thermal: rockchip: rk3368: ajust tsadc's data path according request of qos
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25 #include <linux/ratelimit.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_dh.h>
35
36 #include <trace/events/scsi.h>
37
38 #include "scsi_priv.h"
39 #include "scsi_logging.h"
40
41
42 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
43 #define SG_MEMPOOL_SIZE         2
44
45 struct scsi_host_sg_pool {
46         size_t          size;
47         char            *name;
48         struct kmem_cache       *slab;
49         mempool_t       *pool;
50 };
51
52 #define SP(x) { .size = x, "sgpool-" __stringify(x) }
53 #if (SCSI_MAX_SG_SEGMENTS < 32)
54 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
55 #endif
56 static struct scsi_host_sg_pool scsi_sg_pools[] = {
57         SP(8),
58         SP(16),
59 #if (SCSI_MAX_SG_SEGMENTS > 32)
60         SP(32),
61 #if (SCSI_MAX_SG_SEGMENTS > 64)
62         SP(64),
63 #if (SCSI_MAX_SG_SEGMENTS > 128)
64         SP(128),
65 #if (SCSI_MAX_SG_SEGMENTS > 256)
66 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
67 #endif
68 #endif
69 #endif
70 #endif
71         SP(SCSI_MAX_SG_SEGMENTS)
72 };
73 #undef SP
74
75 struct kmem_cache *scsi_sdb_cache;
76
77 /*
78  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
79  * not change behaviour from the previous unplug mechanism, experimentation
80  * may prove this needs changing.
81  */
82 #define SCSI_QUEUE_DELAY        3
83
84 static void
85 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
86 {
87         struct Scsi_Host *host = cmd->device->host;
88         struct scsi_device *device = cmd->device;
89         struct scsi_target *starget = scsi_target(device);
90
91         /*
92          * Set the appropriate busy bit for the device/host.
93          *
94          * If the host/device isn't busy, assume that something actually
95          * completed, and that we should be able to queue a command now.
96          *
97          * Note that the prior mid-layer assumption that any host could
98          * always queue at least one command is now broken.  The mid-layer
99          * will implement a user specifiable stall (see
100          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
101          * if a command is requeued with no other commands outstanding
102          * either for the device or for the host.
103          */
104         switch (reason) {
105         case SCSI_MLQUEUE_HOST_BUSY:
106                 atomic_set(&host->host_blocked, host->max_host_blocked);
107                 break;
108         case SCSI_MLQUEUE_DEVICE_BUSY:
109         case SCSI_MLQUEUE_EH_RETRY:
110                 atomic_set(&device->device_blocked,
111                            device->max_device_blocked);
112                 break;
113         case SCSI_MLQUEUE_TARGET_BUSY:
114                 atomic_set(&starget->target_blocked,
115                            starget->max_target_blocked);
116                 break;
117         }
118 }
119
120 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
121 {
122         struct scsi_device *sdev = cmd->device;
123         struct request_queue *q = cmd->request->q;
124
125         blk_mq_requeue_request(cmd->request);
126         blk_mq_kick_requeue_list(q);
127         put_device(&sdev->sdev_gendev);
128 }
129
130 /**
131  * __scsi_queue_insert - private queue insertion
132  * @cmd: The SCSI command being requeued
133  * @reason:  The reason for the requeue
134  * @unbusy: Whether the queue should be unbusied
135  *
136  * This is a private queue insertion.  The public interface
137  * scsi_queue_insert() always assumes the queue should be unbusied
138  * because it's always called before the completion.  This function is
139  * for a requeue after completion, which should only occur in this
140  * file.
141  */
142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
143 {
144         struct scsi_device *device = cmd->device;
145         struct request_queue *q = device->request_queue;
146         unsigned long flags;
147
148         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
149                 "Inserting command %p into mlqueue\n", cmd));
150
151         scsi_set_blocked(cmd, reason);
152
153         /*
154          * Decrement the counters, since these commands are no longer
155          * active on the host/device.
156          */
157         if (unbusy)
158                 scsi_device_unbusy(device);
159
160         /*
161          * Requeue this command.  It will go before all other commands
162          * that are already in the queue. Schedule requeue work under
163          * lock such that the kblockd_schedule_work() call happens
164          * before blk_cleanup_queue() finishes.
165          */
166         cmd->result = 0;
167         if (q->mq_ops) {
168                 scsi_mq_requeue_cmd(cmd);
169                 return;
170         }
171         spin_lock_irqsave(q->queue_lock, flags);
172         blk_requeue_request(q, cmd->request);
173         kblockd_schedule_work(&device->requeue_work);
174         spin_unlock_irqrestore(q->queue_lock, flags);
175 }
176
177 /*
178  * Function:    scsi_queue_insert()
179  *
180  * Purpose:     Insert a command in the midlevel queue.
181  *
182  * Arguments:   cmd    - command that we are adding to queue.
183  *              reason - why we are inserting command to queue.
184  *
185  * Lock status: Assumed that lock is not held upon entry.
186  *
187  * Returns:     Nothing.
188  *
189  * Notes:       We do this for one of two cases.  Either the host is busy
190  *              and it cannot accept any more commands for the time being,
191  *              or the device returned QUEUE_FULL and can accept no more
192  *              commands.
193  * Notes:       This could be called either from an interrupt context or a
194  *              normal process context.
195  */
196 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
197 {
198         __scsi_queue_insert(cmd, reason, 1);
199 }
200 /**
201  * scsi_execute - insert request and wait for the result
202  * @sdev:       scsi device
203  * @cmd:        scsi command
204  * @data_direction: data direction
205  * @buffer:     data buffer
206  * @bufflen:    len of buffer
207  * @sense:      optional sense buffer
208  * @timeout:    request timeout in seconds
209  * @retries:    number of times to retry request
210  * @flags:      or into request flags;
211  * @resid:      optional residual length
212  *
213  * returns the req->errors value which is the scsi_cmnd result
214  * field.
215  */
216 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
217                  int data_direction, void *buffer, unsigned bufflen,
218                  unsigned char *sense, int timeout, int retries, u64 flags,
219                  int *resid)
220 {
221         struct request *req;
222         int write = (data_direction == DMA_TO_DEVICE);
223         int ret = DRIVER_ERROR << 24;
224
225         req = blk_get_request(sdev->request_queue, write, __GFP_RECLAIM);
226         if (IS_ERR(req))
227                 return ret;
228         blk_rq_set_block_pc(req);
229
230         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
231                                         buffer, bufflen, __GFP_RECLAIM))
232                 goto out;
233
234         req->cmd_len = COMMAND_SIZE(cmd[0]);
235         memcpy(req->cmd, cmd, req->cmd_len);
236         req->sense = sense;
237         req->sense_len = 0;
238         req->retries = retries;
239         req->timeout = timeout;
240         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
241
242         /*
243          * head injection *required* here otherwise quiesce won't work
244          */
245         blk_execute_rq(req->q, NULL, req, 1);
246
247         /*
248          * Some devices (USB mass-storage in particular) may transfer
249          * garbage data together with a residue indicating that the data
250          * is invalid.  Prevent the garbage from being misinterpreted
251          * and prevent security leaks by zeroing out the excess data.
252          */
253         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
254                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
255
256         if (resid)
257                 *resid = req->resid_len;
258         ret = req->errors;
259  out:
260         blk_put_request(req);
261
262         return ret;
263 }
264 EXPORT_SYMBOL(scsi_execute);
265
266 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
267                      int data_direction, void *buffer, unsigned bufflen,
268                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
269                      int *resid, u64 flags)
270 {
271         char *sense = NULL;
272         int result;
273         
274         if (sshdr) {
275                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
276                 if (!sense)
277                         return DRIVER_ERROR << 24;
278         }
279         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
280                               sense, timeout, retries, flags, resid);
281         if (sshdr)
282                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
283
284         kfree(sense);
285         return result;
286 }
287 EXPORT_SYMBOL(scsi_execute_req_flags);
288
289 /*
290  * Function:    scsi_init_cmd_errh()
291  *
292  * Purpose:     Initialize cmd fields related to error handling.
293  *
294  * Arguments:   cmd     - command that is ready to be queued.
295  *
296  * Notes:       This function has the job of initializing a number of
297  *              fields related to error handling.   Typically this will
298  *              be called once for each command, as required.
299  */
300 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
301 {
302         cmd->serial_number = 0;
303         scsi_set_resid(cmd, 0);
304         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
305         if (cmd->cmd_len == 0)
306                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
307 }
308
309 void scsi_device_unbusy(struct scsi_device *sdev)
310 {
311         struct Scsi_Host *shost = sdev->host;
312         struct scsi_target *starget = scsi_target(sdev);
313         unsigned long flags;
314
315         atomic_dec(&shost->host_busy);
316         if (starget->can_queue > 0)
317                 atomic_dec(&starget->target_busy);
318
319         if (unlikely(scsi_host_in_recovery(shost) &&
320                      (shost->host_failed || shost->host_eh_scheduled))) {
321                 spin_lock_irqsave(shost->host_lock, flags);
322                 scsi_eh_wakeup(shost);
323                 spin_unlock_irqrestore(shost->host_lock, flags);
324         }
325
326         atomic_dec(&sdev->device_busy);
327 }
328
329 static void scsi_kick_queue(struct request_queue *q)
330 {
331         if (q->mq_ops)
332                 blk_mq_start_hw_queues(q);
333         else
334                 blk_run_queue(q);
335 }
336
337 /*
338  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
339  * and call blk_run_queue for all the scsi_devices on the target -
340  * including current_sdev first.
341  *
342  * Called with *no* scsi locks held.
343  */
344 static void scsi_single_lun_run(struct scsi_device *current_sdev)
345 {
346         struct Scsi_Host *shost = current_sdev->host;
347         struct scsi_device *sdev, *tmp;
348         struct scsi_target *starget = scsi_target(current_sdev);
349         unsigned long flags;
350
351         spin_lock_irqsave(shost->host_lock, flags);
352         starget->starget_sdev_user = NULL;
353         spin_unlock_irqrestore(shost->host_lock, flags);
354
355         /*
356          * Call blk_run_queue for all LUNs on the target, starting with
357          * current_sdev. We race with others (to set starget_sdev_user),
358          * but in most cases, we will be first. Ideally, each LU on the
359          * target would get some limited time or requests on the target.
360          */
361         scsi_kick_queue(current_sdev->request_queue);
362
363         spin_lock_irqsave(shost->host_lock, flags);
364         if (starget->starget_sdev_user)
365                 goto out;
366         list_for_each_entry_safe(sdev, tmp, &starget->devices,
367                         same_target_siblings) {
368                 if (sdev == current_sdev)
369                         continue;
370                 if (scsi_device_get(sdev))
371                         continue;
372
373                 spin_unlock_irqrestore(shost->host_lock, flags);
374                 scsi_kick_queue(sdev->request_queue);
375                 spin_lock_irqsave(shost->host_lock, flags);
376         
377                 scsi_device_put(sdev);
378         }
379  out:
380         spin_unlock_irqrestore(shost->host_lock, flags);
381 }
382
383 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
384 {
385         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
386                 return true;
387         if (atomic_read(&sdev->device_blocked) > 0)
388                 return true;
389         return false;
390 }
391
392 static inline bool scsi_target_is_busy(struct scsi_target *starget)
393 {
394         if (starget->can_queue > 0) {
395                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
396                         return true;
397                 if (atomic_read(&starget->target_blocked) > 0)
398                         return true;
399         }
400         return false;
401 }
402
403 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
404 {
405         if (shost->can_queue > 0 &&
406             atomic_read(&shost->host_busy) >= shost->can_queue)
407                 return true;
408         if (atomic_read(&shost->host_blocked) > 0)
409                 return true;
410         if (shost->host_self_blocked)
411                 return true;
412         return false;
413 }
414
415 static void scsi_starved_list_run(struct Scsi_Host *shost)
416 {
417         LIST_HEAD(starved_list);
418         struct scsi_device *sdev;
419         unsigned long flags;
420
421         spin_lock_irqsave(shost->host_lock, flags);
422         list_splice_init(&shost->starved_list, &starved_list);
423
424         while (!list_empty(&starved_list)) {
425                 struct request_queue *slq;
426
427                 /*
428                  * As long as shost is accepting commands and we have
429                  * starved queues, call blk_run_queue. scsi_request_fn
430                  * drops the queue_lock and can add us back to the
431                  * starved_list.
432                  *
433                  * host_lock protects the starved_list and starved_entry.
434                  * scsi_request_fn must get the host_lock before checking
435                  * or modifying starved_list or starved_entry.
436                  */
437                 if (scsi_host_is_busy(shost))
438                         break;
439
440                 sdev = list_entry(starved_list.next,
441                                   struct scsi_device, starved_entry);
442                 list_del_init(&sdev->starved_entry);
443                 if (scsi_target_is_busy(scsi_target(sdev))) {
444                         list_move_tail(&sdev->starved_entry,
445                                        &shost->starved_list);
446                         continue;
447                 }
448
449                 /*
450                  * Once we drop the host lock, a racing scsi_remove_device()
451                  * call may remove the sdev from the starved list and destroy
452                  * it and the queue.  Mitigate by taking a reference to the
453                  * queue and never touching the sdev again after we drop the
454                  * host lock.  Note: if __scsi_remove_device() invokes
455                  * blk_cleanup_queue() before the queue is run from this
456                  * function then blk_run_queue() will return immediately since
457                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
458                  */
459                 slq = sdev->request_queue;
460                 if (!blk_get_queue(slq))
461                         continue;
462                 spin_unlock_irqrestore(shost->host_lock, flags);
463
464                 scsi_kick_queue(slq);
465                 blk_put_queue(slq);
466
467                 spin_lock_irqsave(shost->host_lock, flags);
468         }
469         /* put any unprocessed entries back */
470         list_splice(&starved_list, &shost->starved_list);
471         spin_unlock_irqrestore(shost->host_lock, flags);
472 }
473
474 /*
475  * Function:   scsi_run_queue()
476  *
477  * Purpose:    Select a proper request queue to serve next
478  *
479  * Arguments:  q       - last request's queue
480  *
481  * Returns:     Nothing
482  *
483  * Notes:      The previous command was completely finished, start
484  *             a new one if possible.
485  */
486 static void scsi_run_queue(struct request_queue *q)
487 {
488         struct scsi_device *sdev = q->queuedata;
489
490         if (scsi_target(sdev)->single_lun)
491                 scsi_single_lun_run(sdev);
492         if (!list_empty(&sdev->host->starved_list))
493                 scsi_starved_list_run(sdev->host);
494
495         if (q->mq_ops)
496                 blk_mq_start_stopped_hw_queues(q, false);
497         else
498                 blk_run_queue(q);
499 }
500
501 void scsi_requeue_run_queue(struct work_struct *work)
502 {
503         struct scsi_device *sdev;
504         struct request_queue *q;
505
506         sdev = container_of(work, struct scsi_device, requeue_work);
507         q = sdev->request_queue;
508         scsi_run_queue(q);
509 }
510
511 /*
512  * Function:    scsi_requeue_command()
513  *
514  * Purpose:     Handle post-processing of completed commands.
515  *
516  * Arguments:   q       - queue to operate on
517  *              cmd     - command that may need to be requeued.
518  *
519  * Returns:     Nothing
520  *
521  * Notes:       After command completion, there may be blocks left
522  *              over which weren't finished by the previous command
523  *              this can be for a number of reasons - the main one is
524  *              I/O errors in the middle of the request, in which case
525  *              we need to request the blocks that come after the bad
526  *              sector.
527  * Notes:       Upon return, cmd is a stale pointer.
528  */
529 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
530 {
531         struct scsi_device *sdev = cmd->device;
532         struct request *req = cmd->request;
533         unsigned long flags;
534
535         spin_lock_irqsave(q->queue_lock, flags);
536         blk_unprep_request(req);
537         req->special = NULL;
538         scsi_put_command(cmd);
539         blk_requeue_request(q, req);
540         spin_unlock_irqrestore(q->queue_lock, flags);
541
542         scsi_run_queue(q);
543
544         put_device(&sdev->sdev_gendev);
545 }
546
547 void scsi_run_host_queues(struct Scsi_Host *shost)
548 {
549         struct scsi_device *sdev;
550
551         shost_for_each_device(sdev, shost)
552                 scsi_run_queue(sdev->request_queue);
553 }
554
555 static inline unsigned int scsi_sgtable_index(unsigned short nents)
556 {
557         unsigned int index;
558
559         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
560
561         if (nents <= 8)
562                 index = 0;
563         else
564                 index = get_count_order(nents) - 3;
565
566         return index;
567 }
568
569 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
570 {
571         struct scsi_host_sg_pool *sgp;
572
573         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
574         mempool_free(sgl, sgp->pool);
575 }
576
577 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
578 {
579         struct scsi_host_sg_pool *sgp;
580
581         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
582         return mempool_alloc(sgp->pool, gfp_mask);
583 }
584
585 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
586 {
587         if (mq && sdb->table.orig_nents <= SCSI_MAX_SG_SEGMENTS)
588                 return;
589         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
590 }
591
592 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, bool mq)
593 {
594         struct scatterlist *first_chunk = NULL;
595         int ret;
596
597         BUG_ON(!nents);
598
599         if (mq) {
600                 if (nents <= SCSI_MAX_SG_SEGMENTS) {
601                         sdb->table.nents = sdb->table.orig_nents = nents;
602                         sg_init_table(sdb->table.sgl, nents);
603                         return 0;
604                 }
605                 first_chunk = sdb->table.sgl;
606         }
607
608         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
609                                first_chunk, GFP_ATOMIC, scsi_sg_alloc);
610         if (unlikely(ret))
611                 scsi_free_sgtable(sdb, mq);
612         return ret;
613 }
614
615 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
616 {
617         if (cmd->request->cmd_type == REQ_TYPE_FS) {
618                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
619
620                 if (drv->uninit_command)
621                         drv->uninit_command(cmd);
622         }
623 }
624
625 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
626 {
627         if (cmd->sdb.table.nents)
628                 scsi_free_sgtable(&cmd->sdb, true);
629         if (cmd->request->next_rq && cmd->request->next_rq->special)
630                 scsi_free_sgtable(cmd->request->next_rq->special, true);
631         if (scsi_prot_sg_count(cmd))
632                 scsi_free_sgtable(cmd->prot_sdb, true);
633 }
634
635 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
636 {
637         struct scsi_device *sdev = cmd->device;
638         struct Scsi_Host *shost = sdev->host;
639         unsigned long flags;
640
641         scsi_mq_free_sgtables(cmd);
642         scsi_uninit_cmd(cmd);
643
644         if (shost->use_cmd_list) {
645                 BUG_ON(list_empty(&cmd->list));
646                 spin_lock_irqsave(&sdev->list_lock, flags);
647                 list_del_init(&cmd->list);
648                 spin_unlock_irqrestore(&sdev->list_lock, flags);
649         }
650 }
651
652 /*
653  * Function:    scsi_release_buffers()
654  *
655  * Purpose:     Free resources allocate for a scsi_command.
656  *
657  * Arguments:   cmd     - command that we are bailing.
658  *
659  * Lock status: Assumed that no lock is held upon entry.
660  *
661  * Returns:     Nothing
662  *
663  * Notes:       In the event that an upper level driver rejects a
664  *              command, we must release resources allocated during
665  *              the __init_io() function.  Primarily this would involve
666  *              the scatter-gather table.
667  */
668 static void scsi_release_buffers(struct scsi_cmnd *cmd)
669 {
670         if (cmd->sdb.table.nents)
671                 scsi_free_sgtable(&cmd->sdb, false);
672
673         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
674
675         if (scsi_prot_sg_count(cmd))
676                 scsi_free_sgtable(cmd->prot_sdb, false);
677 }
678
679 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
680 {
681         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
682
683         scsi_free_sgtable(bidi_sdb, false);
684         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
685         cmd->request->next_rq->special = NULL;
686 }
687
688 static bool scsi_end_request(struct request *req, int error,
689                 unsigned int bytes, unsigned int bidi_bytes)
690 {
691         struct scsi_cmnd *cmd = req->special;
692         struct scsi_device *sdev = cmd->device;
693         struct request_queue *q = sdev->request_queue;
694
695         if (blk_update_request(req, error, bytes))
696                 return true;
697
698         /* Bidi request must be completed as a whole */
699         if (unlikely(bidi_bytes) &&
700             blk_update_request(req->next_rq, error, bidi_bytes))
701                 return true;
702
703         if (blk_queue_add_random(q))
704                 add_disk_randomness(req->rq_disk);
705
706         if (req->mq_ctx) {
707                 /*
708                  * In the MQ case the command gets freed by __blk_mq_end_request,
709                  * so we have to do all cleanup that depends on it earlier.
710                  *
711                  * We also can't kick the queues from irq context, so we
712                  * will have to defer it to a workqueue.
713                  */
714                 scsi_mq_uninit_cmd(cmd);
715
716                 __blk_mq_end_request(req, error);
717
718                 if (scsi_target(sdev)->single_lun ||
719                     !list_empty(&sdev->host->starved_list))
720                         kblockd_schedule_work(&sdev->requeue_work);
721                 else
722                         blk_mq_start_stopped_hw_queues(q, true);
723         } else {
724                 unsigned long flags;
725
726                 if (bidi_bytes)
727                         scsi_release_bidi_buffers(cmd);
728
729                 spin_lock_irqsave(q->queue_lock, flags);
730                 blk_finish_request(req, error);
731                 spin_unlock_irqrestore(q->queue_lock, flags);
732
733                 scsi_release_buffers(cmd);
734
735                 scsi_put_command(cmd);
736                 scsi_run_queue(q);
737         }
738
739         put_device(&sdev->sdev_gendev);
740         return false;
741 }
742
743 /**
744  * __scsi_error_from_host_byte - translate SCSI error code into errno
745  * @cmd:        SCSI command (unused)
746  * @result:     scsi error code
747  *
748  * Translate SCSI error code into standard UNIX errno.
749  * Return values:
750  * -ENOLINK     temporary transport failure
751  * -EREMOTEIO   permanent target failure, do not retry
752  * -EBADE       permanent nexus failure, retry on other path
753  * -ENOSPC      No write space available
754  * -ENODATA     Medium error
755  * -EIO         unspecified I/O error
756  */
757 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
758 {
759         int error = 0;
760
761         switch(host_byte(result)) {
762         case DID_TRANSPORT_FAILFAST:
763                 error = -ENOLINK;
764                 break;
765         case DID_TARGET_FAILURE:
766                 set_host_byte(cmd, DID_OK);
767                 error = -EREMOTEIO;
768                 break;
769         case DID_NEXUS_FAILURE:
770                 set_host_byte(cmd, DID_OK);
771                 error = -EBADE;
772                 break;
773         case DID_ALLOC_FAILURE:
774                 set_host_byte(cmd, DID_OK);
775                 error = -ENOSPC;
776                 break;
777         case DID_MEDIUM_ERROR:
778                 set_host_byte(cmd, DID_OK);
779                 error = -ENODATA;
780                 break;
781         default:
782                 error = -EIO;
783                 break;
784         }
785
786         return error;
787 }
788
789 /*
790  * Function:    scsi_io_completion()
791  *
792  * Purpose:     Completion processing for block device I/O requests.
793  *
794  * Arguments:   cmd   - command that is finished.
795  *
796  * Lock status: Assumed that no lock is held upon entry.
797  *
798  * Returns:     Nothing
799  *
800  * Notes:       We will finish off the specified number of sectors.  If we
801  *              are done, the command block will be released and the queue
802  *              function will be goosed.  If we are not done then we have to
803  *              figure out what to do next:
804  *
805  *              a) We can call scsi_requeue_command().  The request
806  *                 will be unprepared and put back on the queue.  Then
807  *                 a new command will be created for it.  This should
808  *                 be used if we made forward progress, or if we want
809  *                 to switch from READ(10) to READ(6) for example.
810  *
811  *              b) We can call __scsi_queue_insert().  The request will
812  *                 be put back on the queue and retried using the same
813  *                 command as before, possibly after a delay.
814  *
815  *              c) We can call scsi_end_request() with -EIO to fail
816  *                 the remainder of the request.
817  */
818 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
819 {
820         int result = cmd->result;
821         struct request_queue *q = cmd->device->request_queue;
822         struct request *req = cmd->request;
823         int error = 0;
824         struct scsi_sense_hdr sshdr;
825         bool sense_valid = false;
826         int sense_deferred = 0, level = 0;
827         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
828               ACTION_DELAYED_RETRY} action;
829         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
830
831         if (result) {
832                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
833                 if (sense_valid)
834                         sense_deferred = scsi_sense_is_deferred(&sshdr);
835         }
836
837         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
838                 if (result) {
839                         if (sense_valid && req->sense) {
840                                 /*
841                                  * SG_IO wants current and deferred errors
842                                  */
843                                 int len = 8 + cmd->sense_buffer[7];
844
845                                 if (len > SCSI_SENSE_BUFFERSIZE)
846                                         len = SCSI_SENSE_BUFFERSIZE;
847                                 memcpy(req->sense, cmd->sense_buffer,  len);
848                                 req->sense_len = len;
849                         }
850                         if (!sense_deferred)
851                                 error = __scsi_error_from_host_byte(cmd, result);
852                 }
853                 /*
854                  * __scsi_error_from_host_byte may have reset the host_byte
855                  */
856                 req->errors = cmd->result;
857
858                 req->resid_len = scsi_get_resid(cmd);
859
860                 if (scsi_bidi_cmnd(cmd)) {
861                         /*
862                          * Bidi commands Must be complete as a whole,
863                          * both sides at once.
864                          */
865                         req->next_rq->resid_len = scsi_in(cmd)->resid;
866                         if (scsi_end_request(req, 0, blk_rq_bytes(req),
867                                         blk_rq_bytes(req->next_rq)))
868                                 BUG();
869                         return;
870                 }
871         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
872                 /*
873                  * Certain non BLOCK_PC requests are commands that don't
874                  * actually transfer anything (FLUSH), so cannot use
875                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
876                  * This sets the error explicitly for the problem case.
877                  */
878                 error = __scsi_error_from_host_byte(cmd, result);
879         }
880
881         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
882         BUG_ON(blk_bidi_rq(req));
883
884         /*
885          * Next deal with any sectors which we were able to correctly
886          * handle.
887          */
888         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
889                 "%u sectors total, %d bytes done.\n",
890                 blk_rq_sectors(req), good_bytes));
891
892         /*
893          * Recovered errors need reporting, but they're always treated
894          * as success, so fiddle the result code here.  For BLOCK_PC
895          * we already took a copy of the original into rq->errors which
896          * is what gets returned to the user
897          */
898         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
899                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
900                  * print since caller wants ATA registers. Only occurs on
901                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
902                  */
903                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
904                         ;
905                 else if (!(req->cmd_flags & REQ_QUIET))
906                         scsi_print_sense(cmd);
907                 result = 0;
908                 /* BLOCK_PC may have set error */
909                 error = 0;
910         }
911
912         /*
913          * special case: failed zero length commands always need to
914          * drop down into the retry code. Otherwise, if we finished
915          * all bytes in the request we are done now.
916          */
917         if (!(blk_rq_bytes(req) == 0 && error) &&
918             !scsi_end_request(req, error, good_bytes, 0))
919                 return;
920
921         /*
922          * Kill remainder if no retrys.
923          */
924         if (error && scsi_noretry_cmd(cmd)) {
925                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
926                         BUG();
927                 return;
928         }
929
930         /*
931          * If there had been no error, but we have leftover bytes in the
932          * requeues just queue the command up again.
933          */
934         if (result == 0)
935                 goto requeue;
936
937         error = __scsi_error_from_host_byte(cmd, result);
938
939         if (host_byte(result) == DID_RESET) {
940                 /* Third party bus reset or reset for error recovery
941                  * reasons.  Just retry the command and see what
942                  * happens.
943                  */
944                 action = ACTION_RETRY;
945         } else if (sense_valid && !sense_deferred) {
946                 switch (sshdr.sense_key) {
947                 case UNIT_ATTENTION:
948                         if (cmd->device->removable) {
949                                 /* Detected disc change.  Set a bit
950                                  * and quietly refuse further access.
951                                  */
952                                 cmd->device->changed = 1;
953                                 action = ACTION_FAIL;
954                         } else {
955                                 /* Must have been a power glitch, or a
956                                  * bus reset.  Could not have been a
957                                  * media change, so we just retry the
958                                  * command and see what happens.
959                                  */
960                                 action = ACTION_RETRY;
961                         }
962                         break;
963                 case ILLEGAL_REQUEST:
964                         /* If we had an ILLEGAL REQUEST returned, then
965                          * we may have performed an unsupported
966                          * command.  The only thing this should be
967                          * would be a ten byte read where only a six
968                          * byte read was supported.  Also, on a system
969                          * where READ CAPACITY failed, we may have
970                          * read past the end of the disk.
971                          */
972                         if ((cmd->device->use_10_for_rw &&
973                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
974                             (cmd->cmnd[0] == READ_10 ||
975                              cmd->cmnd[0] == WRITE_10)) {
976                                 /* This will issue a new 6-byte command. */
977                                 cmd->device->use_10_for_rw = 0;
978                                 action = ACTION_REPREP;
979                         } else if (sshdr.asc == 0x10) /* DIX */ {
980                                 action = ACTION_FAIL;
981                                 error = -EILSEQ;
982                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
983                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
984                                 action = ACTION_FAIL;
985                                 error = -EREMOTEIO;
986                         } else
987                                 action = ACTION_FAIL;
988                         break;
989                 case ABORTED_COMMAND:
990                         action = ACTION_FAIL;
991                         if (sshdr.asc == 0x10) /* DIF */
992                                 error = -EILSEQ;
993                         break;
994                 case NOT_READY:
995                         /* If the device is in the process of becoming
996                          * ready, or has a temporary blockage, retry.
997                          */
998                         if (sshdr.asc == 0x04) {
999                                 switch (sshdr.ascq) {
1000                                 case 0x01: /* becoming ready */
1001                                 case 0x04: /* format in progress */
1002                                 case 0x05: /* rebuild in progress */
1003                                 case 0x06: /* recalculation in progress */
1004                                 case 0x07: /* operation in progress */
1005                                 case 0x08: /* Long write in progress */
1006                                 case 0x09: /* self test in progress */
1007                                 case 0x14: /* space allocation in progress */
1008                                         action = ACTION_DELAYED_RETRY;
1009                                         break;
1010                                 default:
1011                                         action = ACTION_FAIL;
1012                                         break;
1013                                 }
1014                         } else
1015                                 action = ACTION_FAIL;
1016                         break;
1017                 case VOLUME_OVERFLOW:
1018                         /* See SSC3rXX or current. */
1019                         action = ACTION_FAIL;
1020                         break;
1021                 default:
1022                         action = ACTION_FAIL;
1023                         break;
1024                 }
1025         } else
1026                 action = ACTION_FAIL;
1027
1028         if (action != ACTION_FAIL &&
1029             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1030                 action = ACTION_FAIL;
1031
1032         switch (action) {
1033         case ACTION_FAIL:
1034                 /* Give up and fail the remainder of the request */
1035                 if (!(req->cmd_flags & REQ_QUIET)) {
1036                         static DEFINE_RATELIMIT_STATE(_rs,
1037                                         DEFAULT_RATELIMIT_INTERVAL,
1038                                         DEFAULT_RATELIMIT_BURST);
1039
1040                         if (unlikely(scsi_logging_level))
1041                                 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1042                                                        SCSI_LOG_MLCOMPLETE_BITS);
1043
1044                         /*
1045                          * if logging is enabled the failure will be printed
1046                          * in scsi_log_completion(), so avoid duplicate messages
1047                          */
1048                         if (!level && __ratelimit(&_rs)) {
1049                                 scsi_print_result(cmd, NULL, FAILED);
1050                                 if (driver_byte(result) & DRIVER_SENSE)
1051                                         scsi_print_sense(cmd);
1052                                 scsi_print_command(cmd);
1053                         }
1054                 }
1055                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1056                         return;
1057                 /*FALLTHRU*/
1058         case ACTION_REPREP:
1059         requeue:
1060                 /* Unprep the request and put it back at the head of the queue.
1061                  * A new command will be prepared and issued.
1062                  */
1063                 if (q->mq_ops) {
1064                         cmd->request->cmd_flags &= ~REQ_DONTPREP;
1065                         scsi_mq_uninit_cmd(cmd);
1066                         scsi_mq_requeue_cmd(cmd);
1067                 } else {
1068                         scsi_release_buffers(cmd);
1069                         scsi_requeue_command(q, cmd);
1070                 }
1071                 break;
1072         case ACTION_RETRY:
1073                 /* Retry the same command immediately */
1074                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1075                 break;
1076         case ACTION_DELAYED_RETRY:
1077                 /* Retry the same command after a delay */
1078                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1079                 break;
1080         }
1081 }
1082
1083 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1084 {
1085         int count;
1086
1087         /*
1088          * If sg table allocation fails, requeue request later.
1089          */
1090         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1091                                         req->mq_ctx != NULL)))
1092                 return BLKPREP_DEFER;
1093
1094         /* 
1095          * Next, walk the list, and fill in the addresses and sizes of
1096          * each segment.
1097          */
1098         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1099         BUG_ON(count > sdb->table.nents);
1100         sdb->table.nents = count;
1101         sdb->length = blk_rq_bytes(req);
1102         return BLKPREP_OK;
1103 }
1104
1105 /*
1106  * Function:    scsi_init_io()
1107  *
1108  * Purpose:     SCSI I/O initialize function.
1109  *
1110  * Arguments:   cmd   - Command descriptor we wish to initialize
1111  *
1112  * Returns:     0 on success
1113  *              BLKPREP_DEFER if the failure is retryable
1114  *              BLKPREP_KILL if the failure is fatal
1115  */
1116 int scsi_init_io(struct scsi_cmnd *cmd)
1117 {
1118         struct scsi_device *sdev = cmd->device;
1119         struct request *rq = cmd->request;
1120         bool is_mq = (rq->mq_ctx != NULL);
1121         int error;
1122
1123         if (WARN_ON_ONCE(!rq->nr_phys_segments))
1124                 return -EINVAL;
1125
1126         error = scsi_init_sgtable(rq, &cmd->sdb);
1127         if (error)
1128                 goto err_exit;
1129
1130         if (blk_bidi_rq(rq)) {
1131                 if (!rq->q->mq_ops) {
1132                         struct scsi_data_buffer *bidi_sdb =
1133                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1134                         if (!bidi_sdb) {
1135                                 error = BLKPREP_DEFER;
1136                                 goto err_exit;
1137                         }
1138
1139                         rq->next_rq->special = bidi_sdb;
1140                 }
1141
1142                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1143                 if (error)
1144                         goto err_exit;
1145         }
1146
1147         if (blk_integrity_rq(rq)) {
1148                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1149                 int ivecs, count;
1150
1151                 if (prot_sdb == NULL) {
1152                         /*
1153                          * This can happen if someone (e.g. multipath)
1154                          * queues a command to a device on an adapter
1155                          * that does not support DIX.
1156                          */
1157                         WARN_ON_ONCE(1);
1158                         error = BLKPREP_KILL;
1159                         goto err_exit;
1160                 }
1161
1162                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1163
1164                 if (scsi_alloc_sgtable(prot_sdb, ivecs, is_mq)) {
1165                         error = BLKPREP_DEFER;
1166                         goto err_exit;
1167                 }
1168
1169                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1170                                                 prot_sdb->table.sgl);
1171                 BUG_ON(unlikely(count > ivecs));
1172                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1173
1174                 cmd->prot_sdb = prot_sdb;
1175                 cmd->prot_sdb->table.nents = count;
1176         }
1177
1178         return BLKPREP_OK;
1179 err_exit:
1180         if (is_mq) {
1181                 scsi_mq_free_sgtables(cmd);
1182         } else {
1183                 scsi_release_buffers(cmd);
1184                 cmd->request->special = NULL;
1185                 scsi_put_command(cmd);
1186                 put_device(&sdev->sdev_gendev);
1187         }
1188         return error;
1189 }
1190 EXPORT_SYMBOL(scsi_init_io);
1191
1192 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1193                 struct request *req)
1194 {
1195         struct scsi_cmnd *cmd;
1196
1197         if (!req->special) {
1198                 /* Bail if we can't get a reference to the device */
1199                 if (!get_device(&sdev->sdev_gendev))
1200                         return NULL;
1201
1202                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1203                 if (unlikely(!cmd)) {
1204                         put_device(&sdev->sdev_gendev);
1205                         return NULL;
1206                 }
1207                 req->special = cmd;
1208         } else {
1209                 cmd = req->special;
1210         }
1211
1212         /* pull a tag out of the request if we have one */
1213         cmd->tag = req->tag;
1214         cmd->request = req;
1215
1216         cmd->cmnd = req->cmd;
1217         cmd->prot_op = SCSI_PROT_NORMAL;
1218
1219         return cmd;
1220 }
1221
1222 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1223 {
1224         struct scsi_cmnd *cmd = req->special;
1225
1226         /*
1227          * BLOCK_PC requests may transfer data, in which case they must
1228          * a bio attached to them.  Or they might contain a SCSI command
1229          * that does not transfer data, in which case they may optionally
1230          * submit a request without an attached bio.
1231          */
1232         if (req->bio) {
1233                 int ret = scsi_init_io(cmd);
1234                 if (unlikely(ret))
1235                         return ret;
1236         } else {
1237                 BUG_ON(blk_rq_bytes(req));
1238
1239                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1240         }
1241
1242         cmd->cmd_len = req->cmd_len;
1243         cmd->transfersize = blk_rq_bytes(req);
1244         cmd->allowed = req->retries;
1245         return BLKPREP_OK;
1246 }
1247
1248 /*
1249  * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1250  * that still need to be translated to SCSI CDBs from the ULD.
1251  */
1252 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1253 {
1254         struct scsi_cmnd *cmd = req->special;
1255
1256         if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1257                 int ret = sdev->handler->prep_fn(sdev, req);
1258                 if (ret != BLKPREP_OK)
1259                         return ret;
1260         }
1261
1262         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1263         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1264 }
1265
1266 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1267 {
1268         struct scsi_cmnd *cmd = req->special;
1269
1270         if (!blk_rq_bytes(req))
1271                 cmd->sc_data_direction = DMA_NONE;
1272         else if (rq_data_dir(req) == WRITE)
1273                 cmd->sc_data_direction = DMA_TO_DEVICE;
1274         else
1275                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1276
1277         switch (req->cmd_type) {
1278         case REQ_TYPE_FS:
1279                 return scsi_setup_fs_cmnd(sdev, req);
1280         case REQ_TYPE_BLOCK_PC:
1281                 return scsi_setup_blk_pc_cmnd(sdev, req);
1282         default:
1283                 return BLKPREP_KILL;
1284         }
1285 }
1286
1287 static int
1288 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1289 {
1290         int ret = BLKPREP_OK;
1291
1292         /*
1293          * If the device is not in running state we will reject some
1294          * or all commands.
1295          */
1296         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1297                 switch (sdev->sdev_state) {
1298                 case SDEV_OFFLINE:
1299                 case SDEV_TRANSPORT_OFFLINE:
1300                         /*
1301                          * If the device is offline we refuse to process any
1302                          * commands.  The device must be brought online
1303                          * before trying any recovery commands.
1304                          */
1305                         sdev_printk(KERN_ERR, sdev,
1306                                     "rejecting I/O to offline device\n");
1307                         ret = BLKPREP_KILL;
1308                         break;
1309                 case SDEV_DEL:
1310                         /*
1311                          * If the device is fully deleted, we refuse to
1312                          * process any commands as well.
1313                          */
1314                         sdev_printk(KERN_ERR, sdev,
1315                                     "rejecting I/O to dead device\n");
1316                         ret = BLKPREP_KILL;
1317                         break;
1318                 case SDEV_BLOCK:
1319                 case SDEV_CREATED_BLOCK:
1320                         ret = BLKPREP_DEFER;
1321                         break;
1322                 case SDEV_QUIESCE:
1323                         /*
1324                          * If the devices is blocked we defer normal commands.
1325                          */
1326                         if (!(req->cmd_flags & REQ_PREEMPT))
1327                                 ret = BLKPREP_DEFER;
1328                         break;
1329                 default:
1330                         /*
1331                          * For any other not fully online state we only allow
1332                          * special commands.  In particular any user initiated
1333                          * command is not allowed.
1334                          */
1335                         if (!(req->cmd_flags & REQ_PREEMPT))
1336                                 ret = BLKPREP_KILL;
1337                         break;
1338                 }
1339         }
1340         return ret;
1341 }
1342
1343 static int
1344 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1345 {
1346         struct scsi_device *sdev = q->queuedata;
1347
1348         switch (ret) {
1349         case BLKPREP_KILL:
1350                 req->errors = DID_NO_CONNECT << 16;
1351                 /* release the command and kill it */
1352                 if (req->special) {
1353                         struct scsi_cmnd *cmd = req->special;
1354                         scsi_release_buffers(cmd);
1355                         scsi_put_command(cmd);
1356                         put_device(&sdev->sdev_gendev);
1357                         req->special = NULL;
1358                 }
1359                 break;
1360         case BLKPREP_DEFER:
1361                 /*
1362                  * If we defer, the blk_peek_request() returns NULL, but the
1363                  * queue must be restarted, so we schedule a callback to happen
1364                  * shortly.
1365                  */
1366                 if (atomic_read(&sdev->device_busy) == 0)
1367                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1368                 break;
1369         default:
1370                 req->cmd_flags |= REQ_DONTPREP;
1371         }
1372
1373         return ret;
1374 }
1375
1376 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1377 {
1378         struct scsi_device *sdev = q->queuedata;
1379         struct scsi_cmnd *cmd;
1380         int ret;
1381
1382         ret = scsi_prep_state_check(sdev, req);
1383         if (ret != BLKPREP_OK)
1384                 goto out;
1385
1386         cmd = scsi_get_cmd_from_req(sdev, req);
1387         if (unlikely(!cmd)) {
1388                 ret = BLKPREP_DEFER;
1389                 goto out;
1390         }
1391
1392         ret = scsi_setup_cmnd(sdev, req);
1393 out:
1394         return scsi_prep_return(q, req, ret);
1395 }
1396
1397 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1398 {
1399         scsi_uninit_cmd(req->special);
1400 }
1401
1402 /*
1403  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1404  * return 0.
1405  *
1406  * Called with the queue_lock held.
1407  */
1408 static inline int scsi_dev_queue_ready(struct request_queue *q,
1409                                   struct scsi_device *sdev)
1410 {
1411         unsigned int busy;
1412
1413         busy = atomic_inc_return(&sdev->device_busy) - 1;
1414         if (atomic_read(&sdev->device_blocked)) {
1415                 if (busy)
1416                         goto out_dec;
1417
1418                 /*
1419                  * unblock after device_blocked iterates to zero
1420                  */
1421                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1422                         /*
1423                          * For the MQ case we take care of this in the caller.
1424                          */
1425                         if (!q->mq_ops)
1426                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1427                         goto out_dec;
1428                 }
1429                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1430                                    "unblocking device at zero depth\n"));
1431         }
1432
1433         if (busy >= sdev->queue_depth)
1434                 goto out_dec;
1435
1436         return 1;
1437 out_dec:
1438         atomic_dec(&sdev->device_busy);
1439         return 0;
1440 }
1441
1442 /*
1443  * scsi_target_queue_ready: checks if there we can send commands to target
1444  * @sdev: scsi device on starget to check.
1445  */
1446 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1447                                            struct scsi_device *sdev)
1448 {
1449         struct scsi_target *starget = scsi_target(sdev);
1450         unsigned int busy;
1451
1452         if (starget->single_lun) {
1453                 spin_lock_irq(shost->host_lock);
1454                 if (starget->starget_sdev_user &&
1455                     starget->starget_sdev_user != sdev) {
1456                         spin_unlock_irq(shost->host_lock);
1457                         return 0;
1458                 }
1459                 starget->starget_sdev_user = sdev;
1460                 spin_unlock_irq(shost->host_lock);
1461         }
1462
1463         if (starget->can_queue <= 0)
1464                 return 1;
1465
1466         busy = atomic_inc_return(&starget->target_busy) - 1;
1467         if (atomic_read(&starget->target_blocked) > 0) {
1468                 if (busy)
1469                         goto starved;
1470
1471                 /*
1472                  * unblock after target_blocked iterates to zero
1473                  */
1474                 if (atomic_dec_return(&starget->target_blocked) > 0)
1475                         goto out_dec;
1476
1477                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1478                                  "unblocking target at zero depth\n"));
1479         }
1480
1481         if (busy >= starget->can_queue)
1482                 goto starved;
1483
1484         return 1;
1485
1486 starved:
1487         spin_lock_irq(shost->host_lock);
1488         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1489         spin_unlock_irq(shost->host_lock);
1490 out_dec:
1491         if (starget->can_queue > 0)
1492                 atomic_dec(&starget->target_busy);
1493         return 0;
1494 }
1495
1496 /*
1497  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1498  * return 0. We must end up running the queue again whenever 0 is
1499  * returned, else IO can hang.
1500  */
1501 static inline int scsi_host_queue_ready(struct request_queue *q,
1502                                    struct Scsi_Host *shost,
1503                                    struct scsi_device *sdev)
1504 {
1505         unsigned int busy;
1506
1507         if (scsi_host_in_recovery(shost))
1508                 return 0;
1509
1510         busy = atomic_inc_return(&shost->host_busy) - 1;
1511         if (atomic_read(&shost->host_blocked) > 0) {
1512                 if (busy)
1513                         goto starved;
1514
1515                 /*
1516                  * unblock after host_blocked iterates to zero
1517                  */
1518                 if (atomic_dec_return(&shost->host_blocked) > 0)
1519                         goto out_dec;
1520
1521                 SCSI_LOG_MLQUEUE(3,
1522                         shost_printk(KERN_INFO, shost,
1523                                      "unblocking host at zero depth\n"));
1524         }
1525
1526         if (shost->can_queue > 0 && busy >= shost->can_queue)
1527                 goto starved;
1528         if (shost->host_self_blocked)
1529                 goto starved;
1530
1531         /* We're OK to process the command, so we can't be starved */
1532         if (!list_empty(&sdev->starved_entry)) {
1533                 spin_lock_irq(shost->host_lock);
1534                 if (!list_empty(&sdev->starved_entry))
1535                         list_del_init(&sdev->starved_entry);
1536                 spin_unlock_irq(shost->host_lock);
1537         }
1538
1539         return 1;
1540
1541 starved:
1542         spin_lock_irq(shost->host_lock);
1543         if (list_empty(&sdev->starved_entry))
1544                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1545         spin_unlock_irq(shost->host_lock);
1546 out_dec:
1547         atomic_dec(&shost->host_busy);
1548         return 0;
1549 }
1550
1551 /*
1552  * Busy state exporting function for request stacking drivers.
1553  *
1554  * For efficiency, no lock is taken to check the busy state of
1555  * shost/starget/sdev, since the returned value is not guaranteed and
1556  * may be changed after request stacking drivers call the function,
1557  * regardless of taking lock or not.
1558  *
1559  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1560  * needs to return 'not busy'. Otherwise, request stacking drivers
1561  * may hold requests forever.
1562  */
1563 static int scsi_lld_busy(struct request_queue *q)
1564 {
1565         struct scsi_device *sdev = q->queuedata;
1566         struct Scsi_Host *shost;
1567
1568         if (blk_queue_dying(q))
1569                 return 0;
1570
1571         shost = sdev->host;
1572
1573         /*
1574          * Ignore host/starget busy state.
1575          * Since block layer does not have a concept of fairness across
1576          * multiple queues, congestion of host/starget needs to be handled
1577          * in SCSI layer.
1578          */
1579         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1580                 return 1;
1581
1582         return 0;
1583 }
1584
1585 /*
1586  * Kill a request for a dead device
1587  */
1588 static void scsi_kill_request(struct request *req, struct request_queue *q)
1589 {
1590         struct scsi_cmnd *cmd = req->special;
1591         struct scsi_device *sdev;
1592         struct scsi_target *starget;
1593         struct Scsi_Host *shost;
1594
1595         blk_start_request(req);
1596
1597         scmd_printk(KERN_INFO, cmd, "killing request\n");
1598
1599         sdev = cmd->device;
1600         starget = scsi_target(sdev);
1601         shost = sdev->host;
1602         scsi_init_cmd_errh(cmd);
1603         cmd->result = DID_NO_CONNECT << 16;
1604         atomic_inc(&cmd->device->iorequest_cnt);
1605
1606         /*
1607          * SCSI request completion path will do scsi_device_unbusy(),
1608          * bump busy counts.  To bump the counters, we need to dance
1609          * with the locks as normal issue path does.
1610          */
1611         atomic_inc(&sdev->device_busy);
1612         atomic_inc(&shost->host_busy);
1613         if (starget->can_queue > 0)
1614                 atomic_inc(&starget->target_busy);
1615
1616         blk_complete_request(req);
1617 }
1618
1619 static void scsi_softirq_done(struct request *rq)
1620 {
1621         struct scsi_cmnd *cmd = rq->special;
1622         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1623         int disposition;
1624
1625         INIT_LIST_HEAD(&cmd->eh_entry);
1626
1627         atomic_inc(&cmd->device->iodone_cnt);
1628         if (cmd->result)
1629                 atomic_inc(&cmd->device->ioerr_cnt);
1630
1631         disposition = scsi_decide_disposition(cmd);
1632         if (disposition != SUCCESS &&
1633             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1634                 sdev_printk(KERN_ERR, cmd->device,
1635                             "timing out command, waited %lus\n",
1636                             wait_for/HZ);
1637                 disposition = SUCCESS;
1638         }
1639
1640         scsi_log_completion(cmd, disposition);
1641
1642         switch (disposition) {
1643                 case SUCCESS:
1644                         scsi_finish_command(cmd);
1645                         break;
1646                 case NEEDS_RETRY:
1647                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1648                         break;
1649                 case ADD_TO_MLQUEUE:
1650                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1651                         break;
1652                 default:
1653                         if (!scsi_eh_scmd_add(cmd, 0))
1654                                 scsi_finish_command(cmd);
1655         }
1656 }
1657
1658 /**
1659  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1660  * @cmd: command block we are dispatching.
1661  *
1662  * Return: nonzero return request was rejected and device's queue needs to be
1663  * plugged.
1664  */
1665 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1666 {
1667         struct Scsi_Host *host = cmd->device->host;
1668         int rtn = 0;
1669
1670         atomic_inc(&cmd->device->iorequest_cnt);
1671
1672         /* check if the device is still usable */
1673         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1674                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1675                  * returns an immediate error upwards, and signals
1676                  * that the device is no longer present */
1677                 cmd->result = DID_NO_CONNECT << 16;
1678                 goto done;
1679         }
1680
1681         /* Check to see if the scsi lld made this device blocked. */
1682         if (unlikely(scsi_device_blocked(cmd->device))) {
1683                 /*
1684                  * in blocked state, the command is just put back on
1685                  * the device queue.  The suspend state has already
1686                  * blocked the queue so future requests should not
1687                  * occur until the device transitions out of the
1688                  * suspend state.
1689                  */
1690                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1691                         "queuecommand : device blocked\n"));
1692                 return SCSI_MLQUEUE_DEVICE_BUSY;
1693         }
1694
1695         /* Store the LUN value in cmnd, if needed. */
1696         if (cmd->device->lun_in_cdb)
1697                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1698                                (cmd->device->lun << 5 & 0xe0);
1699
1700         scsi_log_send(cmd);
1701
1702         /*
1703          * Before we queue this command, check if the command
1704          * length exceeds what the host adapter can handle.
1705          */
1706         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1707                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1708                                "queuecommand : command too long. "
1709                                "cdb_size=%d host->max_cmd_len=%d\n",
1710                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1711                 cmd->result = (DID_ABORT << 16);
1712                 goto done;
1713         }
1714
1715         if (unlikely(host->shost_state == SHOST_DEL)) {
1716                 cmd->result = (DID_NO_CONNECT << 16);
1717                 goto done;
1718
1719         }
1720
1721         trace_scsi_dispatch_cmd_start(cmd);
1722         rtn = host->hostt->queuecommand(host, cmd);
1723         if (rtn) {
1724                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1725                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1726                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1727                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1728
1729                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1730                         "queuecommand : request rejected\n"));
1731         }
1732
1733         return rtn;
1734  done:
1735         cmd->scsi_done(cmd);
1736         return 0;
1737 }
1738
1739 /**
1740  * scsi_done - Invoke completion on finished SCSI command.
1741  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1742  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1743  *
1744  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1745  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1746  * calls blk_complete_request() for further processing.
1747  *
1748  * This function is interrupt context safe.
1749  */
1750 static void scsi_done(struct scsi_cmnd *cmd)
1751 {
1752         trace_scsi_dispatch_cmd_done(cmd);
1753         blk_complete_request(cmd->request);
1754 }
1755
1756 /*
1757  * Function:    scsi_request_fn()
1758  *
1759  * Purpose:     Main strategy routine for SCSI.
1760  *
1761  * Arguments:   q       - Pointer to actual queue.
1762  *
1763  * Returns:     Nothing
1764  *
1765  * Lock status: IO request lock assumed to be held when called.
1766  */
1767 static void scsi_request_fn(struct request_queue *q)
1768         __releases(q->queue_lock)
1769         __acquires(q->queue_lock)
1770 {
1771         struct scsi_device *sdev = q->queuedata;
1772         struct Scsi_Host *shost;
1773         struct scsi_cmnd *cmd;
1774         struct request *req;
1775
1776         /*
1777          * To start with, we keep looping until the queue is empty, or until
1778          * the host is no longer able to accept any more requests.
1779          */
1780         shost = sdev->host;
1781         for (;;) {
1782                 int rtn;
1783                 /*
1784                  * get next queueable request.  We do this early to make sure
1785                  * that the request is fully prepared even if we cannot
1786                  * accept it.
1787                  */
1788                 req = blk_peek_request(q);
1789                 if (!req)
1790                         break;
1791
1792                 if (unlikely(!scsi_device_online(sdev))) {
1793                         sdev_printk(KERN_ERR, sdev,
1794                                     "rejecting I/O to offline device\n");
1795                         scsi_kill_request(req, q);
1796                         continue;
1797                 }
1798
1799                 if (!scsi_dev_queue_ready(q, sdev))
1800                         break;
1801
1802                 /*
1803                  * Remove the request from the request list.
1804                  */
1805                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1806                         blk_start_request(req);
1807
1808                 spin_unlock_irq(q->queue_lock);
1809                 cmd = req->special;
1810                 if (unlikely(cmd == NULL)) {
1811                         printk(KERN_CRIT "impossible request in %s.\n"
1812                                          "please mail a stack trace to "
1813                                          "linux-scsi@vger.kernel.org\n",
1814                                          __func__);
1815                         blk_dump_rq_flags(req, "foo");
1816                         BUG();
1817                 }
1818
1819                 /*
1820                  * We hit this when the driver is using a host wide
1821                  * tag map. For device level tag maps the queue_depth check
1822                  * in the device ready fn would prevent us from trying
1823                  * to allocate a tag. Since the map is a shared host resource
1824                  * we add the dev to the starved list so it eventually gets
1825                  * a run when a tag is freed.
1826                  */
1827                 if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1828                         spin_lock_irq(shost->host_lock);
1829                         if (list_empty(&sdev->starved_entry))
1830                                 list_add_tail(&sdev->starved_entry,
1831                                               &shost->starved_list);
1832                         spin_unlock_irq(shost->host_lock);
1833                         goto not_ready;
1834                 }
1835
1836                 if (!scsi_target_queue_ready(shost, sdev))
1837                         goto not_ready;
1838
1839                 if (!scsi_host_queue_ready(q, shost, sdev))
1840                         goto host_not_ready;
1841         
1842                 if (sdev->simple_tags)
1843                         cmd->flags |= SCMD_TAGGED;
1844                 else
1845                         cmd->flags &= ~SCMD_TAGGED;
1846
1847                 /*
1848                  * Finally, initialize any error handling parameters, and set up
1849                  * the timers for timeouts.
1850                  */
1851                 scsi_init_cmd_errh(cmd);
1852
1853                 /*
1854                  * Dispatch the command to the low-level driver.
1855                  */
1856                 cmd->scsi_done = scsi_done;
1857                 rtn = scsi_dispatch_cmd(cmd);
1858                 if (rtn) {
1859                         scsi_queue_insert(cmd, rtn);
1860                         spin_lock_irq(q->queue_lock);
1861                         goto out_delay;
1862                 }
1863                 spin_lock_irq(q->queue_lock);
1864         }
1865
1866         return;
1867
1868  host_not_ready:
1869         if (scsi_target(sdev)->can_queue > 0)
1870                 atomic_dec(&scsi_target(sdev)->target_busy);
1871  not_ready:
1872         /*
1873          * lock q, handle tag, requeue req, and decrement device_busy. We
1874          * must return with queue_lock held.
1875          *
1876          * Decrementing device_busy without checking it is OK, as all such
1877          * cases (host limits or settings) should run the queue at some
1878          * later time.
1879          */
1880         spin_lock_irq(q->queue_lock);
1881         blk_requeue_request(q, req);
1882         atomic_dec(&sdev->device_busy);
1883 out_delay:
1884         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1885                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1886 }
1887
1888 static inline int prep_to_mq(int ret)
1889 {
1890         switch (ret) {
1891         case BLKPREP_OK:
1892                 return 0;
1893         case BLKPREP_DEFER:
1894                 return BLK_MQ_RQ_QUEUE_BUSY;
1895         default:
1896                 return BLK_MQ_RQ_QUEUE_ERROR;
1897         }
1898 }
1899
1900 static int scsi_mq_prep_fn(struct request *req)
1901 {
1902         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1903         struct scsi_device *sdev = req->q->queuedata;
1904         struct Scsi_Host *shost = sdev->host;
1905         unsigned char *sense_buf = cmd->sense_buffer;
1906         struct scatterlist *sg;
1907
1908         memset(cmd, 0, sizeof(struct scsi_cmnd));
1909
1910         req->special = cmd;
1911
1912         cmd->request = req;
1913         cmd->device = sdev;
1914         cmd->sense_buffer = sense_buf;
1915
1916         cmd->tag = req->tag;
1917
1918         cmd->cmnd = req->cmd;
1919         cmd->prot_op = SCSI_PROT_NORMAL;
1920
1921         INIT_LIST_HEAD(&cmd->list);
1922         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1923         cmd->jiffies_at_alloc = jiffies;
1924
1925         if (shost->use_cmd_list) {
1926                 spin_lock_irq(&sdev->list_lock);
1927                 list_add_tail(&cmd->list, &sdev->cmd_list);
1928                 spin_unlock_irq(&sdev->list_lock);
1929         }
1930
1931         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1932         cmd->sdb.table.sgl = sg;
1933
1934         if (scsi_host_get_prot(shost)) {
1935                 cmd->prot_sdb = (void *)sg +
1936                         min_t(unsigned int,
1937                               shost->sg_tablesize, SCSI_MAX_SG_SEGMENTS) *
1938                         sizeof(struct scatterlist);
1939                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1940
1941                 cmd->prot_sdb->table.sgl =
1942                         (struct scatterlist *)(cmd->prot_sdb + 1);
1943         }
1944
1945         if (blk_bidi_rq(req)) {
1946                 struct request *next_rq = req->next_rq;
1947                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1948
1949                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1950                 bidi_sdb->table.sgl =
1951                         (struct scatterlist *)(bidi_sdb + 1);
1952
1953                 next_rq->special = bidi_sdb;
1954         }
1955
1956         blk_mq_start_request(req);
1957
1958         return scsi_setup_cmnd(sdev, req);
1959 }
1960
1961 static void scsi_mq_done(struct scsi_cmnd *cmd)
1962 {
1963         trace_scsi_dispatch_cmd_done(cmd);
1964         blk_mq_complete_request(cmd->request, cmd->request->errors);
1965 }
1966
1967 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1968                          const struct blk_mq_queue_data *bd)
1969 {
1970         struct request *req = bd->rq;
1971         struct request_queue *q = req->q;
1972         struct scsi_device *sdev = q->queuedata;
1973         struct Scsi_Host *shost = sdev->host;
1974         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1975         int ret;
1976         int reason;
1977
1978         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1979         if (ret)
1980                 goto out;
1981
1982         ret = BLK_MQ_RQ_QUEUE_BUSY;
1983         if (!get_device(&sdev->sdev_gendev))
1984                 goto out;
1985
1986         if (!scsi_dev_queue_ready(q, sdev))
1987                 goto out_put_device;
1988         if (!scsi_target_queue_ready(shost, sdev))
1989                 goto out_dec_device_busy;
1990         if (!scsi_host_queue_ready(q, shost, sdev))
1991                 goto out_dec_target_busy;
1992
1993
1994         if (!(req->cmd_flags & REQ_DONTPREP)) {
1995                 ret = prep_to_mq(scsi_mq_prep_fn(req));
1996                 if (ret)
1997                         goto out_dec_host_busy;
1998                 req->cmd_flags |= REQ_DONTPREP;
1999         } else {
2000                 blk_mq_start_request(req);
2001         }
2002
2003         if (sdev->simple_tags)
2004                 cmd->flags |= SCMD_TAGGED;
2005         else
2006                 cmd->flags &= ~SCMD_TAGGED;
2007
2008         scsi_init_cmd_errh(cmd);
2009         cmd->scsi_done = scsi_mq_done;
2010
2011         reason = scsi_dispatch_cmd(cmd);
2012         if (reason) {
2013                 scsi_set_blocked(cmd, reason);
2014                 ret = BLK_MQ_RQ_QUEUE_BUSY;
2015                 goto out_dec_host_busy;
2016         }
2017
2018         return BLK_MQ_RQ_QUEUE_OK;
2019
2020 out_dec_host_busy:
2021         atomic_dec(&shost->host_busy);
2022 out_dec_target_busy:
2023         if (scsi_target(sdev)->can_queue > 0)
2024                 atomic_dec(&scsi_target(sdev)->target_busy);
2025 out_dec_device_busy:
2026         atomic_dec(&sdev->device_busy);
2027 out_put_device:
2028         put_device(&sdev->sdev_gendev);
2029 out:
2030         switch (ret) {
2031         case BLK_MQ_RQ_QUEUE_BUSY:
2032                 blk_mq_stop_hw_queue(hctx);
2033                 if (atomic_read(&sdev->device_busy) == 0 &&
2034                     !scsi_device_blocked(sdev))
2035                         blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
2036                 break;
2037         case BLK_MQ_RQ_QUEUE_ERROR:
2038                 /*
2039                  * Make sure to release all allocated ressources when
2040                  * we hit an error, as we will never see this command
2041                  * again.
2042                  */
2043                 if (req->cmd_flags & REQ_DONTPREP)
2044                         scsi_mq_uninit_cmd(cmd);
2045                 break;
2046         default:
2047                 break;
2048         }
2049         return ret;
2050 }
2051
2052 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2053                 bool reserved)
2054 {
2055         if (reserved)
2056                 return BLK_EH_RESET_TIMER;
2057         return scsi_times_out(req);
2058 }
2059
2060 static int scsi_init_request(void *data, struct request *rq,
2061                 unsigned int hctx_idx, unsigned int request_idx,
2062                 unsigned int numa_node)
2063 {
2064         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2065
2066         cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
2067                         numa_node);
2068         if (!cmd->sense_buffer)
2069                 return -ENOMEM;
2070         return 0;
2071 }
2072
2073 static void scsi_exit_request(void *data, struct request *rq,
2074                 unsigned int hctx_idx, unsigned int request_idx)
2075 {
2076         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2077
2078         kfree(cmd->sense_buffer);
2079 }
2080
2081 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2082 {
2083         struct device *host_dev;
2084         u64 bounce_limit = 0xffffffff;
2085
2086         if (shost->unchecked_isa_dma)
2087                 return BLK_BOUNCE_ISA;
2088         /*
2089          * Platforms with virtual-DMA translation
2090          * hardware have no practical limit.
2091          */
2092         if (!PCI_DMA_BUS_IS_PHYS)
2093                 return BLK_BOUNCE_ANY;
2094
2095         host_dev = scsi_get_device(shost);
2096         if (host_dev && host_dev->dma_mask)
2097                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2098
2099         return bounce_limit;
2100 }
2101
2102 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2103 {
2104         struct device *dev = shost->dma_dev;
2105
2106         /*
2107          * this limit is imposed by hardware restrictions
2108          */
2109         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2110                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
2111
2112         if (scsi_host_prot_dma(shost)) {
2113                 shost->sg_prot_tablesize =
2114                         min_not_zero(shost->sg_prot_tablesize,
2115                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2116                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2117                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2118         }
2119
2120         blk_queue_max_hw_sectors(q, shost->max_sectors);
2121         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2122         blk_queue_segment_boundary(q, shost->dma_boundary);
2123         dma_set_seg_boundary(dev, shost->dma_boundary);
2124
2125         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2126
2127         if (!shost->use_clustering)
2128                 q->limits.cluster = 0;
2129
2130         /*
2131          * set a reasonable default alignment on word boundaries: the
2132          * host and device may alter it using
2133          * blk_queue_update_dma_alignment() later.
2134          */
2135         blk_queue_dma_alignment(q, 0x03);
2136 }
2137
2138 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2139                                          request_fn_proc *request_fn)
2140 {
2141         struct request_queue *q;
2142
2143         q = blk_init_queue(request_fn, NULL);
2144         if (!q)
2145                 return NULL;
2146         __scsi_init_queue(shost, q);
2147         return q;
2148 }
2149 EXPORT_SYMBOL(__scsi_alloc_queue);
2150
2151 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2152 {
2153         struct request_queue *q;
2154
2155         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2156         if (!q)
2157                 return NULL;
2158
2159         blk_queue_prep_rq(q, scsi_prep_fn);
2160         blk_queue_unprep_rq(q, scsi_unprep_fn);
2161         blk_queue_softirq_done(q, scsi_softirq_done);
2162         blk_queue_rq_timed_out(q, scsi_times_out);
2163         blk_queue_lld_busy(q, scsi_lld_busy);
2164         return q;
2165 }
2166
2167 static struct blk_mq_ops scsi_mq_ops = {
2168         .map_queue      = blk_mq_map_queue,
2169         .queue_rq       = scsi_queue_rq,
2170         .complete       = scsi_softirq_done,
2171         .timeout        = scsi_timeout,
2172         .init_request   = scsi_init_request,
2173         .exit_request   = scsi_exit_request,
2174 };
2175
2176 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2177 {
2178         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2179         if (IS_ERR(sdev->request_queue))
2180                 return NULL;
2181
2182         sdev->request_queue->queuedata = sdev;
2183         __scsi_init_queue(sdev->host, sdev->request_queue);
2184         return sdev->request_queue;
2185 }
2186
2187 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2188 {
2189         unsigned int cmd_size, sgl_size, tbl_size;
2190
2191         tbl_size = shost->sg_tablesize;
2192         if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2193                 tbl_size = SCSI_MAX_SG_SEGMENTS;
2194         sgl_size = tbl_size * sizeof(struct scatterlist);
2195         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2196         if (scsi_host_get_prot(shost))
2197                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2198
2199         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2200         shost->tag_set.ops = &scsi_mq_ops;
2201         shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2202         shost->tag_set.queue_depth = shost->can_queue;
2203         shost->tag_set.cmd_size = cmd_size;
2204         shost->tag_set.numa_node = NUMA_NO_NODE;
2205         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2206         shost->tag_set.flags |=
2207                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2208         shost->tag_set.driver_data = shost;
2209
2210         return blk_mq_alloc_tag_set(&shost->tag_set);
2211 }
2212
2213 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2214 {
2215         blk_mq_free_tag_set(&shost->tag_set);
2216 }
2217
2218 /**
2219  * scsi_device_from_queue - return sdev associated with a request_queue
2220  * @q: The request queue to return the sdev from
2221  *
2222  * Return the sdev associated with a request queue or NULL if the
2223  * request_queue does not reference a SCSI device.
2224  */
2225 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2226 {
2227         struct scsi_device *sdev = NULL;
2228
2229         if (q->mq_ops) {
2230                 if (q->mq_ops == &scsi_mq_ops)
2231                         sdev = q->queuedata;
2232         } else if (q->request_fn == scsi_request_fn)
2233                 sdev = q->queuedata;
2234         if (!sdev || !get_device(&sdev->sdev_gendev))
2235                 sdev = NULL;
2236
2237         return sdev;
2238 }
2239 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2240
2241 /*
2242  * Function:    scsi_block_requests()
2243  *
2244  * Purpose:     Utility function used by low-level drivers to prevent further
2245  *              commands from being queued to the device.
2246  *
2247  * Arguments:   shost       - Host in question
2248  *
2249  * Returns:     Nothing
2250  *
2251  * Lock status: No locks are assumed held.
2252  *
2253  * Notes:       There is no timer nor any other means by which the requests
2254  *              get unblocked other than the low-level driver calling
2255  *              scsi_unblock_requests().
2256  */
2257 void scsi_block_requests(struct Scsi_Host *shost)
2258 {
2259         shost->host_self_blocked = 1;
2260 }
2261 EXPORT_SYMBOL(scsi_block_requests);
2262
2263 /*
2264  * Function:    scsi_unblock_requests()
2265  *
2266  * Purpose:     Utility function used by low-level drivers to allow further
2267  *              commands from being queued to the device.
2268  *
2269  * Arguments:   shost       - Host in question
2270  *
2271  * Returns:     Nothing
2272  *
2273  * Lock status: No locks are assumed held.
2274  *
2275  * Notes:       There is no timer nor any other means by which the requests
2276  *              get unblocked other than the low-level driver calling
2277  *              scsi_unblock_requests().
2278  *
2279  *              This is done as an API function so that changes to the
2280  *              internals of the scsi mid-layer won't require wholesale
2281  *              changes to drivers that use this feature.
2282  */
2283 void scsi_unblock_requests(struct Scsi_Host *shost)
2284 {
2285         shost->host_self_blocked = 0;
2286         scsi_run_host_queues(shost);
2287 }
2288 EXPORT_SYMBOL(scsi_unblock_requests);
2289
2290 int __init scsi_init_queue(void)
2291 {
2292         int i;
2293
2294         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2295                                            sizeof(struct scsi_data_buffer),
2296                                            0, 0, NULL);
2297         if (!scsi_sdb_cache) {
2298                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2299                 return -ENOMEM;
2300         }
2301
2302         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2303                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2304                 int size = sgp->size * sizeof(struct scatterlist);
2305
2306                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
2307                                 SLAB_HWCACHE_ALIGN, NULL);
2308                 if (!sgp->slab) {
2309                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2310                                         sgp->name);
2311                         goto cleanup_sdb;
2312                 }
2313
2314                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2315                                                      sgp->slab);
2316                 if (!sgp->pool) {
2317                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2318                                         sgp->name);
2319                         goto cleanup_sdb;
2320                 }
2321         }
2322
2323         return 0;
2324
2325 cleanup_sdb:
2326         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2327                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2328                 if (sgp->pool)
2329                         mempool_destroy(sgp->pool);
2330                 if (sgp->slab)
2331                         kmem_cache_destroy(sgp->slab);
2332         }
2333         kmem_cache_destroy(scsi_sdb_cache);
2334
2335         return -ENOMEM;
2336 }
2337
2338 void scsi_exit_queue(void)
2339 {
2340         int i;
2341
2342         kmem_cache_destroy(scsi_sdb_cache);
2343
2344         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2345                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2346                 mempool_destroy(sgp->pool);
2347                 kmem_cache_destroy(sgp->slab);
2348         }
2349 }
2350
2351 /**
2352  *      scsi_mode_select - issue a mode select
2353  *      @sdev:  SCSI device to be queried
2354  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2355  *      @sp:    Save page bit (0 == don't save, 1 == save)
2356  *      @modepage: mode page being requested
2357  *      @buffer: request buffer (may not be smaller than eight bytes)
2358  *      @len:   length of request buffer.
2359  *      @timeout: command timeout
2360  *      @retries: number of retries before failing
2361  *      @data: returns a structure abstracting the mode header data
2362  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2363  *              must be SCSI_SENSE_BUFFERSIZE big.
2364  *
2365  *      Returns zero if successful; negative error number or scsi
2366  *      status on error
2367  *
2368  */
2369 int
2370 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2371                  unsigned char *buffer, int len, int timeout, int retries,
2372                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2373 {
2374         unsigned char cmd[10];
2375         unsigned char *real_buffer;
2376         int ret;
2377
2378         memset(cmd, 0, sizeof(cmd));
2379         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2380
2381         if (sdev->use_10_for_ms) {
2382                 if (len > 65535)
2383                         return -EINVAL;
2384                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2385                 if (!real_buffer)
2386                         return -ENOMEM;
2387                 memcpy(real_buffer + 8, buffer, len);
2388                 len += 8;
2389                 real_buffer[0] = 0;
2390                 real_buffer[1] = 0;
2391                 real_buffer[2] = data->medium_type;
2392                 real_buffer[3] = data->device_specific;
2393                 real_buffer[4] = data->longlba ? 0x01 : 0;
2394                 real_buffer[5] = 0;
2395                 real_buffer[6] = data->block_descriptor_length >> 8;
2396                 real_buffer[7] = data->block_descriptor_length;
2397
2398                 cmd[0] = MODE_SELECT_10;
2399                 cmd[7] = len >> 8;
2400                 cmd[8] = len;
2401         } else {
2402                 if (len > 255 || data->block_descriptor_length > 255 ||
2403                     data->longlba)
2404                         return -EINVAL;
2405
2406                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2407                 if (!real_buffer)
2408                         return -ENOMEM;
2409                 memcpy(real_buffer + 4, buffer, len);
2410                 len += 4;
2411                 real_buffer[0] = 0;
2412                 real_buffer[1] = data->medium_type;
2413                 real_buffer[2] = data->device_specific;
2414                 real_buffer[3] = data->block_descriptor_length;
2415                 
2416
2417                 cmd[0] = MODE_SELECT;
2418                 cmd[4] = len;
2419         }
2420
2421         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2422                                sshdr, timeout, retries, NULL);
2423         kfree(real_buffer);
2424         return ret;
2425 }
2426 EXPORT_SYMBOL_GPL(scsi_mode_select);
2427
2428 /**
2429  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2430  *      @sdev:  SCSI device to be queried
2431  *      @dbd:   set if mode sense will allow block descriptors to be returned
2432  *      @modepage: mode page being requested
2433  *      @buffer: request buffer (may not be smaller than eight bytes)
2434  *      @len:   length of request buffer.
2435  *      @timeout: command timeout
2436  *      @retries: number of retries before failing
2437  *      @data: returns a structure abstracting the mode header data
2438  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2439  *              must be SCSI_SENSE_BUFFERSIZE big.
2440  *
2441  *      Returns zero if unsuccessful, or the header offset (either 4
2442  *      or 8 depending on whether a six or ten byte command was
2443  *      issued) if successful.
2444  */
2445 int
2446 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2447                   unsigned char *buffer, int len, int timeout, int retries,
2448                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2449 {
2450         unsigned char cmd[12];
2451         int use_10_for_ms;
2452         int header_length;
2453         int result, retry_count = retries;
2454         struct scsi_sense_hdr my_sshdr;
2455
2456         memset(data, 0, sizeof(*data));
2457         memset(&cmd[0], 0, 12);
2458         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2459         cmd[2] = modepage;
2460
2461         /* caller might not be interested in sense, but we need it */
2462         if (!sshdr)
2463                 sshdr = &my_sshdr;
2464
2465  retry:
2466         use_10_for_ms = sdev->use_10_for_ms;
2467
2468         if (use_10_for_ms) {
2469                 if (len < 8)
2470                         len = 8;
2471
2472                 cmd[0] = MODE_SENSE_10;
2473                 cmd[8] = len;
2474                 header_length = 8;
2475         } else {
2476                 if (len < 4)
2477                         len = 4;
2478
2479                 cmd[0] = MODE_SENSE;
2480                 cmd[4] = len;
2481                 header_length = 4;
2482         }
2483
2484         memset(buffer, 0, len);
2485
2486         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2487                                   sshdr, timeout, retries, NULL);
2488
2489         /* This code looks awful: what it's doing is making sure an
2490          * ILLEGAL REQUEST sense return identifies the actual command
2491          * byte as the problem.  MODE_SENSE commands can return
2492          * ILLEGAL REQUEST if the code page isn't supported */
2493
2494         if (use_10_for_ms && !scsi_status_is_good(result) &&
2495             (driver_byte(result) & DRIVER_SENSE)) {
2496                 if (scsi_sense_valid(sshdr)) {
2497                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2498                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2499                                 /* 
2500                                  * Invalid command operation code
2501                                  */
2502                                 sdev->use_10_for_ms = 0;
2503                                 goto retry;
2504                         }
2505                 }
2506         }
2507
2508         if(scsi_status_is_good(result)) {
2509                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2510                              (modepage == 6 || modepage == 8))) {
2511                         /* Initio breakage? */
2512                         header_length = 0;
2513                         data->length = 13;
2514                         data->medium_type = 0;
2515                         data->device_specific = 0;
2516                         data->longlba = 0;
2517                         data->block_descriptor_length = 0;
2518                 } else if(use_10_for_ms) {
2519                         data->length = buffer[0]*256 + buffer[1] + 2;
2520                         data->medium_type = buffer[2];
2521                         data->device_specific = buffer[3];
2522                         data->longlba = buffer[4] & 0x01;
2523                         data->block_descriptor_length = buffer[6]*256
2524                                 + buffer[7];
2525                 } else {
2526                         data->length = buffer[0] + 1;
2527                         data->medium_type = buffer[1];
2528                         data->device_specific = buffer[2];
2529                         data->block_descriptor_length = buffer[3];
2530                 }
2531                 data->header_length = header_length;
2532         } else if ((status_byte(result) == CHECK_CONDITION) &&
2533                    scsi_sense_valid(sshdr) &&
2534                    sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2535                 retry_count--;
2536                 goto retry;
2537         }
2538
2539         return result;
2540 }
2541 EXPORT_SYMBOL(scsi_mode_sense);
2542
2543 /**
2544  *      scsi_test_unit_ready - test if unit is ready
2545  *      @sdev:  scsi device to change the state of.
2546  *      @timeout: command timeout
2547  *      @retries: number of retries before failing
2548  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2549  *              returning sense. Make sure that this is cleared before passing
2550  *              in.
2551  *
2552  *      Returns zero if unsuccessful or an error if TUR failed.  For
2553  *      removable media, UNIT_ATTENTION sets ->changed flag.
2554  **/
2555 int
2556 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2557                      struct scsi_sense_hdr *sshdr_external)
2558 {
2559         char cmd[] = {
2560                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2561         };
2562         struct scsi_sense_hdr *sshdr;
2563         int result;
2564
2565         if (!sshdr_external)
2566                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2567         else
2568                 sshdr = sshdr_external;
2569
2570         /* try to eat the UNIT_ATTENTION if there are enough retries */
2571         do {
2572                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2573                                           timeout, retries, NULL);
2574                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2575                     sshdr->sense_key == UNIT_ATTENTION)
2576                         sdev->changed = 1;
2577         } while (scsi_sense_valid(sshdr) &&
2578                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2579
2580         if (!sshdr_external)
2581                 kfree(sshdr);
2582         return result;
2583 }
2584 EXPORT_SYMBOL(scsi_test_unit_ready);
2585
2586 /**
2587  *      scsi_device_set_state - Take the given device through the device state model.
2588  *      @sdev:  scsi device to change the state of.
2589  *      @state: state to change to.
2590  *
2591  *      Returns zero if unsuccessful or an error if the requested 
2592  *      transition is illegal.
2593  */
2594 int
2595 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2596 {
2597         enum scsi_device_state oldstate = sdev->sdev_state;
2598
2599         if (state == oldstate)
2600                 return 0;
2601
2602         switch (state) {
2603         case SDEV_CREATED:
2604                 switch (oldstate) {
2605                 case SDEV_CREATED_BLOCK:
2606                         break;
2607                 default:
2608                         goto illegal;
2609                 }
2610                 break;
2611                         
2612         case SDEV_RUNNING:
2613                 switch (oldstate) {
2614                 case SDEV_CREATED:
2615                 case SDEV_OFFLINE:
2616                 case SDEV_TRANSPORT_OFFLINE:
2617                 case SDEV_QUIESCE:
2618                 case SDEV_BLOCK:
2619                         break;
2620                 default:
2621                         goto illegal;
2622                 }
2623                 break;
2624
2625         case SDEV_QUIESCE:
2626                 switch (oldstate) {
2627                 case SDEV_RUNNING:
2628                 case SDEV_OFFLINE:
2629                 case SDEV_TRANSPORT_OFFLINE:
2630                         break;
2631                 default:
2632                         goto illegal;
2633                 }
2634                 break;
2635
2636         case SDEV_OFFLINE:
2637         case SDEV_TRANSPORT_OFFLINE:
2638                 switch (oldstate) {
2639                 case SDEV_CREATED:
2640                 case SDEV_RUNNING:
2641                 case SDEV_QUIESCE:
2642                 case SDEV_BLOCK:
2643                         break;
2644                 default:
2645                         goto illegal;
2646                 }
2647                 break;
2648
2649         case SDEV_BLOCK:
2650                 switch (oldstate) {
2651                 case SDEV_RUNNING:
2652                 case SDEV_CREATED_BLOCK:
2653                         break;
2654                 default:
2655                         goto illegal;
2656                 }
2657                 break;
2658
2659         case SDEV_CREATED_BLOCK:
2660                 switch (oldstate) {
2661                 case SDEV_CREATED:
2662                         break;
2663                 default:
2664                         goto illegal;
2665                 }
2666                 break;
2667
2668         case SDEV_CANCEL:
2669                 switch (oldstate) {
2670                 case SDEV_CREATED:
2671                 case SDEV_RUNNING:
2672                 case SDEV_QUIESCE:
2673                 case SDEV_OFFLINE:
2674                 case SDEV_TRANSPORT_OFFLINE:
2675                 case SDEV_BLOCK:
2676                         break;
2677                 default:
2678                         goto illegal;
2679                 }
2680                 break;
2681
2682         case SDEV_DEL:
2683                 switch (oldstate) {
2684                 case SDEV_CREATED:
2685                 case SDEV_RUNNING:
2686                 case SDEV_OFFLINE:
2687                 case SDEV_TRANSPORT_OFFLINE:
2688                 case SDEV_CANCEL:
2689                 case SDEV_CREATED_BLOCK:
2690                         break;
2691                 default:
2692                         goto illegal;
2693                 }
2694                 break;
2695
2696         }
2697         sdev->sdev_state = state;
2698         return 0;
2699
2700  illegal:
2701         SCSI_LOG_ERROR_RECOVERY(1,
2702                                 sdev_printk(KERN_ERR, sdev,
2703                                             "Illegal state transition %s->%s",
2704                                             scsi_device_state_name(oldstate),
2705                                             scsi_device_state_name(state))
2706                                 );
2707         return -EINVAL;
2708 }
2709 EXPORT_SYMBOL(scsi_device_set_state);
2710
2711 /**
2712  *      sdev_evt_emit - emit a single SCSI device uevent
2713  *      @sdev: associated SCSI device
2714  *      @evt: event to emit
2715  *
2716  *      Send a single uevent (scsi_event) to the associated scsi_device.
2717  */
2718 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2719 {
2720         int idx = 0;
2721         char *envp[3];
2722
2723         switch (evt->evt_type) {
2724         case SDEV_EVT_MEDIA_CHANGE:
2725                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2726                 break;
2727         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2728                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2729                 break;
2730         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2731                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2732                 break;
2733         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2734                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2735                 break;
2736         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2737                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2738                 break;
2739         case SDEV_EVT_LUN_CHANGE_REPORTED:
2740                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2741                 break;
2742         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2743                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2744                 break;
2745         default:
2746                 /* do nothing */
2747                 break;
2748         }
2749
2750         envp[idx++] = NULL;
2751
2752         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2753 }
2754
2755 /**
2756  *      sdev_evt_thread - send a uevent for each scsi event
2757  *      @work: work struct for scsi_device
2758  *
2759  *      Dispatch queued events to their associated scsi_device kobjects
2760  *      as uevents.
2761  */
2762 void scsi_evt_thread(struct work_struct *work)
2763 {
2764         struct scsi_device *sdev;
2765         enum scsi_device_event evt_type;
2766         LIST_HEAD(event_list);
2767
2768         sdev = container_of(work, struct scsi_device, event_work);
2769
2770         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2771                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2772                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2773
2774         while (1) {
2775                 struct scsi_event *evt;
2776                 struct list_head *this, *tmp;
2777                 unsigned long flags;
2778
2779                 spin_lock_irqsave(&sdev->list_lock, flags);
2780                 list_splice_init(&sdev->event_list, &event_list);
2781                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2782
2783                 if (list_empty(&event_list))
2784                         break;
2785
2786                 list_for_each_safe(this, tmp, &event_list) {
2787                         evt = list_entry(this, struct scsi_event, node);
2788                         list_del(&evt->node);
2789                         scsi_evt_emit(sdev, evt);
2790                         kfree(evt);
2791                 }
2792         }
2793 }
2794
2795 /**
2796  *      sdev_evt_send - send asserted event to uevent thread
2797  *      @sdev: scsi_device event occurred on
2798  *      @evt: event to send
2799  *
2800  *      Assert scsi device event asynchronously.
2801  */
2802 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2803 {
2804         unsigned long flags;
2805
2806 #if 0
2807         /* FIXME: currently this check eliminates all media change events
2808          * for polled devices.  Need to update to discriminate between AN
2809          * and polled events */
2810         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2811                 kfree(evt);
2812                 return;
2813         }
2814 #endif
2815
2816         spin_lock_irqsave(&sdev->list_lock, flags);
2817         list_add_tail(&evt->node, &sdev->event_list);
2818         schedule_work(&sdev->event_work);
2819         spin_unlock_irqrestore(&sdev->list_lock, flags);
2820 }
2821 EXPORT_SYMBOL_GPL(sdev_evt_send);
2822
2823 /**
2824  *      sdev_evt_alloc - allocate a new scsi event
2825  *      @evt_type: type of event to allocate
2826  *      @gfpflags: GFP flags for allocation
2827  *
2828  *      Allocates and returns a new scsi_event.
2829  */
2830 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2831                                   gfp_t gfpflags)
2832 {
2833         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2834         if (!evt)
2835                 return NULL;
2836
2837         evt->evt_type = evt_type;
2838         INIT_LIST_HEAD(&evt->node);
2839
2840         /* evt_type-specific initialization, if any */
2841         switch (evt_type) {
2842         case SDEV_EVT_MEDIA_CHANGE:
2843         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2844         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2845         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2846         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2847         case SDEV_EVT_LUN_CHANGE_REPORTED:
2848         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2849         default:
2850                 /* do nothing */
2851                 break;
2852         }
2853
2854         return evt;
2855 }
2856 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2857
2858 /**
2859  *      sdev_evt_send_simple - send asserted event to uevent thread
2860  *      @sdev: scsi_device event occurred on
2861  *      @evt_type: type of event to send
2862  *      @gfpflags: GFP flags for allocation
2863  *
2864  *      Assert scsi device event asynchronously, given an event type.
2865  */
2866 void sdev_evt_send_simple(struct scsi_device *sdev,
2867                           enum scsi_device_event evt_type, gfp_t gfpflags)
2868 {
2869         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2870         if (!evt) {
2871                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2872                             evt_type);
2873                 return;
2874         }
2875
2876         sdev_evt_send(sdev, evt);
2877 }
2878 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2879
2880 /**
2881  *      scsi_device_quiesce - Block user issued commands.
2882  *      @sdev:  scsi device to quiesce.
2883  *
2884  *      This works by trying to transition to the SDEV_QUIESCE state
2885  *      (which must be a legal transition).  When the device is in this
2886  *      state, only special requests will be accepted, all others will
2887  *      be deferred.  Since special requests may also be requeued requests,
2888  *      a successful return doesn't guarantee the device will be 
2889  *      totally quiescent.
2890  *
2891  *      Must be called with user context, may sleep.
2892  *
2893  *      Returns zero if unsuccessful or an error if not.
2894  */
2895 int
2896 scsi_device_quiesce(struct scsi_device *sdev)
2897 {
2898         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2899         if (err)
2900                 return err;
2901
2902         scsi_run_queue(sdev->request_queue);
2903         while (atomic_read(&sdev->device_busy)) {
2904                 msleep_interruptible(200);
2905                 scsi_run_queue(sdev->request_queue);
2906         }
2907         return 0;
2908 }
2909 EXPORT_SYMBOL(scsi_device_quiesce);
2910
2911 /**
2912  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2913  *      @sdev:  scsi device to resume.
2914  *
2915  *      Moves the device from quiesced back to running and restarts the
2916  *      queues.
2917  *
2918  *      Must be called with user context, may sleep.
2919  */
2920 void scsi_device_resume(struct scsi_device *sdev)
2921 {
2922         /* check if the device state was mutated prior to resume, and if
2923          * so assume the state is being managed elsewhere (for example
2924          * device deleted during suspend)
2925          */
2926         if (sdev->sdev_state != SDEV_QUIESCE ||
2927             scsi_device_set_state(sdev, SDEV_RUNNING))
2928                 return;
2929         scsi_run_queue(sdev->request_queue);
2930 }
2931 EXPORT_SYMBOL(scsi_device_resume);
2932
2933 static void
2934 device_quiesce_fn(struct scsi_device *sdev, void *data)
2935 {
2936         scsi_device_quiesce(sdev);
2937 }
2938
2939 void
2940 scsi_target_quiesce(struct scsi_target *starget)
2941 {
2942         starget_for_each_device(starget, NULL, device_quiesce_fn);
2943 }
2944 EXPORT_SYMBOL(scsi_target_quiesce);
2945
2946 static void
2947 device_resume_fn(struct scsi_device *sdev, void *data)
2948 {
2949         scsi_device_resume(sdev);
2950 }
2951
2952 void
2953 scsi_target_resume(struct scsi_target *starget)
2954 {
2955         starget_for_each_device(starget, NULL, device_resume_fn);
2956 }
2957 EXPORT_SYMBOL(scsi_target_resume);
2958
2959 /**
2960  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2961  * @sdev:       device to block
2962  *
2963  * Block request made by scsi lld's to temporarily stop all
2964  * scsi commands on the specified device.  Called from interrupt
2965  * or normal process context.
2966  *
2967  * Returns zero if successful or error if not
2968  *
2969  * Notes:       
2970  *      This routine transitions the device to the SDEV_BLOCK state
2971  *      (which must be a legal transition).  When the device is in this
2972  *      state, all commands are deferred until the scsi lld reenables
2973  *      the device with scsi_device_unblock or device_block_tmo fires.
2974  */
2975 int
2976 scsi_internal_device_block(struct scsi_device *sdev)
2977 {
2978         struct request_queue *q = sdev->request_queue;
2979         unsigned long flags;
2980         int err = 0;
2981
2982         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2983         if (err) {
2984                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2985
2986                 if (err)
2987                         return err;
2988         }
2989
2990         /* 
2991          * The device has transitioned to SDEV_BLOCK.  Stop the
2992          * block layer from calling the midlayer with this device's
2993          * request queue. 
2994          */
2995         if (q->mq_ops) {
2996                 blk_mq_stop_hw_queues(q);
2997         } else {
2998                 spin_lock_irqsave(q->queue_lock, flags);
2999                 blk_stop_queue(q);
3000                 spin_unlock_irqrestore(q->queue_lock, flags);
3001         }
3002
3003         return 0;
3004 }
3005 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
3006  
3007 /**
3008  * scsi_internal_device_unblock - resume a device after a block request
3009  * @sdev:       device to resume
3010  * @new_state:  state to set devices to after unblocking
3011  *
3012  * Called by scsi lld's or the midlayer to restart the device queue
3013  * for the previously suspended scsi device.  Called from interrupt or
3014  * normal process context.
3015  *
3016  * Returns zero if successful or error if not.
3017  *
3018  * Notes:       
3019  *      This routine transitions the device to the SDEV_RUNNING state
3020  *      or to one of the offline states (which must be a legal transition)
3021  *      allowing the midlayer to goose the queue for this device.
3022  */
3023 int
3024 scsi_internal_device_unblock(struct scsi_device *sdev,
3025                              enum scsi_device_state new_state)
3026 {
3027         struct request_queue *q = sdev->request_queue; 
3028         unsigned long flags;
3029
3030         /*
3031          * Try to transition the scsi device to SDEV_RUNNING or one of the
3032          * offlined states and goose the device queue if successful.
3033          */
3034         if ((sdev->sdev_state == SDEV_BLOCK) ||
3035             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3036                 sdev->sdev_state = new_state;
3037         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3038                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3039                     new_state == SDEV_OFFLINE)
3040                         sdev->sdev_state = new_state;
3041                 else
3042                         sdev->sdev_state = SDEV_CREATED;
3043         } else if (sdev->sdev_state != SDEV_CANCEL &&
3044                  sdev->sdev_state != SDEV_OFFLINE)
3045                 return -EINVAL;
3046
3047         if (q->mq_ops) {
3048                 blk_mq_start_stopped_hw_queues(q, false);
3049         } else {
3050                 spin_lock_irqsave(q->queue_lock, flags);
3051                 blk_start_queue(q);
3052                 spin_unlock_irqrestore(q->queue_lock, flags);
3053         }
3054
3055         return 0;
3056 }
3057 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3058
3059 static void
3060 device_block(struct scsi_device *sdev, void *data)
3061 {
3062         scsi_internal_device_block(sdev);
3063 }
3064
3065 static int
3066 target_block(struct device *dev, void *data)
3067 {
3068         if (scsi_is_target_device(dev))
3069                 starget_for_each_device(to_scsi_target(dev), NULL,
3070                                         device_block);
3071         return 0;
3072 }
3073
3074 void
3075 scsi_target_block(struct device *dev)
3076 {
3077         if (scsi_is_target_device(dev))
3078                 starget_for_each_device(to_scsi_target(dev), NULL,
3079                                         device_block);
3080         else
3081                 device_for_each_child(dev, NULL, target_block);
3082 }
3083 EXPORT_SYMBOL_GPL(scsi_target_block);
3084
3085 static void
3086 device_unblock(struct scsi_device *sdev, void *data)
3087 {
3088         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3089 }
3090
3091 static int
3092 target_unblock(struct device *dev, void *data)
3093 {
3094         if (scsi_is_target_device(dev))
3095                 starget_for_each_device(to_scsi_target(dev), data,
3096                                         device_unblock);
3097         return 0;
3098 }
3099
3100 void
3101 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3102 {
3103         if (scsi_is_target_device(dev))
3104                 starget_for_each_device(to_scsi_target(dev), &new_state,
3105                                         device_unblock);
3106         else
3107                 device_for_each_child(dev, &new_state, target_unblock);
3108 }
3109 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3110
3111 /**
3112  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3113  * @sgl:        scatter-gather list
3114  * @sg_count:   number of segments in sg
3115  * @offset:     offset in bytes into sg, on return offset into the mapped area
3116  * @len:        bytes to map, on return number of bytes mapped
3117  *
3118  * Returns virtual address of the start of the mapped page
3119  */
3120 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3121                           size_t *offset, size_t *len)
3122 {
3123         int i;
3124         size_t sg_len = 0, len_complete = 0;
3125         struct scatterlist *sg;
3126         struct page *page;
3127
3128         WARN_ON(!irqs_disabled());
3129
3130         for_each_sg(sgl, sg, sg_count, i) {
3131                 len_complete = sg_len; /* Complete sg-entries */
3132                 sg_len += sg->length;
3133                 if (sg_len > *offset)
3134                         break;
3135         }
3136
3137         if (unlikely(i == sg_count)) {
3138                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3139                         "elements %d\n",
3140                        __func__, sg_len, *offset, sg_count);
3141                 WARN_ON(1);
3142                 return NULL;
3143         }
3144
3145         /* Offset starting from the beginning of first page in this sg-entry */
3146         *offset = *offset - len_complete + sg->offset;
3147
3148         /* Assumption: contiguous pages can be accessed as "page + i" */
3149         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3150         *offset &= ~PAGE_MASK;
3151
3152         /* Bytes in this sg-entry from *offset to the end of the page */
3153         sg_len = PAGE_SIZE - *offset;
3154         if (*len > sg_len)
3155                 *len = sg_len;
3156
3157         return kmap_atomic(page);
3158 }
3159 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3160
3161 /**
3162  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3163  * @virt:       virtual address to be unmapped
3164  */
3165 void scsi_kunmap_atomic_sg(void *virt)
3166 {
3167         kunmap_atomic(virt);
3168 }
3169 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3170
3171 void sdev_disable_disk_events(struct scsi_device *sdev)
3172 {
3173         atomic_inc(&sdev->disk_events_disable_depth);
3174 }
3175 EXPORT_SYMBOL(sdev_disable_disk_events);
3176
3177 void sdev_enable_disk_events(struct scsi_device *sdev)
3178 {
3179         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3180                 return;
3181         atomic_dec(&sdev->disk_events_disable_depth);
3182 }
3183 EXPORT_SYMBOL(sdev_enable_disk_events);