request *req;
1519
1520         if(!get_device(&sdev->sdev_gendev))
1521                 /* We must be tearing the block queue down already */
1522                 return;
1523
1524         /*
1525          * To start with, we keep looping until the queue is empty, or until
1526          * the host is no longer able to accept any more requests.
1527          */
1528         shost = sdev->host;
1529         for (;;) {
1530                 int rtn;
1531                 /*
1532                  * get next queueable request.  We do this early to make sure
1533                  * that the request is fully prepared even if we cannot 
1534                  * accept it.
1535                  */
1536                 req = blk_peek_request(q);
1537                 if (!req || !scsi_dev_queue_ready(q, sdev))
1538                         break;
1539
1540                 if (unlikely(!scsi_device_online(sdev))) {
1541                         sdev_printk(KERN_ERR, sdev,
1542                                     "rejecting I/O to offline device\n");
1543                         scsi_kill_request(req, q);
1544                         continue;
1545                 }
1546
1547
1548                 /*
1549                  * Remove the request from the request list.
1550                  */
1551                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1552                         blk_start_request(req);
1553                 sdev->device_busy++;
1554
1555                 spin_unlock(q->queue_lock);
1556                 cmd = req->special;
1557                 if (unlikely(cmd == NULL)) {
1558                         printk(KERN_CRIT "impossible request in %s.\n"
1559                                          "please mail a stack trace to "
1560                                          "linux-scsi@vger.kernel.org\n",
1561                                          __func__);
1562                         blk_dump_rq_flags(req, "foo");
1563                         BUG();
1564                 }
1565                 spin_lock(shost->host_lock);
1566
1567                 /*
1568                  * We hit this when the driver is using a host wide
1569                  * tag map. For device level tag maps the queue_depth check
1570                  * in the device ready fn would prevent us from trying
1571                  * to allocate a tag. Since the map is a shared host resource
1572                  * we add the dev to the starved list so it eventually gets
1573                  * a run when a tag is freed.
1574                  */
1575                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1576                         if (list_empty(&sdev->starved_entry))
1577                                 list_add_tail(&sdev->starved_entry,
1578                                               &shost->starved_list);
1579                         goto not_ready;
1580                 }
1581
1582                 if (!scsi_target_queue_ready(shost, sdev))
1583                         goto not_ready;
1584
1585                 if (!scsi_host_queue_ready(q, shost, sdev))
1586                         goto not_ready;
1587
1588                 scsi_target(sdev)->target_busy++;
1589                 shost->host_busy++;
1590
1591                 /*
1592                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1593                  *              take the lock again.
1594                  */
1595                 spin_unlock_irq(shost->host_lock);
1596
1597                 /*
1598                  * Finally, initialize any error handling parameters, and set up
1599                  * the timers for timeouts.
1600                  */
1601                 scsi_init_cmd_errh(cmd);
1602
1603                 /*
1604                  * Dispatch the command to the low-level driver.
1605                  */
1606                 rtn = scsi_dispatch_cmd(cmd);
1607                 spin_lock_irq(q->queue_lock);
1608                 if (rtn)
1609                         goto out_delay;
1610         }
1611
1612         goto out;
1613
1614  not_ready:
1615         spin_unlock_irq(shost->host_lock);
1616
1617         /*
1618          * lock q, handle tag, requeue req, and decrement device_busy. We
1619          * must return with queue_lock held.
1620          *
1621          * Decrementing device_busy without checking it is OK, as all such
1622          * cases (host limits or settings) should run the queue at some
1623          * later time.
1624          */
1625         spin_lock_irq(q->queue_lock);
1626         blk_requeue_request(q, req);
1627         sdev->device_busy--;
1628 out_delay:
1629         if (sdev->device_busy == 0)
1630                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1631 out:
1632         /* must be careful here...if we trigger the ->remove() function
1633          * we cannot be holding the q lock */
1634         spin_unlock_irq(q->queue_lock);
1635         put_device(&sdev->sdev_gendev);
1636         spin_lock_irq(q->queue_lock);
1637 }
1638
1639 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1640 {
1641         struct device *host_dev;
1642         u64 bounce_limit = 0xffffffff;
1643
1644         if (shost->unchecked_isa_dma)
1645                 return BLK_BOUNCE_ISA;
1646         /*
1647          * Platforms with virtual-DMA translation
1648          * hardware have no practical limit.
1649          */
1650         if (!PCI_DMA_BUS_IS_PHYS)
1651                 return BLK_BOUNCE_ANY;
1652
1653         host_dev = scsi_get_device(shost);
1654         if (host_dev && host_dev->dma_mask)
1655                 bounce_limit = *host_dev->dma_mask;
1656
1657         return bounce_limit;
1658 }
1659 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1660
1661 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1662                                          request_fn_proc *request_fn)
1663 {
1664         struct request_queue *q;
1665         struct device *dev = shost->dma_dev;
1666
1667         q = blk_init_queue(request_fn, NULL);
1668         if (!q)
1669                 return NULL;
1670
1671         /*
1672          * this limit is imposed by hardware restrictions
1673          */
1674         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1675                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1676
1677         if (scsi_host_prot_dma(shost)) {
1678                 shost->sg_prot_tablesize =
1679                         min_not_zero(shost->sg_prot_tablesize,
1680                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1681                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1682                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1683         }
1684
1685         blk_queue_max_hw_sectors(q, shost->max_sectors);
1686         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1687         blk_queue_segment_boundary(q, shost->dma_boundary);
1688         dma_set_seg_boundary(dev, shost->dma_boundary);
1689
1690         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1691
1692         if (!shost->use_clustering)
1693                 q->limits.cluster = 0;
1694
1695         /*
1696          * set a reasonable default alignment on word boundaries: the
1697          * host and device may alter it using
1698          * blk_queue_update_dma_alignment() later.
1699          */
1700         blk_queue_dma_alignment(q, 0x03);
1701
1702         return q;
1703 }
1704 EXPORT_SYMBOL(__scsi_alloc_queue);
1705
1706 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1707 {
1708         struct request_queue *q;
1709
1710         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1711         if (!q)
1712                 return NULL;
1713
1714         blk_queue_prep_rq(q, scsi_prep_fn);
1715         blk_queue_softirq_done(q, scsi_softirq_done);
1716         blk_queue_rq_timed_out(q, scsi_times_out);
1717         blk_queue_lld_busy(q, scsi_lld_busy);
1718         return q;
1719 }
1720
1721 /*
1722  * Function:    scsi_block_requests()
1723  *
1724  * Purpose:     Utility function used by low-level drivers to prevent further
1725  *              commands from being queued to the device.
1726  *
1727  * Arguments:   shost       - Host in question
1728  *
1729  * Returns:     Nothing
1730  *
1731  * Lock status: No locks are assumed held.
1732  *
1733  * Notes:       There is no timer nor any other means by which the requests
1734  *              get unblocked other than the low-level driver calling
1735  *              scsi_unblock_requests().
1736  */
1737 void scsi_block_requests(struct Scsi_Host *shost)
1738 {
1739         shost->host_self_blocked = 1;
1740 }
1741 EXPORT_SYMBOL(scsi_block_requests);
1742
1743 /*
1744  * Function:    scsi_unblock_requests()
1745  *
1746  * Purpose:     Utility function used by low-level drivers to allow further
1747  *              commands from being queued to the device.
1748  *
1749  * Arguments:   shost       - Host in question
1750  *
1751  * Returns:     Nothing
1752  *
1753  * Lock status: No locks are assumed held.
1754  *
1755  * Notes:       There is no timer nor any other means by which the requests
1756  *              get unblocked other than the low-level driver calling
1757  *              scsi_unblock_requests().
1758  *
1759  *              This is done as an API function so that changes to the
1760  *              internals of the scsi mid-layer won't require wholesale
1761  *              changes to drivers that use this feature.
1762  */
1763 void scsi_unblock_requests(struct Scsi_Host *shost)
1764 {
1765         shost->host_self_blocked = 0;
1766         scsi_run_host_queues(shost);
1767 }
1768 EXPORT_SYMBOL(scsi_unblock_requests);
1769
1770 int __init scsi_init_queue(void)
1771 {
1772         int i;
1773
1774         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1775                                            sizeof(struct scsi_data_buffer),
1776                                            0, 0, NULL);
1777         if (!scsi_sdb_cache) {
1778                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1779                 return -ENOMEM;
1780         }
1781
1782         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1783                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1784                 int size = sgp->size * sizeof(struct scatterlist);
1785
1786                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1787                                 SLAB_HWCACHE_ALIGN, NULL);
1788                 if (!sgp->slab) {
1789                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1790                                         sgp->name);
1791                         goto cleanup_sdb;
1792                 }
1793
1794                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1795                                                      sgp->slab);
1796                 if (!sgp->pool) {
1797                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1798                                         sgp->name);
1799                         goto cleanup_sdb;
1800                 }
1801         }
1802
1803         return 0;
1804
1805 cleanup_sdb:
1806         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1807                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1808                 if (sgp->pool)
1809                         mempool_destroy(sgp->pool);
1810                 if (sgp->slab)
1811                         kmem_cache_destroy(sgp->slab);
1812         }
1813         kmem_cache_destroy(scsi_sdb_cache);
1814
1815         return -ENOMEM;
1816 }
1817
1818 void scsi_exit_queue(void)
1819 {
1820         int i;
1821
1822         kmem_cache_destroy(scsi_sdb_cache);
1823
1824         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1825                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1826                 mempool_destroy(sgp->pool);
1827                 kmem_cache_destroy(sgp->slab);
1828         }
1829 }
1830
1831 /**
1832  *      scsi_mode_select - issue a mode select
1833  *      @sdev:  SCSI device to be queried
1834  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1835  *      @sp:    Save page bit (0 == don't save, 1 == save)
1836  *      @modepage: mode page being requested
1837  *      @buffer: request buffer (may not be smaller than eight bytes)
1838  *      @len:   length of request buffer.
1839  *      @timeout: command timeout
1840  *      @retries: number of retries before failing
1841  *      @data: returns a structure abstracting the mode header data
1842  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1843  *              must be SCSI_SENSE_BUFFERSIZE big.
1844  *
1845  *      Returns zero if successful; negative error number or scsi
1846  *      status on error
1847  *
1848  */
1849 int
1850 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1851                  unsigned char *buffer, int len, int timeout, int retries,
1852                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1853 {
1854         unsigned char cmd[10];
1855         unsigned char *real_buffer;
1856         int ret;
1857
1858         memset(cmd, 0, sizeof(cmd));
1859         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1860
1861         if (sdev->use_10_for_ms) {
1862                 if (len > 65535)
1863                         return -EINVAL;
1864                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1865                 if (!real_buffer)
1866                         return -ENOMEM;
1867                 memcpy(real_buffer + 8, buffer, len);
1868                 len += 8;
1869                 real_buffer[0] = 0;
1870                 real_buffer[1] = 0;
1871                 real_buffer[2] = data->medium_type;
1872                 real_buffer[3] = data->device_specific;
1873                 real_buffer[4] = data->longlba ? 0x01 : 0;
1874                 real_buffer[5] = 0;
1875                 real_buffer[6] = data->block_descriptor_length >> 8;
1876                 real_buffer[7] = data->block_descriptor_length;
1877
1878                 cmd[0] = MODE_SELECT_10;
1879                 cmd[7] = len >> 8;
1880                 cmd[8] = len;
1881         } else {
1882                 if (len > 255 || data->block_descriptor_length > 255 ||
1883                     data->longlba)
1884                         return -EINVAL;
1885
1886                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1887                 if (!real_buffer)
1888                         return -ENOMEM;
1889                 memcpy(real_buffer + 4, buffer, len);
1890                 len += 4;
1891                 real_buffer[0] = 0;
1892                 real_buffer[1] = data->medium_type;
1893                 real_buffer[2] = data->device_specific;
1894                 real_buffer[3] = data->block_descriptor_length;
1895                 
1896
1897                 cmd[0] = MODE_SELECT;
1898                 cmd[4] = len;
1899         }
1900
1901         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1902                                sshdr, timeout, retries, NULL);
1903         kfree(real_buffer);
1904         return ret;
1905 }
1906 EXPORT_SYMBOL_GPL(scsi_mode_select);
1907
1908 /**
1909  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1910  *      @sdev:  SCSI device to be queried
1911  *      @dbd:   set if mode sense will allow block descriptors to be returned
1912  *      @modepage: mode page being requested
1913  *      @buffer: request buffer (may not be smaller than eight bytes)
1914  *      @len:   length of request buffer.
1915  *      @timeout: command timeout
1916  *      @retries: number of retries before failing
1917  *      @data: returns a structure abstracting the mode header data
1918  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1919  *              must be SCSI_SENSE_BUFFERSIZE big.
1920  *
1921  *      Returns zero if unsuccessful, or the header offset (either 4
1922  *      or 8 depending on whether a six or ten byte command was
1923  *      issued) if successful.
1924  */
1925 int
1926 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1927                   unsigned char *buffer, int len, int timeout, int retries,
1928                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1929 {
1930         unsigned char cmd[12];
1931         int use_10_for_ms;
1932         int header_length;
1933         int result;
1934         struct scsi_sense_hdr my_sshdr;
1935
1936         memset(data, 0, sizeof(*data));
1937         memset(&cmd[0], 0, 12);
1938         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1939         cmd[2] = modepage;
1940
1941         /* caller might not be interested in sense, but we need it */
1942         if (!sshdr)
1943                 sshdr = &my_sshdr;
1944
1945  retry:
1946         use_10_for_ms = sdev->use_10_for_ms;
1947
1948         if (use_10_for_ms) {
1949                 if (len < 8)
1950                         len = 8;
1951
1952                 cmd[0] = MODE_SENSE_10;
1953                 cmd[8] = len;
1954                 header_length = 8;
1955         } else {
1956                 if (len < 4)
1957                         len = 4;
1958
1959                 cmd[0] = MODE_SENSE;
1960                 cmd[4] = len;
1961                 header_length = 4;
1962         }
1963
1964         memset(buffer, 0, len);
1965
1966         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1967                                   sshdr, timeout, retries, NULL);
1968
1969         /* This code looks awful: what it's doing is making sure an
1970          * ILLEGAL REQUEST sense return identifies the actual command
1971          * byte as the problem.  MODE_SENSE commands can return
1972          * ILLEGAL REQUEST if the code page isn't supported */
1973
1974         if (use_10_for_ms && !scsi_status_is_good(result) &&
1975             (driver_byte(result) & DRIVER_SENSE)) {
1976                 if (scsi_sense_valid(sshdr)) {
1977                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1978                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1979                                 /* 
1980                                  * Invalid command operation code
1981                                  */
1982                                 sdev->use_10_for_ms = 0;
1983                                 goto retry;
1984                         }
1985                 }
1986         }
1987
1988         if(scsi_status_is_good(result)) {
1989                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1990                              (modepage == 6 || modepage == 8))) {
1991                         /* Initio breakage? */
1992                         header_length = 0;
1993                         data->length = 13;
1994                         data->medium_type = 0;
1995                         data->device_specific = 0;
1996                         data->longlba = 0;
1997                         data->block_descriptor_length = 0;
1998                 } else if(use_10_for_ms) {
1999                         data->length = buffer[0]*256 + buffer[1] + 2;
2000                         data->medium_type = buffer[2];
2001                         data->device_specific = buffer[3];
2002                         data->longlba = buffer[4] & 0x01;
2003                         data->block_descriptor_length = buffer[6]*256
2004                                 + buffer[7];
2005                 } else {
2006                         data->length = buffer[0] + 1;
2007                         data->medium_type = buffer[1];
2008                         data->device_specific = buffer[2];
2009                         data->block_descriptor_length = buffer[3];
2010                 }
2011                 data->header_length = header_length;
2012         }
2013
2014         return result;
2015 }
2016 EXPORT_SYMBOL(scsi_mode_sense);
2017
2018 /**
2019  *      scsi_test_unit_ready - test if unit is ready
2020  *      @sdev:  scsi device to change the state of.
2021  *      @timeout: command timeout
2022  *      @retries: number of retries before failing
2023  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2024  *              returning sense. Make sure that this is cleared before passing
2025  *              in.
2026  *
2027  *      Returns zero if unsuccessful or an error if TUR failed.  For
2028  *      removable media, UNIT_ATTENTION sets ->changed flag.
2029  **/
2030 int
2031 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2032                      struct scsi_sense_hdr *sshdr_external)
2033 {
2034         char cmd[] = {
2035                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2036         };
2037         struct scsi_sense_hdr *sshdr;
2038         int result;
2039
2040         if (!sshdr_external)
2041                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2042         else
2043                 sshdr = sshdr_external;
2044
2045         /* try to eat the UNIT_ATTENTION if there are enough retries */
2046         do {
2047                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2048                                           timeout, retries, NULL);
2049                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2050                     sshdr->sense_key == UNIT_ATTENTION)
2051                         sdev->changed = 1;
2052         } while (scsi_sense_valid(sshdr) &&
2053                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2054
2055         if (!sshdr_external)
2056                 kfree(sshdr);
2057         return result;
2058 }
2059 EXPORT_SYMBOL(scsi_test_unit_ready);
2060
2061 /**
2062  *      scsi_device_set_state - Take the given device through the device state model.
2063  *      @sdev:  scsi device to change the state of.
2064  *      @state: state to change to.
2065  *
2066  *      Returns zero if unsuccessful or an error if the requested 
2067  *      transition is illegal.
2068  */
2069 int
2070 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2071 {
2072         enum scsi_device_state oldstate = sdev->sdev_state;
2073
2074         if (state == oldstate)
2075                 return 0;
2076
2077         switch (state) {
2078         case SDEV_CREATED:
2079                 switch (oldstate) {
2080                 case SDEV_CREATED_BLOCK:
2081                         break;
2082                 default:
2083                         goto illegal;
2084                 }
2085                 break;
2086                         
2087         case SDEV_RUNNING:
2088                 switch (oldstate) {
2089                 case SDEV_CREATED:
2090                 case SDEV_OFFLINE:
2091                 case SDEV_TRANSPORT_OFFLINE:
2092                 case SDEV_QUIESCE:
2093                 case SDEV_BLOCK:
2094                         break;
2095                 default:
2096                         goto illegal;
2097                 }
2098                 break;
2099
2100         case SDEV_QUIESCE:
2101                 switch (oldstate) {
2102                 case SDEV_RUNNING:
2103                 case SDEV_OFFLINE:
2104                 case SDEV_TRANSPORT_OFFLINE:
2105                         break;
2106                 default:
2107                         goto illegal;
2108                 }
2109                 break;
2110
2111         case SDEV_OFFLINE:
2112         case SDEV_TRANSPORT_OFFLINE:
2113                 switch (oldstate) {
2114                 case SDEV_CREATED:
2115                 case SDEV_RUNNING:
2116                 case SDEV_QUIESCE:
2117                 case SDEV_BLOCK:
2118                         break;
2119                 default:
2120                         goto illegal;
2121                 }
2122                 break;
2123
2124         case SDEV_BLOCK:
2125                 switch (oldstate) {
2126                 case SDEV_RUNNING:
2127                 case SDEV_CREATED_BLOCK:
2128                         break;
2129                 default:
2130                         goto illegal;
2131                 }
2132                 break;
2133
2134         case SDEV_CREATED_BLOCK:
2135                 switch (oldstate) {
2136                 case SDEV_CREATED:
2137                         break;
2138                 default:
2139                         goto illegal;
2140                 }
2141                 break;
2142
2143         case SDEV_CANCEL:
2144                 switch (oldstate) {
2145                 case SDEV_CREATED:
2146                 case SDEV_RUNNING:
2147                 case SDEV_QUIESCE:
2148                 case SDEV_OFFLINE:
2149                 case SDEV_TRANSPORT_OFFLINE:
2150                 case SDEV_BLOCK:
2151                         break;
2152                 default:
2153                         goto illegal;
2154                 }
2155                 break;
2156
2157         case SDEV_DEL:
2158                 switch (oldstate) {
2159                 case SDEV_CREATED:
2160                 case SDEV_RUNNING:
2161                 case SDEV_OFFLINE:
2162                 case SDEV_TRANSPORT_OFFLINE:
2163                 case SDEV_CANCEL:
2164                         break;
2165                 default:
2166                         goto illegal;
2167                 }
2168                 break;
2169
2170         }
2171         sdev->sdev_state = state;
2172         return 0;
2173
2174  illegal:
2175         SCSI_LOG_ERROR_RECOVERY(1, 
2176                                 sdev_printk(KERN_ERR, sdev,
2177                                             "Illegal state transition %s->%s\n",
2178                                             scsi_device_state_name(oldstate),
2179                                             scsi_device_state_name(state))
2180                                 );
2181         return -EINVAL;
2182 }
2183 EXPORT_SYMBOL(scsi_device_set_state);
2184
2185 /**
2186  *      sdev_evt_emit - emit a single SCSI device uevent
2187  *      @sdev: associated SCSI device
2188  *      @evt: event to emit
2189  *
2190  *      Send a single uevent (scsi_event) to the associated scsi_device.
2191  */
2192 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2193 {
2194         int idx = 0;
2195         char *envp[3];
2196
2197         switch (evt->evt_type) {
2198         case SDEV_EVT_MEDIA_CHANGE:
2199                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2200                 break;
2201
2202         default:
2203                 /* do nothing */
2204                 break;
2205         }
2206
2207         envp[idx++] = NULL;
2208
2209         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2210 }
2211
2212 /**
2213  *      sdev_evt_thread - send a uevent for each scsi event
2214  *      @work: work struct for scsi_device
2215  *
2216  *      Dispatch queued events to their associated scsi_device kobjects
2217  *      as uevents.
2218  */
2219 void scsi_evt_thread(struct work_struct *work)
2220 {
2221         struct scsi_device *sdev;
2222         LIST_HEAD(event_list);
2223
2224         sdev = container_of(work, struct scsi_device, event_work);
2225
2226         while (1) {
2227                 struct scsi_event *evt;
2228                 struct list_head *this, *tmp;
2229                 unsigned long flags;
2230
2231                 spin_lock_irqsave(&sdev->list_lock, flags);
2232                 list_splice_init(&sdev->event_list, &event_list);
2233                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2234
2235                 if (list_empty(&event_list))
2236                         break;
2237
2238                 list_for_each_safe(this, tmp, &event_list) {
2239                         evt = list_entry(this, struct scsi_event, node);
2240                         list_del(&evt->node);
2241                         scsi_evt_emit(sdev, evt);
2242                         kfree(evt);
2243                 }
2244         }
2245 }
2246
2247 /**
2248  *      sdev_evt_send - send asserted event to uevent thread
2249  *      @sdev: scsi_device event occurred on
2250  *      @evt: event to send
2251  *
2252  *      Assert scsi device event asynchronously.
2253  */
2254 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2255 {
2256         unsigned long flags;
2257
2258 #if 0
2259         /* FIXME: currently this check eliminates all media change events
2260          * for polled devices.  Need to update to discriminate between AN
2261          * and polled events */
2262         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2263                 kfree(evt);
2264                 return;
2265         }
2266 #endif
2267
2268         spin_lock_irqsave(&sdev->list_lock, flags);
2269         list_add_tail(&evt->node, &sdev->event_list);
2270         schedule_work(&sdev->event_work);
2271         spin_unlock_irqrestore(&sdev->list_lock, flags);
2272 }
2273 EXPORT_SYMBOL_GPL(sdev_evt_send);
2274
2275 /**
2276  *      sdev_evt_alloc - allocate a new scsi event
2277  *      @evt_type: type of event to allocate
2278  *      @gfpflags: GFP flags for allocation
2279  *
2280  *      Allocates and returns a new scsi_event.
2281  */
2282 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2283                                   gfp_t gfpflags)
2284 {
2285         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2286         if (!evt)
2287                 return NULL;
2288
2289         evt->evt_type = evt_type;
2290         INIT_LIST_HEAD(&evt->node);
2291
2292         /* evt_type-specific initialization, if any */
2293         switch (evt_type) {
2294         case SDEV_EVT_MEDIA_CHANGE:
2295         default:
2296                 /* do nothing */
2297                 break;
2298         }
2299
2300         return evt;
2301 }
2302 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2303
2304 /**
2305  *      sdev_evt_send_simple - send asserted event to uevent thread
2306  *      @sdev: scsi_device event occurred on
2307  *      @evt_type: type of event to send
2308  *      @gfpflags: GFP flags for allocation
2309  *
2310  *      Assert scsi device event asynchronously, given an event type.
2311  */
2312 void sdev_evt_send_simple(struct scsi_device *sdev,
2313                           enum scsi_device_event evt_type, gfp_t gfpflags)
2314 {
2315         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2316         if (!evt) {
2317                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2318                             evt_type);
2319                 return;
2320         }
2321
2322         sdev_evt_send(sdev, evt);
2323 }
2324 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2325
2326 /**
2327  *      scsi_device_quiesce - Block user issued commands.
2328  *      @sdev:  scsi device to quiesce.
2329  *
2330  *      This works by trying to transition to the SDEV_QUIESCE state
2331  *      (which must be a legal transition).  When the device is in this
2332  *      state, only special requests will be accepted, all others will
2333  *      be deferred.  Since special requests may also be requeued requests,
2334  *      a successful return doesn't guarantee the device will be 
2335  *      totally quiescent.
2336  *
2337  *      Must be called with user context, may sleep.
2338  *
2339  *      Returns zero if unsuccessful or an error if not.
2340  */
2341 int
2342 scsi_device_quiesce(struct scsi_device *sdev)
2343 {
2344         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2345         if (err)
2346                 return err;
2347
2348         scsi_run_queue(sdev->request_queue);
2349         while (sdev->device_busy) {
2350                 msleep_interruptible(200);
2351                 scsi_run_queue(sdev->request_queue);
2352         }
2353         return 0;
2354 }
2355 EXPORT_SYMBOL(scsi_device_quiesce);
2356
2357 /**
2358  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2359  *      @sdev:  scsi device to resume.
2360  *
2361  *      Moves the device from quiesced back to running and restarts the
2362  *      queues.
2363  *
2364  *      Must be called with user context, may sleep.
2365  */
2366 void scsi_device_resume(struct scsi_device *sdev)
2367 {
2368         /* check if the device state was mutated prior to resume, and if
2369          * so assume the state is being managed elsewhere (for example
2370          * device deleted during suspend)
2371          */
2372         if (sdev->sdev_state != SDEV_QUIESCE ||
2373             scsi_device_set_state(sdev, SDEV_RUNNING))
2374                 return;
2375         scsi_run_queue(sdev->request_queue);
2376 }
2377 EXPORT_SYMBOL(scsi_device_resume);
2378
2379 static void
2380 device_quiesce_fn(struct scsi_device *sdev, void *data)
2381 {
2382         scsi_device_quiesce(sdev);
2383 }
2384
2385 void
2386 scsi_target_quiesce(struct scsi_target *starget)
2387 {
2388         starget_for_each_device(starget, NULL, device_quiesce_fn);
2389 }
2390 EXPORT_SYMBOL(scsi_target_quiesce);
2391
2392 static void
2393 device_resume_fn(struct scsi_device *sdev, void *data)
2394 {
2395         scsi_device_resume(sdev);
2396 }
2397
2398 void
2399 scsi_target_resume(struct scsi_target *starget)
2400 {
2401         starget_for_each_device(starget, NULL, device_resume_fn);
2402 }
2403 EXPORT_SYMBOL(scsi_target_resume);
2404
2405 /**
2406  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2407  * @sdev:       device to block
2408  *
2409  * Block request made by scsi lld's to temporarily stop all
2410  * scsi commands on the specified device.  Called from interrupt
2411  * or normal process context.
2412  *
2413  * Returns zero if successful or error if not
2414  *
2415  * Notes:       
2416  *      This routine transitions the device to the SDEV_BLOCK state
2417  *      (which must be a legal transition).  When the device is in this
2418  *      state, all commands are deferred until the scsi lld reenables
2419  *      the device with scsi_device_unblock or device_block_tmo fires.
2420  */
2421 int
2422 scsi_internal_device_block(struct scsi_device *sdev)
2423 {
2424         struct request_queue *q = sdev->request_queue;
2425         unsigned long flags;
2426         int err = 0;
2427
2428         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2429         if (err) {
2430                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2431
2432                 if (err)
2433                         return err;
2434         }
2435
2436         /* 
2437          * The device has transitioned to SDEV_BLOCK.  Stop the
2438          * block layer from calling the midlayer with this device's
2439          * request queue. 
2440          */
2441         spin_lock_irqsave(q->queue_lock, flags);
2442         blk_stop_queue(q);
2443         spin_unlock_irqrestore(q->queue_lock, flags);
2444
2445         return 0;
2446 }
2447 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2448  
2449 /**
2450  * scsi_internal_device_unblock - resume a device after a block request
2451  * @sdev:       device to resume
2452  * @new_state:  state to set devices to after unblocking
2453  *
2454  * Called by scsi lld's or the midlayer to restart the device queue
2455  * for the previously suspended scsi device.  Called from interrupt or
2456  * normal process context.
2457  *
2458  * Returns zero if successful or error if not.
2459  *
2460  * Notes:       
2461  *      This routine transitions the device to the SDEV_RUNNING state
2462  *      or to one of the offline states (which must be a legal transition)
2463  *      allowing the midlayer to goose the queue for this device.
2464  */
2465 int
2466 scsi_internal_device_unblock(struct scsi_device *sdev,
2467                              enum scsi_device_state new_state)
2468 {
2469         struct request_queue *q = sdev->request_queue; 
2470         unsigned long flags;
2471
2472         /*
2473          * Try to transition the scsi device to SDEV_RUNNING or one of the
2474          * offlined states and goose the device queue if successful.
2475          */
2476         if ((sdev->sdev_state == SDEV_BLOCK) ||
2477             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2478                 sdev->sdev_state = new_state;
2479         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2480                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2481                     new_state == SDEV_OFFLINE)
2482                         sdev->sdev_state = new_state;
2483                 else
2484                         sdev->sdev_state = SDEV_CREATED;
2485         } else if (sdev->sdev_state != SDEV_CANCEL &&
2486                  sdev->sdev_state != SDEV_OFFLINE)
2487                 return -EINVAL;
2488
2489         spin_lock_irqsave(q->queue_lock, flags);
2490         blk_start_queue(q);
2491         spin_unlock_irqrestore(q->queue_lock, flags);
2492
2493         return 0;
2494 }
2495 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2496
2497 static void
2498 device_block(struct scsi_device *sdev, void *data)
2499 {
2500         scsi_internal_device_block(sdev);
2501 }
2502
2503 static int
2504 target_block(struct device *dev, void *data)
2505 {
2506         if (scsi_is_target_device(dev))
2507                 starget_for_each_device(to_scsi_target(dev), NULL,
2508                                         device_block);
2509         return 0;
2510 }
2511
2512 void
2513 scsi_target_block(struct device *dev)
2514 {
2515         if (scsi_is_target_device(dev))
2516                 starget_for_each_device(to_scsi_target(dev), NULL,
2517                                         device_block);
2518         else
2519                 device_for_each_child(dev, NULL, target_block);
2520 }
2521 EXPORT_SYMBOL_GPL(scsi_target_block);
2522
2523 static void
2524 device_unblock(struct scsi_device *sdev, void *data)
2525 {
2526         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2527 }
2528
2529 static int
2530 target_unblock(struct device *dev, void *data)
2531 {
2532         if (scsi_is_target_device(dev))
2533                 starget_for_each_device(to_scsi_target(dev), data,
2534                                         device_unblock);
2535         return 0;
2536 }
2537
2538 void
2539 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2540 {
2541         if (scsi_is_target_device(dev))
2542                 starget_for_each_device(to_scsi_target(dev), &new_state,
2543                                         device_unblock);
2544         else
2545                 device_for_each_child(dev, &new_state, target_unblock);
2546 }
2547 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2548
2549 /**
2550  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2551  * @sgl:        scatter-gather list
2552  * @sg_count:   number of segments in sg
2553  * @offset:     offset in bytes into sg, on return offset into the mapped area
2554  * @len:        bytes to map, on return number of bytes mapped
2555  *
2556  * Returns virtual address of the start of the mapped page
2557  */
2558 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2559                           size_t *offset, size_t *len)
2560 {
2561         int i;
2562         size_t sg_len = 0, len_complete = 0;
2563         struct scatterlist *sg;
2564         struct page *page;
2565
2566         WARN_ON(!irqs_disabled());
2567
2568         for_each_sg(sgl, sg, sg_count, i) {
2569                 len_complete = sg_len; /* Complete sg-entries */
2570                 sg_len += sg->length;
2571                 if (sg_len > *offset)
2572                         break;
2573         }
2574
2575         if (unlikely(i == sg_count)) {
2576                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2577                         "elements %d\n",
2578                        __func__, sg_len, *offset, sg_count);
2579                 WARN_ON(1);
2580                 return NULL;
2581         }
2582
2583         /* Offset starting from the beginning of first page in this sg-entry */
2584         *offset = *offset - len_complete + sg->offset;
2585
2586         /* Assumption: contiguous pages can be accessed as "page + i" */
2587         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2588         *offset &= ~PAGE_MASK;
2589
2590         /* Bytes in this sg-entry from *offset to the end of the page */
2591         sg_len = PAGE_SIZE - *offset;
2592         if (*len > sg_len)
2593                 *len = sg_len;
2594
2595         return kmap_atomic(page);
2596 }
2597 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2598
2599 /**
2600  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2601  * @virt:       virtual address to be unmapped
2602  */
2603 void scsi_kunmap_atomic_sg(void *virt)
2604 {
2605         kunmap_atomic(virt);
2606 }
2607 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);