Merge tag '4.4-scsi-mkp' into misc
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2014-2015 PMC-Sierra, Inc.
4  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
5  *
6  *    This program is free software; you can redistribute it and/or modify
7  *    it under the terms of the GNU General Public License as published by
8  *    the Free Software Foundation; version 2 of the License.
9  *
10  *    This program is distributed in the hope that it will be useful,
11  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
14  *
15  *    Questions/Comments/Bugfixes to storagedev@pmcs.com
16  *
17  */
18
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57
58 /*
59  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60  * with an optional trailing '-' followed by a byte value (0-255).
61  */
62 #define HPSA_DRIVER_VERSION "3.4.14-0"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
64 #define HPSA "hpsa"
65
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
72
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
75
76 /* Embedded module documentation macros - see modules.h */
77 MODULE_AUTHOR("Hewlett-Packard Company");
78 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
79         HPSA_DRIVER_VERSION);
80 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
81 MODULE_VERSION(HPSA_DRIVER_VERSION);
82 MODULE_LICENSE("GPL");
83
84 static int hpsa_allow_any;
85 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
86 MODULE_PARM_DESC(hpsa_allow_any,
87                 "Allow hpsa driver to access unknown HP Smart Array hardware");
88 static int hpsa_simple_mode;
89 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
90 MODULE_PARM_DESC(hpsa_simple_mode,
91         "Use 'simple mode' rather than 'performant mode'");
92
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id[] = {
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
147                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148         {0,}
149 };
150
151 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
152
153 /*  board_id = Subsystem Device ID & Vendor ID
154  *  product = Marketing Name for the board
155  *  access = Address of the struct of function pointers
156  */
157 static struct board_type products[] = {
158         {0x3241103C, "Smart Array P212", &SA5_access},
159         {0x3243103C, "Smart Array P410", &SA5_access},
160         {0x3245103C, "Smart Array P410i", &SA5_access},
161         {0x3247103C, "Smart Array P411", &SA5_access},
162         {0x3249103C, "Smart Array P812", &SA5_access},
163         {0x324A103C, "Smart Array P712m", &SA5_access},
164         {0x324B103C, "Smart Array P711m", &SA5_access},
165         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
166         {0x3350103C, "Smart Array P222", &SA5_access},
167         {0x3351103C, "Smart Array P420", &SA5_access},
168         {0x3352103C, "Smart Array P421", &SA5_access},
169         {0x3353103C, "Smart Array P822", &SA5_access},
170         {0x3354103C, "Smart Array P420i", &SA5_access},
171         {0x3355103C, "Smart Array P220i", &SA5_access},
172         {0x3356103C, "Smart Array P721m", &SA5_access},
173         {0x1921103C, "Smart Array P830i", &SA5_access},
174         {0x1922103C, "Smart Array P430", &SA5_access},
175         {0x1923103C, "Smart Array P431", &SA5_access},
176         {0x1924103C, "Smart Array P830", &SA5_access},
177         {0x1926103C, "Smart Array P731m", &SA5_access},
178         {0x1928103C, "Smart Array P230i", &SA5_access},
179         {0x1929103C, "Smart Array P530", &SA5_access},
180         {0x21BD103C, "Smart Array P244br", &SA5_access},
181         {0x21BE103C, "Smart Array P741m", &SA5_access},
182         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
183         {0x21C0103C, "Smart Array P440ar", &SA5_access},
184         {0x21C1103C, "Smart Array P840ar", &SA5_access},
185         {0x21C2103C, "Smart Array P440", &SA5_access},
186         {0x21C3103C, "Smart Array P441", &SA5_access},
187         {0x21C4103C, "Smart Array", &SA5_access},
188         {0x21C5103C, "Smart Array P841", &SA5_access},
189         {0x21C6103C, "Smart HBA H244br", &SA5_access},
190         {0x21C7103C, "Smart HBA H240", &SA5_access},
191         {0x21C8103C, "Smart HBA H241", &SA5_access},
192         {0x21C9103C, "Smart Array", &SA5_access},
193         {0x21CA103C, "Smart Array P246br", &SA5_access},
194         {0x21CB103C, "Smart Array P840", &SA5_access},
195         {0x21CC103C, "Smart Array", &SA5_access},
196         {0x21CD103C, "Smart Array", &SA5_access},
197         {0x21CE103C, "Smart HBA", &SA5_access},
198         {0x05809005, "SmartHBA-SA", &SA5_access},
199         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
200         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
201         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
202         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
203         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
204         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
205         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
206         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
207         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
208         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
209         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
210 };
211
212 static struct scsi_transport_template *hpsa_sas_transport_template;
213 static int hpsa_add_sas_host(struct ctlr_info *h);
214 static void hpsa_delete_sas_host(struct ctlr_info *h);
215 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
216                         struct hpsa_scsi_dev_t *device);
217 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
218 static struct hpsa_scsi_dev_t
219         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
220                 struct sas_rphy *rphy);
221
222 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
223 static const struct scsi_cmnd hpsa_cmd_busy;
224 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
225 static const struct scsi_cmnd hpsa_cmd_idle;
226 static int number_of_controllers;
227
228 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
229 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
230 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
231
232 #ifdef CONFIG_COMPAT
233 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
234         void __user *arg);
235 #endif
236
237 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
238 static struct CommandList *cmd_alloc(struct ctlr_info *h);
239 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
240 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
241                                             struct scsi_cmnd *scmd);
242 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
243         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
244         int cmd_type);
245 static void hpsa_free_cmd_pool(struct ctlr_info *h);
246 #define VPD_PAGE (1 << 8)
247 #define HPSA_SIMPLE_ERROR_BITS 0x03
248
249 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
250 static void hpsa_scan_start(struct Scsi_Host *);
251 static int hpsa_scan_finished(struct Scsi_Host *sh,
252         unsigned long elapsed_time);
253 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
254
255 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
256 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_slave_alloc(struct scsi_device *sdev);
258 static int hpsa_slave_configure(struct scsi_device *sdev);
259 static void hpsa_slave_destroy(struct scsi_device *sdev);
260
261 static void hpsa_update_scsi_devices(struct ctlr_info *h);
262 static int check_for_unit_attention(struct ctlr_info *h,
263         struct CommandList *c);
264 static void check_ioctl_unit_attention(struct ctlr_info *h,
265         struct CommandList *c);
266 /* performant mode helper functions */
267 static void calc_bucket_map(int *bucket, int num_buckets,
268         int nsgs, int min_blocks, u32 *bucket_map);
269 static void hpsa_free_performant_mode(struct ctlr_info *h);
270 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
271 static inline u32 next_command(struct ctlr_info *h, u8 q);
272 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
273                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
274                                u64 *cfg_offset);
275 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
276                                     unsigned long *memory_bar);
277 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
278 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
279                                      int wait_for_ready);
280 static inline void finish_cmd(struct CommandList *c);
281 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
282 #define BOARD_NOT_READY 0
283 #define BOARD_READY 1
284 static void hpsa_drain_accel_commands(struct ctlr_info *h);
285 static void hpsa_flush_cache(struct ctlr_info *h);
286 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
287         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
288         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
289 static void hpsa_command_resubmit_worker(struct work_struct *work);
290 static u32 lockup_detected(struct ctlr_info *h);
291 static int detect_controller_lockup(struct ctlr_info *h);
292 static void hpsa_disable_rld_caching(struct ctlr_info *h);
293 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
294         struct ReportExtendedLUNdata *buf, int bufsize);
295 static int hpsa_luns_changed(struct ctlr_info *h);
296
297 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
298 {
299         unsigned long *priv = shost_priv(sdev->host);
300         return (struct ctlr_info *) *priv;
301 }
302
303 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
304 {
305         unsigned long *priv = shost_priv(sh);
306         return (struct ctlr_info *) *priv;
307 }
308
309 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
310 {
311         return c->scsi_cmd == SCSI_CMD_IDLE;
312 }
313
314 static inline bool hpsa_is_pending_event(struct CommandList *c)
315 {
316         return c->abort_pending || c->reset_pending;
317 }
318
319 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
320 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
321                         u8 *sense_key, u8 *asc, u8 *ascq)
322 {
323         struct scsi_sense_hdr sshdr;
324         bool rc;
325
326         *sense_key = -1;
327         *asc = -1;
328         *ascq = -1;
329
330         if (sense_data_len < 1)
331                 return;
332
333         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
334         if (rc) {
335                 *sense_key = sshdr.sense_key;
336                 *asc = sshdr.asc;
337                 *ascq = sshdr.ascq;
338         }
339 }
340
341 static int check_for_unit_attention(struct ctlr_info *h,
342         struct CommandList *c)
343 {
344         u8 sense_key, asc, ascq;
345         int sense_len;
346
347         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
348                 sense_len = sizeof(c->err_info->SenseInfo);
349         else
350                 sense_len = c->err_info->SenseLen;
351
352         decode_sense_data(c->err_info->SenseInfo, sense_len,
353                                 &sense_key, &asc, &ascq);
354         if (sense_key != UNIT_ATTENTION || asc == 0xff)
355                 return 0;
356
357         switch (asc) {
358         case STATE_CHANGED:
359                 dev_warn(&h->pdev->dev,
360                         "%s: a state change detected, command retried\n",
361                         h->devname);
362                 break;
363         case LUN_FAILED:
364                 dev_warn(&h->pdev->dev,
365                         "%s: LUN failure detected\n", h->devname);
366                 break;
367         case REPORT_LUNS_CHANGED:
368                 dev_warn(&h->pdev->dev,
369                         "%s: report LUN data changed\n", h->devname);
370         /*
371          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
372          * target (array) devices.
373          */
374                 break;
375         case POWER_OR_RESET:
376                 dev_warn(&h->pdev->dev,
377                         "%s: a power on or device reset detected\n",
378                         h->devname);
379                 break;
380         case UNIT_ATTENTION_CLEARED:
381                 dev_warn(&h->pdev->dev,
382                         "%s: unit attention cleared by another initiator\n",
383                         h->devname);
384                 break;
385         default:
386                 dev_warn(&h->pdev->dev,
387                         "%s: unknown unit attention detected\n",
388                         h->devname);
389                 break;
390         }
391         return 1;
392 }
393
394 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
395 {
396         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
397                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
398                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
399                 return 0;
400         dev_warn(&h->pdev->dev, HPSA "device busy");
401         return 1;
402 }
403
404 static u32 lockup_detected(struct ctlr_info *h);
405 static ssize_t host_show_lockup_detected(struct device *dev,
406                 struct device_attribute *attr, char *buf)
407 {
408         int ld;
409         struct ctlr_info *h;
410         struct Scsi_Host *shost = class_to_shost(dev);
411
412         h = shost_to_hba(shost);
413         ld = lockup_detected(h);
414
415         return sprintf(buf, "ld=%d\n", ld);
416 }
417
418 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
419                                          struct device_attribute *attr,
420                                          const char *buf, size_t count)
421 {
422         int status, len;
423         struct ctlr_info *h;
424         struct Scsi_Host *shost = class_to_shost(dev);
425         char tmpbuf[10];
426
427         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
428                 return -EACCES;
429         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
430         strncpy(tmpbuf, buf, len);
431         tmpbuf[len] = '\0';
432         if (sscanf(tmpbuf, "%d", &status) != 1)
433                 return -EINVAL;
434         h = shost_to_hba(shost);
435         h->acciopath_status = !!status;
436         dev_warn(&h->pdev->dev,
437                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
438                 h->acciopath_status ? "enabled" : "disabled");
439         return count;
440 }
441
442 static ssize_t host_store_raid_offload_debug(struct device *dev,
443                                          struct device_attribute *attr,
444                                          const char *buf, size_t count)
445 {
446         int debug_level, len;
447         struct ctlr_info *h;
448         struct Scsi_Host *shost = class_to_shost(dev);
449         char tmpbuf[10];
450
451         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
452                 return -EACCES;
453         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
454         strncpy(tmpbuf, buf, len);
455         tmpbuf[len] = '\0';
456         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
457                 return -EINVAL;
458         if (debug_level < 0)
459                 debug_level = 0;
460         h = shost_to_hba(shost);
461         h->raid_offload_debug = debug_level;
462         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
463                 h->raid_offload_debug);
464         return count;
465 }
466
467 static ssize_t host_store_rescan(struct device *dev,
468                                  struct device_attribute *attr,
469                                  const char *buf, size_t count)
470 {
471         struct ctlr_info *h;
472         struct Scsi_Host *shost = class_to_shost(dev);
473         h = shost_to_hba(shost);
474         hpsa_scan_start(h->scsi_host);
475         return count;
476 }
477
478 static ssize_t host_show_firmware_revision(struct device *dev,
479              struct device_attribute *attr, char *buf)
480 {
481         struct ctlr_info *h;
482         struct Scsi_Host *shost = class_to_shost(dev);
483         unsigned char *fwrev;
484
485         h = shost_to_hba(shost);
486         if (!h->hba_inquiry_data)
487                 return 0;
488         fwrev = &h->hba_inquiry_data[32];
489         return snprintf(buf, 20, "%c%c%c%c\n",
490                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
491 }
492
493 static ssize_t host_show_commands_outstanding(struct device *dev,
494              struct device_attribute *attr, char *buf)
495 {
496         struct Scsi_Host *shost = class_to_shost(dev);
497         struct ctlr_info *h = shost_to_hba(shost);
498
499         return snprintf(buf, 20, "%d\n",
500                         atomic_read(&h->commands_outstanding));
501 }
502
503 static ssize_t host_show_transport_mode(struct device *dev,
504         struct device_attribute *attr, char *buf)
505 {
506         struct ctlr_info *h;
507         struct Scsi_Host *shost = class_to_shost(dev);
508
509         h = shost_to_hba(shost);
510         return snprintf(buf, 20, "%s\n",
511                 h->transMethod & CFGTBL_Trans_Performant ?
512                         "performant" : "simple");
513 }
514
515 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
516         struct device_attribute *attr, char *buf)
517 {
518         struct ctlr_info *h;
519         struct Scsi_Host *shost = class_to_shost(dev);
520
521         h = shost_to_hba(shost);
522         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
523                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
524 }
525
526 /* List of controllers which cannot be hard reset on kexec with reset_devices */
527 static u32 unresettable_controller[] = {
528         0x324a103C, /* Smart Array P712m */
529         0x324b103C, /* Smart Array P711m */
530         0x3223103C, /* Smart Array P800 */
531         0x3234103C, /* Smart Array P400 */
532         0x3235103C, /* Smart Array P400i */
533         0x3211103C, /* Smart Array E200i */
534         0x3212103C, /* Smart Array E200 */
535         0x3213103C, /* Smart Array E200i */
536         0x3214103C, /* Smart Array E200i */
537         0x3215103C, /* Smart Array E200i */
538         0x3237103C, /* Smart Array E500 */
539         0x323D103C, /* Smart Array P700m */
540         0x40800E11, /* Smart Array 5i */
541         0x409C0E11, /* Smart Array 6400 */
542         0x409D0E11, /* Smart Array 6400 EM */
543         0x40700E11, /* Smart Array 5300 */
544         0x40820E11, /* Smart Array 532 */
545         0x40830E11, /* Smart Array 5312 */
546         0x409A0E11, /* Smart Array 641 */
547         0x409B0E11, /* Smart Array 642 */
548         0x40910E11, /* Smart Array 6i */
549 };
550
551 /* List of controllers which cannot even be soft reset */
552 static u32 soft_unresettable_controller[] = {
553         0x40800E11, /* Smart Array 5i */
554         0x40700E11, /* Smart Array 5300 */
555         0x40820E11, /* Smart Array 532 */
556         0x40830E11, /* Smart Array 5312 */
557         0x409A0E11, /* Smart Array 641 */
558         0x409B0E11, /* Smart Array 642 */
559         0x40910E11, /* Smart Array 6i */
560         /* Exclude 640x boards.  These are two pci devices in one slot
561          * which share a battery backed cache module.  One controls the
562          * cache, the other accesses the cache through the one that controls
563          * it.  If we reset the one controlling the cache, the other will
564          * likely not be happy.  Just forbid resetting this conjoined mess.
565          * The 640x isn't really supported by hpsa anyway.
566          */
567         0x409C0E11, /* Smart Array 6400 */
568         0x409D0E11, /* Smart Array 6400 EM */
569 };
570
571 static u32 needs_abort_tags_swizzled[] = {
572         0x323D103C, /* Smart Array P700m */
573         0x324a103C, /* Smart Array P712m */
574         0x324b103C, /* SmartArray P711m */
575 };
576
577 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
578 {
579         int i;
580
581         for (i = 0; i < nelems; i++)
582                 if (a[i] == board_id)
583                         return 1;
584         return 0;
585 }
586
587 static int ctlr_is_hard_resettable(u32 board_id)
588 {
589         return !board_id_in_array(unresettable_controller,
590                         ARRAY_SIZE(unresettable_controller), board_id);
591 }
592
593 static int ctlr_is_soft_resettable(u32 board_id)
594 {
595         return !board_id_in_array(soft_unresettable_controller,
596                         ARRAY_SIZE(soft_unresettable_controller), board_id);
597 }
598
599 static int ctlr_is_resettable(u32 board_id)
600 {
601         return ctlr_is_hard_resettable(board_id) ||
602                 ctlr_is_soft_resettable(board_id);
603 }
604
605 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
606 {
607         return board_id_in_array(needs_abort_tags_swizzled,
608                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
609 }
610
611 static ssize_t host_show_resettable(struct device *dev,
612         struct device_attribute *attr, char *buf)
613 {
614         struct ctlr_info *h;
615         struct Scsi_Host *shost = class_to_shost(dev);
616
617         h = shost_to_hba(shost);
618         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
619 }
620
621 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
622 {
623         return (scsi3addr[3] & 0xC0) == 0x40;
624 }
625
626 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
627         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
628 };
629 #define HPSA_RAID_0     0
630 #define HPSA_RAID_4     1
631 #define HPSA_RAID_1     2       /* also used for RAID 10 */
632 #define HPSA_RAID_5     3       /* also used for RAID 50 */
633 #define HPSA_RAID_51    4
634 #define HPSA_RAID_6     5       /* also used for RAID 60 */
635 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
636 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
637 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
638
639 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
640 {
641         return !device->physical_device;
642 }
643
644 static ssize_t raid_level_show(struct device *dev,
645              struct device_attribute *attr, char *buf)
646 {
647         ssize_t l = 0;
648         unsigned char rlevel;
649         struct ctlr_info *h;
650         struct scsi_device *sdev;
651         struct hpsa_scsi_dev_t *hdev;
652         unsigned long flags;
653
654         sdev = to_scsi_device(dev);
655         h = sdev_to_hba(sdev);
656         spin_lock_irqsave(&h->lock, flags);
657         hdev = sdev->hostdata;
658         if (!hdev) {
659                 spin_unlock_irqrestore(&h->lock, flags);
660                 return -ENODEV;
661         }
662
663         /* Is this even a logical drive? */
664         if (!is_logical_device(hdev)) {
665                 spin_unlock_irqrestore(&h->lock, flags);
666                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
667                 return l;
668         }
669
670         rlevel = hdev->raid_level;
671         spin_unlock_irqrestore(&h->lock, flags);
672         if (rlevel > RAID_UNKNOWN)
673                 rlevel = RAID_UNKNOWN;
674         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
675         return l;
676 }
677
678 static ssize_t lunid_show(struct device *dev,
679              struct device_attribute *attr, char *buf)
680 {
681         struct ctlr_info *h;
682         struct scsi_device *sdev;
683         struct hpsa_scsi_dev_t *hdev;
684         unsigned long flags;
685         unsigned char lunid[8];
686
687         sdev = to_scsi_device(dev);
688         h = sdev_to_hba(sdev);
689         spin_lock_irqsave(&h->lock, flags);
690         hdev = sdev->hostdata;
691         if (!hdev) {
692                 spin_unlock_irqrestore(&h->lock, flags);
693                 return -ENODEV;
694         }
695         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
696         spin_unlock_irqrestore(&h->lock, flags);
697         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
698                 lunid[0], lunid[1], lunid[2], lunid[3],
699                 lunid[4], lunid[5], lunid[6], lunid[7]);
700 }
701
702 static ssize_t unique_id_show(struct device *dev,
703              struct device_attribute *attr, char *buf)
704 {
705         struct ctlr_info *h;
706         struct scsi_device *sdev;
707         struct hpsa_scsi_dev_t *hdev;
708         unsigned long flags;
709         unsigned char sn[16];
710
711         sdev = to_scsi_device(dev);
712         h = sdev_to_hba(sdev);
713         spin_lock_irqsave(&h->lock, flags);
714         hdev = sdev->hostdata;
715         if (!hdev) {
716                 spin_unlock_irqrestore(&h->lock, flags);
717                 return -ENODEV;
718         }
719         memcpy(sn, hdev->device_id, sizeof(sn));
720         spin_unlock_irqrestore(&h->lock, flags);
721         return snprintf(buf, 16 * 2 + 2,
722                         "%02X%02X%02X%02X%02X%02X%02X%02X"
723                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
724                         sn[0], sn[1], sn[2], sn[3],
725                         sn[4], sn[5], sn[6], sn[7],
726                         sn[8], sn[9], sn[10], sn[11],
727                         sn[12], sn[13], sn[14], sn[15]);
728 }
729
730 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
731              struct device_attribute *attr, char *buf)
732 {
733         struct ctlr_info *h;
734         struct scsi_device *sdev;
735         struct hpsa_scsi_dev_t *hdev;
736         unsigned long flags;
737         int offload_enabled;
738
739         sdev = to_scsi_device(dev);
740         h = sdev_to_hba(sdev);
741         spin_lock_irqsave(&h->lock, flags);
742         hdev = sdev->hostdata;
743         if (!hdev) {
744                 spin_unlock_irqrestore(&h->lock, flags);
745                 return -ENODEV;
746         }
747         offload_enabled = hdev->offload_enabled;
748         spin_unlock_irqrestore(&h->lock, flags);
749         return snprintf(buf, 20, "%d\n", offload_enabled);
750 }
751
752 #define MAX_PATHS 8
753
754 static ssize_t path_info_show(struct device *dev,
755              struct device_attribute *attr, char *buf)
756 {
757         struct ctlr_info *h;
758         struct scsi_device *sdev;
759         struct hpsa_scsi_dev_t *hdev;
760         unsigned long flags;
761         int i;
762         int output_len = 0;
763         u8 box;
764         u8 bay;
765         u8 path_map_index = 0;
766         char *active;
767         unsigned char phys_connector[2];
768
769         sdev = to_scsi_device(dev);
770         h = sdev_to_hba(sdev);
771         spin_lock_irqsave(&h->devlock, flags);
772         hdev = sdev->hostdata;
773         if (!hdev) {
774                 spin_unlock_irqrestore(&h->devlock, flags);
775                 return -ENODEV;
776         }
777
778         bay = hdev->bay;
779         for (i = 0; i < MAX_PATHS; i++) {
780                 path_map_index = 1<<i;
781                 if (i == hdev->active_path_index)
782                         active = "Active";
783                 else if (hdev->path_map & path_map_index)
784                         active = "Inactive";
785                 else
786                         continue;
787
788                 output_len += scnprintf(buf + output_len,
789                                 PAGE_SIZE - output_len,
790                                 "[%d:%d:%d:%d] %20.20s ",
791                                 h->scsi_host->host_no,
792                                 hdev->bus, hdev->target, hdev->lun,
793                                 scsi_device_type(hdev->devtype));
794
795                 if (hdev->external ||
796                         hdev->devtype == TYPE_RAID ||
797                         is_logical_device(hdev)) {
798                         output_len += snprintf(buf + output_len,
799                                                 PAGE_SIZE - output_len,
800                                                 "%s\n", active);
801                         continue;
802                 }
803
804                 box = hdev->box[i];
805                 memcpy(&phys_connector, &hdev->phys_connector[i],
806                         sizeof(phys_connector));
807                 if (phys_connector[0] < '0')
808                         phys_connector[0] = '0';
809                 if (phys_connector[1] < '0')
810                         phys_connector[1] = '0';
811                 if (hdev->phys_connector[i] > 0)
812                         output_len += snprintf(buf + output_len,
813                                 PAGE_SIZE - output_len,
814                                 "PORT: %.2s ",
815                                 phys_connector);
816                 if (hdev->devtype == TYPE_DISK && hdev->expose_device) {
817                         if (box == 0 || box == 0xFF) {
818                                 output_len += snprintf(buf + output_len,
819                                         PAGE_SIZE - output_len,
820                                         "BAY: %hhu %s\n",
821                                         bay, active);
822                         } else {
823                                 output_len += snprintf(buf + output_len,
824                                         PAGE_SIZE - output_len,
825                                         "BOX: %hhu BAY: %hhu %s\n",
826                                         box, bay, active);
827                         }
828                 } else if (box != 0 && box != 0xFF) {
829                         output_len += snprintf(buf + output_len,
830                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
831                                 box, active);
832                 } else
833                         output_len += snprintf(buf + output_len,
834                                 PAGE_SIZE - output_len, "%s\n", active);
835         }
836
837         spin_unlock_irqrestore(&h->devlock, flags);
838         return output_len;
839 }
840
841 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
842 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
843 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
844 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
845 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
846                         host_show_hp_ssd_smart_path_enabled, NULL);
847 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
848 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
849                 host_show_hp_ssd_smart_path_status,
850                 host_store_hp_ssd_smart_path_status);
851 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
852                         host_store_raid_offload_debug);
853 static DEVICE_ATTR(firmware_revision, S_IRUGO,
854         host_show_firmware_revision, NULL);
855 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
856         host_show_commands_outstanding, NULL);
857 static DEVICE_ATTR(transport_mode, S_IRUGO,
858         host_show_transport_mode, NULL);
859 static DEVICE_ATTR(resettable, S_IRUGO,
860         host_show_resettable, NULL);
861 static DEVICE_ATTR(lockup_detected, S_IRUGO,
862         host_show_lockup_detected, NULL);
863
864 static struct device_attribute *hpsa_sdev_attrs[] = {
865         &dev_attr_raid_level,
866         &dev_attr_lunid,
867         &dev_attr_unique_id,
868         &dev_attr_hp_ssd_smart_path_enabled,
869         &dev_attr_path_info,
870         NULL,
871 };
872
873 static struct device_attribute *hpsa_shost_attrs[] = {
874         &dev_attr_rescan,
875         &dev_attr_firmware_revision,
876         &dev_attr_commands_outstanding,
877         &dev_attr_transport_mode,
878         &dev_attr_resettable,
879         &dev_attr_hp_ssd_smart_path_status,
880         &dev_attr_raid_offload_debug,
881         &dev_attr_lockup_detected,
882         NULL,
883 };
884
885 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
886                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
887
888 static struct scsi_host_template hpsa_driver_template = {
889         .module                 = THIS_MODULE,
890         .name                   = HPSA,
891         .proc_name              = HPSA,
892         .queuecommand           = hpsa_scsi_queue_command,
893         .scan_start             = hpsa_scan_start,
894         .scan_finished          = hpsa_scan_finished,
895         .change_queue_depth     = hpsa_change_queue_depth,
896         .this_id                = -1,
897         .use_clustering         = ENABLE_CLUSTERING,
898         .eh_abort_handler       = hpsa_eh_abort_handler,
899         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
900         .ioctl                  = hpsa_ioctl,
901         .slave_alloc            = hpsa_slave_alloc,
902         .slave_configure        = hpsa_slave_configure,
903         .slave_destroy          = hpsa_slave_destroy,
904 #ifdef CONFIG_COMPAT
905         .compat_ioctl           = hpsa_compat_ioctl,
906 #endif
907         .sdev_attrs = hpsa_sdev_attrs,
908         .shost_attrs = hpsa_shost_attrs,
909         .max_sectors = 8192,
910         .no_write_same = 1,
911 };
912
913 static inline u32 next_command(struct ctlr_info *h, u8 q)
914 {
915         u32 a;
916         struct reply_queue_buffer *rq = &h->reply_queue[q];
917
918         if (h->transMethod & CFGTBL_Trans_io_accel1)
919                 return h->access.command_completed(h, q);
920
921         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
922                 return h->access.command_completed(h, q);
923
924         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
925                 a = rq->head[rq->current_entry];
926                 rq->current_entry++;
927                 atomic_dec(&h->commands_outstanding);
928         } else {
929                 a = FIFO_EMPTY;
930         }
931         /* Check for wraparound */
932         if (rq->current_entry == h->max_commands) {
933                 rq->current_entry = 0;
934                 rq->wraparound ^= 1;
935         }
936         return a;
937 }
938
939 /*
940  * There are some special bits in the bus address of the
941  * command that we have to set for the controller to know
942  * how to process the command:
943  *
944  * Normal performant mode:
945  * bit 0: 1 means performant mode, 0 means simple mode.
946  * bits 1-3 = block fetch table entry
947  * bits 4-6 = command type (== 0)
948  *
949  * ioaccel1 mode:
950  * bit 0 = "performant mode" bit.
951  * bits 1-3 = block fetch table entry
952  * bits 4-6 = command type (== 110)
953  * (command type is needed because ioaccel1 mode
954  * commands are submitted through the same register as normal
955  * mode commands, so this is how the controller knows whether
956  * the command is normal mode or ioaccel1 mode.)
957  *
958  * ioaccel2 mode:
959  * bit 0 = "performant mode" bit.
960  * bits 1-4 = block fetch table entry (note extra bit)
961  * bits 4-6 = not needed, because ioaccel2 mode has
962  * a separate special register for submitting commands.
963  */
964
965 /*
966  * set_performant_mode: Modify the tag for cciss performant
967  * set bit 0 for pull model, bits 3-1 for block fetch
968  * register number
969  */
970 #define DEFAULT_REPLY_QUEUE (-1)
971 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
972                                         int reply_queue)
973 {
974         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
975                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
976                 if (unlikely(!h->msix_vector))
977                         return;
978                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
979                         c->Header.ReplyQueue =
980                                 raw_smp_processor_id() % h->nreply_queues;
981                 else
982                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
983         }
984 }
985
986 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
987                                                 struct CommandList *c,
988                                                 int reply_queue)
989 {
990         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
991
992         /*
993          * Tell the controller to post the reply to the queue for this
994          * processor.  This seems to give the best I/O throughput.
995          */
996         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
997                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
998         else
999                 cp->ReplyQueue = reply_queue % h->nreply_queues;
1000         /*
1001          * Set the bits in the address sent down to include:
1002          *  - performant mode bit (bit 0)
1003          *  - pull count (bits 1-3)
1004          *  - command type (bits 4-6)
1005          */
1006         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1007                                         IOACCEL1_BUSADDR_CMDTYPE;
1008 }
1009
1010 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1011                                                 struct CommandList *c,
1012                                                 int reply_queue)
1013 {
1014         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1015                 &h->ioaccel2_cmd_pool[c->cmdindex];
1016
1017         /* Tell the controller to post the reply to the queue for this
1018          * processor.  This seems to give the best I/O throughput.
1019          */
1020         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1021                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1022         else
1023                 cp->reply_queue = reply_queue % h->nreply_queues;
1024         /* Set the bits in the address sent down to include:
1025          *  - performant mode bit not used in ioaccel mode 2
1026          *  - pull count (bits 0-3)
1027          *  - command type isn't needed for ioaccel2
1028          */
1029         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1030 }
1031
1032 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1033                                                 struct CommandList *c,
1034                                                 int reply_queue)
1035 {
1036         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1037
1038         /*
1039          * Tell the controller to post the reply to the queue for this
1040          * processor.  This seems to give the best I/O throughput.
1041          */
1042         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1043                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1044         else
1045                 cp->reply_queue = reply_queue % h->nreply_queues;
1046         /*
1047          * Set the bits in the address sent down to include:
1048          *  - performant mode bit not used in ioaccel mode 2
1049          *  - pull count (bits 0-3)
1050          *  - command type isn't needed for ioaccel2
1051          */
1052         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1053 }
1054
1055 static int is_firmware_flash_cmd(u8 *cdb)
1056 {
1057         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1058 }
1059
1060 /*
1061  * During firmware flash, the heartbeat register may not update as frequently
1062  * as it should.  So we dial down lockup detection during firmware flash. and
1063  * dial it back up when firmware flash completes.
1064  */
1065 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1066 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1067 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1068                 struct CommandList *c)
1069 {
1070         if (!is_firmware_flash_cmd(c->Request.CDB))
1071                 return;
1072         atomic_inc(&h->firmware_flash_in_progress);
1073         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1074 }
1075
1076 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1077                 struct CommandList *c)
1078 {
1079         if (is_firmware_flash_cmd(c->Request.CDB) &&
1080                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1081                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1082 }
1083
1084 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1085         struct CommandList *c, int reply_queue)
1086 {
1087         dial_down_lockup_detection_during_fw_flash(h, c);
1088         atomic_inc(&h->commands_outstanding);
1089         switch (c->cmd_type) {
1090         case CMD_IOACCEL1:
1091                 set_ioaccel1_performant_mode(h, c, reply_queue);
1092                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1093                 break;
1094         case CMD_IOACCEL2:
1095                 set_ioaccel2_performant_mode(h, c, reply_queue);
1096                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1097                 break;
1098         case IOACCEL2_TMF:
1099                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1100                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1101                 break;
1102         default:
1103                 set_performant_mode(h, c, reply_queue);
1104                 h->access.submit_command(h, c);
1105         }
1106 }
1107
1108 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1109 {
1110         if (unlikely(hpsa_is_pending_event(c)))
1111                 return finish_cmd(c);
1112
1113         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1114 }
1115
1116 static inline int is_hba_lunid(unsigned char scsi3addr[])
1117 {
1118         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1119 }
1120
1121 static inline int is_scsi_rev_5(struct ctlr_info *h)
1122 {
1123         if (!h->hba_inquiry_data)
1124                 return 0;
1125         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1126                 return 1;
1127         return 0;
1128 }
1129
1130 static int hpsa_find_target_lun(struct ctlr_info *h,
1131         unsigned char scsi3addr[], int bus, int *target, int *lun)
1132 {
1133         /* finds an unused bus, target, lun for a new physical device
1134          * assumes h->devlock is held
1135          */
1136         int i, found = 0;
1137         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1138
1139         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1140
1141         for (i = 0; i < h->ndevices; i++) {
1142                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1143                         __set_bit(h->dev[i]->target, lun_taken);
1144         }
1145
1146         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1147         if (i < HPSA_MAX_DEVICES) {
1148                 /* *bus = 1; */
1149                 *target = i;
1150                 *lun = 0;
1151                 found = 1;
1152         }
1153         return !found;
1154 }
1155
1156 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1157         struct hpsa_scsi_dev_t *dev, char *description)
1158 {
1159 #define LABEL_SIZE 25
1160         char label[LABEL_SIZE];
1161
1162         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1163                 return;
1164
1165         switch (dev->devtype) {
1166         case TYPE_RAID:
1167                 snprintf(label, LABEL_SIZE, "controller");
1168                 break;
1169         case TYPE_ENCLOSURE:
1170                 snprintf(label, LABEL_SIZE, "enclosure");
1171                 break;
1172         case TYPE_DISK:
1173                 if (dev->external)
1174                         snprintf(label, LABEL_SIZE, "external");
1175                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1176                         snprintf(label, LABEL_SIZE, "%s",
1177                                 raid_label[PHYSICAL_DRIVE]);
1178                 else
1179                         snprintf(label, LABEL_SIZE, "RAID-%s",
1180                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1181                                 raid_label[dev->raid_level]);
1182                 break;
1183         case TYPE_ROM:
1184                 snprintf(label, LABEL_SIZE, "rom");
1185                 break;
1186         case TYPE_TAPE:
1187                 snprintf(label, LABEL_SIZE, "tape");
1188                 break;
1189         case TYPE_MEDIUM_CHANGER:
1190                 snprintf(label, LABEL_SIZE, "changer");
1191                 break;
1192         default:
1193                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1194                 break;
1195         }
1196
1197         dev_printk(level, &h->pdev->dev,
1198                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1199                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1200                         description,
1201                         scsi_device_type(dev->devtype),
1202                         dev->vendor,
1203                         dev->model,
1204                         label,
1205                         dev->offload_config ? '+' : '-',
1206                         dev->offload_enabled ? '+' : '-',
1207                         dev->expose_device);
1208 }
1209
1210 /* Add an entry into h->dev[] array. */
1211 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1212                 struct hpsa_scsi_dev_t *device,
1213                 struct hpsa_scsi_dev_t *added[], int *nadded)
1214 {
1215         /* assumes h->devlock is held */
1216         int n = h->ndevices;
1217         int i;
1218         unsigned char addr1[8], addr2[8];
1219         struct hpsa_scsi_dev_t *sd;
1220
1221         if (n >= HPSA_MAX_DEVICES) {
1222                 dev_err(&h->pdev->dev, "too many devices, some will be "
1223                         "inaccessible.\n");
1224                 return -1;
1225         }
1226
1227         /* physical devices do not have lun or target assigned until now. */
1228         if (device->lun != -1)
1229                 /* Logical device, lun is already assigned. */
1230                 goto lun_assigned;
1231
1232         /* If this device a non-zero lun of a multi-lun device
1233          * byte 4 of the 8-byte LUN addr will contain the logical
1234          * unit no, zero otherwise.
1235          */
1236         if (device->scsi3addr[4] == 0) {
1237                 /* This is not a non-zero lun of a multi-lun device */
1238                 if (hpsa_find_target_lun(h, device->scsi3addr,
1239                         device->bus, &device->target, &device->lun) != 0)
1240                         return -1;
1241                 goto lun_assigned;
1242         }
1243
1244         /* This is a non-zero lun of a multi-lun device.
1245          * Search through our list and find the device which
1246          * has the same 8 byte LUN address, excepting byte 4 and 5.
1247          * Assign the same bus and target for this new LUN.
1248          * Use the logical unit number from the firmware.
1249          */
1250         memcpy(addr1, device->scsi3addr, 8);
1251         addr1[4] = 0;
1252         addr1[5] = 0;
1253         for (i = 0; i < n; i++) {
1254                 sd = h->dev[i];
1255                 memcpy(addr2, sd->scsi3addr, 8);
1256                 addr2[4] = 0;
1257                 addr2[5] = 0;
1258                 /* differ only in byte 4 and 5? */
1259                 if (memcmp(addr1, addr2, 8) == 0) {
1260                         device->bus = sd->bus;
1261                         device->target = sd->target;
1262                         device->lun = device->scsi3addr[4];
1263                         break;
1264                 }
1265         }
1266         if (device->lun == -1) {
1267                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1268                         " suspect firmware bug or unsupported hardware "
1269                         "configuration.\n");
1270                         return -1;
1271         }
1272
1273 lun_assigned:
1274
1275         h->dev[n] = device;
1276         h->ndevices++;
1277         added[*nadded] = device;
1278         (*nadded)++;
1279         hpsa_show_dev_msg(KERN_INFO, h, device,
1280                 device->expose_device ? "added" : "masked");
1281         device->offload_to_be_enabled = device->offload_enabled;
1282         device->offload_enabled = 0;
1283         return 0;
1284 }
1285
1286 /* Update an entry in h->dev[] array. */
1287 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1288         int entry, struct hpsa_scsi_dev_t *new_entry)
1289 {
1290         int offload_enabled;
1291         /* assumes h->devlock is held */
1292         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1293
1294         /* Raid level changed. */
1295         h->dev[entry]->raid_level = new_entry->raid_level;
1296
1297         /* Raid offload parameters changed.  Careful about the ordering. */
1298         if (new_entry->offload_config && new_entry->offload_enabled) {
1299                 /*
1300                  * if drive is newly offload_enabled, we want to copy the
1301                  * raid map data first.  If previously offload_enabled and
1302                  * offload_config were set, raid map data had better be
1303                  * the same as it was before.  if raid map data is changed
1304                  * then it had better be the case that
1305                  * h->dev[entry]->offload_enabled is currently 0.
1306                  */
1307                 h->dev[entry]->raid_map = new_entry->raid_map;
1308                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1309         }
1310         if (new_entry->hba_ioaccel_enabled) {
1311                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1312                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1313         }
1314         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1315         h->dev[entry]->offload_config = new_entry->offload_config;
1316         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1317         h->dev[entry]->queue_depth = new_entry->queue_depth;
1318
1319         /*
1320          * We can turn off ioaccel offload now, but need to delay turning
1321          * it on until we can update h->dev[entry]->phys_disk[], but we
1322          * can't do that until all the devices are updated.
1323          */
1324         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1325         if (!new_entry->offload_enabled)
1326                 h->dev[entry]->offload_enabled = 0;
1327
1328         offload_enabled = h->dev[entry]->offload_enabled;
1329         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1330         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1331         h->dev[entry]->offload_enabled = offload_enabled;
1332 }
1333
1334 /* Replace an entry from h->dev[] array. */
1335 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1336         int entry, struct hpsa_scsi_dev_t *new_entry,
1337         struct hpsa_scsi_dev_t *added[], int *nadded,
1338         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1339 {
1340         /* assumes h->devlock is held */
1341         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1342         removed[*nremoved] = h->dev[entry];
1343         (*nremoved)++;
1344
1345         /*
1346          * New physical devices won't have target/lun assigned yet
1347          * so we need to preserve the values in the slot we are replacing.
1348          */
1349         if (new_entry->target == -1) {
1350                 new_entry->target = h->dev[entry]->target;
1351                 new_entry->lun = h->dev[entry]->lun;
1352         }
1353
1354         h->dev[entry] = new_entry;
1355         added[*nadded] = new_entry;
1356         (*nadded)++;
1357         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1358         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1359         new_entry->offload_enabled = 0;
1360 }
1361
1362 /* Remove an entry from h->dev[] array. */
1363 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1364         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1365 {
1366         /* assumes h->devlock is held */
1367         int i;
1368         struct hpsa_scsi_dev_t *sd;
1369
1370         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1371
1372         sd = h->dev[entry];
1373         removed[*nremoved] = h->dev[entry];
1374         (*nremoved)++;
1375
1376         for (i = entry; i < h->ndevices-1; i++)
1377                 h->dev[i] = h->dev[i+1];
1378         h->ndevices--;
1379         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1380 }
1381
1382 #define SCSI3ADDR_EQ(a, b) ( \
1383         (a)[7] == (b)[7] && \
1384         (a)[6] == (b)[6] && \
1385         (a)[5] == (b)[5] && \
1386         (a)[4] == (b)[4] && \
1387         (a)[3] == (b)[3] && \
1388         (a)[2] == (b)[2] && \
1389         (a)[1] == (b)[1] && \
1390         (a)[0] == (b)[0])
1391
1392 static void fixup_botched_add(struct ctlr_info *h,
1393         struct hpsa_scsi_dev_t *added)
1394 {
1395         /* called when scsi_add_device fails in order to re-adjust
1396          * h->dev[] to match the mid layer's view.
1397          */
1398         unsigned long flags;
1399         int i, j;
1400
1401         spin_lock_irqsave(&h->lock, flags);
1402         for (i = 0; i < h->ndevices; i++) {
1403                 if (h->dev[i] == added) {
1404                         for (j = i; j < h->ndevices-1; j++)
1405                                 h->dev[j] = h->dev[j+1];
1406                         h->ndevices--;
1407                         break;
1408                 }
1409         }
1410         spin_unlock_irqrestore(&h->lock, flags);
1411         kfree(added);
1412 }
1413
1414 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1415         struct hpsa_scsi_dev_t *dev2)
1416 {
1417         /* we compare everything except lun and target as these
1418          * are not yet assigned.  Compare parts likely
1419          * to differ first
1420          */
1421         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1422                 sizeof(dev1->scsi3addr)) != 0)
1423                 return 0;
1424         if (memcmp(dev1->device_id, dev2->device_id,
1425                 sizeof(dev1->device_id)) != 0)
1426                 return 0;
1427         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1428                 return 0;
1429         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1430                 return 0;
1431         if (dev1->devtype != dev2->devtype)
1432                 return 0;
1433         if (dev1->bus != dev2->bus)
1434                 return 0;
1435         return 1;
1436 }
1437
1438 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1439         struct hpsa_scsi_dev_t *dev2)
1440 {
1441         /* Device attributes that can change, but don't mean
1442          * that the device is a different device, nor that the OS
1443          * needs to be told anything about the change.
1444          */
1445         if (dev1->raid_level != dev2->raid_level)
1446                 return 1;
1447         if (dev1->offload_config != dev2->offload_config)
1448                 return 1;
1449         if (dev1->offload_enabled != dev2->offload_enabled)
1450                 return 1;
1451         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1452                 if (dev1->queue_depth != dev2->queue_depth)
1453                         return 1;
1454         return 0;
1455 }
1456
1457 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1458  * and return needle location in *index.  If scsi3addr matches, but not
1459  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1460  * location in *index.
1461  * In the case of a minor device attribute change, such as RAID level, just
1462  * return DEVICE_UPDATED, along with the updated device's location in index.
1463  * If needle not found, return DEVICE_NOT_FOUND.
1464  */
1465 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1466         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1467         int *index)
1468 {
1469         int i;
1470 #define DEVICE_NOT_FOUND 0
1471 #define DEVICE_CHANGED 1
1472 #define DEVICE_SAME 2
1473 #define DEVICE_UPDATED 3
1474         if (needle == NULL)
1475                 return DEVICE_NOT_FOUND;
1476
1477         for (i = 0; i < haystack_size; i++) {
1478                 if (haystack[i] == NULL) /* previously removed. */
1479                         continue;
1480                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1481                         *index = i;
1482                         if (device_is_the_same(needle, haystack[i])) {
1483                                 if (device_updated(needle, haystack[i]))
1484                                         return DEVICE_UPDATED;
1485                                 return DEVICE_SAME;
1486                         } else {
1487                                 /* Keep offline devices offline */
1488                                 if (needle->volume_offline)
1489                                         return DEVICE_NOT_FOUND;
1490                                 return DEVICE_CHANGED;
1491                         }
1492                 }
1493         }
1494         *index = -1;
1495         return DEVICE_NOT_FOUND;
1496 }
1497
1498 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1499                                         unsigned char scsi3addr[])
1500 {
1501         struct offline_device_entry *device;
1502         unsigned long flags;
1503
1504         /* Check to see if device is already on the list */
1505         spin_lock_irqsave(&h->offline_device_lock, flags);
1506         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1507                 if (memcmp(device->scsi3addr, scsi3addr,
1508                         sizeof(device->scsi3addr)) == 0) {
1509                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1510                         return;
1511                 }
1512         }
1513         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1514
1515         /* Device is not on the list, add it. */
1516         device = kmalloc(sizeof(*device), GFP_KERNEL);
1517         if (!device) {
1518                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1519                 return;
1520         }
1521         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1522         spin_lock_irqsave(&h->offline_device_lock, flags);
1523         list_add_tail(&device->offline_list, &h->offline_device_list);
1524         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1525 }
1526
1527 /* Print a message explaining various offline volume states */
1528 static void hpsa_show_volume_status(struct ctlr_info *h,
1529         struct hpsa_scsi_dev_t *sd)
1530 {
1531         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1532                 dev_info(&h->pdev->dev,
1533                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1534                         h->scsi_host->host_no,
1535                         sd->bus, sd->target, sd->lun);
1536         switch (sd->volume_offline) {
1537         case HPSA_LV_OK:
1538                 break;
1539         case HPSA_LV_UNDERGOING_ERASE:
1540                 dev_info(&h->pdev->dev,
1541                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1542                         h->scsi_host->host_no,
1543                         sd->bus, sd->target, sd->lun);
1544                 break;
1545         case HPSA_LV_NOT_AVAILABLE:
1546                 dev_info(&h->pdev->dev,
1547                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1548                         h->scsi_host->host_no,
1549                         sd->bus, sd->target, sd->lun);
1550                 break;
1551         case HPSA_LV_UNDERGOING_RPI:
1552                 dev_info(&h->pdev->dev,
1553                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1554                         h->scsi_host->host_no,
1555                         sd->bus, sd->target, sd->lun);
1556                 break;
1557         case HPSA_LV_PENDING_RPI:
1558                 dev_info(&h->pdev->dev,
1559                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1560                         h->scsi_host->host_no,
1561                         sd->bus, sd->target, sd->lun);
1562                 break;
1563         case HPSA_LV_ENCRYPTED_NO_KEY:
1564                 dev_info(&h->pdev->dev,
1565                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1566                         h->scsi_host->host_no,
1567                         sd->bus, sd->target, sd->lun);
1568                 break;
1569         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1570                 dev_info(&h->pdev->dev,
1571                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1572                         h->scsi_host->host_no,
1573                         sd->bus, sd->target, sd->lun);
1574                 break;
1575         case HPSA_LV_UNDERGOING_ENCRYPTION:
1576                 dev_info(&h->pdev->dev,
1577                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1578                         h->scsi_host->host_no,
1579                         sd->bus, sd->target, sd->lun);
1580                 break;
1581         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1582                 dev_info(&h->pdev->dev,
1583                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1584                         h->scsi_host->host_no,
1585                         sd->bus, sd->target, sd->lun);
1586                 break;
1587         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1588                 dev_info(&h->pdev->dev,
1589                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1590                         h->scsi_host->host_no,
1591                         sd->bus, sd->target, sd->lun);
1592                 break;
1593         case HPSA_LV_PENDING_ENCRYPTION:
1594                 dev_info(&h->pdev->dev,
1595                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1596                         h->scsi_host->host_no,
1597                         sd->bus, sd->target, sd->lun);
1598                 break;
1599         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1600                 dev_info(&h->pdev->dev,
1601                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1602                         h->scsi_host->host_no,
1603                         sd->bus, sd->target, sd->lun);
1604                 break;
1605         }
1606 }
1607
1608 /*
1609  * Figure the list of physical drive pointers for a logical drive with
1610  * raid offload configured.
1611  */
1612 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1613                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1614                                 struct hpsa_scsi_dev_t *logical_drive)
1615 {
1616         struct raid_map_data *map = &logical_drive->raid_map;
1617         struct raid_map_disk_data *dd = &map->data[0];
1618         int i, j;
1619         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1620                                 le16_to_cpu(map->metadata_disks_per_row);
1621         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1622                                 le16_to_cpu(map->layout_map_count) *
1623                                 total_disks_per_row;
1624         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1625                                 total_disks_per_row;
1626         int qdepth;
1627
1628         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1629                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1630
1631         logical_drive->nphysical_disks = nraid_map_entries;
1632
1633         qdepth = 0;
1634         for (i = 0; i < nraid_map_entries; i++) {
1635                 logical_drive->phys_disk[i] = NULL;
1636                 if (!logical_drive->offload_config)
1637                         continue;
1638                 for (j = 0; j < ndevices; j++) {
1639                         if (dev[j] == NULL)
1640                                 continue;
1641                         if (dev[j]->devtype != TYPE_DISK)
1642                                 continue;
1643                         if (is_logical_device(dev[j]))
1644                                 continue;
1645                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1646                                 continue;
1647
1648                         logical_drive->phys_disk[i] = dev[j];
1649                         if (i < nphys_disk)
1650                                 qdepth = min(h->nr_cmds, qdepth +
1651                                     logical_drive->phys_disk[i]->queue_depth);
1652                         break;
1653                 }
1654
1655                 /*
1656                  * This can happen if a physical drive is removed and
1657                  * the logical drive is degraded.  In that case, the RAID
1658                  * map data will refer to a physical disk which isn't actually
1659                  * present.  And in that case offload_enabled should already
1660                  * be 0, but we'll turn it off here just in case
1661                  */
1662                 if (!logical_drive->phys_disk[i]) {
1663                         logical_drive->offload_enabled = 0;
1664                         logical_drive->offload_to_be_enabled = 0;
1665                         logical_drive->queue_depth = 8;
1666                 }
1667         }
1668         if (nraid_map_entries)
1669                 /*
1670                  * This is correct for reads, too high for full stripe writes,
1671                  * way too high for partial stripe writes
1672                  */
1673                 logical_drive->queue_depth = qdepth;
1674         else
1675                 logical_drive->queue_depth = h->nr_cmds;
1676 }
1677
1678 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1679                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1680 {
1681         int i;
1682
1683         for (i = 0; i < ndevices; i++) {
1684                 if (dev[i] == NULL)
1685                         continue;
1686                 if (dev[i]->devtype != TYPE_DISK)
1687                         continue;
1688                 if (!is_logical_device(dev[i]))
1689                         continue;
1690
1691                 /*
1692                  * If offload is currently enabled, the RAID map and
1693                  * phys_disk[] assignment *better* not be changing
1694                  * and since it isn't changing, we do not need to
1695                  * update it.
1696                  */
1697                 if (dev[i]->offload_enabled)
1698                         continue;
1699
1700                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1701         }
1702 }
1703
1704 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1705 {
1706         int rc = 0;
1707
1708         if (!h->scsi_host)
1709                 return 1;
1710
1711         if (is_logical_device(device)) /* RAID */
1712                 rc = scsi_add_device(h->scsi_host, device->bus,
1713                                         device->target, device->lun);
1714         else /* HBA */
1715                 rc = hpsa_add_sas_device(h->sas_host, device);
1716
1717         return rc;
1718 }
1719
1720 static void hpsa_remove_device(struct ctlr_info *h,
1721                         struct hpsa_scsi_dev_t *device)
1722 {
1723         struct scsi_device *sdev = NULL;
1724
1725         if (!h->scsi_host)
1726                 return;
1727
1728         if (is_logical_device(device)) { /* RAID */
1729                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1730                                                 device->target, device->lun);
1731                 if (sdev) {
1732                         scsi_remove_device(sdev);
1733                         scsi_device_put(sdev);
1734                 } else {
1735                         /*
1736                          * We don't expect to get here.  Future commands
1737                          * to this device will get a selection timeout as
1738                          * if the device were gone.
1739                          */
1740                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1741                                         "didn't find device for removal.");
1742                 }
1743         } else /* HBA */
1744                 hpsa_remove_sas_device(device);
1745 }
1746
1747 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1748         struct hpsa_scsi_dev_t *sd[], int nsds)
1749 {
1750         /* sd contains scsi3 addresses and devtypes, and inquiry
1751          * data.  This function takes what's in sd to be the current
1752          * reality and updates h->dev[] to reflect that reality.
1753          */
1754         int i, entry, device_change, changes = 0;
1755         struct hpsa_scsi_dev_t *csd;
1756         unsigned long flags;
1757         struct hpsa_scsi_dev_t **added, **removed;
1758         int nadded, nremoved;
1759
1760         /*
1761          * A reset can cause a device status to change
1762          * re-schedule the scan to see what happened.
1763          */
1764         if (h->reset_in_progress) {
1765                 h->drv_req_rescan = 1;
1766                 return;
1767         }
1768
1769         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1770         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1771
1772         if (!added || !removed) {
1773                 dev_warn(&h->pdev->dev, "out of memory in "
1774                         "adjust_hpsa_scsi_table\n");
1775                 goto free_and_out;
1776         }
1777
1778         spin_lock_irqsave(&h->devlock, flags);
1779
1780         /* find any devices in h->dev[] that are not in
1781          * sd[] and remove them from h->dev[], and for any
1782          * devices which have changed, remove the old device
1783          * info and add the new device info.
1784          * If minor device attributes change, just update
1785          * the existing device structure.
1786          */
1787         i = 0;
1788         nremoved = 0;
1789         nadded = 0;
1790         while (i < h->ndevices) {
1791                 csd = h->dev[i];
1792                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1793                 if (device_change == DEVICE_NOT_FOUND) {
1794                         changes++;
1795                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1796                         continue; /* remove ^^^, hence i not incremented */
1797                 } else if (device_change == DEVICE_CHANGED) {
1798                         changes++;
1799                         hpsa_scsi_replace_entry(h, i, sd[entry],
1800                                 added, &nadded, removed, &nremoved);
1801                         /* Set it to NULL to prevent it from being freed
1802                          * at the bottom of hpsa_update_scsi_devices()
1803                          */
1804                         sd[entry] = NULL;
1805                 } else if (device_change == DEVICE_UPDATED) {
1806                         hpsa_scsi_update_entry(h, i, sd[entry]);
1807                 }
1808                 i++;
1809         }
1810
1811         /* Now, make sure every device listed in sd[] is also
1812          * listed in h->dev[], adding them if they aren't found
1813          */
1814
1815         for (i = 0; i < nsds; i++) {
1816                 if (!sd[i]) /* if already added above. */
1817                         continue;
1818
1819                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1820                  * as the SCSI mid-layer does not handle such devices well.
1821                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1822                  * at 160Hz, and prevents the system from coming up.
1823                  */
1824                 if (sd[i]->volume_offline) {
1825                         hpsa_show_volume_status(h, sd[i]);
1826                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1827                         continue;
1828                 }
1829
1830                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1831                                         h->ndevices, &entry);
1832                 if (device_change == DEVICE_NOT_FOUND) {
1833                         changes++;
1834                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1835                                 break;
1836                         sd[i] = NULL; /* prevent from being freed later. */
1837                 } else if (device_change == DEVICE_CHANGED) {
1838                         /* should never happen... */
1839                         changes++;
1840                         dev_warn(&h->pdev->dev,
1841                                 "device unexpectedly changed.\n");
1842                         /* but if it does happen, we just ignore that device */
1843                 }
1844         }
1845         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1846
1847         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1848          * any logical drives that need it enabled.
1849          */
1850         for (i = 0; i < h->ndevices; i++) {
1851                 if (h->dev[i] == NULL)
1852                         continue;
1853                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1854         }
1855
1856         spin_unlock_irqrestore(&h->devlock, flags);
1857
1858         /* Monitor devices which are in one of several NOT READY states to be
1859          * brought online later. This must be done without holding h->devlock,
1860          * so don't touch h->dev[]
1861          */
1862         for (i = 0; i < nsds; i++) {
1863                 if (!sd[i]) /* if already added above. */
1864                         continue;
1865                 if (sd[i]->volume_offline)
1866                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1867         }
1868
1869         /* Don't notify scsi mid layer of any changes the first time through
1870          * (or if there are no changes) scsi_scan_host will do it later the
1871          * first time through.
1872          */
1873         if (!changes)
1874                 goto free_and_out;
1875
1876         /* Notify scsi mid layer of any removed devices */
1877         for (i = 0; i < nremoved; i++) {
1878                 if (removed[i] == NULL)
1879                         continue;
1880                 if (removed[i]->expose_device)
1881                         hpsa_remove_device(h, removed[i]);
1882                 kfree(removed[i]);
1883                 removed[i] = NULL;
1884         }
1885
1886         /* Notify scsi mid layer of any added devices */
1887         for (i = 0; i < nadded; i++) {
1888                 int rc = 0;
1889
1890                 if (added[i] == NULL)
1891                         continue;
1892                 if (!(added[i]->expose_device))
1893                         continue;
1894                 rc = hpsa_add_device(h, added[i]);
1895                 if (!rc)
1896                         continue;
1897                 dev_warn(&h->pdev->dev,
1898                         "addition failed %d, device not added.", rc);
1899                 /* now we have to remove it from h->dev,
1900                  * since it didn't get added to scsi mid layer
1901                  */
1902                 fixup_botched_add(h, added[i]);
1903                 h->drv_req_rescan = 1;
1904         }
1905
1906 free_and_out:
1907         kfree(added);
1908         kfree(removed);
1909 }
1910
1911 /*
1912  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1913  * Assume's h->devlock is held.
1914  */
1915 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1916         int bus, int target, int lun)
1917 {
1918         int i;
1919         struct hpsa_scsi_dev_t *sd;
1920
1921         for (i = 0; i < h->ndevices; i++) {
1922                 sd = h->dev[i];
1923                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1924                         return sd;
1925         }
1926         return NULL;
1927 }
1928
1929 static int hpsa_slave_alloc(struct scsi_device *sdev)
1930 {
1931         struct hpsa_scsi_dev_t *sd;
1932         unsigned long flags;
1933         struct ctlr_info *h;
1934
1935         h = sdev_to_hba(sdev);
1936         spin_lock_irqsave(&h->devlock, flags);
1937         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
1938                 struct scsi_target *starget;
1939                 struct sas_rphy *rphy;
1940
1941                 starget = scsi_target(sdev);
1942                 rphy = target_to_rphy(starget);
1943                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
1944                 if (sd) {
1945                         sd->target = sdev_id(sdev);
1946                         sd->lun = sdev->lun;
1947                 }
1948         } else
1949                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1950                                         sdev_id(sdev), sdev->lun);
1951
1952         if (sd && sd->expose_device) {
1953                 atomic_set(&sd->ioaccel_cmds_out, 0);
1954                 sdev->hostdata = sd;
1955         } else
1956                 sdev->hostdata = NULL;
1957         spin_unlock_irqrestore(&h->devlock, flags);
1958         return 0;
1959 }
1960
1961 /* configure scsi device based on internal per-device structure */
1962 static int hpsa_slave_configure(struct scsi_device *sdev)
1963 {
1964         struct hpsa_scsi_dev_t *sd;
1965         int queue_depth;
1966
1967         sd = sdev->hostdata;
1968         sdev->no_uld_attach = !sd || !sd->expose_device;
1969
1970         if (sd)
1971                 queue_depth = sd->queue_depth != 0 ?
1972                         sd->queue_depth : sdev->host->can_queue;
1973         else
1974                 queue_depth = sdev->host->can_queue;
1975
1976         scsi_change_queue_depth(sdev, queue_depth);
1977
1978         return 0;
1979 }
1980
1981 static void hpsa_slave_destroy(struct scsi_device *sdev)
1982 {
1983         /* nothing to do. */
1984 }
1985
1986 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1987 {
1988         int i;
1989
1990         if (!h->ioaccel2_cmd_sg_list)
1991                 return;
1992         for (i = 0; i < h->nr_cmds; i++) {
1993                 kfree(h->ioaccel2_cmd_sg_list[i]);
1994                 h->ioaccel2_cmd_sg_list[i] = NULL;
1995         }
1996         kfree(h->ioaccel2_cmd_sg_list);
1997         h->ioaccel2_cmd_sg_list = NULL;
1998 }
1999
2000 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2001 {
2002         int i;
2003
2004         if (h->chainsize <= 0)
2005                 return 0;
2006
2007         h->ioaccel2_cmd_sg_list =
2008                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2009                                         GFP_KERNEL);
2010         if (!h->ioaccel2_cmd_sg_list)
2011                 return -ENOMEM;
2012         for (i = 0; i < h->nr_cmds; i++) {
2013                 h->ioaccel2_cmd_sg_list[i] =
2014                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2015                                         h->maxsgentries, GFP_KERNEL);
2016                 if (!h->ioaccel2_cmd_sg_list[i])
2017                         goto clean;
2018         }
2019         return 0;
2020
2021 clean:
2022         hpsa_free_ioaccel2_sg_chain_blocks(h);
2023         return -ENOMEM;
2024 }
2025
2026 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2027 {
2028         int i;
2029
2030         if (!h->cmd_sg_list)
2031                 return;
2032         for (i = 0; i < h->nr_cmds; i++) {
2033                 kfree(h->cmd_sg_list[i]);
2034                 h->cmd_sg_list[i] = NULL;
2035         }
2036         kfree(h->cmd_sg_list);
2037         h->cmd_sg_list = NULL;
2038 }
2039
2040 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2041 {
2042         int i;
2043
2044         if (h->chainsize <= 0)
2045                 return 0;
2046
2047         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2048                                 GFP_KERNEL);
2049         if (!h->cmd_sg_list) {
2050                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2051                 return -ENOMEM;
2052         }
2053         for (i = 0; i < h->nr_cmds; i++) {
2054                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2055                                                 h->chainsize, GFP_KERNEL);
2056                 if (!h->cmd_sg_list[i]) {
2057                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2058                         goto clean;
2059                 }
2060         }
2061         return 0;
2062
2063 clean:
2064         hpsa_free_sg_chain_blocks(h);
2065         return -ENOMEM;
2066 }
2067
2068 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2069         struct io_accel2_cmd *cp, struct CommandList *c)
2070 {
2071         struct ioaccel2_sg_element *chain_block;
2072         u64 temp64;
2073         u32 chain_size;
2074
2075         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2076         chain_size = le32_to_cpu(cp->sg[0].length);
2077         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2078                                 PCI_DMA_TODEVICE);
2079         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2080                 /* prevent subsequent unmapping */
2081                 cp->sg->address = 0;
2082                 return -1;
2083         }
2084         cp->sg->address = cpu_to_le64(temp64);
2085         return 0;
2086 }
2087
2088 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2089         struct io_accel2_cmd *cp)
2090 {
2091         struct ioaccel2_sg_element *chain_sg;
2092         u64 temp64;
2093         u32 chain_size;
2094
2095         chain_sg = cp->sg;
2096         temp64 = le64_to_cpu(chain_sg->address);
2097         chain_size = le32_to_cpu(cp->sg[0].length);
2098         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2099 }
2100
2101 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2102         struct CommandList *c)
2103 {
2104         struct SGDescriptor *chain_sg, *chain_block;
2105         u64 temp64;
2106         u32 chain_len;
2107
2108         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2109         chain_block = h->cmd_sg_list[c->cmdindex];
2110         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2111         chain_len = sizeof(*chain_sg) *
2112                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2113         chain_sg->Len = cpu_to_le32(chain_len);
2114         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2115                                 PCI_DMA_TODEVICE);
2116         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2117                 /* prevent subsequent unmapping */
2118                 chain_sg->Addr = cpu_to_le64(0);
2119                 return -1;
2120         }
2121         chain_sg->Addr = cpu_to_le64(temp64);
2122         return 0;
2123 }
2124
2125 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2126         struct CommandList *c)
2127 {
2128         struct SGDescriptor *chain_sg;
2129
2130         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2131                 return;
2132
2133         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2134         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2135                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2136 }
2137
2138
2139 /* Decode the various types of errors on ioaccel2 path.
2140  * Return 1 for any error that should generate a RAID path retry.
2141  * Return 0 for errors that don't require a RAID path retry.
2142  */
2143 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2144                                         struct CommandList *c,
2145                                         struct scsi_cmnd *cmd,
2146                                         struct io_accel2_cmd *c2)
2147 {
2148         int data_len;
2149         int retry = 0;
2150         u32 ioaccel2_resid = 0;
2151
2152         switch (c2->error_data.serv_response) {
2153         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2154                 switch (c2->error_data.status) {
2155                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2156                         break;
2157                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2158                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2159                         if (c2->error_data.data_present !=
2160                                         IOACCEL2_SENSE_DATA_PRESENT) {
2161                                 memset(cmd->sense_buffer, 0,
2162                                         SCSI_SENSE_BUFFERSIZE);
2163                                 break;
2164                         }
2165                         /* copy the sense data */
2166                         data_len = c2->error_data.sense_data_len;
2167                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2168                                 data_len = SCSI_SENSE_BUFFERSIZE;
2169                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2170                                 data_len =
2171                                         sizeof(c2->error_data.sense_data_buff);
2172                         memcpy(cmd->sense_buffer,
2173                                 c2->error_data.sense_data_buff, data_len);
2174                         retry = 1;
2175                         break;
2176                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2177                         retry = 1;
2178                         break;
2179                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2180                         retry = 1;
2181                         break;
2182                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2183                         retry = 1;
2184                         break;
2185                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2186                         retry = 1;
2187                         break;
2188                 default:
2189                         retry = 1;
2190                         break;
2191                 }
2192                 break;
2193         case IOACCEL2_SERV_RESPONSE_FAILURE:
2194                 switch (c2->error_data.status) {
2195                 case IOACCEL2_STATUS_SR_IO_ERROR:
2196                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2197                 case IOACCEL2_STATUS_SR_OVERRUN:
2198                         retry = 1;
2199                         break;
2200                 case IOACCEL2_STATUS_SR_UNDERRUN:
2201                         cmd->result = (DID_OK << 16);           /* host byte */
2202                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2203                         ioaccel2_resid = get_unaligned_le32(
2204                                                 &c2->error_data.resid_cnt[0]);
2205                         scsi_set_resid(cmd, ioaccel2_resid);
2206                         break;
2207                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2208                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2209                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2210                         /* We will get an event from ctlr to trigger rescan */
2211                         retry = 1;
2212                         break;
2213                 default:
2214                         retry = 1;
2215                 }
2216                 break;
2217         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2218                 break;
2219         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2220                 break;
2221         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2222                 retry = 1;
2223                 break;
2224         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2225                 break;
2226         default:
2227                 retry = 1;
2228                 break;
2229         }
2230
2231         return retry;   /* retry on raid path? */
2232 }
2233
2234 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2235                 struct CommandList *c)
2236 {
2237         bool do_wake = false;
2238
2239         /*
2240          * Prevent the following race in the abort handler:
2241          *
2242          * 1. LLD is requested to abort a SCSI command
2243          * 2. The SCSI command completes
2244          * 3. The struct CommandList associated with step 2 is made available
2245          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2246          * 5. Abort handler follows scsi_cmnd->host_scribble and
2247          *    finds struct CommandList and tries to aborts it
2248          * Now we have aborted the wrong command.
2249          *
2250          * Reset c->scsi_cmd here so that the abort or reset handler will know
2251          * this command has completed.  Then, check to see if the handler is
2252          * waiting for this command, and, if so, wake it.
2253          */
2254         c->scsi_cmd = SCSI_CMD_IDLE;
2255         mb();   /* Declare command idle before checking for pending events. */
2256         if (c->abort_pending) {
2257                 do_wake = true;
2258                 c->abort_pending = false;
2259         }
2260         if (c->reset_pending) {
2261                 unsigned long flags;
2262                 struct hpsa_scsi_dev_t *dev;
2263
2264                 /*
2265                  * There appears to be a reset pending; lock the lock and
2266                  * reconfirm.  If so, then decrement the count of outstanding
2267                  * commands and wake the reset command if this is the last one.
2268                  */
2269                 spin_lock_irqsave(&h->lock, flags);
2270                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2271                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2272                         do_wake = true;
2273                 c->reset_pending = NULL;
2274                 spin_unlock_irqrestore(&h->lock, flags);
2275         }
2276
2277         if (do_wake)
2278                 wake_up_all(&h->event_sync_wait_queue);
2279 }
2280
2281 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2282                                       struct CommandList *c)
2283 {
2284         hpsa_cmd_resolve_events(h, c);
2285         cmd_tagged_free(h, c);
2286 }
2287
2288 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2289                 struct CommandList *c, struct scsi_cmnd *cmd)
2290 {
2291         hpsa_cmd_resolve_and_free(h, c);
2292         cmd->scsi_done(cmd);
2293 }
2294
2295 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2296 {
2297         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2298         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2299 }
2300
2301 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2302 {
2303         cmd->result = DID_ABORT << 16;
2304 }
2305
2306 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2307                                     struct scsi_cmnd *cmd)
2308 {
2309         hpsa_set_scsi_cmd_aborted(cmd);
2310         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2311                          c->Request.CDB, c->err_info->ScsiStatus);
2312         hpsa_cmd_resolve_and_free(h, c);
2313 }
2314
2315 static void process_ioaccel2_completion(struct ctlr_info *h,
2316                 struct CommandList *c, struct scsi_cmnd *cmd,
2317                 struct hpsa_scsi_dev_t *dev)
2318 {
2319         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2320
2321         /* check for good status */
2322         if (likely(c2->error_data.serv_response == 0 &&
2323                         c2->error_data.status == 0))
2324                 return hpsa_cmd_free_and_done(h, c, cmd);
2325
2326         /*
2327          * Any RAID offload error results in retry which will use
2328          * the normal I/O path so the controller can handle whatever's
2329          * wrong.
2330          */
2331         if (is_logical_device(dev) &&
2332                 c2->error_data.serv_response ==
2333                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2334                 if (c2->error_data.status ==
2335                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2336                         dev->offload_enabled = 0;
2337
2338                 return hpsa_retry_cmd(h, c);
2339         }
2340
2341         if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2342                 return hpsa_retry_cmd(h, c);
2343
2344         return hpsa_cmd_free_and_done(h, c, cmd);
2345 }
2346
2347 /* Returns 0 on success, < 0 otherwise. */
2348 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2349                                         struct CommandList *cp)
2350 {
2351         u8 tmf_status = cp->err_info->ScsiStatus;
2352
2353         switch (tmf_status) {
2354         case CISS_TMF_COMPLETE:
2355                 /*
2356                  * CISS_TMF_COMPLETE never happens, instead,
2357                  * ei->CommandStatus == 0 for this case.
2358                  */
2359         case CISS_TMF_SUCCESS:
2360                 return 0;
2361         case CISS_TMF_INVALID_FRAME:
2362         case CISS_TMF_NOT_SUPPORTED:
2363         case CISS_TMF_FAILED:
2364         case CISS_TMF_WRONG_LUN:
2365         case CISS_TMF_OVERLAPPED_TAG:
2366                 break;
2367         default:
2368                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2369                                 tmf_status);
2370                 break;
2371         }
2372         return -tmf_status;
2373 }
2374
2375 static void complete_scsi_command(struct CommandList *cp)
2376 {
2377         struct scsi_cmnd *cmd;
2378         struct ctlr_info *h;
2379         struct ErrorInfo *ei;
2380         struct hpsa_scsi_dev_t *dev;
2381         struct io_accel2_cmd *c2;
2382
2383         u8 sense_key;
2384         u8 asc;      /* additional sense code */
2385         u8 ascq;     /* additional sense code qualifier */
2386         unsigned long sense_data_size;
2387
2388         ei = cp->err_info;
2389         cmd = cp->scsi_cmd;
2390         h = cp->h;
2391         dev = cmd->device->hostdata;
2392         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2393
2394         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2395         if ((cp->cmd_type == CMD_SCSI) &&
2396                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2397                 hpsa_unmap_sg_chain_block(h, cp);
2398
2399         if ((cp->cmd_type == CMD_IOACCEL2) &&
2400                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2401                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2402
2403         cmd->result = (DID_OK << 16);           /* host byte */
2404         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2405
2406         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2407                 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2408
2409         /*
2410          * We check for lockup status here as it may be set for
2411          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2412          * fail_all_oustanding_cmds()
2413          */
2414         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2415                 /* DID_NO_CONNECT will prevent a retry */
2416                 cmd->result = DID_NO_CONNECT << 16;
2417                 return hpsa_cmd_free_and_done(h, cp, cmd);
2418         }
2419
2420         if ((unlikely(hpsa_is_pending_event(cp)))) {
2421                 if (cp->reset_pending)
2422                         return hpsa_cmd_resolve_and_free(h, cp);
2423                 if (cp->abort_pending)
2424                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2425         }
2426
2427         if (cp->cmd_type == CMD_IOACCEL2)
2428                 return process_ioaccel2_completion(h, cp, cmd, dev);
2429
2430         scsi_set_resid(cmd, ei->ResidualCnt);
2431         if (ei->CommandStatus == 0)
2432                 return hpsa_cmd_free_and_done(h, cp, cmd);
2433
2434         /* For I/O accelerator commands, copy over some fields to the normal
2435          * CISS header used below for error handling.
2436          */
2437         if (cp->cmd_type == CMD_IOACCEL1) {
2438                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2439                 cp->Header.SGList = scsi_sg_count(cmd);
2440                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2441                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2442                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2443                 cp->Header.tag = c->tag;
2444                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2445                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2446
2447                 /* Any RAID offload error results in retry which will use
2448                  * the normal I/O path so the controller can handle whatever's
2449                  * wrong.
2450                  */
2451                 if (is_logical_device(dev)) {
2452                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2453                                 dev->offload_enabled = 0;
2454                         return hpsa_retry_cmd(h, cp);
2455                 }
2456         }
2457
2458         /* an error has occurred */
2459         switch (ei->CommandStatus) {
2460
2461         case CMD_TARGET_STATUS:
2462                 cmd->result |= ei->ScsiStatus;
2463                 /* copy the sense data */
2464                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2465                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2466                 else
2467                         sense_data_size = sizeof(ei->SenseInfo);
2468                 if (ei->SenseLen < sense_data_size)
2469                         sense_data_size = ei->SenseLen;
2470                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2471                 if (ei->ScsiStatus)
2472                         decode_sense_data(ei->SenseInfo, sense_data_size,
2473                                 &sense_key, &asc, &ascq);
2474                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2475                         if (sense_key == ABORTED_COMMAND) {
2476                                 cmd->result |= DID_SOFT_ERROR << 16;
2477                                 break;
2478                         }
2479                         break;
2480                 }
2481                 /* Problem was not a check condition
2482                  * Pass it up to the upper layers...
2483                  */
2484                 if (ei->ScsiStatus) {
2485                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2486                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2487                                 "Returning result: 0x%x\n",
2488                                 cp, ei->ScsiStatus,
2489                                 sense_key, asc, ascq,
2490                                 cmd->result);
2491                 } else {  /* scsi status is zero??? How??? */
2492                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2493                                 "Returning no connection.\n", cp),
2494
2495                         /* Ordinarily, this case should never happen,
2496                          * but there is a bug in some released firmware
2497                          * revisions that allows it to happen if, for
2498                          * example, a 4100 backplane loses power and
2499                          * the tape drive is in it.  We assume that
2500                          * it's a fatal error of some kind because we
2501                          * can't show that it wasn't. We will make it
2502                          * look like selection timeout since that is
2503                          * the most common reason for this to occur,
2504                          * and it's severe enough.
2505                          */
2506
2507                         cmd->result = DID_NO_CONNECT << 16;
2508                 }
2509                 break;
2510
2511         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2512                 break;
2513         case CMD_DATA_OVERRUN:
2514                 dev_warn(&h->pdev->dev,
2515                         "CDB %16phN data overrun\n", cp->Request.CDB);
2516                 break;
2517         case CMD_INVALID: {
2518                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2519                 print_cmd(cp); */
2520                 /* We get CMD_INVALID if you address a non-existent device
2521                  * instead of a selection timeout (no response).  You will
2522                  * see this if you yank out a drive, then try to access it.
2523                  * This is kind of a shame because it means that any other
2524                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2525                  * missing target. */
2526                 cmd->result = DID_NO_CONNECT << 16;
2527         }
2528                 break;
2529         case CMD_PROTOCOL_ERR:
2530                 cmd->result = DID_ERROR << 16;
2531                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2532                                 cp->Request.CDB);
2533                 break;
2534         case CMD_HARDWARE_ERR:
2535                 cmd->result = DID_ERROR << 16;
2536                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2537                         cp->Request.CDB);
2538                 break;
2539         case CMD_CONNECTION_LOST:
2540                 cmd->result = DID_ERROR << 16;
2541                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2542                         cp->Request.CDB);
2543                 break;
2544         case CMD_ABORTED:
2545                 /* Return now to avoid calling scsi_done(). */
2546                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2547         case CMD_ABORT_FAILED:
2548                 cmd->result = DID_ERROR << 16;
2549                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2550                         cp->Request.CDB);
2551                 break;
2552         case CMD_UNSOLICITED_ABORT:
2553                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2554                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2555                         cp->Request.CDB);
2556                 break;
2557         case CMD_TIMEOUT:
2558                 cmd->result = DID_TIME_OUT << 16;
2559                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2560                         cp->Request.CDB);
2561                 break;
2562         case CMD_UNABORTABLE:
2563                 cmd->result = DID_ERROR << 16;
2564                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2565                 break;
2566         case CMD_TMF_STATUS:
2567                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2568                         cmd->result = DID_ERROR << 16;
2569                 break;
2570         case CMD_IOACCEL_DISABLED:
2571                 /* This only handles the direct pass-through case since RAID
2572                  * offload is handled above.  Just attempt a retry.
2573                  */
2574                 cmd->result = DID_SOFT_ERROR << 16;
2575                 dev_warn(&h->pdev->dev,
2576                                 "cp %p had HP SSD Smart Path error\n", cp);
2577                 break;
2578         default:
2579                 cmd->result = DID_ERROR << 16;
2580                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2581                                 cp, ei->CommandStatus);
2582         }
2583
2584         return hpsa_cmd_free_and_done(h, cp, cmd);
2585 }
2586
2587 static void hpsa_pci_unmap(struct pci_dev *pdev,
2588         struct CommandList *c, int sg_used, int data_direction)
2589 {
2590         int i;
2591
2592         for (i = 0; i < sg_used; i++)
2593                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2594                                 le32_to_cpu(c->SG[i].Len),
2595                                 data_direction);
2596 }
2597
2598 static int hpsa_map_one(struct pci_dev *pdev,
2599                 struct CommandList *cp,
2600                 unsigned char *buf,
2601                 size_t buflen,
2602                 int data_direction)
2603 {
2604         u64 addr64;
2605
2606         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2607                 cp->Header.SGList = 0;
2608                 cp->Header.SGTotal = cpu_to_le16(0);
2609                 return 0;
2610         }
2611
2612         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2613         if (dma_mapping_error(&pdev->dev, addr64)) {
2614                 /* Prevent subsequent unmap of something never mapped */
2615                 cp->Header.SGList = 0;
2616                 cp->Header.SGTotal = cpu_to_le16(0);
2617                 return -1;
2618         }
2619         cp->SG[0].Addr = cpu_to_le64(addr64);
2620         cp->SG[0].Len = cpu_to_le32(buflen);
2621         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2622         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2623         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2624         return 0;
2625 }
2626
2627 #define NO_TIMEOUT ((unsigned long) -1)
2628 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2629 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2630         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2631 {
2632         DECLARE_COMPLETION_ONSTACK(wait);
2633
2634         c->waiting = &wait;
2635         __enqueue_cmd_and_start_io(h, c, reply_queue);
2636         if (timeout_msecs == NO_TIMEOUT) {
2637                 /* TODO: get rid of this no-timeout thing */
2638                 wait_for_completion_io(&wait);
2639                 return IO_OK;
2640         }
2641         if (!wait_for_completion_io_timeout(&wait,
2642                                         msecs_to_jiffies(timeout_msecs))) {
2643                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2644                 return -ETIMEDOUT;
2645         }
2646         return IO_OK;
2647 }
2648
2649 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2650                                    int reply_queue, unsigned long timeout_msecs)
2651 {
2652         if (unlikely(lockup_detected(h))) {
2653                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2654                 return IO_OK;
2655         }
2656         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2657 }
2658
2659 static u32 lockup_detected(struct ctlr_info *h)
2660 {
2661         int cpu;
2662         u32 rc, *lockup_detected;
2663
2664         cpu = get_cpu();
2665         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2666         rc = *lockup_detected;
2667         put_cpu();
2668         return rc;
2669 }
2670
2671 #define MAX_DRIVER_CMD_RETRIES 25
2672 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2673         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2674 {
2675         int backoff_time = 10, retry_count = 0;
2676         int rc;
2677
2678         do {
2679                 memset(c->err_info, 0, sizeof(*c->err_info));
2680                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2681                                                   timeout_msecs);
2682                 if (rc)
2683                         break;
2684                 retry_count++;
2685                 if (retry_count > 3) {
2686                         msleep(backoff_time);
2687                         if (backoff_time < 1000)
2688                                 backoff_time *= 2;
2689                 }
2690         } while ((check_for_unit_attention(h, c) ||
2691                         check_for_busy(h, c)) &&
2692                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2693         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2694         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2695                 rc = -EIO;
2696         return rc;
2697 }
2698
2699 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2700                                 struct CommandList *c)
2701 {
2702         const u8 *cdb = c->Request.CDB;
2703         const u8 *lun = c->Header.LUN.LunAddrBytes;
2704
2705         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2706         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2707                 txt, lun[0], lun[1], lun[2], lun[3],
2708                 lun[4], lun[5], lun[6], lun[7],
2709                 cdb[0], cdb[1], cdb[2], cdb[3],
2710                 cdb[4], cdb[5], cdb[6], cdb[7],
2711                 cdb[8], cdb[9], cdb[10], cdb[11],
2712                 cdb[12], cdb[13], cdb[14], cdb[15]);
2713 }
2714
2715 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2716                         struct CommandList *cp)
2717 {
2718         const struct ErrorInfo *ei = cp->err_info;
2719         struct device *d = &cp->h->pdev->dev;
2720         u8 sense_key, asc, ascq;
2721         int sense_len;
2722
2723         switch (ei->CommandStatus) {
2724         case CMD_TARGET_STATUS:
2725                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2726                         sense_len = sizeof(ei->SenseInfo);
2727                 else
2728                         sense_len = ei->SenseLen;
2729                 decode_sense_data(ei->SenseInfo, sense_len,
2730                                         &sense_key, &asc, &ascq);
2731                 hpsa_print_cmd(h, "SCSI status", cp);
2732                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2733                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2734                                 sense_key, asc, ascq);
2735                 else
2736                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2737                 if (ei->ScsiStatus == 0)
2738                         dev_warn(d, "SCSI status is abnormally zero.  "
2739                         "(probably indicates selection timeout "
2740                         "reported incorrectly due to a known "
2741                         "firmware bug, circa July, 2001.)\n");
2742                 break;
2743         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2744                 break;
2745         case CMD_DATA_OVERRUN:
2746                 hpsa_print_cmd(h, "overrun condition", cp);
2747                 break;
2748         case CMD_INVALID: {
2749                 /* controller unfortunately reports SCSI passthru's
2750                  * to non-existent targets as invalid commands.
2751                  */
2752                 hpsa_print_cmd(h, "invalid command", cp);
2753                 dev_warn(d, "probably means device no longer present\n");
2754                 }
2755                 break;
2756         case CMD_PROTOCOL_ERR:
2757                 hpsa_print_cmd(h, "protocol error", cp);
2758                 break;
2759         case CMD_HARDWARE_ERR:
2760                 hpsa_print_cmd(h, "hardware error", cp);
2761                 break;
2762         case CMD_CONNECTION_LOST:
2763                 hpsa_print_cmd(h, "connection lost", cp);
2764                 break;
2765         case CMD_ABORTED:
2766                 hpsa_print_cmd(h, "aborted", cp);
2767                 break;
2768         case CMD_ABORT_FAILED:
2769                 hpsa_print_cmd(h, "abort failed", cp);
2770                 break;
2771         case CMD_UNSOLICITED_ABORT:
2772                 hpsa_print_cmd(h, "unsolicited abort", cp);
2773                 break;
2774         case CMD_TIMEOUT:
2775                 hpsa_print_cmd(h, "timed out", cp);
2776                 break;
2777         case CMD_UNABORTABLE:
2778                 hpsa_print_cmd(h, "unabortable", cp);
2779                 break;
2780         case CMD_CTLR_LOCKUP:
2781                 hpsa_print_cmd(h, "controller lockup detected", cp);
2782                 break;
2783         default:
2784                 hpsa_print_cmd(h, "unknown status", cp);
2785                 dev_warn(d, "Unknown command status %x\n",
2786                                 ei->CommandStatus);
2787         }
2788 }
2789
2790 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2791                         u16 page, unsigned char *buf,
2792                         unsigned char bufsize)
2793 {
2794         int rc = IO_OK;
2795         struct CommandList *c;
2796         struct ErrorInfo *ei;
2797
2798         c = cmd_alloc(h);
2799
2800         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2801                         page, scsi3addr, TYPE_CMD)) {
2802                 rc = -1;
2803                 goto out;
2804         }
2805         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2806                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2807         if (rc)
2808                 goto out;
2809         ei = c->err_info;
2810         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2811                 hpsa_scsi_interpret_error(h, c);
2812                 rc = -1;
2813         }
2814 out:
2815         cmd_free(h, c);
2816         return rc;
2817 }
2818
2819 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2820         u8 reset_type, int reply_queue)
2821 {
2822         int rc = IO_OK;
2823         struct CommandList *c;
2824         struct ErrorInfo *ei;
2825
2826         c = cmd_alloc(h);
2827
2828
2829         /* fill_cmd can't fail here, no data buffer to map. */
2830         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2831                         scsi3addr, TYPE_MSG);
2832         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2833         if (rc) {
2834                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2835                 goto out;
2836         }
2837         /* no unmap needed here because no data xfer. */
2838
2839         ei = c->err_info;
2840         if (ei->CommandStatus != 0) {
2841                 hpsa_scsi_interpret_error(h, c);
2842                 rc = -1;
2843         }
2844 out:
2845         cmd_free(h, c);
2846         return rc;
2847 }
2848
2849 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2850                                struct hpsa_scsi_dev_t *dev,
2851                                unsigned char *scsi3addr)
2852 {
2853         int i;
2854         bool match = false;
2855         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2856         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2857
2858         if (hpsa_is_cmd_idle(c))
2859                 return false;
2860
2861         switch (c->cmd_type) {
2862         case CMD_SCSI:
2863         case CMD_IOCTL_PEND:
2864                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2865                                 sizeof(c->Header.LUN.LunAddrBytes));
2866                 break;
2867
2868         case CMD_IOACCEL1:
2869         case CMD_IOACCEL2:
2870                 if (c->phys_disk == dev) {
2871                         /* HBA mode match */
2872                         match = true;
2873                 } else {
2874                         /* Possible RAID mode -- check each phys dev. */
2875                         /* FIXME:  Do we need to take out a lock here?  If
2876                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2877                          * instead. */
2878                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
2879                                 /* FIXME: an alternate test might be
2880                                  *
2881                                  * match = dev->phys_disk[i]->ioaccel_handle
2882                                  *              == c2->scsi_nexus;      */
2883                                 match = dev->phys_disk[i] == c->phys_disk;
2884                         }
2885                 }
2886                 break;
2887
2888         case IOACCEL2_TMF:
2889                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2890                         match = dev->phys_disk[i]->ioaccel_handle ==
2891                                         le32_to_cpu(ac->it_nexus);
2892                 }
2893                 break;
2894
2895         case 0:         /* The command is in the middle of being initialized. */
2896                 match = false;
2897                 break;
2898
2899         default:
2900                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2901                         c->cmd_type);
2902                 BUG();
2903         }
2904
2905         return match;
2906 }
2907
2908 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2909         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2910 {
2911         int i;
2912         int rc = 0;
2913
2914         /* We can really only handle one reset at a time */
2915         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2916                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2917                 return -EINTR;
2918         }
2919
2920         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2921
2922         for (i = 0; i < h->nr_cmds; i++) {
2923                 struct CommandList *c = h->cmd_pool + i;
2924                 int refcount = atomic_inc_return(&c->refcount);
2925
2926                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2927                         unsigned long flags;
2928
2929                         /*
2930                          * Mark the target command as having a reset pending,
2931                          * then lock a lock so that the command cannot complete
2932                          * while we're considering it.  If the command is not
2933                          * idle then count it; otherwise revoke the event.
2934                          */
2935                         c->reset_pending = dev;
2936                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
2937                         if (!hpsa_is_cmd_idle(c))
2938                                 atomic_inc(&dev->reset_cmds_out);
2939                         else
2940                                 c->reset_pending = NULL;
2941                         spin_unlock_irqrestore(&h->lock, flags);
2942                 }
2943
2944                 cmd_free(h, c);
2945         }
2946
2947         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2948         if (!rc)
2949                 wait_event(h->event_sync_wait_queue,
2950                         atomic_read(&dev->reset_cmds_out) == 0 ||
2951                         lockup_detected(h));
2952
2953         if (unlikely(lockup_detected(h))) {
2954                 dev_warn(&h->pdev->dev,
2955                          "Controller lockup detected during reset wait\n");
2956                 rc = -ENODEV;
2957         }
2958
2959         if (unlikely(rc))
2960                 atomic_set(&dev->reset_cmds_out, 0);
2961
2962         mutex_unlock(&h->reset_mutex);
2963         return rc;
2964 }
2965
2966 static void hpsa_get_raid_level(struct ctlr_info *h,
2967         unsigned char *scsi3addr, unsigned char *raid_level)
2968 {
2969         int rc;
2970         unsigned char *buf;
2971
2972         *raid_level = RAID_UNKNOWN;
2973         buf = kzalloc(64, GFP_KERNEL);
2974         if (!buf)
2975                 return;
2976         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2977         if (rc == 0)
2978                 *raid_level = buf[8];
2979         if (*raid_level > RAID_UNKNOWN)
2980                 *raid_level = RAID_UNKNOWN;
2981         kfree(buf);
2982         return;
2983 }
2984
2985 #define HPSA_MAP_DEBUG
2986 #ifdef HPSA_MAP_DEBUG
2987 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2988                                 struct raid_map_data *map_buff)
2989 {
2990         struct raid_map_disk_data *dd = &map_buff->data[0];
2991         int map, row, col;
2992         u16 map_cnt, row_cnt, disks_per_row;
2993
2994         if (rc != 0)
2995                 return;
2996
2997         /* Show details only if debugging has been activated. */
2998         if (h->raid_offload_debug < 2)
2999                 return;
3000
3001         dev_info(&h->pdev->dev, "structure_size = %u\n",
3002                                 le32_to_cpu(map_buff->structure_size));
3003         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3004                         le32_to_cpu(map_buff->volume_blk_size));
3005         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3006                         le64_to_cpu(map_buff->volume_blk_cnt));
3007         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3008                         map_buff->phys_blk_shift);
3009         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3010                         map_buff->parity_rotation_shift);
3011         dev_info(&h->pdev->dev, "strip_size = %u\n",
3012                         le16_to_cpu(map_buff->strip_size));
3013         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3014                         le64_to_cpu(map_buff->disk_starting_blk));
3015         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3016                         le64_to_cpu(map_buff->disk_blk_cnt));
3017         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3018                         le16_to_cpu(map_buff->data_disks_per_row));
3019         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3020                         le16_to_cpu(map_buff->metadata_disks_per_row));
3021         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3022                         le16_to_cpu(map_buff->row_cnt));
3023         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3024                         le16_to_cpu(map_buff->layout_map_count));
3025         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3026                         le16_to_cpu(map_buff->flags));
3027         dev_info(&h->pdev->dev, "encrypytion = %s\n",
3028                         le16_to_cpu(map_buff->flags) &
3029                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3030         dev_info(&h->pdev->dev, "dekindex = %u\n",
3031                         le16_to_cpu(map_buff->dekindex));
3032         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3033         for (map = 0; map < map_cnt; map++) {
3034                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3035                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3036                 for (row = 0; row < row_cnt; row++) {
3037                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3038                         disks_per_row =
3039                                 le16_to_cpu(map_buff->data_disks_per_row);
3040                         for (col = 0; col < disks_per_row; col++, dd++)
3041                                 dev_info(&h->pdev->dev,
3042                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3043                                         col, dd->ioaccel_handle,
3044                                         dd->xor_mult[0], dd->xor_mult[1]);
3045                         disks_per_row =
3046                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3047                         for (col = 0; col < disks_per_row; col++, dd++)
3048                                 dev_info(&h->pdev->dev,
3049                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3050                                         col, dd->ioaccel_handle,
3051                                         dd->xor_mult[0], dd->xor_mult[1]);
3052                 }
3053         }
3054 }
3055 #else
3056 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3057                         __attribute__((unused)) int rc,
3058                         __attribute__((unused)) struct raid_map_data *map_buff)
3059 {
3060 }
3061 #endif
3062
3063 static int hpsa_get_raid_map(struct ctlr_info *h,
3064         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3065 {
3066         int rc = 0;
3067         struct CommandList *c;
3068         struct ErrorInfo *ei;
3069
3070         c = cmd_alloc(h);
3071
3072         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3073                         sizeof(this_device->raid_map), 0,
3074                         scsi3addr, TYPE_CMD)) {
3075                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3076                 cmd_free(h, c);
3077                 return -1;
3078         }
3079         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3080                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3081         if (rc)
3082                 goto out;
3083         ei = c->err_info;
3084         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3085                 hpsa_scsi_interpret_error(h, c);
3086                 rc = -1;
3087                 goto out;
3088         }
3089         cmd_free(h, c);
3090
3091         /* @todo in the future, dynamically allocate RAID map memory */
3092         if (le32_to_cpu(this_device->raid_map.structure_size) >
3093                                 sizeof(this_device->raid_map)) {
3094                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3095                 rc = -1;
3096         }
3097         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3098         return rc;
3099 out:
3100         cmd_free(h, c);
3101         return rc;
3102 }
3103
3104 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3105                 unsigned char scsi3addr[], u16 bmic_device_index,
3106                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3107 {
3108         int rc = IO_OK;
3109         struct CommandList *c;
3110         struct ErrorInfo *ei;
3111
3112         c = cmd_alloc(h);
3113
3114         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3115                 0, RAID_CTLR_LUNID, TYPE_CMD);
3116         if (rc)
3117                 goto out;
3118
3119         c->Request.CDB[2] = bmic_device_index & 0xff;
3120         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3121
3122         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3123                                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3124         if (rc)
3125                 goto out;
3126         ei = c->err_info;
3127         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3128                 hpsa_scsi_interpret_error(h, c);
3129                 rc = -1;
3130         }
3131 out:
3132         cmd_free(h, c);
3133         return rc;
3134 }
3135
3136 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3137         struct bmic_identify_controller *buf, size_t bufsize)
3138 {
3139         int rc = IO_OK;
3140         struct CommandList *c;
3141         struct ErrorInfo *ei;
3142
3143         c = cmd_alloc(h);
3144
3145         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3146                 0, RAID_CTLR_LUNID, TYPE_CMD);
3147         if (rc)
3148                 goto out;
3149
3150         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3151                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3152         if (rc)
3153                 goto out;
3154         ei = c->err_info;
3155         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3156                 hpsa_scsi_interpret_error(h, c);
3157                 rc = -1;
3158         }
3159 out:
3160         cmd_free(h, c);
3161         return rc;
3162 }
3163
3164 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3165                 unsigned char scsi3addr[], u16 bmic_device_index,
3166                 struct bmic_identify_physical_device *buf, size_t bufsize)
3167 {
3168         int rc = IO_OK;
3169         struct CommandList *c;
3170         struct ErrorInfo *ei;
3171
3172         c = cmd_alloc(h);
3173         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3174                 0, RAID_CTLR_LUNID, TYPE_CMD);
3175         if (rc)
3176                 goto out;
3177
3178         c->Request.CDB[2] = bmic_device_index & 0xff;
3179         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3180
3181         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3182                                                 NO_TIMEOUT);
3183         ei = c->err_info;
3184         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3185                 hpsa_scsi_interpret_error(h, c);
3186                 rc = -1;
3187         }
3188 out:
3189         cmd_free(h, c);
3190
3191         return rc;
3192 }
3193
3194 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3195                                                 unsigned char *scsi3addr)
3196 {
3197         struct ReportExtendedLUNdata *physdev;
3198         u32 nphysicals;
3199         u64 sa = 0;
3200         int i;
3201
3202         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3203         if (!physdev)
3204                 return 0;
3205
3206         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3207                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3208                 kfree(physdev);
3209                 return 0;
3210         }
3211         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3212
3213         for (i = 0; i < nphysicals; i++)
3214                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3215                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3216                         break;
3217                 }
3218
3219         kfree(physdev);
3220
3221         return sa;
3222 }
3223
3224 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3225                                         struct hpsa_scsi_dev_t *dev)
3226 {
3227         int rc;
3228         u64 sa = 0;
3229
3230         if (is_hba_lunid(scsi3addr)) {
3231                 struct bmic_sense_subsystem_info *ssi;
3232
3233                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3234                 if (ssi == NULL) {
3235                         dev_warn(&h->pdev->dev,
3236                                 "%s: out of memory\n", __func__);
3237                         return;
3238                 }
3239
3240                 rc = hpsa_bmic_sense_subsystem_information(h,
3241                                         scsi3addr, 0, ssi, sizeof(*ssi));
3242                 if (rc == 0) {
3243                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3244                         h->sas_address = sa;
3245                 }
3246
3247                 kfree(ssi);
3248         } else
3249                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3250
3251         dev->sas_address = sa;
3252 }
3253
3254 /* Get a device id from inquiry page 0x83 */
3255 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3256         unsigned char scsi3addr[], u8 page)
3257 {
3258         int rc;
3259         int i;
3260         int pages;
3261         unsigned char *buf, bufsize;
3262
3263         buf = kzalloc(256, GFP_KERNEL);
3264         if (!buf)
3265                 return 0;
3266
3267         /* Get the size of the page list first */
3268         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3269                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3270                                 buf, HPSA_VPD_HEADER_SZ);
3271         if (rc != 0)
3272                 goto exit_unsupported;
3273         pages = buf[3];
3274         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3275                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3276         else
3277                 bufsize = 255;
3278
3279         /* Get the whole VPD page list */
3280         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3281                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3282                                 buf, bufsize);
3283         if (rc != 0)
3284                 goto exit_unsupported;
3285
3286         pages = buf[3];
3287         for (i = 1; i <= pages; i++)
3288                 if (buf[3 + i] == page)
3289                         goto exit_supported;
3290 exit_unsupported:
3291         kfree(buf);
3292         return 0;
3293 exit_supported:
3294         kfree(buf);
3295         return 1;
3296 }
3297
3298 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3299         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3300 {
3301         int rc;
3302         unsigned char *buf;
3303         u8 ioaccel_status;
3304
3305         this_device->offload_config = 0;
3306         this_device->offload_enabled = 0;
3307         this_device->offload_to_be_enabled = 0;
3308
3309         buf = kzalloc(64, GFP_KERNEL);
3310         if (!buf)
3311                 return;
3312         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3313                 goto out;
3314         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3315                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3316         if (rc != 0)
3317                 goto out;
3318
3319 #define IOACCEL_STATUS_BYTE 4
3320 #define OFFLOAD_CONFIGURED_BIT 0x01
3321 #define OFFLOAD_ENABLED_BIT 0x02
3322         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3323         this_device->offload_config =
3324                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3325         if (this_device->offload_config) {
3326                 this_device->offload_enabled =
3327                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3328                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3329                         this_device->offload_enabled = 0;
3330         }
3331         this_device->offload_to_be_enabled = this_device->offload_enabled;
3332 out:
3333         kfree(buf);
3334         return;
3335 }
3336
3337 /* Get the device id from inquiry page 0x83 */
3338 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3339         unsigned char *device_id, int index, int buflen)
3340 {
3341         int rc;
3342         unsigned char *buf;
3343
3344         if (buflen > 16)
3345                 buflen = 16;
3346         buf = kzalloc(64, GFP_KERNEL);
3347         if (!buf)
3348                 return -ENOMEM;
3349         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3350         if (rc == 0)
3351                 memcpy(device_id, &buf[index], buflen);
3352
3353         kfree(buf);
3354
3355         return rc != 0;
3356 }
3357
3358 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3359                 void *buf, int bufsize,
3360                 int extended_response)
3361 {
3362         int rc = IO_OK;
3363         struct CommandList *c;
3364         unsigned char scsi3addr[8];
3365         struct ErrorInfo *ei;
3366
3367         c = cmd_alloc(h);
3368
3369         /* address the controller */
3370         memset(scsi3addr, 0, sizeof(scsi3addr));
3371         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3372                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3373                 rc = -1;
3374                 goto out;
3375         }
3376         if (extended_response)
3377                 c->Request.CDB[1] = extended_response;
3378         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3379                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3380         if (rc)
3381                 goto out;
3382         ei = c->err_info;
3383         if (ei->CommandStatus != 0 &&
3384             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3385                 hpsa_scsi_interpret_error(h, c);
3386                 rc = -1;
3387         } else {
3388                 struct ReportLUNdata *rld = buf;
3389
3390                 if (rld->extended_response_flag != extended_response) {
3391                         dev_err(&h->pdev->dev,
3392                                 "report luns requested format %u, got %u\n",
3393                                 extended_response,
3394                                 rld->extended_response_flag);
3395                         rc = -1;
3396                 }
3397         }
3398 out:
3399         cmd_free(h, c);
3400         return rc;
3401 }
3402
3403 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3404                 struct ReportExtendedLUNdata *buf, int bufsize)
3405 {
3406         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3407                                                 HPSA_REPORT_PHYS_EXTENDED);
3408 }
3409
3410 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3411                 struct ReportLUNdata *buf, int bufsize)
3412 {
3413         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3414 }
3415
3416 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3417         int bus, int target, int lun)
3418 {
3419         device->bus = bus;
3420         device->target = target;
3421         device->lun = lun;
3422 }
3423
3424 /* Use VPD inquiry to get details of volume status */
3425 static int hpsa_get_volume_status(struct ctlr_info *h,
3426                                         unsigned char scsi3addr[])
3427 {
3428         int rc;
3429         int status;
3430         int size;
3431         unsigned char *buf;
3432
3433         buf = kzalloc(64, GFP_KERNEL);
3434         if (!buf)
3435                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3436
3437         /* Does controller have VPD for logical volume status? */
3438         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3439                 goto exit_failed;
3440
3441         /* Get the size of the VPD return buffer */
3442         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3443                                         buf, HPSA_VPD_HEADER_SZ);
3444         if (rc != 0)
3445                 goto exit_failed;
3446         size = buf[3];
3447
3448         /* Now get the whole VPD buffer */
3449         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3450                                         buf, size + HPSA_VPD_HEADER_SZ);
3451         if (rc != 0)
3452                 goto exit_failed;
3453         status = buf[4]; /* status byte */
3454
3455         kfree(buf);
3456         return status;
3457 exit_failed:
3458         kfree(buf);
3459         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3460 }
3461
3462 /* Determine offline status of a volume.
3463  * Return either:
3464  *  0 (not offline)
3465  *  0xff (offline for unknown reasons)
3466  *  # (integer code indicating one of several NOT READY states
3467  *     describing why a volume is to be kept offline)
3468  */
3469 static int hpsa_volume_offline(struct ctlr_info *h,
3470                                         unsigned char scsi3addr[])
3471 {
3472         struct CommandList *c;
3473         unsigned char *sense;
3474         u8 sense_key, asc, ascq;
3475         int sense_len;
3476         int rc, ldstat = 0;
3477         u16 cmd_status;
3478         u8 scsi_status;
3479 #define ASC_LUN_NOT_READY 0x04
3480 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3481 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3482
3483         c = cmd_alloc(h);
3484
3485         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3486         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3487         if (rc) {
3488                 cmd_free(h, c);
3489                 return 0;
3490         }
3491         sense = c->err_info->SenseInfo;
3492         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3493                 sense_len = sizeof(c->err_info->SenseInfo);
3494         else
3495                 sense_len = c->err_info->SenseLen;
3496         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3497         cmd_status = c->err_info->CommandStatus;
3498         scsi_status = c->err_info->ScsiStatus;
3499         cmd_free(h, c);
3500         /* Is the volume 'not ready'? */
3501         if (cmd_status != CMD_TARGET_STATUS ||
3502                 scsi_status != SAM_STAT_CHECK_CONDITION ||
3503                 sense_key != NOT_READY ||
3504                 asc != ASC_LUN_NOT_READY)  {
3505                 return 0;
3506         }
3507
3508         /* Determine the reason for not ready state */
3509         ldstat = hpsa_get_volume_status(h, scsi3addr);
3510
3511         /* Keep volume offline in certain cases: */
3512         switch (ldstat) {
3513         case HPSA_LV_UNDERGOING_ERASE:
3514         case HPSA_LV_NOT_AVAILABLE:
3515         case HPSA_LV_UNDERGOING_RPI:
3516         case HPSA_LV_PENDING_RPI:
3517         case HPSA_LV_ENCRYPTED_NO_KEY:
3518         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3519         case HPSA_LV_UNDERGOING_ENCRYPTION:
3520         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3521         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3522                 return ldstat;
3523         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3524                 /* If VPD status page isn't available,
3525                  * use ASC/ASCQ to determine state
3526                  */
3527                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3528                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3529                         return ldstat;
3530                 break;
3531         default:
3532                 break;
3533         }
3534         return 0;
3535 }
3536
3537 /*
3538  * Find out if a logical device supports aborts by simply trying one.
3539  * Smart Array may claim not to support aborts on logical drives, but
3540  * if a MSA2000 * is connected, the drives on that will be presented
3541  * by the Smart Array as logical drives, and aborts may be sent to
3542  * those devices successfully.  So the simplest way to find out is
3543  * to simply try an abort and see how the device responds.
3544  */
3545 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3546                                         unsigned char *scsi3addr)
3547 {
3548         struct CommandList *c;
3549         struct ErrorInfo *ei;
3550         int rc = 0;
3551
3552         u64 tag = (u64) -1; /* bogus tag */
3553
3554         /* Assume that physical devices support aborts */
3555         if (!is_logical_dev_addr_mode(scsi3addr))
3556                 return 1;
3557
3558         c = cmd_alloc(h);
3559
3560         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3561         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3562         /* no unmap needed here because no data xfer. */
3563         ei = c->err_info;
3564         switch (ei->CommandStatus) {
3565         case CMD_INVALID:
3566                 rc = 0;
3567                 break;
3568         case CMD_UNABORTABLE:
3569         case CMD_ABORT_FAILED:
3570                 rc = 1;
3571                 break;
3572         case CMD_TMF_STATUS:
3573                 rc = hpsa_evaluate_tmf_status(h, c);
3574                 break;
3575         default:
3576                 rc = 0;
3577                 break;
3578         }
3579         cmd_free(h, c);
3580         return rc;
3581 }
3582
3583 static void sanitize_inquiry_string(unsigned char *s, int len)
3584 {
3585         bool terminated = false;
3586
3587         for (; len > 0; (--len, ++s)) {
3588                 if (*s == 0)
3589                         terminated = true;
3590                 if (terminated || *s < 0x20 || *s > 0x7e)
3591                         *s = ' ';
3592         }
3593 }
3594
3595 static int hpsa_update_device_info(struct ctlr_info *h,
3596         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3597         unsigned char *is_OBDR_device)
3598 {
3599
3600 #define OBDR_SIG_OFFSET 43
3601 #define OBDR_TAPE_SIG "$DR-10"
3602 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3603 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3604
3605         unsigned char *inq_buff;
3606         unsigned char *obdr_sig;
3607         int rc = 0;
3608
3609         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3610         if (!inq_buff) {
3611                 rc = -ENOMEM;
3612                 goto bail_out;
3613         }
3614
3615         /* Do an inquiry to the device to see what it is. */
3616         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3617                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3618                 /* Inquiry failed (msg printed already) */
3619                 dev_err(&h->pdev->dev,
3620                         "hpsa_update_device_info: inquiry failed\n");
3621                 rc = -EIO;
3622                 goto bail_out;
3623         }
3624
3625         sanitize_inquiry_string(&inq_buff[8], 8);
3626         sanitize_inquiry_string(&inq_buff[16], 16);
3627
3628         this_device->devtype = (inq_buff[0] & 0x1f);
3629         memcpy(this_device->scsi3addr, scsi3addr, 8);
3630         memcpy(this_device->vendor, &inq_buff[8],
3631                 sizeof(this_device->vendor));
3632         memcpy(this_device->model, &inq_buff[16],
3633                 sizeof(this_device->model));
3634         memset(this_device->device_id, 0,
3635                 sizeof(this_device->device_id));
3636         hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3637                 sizeof(this_device->device_id));
3638
3639         if (this_device->devtype == TYPE_DISK &&
3640                 is_logical_dev_addr_mode(scsi3addr)) {
3641                 int volume_offline;
3642
3643                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3644                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3645                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3646                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3647                 if (volume_offline < 0 || volume_offline > 0xff)
3648                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3649                 this_device->volume_offline = volume_offline & 0xff;
3650         } else {
3651                 this_device->raid_level = RAID_UNKNOWN;
3652                 this_device->offload_config = 0;
3653                 this_device->offload_enabled = 0;
3654                 this_device->offload_to_be_enabled = 0;
3655                 this_device->hba_ioaccel_enabled = 0;
3656                 this_device->volume_offline = 0;
3657                 this_device->queue_depth = h->nr_cmds;
3658         }
3659
3660         if (is_OBDR_device) {
3661                 /* See if this is a One-Button-Disaster-Recovery device
3662                  * by looking for "$DR-10" at offset 43 in inquiry data.
3663                  */
3664                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3665                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3666                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3667                                                 OBDR_SIG_LEN) == 0);
3668         }
3669         kfree(inq_buff);
3670         return 0;
3671
3672 bail_out:
3673         kfree(inq_buff);
3674         return rc;
3675 }
3676
3677 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3678                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3679 {
3680         unsigned long flags;
3681         int rc, entry;
3682         /*
3683          * See if this device supports aborts.  If we already know
3684          * the device, we already know if it supports aborts, otherwise
3685          * we have to find out if it supports aborts by trying one.
3686          */
3687         spin_lock_irqsave(&h->devlock, flags);
3688         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3689         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3690                 entry >= 0 && entry < h->ndevices) {
3691                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3692                 spin_unlock_irqrestore(&h->devlock, flags);
3693         } else {
3694                 spin_unlock_irqrestore(&h->devlock, flags);
3695                 dev->supports_aborts =
3696                                 hpsa_device_supports_aborts(h, scsi3addr);
3697                 if (dev->supports_aborts < 0)
3698                         dev->supports_aborts = 0;
3699         }
3700 }
3701
3702 /*
3703  * Helper function to assign bus, target, lun mapping of devices.
3704  * Logical drive target and lun are assigned at this time, but
3705  * physical device lun and target assignment are deferred (assigned
3706  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3707 */
3708 static void figure_bus_target_lun(struct ctlr_info *h,
3709         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3710 {
3711         u32 lunid = get_unaligned_le32(lunaddrbytes);
3712
3713         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3714                 /* physical device, target and lun filled in later */
3715                 if (is_hba_lunid(lunaddrbytes))
3716                         hpsa_set_bus_target_lun(device,
3717                                         HPSA_HBA_BUS, 0, lunid & 0x3fff);
3718                 else
3719                         /* defer target, lun assignment for physical devices */
3720                         hpsa_set_bus_target_lun(device,
3721                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3722                 return;
3723         }
3724         /* It's a logical device */
3725         if (device->external) {
3726                 hpsa_set_bus_target_lun(device,
3727                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3728                         lunid & 0x00ff);
3729                 return;
3730         }
3731         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3732                                 0, lunid & 0x3fff);
3733 }
3734
3735
3736 /*
3737  * Get address of physical disk used for an ioaccel2 mode command:
3738  *      1. Extract ioaccel2 handle from the command.
3739  *      2. Find a matching ioaccel2 handle from list of physical disks.
3740  *      3. Return:
3741  *              1 and set scsi3addr to address of matching physical
3742  *              0 if no matching physical disk was found.
3743  */
3744 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3745         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3746 {
3747         struct io_accel2_cmd *c2 =
3748                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3749         unsigned long flags;
3750         int i;
3751
3752         spin_lock_irqsave(&h->devlock, flags);
3753         for (i = 0; i < h->ndevices; i++)
3754                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3755                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
3756                                 sizeof(h->dev[i]->scsi3addr));
3757                         spin_unlock_irqrestore(&h->devlock, flags);
3758                         return 1;
3759                 }
3760         spin_unlock_irqrestore(&h->devlock, flags);
3761         return 0;
3762 }
3763
3764 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3765         int i, int nphysicals, int nlocal_logicals)
3766 {
3767         /* In report logicals, local logicals are listed first,
3768         * then any externals.
3769         */
3770         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3771
3772         if (i == raid_ctlr_position)
3773                 return 0;
3774
3775         if (i < logicals_start)
3776                 return 0;
3777
3778         /* i is in logicals range, but still within local logicals */
3779         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3780                 return 0;
3781
3782         return 1; /* it's an external lun */
3783 }
3784
3785 /*
3786  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3787  * logdev.  The number of luns in physdev and logdev are returned in
3788  * *nphysicals and *nlogicals, respectively.
3789  * Returns 0 on success, -1 otherwise.
3790  */
3791 static int hpsa_gather_lun_info(struct ctlr_info *h,
3792         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3793         struct ReportLUNdata *logdev, u32 *nlogicals)
3794 {
3795         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3796                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3797                 return -1;
3798         }
3799         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3800         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3801                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3802                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3803                 *nphysicals = HPSA_MAX_PHYS_LUN;
3804         }
3805         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3806                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3807                 return -1;
3808         }
3809         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3810         /* Reject Logicals in excess of our max capability. */
3811         if (*nlogicals > HPSA_MAX_LUN) {
3812                 dev_warn(&h->pdev->dev,
3813                         "maximum logical LUNs (%d) exceeded.  "
3814                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
3815                         *nlogicals - HPSA_MAX_LUN);
3816                         *nlogicals = HPSA_MAX_LUN;
3817         }
3818         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3819                 dev_warn(&h->pdev->dev,
3820                         "maximum logical + physical LUNs (%d) exceeded. "
3821                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3822                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3823                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3824         }
3825         return 0;
3826 }
3827
3828 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3829         int i, int nphysicals, int nlogicals,
3830         struct ReportExtendedLUNdata *physdev_list,
3831         struct ReportLUNdata *logdev_list)
3832 {
3833         /* Helper function, figure out where the LUN ID info is coming from
3834          * given index i, lists of physical and logical devices, where in
3835          * the list the raid controller is supposed to appear (first or last)
3836          */
3837
3838         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3839         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3840
3841         if (i == raid_ctlr_position)
3842                 return RAID_CTLR_LUNID;
3843
3844         if (i < logicals_start)
3845                 return &physdev_list->LUN[i -
3846                                 (raid_ctlr_position == 0)].lunid[0];
3847
3848         if (i < last_device)
3849                 return &logdev_list->LUN[i - nphysicals -
3850                         (raid_ctlr_position == 0)][0];
3851         BUG();
3852         return NULL;
3853 }
3854
3855 /* get physical drive ioaccel handle and queue depth */
3856 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3857                 struct hpsa_scsi_dev_t *dev,
3858                 struct ReportExtendedLUNdata *rlep, int rle_index,
3859                 struct bmic_identify_physical_device *id_phys)
3860 {
3861         int rc;
3862         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3863
3864         dev->ioaccel_handle = rle->ioaccel_handle;
3865         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
3866                 dev->hba_ioaccel_enabled = 1;
3867         memset(id_phys, 0, sizeof(*id_phys));
3868         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
3869                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
3870                         sizeof(*id_phys));
3871         if (!rc)
3872                 /* Reserve space for FW operations */
3873 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3874 #define DRIVE_QUEUE_DEPTH 7
3875                 dev->queue_depth =
3876                         le16_to_cpu(id_phys->current_queue_depth_limit) -
3877                                 DRIVE_CMDS_RESERVED_FOR_FW;
3878         else
3879                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3880 }
3881
3882 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3883         struct ReportExtendedLUNdata *rlep, int rle_index,
3884         struct bmic_identify_physical_device *id_phys)
3885 {
3886         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3887
3888         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
3889                 this_device->hba_ioaccel_enabled = 1;
3890
3891         memcpy(&this_device->active_path_index,
3892                 &id_phys->active_path_number,
3893                 sizeof(this_device->active_path_index));
3894         memcpy(&this_device->path_map,
3895                 &id_phys->redundant_path_present_map,
3896                 sizeof(this_device->path_map));
3897         memcpy(&this_device->box,
3898                 &id_phys->alternate_paths_phys_box_on_port,
3899                 sizeof(this_device->box));
3900         memcpy(&this_device->phys_connector,
3901                 &id_phys->alternate_paths_phys_connector,
3902                 sizeof(this_device->phys_connector));
3903         memcpy(&this_device->bay,
3904                 &id_phys->phys_bay_in_box,
3905                 sizeof(this_device->bay));
3906 }
3907
3908 /* get number of local logical disks. */
3909 static int hpsa_set_local_logical_count(struct ctlr_info *h,
3910         struct bmic_identify_controller *id_ctlr,
3911         u32 *nlocals)
3912 {
3913         int rc;
3914
3915         if (!id_ctlr) {
3916                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
3917                         __func__);
3918                 return -ENOMEM;
3919         }
3920         memset(id_ctlr, 0, sizeof(*id_ctlr));
3921         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
3922         if (!rc)
3923                 if (id_ctlr->configured_logical_drive_count < 256)
3924                         *nlocals = id_ctlr->configured_logical_drive_count;
3925                 else
3926                         *nlocals = le16_to_cpu(
3927                                         id_ctlr->extended_logical_unit_count);
3928         else
3929                 *nlocals = -1;
3930         return rc;
3931 }
3932
3933
3934 static void hpsa_update_scsi_devices(struct ctlr_info *h)
3935 {
3936         /* the idea here is we could get notified
3937          * that some devices have changed, so we do a report
3938          * physical luns and report logical luns cmd, and adjust
3939          * our list of devices accordingly.
3940          *
3941          * The scsi3addr's of devices won't change so long as the
3942          * adapter is not reset.  That means we can rescan and
3943          * tell which devices we already know about, vs. new
3944          * devices, vs.  disappearing devices.
3945          */
3946         struct ReportExtendedLUNdata *physdev_list = NULL;
3947         struct ReportLUNdata *logdev_list = NULL;
3948         struct bmic_identify_physical_device *id_phys = NULL;
3949         struct bmic_identify_controller *id_ctlr = NULL;
3950         u32 nphysicals = 0;
3951         u32 nlogicals = 0;
3952         u32 nlocal_logicals = 0;
3953         u32 ndev_allocated = 0;
3954         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3955         int ncurrent = 0;
3956         int i, n_ext_target_devs, ndevs_to_allocate;
3957         int raid_ctlr_position;
3958         bool physical_device;
3959         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3960
3961         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3962         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3963         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3964         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3965         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3966         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
3967
3968         if (!currentsd || !physdev_list || !logdev_list ||
3969                 !tmpdevice || !id_phys || !id_ctlr) {
3970                 dev_err(&h->pdev->dev, "out of memory\n");
3971                 goto out;
3972         }
3973         memset(lunzerobits, 0, sizeof(lunzerobits));
3974
3975         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
3976
3977         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3978                         logdev_list, &nlogicals)) {
3979                 h->drv_req_rescan = 1;
3980                 goto out;
3981         }
3982
3983         /* Set number of local logicals (non PTRAID) */
3984         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
3985                 dev_warn(&h->pdev->dev,
3986                         "%s: Can't determine number of local logical devices.\n",
3987                         __func__);
3988         }
3989
3990         /* We might see up to the maximum number of logical and physical disks
3991          * plus external target devices, and a device for the local RAID
3992          * controller.
3993          */
3994         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3995
3996         /* Allocate the per device structures */
3997         for (i = 0; i < ndevs_to_allocate; i++) {
3998                 if (i >= HPSA_MAX_DEVICES) {
3999                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4000                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4001                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4002                         break;
4003                 }
4004
4005                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4006                 if (!currentsd[i]) {
4007                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4008                                 __FILE__, __LINE__);
4009                         h->drv_req_rescan = 1;
4010                         goto out;
4011                 }
4012                 ndev_allocated++;
4013         }
4014
4015         if (is_scsi_rev_5(h))
4016                 raid_ctlr_position = 0;
4017         else
4018                 raid_ctlr_position = nphysicals + nlogicals;
4019
4020         /* adjust our table of devices */
4021         n_ext_target_devs = 0;
4022         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4023                 u8 *lunaddrbytes, is_OBDR = 0;
4024                 int rc = 0;
4025                 int phys_dev_index = i - (raid_ctlr_position == 0);
4026
4027                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4028
4029                 /* Figure out where the LUN ID info is coming from */
4030                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4031                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4032
4033                 /* skip masked non-disk devices */
4034                 if (MASKED_DEVICE(lunaddrbytes) && physical_device &&
4035                         (physdev_list->LUN[phys_dev_index].device_flags & 0x01))
4036                         continue;
4037
4038                 /* Get device type, vendor, model, device id */
4039                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4040                                                         &is_OBDR);
4041                 if (rc == -ENOMEM) {
4042                         dev_warn(&h->pdev->dev,
4043                                 "Out of memory, rescan deferred.\n");
4044                         h->drv_req_rescan = 1;
4045                         goto out;
4046                 }
4047                 if (rc) {
4048                         dev_warn(&h->pdev->dev,
4049                                 "Inquiry failed, skipping device.\n");
4050                         continue;
4051                 }
4052
4053                 /* Determine if this is a lun from an external target array */
4054                 tmpdevice->external =
4055                         figure_external_status(h, raid_ctlr_position, i,
4056                                                 nphysicals, nlocal_logicals);
4057
4058                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4059                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4060                 this_device = currentsd[ncurrent];
4061
4062                 /* Turn on discovery_polling if there are ext target devices.
4063                  * Event-based change notification is unreliable for those.
4064                  */
4065                 if (!h->discovery_polling) {
4066                         if (tmpdevice->external) {
4067                                 h->discovery_polling = 1;
4068                                 dev_info(&h->pdev->dev,
4069                                         "External target, activate discovery polling.\n");
4070                         }
4071                 }
4072
4073
4074                 *this_device = *tmpdevice;
4075                 this_device->physical_device = physical_device;
4076
4077                 /*
4078                  * Expose all devices except for physical devices that
4079                  * are masked.
4080                  */
4081                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4082                         this_device->expose_device = 0;
4083                 else
4084                         this_device->expose_device = 1;
4085
4086
4087                 /*
4088                  * Get the SAS address for physical devices that are exposed.
4089                  */
4090                 if (this_device->physical_device && this_device->expose_device)
4091                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4092
4093                 switch (this_device->devtype) {
4094                 case TYPE_ROM:
4095                         /* We don't *really* support actual CD-ROM devices,
4096                          * just "One Button Disaster Recovery" tape drive
4097                          * which temporarily pretends to be a CD-ROM drive.
4098                          * So we check that the device is really an OBDR tape
4099                          * device by checking for "$DR-10" in bytes 43-48 of
4100                          * the inquiry data.
4101                          */
4102                         if (is_OBDR)
4103                                 ncurrent++;
4104                         break;
4105                 case TYPE_DISK:
4106                         if (this_device->physical_device) {
4107                                 /* The disk is in HBA mode. */
4108                                 /* Never use RAID mapper in HBA mode. */
4109                                 this_device->offload_enabled = 0;
4110                                 hpsa_get_ioaccel_drive_info(h, this_device,
4111                                         physdev_list, phys_dev_index, id_phys);
4112                                 hpsa_get_path_info(this_device,
4113                                         physdev_list, phys_dev_index, id_phys);
4114                         }
4115                         ncurrent++;
4116                         break;
4117                 case TYPE_TAPE:
4118                 case TYPE_MEDIUM_CHANGER:
4119                 case TYPE_ENCLOSURE:
4120                         ncurrent++;
4121                         break;
4122                 case TYPE_RAID:
4123                         /* Only present the Smartarray HBA as a RAID controller.
4124                          * If it's a RAID controller other than the HBA itself
4125                          * (an external RAID controller, MSA500 or similar)
4126                          * don't present it.
4127                          */
4128                         if (!is_hba_lunid(lunaddrbytes))
4129                                 break;
4130                         ncurrent++;
4131                         break;
4132                 default:
4133                         break;
4134                 }
4135                 if (ncurrent >= HPSA_MAX_DEVICES)
4136                         break;
4137         }
4138
4139         if (h->sas_host == NULL) {
4140                 int rc = 0;
4141
4142                 rc = hpsa_add_sas_host(h);
4143                 if (rc) {
4144                         dev_warn(&h->pdev->dev,
4145                                 "Could not add sas host %d\n", rc);
4146                         goto out;
4147                 }
4148         }
4149
4150         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4151 out:
4152         kfree(tmpdevice);
4153         for (i = 0; i < ndev_allocated; i++)
4154                 kfree(currentsd[i]);
4155         kfree(currentsd);
4156         kfree(physdev_list);
4157         kfree(logdev_list);
4158         kfree(id_ctlr);
4159         kfree(id_phys);
4160 }
4161
4162 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4163                                    struct scatterlist *sg)
4164 {
4165         u64 addr64 = (u64) sg_dma_address(sg);
4166         unsigned int len = sg_dma_len(sg);
4167
4168         desc->Addr = cpu_to_le64(addr64);
4169         desc->Len = cpu_to_le32(len);
4170         desc->Ext = 0;
4171 }
4172
4173 /*
4174  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4175  * dma mapping  and fills in the scatter gather entries of the
4176  * hpsa command, cp.
4177  */
4178 static int hpsa_scatter_gather(struct ctlr_info *h,
4179                 struct CommandList *cp,
4180                 struct scsi_cmnd *cmd)
4181 {
4182         struct scatterlist *sg;
4183         int use_sg, i, sg_limit, chained, last_sg;
4184         struct SGDescriptor *curr_sg;
4185
4186         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4187
4188         use_sg = scsi_dma_map(cmd);
4189         if (use_sg < 0)
4190                 return use_sg;
4191
4192         if (!use_sg)
4193                 goto sglist_finished;
4194
4195         /*
4196          * If the number of entries is greater than the max for a single list,
4197          * then we have a chained list; we will set up all but one entry in the
4198          * first list (the last entry is saved for link information);
4199          * otherwise, we don't have a chained list and we'll set up at each of
4200          * the entries in the one list.
4201          */
4202         curr_sg = cp->SG;
4203         chained = use_sg > h->max_cmd_sg_entries;
4204         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4205         last_sg = scsi_sg_count(cmd) - 1;
4206         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4207                 hpsa_set_sg_descriptor(curr_sg, sg);
4208                 curr_sg++;
4209         }
4210
4211         if (chained) {
4212                 /*
4213                  * Continue with the chained list.  Set curr_sg to the chained
4214                  * list.  Modify the limit to the total count less the entries
4215                  * we've already set up.  Resume the scan at the list entry
4216                  * where the previous loop left off.
4217                  */
4218                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4219                 sg_limit = use_sg - sg_limit;
4220                 for_each_sg(sg, sg, sg_limit, i) {
4221                         hpsa_set_sg_descriptor(curr_sg, sg);
4222                         curr_sg++;
4223                 }
4224         }
4225
4226         /* Back the pointer up to the last entry and mark it as "last". */
4227         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4228
4229         if (use_sg + chained > h->maxSG)
4230                 h->maxSG = use_sg + chained;
4231
4232         if (chained) {
4233                 cp->Header.SGList = h->max_cmd_sg_entries;
4234                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4235                 if (hpsa_map_sg_chain_block(h, cp)) {
4236                         scsi_dma_unmap(cmd);
4237                         return -1;
4238                 }
4239                 return 0;
4240         }
4241
4242 sglist_finished:
4243
4244         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4245         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4246         return 0;
4247 }
4248
4249 #define IO_ACCEL_INELIGIBLE (1)
4250 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4251 {
4252         int is_write = 0;
4253         u32 block;
4254         u32 block_cnt;
4255
4256         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4257         switch (cdb[0]) {
4258         case WRITE_6:
4259         case WRITE_12:
4260                 is_write = 1;
4261         case READ_6:
4262         case READ_12:
4263                 if (*cdb_len == 6) {
4264                         block = get_unaligned_be16(&cdb[2]);
4265                         block_cnt = cdb[4];
4266                         if (block_cnt == 0)
4267                                 block_cnt = 256;
4268                 } else {
4269                         BUG_ON(*cdb_len != 12);
4270                         block = get_unaligned_be32(&cdb[2]);
4271                         block_cnt = get_unaligned_be32(&cdb[6]);
4272                 }
4273                 if (block_cnt > 0xffff)
4274                         return IO_ACCEL_INELIGIBLE;
4275
4276                 cdb[0] = is_write ? WRITE_10 : READ_10;
4277                 cdb[1] = 0;
4278                 cdb[2] = (u8) (block >> 24);
4279                 cdb[3] = (u8) (block >> 16);
4280                 cdb[4] = (u8) (block >> 8);
4281                 cdb[5] = (u8) (block);
4282                 cdb[6] = 0;
4283                 cdb[7] = (u8) (block_cnt >> 8);
4284                 cdb[8] = (u8) (block_cnt);
4285                 cdb[9] = 0;
4286                 *cdb_len = 10;
4287                 break;
4288         }
4289         return 0;
4290 }
4291
4292 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4293         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4294         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4295 {
4296         struct scsi_cmnd *cmd = c->scsi_cmd;
4297         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4298         unsigned int len;
4299         unsigned int total_len = 0;
4300         struct scatterlist *sg;
4301         u64 addr64;
4302         int use_sg, i;
4303         struct SGDescriptor *curr_sg;
4304         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4305
4306         /* TODO: implement chaining support */
4307         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4308                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4309                 return IO_ACCEL_INELIGIBLE;
4310         }
4311
4312         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4313
4314         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4315                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4316                 return IO_ACCEL_INELIGIBLE;
4317         }
4318
4319         c->cmd_type = CMD_IOACCEL1;
4320
4321         /* Adjust the DMA address to point to the accelerated command buffer */
4322         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4323                                 (c->cmdindex * sizeof(*cp));
4324         BUG_ON(c->busaddr & 0x0000007F);
4325
4326         use_sg = scsi_dma_map(cmd);
4327         if (use_sg < 0) {
4328                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4329                 return use_sg;
4330         }
4331
4332         if (use_sg) {
4333                 curr_sg = cp->SG;
4334                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4335                         addr64 = (u64) sg_dma_address(sg);
4336                         len  = sg_dma_len(sg);
4337                         total_len += len;
4338                         curr_sg->Addr = cpu_to_le64(addr64);
4339                         curr_sg->Len = cpu_to_le32(len);
4340                         curr_sg->Ext = cpu_to_le32(0);
4341                         curr_sg++;
4342                 }
4343                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4344
4345                 switch (cmd->sc_data_direction) {
4346                 case DMA_TO_DEVICE:
4347                         control |= IOACCEL1_CONTROL_DATA_OUT;
4348                         break;
4349                 case DMA_FROM_DEVICE:
4350                         control |= IOACCEL1_CONTROL_DATA_IN;
4351                         break;
4352                 case DMA_NONE:
4353                         control |= IOACCEL1_CONTROL_NODATAXFER;
4354                         break;
4355                 default:
4356                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4357                         cmd->sc_data_direction);
4358                         BUG();
4359                         break;
4360                 }
4361         } else {
4362                 control |= IOACCEL1_CONTROL_NODATAXFER;
4363         }
4364
4365         c->Header.SGList = use_sg;
4366         /* Fill out the command structure to submit */
4367         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4368         cp->transfer_len = cpu_to_le32(total_len);
4369         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4370                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4371         cp->control = cpu_to_le32(control);
4372         memcpy(cp->CDB, cdb, cdb_len);
4373         memcpy(cp->CISS_LUN, scsi3addr, 8);
4374         /* Tag was already set at init time. */
4375         enqueue_cmd_and_start_io(h, c);
4376         return 0;
4377 }
4378
4379 /*
4380  * Queue a command directly to a device behind the controller using the
4381  * I/O accelerator path.
4382  */
4383 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4384         struct CommandList *c)
4385 {
4386         struct scsi_cmnd *cmd = c->scsi_cmd;
4387         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4388
4389         c->phys_disk = dev;
4390
4391         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4392                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4393 }
4394
4395 /*
4396  * Set encryption parameters for the ioaccel2 request
4397  */
4398 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4399         struct CommandList *c, struct io_accel2_cmd *cp)
4400 {
4401         struct scsi_cmnd *cmd = c->scsi_cmd;
4402         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4403         struct raid_map_data *map = &dev->raid_map;
4404         u64 first_block;
4405
4406         /* Are we doing encryption on this device */
4407         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4408                 return;
4409         /* Set the data encryption key index. */
4410         cp->dekindex = map->dekindex;
4411
4412         /* Set the encryption enable flag, encoded into direction field. */
4413         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4414
4415         /* Set encryption tweak values based on logical block address
4416          * If block size is 512, tweak value is LBA.
4417          * For other block sizes, tweak is (LBA * block size)/ 512)
4418          */
4419         switch (cmd->cmnd[0]) {
4420         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4421         case WRITE_6:
4422         case READ_6:
4423                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4424                 break;
4425         case WRITE_10:
4426         case READ_10:
4427         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4428         case WRITE_12:
4429         case READ_12:
4430                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4431                 break;
4432         case WRITE_16:
4433         case READ_16:
4434                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4435                 break;
4436         default:
4437                 dev_err(&h->pdev->dev,
4438                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4439                         __func__, cmd->cmnd[0]);
4440                 BUG();
4441                 break;
4442         }
4443
4444         if (le32_to_cpu(map->volume_blk_size) != 512)
4445                 first_block = first_block *
4446                                 le32_to_cpu(map->volume_blk_size)/512;
4447
4448         cp->tweak_lower = cpu_to_le32(first_block);
4449         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4450 }
4451
4452 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4453         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4454         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4455 {
4456         struct scsi_cmnd *cmd = c->scsi_cmd;
4457         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4458         struct ioaccel2_sg_element *curr_sg;
4459         int use_sg, i;
4460         struct scatterlist *sg;
4461         u64 addr64;
4462         u32 len;
4463         u32 total_len = 0;
4464
4465         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4466
4467         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4468                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4469                 return IO_ACCEL_INELIGIBLE;
4470         }
4471
4472         c->cmd_type = CMD_IOACCEL2;
4473         /* Adjust the DMA address to point to the accelerated command buffer */
4474         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4475                                 (c->cmdindex * sizeof(*cp));
4476         BUG_ON(c->busaddr & 0x0000007F);
4477
4478         memset(cp, 0, sizeof(*cp));
4479         cp->IU_type = IOACCEL2_IU_TYPE;
4480
4481         use_sg = scsi_dma_map(cmd);
4482         if (use_sg < 0) {
4483                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4484                 return use_sg;
4485         }
4486
4487         if (use_sg) {
4488                 curr_sg = cp->sg;
4489                 if (use_sg > h->ioaccel_maxsg) {
4490                         addr64 = le64_to_cpu(
4491                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4492                         curr_sg->address = cpu_to_le64(addr64);
4493                         curr_sg->length = 0;
4494                         curr_sg->reserved[0] = 0;
4495                         curr_sg->reserved[1] = 0;
4496                         curr_sg->reserved[2] = 0;
4497                         curr_sg->chain_indicator = 0x80;
4498
4499                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4500                 }
4501                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4502                         addr64 = (u64) sg_dma_address(sg);
4503                         len  = sg_dma_len(sg);
4504                         total_len += len;
4505                         curr_sg->address = cpu_to_le64(addr64);
4506                         curr_sg->length = cpu_to_le32(len);
4507                         curr_sg->reserved[0] = 0;
4508                         curr_sg->reserved[1] = 0;
4509                         curr_sg->reserved[2] = 0;
4510                         curr_sg->chain_indicator = 0;
4511                         curr_sg++;
4512                 }
4513
4514                 switch (cmd->sc_data_direction) {
4515                 case DMA_TO_DEVICE:
4516                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4517                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4518                         break;
4519                 case DMA_FROM_DEVICE:
4520                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4521                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4522                         break;
4523                 case DMA_NONE:
4524                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4525                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4526                         break;
4527                 default:
4528                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4529                                 cmd->sc_data_direction);
4530                         BUG();
4531                         break;
4532                 }
4533         } else {
4534                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4535                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4536         }
4537
4538         /* Set encryption parameters, if necessary */
4539         set_encrypt_ioaccel2(h, c, cp);
4540
4541         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4542         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4543         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4544
4545         cp->data_len = cpu_to_le32(total_len);
4546         cp->err_ptr = cpu_to_le64(c->busaddr +
4547                         offsetof(struct io_accel2_cmd, error_data));
4548         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4549
4550         /* fill in sg elements */
4551         if (use_sg > h->ioaccel_maxsg) {
4552                 cp->sg_count = 1;
4553                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4554                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4555                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4556                         scsi_dma_unmap(cmd);
4557                         return -1;
4558                 }
4559         } else
4560                 cp->sg_count = (u8) use_sg;
4561
4562         enqueue_cmd_and_start_io(h, c);
4563         return 0;
4564 }
4565
4566 /*
4567  * Queue a command to the correct I/O accelerator path.
4568  */
4569 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4570         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4571         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4572 {
4573         /* Try to honor the device's queue depth */
4574         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4575                                         phys_disk->queue_depth) {
4576                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4577                 return IO_ACCEL_INELIGIBLE;
4578         }
4579         if (h->transMethod & CFGTBL_Trans_io_accel1)
4580                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4581                                                 cdb, cdb_len, scsi3addr,
4582                                                 phys_disk);
4583         else
4584                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4585                                                 cdb, cdb_len, scsi3addr,
4586                                                 phys_disk);
4587 }
4588
4589 static void raid_map_helper(struct raid_map_data *map,
4590                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4591 {
4592         if (offload_to_mirror == 0)  {
4593                 /* use physical disk in the first mirrored group. */
4594                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4595                 return;
4596         }
4597         do {
4598                 /* determine mirror group that *map_index indicates */
4599                 *current_group = *map_index /
4600                         le16_to_cpu(map->data_disks_per_row);
4601                 if (offload_to_mirror == *current_group)
4602                         continue;
4603                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4604                         /* select map index from next group */
4605                         *map_index += le16_to_cpu(map->data_disks_per_row);
4606                         (*current_group)++;
4607                 } else {
4608                         /* select map index from first group */
4609                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4610                         *current_group = 0;
4611                 }
4612         } while (offload_to_mirror != *current_group);
4613 }
4614
4615 /*
4616  * Attempt to perform offload RAID mapping for a logical volume I/O.
4617  */
4618 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4619         struct CommandList *c)
4620 {
4621         struct scsi_cmnd *cmd = c->scsi_cmd;
4622         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4623         struct raid_map_data *map = &dev->raid_map;
4624         struct raid_map_disk_data *dd = &map->data[0];
4625         int is_write = 0;
4626         u32 map_index;
4627         u64 first_block, last_block;
4628         u32 block_cnt;
4629         u32 blocks_per_row;
4630         u64 first_row, last_row;
4631         u32 first_row_offset, last_row_offset;
4632         u32 first_column, last_column;
4633         u64 r0_first_row, r0_last_row;
4634         u32 r5or6_blocks_per_row;
4635         u64 r5or6_first_row, r5or6_last_row;
4636         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4637         u32 r5or6_first_column, r5or6_last_column;
4638         u32 total_disks_per_row;
4639         u32 stripesize;
4640         u32 first_group, last_group, current_group;
4641         u32 map_row;
4642         u32 disk_handle;
4643         u64 disk_block;
4644         u32 disk_block_cnt;
4645         u8 cdb[16];
4646         u8 cdb_len;
4647         u16 strip_size;
4648 #if BITS_PER_LONG == 32
4649         u64 tmpdiv;
4650 #endif
4651         int offload_to_mirror;
4652
4653         /* check for valid opcode, get LBA and block count */
4654         switch (cmd->cmnd[0]) {
4655         case WRITE_6:
4656                 is_write = 1;
4657         case READ_6:
4658                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4659                 block_cnt = cmd->cmnd[4];
4660                 if (block_cnt == 0)
4661                         block_cnt = 256;
4662                 break;
4663         case WRITE_10:
4664                 is_write = 1;
4665         case READ_10:
4666                 first_block =
4667                         (((u64) cmd->cmnd[2]) << 24) |
4668                         (((u64) cmd->cmnd[3]) << 16) |
4669                         (((u64) cmd->cmnd[4]) << 8) |
4670                         cmd->cmnd[5];
4671                 block_cnt =
4672                         (((u32) cmd->cmnd[7]) << 8) |
4673                         cmd->cmnd[8];
4674                 break;
4675         case WRITE_12:
4676                 is_write = 1;
4677         case READ_12:
4678                 first_block =
4679                         (((u64) cmd->cmnd[2]) << 24) |
4680                         (((u64) cmd->cmnd[3]) << 16) |
4681                         (((u64) cmd->cmnd[4]) << 8) |
4682                         cmd->cmnd[5];
4683                 block_cnt =
4684                         (((u32) cmd->cmnd[6]) << 24) |
4685                         (((u32) cmd->cmnd[7]) << 16) |
4686                         (((u32) cmd->cmnd[8]) << 8) |
4687                 cmd->cmnd[9];
4688                 break;
4689         case WRITE_16:
4690                 is_write = 1;
4691         case READ_16:
4692                 first_block =
4693                         (((u64) cmd->cmnd[2]) << 56) |
4694                         (((u64) cmd->cmnd[3]) << 48) |
4695                         (((u64) cmd->cmnd[4]) << 40) |
4696                         (((u64) cmd->cmnd[5]) << 32) |
4697                         (((u64) cmd->cmnd[6]) << 24) |
4698                         (((u64) cmd->cmnd[7]) << 16) |
4699                         (((u64) cmd->cmnd[8]) << 8) |
4700                         cmd->cmnd[9];
4701                 block_cnt =
4702                         (((u32) cmd->cmnd[10]) << 24) |
4703                         (((u32) cmd->cmnd[11]) << 16) |
4704                         (((u32) cmd->cmnd[12]) << 8) |
4705                         cmd->cmnd[13];
4706                 break;
4707         default:
4708                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4709         }
4710         last_block = first_block + block_cnt - 1;
4711
4712         /* check for write to non-RAID-0 */
4713         if (is_write && dev->raid_level != 0)
4714                 return IO_ACCEL_INELIGIBLE;
4715
4716         /* check for invalid block or wraparound */
4717         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4718                 last_block < first_block)
4719                 return IO_ACCEL_INELIGIBLE;
4720
4721         /* calculate stripe information for the request */
4722         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4723                                 le16_to_cpu(map->strip_size);
4724         strip_size = le16_to_cpu(map->strip_size);
4725 #if BITS_PER_LONG == 32
4726         tmpdiv = first_block;
4727         (void) do_div(tmpdiv, blocks_per_row);
4728         first_row = tmpdiv;
4729         tmpdiv = last_block;
4730         (void) do_div(tmpdiv, blocks_per_row);
4731         last_row = tmpdiv;
4732         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4733         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4734         tmpdiv = first_row_offset;
4735         (void) do_div(tmpdiv, strip_size);
4736         first_column = tmpdiv;
4737         tmpdiv = last_row_offset;
4738         (void) do_div(tmpdiv, strip_size);
4739         last_column = tmpdiv;
4740 #else
4741         first_row = first_block / blocks_per_row;
4742         last_row = last_block / blocks_per_row;
4743         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4744         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4745         first_column = first_row_offset / strip_size;
4746         last_column = last_row_offset / strip_size;
4747 #endif
4748
4749         /* if this isn't a single row/column then give to the controller */
4750         if ((first_row != last_row) || (first_column != last_column))
4751                 return IO_ACCEL_INELIGIBLE;
4752
4753         /* proceeding with driver mapping */
4754         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4755                                 le16_to_cpu(map->metadata_disks_per_row);
4756         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4757                                 le16_to_cpu(map->row_cnt);
4758         map_index = (map_row * total_disks_per_row) + first_column;
4759
4760         switch (dev->raid_level) {
4761         case HPSA_RAID_0:
4762                 break; /* nothing special to do */
4763         case HPSA_RAID_1:
4764                 /* Handles load balance across RAID 1 members.
4765                  * (2-drive R1 and R10 with even # of drives.)
4766                  * Appropriate for SSDs, not optimal for HDDs
4767                  */
4768                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4769                 if (dev->offload_to_mirror)
4770                         map_index += le16_to_cpu(map->data_disks_per_row);
4771                 dev->offload_to_mirror = !dev->offload_to_mirror;
4772                 break;
4773         case HPSA_RAID_ADM:
4774                 /* Handles N-way mirrors  (R1-ADM)
4775                  * and R10 with # of drives divisible by 3.)
4776                  */
4777                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4778
4779                 offload_to_mirror = dev->offload_to_mirror;
4780                 raid_map_helper(map, offload_to_mirror,
4781                                 &map_index, &current_group);
4782                 /* set mirror group to use next time */
4783                 offload_to_mirror =
4784                         (offload_to_mirror >=
4785                         le16_to_cpu(map->layout_map_count) - 1)
4786                         ? 0 : offload_to_mirror + 1;
4787                 dev->offload_to_mirror = offload_to_mirror;
4788                 /* Avoid direct use of dev->offload_to_mirror within this
4789                  * function since multiple threads might simultaneously
4790                  * increment it beyond the range of dev->layout_map_count -1.
4791                  */
4792                 break;
4793         case HPSA_RAID_5:
4794         case HPSA_RAID_6:
4795                 if (le16_to_cpu(map->layout_map_count) <= 1)
4796                         break;
4797
4798                 /* Verify first and last block are in same RAID group */
4799                 r5or6_blocks_per_row =
4800                         le16_to_cpu(map->strip_size) *
4801                         le16_to_cpu(map->data_disks_per_row);
4802                 BUG_ON(r5or6_blocks_per_row == 0);
4803                 stripesize = r5or6_blocks_per_row *
4804                         le16_to_cpu(map->layout_map_count);
4805 #if BITS_PER_LONG == 32
4806                 tmpdiv = first_block;
4807                 first_group = do_div(tmpdiv, stripesize);
4808                 tmpdiv = first_group;
4809                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4810                 first_group = tmpdiv;
4811                 tmpdiv = last_block;
4812                 last_group = do_div(tmpdiv, stripesize);
4813                 tmpdiv = last_group;
4814                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4815                 last_group = tmpdiv;
4816 #else
4817                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4818                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4819 #endif
4820                 if (first_group != last_group)
4821                         return IO_ACCEL_INELIGIBLE;
4822
4823                 /* Verify request is in a single row of RAID 5/6 */
4824 #if BITS_PER_LONG == 32
4825                 tmpdiv = first_block;
4826                 (void) do_div(tmpdiv, stripesize);
4827                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4828                 tmpdiv = last_block;
4829                 (void) do_div(tmpdiv, stripesize);
4830                 r5or6_last_row = r0_last_row = tmpdiv;
4831 #else
4832                 first_row = r5or6_first_row = r0_first_row =
4833                                                 first_block / stripesize;
4834                 r5or6_last_row = r0_last_row = last_block / stripesize;
4835 #endif
4836                 if (r5or6_first_row != r5or6_last_row)
4837                         return IO_ACCEL_INELIGIBLE;
4838
4839
4840                 /* Verify request is in a single column */
4841 #if BITS_PER_LONG == 32
4842                 tmpdiv = first_block;
4843                 first_row_offset = do_div(tmpdiv, stripesize);
4844                 tmpdiv = first_row_offset;
4845                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4846                 r5or6_first_row_offset = first_row_offset;
4847                 tmpdiv = last_block;
4848                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4849                 tmpdiv = r5or6_last_row_offset;
4850                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4851                 tmpdiv = r5or6_first_row_offset;
4852                 (void) do_div(tmpdiv, map->strip_size);
4853                 first_column = r5or6_first_column = tmpdiv;
4854                 tmpdiv = r5or6_last_row_offset;
4855                 (void) do_div(tmpdiv, map->strip_size);
4856                 r5or6_last_column = tmpdiv;
4857 #else
4858                 first_row_offset = r5or6_first_row_offset =
4859                         (u32)((first_block % stripesize) %
4860                                                 r5or6_blocks_per_row);
4861
4862                 r5or6_last_row_offset =
4863                         (u32)((last_block % stripesize) %
4864                                                 r5or6_blocks_per_row);
4865
4866                 first_column = r5or6_first_column =
4867                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4868                 r5or6_last_column =
4869                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4870 #endif
4871                 if (r5or6_first_column != r5or6_last_column)
4872                         return IO_ACCEL_INELIGIBLE;
4873
4874                 /* Request is eligible */
4875                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4876                         le16_to_cpu(map->row_cnt);
4877
4878                 map_index = (first_group *
4879                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4880                         (map_row * total_disks_per_row) + first_column;
4881                 break;
4882         default:
4883                 return IO_ACCEL_INELIGIBLE;
4884         }
4885
4886         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4887                 return IO_ACCEL_INELIGIBLE;
4888
4889         c->phys_disk = dev->phys_disk[map_index];
4890
4891         disk_handle = dd[map_index].ioaccel_handle;
4892         disk_block = le64_to_cpu(map->disk_starting_blk) +
4893                         first_row * le16_to_cpu(map->strip_size) +
4894                         (first_row_offset - first_column *
4895                         le16_to_cpu(map->strip_size));
4896         disk_block_cnt = block_cnt;
4897
4898         /* handle differing logical/physical block sizes */
4899         if (map->phys_blk_shift) {
4900                 disk_block <<= map->phys_blk_shift;
4901                 disk_block_cnt <<= map->phys_blk_shift;
4902         }
4903         BUG_ON(disk_block_cnt > 0xffff);
4904
4905         /* build the new CDB for the physical disk I/O */
4906         if (disk_block > 0xffffffff) {
4907                 cdb[0] = is_write ? WRITE_16 : READ_16;
4908                 cdb[1] = 0;
4909                 cdb[2] = (u8) (disk_block >> 56);
4910                 cdb[3] = (u8) (disk_block >> 48);
4911                 cdb[4] = (u8) (disk_block >> 40);
4912                 cdb[5] = (u8) (disk_block >> 32);
4913                 cdb[6] = (u8) (disk_block >> 24);
4914                 cdb[7] = (u8) (disk_block >> 16);
4915                 cdb[8] = (u8) (disk_block >> 8);
4916                 cdb[9] = (u8) (disk_block);
4917                 cdb[10] = (u8) (disk_block_cnt >> 24);
4918                 cdb[11] = (u8) (disk_block_cnt >> 16);
4919                 cdb[12] = (u8) (disk_block_cnt >> 8);
4920                 cdb[13] = (u8) (disk_block_cnt);
4921                 cdb[14] = 0;
4922                 cdb[15] = 0;
4923                 cdb_len = 16;
4924         } else {
4925                 cdb[0] = is_write ? WRITE_10 : READ_10;
4926                 cdb[1] = 0;
4927                 cdb[2] = (u8) (disk_block >> 24);
4928                 cdb[3] = (u8) (disk_block >> 16);
4929                 cdb[4] = (u8) (disk_block >> 8);
4930                 cdb[5] = (u8) (disk_block);
4931                 cdb[6] = 0;
4932                 cdb[7] = (u8) (disk_block_cnt >> 8);
4933                 cdb[8] = (u8) (disk_block_cnt);
4934                 cdb[9] = 0;
4935                 cdb_len = 10;
4936         }
4937         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4938                                                 dev->scsi3addr,
4939                                                 dev->phys_disk[map_index]);
4940 }
4941
4942 /*
4943  * Submit commands down the "normal" RAID stack path
4944  * All callers to hpsa_ciss_submit must check lockup_detected
4945  * beforehand, before (opt.) and after calling cmd_alloc
4946  */
4947 static int hpsa_ciss_submit(struct ctlr_info *h,
4948         struct CommandList *c, struct scsi_cmnd *cmd,
4949         unsigned char scsi3addr[])
4950 {
4951         cmd->host_scribble = (unsigned char *) c;
4952         c->cmd_type = CMD_SCSI;
4953         c->scsi_cmd = cmd;
4954         c->Header.ReplyQueue = 0;  /* unused in simple mode */
4955         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4956         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4957
4958         /* Fill in the request block... */
4959
4960         c->Request.Timeout = 0;
4961         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4962         c->Request.CDBLen = cmd->cmd_len;
4963         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4964         switch (cmd->sc_data_direction) {
4965         case DMA_TO_DEVICE:
4966                 c->Request.type_attr_dir =
4967                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4968                 break;
4969         case DMA_FROM_DEVICE:
4970                 c->Request.type_attr_dir =
4971                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4972                 break;
4973         case DMA_NONE:
4974                 c->Request.type_attr_dir =
4975                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4976                 break;
4977         case DMA_BIDIRECTIONAL:
4978                 /* This can happen if a buggy application does a scsi passthru
4979                  * and sets both inlen and outlen to non-zero. ( see
4980                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4981                  */
4982
4983                 c->Request.type_attr_dir =
4984                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4985                 /* This is technically wrong, and hpsa controllers should
4986                  * reject it with CMD_INVALID, which is the most correct
4987                  * response, but non-fibre backends appear to let it
4988                  * slide by, and give the same results as if this field
4989                  * were set correctly.  Either way is acceptable for
4990                  * our purposes here.
4991                  */
4992
4993                 break;
4994
4995         default:
4996                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4997                         cmd->sc_data_direction);
4998                 BUG();
4999                 break;
5000         }
5001
5002         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5003                 hpsa_cmd_resolve_and_free(h, c);
5004                 return SCSI_MLQUEUE_HOST_BUSY;
5005         }
5006         enqueue_cmd_and_start_io(h, c);
5007         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5008         return 0;
5009 }
5010
5011 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5012                                 struct CommandList *c)
5013 {
5014         dma_addr_t cmd_dma_handle, err_dma_handle;
5015
5016         /* Zero out all of commandlist except the last field, refcount */
5017         memset(c, 0, offsetof(struct CommandList, refcount));
5018         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5019         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5020         c->err_info = h->errinfo_pool + index;
5021         memset(c->err_info, 0, sizeof(*c->err_info));
5022         err_dma_handle = h->errinfo_pool_dhandle
5023             + index * sizeof(*c->err_info);
5024         c->cmdindex = index;
5025         c->busaddr = (u32) cmd_dma_handle;
5026         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5027         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5028         c->h = h;
5029         c->scsi_cmd = SCSI_CMD_IDLE;
5030 }
5031
5032 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5033 {
5034         int i;
5035
5036         for (i = 0; i < h->nr_cmds; i++) {
5037                 struct CommandList *c = h->cmd_pool + i;
5038
5039                 hpsa_cmd_init(h, i, c);
5040                 atomic_set(&c->refcount, 0);
5041         }
5042 }
5043
5044 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5045                                 struct CommandList *c)
5046 {
5047         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5048
5049         BUG_ON(c->cmdindex != index);
5050
5051         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5052         memset(c->err_info, 0, sizeof(*c->err_info));
5053         c->busaddr = (u32) cmd_dma_handle;
5054 }
5055
5056 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5057                 struct CommandList *c, struct scsi_cmnd *cmd,
5058                 unsigned char *scsi3addr)
5059 {
5060         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5061         int rc = IO_ACCEL_INELIGIBLE;
5062
5063         cmd->host_scribble = (unsigned char *) c;
5064
5065         if (dev->offload_enabled) {
5066                 hpsa_cmd_init(h, c->cmdindex, c);
5067                 c->cmd_type = CMD_SCSI;
5068                 c->scsi_cmd = cmd;
5069                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5070                 if (rc < 0)     /* scsi_dma_map failed. */
5071                         rc = SCSI_MLQUEUE_HOST_BUSY;
5072         } else if (dev->hba_ioaccel_enabled) {
5073                 hpsa_cmd_init(h, c->cmdindex, c);
5074                 c->cmd_type = CMD_SCSI;
5075                 c->scsi_cmd = cmd;
5076                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5077                 if (rc < 0)     /* scsi_dma_map failed. */
5078                         rc = SCSI_MLQUEUE_HOST_BUSY;
5079         }
5080         return rc;
5081 }
5082
5083 static void hpsa_command_resubmit_worker(struct work_struct *work)
5084 {
5085         struct scsi_cmnd *cmd;
5086         struct hpsa_scsi_dev_t *dev;
5087         struct CommandList *c = container_of(work, struct CommandList, work);
5088
5089         cmd = c->scsi_cmd;
5090         dev = cmd->device->hostdata;
5091         if (!dev) {
5092                 cmd->result = DID_NO_CONNECT << 16;
5093                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5094         }
5095         if (c->reset_pending)
5096                 return hpsa_cmd_resolve_and_free(c->h, c);
5097         if (c->abort_pending)
5098                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5099         if (c->cmd_type == CMD_IOACCEL2) {
5100                 struct ctlr_info *h = c->h;
5101                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5102                 int rc;
5103
5104                 if (c2->error_data.serv_response ==
5105                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5106                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5107                         if (rc == 0)
5108                                 return;
5109                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5110                                 /*
5111                                  * If we get here, it means dma mapping failed.
5112                                  * Try again via scsi mid layer, which will
5113                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5114                                  */
5115                                 cmd->result = DID_IMM_RETRY << 16;
5116                                 return hpsa_cmd_free_and_done(h, c, cmd);
5117                         }
5118                         /* else, fall thru and resubmit down CISS path */
5119                 }
5120         }
5121         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5122         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5123                 /*
5124                  * If we get here, it means dma mapping failed. Try
5125                  * again via scsi mid layer, which will then get
5126                  * SCSI_MLQUEUE_HOST_BUSY.
5127                  *
5128                  * hpsa_ciss_submit will have already freed c
5129                  * if it encountered a dma mapping failure.
5130                  */
5131                 cmd->result = DID_IMM_RETRY << 16;
5132                 cmd->scsi_done(cmd);
5133         }
5134 }
5135
5136 /* Running in struct Scsi_Host->host_lock less mode */
5137 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5138 {
5139         struct ctlr_info *h;
5140         struct hpsa_scsi_dev_t *dev;
5141         unsigned char scsi3addr[8];
5142         struct CommandList *c;
5143         int rc = 0;
5144
5145         /* Get the ptr to our adapter structure out of cmd->host. */
5146         h = sdev_to_hba(cmd->device);
5147
5148         BUG_ON(cmd->request->tag < 0);
5149
5150         dev = cmd->device->hostdata;
5151         if (!dev) {
5152                 cmd->result = DID_NO_CONNECT << 16;
5153                 cmd->scsi_done(cmd);
5154                 return 0;
5155         }
5156
5157         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5158
5159         if (unlikely(lockup_detected(h))) {
5160                 cmd->result = DID_NO_CONNECT << 16;
5161                 cmd->scsi_done(cmd);
5162                 return 0;
5163         }
5164         c = cmd_tagged_alloc(h, cmd);
5165
5166         /*
5167          * Call alternate submit routine for I/O accelerated commands.
5168          * Retries always go down the normal I/O path.
5169          */
5170         if (likely(cmd->retries == 0 &&
5171                 cmd->request->cmd_type == REQ_TYPE_FS &&
5172                 h->acciopath_status)) {
5173                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5174                 if (rc == 0)
5175                         return 0;
5176                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5177                         hpsa_cmd_resolve_and_free(h, c);
5178                         return SCSI_MLQUEUE_HOST_BUSY;
5179                 }
5180         }
5181         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5182 }
5183
5184 static void hpsa_scan_complete(struct ctlr_info *h)
5185 {
5186         unsigned long flags;
5187
5188         spin_lock_irqsave(&h->scan_lock, flags);
5189         h->scan_finished = 1;
5190         wake_up_all(&h->scan_wait_queue);
5191         spin_unlock_irqrestore(&h->scan_lock, flags);
5192 }
5193
5194 static void hpsa_scan_start(struct Scsi_Host *sh)
5195 {
5196         struct ctlr_info *h = shost_to_hba(sh);
5197         unsigned long flags;
5198
5199         /*
5200          * Don't let rescans be initiated on a controller known to be locked
5201          * up.  If the controller locks up *during* a rescan, that thread is
5202          * probably hosed, but at least we can prevent new rescan threads from
5203          * piling up on a locked up controller.
5204          */
5205         if (unlikely(lockup_detected(h)))
5206                 return hpsa_scan_complete(h);
5207
5208         /* wait until any scan already in progress is finished. */
5209         while (1) {
5210                 spin_lock_irqsave(&h->scan_lock, flags);
5211                 if (h->scan_finished)
5212                         break;
5213                 spin_unlock_irqrestore(&h->scan_lock, flags);
5214                 wait_event(h->scan_wait_queue, h->scan_finished);
5215                 /* Note: We don't need to worry about a race between this
5216                  * thread and driver unload because the midlayer will
5217                  * have incremented the reference count, so unload won't
5218                  * happen if we're in here.
5219                  */
5220         }
5221         h->scan_finished = 0; /* mark scan as in progress */
5222         spin_unlock_irqrestore(&h->scan_lock, flags);
5223
5224         if (unlikely(lockup_detected(h)))
5225                 return hpsa_scan_complete(h);
5226
5227         hpsa_update_scsi_devices(h);
5228
5229         hpsa_scan_complete(h);
5230 }
5231
5232 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5233 {
5234         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5235
5236         if (!logical_drive)
5237                 return -ENODEV;
5238
5239         if (qdepth < 1)
5240                 qdepth = 1;
5241         else if (qdepth > logical_drive->queue_depth)
5242                 qdepth = logical_drive->queue_depth;
5243
5244         return scsi_change_queue_depth(sdev, qdepth);
5245 }
5246
5247 static int hpsa_scan_finished(struct Scsi_Host *sh,
5248         unsigned long elapsed_time)
5249 {
5250         struct ctlr_info *h = shost_to_hba(sh);
5251         unsigned long flags;
5252         int finished;
5253
5254         spin_lock_irqsave(&h->scan_lock, flags);
5255         finished = h->scan_finished;
5256         spin_unlock_irqrestore(&h->scan_lock, flags);
5257         return finished;
5258 }
5259
5260 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5261 {
5262         struct Scsi_Host *sh;
5263
5264         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5265         if (sh == NULL) {
5266                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5267                 return -ENOMEM;
5268         }
5269
5270         sh->io_port = 0;
5271         sh->n_io_port = 0;
5272         sh->this_id = -1;
5273         sh->max_channel = 3;
5274         sh->max_cmd_len = MAX_COMMAND_SIZE;
5275         sh->max_lun = HPSA_MAX_LUN;
5276         sh->max_id = HPSA_MAX_LUN;
5277         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5278         sh->cmd_per_lun = sh->can_queue;
5279         sh->sg_tablesize = h->maxsgentries;
5280         sh->transportt = hpsa_sas_transport_template;
5281         sh->hostdata[0] = (unsigned long) h;
5282         sh->irq = h->intr[h->intr_mode];
5283         sh->unique_id = sh->irq;
5284
5285         h->scsi_host = sh;
5286         return 0;
5287 }
5288
5289 static int hpsa_scsi_add_host(struct ctlr_info *h)
5290 {
5291         int rv;
5292
5293         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5294         if (rv) {
5295                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5296                 return rv;
5297         }
5298         scsi_scan_host(h->scsi_host);
5299         return 0;
5300 }
5301
5302 /*
5303  * The block layer has already gone to the trouble of picking out a unique,
5304  * small-integer tag for this request.  We use an offset from that value as
5305  * an index to select our command block.  (The offset allows us to reserve the
5306  * low-numbered entries for our own uses.)
5307  */
5308 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5309 {
5310         int idx = scmd->request->tag;
5311
5312         if (idx < 0)
5313                 return idx;
5314
5315         /* Offset to leave space for internal cmds. */
5316         return idx += HPSA_NRESERVED_CMDS;
5317 }
5318
5319 /*
5320  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5321  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5322  */
5323 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5324                                 struct CommandList *c, unsigned char lunaddr[],
5325                                 int reply_queue)
5326 {
5327         int rc;
5328
5329         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5330         (void) fill_cmd(c, TEST_UNIT_READY, h,
5331                         NULL, 0, 0, lunaddr, TYPE_CMD);
5332         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5333         if (rc)
5334                 return rc;
5335         /* no unmap needed here because no data xfer. */
5336
5337         /* Check if the unit is already ready. */
5338         if (c->err_info->CommandStatus == CMD_SUCCESS)
5339                 return 0;
5340
5341         /*
5342          * The first command sent after reset will receive "unit attention" to
5343          * indicate that the LUN has been reset...this is actually what we're
5344          * looking for (but, success is good too).
5345          */
5346         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5347                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5348                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5349                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5350                 return 0;
5351
5352         return 1;
5353 }
5354
5355 /*
5356  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5357  * returns zero when the unit is ready, and non-zero when giving up.
5358  */
5359 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5360                                 struct CommandList *c,
5361                                 unsigned char lunaddr[], int reply_queue)
5362 {
5363         int rc;
5364         int count = 0;
5365         int waittime = 1; /* seconds */
5366
5367         /* Send test unit ready until device ready, or give up. */
5368         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5369
5370                 /*
5371                  * Wait for a bit.  do this first, because if we send
5372                  * the TUR right away, the reset will just abort it.
5373                  */
5374                 msleep(1000 * waittime);
5375
5376                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5377                 if (!rc)
5378                         break;
5379
5380                 /* Increase wait time with each try, up to a point. */
5381                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5382                         waittime *= 2;
5383
5384                 dev_warn(&h->pdev->dev,
5385                          "waiting %d secs for device to become ready.\n",
5386                          waittime);
5387         }
5388
5389         return rc;
5390 }
5391
5392 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5393                                            unsigned char lunaddr[],
5394                                            int reply_queue)
5395 {
5396         int first_queue;
5397         int last_queue;
5398         int rq;
5399         int rc = 0;
5400         struct CommandList *c;
5401
5402         c = cmd_alloc(h);
5403
5404         /*
5405          * If no specific reply queue was requested, then send the TUR
5406          * repeatedly, requesting a reply on each reply queue; otherwise execute
5407          * the loop exactly once using only the specified queue.
5408          */
5409         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5410                 first_queue = 0;
5411                 last_queue = h->nreply_queues - 1;
5412         } else {
5413                 first_queue = reply_queue;
5414                 last_queue = reply_queue;
5415         }
5416
5417         for (rq = first_queue; rq <= last_queue; rq++) {
5418                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5419                 if (rc)
5420                         break;
5421         }
5422
5423         if (rc)
5424                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5425         else
5426                 dev_warn(&h->pdev->dev, "device is ready.\n");
5427
5428         cmd_free(h, c);
5429         return rc;
5430 }
5431
5432 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5433  * complaining.  Doing a host- or bus-reset can't do anything good here.
5434  */
5435 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5436 {
5437         int rc;
5438         struct ctlr_info *h;
5439         struct hpsa_scsi_dev_t *dev;
5440         u8 reset_type;
5441         char msg[48];
5442
5443         /* find the controller to which the command to be aborted was sent */
5444         h = sdev_to_hba(scsicmd->device);
5445         if (h == NULL) /* paranoia */
5446                 return FAILED;
5447
5448         if (lockup_detected(h))
5449                 return FAILED;
5450
5451         dev = scsicmd->device->hostdata;
5452         if (!dev) {
5453                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5454                 return FAILED;
5455         }
5456
5457         /* if controller locked up, we can guarantee command won't complete */
5458         if (lockup_detected(h)) {
5459                 snprintf(msg, sizeof(msg),
5460                          "cmd %d RESET FAILED, lockup detected",
5461                          hpsa_get_cmd_index(scsicmd));
5462                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5463                 return FAILED;
5464         }
5465
5466         /* this reset request might be the result of a lockup; check */
5467         if (detect_controller_lockup(h)) {
5468                 snprintf(msg, sizeof(msg),
5469                          "cmd %d RESET FAILED, new lockup detected",
5470                          hpsa_get_cmd_index(scsicmd));
5471                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5472                 return FAILED;
5473         }
5474
5475         /* Do not attempt on controller */
5476         if (is_hba_lunid(dev->scsi3addr))
5477                 return SUCCESS;
5478
5479         if (is_logical_dev_addr_mode(dev->scsi3addr))
5480                 reset_type = HPSA_DEVICE_RESET_MSG;
5481         else
5482                 reset_type = HPSA_PHYS_TARGET_RESET;
5483
5484         sprintf(msg, "resetting %s",
5485                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5486         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5487
5488         h->reset_in_progress = 1;
5489
5490         /* send a reset to the SCSI LUN which the command was sent to */
5491         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5492                            DEFAULT_REPLY_QUEUE);
5493         sprintf(msg, "reset %s %s",
5494                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5495                 rc == 0 ? "completed successfully" : "failed");
5496         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5497         h->reset_in_progress = 0;
5498         return rc == 0 ? SUCCESS : FAILED;
5499 }
5500
5501 static void swizzle_abort_tag(u8 *tag)
5502 {
5503         u8 original_tag[8];
5504
5505         memcpy(original_tag, tag, 8);
5506         tag[0] = original_tag[3];
5507         tag[1] = original_tag[2];
5508         tag[2] = original_tag[1];
5509         tag[3] = original_tag[0];
5510         tag[4] = original_tag[7];
5511         tag[5] = original_tag[6];
5512         tag[6] = original_tag[5];
5513         tag[7] = original_tag[4];
5514 }
5515
5516 static void hpsa_get_tag(struct ctlr_info *h,
5517         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5518 {
5519         u64 tag;
5520         if (c->cmd_type == CMD_IOACCEL1) {
5521                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5522                         &h->ioaccel_cmd_pool[c->cmdindex];
5523                 tag = le64_to_cpu(cm1->tag);
5524                 *tagupper = cpu_to_le32(tag >> 32);
5525                 *taglower = cpu_to_le32(tag);
5526                 return;
5527         }
5528         if (c->cmd_type == CMD_IOACCEL2) {
5529                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5530                         &h->ioaccel2_cmd_pool[c->cmdindex];
5531                 /* upper tag not used in ioaccel2 mode */
5532                 memset(tagupper, 0, sizeof(*tagupper));
5533                 *taglower = cm2->Tag;
5534                 return;
5535         }
5536         tag = le64_to_cpu(c->Header.tag);
5537         *tagupper = cpu_to_le32(tag >> 32);
5538         *taglower = cpu_to_le32(tag);
5539 }
5540
5541 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5542         struct CommandList *abort, int reply_queue)
5543 {
5544         int rc = IO_OK;
5545         struct CommandList *c;
5546         struct ErrorInfo *ei;
5547         __le32 tagupper, taglower;
5548
5549         c = cmd_alloc(h);
5550
5551         /* fill_cmd can't fail here, no buffer to map */
5552         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5553                 0, 0, scsi3addr, TYPE_MSG);
5554         if (h->needs_abort_tags_swizzled)
5555                 swizzle_abort_tag(&c->Request.CDB[4]);
5556         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5557         hpsa_get_tag(h, abort, &taglower, &tagupper);
5558         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5559                 __func__, tagupper, taglower);
5560         /* no unmap needed here because no data xfer. */
5561
5562         ei = c->err_info;
5563         switch (ei->CommandStatus) {
5564         case CMD_SUCCESS:
5565                 break;
5566         case CMD_TMF_STATUS:
5567                 rc = hpsa_evaluate_tmf_status(h, c);
5568                 break;
5569         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5570                 rc = -1;
5571                 break;
5572         default:
5573                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5574                         __func__, tagupper, taglower);
5575                 hpsa_scsi_interpret_error(h, c);
5576                 rc = -1;
5577                 break;
5578         }
5579         cmd_free(h, c);
5580         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5581                 __func__, tagupper, taglower);
5582         return rc;
5583 }
5584
5585 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5586         struct CommandList *command_to_abort, int reply_queue)
5587 {
5588         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5589         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5590         struct io_accel2_cmd *c2a =
5591                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5592         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5593         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5594
5595         /*
5596          * We're overlaying struct hpsa_tmf_struct on top of something which
5597          * was allocated as a struct io_accel2_cmd, so we better be sure it
5598          * actually fits, and doesn't overrun the error info space.
5599          */
5600         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5601                         sizeof(struct io_accel2_cmd));
5602         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5603                         offsetof(struct hpsa_tmf_struct, error_len) +
5604                                 sizeof(ac->error_len));
5605
5606         c->cmd_type = IOACCEL2_TMF;
5607         c->scsi_cmd = SCSI_CMD_BUSY;
5608
5609         /* Adjust the DMA address to point to the accelerated command buffer */
5610         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5611                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
5612         BUG_ON(c->busaddr & 0x0000007F);
5613
5614         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5615         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5616         ac->reply_queue = reply_queue;
5617         ac->tmf = IOACCEL2_TMF_ABORT;
5618         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5619         memset(ac->lun_id, 0, sizeof(ac->lun_id));
5620         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5621         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5622         ac->error_ptr = cpu_to_le64(c->busaddr +
5623                         offsetof(struct io_accel2_cmd, error_data));
5624         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5625 }
5626
5627 /* ioaccel2 path firmware cannot handle abort task requests.
5628  * Change abort requests to physical target reset, and send to the
5629  * address of the physical disk used for the ioaccel 2 command.
5630  * Return 0 on success (IO_OK)
5631  *       -1 on failure
5632  */
5633
5634 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5635         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5636 {
5637         int rc = IO_OK;
5638         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5639         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5640         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5641         unsigned char *psa = &phys_scsi3addr[0];
5642
5643         /* Get a pointer to the hpsa logical device. */
5644         scmd = abort->scsi_cmd;
5645         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5646         if (dev == NULL) {
5647                 dev_warn(&h->pdev->dev,
5648                         "Cannot abort: no device pointer for command.\n");
5649                         return -1; /* not abortable */
5650         }
5651
5652         if (h->raid_offload_debug > 0)
5653                 dev_info(&h->pdev->dev,
5654                         "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5655                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5656                         "Reset as abort",
5657                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5658                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5659
5660         if (!dev->offload_enabled) {
5661                 dev_warn(&h->pdev->dev,
5662                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5663                 return -1; /* not abortable */
5664         }
5665
5666         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5667         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5668                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5669                 return -1; /* not abortable */
5670         }
5671
5672         /* send the reset */
5673         if (h->raid_offload_debug > 0)
5674                 dev_info(&h->pdev->dev,
5675                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5676                         psa[0], psa[1], psa[2], psa[3],
5677                         psa[4], psa[5], psa[6], psa[7]);
5678         rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5679         if (rc != 0) {
5680                 dev_warn(&h->pdev->dev,
5681                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5682                         psa[0], psa[1], psa[2], psa[3],
5683                         psa[4], psa[5], psa[6], psa[7]);
5684                 return rc; /* failed to reset */
5685         }
5686
5687         /* wait for device to recover */
5688         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5689                 dev_warn(&h->pdev->dev,
5690                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5691                         psa[0], psa[1], psa[2], psa[3],
5692                         psa[4], psa[5], psa[6], psa[7]);
5693                 return -1;  /* failed to recover */
5694         }
5695
5696         /* device recovered */
5697         dev_info(&h->pdev->dev,
5698                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5699                 psa[0], psa[1], psa[2], psa[3],
5700                 psa[4], psa[5], psa[6], psa[7]);
5701
5702         return rc; /* success */
5703 }
5704
5705 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5706         struct CommandList *abort, int reply_queue)
5707 {
5708         int rc = IO_OK;
5709         struct CommandList *c;
5710         __le32 taglower, tagupper;
5711         struct hpsa_scsi_dev_t *dev;
5712         struct io_accel2_cmd *c2;
5713
5714         dev = abort->scsi_cmd->device->hostdata;
5715         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5716                 return -1;
5717
5718         c = cmd_alloc(h);
5719         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5720         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5721         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5722         hpsa_get_tag(h, abort, &taglower, &tagupper);
5723         dev_dbg(&h->pdev->dev,
5724                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5725                 __func__, tagupper, taglower);
5726         /* no unmap needed here because no data xfer. */
5727
5728         dev_dbg(&h->pdev->dev,
5729                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5730                 __func__, tagupper, taglower, c2->error_data.serv_response);
5731         switch (c2->error_data.serv_response) {
5732         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5733         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5734                 rc = 0;
5735                 break;
5736         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5737         case IOACCEL2_SERV_RESPONSE_FAILURE:
5738         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5739                 rc = -1;
5740                 break;
5741         default:
5742                 dev_warn(&h->pdev->dev,
5743                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5744                         __func__, tagupper, taglower,
5745                         c2->error_data.serv_response);
5746                 rc = -1;
5747         }
5748         cmd_free(h, c);
5749         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5750                 tagupper, taglower);
5751         return rc;
5752 }
5753
5754 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5755         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5756 {
5757         /*
5758          * ioccelerator mode 2 commands should be aborted via the
5759          * accelerated path, since RAID path is unaware of these commands,
5760          * but not all underlying firmware can handle abort TMF.
5761          * Change abort to physical device reset when abort TMF is unsupported.
5762          */
5763         if (abort->cmd_type == CMD_IOACCEL2) {
5764                 if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5765                         return hpsa_send_abort_ioaccel2(h, abort,
5766                                                 reply_queue);
5767                 else
5768                         return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5769                                                         abort, reply_queue);
5770         }
5771         return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5772 }
5773
5774 /* Find out which reply queue a command was meant to return on */
5775 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5776                                         struct CommandList *c)
5777 {
5778         if (c->cmd_type == CMD_IOACCEL2)
5779                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5780         return c->Header.ReplyQueue;
5781 }
5782
5783 /*
5784  * Limit concurrency of abort commands to prevent
5785  * over-subscription of commands
5786  */
5787 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5788 {
5789 #define ABORT_CMD_WAIT_MSECS 5000
5790         return !wait_event_timeout(h->abort_cmd_wait_queue,
5791                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5792                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5793 }
5794
5795 /* Send an abort for the specified command.
5796  *      If the device and controller support it,
5797  *              send a task abort request.
5798  */
5799 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5800 {
5801
5802         int rc;
5803         struct ctlr_info *h;
5804         struct hpsa_scsi_dev_t *dev;
5805         struct CommandList *abort; /* pointer to command to be aborted */
5806         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
5807         char msg[256];          /* For debug messaging. */
5808         int ml = 0;
5809         __le32 tagupper, taglower;
5810         int refcount, reply_queue;
5811
5812         if (sc == NULL)
5813                 return FAILED;
5814
5815         if (sc->device == NULL)
5816                 return FAILED;
5817
5818         /* Find the controller of the command to be aborted */
5819         h = sdev_to_hba(sc->device);
5820         if (h == NULL)
5821                 return FAILED;
5822
5823         /* Find the device of the command to be aborted */
5824         dev = sc->device->hostdata;
5825         if (!dev) {
5826                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5827                                 msg);
5828                 return FAILED;
5829         }
5830
5831         /* If controller locked up, we can guarantee command won't complete */
5832         if (lockup_detected(h)) {
5833                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5834                                         "ABORT FAILED, lockup detected");
5835                 return FAILED;
5836         }
5837
5838         /* This is a good time to check if controller lockup has occurred */
5839         if (detect_controller_lockup(h)) {
5840                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5841                                         "ABORT FAILED, new lockup detected");
5842                 return FAILED;
5843         }
5844
5845         /* Check that controller supports some kind of task abort */
5846         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5847                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5848                 return FAILED;
5849
5850         memset(msg, 0, sizeof(msg));
5851         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5852                 h->scsi_host->host_no, sc->device->channel,
5853                 sc->device->id, sc->device->lun,
5854                 "Aborting command", sc);
5855
5856         /* Get SCSI command to be aborted */
5857         abort = (struct CommandList *) sc->host_scribble;
5858         if (abort == NULL) {
5859                 /* This can happen if the command already completed. */
5860                 return SUCCESS;
5861         }
5862         refcount = atomic_inc_return(&abort->refcount);
5863         if (refcount == 1) { /* Command is done already. */
5864                 cmd_free(h, abort);
5865                 return SUCCESS;
5866         }
5867
5868         /* Don't bother trying the abort if we know it won't work. */
5869         if (abort->cmd_type != CMD_IOACCEL2 &&
5870                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5871                 cmd_free(h, abort);
5872                 return FAILED;
5873         }
5874
5875         /*
5876          * Check that we're aborting the right command.
5877          * It's possible the CommandList already completed and got re-used.
5878          */
5879         if (abort->scsi_cmd != sc) {
5880                 cmd_free(h, abort);
5881                 return SUCCESS;
5882         }
5883
5884         abort->abort_pending = true;
5885         hpsa_get_tag(h, abort, &taglower, &tagupper);
5886         reply_queue = hpsa_extract_reply_queue(h, abort);
5887         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5888         as  = abort->scsi_cmd;
5889         if (as != NULL)
5890                 ml += sprintf(msg+ml,
5891                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5892                         as->cmd_len, as->cmnd[0], as->cmnd[1],
5893                         as->serial_number);
5894         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5895         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5896
5897         /*
5898          * Command is in flight, or possibly already completed
5899          * by the firmware (but not to the scsi mid layer) but we can't
5900          * distinguish which.  Send the abort down.
5901          */
5902         if (wait_for_available_abort_cmd(h)) {
5903                 dev_warn(&h->pdev->dev,
5904                         "%s FAILED, timeout waiting for an abort command to become available.\n",
5905                         msg);
5906                 cmd_free(h, abort);
5907                 return FAILED;
5908         }
5909         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5910         atomic_inc(&h->abort_cmds_available);
5911         wake_up_all(&h->abort_cmd_wait_queue);
5912         if (rc != 0) {
5913                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5914                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5915                                 "FAILED to abort command");
5916                 cmd_free(h, abort);
5917                 return FAILED;
5918         }
5919         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5920         wait_event(h->event_sync_wait_queue,
5921                    abort->scsi_cmd != sc || lockup_detected(h));
5922         cmd_free(h, abort);
5923         return !lockup_detected(h) ? SUCCESS : FAILED;
5924 }
5925
5926 /*
5927  * For operations with an associated SCSI command, a command block is allocated
5928  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5929  * block request tag as an index into a table of entries.  cmd_tagged_free() is
5930  * the complement, although cmd_free() may be called instead.
5931  */
5932 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5933                                             struct scsi_cmnd *scmd)
5934 {
5935         int idx = hpsa_get_cmd_index(scmd);
5936         struct CommandList *c = h->cmd_pool + idx;
5937
5938         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5939                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5940                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5941                 /* The index value comes from the block layer, so if it's out of
5942                  * bounds, it's probably not our bug.
5943                  */
5944                 BUG();
5945         }
5946
5947         atomic_inc(&c->refcount);
5948         if (unlikely(!hpsa_is_cmd_idle(c))) {
5949                 /*
5950                  * We expect that the SCSI layer will hand us a unique tag
5951                  * value.  Thus, there should never be a collision here between
5952                  * two requests...because if the selected command isn't idle
5953                  * then someone is going to be very disappointed.
5954                  */
5955                 dev_err(&h->pdev->dev,
5956                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5957                         idx);
5958                 if (c->scsi_cmd != NULL)
5959                         scsi_print_command(c->scsi_cmd);
5960                 scsi_print_command(scmd);
5961         }
5962
5963         hpsa_cmd_partial_init(h, idx, c);
5964         return c;
5965 }
5966
5967 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5968 {
5969         /*
5970          * Release our reference to the block.  We don't need to do anything
5971          * else to free it, because it is accessed by index.  (There's no point
5972          * in checking the result of the decrement, since we cannot guarantee
5973          * that there isn't a concurrent abort which is also accessing it.)
5974          */
5975         (void)atomic_dec(&c->refcount);
5976 }
5977
5978 /*
5979  * For operations that cannot sleep, a command block is allocated at init,
5980  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5981  * which ones are free or in use.  Lock must be held when calling this.
5982  * cmd_free() is the complement.
5983  * This function never gives up and returns NULL.  If it hangs,
5984  * another thread must call cmd_free() to free some tags.
5985  */
5986
5987 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5988 {
5989         struct CommandList *c;
5990         int refcount, i;
5991         int offset = 0;
5992
5993         /*
5994          * There is some *extremely* small but non-zero chance that that
5995          * multiple threads could get in here, and one thread could
5996          * be scanning through the list of bits looking for a free
5997          * one, but the free ones are always behind him, and other
5998          * threads sneak in behind him and eat them before he can
5999          * get to them, so that while there is always a free one, a
6000          * very unlucky thread might be starved anyway, never able to
6001          * beat the other threads.  In reality, this happens so
6002          * infrequently as to be indistinguishable from never.
6003          *
6004          * Note that we start allocating commands before the SCSI host structure
6005          * is initialized.  Since the search starts at bit zero, this
6006          * all works, since we have at least one command structure available;
6007          * however, it means that the structures with the low indexes have to be
6008          * reserved for driver-initiated requests, while requests from the block
6009          * layer will use the higher indexes.
6010          */
6011
6012         for (;;) {
6013                 i = find_next_zero_bit(h->cmd_pool_bits,
6014                                         HPSA_NRESERVED_CMDS,
6015                                         offset);
6016                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6017                         offset = 0;
6018                         continue;
6019                 }
6020                 c = h->cmd_pool + i;
6021                 refcount = atomic_inc_return(&c->refcount);
6022                 if (unlikely(refcount > 1)) {
6023                         cmd_free(h, c); /* already in use */
6024                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6025                         continue;
6026                 }
6027                 set_bit(i & (BITS_PER_LONG - 1),
6028                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6029                 break; /* it's ours now. */
6030         }
6031         hpsa_cmd_partial_init(h, i, c);
6032         return c;
6033 }
6034
6035 /*
6036  * This is the complementary operation to cmd_alloc().  Note, however, in some
6037  * corner cases it may also be used to free blocks allocated by
6038  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6039  * the clear-bit is harmless.
6040  */
6041 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6042 {
6043         if (atomic_dec_and_test(&c->refcount)) {
6044                 int i;
6045
6046                 i = c - h->cmd_pool;
6047                 clear_bit(i & (BITS_PER_LONG - 1),
6048                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6049         }
6050 }
6051
6052 #ifdef CONFIG_COMPAT
6053
6054 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6055         void __user *arg)
6056 {
6057         IOCTL32_Command_struct __user *arg32 =
6058             (IOCTL32_Command_struct __user *) arg;
6059         IOCTL_Command_struct arg64;
6060         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6061         int err;
6062         u32 cp;
6063
6064         memset(&arg64, 0, sizeof(arg64));
6065         err = 0;
6066         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6067                            sizeof(arg64.LUN_info));
6068         err |= copy_from_user(&arg64.Request, &arg32->Request,
6069                            sizeof(arg64.Request));
6070         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6071                            sizeof(arg64.error_info));
6072         err |= get_user(arg64.buf_size, &arg32->buf_size);
6073         err |= get_user(cp, &arg32->buf);
6074         arg64.buf = compat_ptr(cp);
6075         err |= copy_to_user(p, &arg64, sizeof(arg64));
6076
6077         if (err)
6078                 return -EFAULT;
6079
6080         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6081         if (err)
6082                 return err;
6083         err |= copy_in_user(&arg32->error_info, &p->error_info,
6084                          sizeof(arg32->error_info));
6085         if (err)
6086                 return -EFAULT;
6087         return err;
6088 }
6089
6090 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6091         int cmd, void __user *arg)
6092 {
6093         BIG_IOCTL32_Command_struct __user *arg32 =
6094             (BIG_IOCTL32_Command_struct __user *) arg;
6095         BIG_IOCTL_Command_struct arg64;
6096         BIG_IOCTL_Command_struct __user *p =
6097             compat_alloc_user_space(sizeof(arg64));
6098         int err;
6099         u32 cp;
6100
6101         memset(&arg64, 0, sizeof(arg64));
6102         err = 0;
6103         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6104                            sizeof(arg64.LUN_info));
6105         err |= copy_from_user(&arg64.Request, &arg32->Request,
6106                            sizeof(arg64.Request));
6107         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6108                            sizeof(arg64.error_info));
6109         err |= get_user(arg64.buf_size, &arg32->buf_size);
6110         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6111         err |= get_user(cp, &arg32->buf);
6112         arg64.buf = compat_ptr(cp);
6113         err |= copy_to_user(p, &arg64, sizeof(arg64));
6114
6115         if (err)
6116                 return -EFAULT;
6117
6118         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6119         if (err)
6120                 return err;
6121         err |= copy_in_user(&arg32->error_info, &p->error_info,
6122                          sizeof(arg32->error_info));
6123         if (err)
6124                 return -EFAULT;
6125         return err;
6126 }
6127
6128 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6129 {
6130         switch (cmd) {
6131         case CCISS_GETPCIINFO:
6132         case CCISS_GETINTINFO:
6133         case CCISS_SETINTINFO:
6134         case CCISS_GETNODENAME:
6135         case CCISS_SETNODENAME:
6136         case CCISS_GETHEARTBEAT:
6137         case CCISS_GETBUSTYPES:
6138         case CCISS_GETFIRMVER:
6139         case CCISS_GETDRIVVER:
6140         case CCISS_REVALIDVOLS:
6141         case CCISS_DEREGDISK:
6142         case CCISS_REGNEWDISK:
6143         case CCISS_REGNEWD:
6144         case CCISS_RESCANDISK:
6145         case CCISS_GETLUNINFO:
6146                 return hpsa_ioctl(dev, cmd, arg);
6147
6148         case CCISS_PASSTHRU32:
6149                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6150         case CCISS_BIG_PASSTHRU32:
6151                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6152
6153         default:
6154                 return -ENOIOCTLCMD;
6155         }
6156 }
6157 #endif
6158
6159 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6160 {
6161         struct hpsa_pci_info pciinfo;
6162
6163         if (!argp)
6164                 return -EINVAL;
6165         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6166         pciinfo.bus = h->pdev->bus->number;
6167         pciinfo.dev_fn = h->pdev->devfn;
6168         pciinfo.board_id = h->board_id;
6169         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6170                 return -EFAULT;
6171         return 0;
6172 }
6173
6174 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6175 {
6176         DriverVer_type DriverVer;
6177         unsigned char vmaj, vmin, vsubmin;
6178         int rc;
6179
6180         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6181                 &vmaj, &vmin, &vsubmin);
6182         if (rc != 3) {
6183                 dev_info(&h->pdev->dev, "driver version string '%s' "
6184                         "unrecognized.", HPSA_DRIVER_VERSION);
6185                 vmaj = 0;
6186                 vmin = 0;
6187                 vsubmin = 0;
6188         }
6189         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6190         if (!argp)
6191                 return -EINVAL;
6192         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6193                 return -EFAULT;
6194         return 0;
6195 }
6196
6197 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6198 {
6199         IOCTL_Command_struct iocommand;
6200         struct CommandList *c;
6201         char *buff = NULL;
6202         u64 temp64;
6203         int rc = 0;
6204
6205         if (!argp)
6206                 return -EINVAL;
6207         if (!capable(CAP_SYS_RAWIO))
6208                 return -EPERM;
6209         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6210                 return -EFAULT;
6211         if ((iocommand.buf_size < 1) &&
6212             (iocommand.Request.Type.Direction != XFER_NONE)) {
6213                 return -EINVAL;
6214         }
6215         if (iocommand.buf_size > 0) {
6216                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6217                 if (buff == NULL)
6218                         return -ENOMEM;
6219                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6220                         /* Copy the data into the buffer we created */
6221                         if (copy_from_user(buff, iocommand.buf,
6222                                 iocommand.buf_size)) {
6223                                 rc = -EFAULT;
6224                                 goto out_kfree;
6225                         }
6226                 } else {
6227                         memset(buff, 0, iocommand.buf_size);
6228                 }
6229         }
6230         c = cmd_alloc(h);
6231
6232         /* Fill in the command type */
6233         c->cmd_type = CMD_IOCTL_PEND;
6234         c->scsi_cmd = SCSI_CMD_BUSY;
6235         /* Fill in Command Header */
6236         c->Header.ReplyQueue = 0; /* unused in simple mode */
6237         if (iocommand.buf_size > 0) {   /* buffer to fill */
6238                 c->Header.SGList = 1;
6239                 c->Header.SGTotal = cpu_to_le16(1);
6240         } else  { /* no buffers to fill */
6241                 c->Header.SGList = 0;
6242                 c->Header.SGTotal = cpu_to_le16(0);
6243         }
6244         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6245
6246         /* Fill in Request block */
6247         memcpy(&c->Request, &iocommand.Request,
6248                 sizeof(c->Request));
6249
6250         /* Fill in the scatter gather information */
6251         if (iocommand.buf_size > 0) {
6252                 temp64 = pci_map_single(h->pdev, buff,
6253                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6254                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6255                         c->SG[0].Addr = cpu_to_le64(0);
6256                         c->SG[0].Len = cpu_to_le32(0);
6257                         rc = -ENOMEM;
6258                         goto out;
6259                 }
6260                 c->SG[0].Addr = cpu_to_le64(temp64);
6261                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6262                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6263         }
6264         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6265         if (iocommand.buf_size > 0)
6266                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6267         check_ioctl_unit_attention(h, c);
6268         if (rc) {
6269                 rc = -EIO;
6270                 goto out;
6271         }
6272
6273         /* Copy the error information out */
6274         memcpy(&iocommand.error_info, c->err_info,
6275                 sizeof(iocommand.error_info));
6276         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6277                 rc = -EFAULT;
6278                 goto out;
6279         }
6280         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6281                 iocommand.buf_size > 0) {
6282                 /* Copy the data out of the buffer we created */
6283                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6284                         rc = -EFAULT;
6285                         goto out;
6286                 }
6287         }
6288 out:
6289         cmd_free(h, c);
6290 out_kfree:
6291         kfree(buff);
6292         return rc;
6293 }
6294
6295 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6296 {
6297         BIG_IOCTL_Command_struct *ioc;
6298         struct CommandList *c;
6299         unsigned char **buff = NULL;
6300         int *buff_size = NULL;
6301         u64 temp64;
6302         BYTE sg_used = 0;
6303         int status = 0;
6304         u32 left;
6305         u32 sz;
6306         BYTE __user *data_ptr;
6307
6308         if (!argp)
6309                 return -EINVAL;
6310         if (!capable(CAP_SYS_RAWIO))
6311                 return -EPERM;
6312         ioc = (BIG_IOCTL_Command_struct *)
6313             kmalloc(sizeof(*ioc), GFP_KERNEL);
6314         if (!ioc) {
6315                 status = -ENOMEM;
6316                 goto cleanup1;
6317         }
6318         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6319                 status = -EFAULT;
6320                 goto cleanup1;
6321         }
6322         if ((ioc->buf_size < 1) &&
6323             (ioc->Request.Type.Direction != XFER_NONE)) {
6324                 status = -EINVAL;
6325                 goto cleanup1;
6326         }
6327         /* Check kmalloc limits  using all SGs */
6328         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6329                 status = -EINVAL;
6330                 goto cleanup1;
6331         }
6332         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6333                 status = -EINVAL;
6334                 goto cleanup1;
6335         }
6336         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6337         if (!buff) {
6338                 status = -ENOMEM;
6339                 goto cleanup1;
6340         }
6341         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6342         if (!buff_size) {
6343                 status = -ENOMEM;
6344                 goto cleanup1;
6345         }
6346         left = ioc->buf_size;
6347         data_ptr = ioc->buf;
6348         while (left) {
6349                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6350                 buff_size[sg_used] = sz;
6351                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6352                 if (buff[sg_used] == NULL) {
6353                         status = -ENOMEM;
6354                         goto cleanup1;
6355                 }
6356                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6357                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6358                                 status = -EFAULT;
6359                                 goto cleanup1;
6360                         }
6361                 } else
6362                         memset(buff[sg_used], 0, sz);
6363                 left -= sz;
6364                 data_ptr += sz;
6365                 sg_used++;
6366         }
6367         c = cmd_alloc(h);
6368
6369         c->cmd_type = CMD_IOCTL_PEND;
6370         c->scsi_cmd = SCSI_CMD_BUSY;
6371         c->Header.ReplyQueue = 0;
6372         c->Header.SGList = (u8) sg_used;
6373         c->Header.SGTotal = cpu_to_le16(sg_used);
6374         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6375         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6376         if (ioc->buf_size > 0) {
6377                 int i;
6378                 for (i = 0; i < sg_used; i++) {
6379                         temp64 = pci_map_single(h->pdev, buff[i],
6380                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6381                         if (dma_mapping_error(&h->pdev->dev,
6382                                                         (dma_addr_t) temp64)) {
6383                                 c->SG[i].Addr = cpu_to_le64(0);
6384                                 c->SG[i].Len = cpu_to_le32(0);
6385                                 hpsa_pci_unmap(h->pdev, c, i,
6386                                         PCI_DMA_BIDIRECTIONAL);
6387                                 status = -ENOMEM;
6388                                 goto cleanup0;
6389                         }
6390                         c->SG[i].Addr = cpu_to_le64(temp64);
6391                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6392                         c->SG[i].Ext = cpu_to_le32(0);
6393                 }
6394                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6395         }
6396         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6397         if (sg_used)
6398                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6399         check_ioctl_unit_attention(h, c);
6400         if (status) {
6401                 status = -EIO;
6402                 goto cleanup0;
6403         }
6404
6405         /* Copy the error information out */
6406         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6407         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6408                 status = -EFAULT;
6409                 goto cleanup0;
6410         }
6411         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6412                 int i;
6413
6414                 /* Copy the data out of the buffer we created */
6415                 BYTE __user *ptr = ioc->buf;
6416                 for (i = 0; i < sg_used; i++) {
6417                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6418                                 status = -EFAULT;
6419                                 goto cleanup0;
6420                         }
6421                         ptr += buff_size[i];
6422                 }
6423         }
6424         status = 0;
6425 cleanup0:
6426         cmd_free(h, c);
6427 cleanup1:
6428         if (buff) {
6429                 int i;
6430
6431                 for (i = 0; i < sg_used; i++)
6432                         kfree(buff[i]);
6433                 kfree(buff);
6434         }
6435         kfree(buff_size);
6436         kfree(ioc);
6437         return status;
6438 }
6439
6440 static void check_ioctl_unit_attention(struct ctlr_info *h,
6441         struct CommandList *c)
6442 {
6443         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6444                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6445                 (void) check_for_unit_attention(h, c);
6446 }
6447
6448 /*
6449  * ioctl
6450  */
6451 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6452 {
6453         struct ctlr_info *h;
6454         void __user *argp = (void __user *)arg;
6455         int rc;
6456
6457         h = sdev_to_hba(dev);
6458
6459         switch (cmd) {
6460         case CCISS_DEREGDISK:
6461         case CCISS_REGNEWDISK:
6462         case CCISS_REGNEWD:
6463                 hpsa_scan_start(h->scsi_host);
6464                 return 0;
6465         case CCISS_GETPCIINFO:
6466                 return hpsa_getpciinfo_ioctl(h, argp);
6467         case CCISS_GETDRIVVER:
6468                 return hpsa_getdrivver_ioctl(h, argp);
6469         case CCISS_PASSTHRU:
6470                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6471                         return -EAGAIN;
6472                 rc = hpsa_passthru_ioctl(h, argp);
6473                 atomic_inc(&h->passthru_cmds_avail);
6474                 return rc;
6475         case CCISS_BIG_PASSTHRU:
6476                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6477                         return -EAGAIN;
6478                 rc = hpsa_big_passthru_ioctl(h, argp);
6479                 atomic_inc(&h->passthru_cmds_avail);
6480                 return rc;
6481         default:
6482                 return -ENOTTY;
6483         }
6484 }
6485
6486 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6487                                 u8 reset_type)
6488 {
6489         struct CommandList *c;
6490
6491         c = cmd_alloc(h);
6492
6493         /* fill_cmd can't fail here, no data buffer to map */
6494         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6495                 RAID_CTLR_LUNID, TYPE_MSG);
6496         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6497         c->waiting = NULL;
6498         enqueue_cmd_and_start_io(h, c);
6499         /* Don't wait for completion, the reset won't complete.  Don't free
6500          * the command either.  This is the last command we will send before
6501          * re-initializing everything, so it doesn't matter and won't leak.
6502          */
6503         return;
6504 }
6505
6506 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6507         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6508         int cmd_type)
6509 {
6510         int pci_dir = XFER_NONE;
6511         u64 tag; /* for commands to be aborted */
6512
6513         c->cmd_type = CMD_IOCTL_PEND;
6514         c->scsi_cmd = SCSI_CMD_BUSY;
6515         c->Header.ReplyQueue = 0;
6516         if (buff != NULL && size > 0) {
6517                 c->Header.SGList = 1;
6518                 c->Header.SGTotal = cpu_to_le16(1);
6519         } else {
6520                 c->Header.SGList = 0;
6521                 c->Header.SGTotal = cpu_to_le16(0);
6522         }
6523         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6524
6525         if (cmd_type == TYPE_CMD) {
6526                 switch (cmd) {
6527                 case HPSA_INQUIRY:
6528                         /* are we trying to read a vital product page */
6529                         if (page_code & VPD_PAGE) {
6530                                 c->Request.CDB[1] = 0x01;
6531                                 c->Request.CDB[2] = (page_code & 0xff);
6532                         }
6533                         c->Request.CDBLen = 6;
6534                         c->Request.type_attr_dir =
6535                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6536                         c->Request.Timeout = 0;
6537                         c->Request.CDB[0] = HPSA_INQUIRY;
6538                         c->Request.CDB[4] = size & 0xFF;
6539                         break;
6540                 case HPSA_REPORT_LOG:
6541                 case HPSA_REPORT_PHYS:
6542                         /* Talking to controller so It's a physical command
6543                            mode = 00 target = 0.  Nothing to write.
6544                          */
6545                         c->Request.CDBLen = 12;
6546                         c->Request.type_attr_dir =
6547                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6548                         c->Request.Timeout = 0;
6549                         c->Request.CDB[0] = cmd;
6550                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6551                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6552                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6553                         c->Request.CDB[9] = size & 0xFF;
6554                         break;
6555                 case BMIC_SENSE_DIAG_OPTIONS:
6556                         c->Request.CDBLen = 16;
6557                         c->Request.type_attr_dir =
6558                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6559                         c->Request.Timeout = 0;
6560                         /* Spec says this should be BMIC_WRITE */
6561                         c->Request.CDB[0] = BMIC_READ;
6562                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6563                         break;
6564                 case BMIC_SET_DIAG_OPTIONS:
6565                         c->Request.CDBLen = 16;
6566                         c->Request.type_attr_dir =
6567                                         TYPE_ATTR_DIR(cmd_type,
6568                                                 ATTR_SIMPLE, XFER_WRITE);
6569                         c->Request.Timeout = 0;
6570                         c->Request.CDB[0] = BMIC_WRITE;
6571                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6572                         break;
6573                 case HPSA_CACHE_FLUSH:
6574                         c->Request.CDBLen = 12;
6575                         c->Request.type_attr_dir =
6576                                         TYPE_ATTR_DIR(cmd_type,
6577                                                 ATTR_SIMPLE, XFER_WRITE);
6578                         c->Request.Timeout = 0;
6579                         c->Request.CDB[0] = BMIC_WRITE;
6580                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6581                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6582                         c->Request.CDB[8] = size & 0xFF;
6583                         break;
6584                 case TEST_UNIT_READY:
6585                         c->Request.CDBLen = 6;
6586                         c->Request.type_attr_dir =
6587                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6588                         c->Request.Timeout = 0;
6589                         break;
6590                 case HPSA_GET_RAID_MAP:
6591                         c->Request.CDBLen = 12;
6592                         c->Request.type_attr_dir =
6593                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6594                         c->Request.Timeout = 0;
6595                         c->Request.CDB[0] = HPSA_CISS_READ;
6596                         c->Request.CDB[1] = cmd;
6597                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6598                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6599                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6600                         c->Request.CDB[9] = size & 0xFF;
6601                         break;
6602                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6603                         c->Request.CDBLen = 10;
6604                         c->Request.type_attr_dir =
6605                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6606                         c->Request.Timeout = 0;
6607                         c->Request.CDB[0] = BMIC_READ;
6608                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6609                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6610                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6611                         break;
6612                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6613                         c->Request.CDBLen = 10;
6614                         c->Request.type_attr_dir =
6615                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6616                         c->Request.Timeout = 0;
6617                         c->Request.CDB[0] = BMIC_READ;
6618                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6619                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6620                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6621                         break;
6622                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6623                         c->Request.CDBLen = 10;
6624                         c->Request.type_attr_dir =
6625                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6626                         c->Request.Timeout = 0;
6627                         c->Request.CDB[0] = BMIC_READ;
6628                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6629                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6630                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6631                         break;
6632                 case BMIC_IDENTIFY_CONTROLLER:
6633                         c->Request.CDBLen = 10;
6634                         c->Request.type_attr_dir =
6635                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6636                         c->Request.Timeout = 0;
6637                         c->Request.CDB[0] = BMIC_READ;
6638                         c->Request.CDB[1] = 0;
6639                         c->Request.CDB[2] = 0;
6640                         c->Request.CDB[3] = 0;
6641                         c->Request.CDB[4] = 0;
6642                         c->Request.CDB[5] = 0;
6643                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6644                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6645                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6646                         c->Request.CDB[9] = 0;
6647                         break;
6648                 default:
6649                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6650                         BUG();
6651                         return -1;
6652                 }
6653         } else if (cmd_type == TYPE_MSG) {
6654                 switch (cmd) {
6655
6656                 case  HPSA_PHYS_TARGET_RESET:
6657                         c->Request.CDBLen = 16;
6658                         c->Request.type_attr_dir =
6659                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6660                         c->Request.Timeout = 0; /* Don't time out */
6661                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6662                         c->Request.CDB[0] = HPSA_RESET;
6663                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6664                         /* Physical target reset needs no control bytes 4-7*/
6665                         c->Request.CDB[4] = 0x00;
6666                         c->Request.CDB[5] = 0x00;
6667                         c->Request.CDB[6] = 0x00;
6668                         c->Request.CDB[7] = 0x00;
6669                         break;
6670                 case  HPSA_DEVICE_RESET_MSG:
6671                         c->Request.CDBLen = 16;
6672                         c->Request.type_attr_dir =
6673                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6674                         c->Request.Timeout = 0; /* Don't time out */
6675                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6676                         c->Request.CDB[0] =  cmd;
6677                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6678                         /* If bytes 4-7 are zero, it means reset the */
6679                         /* LunID device */
6680                         c->Request.CDB[4] = 0x00;
6681                         c->Request.CDB[5] = 0x00;
6682                         c->Request.CDB[6] = 0x00;
6683                         c->Request.CDB[7] = 0x00;
6684                         break;
6685                 case  HPSA_ABORT_MSG:
6686                         memcpy(&tag, buff, sizeof(tag));
6687                         dev_dbg(&h->pdev->dev,
6688                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6689                                 tag, c->Header.tag);
6690                         c->Request.CDBLen = 16;
6691                         c->Request.type_attr_dir =
6692                                         TYPE_ATTR_DIR(cmd_type,
6693                                                 ATTR_SIMPLE, XFER_WRITE);
6694                         c->Request.Timeout = 0; /* Don't time out */
6695                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6696                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6697                         c->Request.CDB[2] = 0x00; /* reserved */
6698                         c->Request.CDB[3] = 0x00; /* reserved */
6699                         /* Tag to abort goes in CDB[4]-CDB[11] */
6700                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6701                         c->Request.CDB[12] = 0x00; /* reserved */
6702                         c->Request.CDB[13] = 0x00; /* reserved */
6703                         c->Request.CDB[14] = 0x00; /* reserved */
6704                         c->Request.CDB[15] = 0x00; /* reserved */
6705                 break;
6706                 default:
6707                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6708                                 cmd);
6709                         BUG();
6710                 }
6711         } else {
6712                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6713                 BUG();
6714         }
6715
6716         switch (GET_DIR(c->Request.type_attr_dir)) {
6717         case XFER_READ:
6718                 pci_dir = PCI_DMA_FROMDEVICE;
6719                 break;
6720         case XFER_WRITE:
6721                 pci_dir = PCI_DMA_TODEVICE;
6722                 break;
6723         case XFER_NONE:
6724                 pci_dir = PCI_DMA_NONE;
6725                 break;
6726         default:
6727                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6728         }
6729         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6730                 return -1;
6731         return 0;
6732 }
6733
6734 /*
6735  * Map (physical) PCI mem into (virtual) kernel space
6736  */
6737 static void __iomem *remap_pci_mem(ulong base, ulong size)
6738 {
6739         ulong page_base = ((ulong) base) & PAGE_MASK;
6740         ulong page_offs = ((ulong) base) - page_base;
6741         void __iomem *page_remapped = ioremap_nocache(page_base,
6742                 page_offs + size);
6743
6744         return page_remapped ? (page_remapped + page_offs) : NULL;
6745 }
6746
6747 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6748 {
6749         return h->access.command_completed(h, q);
6750 }
6751
6752 static inline bool interrupt_pending(struct ctlr_info *h)
6753 {
6754         return h->access.intr_pending(h);
6755 }
6756
6757 static inline long interrupt_not_for_us(struct ctlr_info *h)
6758 {
6759         return (h->access.intr_pending(h) == 0) ||
6760                 (h->interrupts_enabled == 0);
6761 }
6762
6763 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6764         u32 raw_tag)
6765 {
6766         if (unlikely(tag_index >= h->nr_cmds)) {
6767                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6768                 return 1;
6769         }
6770         return 0;
6771 }
6772
6773 static inline void finish_cmd(struct CommandList *c)
6774 {
6775         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6776         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6777                         || c->cmd_type == CMD_IOACCEL2))
6778                 complete_scsi_command(c);
6779         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6780                 complete(c->waiting);
6781 }
6782
6783 /* process completion of an indexed ("direct lookup") command */
6784 static inline void process_indexed_cmd(struct ctlr_info *h,
6785         u32 raw_tag)
6786 {
6787         u32 tag_index;
6788         struct CommandList *c;
6789
6790         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6791         if (!bad_tag(h, tag_index, raw_tag)) {
6792                 c = h->cmd_pool + tag_index;
6793                 finish_cmd(c);
6794         }
6795 }
6796
6797 /* Some controllers, like p400, will give us one interrupt
6798  * after a soft reset, even if we turned interrupts off.
6799  * Only need to check for this in the hpsa_xxx_discard_completions
6800  * functions.
6801  */
6802 static int ignore_bogus_interrupt(struct ctlr_info *h)
6803 {
6804         if (likely(!reset_devices))
6805                 return 0;
6806
6807         if (likely(h->interrupts_enabled))
6808                 return 0;
6809
6810         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6811                 "(known firmware bug.)  Ignoring.\n");
6812
6813         return 1;
6814 }
6815
6816 /*
6817  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6818  * Relies on (h-q[x] == x) being true for x such that
6819  * 0 <= x < MAX_REPLY_QUEUES.
6820  */
6821 static struct ctlr_info *queue_to_hba(u8 *queue)
6822 {
6823         return container_of((queue - *queue), struct ctlr_info, q[0]);
6824 }
6825
6826 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6827 {
6828         struct ctlr_info *h = queue_to_hba(queue);
6829         u8 q = *(u8 *) queue;
6830         u32 raw_tag;
6831
6832         if (ignore_bogus_interrupt(h))
6833                 return IRQ_NONE;
6834
6835         if (interrupt_not_for_us(h))
6836                 return IRQ_NONE;
6837         h->last_intr_timestamp = get_jiffies_64();
6838         while (interrupt_pending(h)) {
6839                 raw_tag = get_next_completion(h, q);
6840                 while (raw_tag != FIFO_EMPTY)
6841                         raw_tag = next_command(h, q);
6842         }
6843         return IRQ_HANDLED;
6844 }
6845
6846 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6847 {
6848         struct ctlr_info *h = queue_to_hba(queue);
6849         u32 raw_tag;
6850         u8 q = *(u8 *) queue;
6851
6852         if (ignore_bogus_interrupt(h))
6853                 return IRQ_NONE;
6854
6855         h->last_intr_timestamp = get_jiffies_64();
6856         raw_tag = get_next_completion(h, q);
6857         while (raw_tag != FIFO_EMPTY)
6858                 raw_tag = next_command(h, q);
6859         return IRQ_HANDLED;
6860 }
6861
6862 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6863 {
6864         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6865         u32 raw_tag;
6866         u8 q = *(u8 *) queue;
6867
6868         if (interrupt_not_for_us(h))
6869                 return IRQ_NONE;
6870         h->last_intr_timestamp = get_jiffies_64();
6871         while (interrupt_pending(h)) {
6872                 raw_tag = get_next_completion(h, q);
6873                 while (raw_tag != FIFO_EMPTY) {
6874                         process_indexed_cmd(h, raw_tag);
6875                         raw_tag = next_command(h, q);
6876                 }
6877         }
6878         return IRQ_HANDLED;
6879 }
6880
6881 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6882 {
6883         struct ctlr_info *h = queue_to_hba(queue);
6884         u32 raw_tag;
6885         u8 q = *(u8 *) queue;
6886
6887         h->last_intr_timestamp = get_jiffies_64();
6888         raw_tag = get_next_completion(h, q);
6889         while (raw_tag != FIFO_EMPTY) {
6890                 process_indexed_cmd(h, raw_tag);
6891                 raw_tag = next_command(h, q);
6892         }
6893         return IRQ_HANDLED;
6894 }
6895
6896 /* Send a message CDB to the firmware. Careful, this only works
6897  * in simple mode, not performant mode due to the tag lookup.
6898  * We only ever use this immediately after a controller reset.
6899  */
6900 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6901                         unsigned char type)
6902 {
6903         struct Command {
6904                 struct CommandListHeader CommandHeader;
6905                 struct RequestBlock Request;
6906                 struct ErrDescriptor ErrorDescriptor;
6907         };
6908         struct Command *cmd;
6909         static const size_t cmd_sz = sizeof(*cmd) +
6910                                         sizeof(cmd->ErrorDescriptor);
6911         dma_addr_t paddr64;
6912         __le32 paddr32;
6913         u32 tag;
6914         void __iomem *vaddr;
6915         int i, err;
6916
6917         vaddr = pci_ioremap_bar(pdev, 0);
6918         if (vaddr == NULL)
6919                 return -ENOMEM;
6920
6921         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6922          * CCISS commands, so they must be allocated from the lower 4GiB of
6923          * memory.
6924          */
6925         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6926         if (err) {
6927                 iounmap(vaddr);
6928                 return err;
6929         }
6930
6931         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6932         if (cmd == NULL) {
6933                 iounmap(vaddr);
6934                 return -ENOMEM;
6935         }
6936
6937         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
6938          * although there's no guarantee, we assume that the address is at
6939          * least 4-byte aligned (most likely, it's page-aligned).
6940          */
6941         paddr32 = cpu_to_le32(paddr64);
6942
6943         cmd->CommandHeader.ReplyQueue = 0;
6944         cmd->CommandHeader.SGList = 0;
6945         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6946         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6947         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6948
6949         cmd->Request.CDBLen = 16;
6950         cmd->Request.type_attr_dir =
6951                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6952         cmd->Request.Timeout = 0; /* Don't time out */
6953         cmd->Request.CDB[0] = opcode;
6954         cmd->Request.CDB[1] = type;
6955         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6956         cmd->ErrorDescriptor.Addr =
6957                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6958         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6959
6960         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6961
6962         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6963                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6964                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6965                         break;
6966                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6967         }
6968
6969         iounmap(vaddr);
6970
6971         /* we leak the DMA buffer here ... no choice since the controller could
6972          *  still complete the command.
6973          */
6974         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6975                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6976                         opcode, type);
6977                 return -ETIMEDOUT;
6978         }
6979
6980         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6981
6982         if (tag & HPSA_ERROR_BIT) {
6983                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6984                         opcode, type);
6985                 return -EIO;
6986         }
6987
6988         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6989                 opcode, type);
6990         return 0;
6991 }
6992
6993 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6994
6995 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6996         void __iomem *vaddr, u32 use_doorbell)
6997 {
6998
6999         if (use_doorbell) {
7000                 /* For everything after the P600, the PCI power state method
7001                  * of resetting the controller doesn't work, so we have this
7002                  * other way using the doorbell register.
7003                  */
7004                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7005                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7006
7007                 /* PMC hardware guys tell us we need a 10 second delay after
7008                  * doorbell reset and before any attempt to talk to the board
7009                  * at all to ensure that this actually works and doesn't fall
7010                  * over in some weird corner cases.
7011                  */
7012                 msleep(10000);
7013         } else { /* Try to do it the PCI power state way */
7014
7015                 /* Quoting from the Open CISS Specification: "The Power
7016                  * Management Control/Status Register (CSR) controls the power
7017                  * state of the device.  The normal operating state is D0,
7018                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7019                  * the controller, place the interface device in D3 then to D0,
7020                  * this causes a secondary PCI reset which will reset the
7021                  * controller." */
7022
7023                 int rc = 0;
7024
7025                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7026
7027                 /* enter the D3hot power management state */
7028                 rc = pci_set_power_state(pdev, PCI_D3hot);
7029                 if (rc)
7030                         return rc;
7031
7032                 msleep(500);
7033
7034                 /* enter the D0 power management state */
7035                 rc = pci_set_power_state(pdev, PCI_D0);
7036                 if (rc)
7037                         return rc;
7038
7039                 /*
7040                  * The P600 requires a small delay when changing states.
7041                  * Otherwise we may think the board did not reset and we bail.
7042                  * This for kdump only and is particular to the P600.
7043                  */
7044                 msleep(500);
7045         }
7046         return 0;
7047 }
7048
7049 static void init_driver_version(char *driver_version, int len)
7050 {
7051         memset(driver_version, 0, len);
7052         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7053 }
7054
7055 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7056 {
7057         char *driver_version;
7058         int i, size = sizeof(cfgtable->driver_version);
7059
7060         driver_version = kmalloc(size, GFP_KERNEL);
7061         if (!driver_version)
7062                 return -ENOMEM;
7063
7064         init_driver_version(driver_version, size);
7065         for (i = 0; i < size; i++)
7066                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7067         kfree(driver_version);
7068         return 0;
7069 }
7070
7071 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7072                                           unsigned char *driver_ver)
7073 {
7074         int i;
7075
7076         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7077                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7078 }
7079
7080 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7081 {
7082
7083         char *driver_ver, *old_driver_ver;
7084         int rc, size = sizeof(cfgtable->driver_version);
7085
7086         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7087         if (!old_driver_ver)
7088                 return -ENOMEM;
7089         driver_ver = old_driver_ver + size;
7090
7091         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7092          * should have been changed, otherwise we know the reset failed.
7093          */
7094         init_driver_version(old_driver_ver, size);
7095         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7096         rc = !memcmp(driver_ver, old_driver_ver, size);
7097         kfree(old_driver_ver);
7098         return rc;
7099 }
7100 /* This does a hard reset of the controller using PCI power management
7101  * states or the using the doorbell register.
7102  */
7103 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7104 {
7105         u64 cfg_offset;
7106         u32 cfg_base_addr;
7107         u64 cfg_base_addr_index;
7108         void __iomem *vaddr;
7109         unsigned long paddr;
7110         u32 misc_fw_support;
7111         int rc;
7112         struct CfgTable __iomem *cfgtable;
7113         u32 use_doorbell;
7114         u16 command_register;
7115
7116         /* For controllers as old as the P600, this is very nearly
7117          * the same thing as
7118          *
7119          * pci_save_state(pci_dev);
7120          * pci_set_power_state(pci_dev, PCI_D3hot);
7121          * pci_set_power_state(pci_dev, PCI_D0);
7122          * pci_restore_state(pci_dev);
7123          *
7124          * For controllers newer than the P600, the pci power state
7125          * method of resetting doesn't work so we have another way
7126          * using the doorbell register.
7127          */
7128
7129         if (!ctlr_is_resettable(board_id)) {
7130                 dev_warn(&pdev->dev, "Controller not resettable\n");
7131                 return -ENODEV;
7132         }
7133
7134         /* if controller is soft- but not hard resettable... */
7135         if (!ctlr_is_hard_resettable(board_id))
7136                 return -ENOTSUPP; /* try soft reset later. */
7137
7138         /* Save the PCI command register */
7139         pci_read_config_word(pdev, 4, &command_register);
7140         pci_save_state(pdev);
7141
7142         /* find the first memory BAR, so we can find the cfg table */
7143         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7144         if (rc)
7145                 return rc;
7146         vaddr = remap_pci_mem(paddr, 0x250);
7147         if (!vaddr)
7148                 return -ENOMEM;
7149
7150         /* find cfgtable in order to check if reset via doorbell is supported */
7151         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7152                                         &cfg_base_addr_index, &cfg_offset);
7153         if (rc)
7154                 goto unmap_vaddr;
7155         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7156                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7157         if (!cfgtable) {
7158                 rc = -ENOMEM;
7159                 goto unmap_vaddr;
7160         }
7161         rc = write_driver_ver_to_cfgtable(cfgtable);
7162         if (rc)
7163                 goto unmap_cfgtable;
7164
7165         /* If reset via doorbell register is supported, use that.
7166          * There are two such methods.  Favor the newest method.
7167          */
7168         misc_fw_support = readl(&cfgtable->misc_fw_support);
7169         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7170         if (use_doorbell) {
7171                 use_doorbell = DOORBELL_CTLR_RESET2;
7172         } else {
7173                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7174                 if (use_doorbell) {
7175                         dev_warn(&pdev->dev,
7176                                 "Soft reset not supported. Firmware update is required.\n");
7177                         rc = -ENOTSUPP; /* try soft reset */
7178                         goto unmap_cfgtable;
7179                 }
7180         }
7181
7182         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7183         if (rc)
7184                 goto unmap_cfgtable;
7185
7186         pci_restore_state(pdev);
7187         pci_write_config_word(pdev, 4, command_register);
7188
7189         /* Some devices (notably the HP Smart Array 5i Controller)
7190            need a little pause here */
7191         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7192
7193         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7194         if (rc) {
7195                 dev_warn(&pdev->dev,
7196                         "Failed waiting for board to become ready after hard reset\n");
7197                 goto unmap_cfgtable;
7198         }
7199
7200         rc = controller_reset_failed(vaddr);
7201         if (rc < 0)
7202                 goto unmap_cfgtable;
7203         if (rc) {
7204                 dev_warn(&pdev->dev, "Unable to successfully reset "
7205                         "controller. Will try soft reset.\n");
7206                 rc = -ENOTSUPP;
7207         } else {
7208                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7209         }
7210
7211 unmap_cfgtable:
7212         iounmap(cfgtable);
7213
7214 unmap_vaddr:
7215         iounmap(vaddr);
7216         return rc;
7217 }
7218
7219 /*
7220  *  We cannot read the structure directly, for portability we must use
7221  *   the io functions.
7222  *   This is for debug only.
7223  */
7224 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7225 {
7226 #ifdef HPSA_DEBUG
7227         int i;
7228         char temp_name[17];
7229
7230         dev_info(dev, "Controller Configuration information\n");
7231         dev_info(dev, "------------------------------------\n");
7232         for (i = 0; i < 4; i++)
7233                 temp_name[i] = readb(&(tb->Signature[i]));
7234         temp_name[4] = '\0';
7235         dev_info(dev, "   Signature = %s\n", temp_name);
7236         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7237         dev_info(dev, "   Transport methods supported = 0x%x\n",
7238                readl(&(tb->TransportSupport)));
7239         dev_info(dev, "   Transport methods active = 0x%x\n",
7240                readl(&(tb->TransportActive)));
7241         dev_info(dev, "   Requested transport Method = 0x%x\n",
7242                readl(&(tb->HostWrite.TransportRequest)));
7243         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7244                readl(&(tb->HostWrite.CoalIntDelay)));
7245         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7246                readl(&(tb->HostWrite.CoalIntCount)));
7247         dev_info(dev, "   Max outstanding commands = %d\n",
7248                readl(&(tb->CmdsOutMax)));
7249         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7250         for (i = 0; i < 16; i++)
7251                 temp_name[i] = readb(&(tb->ServerName[i]));
7252         temp_name[16] = '\0';
7253         dev_info(dev, "   Server Name = %s\n", temp_name);
7254         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7255                 readl(&(tb->HeartBeat)));
7256 #endif                          /* HPSA_DEBUG */
7257 }
7258
7259 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7260 {
7261         int i, offset, mem_type, bar_type;
7262
7263         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7264                 return 0;
7265         offset = 0;
7266         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7267                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7268                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7269                         offset += 4;
7270                 else {
7271                         mem_type = pci_resource_flags(pdev, i) &
7272                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7273                         switch (mem_type) {
7274                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7275                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7276                                 offset += 4;    /* 32 bit */
7277                                 break;
7278                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7279                                 offset += 8;
7280                                 break;
7281                         default:        /* reserved in PCI 2.2 */
7282                                 dev_warn(&pdev->dev,
7283                                        "base address is invalid\n");
7284                                 return -1;
7285                                 break;
7286                         }
7287                 }
7288                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7289                         return i + 1;
7290         }
7291         return -1;
7292 }
7293
7294 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7295 {
7296         if (h->msix_vector) {
7297                 if (h->pdev->msix_enabled)
7298                         pci_disable_msix(h->pdev);
7299                 h->msix_vector = 0;
7300         } else if (h->msi_vector) {
7301                 if (h->pdev->msi_enabled)
7302                         pci_disable_msi(h->pdev);
7303                 h->msi_vector = 0;
7304         }
7305 }
7306
7307 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7308  * controllers that are capable. If not, we use legacy INTx mode.
7309  */
7310 static void hpsa_interrupt_mode(struct ctlr_info *h)
7311 {
7312 #ifdef CONFIG_PCI_MSI
7313         int err, i;
7314         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7315
7316         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7317                 hpsa_msix_entries[i].vector = 0;
7318                 hpsa_msix_entries[i].entry = i;
7319         }
7320
7321         /* Some boards advertise MSI but don't really support it */
7322         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7323             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7324                 goto default_int_mode;
7325         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7326                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7327                 h->msix_vector = MAX_REPLY_QUEUES;
7328                 if (h->msix_vector > num_online_cpus())
7329                         h->msix_vector = num_online_cpus();
7330                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7331                                             1, h->msix_vector);
7332                 if (err < 0) {
7333                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7334                         h->msix_vector = 0;
7335                         goto single_msi_mode;
7336                 } else if (err < h->msix_vector) {
7337                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7338                                "available\n", err);
7339                 }
7340                 h->msix_vector = err;
7341                 for (i = 0; i < h->msix_vector; i++)
7342                         h->intr[i] = hpsa_msix_entries[i].vector;
7343                 return;
7344         }
7345 single_msi_mode:
7346         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7347                 dev_info(&h->pdev->dev, "MSI capable controller\n");
7348                 if (!pci_enable_msi(h->pdev))
7349                         h->msi_vector = 1;
7350                 else
7351                         dev_warn(&h->pdev->dev, "MSI init failed\n");
7352         }
7353 default_int_mode:
7354 #endif                          /* CONFIG_PCI_MSI */
7355         /* if we get here we're going to use the default interrupt mode */
7356         h->intr[h->intr_mode] = h->pdev->irq;
7357 }
7358
7359 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7360 {
7361         int i;
7362         u32 subsystem_vendor_id, subsystem_device_id;
7363
7364         subsystem_vendor_id = pdev->subsystem_vendor;
7365         subsystem_device_id = pdev->subsystem_device;
7366         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7367                     subsystem_vendor_id;
7368
7369         for (i = 0; i < ARRAY_SIZE(products); i++)
7370                 if (*board_id == products[i].board_id)
7371                         return i;
7372
7373         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7374                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7375                 !hpsa_allow_any) {
7376                 dev_warn(&pdev->dev, "unrecognized board ID: "
7377                         "0x%08x, ignoring.\n", *board_id);
7378                         return -ENODEV;
7379         }
7380         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7381 }
7382
7383 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7384                                     unsigned long *memory_bar)
7385 {
7386         int i;
7387
7388         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7389                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7390                         /* addressing mode bits already removed */
7391                         *memory_bar = pci_resource_start(pdev, i);
7392                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7393                                 *memory_bar);
7394                         return 0;
7395                 }
7396         dev_warn(&pdev->dev, "no memory BAR found\n");
7397         return -ENODEV;
7398 }
7399
7400 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7401                                      int wait_for_ready)
7402 {
7403         int i, iterations;
7404         u32 scratchpad;
7405         if (wait_for_ready)
7406                 iterations = HPSA_BOARD_READY_ITERATIONS;
7407         else
7408                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7409
7410         for (i = 0; i < iterations; i++) {
7411                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7412                 if (wait_for_ready) {
7413                         if (scratchpad == HPSA_FIRMWARE_READY)
7414                                 return 0;
7415                 } else {
7416                         if (scratchpad != HPSA_FIRMWARE_READY)
7417                                 return 0;
7418                 }
7419                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7420         }
7421         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7422         return -ENODEV;
7423 }
7424
7425 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7426                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7427                                u64 *cfg_offset)
7428 {
7429         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7430         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7431         *cfg_base_addr &= (u32) 0x0000ffff;
7432         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7433         if (*cfg_base_addr_index == -1) {
7434                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7435                 return -ENODEV;
7436         }
7437         return 0;
7438 }
7439
7440 static void hpsa_free_cfgtables(struct ctlr_info *h)
7441 {
7442         if (h->transtable) {
7443                 iounmap(h->transtable);
7444                 h->transtable = NULL;
7445         }
7446         if (h->cfgtable) {
7447                 iounmap(h->cfgtable);
7448                 h->cfgtable = NULL;
7449         }
7450 }
7451
7452 /* Find and map CISS config table and transfer table
7453 + * several items must be unmapped (freed) later
7454 + * */
7455 static int hpsa_find_cfgtables(struct ctlr_info *h)
7456 {
7457         u64 cfg_offset;
7458         u32 cfg_base_addr;
7459         u64 cfg_base_addr_index;
7460         u32 trans_offset;
7461         int rc;
7462
7463         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7464                 &cfg_base_addr_index, &cfg_offset);
7465         if (rc)
7466                 return rc;
7467         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7468                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7469         if (!h->cfgtable) {
7470                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7471                 return -ENOMEM;
7472         }
7473         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7474         if (rc)
7475                 return rc;
7476         /* Find performant mode table. */
7477         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7478         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7479                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7480                                 sizeof(*h->transtable));
7481         if (!h->transtable) {
7482                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7483                 hpsa_free_cfgtables(h);
7484                 return -ENOMEM;
7485         }
7486         return 0;
7487 }
7488
7489 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7490 {
7491 #define MIN_MAX_COMMANDS 16
7492         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7493
7494         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7495
7496         /* Limit commands in memory limited kdump scenario. */
7497         if (reset_devices && h->max_commands > 32)
7498                 h->max_commands = 32;
7499
7500         if (h->max_commands < MIN_MAX_COMMANDS) {
7501                 dev_warn(&h->pdev->dev,
7502                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7503                         h->max_commands,
7504                         MIN_MAX_COMMANDS);
7505                 h->max_commands = MIN_MAX_COMMANDS;
7506         }
7507 }
7508
7509 /* If the controller reports that the total max sg entries is greater than 512,
7510  * then we know that chained SG blocks work.  (Original smart arrays did not
7511  * support chained SG blocks and would return zero for max sg entries.)
7512  */
7513 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7514 {
7515         return h->maxsgentries > 512;
7516 }
7517
7518 /* Interrogate the hardware for some limits:
7519  * max commands, max SG elements without chaining, and with chaining,
7520  * SG chain block size, etc.
7521  */
7522 static void hpsa_find_board_params(struct ctlr_info *h)
7523 {
7524         hpsa_get_max_perf_mode_cmds(h);
7525         h->nr_cmds = h->max_commands;
7526         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7527         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7528         if (hpsa_supports_chained_sg_blocks(h)) {
7529                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7530                 h->max_cmd_sg_entries = 32;
7531                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7532                 h->maxsgentries--; /* save one for chain pointer */
7533         } else {
7534                 /*
7535                  * Original smart arrays supported at most 31 s/g entries
7536                  * embedded inline in the command (trying to use more
7537                  * would lock up the controller)
7538                  */
7539                 h->max_cmd_sg_entries = 31;
7540                 h->maxsgentries = 31; /* default to traditional values */
7541                 h->chainsize = 0;
7542         }
7543
7544         /* Find out what task management functions are supported and cache */
7545         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7546         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7547                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7548         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7549                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7550         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7551                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7552 }
7553
7554 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7555 {
7556         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7557                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7558                 return false;
7559         }
7560         return true;
7561 }
7562
7563 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7564 {
7565         u32 driver_support;
7566
7567         driver_support = readl(&(h->cfgtable->driver_support));
7568         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7569 #ifdef CONFIG_X86
7570         driver_support |= ENABLE_SCSI_PREFETCH;
7571 #endif
7572         driver_support |= ENABLE_UNIT_ATTN;
7573         writel(driver_support, &(h->cfgtable->driver_support));
7574 }
7575
7576 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7577  * in a prefetch beyond physical memory.
7578  */
7579 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7580 {
7581         u32 dma_prefetch;
7582
7583         if (h->board_id != 0x3225103C)
7584                 return;
7585         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7586         dma_prefetch |= 0x8000;
7587         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7588 }
7589
7590 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7591 {
7592         int i;
7593         u32 doorbell_value;
7594         unsigned long flags;
7595         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7596         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7597                 spin_lock_irqsave(&h->lock, flags);
7598                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7599                 spin_unlock_irqrestore(&h->lock, flags);
7600                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7601                         goto done;
7602                 /* delay and try again */
7603                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7604         }
7605         return -ENODEV;
7606 done:
7607         return 0;
7608 }
7609
7610 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7611 {
7612         int i;
7613         u32 doorbell_value;
7614         unsigned long flags;
7615
7616         /* under certain very rare conditions, this can take awhile.
7617          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7618          * as we enter this code.)
7619          */
7620         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7621                 if (h->remove_in_progress)
7622                         goto done;
7623                 spin_lock_irqsave(&h->lock, flags);
7624                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7625                 spin_unlock_irqrestore(&h->lock, flags);
7626                 if (!(doorbell_value & CFGTBL_ChangeReq))
7627                         goto done;
7628                 /* delay and try again */
7629                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7630         }
7631         return -ENODEV;
7632 done:
7633         return 0;
7634 }
7635
7636 /* return -ENODEV or other reason on error, 0 on success */
7637 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7638 {
7639         u32 trans_support;
7640
7641         trans_support = readl(&(h->cfgtable->TransportSupport));
7642         if (!(trans_support & SIMPLE_MODE))
7643                 return -ENOTSUPP;
7644
7645         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7646
7647         /* Update the field, and then ring the doorbell */
7648         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7649         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7650         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7651         if (hpsa_wait_for_mode_change_ack(h))
7652                 goto error;
7653         print_cfg_table(&h->pdev->dev, h->cfgtable);
7654         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7655                 goto error;
7656         h->transMethod = CFGTBL_Trans_Simple;
7657         return 0;
7658 error:
7659         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7660         return -ENODEV;
7661 }
7662
7663 /* free items allocated or mapped by hpsa_pci_init */
7664 static void hpsa_free_pci_init(struct ctlr_info *h)
7665 {
7666         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7667         iounmap(h->vaddr);                      /* pci_init 3 */
7668         h->vaddr = NULL;
7669         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7670         /*
7671          * call pci_disable_device before pci_release_regions per
7672          * Documentation/PCI/pci.txt
7673          */
7674         pci_disable_device(h->pdev);            /* pci_init 1 */
7675         pci_release_regions(h->pdev);           /* pci_init 2 */
7676 }
7677
7678 /* several items must be freed later */
7679 static int hpsa_pci_init(struct ctlr_info *h)
7680 {
7681         int prod_index, err;
7682
7683         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7684         if (prod_index < 0)
7685                 return prod_index;
7686         h->product_name = products[prod_index].product_name;
7687         h->access = *(products[prod_index].access);
7688
7689         h->needs_abort_tags_swizzled =
7690                 ctlr_needs_abort_tags_swizzled(h->board_id);
7691
7692         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7693                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7694
7695         err = pci_enable_device(h->pdev);
7696         if (err) {
7697                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7698                 pci_disable_device(h->pdev);
7699                 return err;
7700         }
7701
7702         err = pci_request_regions(h->pdev, HPSA);
7703         if (err) {
7704                 dev_err(&h->pdev->dev,
7705                         "failed to obtain PCI resources\n");
7706                 pci_disable_device(h->pdev);
7707                 return err;
7708         }
7709
7710         pci_set_master(h->pdev);
7711
7712         hpsa_interrupt_mode(h);
7713         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7714         if (err)
7715                 goto clean2;    /* intmode+region, pci */
7716         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7717         if (!h->vaddr) {
7718                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7719                 err = -ENOMEM;
7720                 goto clean2;    /* intmode+region, pci */
7721         }
7722         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7723         if (err)
7724                 goto clean3;    /* vaddr, intmode+region, pci */
7725         err = hpsa_find_cfgtables(h);
7726         if (err)
7727                 goto clean3;    /* vaddr, intmode+region, pci */
7728         hpsa_find_board_params(h);
7729
7730         if (!hpsa_CISS_signature_present(h)) {
7731                 err = -ENODEV;
7732                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7733         }
7734         hpsa_set_driver_support_bits(h);
7735         hpsa_p600_dma_prefetch_quirk(h);
7736         err = hpsa_enter_simple_mode(h);
7737         if (err)
7738                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7739         return 0;
7740
7741 clean4: /* cfgtables, vaddr, intmode+region, pci */
7742         hpsa_free_cfgtables(h);
7743 clean3: /* vaddr, intmode+region, pci */
7744         iounmap(h->vaddr);
7745         h->vaddr = NULL;
7746 clean2: /* intmode+region, pci */
7747         hpsa_disable_interrupt_mode(h);
7748         /*
7749          * call pci_disable_device before pci_release_regions per
7750          * Documentation/PCI/pci.txt
7751          */
7752         pci_disable_device(h->pdev);
7753         pci_release_regions(h->pdev);
7754         return err;
7755 }
7756
7757 static void hpsa_hba_inquiry(struct ctlr_info *h)
7758 {
7759         int rc;
7760
7761 #define HBA_INQUIRY_BYTE_COUNT 64
7762         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7763         if (!h->hba_inquiry_data)
7764                 return;
7765         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7766                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7767         if (rc != 0) {
7768                 kfree(h->hba_inquiry_data);
7769                 h->hba_inquiry_data = NULL;
7770         }
7771 }
7772
7773 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7774 {
7775         int rc, i;
7776         void __iomem *vaddr;
7777
7778         if (!reset_devices)
7779                 return 0;
7780
7781         /* kdump kernel is loading, we don't know in which state is
7782          * the pci interface. The dev->enable_cnt is equal zero
7783          * so we call enable+disable, wait a while and switch it on.
7784          */
7785         rc = pci_enable_device(pdev);
7786         if (rc) {
7787                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7788                 return -ENODEV;
7789         }
7790         pci_disable_device(pdev);
7791         msleep(260);                    /* a randomly chosen number */
7792         rc = pci_enable_device(pdev);
7793         if (rc) {
7794                 dev_warn(&pdev->dev, "failed to enable device.\n");
7795                 return -ENODEV;
7796         }
7797
7798         pci_set_master(pdev);
7799
7800         vaddr = pci_ioremap_bar(pdev, 0);
7801         if (vaddr == NULL) {
7802                 rc = -ENOMEM;
7803                 goto out_disable;
7804         }
7805         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7806         iounmap(vaddr);
7807
7808         /* Reset the controller with a PCI power-cycle or via doorbell */
7809         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7810
7811         /* -ENOTSUPP here means we cannot reset the controller
7812          * but it's already (and still) up and running in
7813          * "performant mode".  Or, it might be 640x, which can't reset
7814          * due to concerns about shared bbwc between 6402/6404 pair.
7815          */
7816         if (rc)
7817                 goto out_disable;
7818
7819         /* Now try to get the controller to respond to a no-op */
7820         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7821         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7822                 if (hpsa_noop(pdev) == 0)
7823                         break;
7824                 else
7825                         dev_warn(&pdev->dev, "no-op failed%s\n",
7826                                         (i < 11 ? "; re-trying" : ""));
7827         }
7828
7829 out_disable:
7830
7831         pci_disable_device(pdev);
7832         return rc;
7833 }
7834
7835 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7836 {
7837         kfree(h->cmd_pool_bits);
7838         h->cmd_pool_bits = NULL;
7839         if (h->cmd_pool) {
7840                 pci_free_consistent(h->pdev,
7841                                 h->nr_cmds * sizeof(struct CommandList),
7842                                 h->cmd_pool,
7843                                 h->cmd_pool_dhandle);
7844                 h->cmd_pool = NULL;
7845                 h->cmd_pool_dhandle = 0;
7846         }
7847         if (h->errinfo_pool) {
7848                 pci_free_consistent(h->pdev,
7849                                 h->nr_cmds * sizeof(struct ErrorInfo),
7850                                 h->errinfo_pool,
7851                                 h->errinfo_pool_dhandle);
7852                 h->errinfo_pool = NULL;
7853                 h->errinfo_pool_dhandle = 0;
7854         }
7855 }
7856
7857 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7858 {
7859         h->cmd_pool_bits = kzalloc(
7860                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7861                 sizeof(unsigned long), GFP_KERNEL);
7862         h->cmd_pool = pci_alloc_consistent(h->pdev,
7863                     h->nr_cmds * sizeof(*h->cmd_pool),
7864                     &(h->cmd_pool_dhandle));
7865         h->errinfo_pool = pci_alloc_consistent(h->pdev,
7866                     h->nr_cmds * sizeof(*h->errinfo_pool),
7867                     &(h->errinfo_pool_dhandle));
7868         if ((h->cmd_pool_bits == NULL)
7869             || (h->cmd_pool == NULL)
7870             || (h->errinfo_pool == NULL)) {
7871                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7872                 goto clean_up;
7873         }
7874         hpsa_preinitialize_commands(h);
7875         return 0;
7876 clean_up:
7877         hpsa_free_cmd_pool(h);
7878         return -ENOMEM;
7879 }
7880
7881 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7882 {
7883         int i, cpu;
7884
7885         cpu = cpumask_first(cpu_online_mask);
7886         for (i = 0; i < h->msix_vector; i++) {
7887                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7888                 cpu = cpumask_next(cpu, cpu_online_mask);
7889         }
7890 }
7891
7892 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7893 static void hpsa_free_irqs(struct ctlr_info *h)
7894 {
7895         int i;
7896
7897         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7898                 /* Single reply queue, only one irq to free */
7899                 i = h->intr_mode;
7900                 irq_set_affinity_hint(h->intr[i], NULL);
7901                 free_irq(h->intr[i], &h->q[i]);
7902                 h->q[i] = 0;
7903                 return;
7904         }
7905
7906         for (i = 0; i < h->msix_vector; i++) {
7907                 irq_set_affinity_hint(h->intr[i], NULL);
7908                 free_irq(h->intr[i], &h->q[i]);
7909                 h->q[i] = 0;
7910         }
7911         for (; i < MAX_REPLY_QUEUES; i++)
7912                 h->q[i] = 0;
7913 }
7914
7915 /* returns 0 on success; cleans up and returns -Enn on error */
7916 static int hpsa_request_irqs(struct ctlr_info *h,
7917         irqreturn_t (*msixhandler)(int, void *),
7918         irqreturn_t (*intxhandler)(int, void *))
7919 {
7920         int rc, i;
7921
7922         /*
7923          * initialize h->q[x] = x so that interrupt handlers know which
7924          * queue to process.
7925          */
7926         for (i = 0; i < MAX_REPLY_QUEUES; i++)
7927                 h->q[i] = (u8) i;
7928
7929         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7930                 /* If performant mode and MSI-X, use multiple reply queues */
7931                 for (i = 0; i < h->msix_vector; i++) {
7932                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7933                         rc = request_irq(h->intr[i], msixhandler,
7934                                         0, h->intrname[i],
7935                                         &h->q[i]);
7936                         if (rc) {
7937                                 int j;
7938
7939                                 dev_err(&h->pdev->dev,
7940                                         "failed to get irq %d for %s\n",
7941                                        h->intr[i], h->devname);
7942                                 for (j = 0; j < i; j++) {
7943                                         free_irq(h->intr[j], &h->q[j]);
7944                                         h->q[j] = 0;
7945                                 }
7946                                 for (; j < MAX_REPLY_QUEUES; j++)
7947                                         h->q[j] = 0;
7948                                 return rc;
7949                         }
7950                 }
7951                 hpsa_irq_affinity_hints(h);
7952         } else {
7953                 /* Use single reply pool */
7954                 if (h->msix_vector > 0 || h->msi_vector) {
7955                         if (h->msix_vector)
7956                                 sprintf(h->intrname[h->intr_mode],
7957                                         "%s-msix", h->devname);
7958                         else
7959                                 sprintf(h->intrname[h->intr_mode],
7960                                         "%s-msi", h->devname);
7961                         rc = request_irq(h->intr[h->intr_mode],
7962                                 msixhandler, 0,
7963                                 h->intrname[h->intr_mode],
7964                                 &h->q[h->intr_mode]);
7965                 } else {
7966                         sprintf(h->intrname[h->intr_mode],
7967                                 "%s-intx", h->devname);
7968                         rc = request_irq(h->intr[h->intr_mode],
7969                                 intxhandler, IRQF_SHARED,
7970                                 h->intrname[h->intr_mode],
7971                                 &h->q[h->intr_mode]);
7972                 }
7973                 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
7974         }
7975         if (rc) {
7976                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7977                        h->intr[h->intr_mode], h->devname);
7978                 hpsa_free_irqs(h);
7979                 return -ENODEV;
7980         }
7981         return 0;
7982 }
7983
7984 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7985 {
7986         int rc;
7987         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7988
7989         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7990         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7991         if (rc) {
7992                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7993                 return rc;
7994         }
7995
7996         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7997         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7998         if (rc) {
7999                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8000                         "after soft reset.\n");
8001                 return rc;
8002         }
8003
8004         return 0;
8005 }
8006
8007 static void hpsa_free_reply_queues(struct ctlr_info *h)
8008 {
8009         int i;
8010
8011         for (i = 0; i < h->nreply_queues; i++) {
8012                 if (!h->reply_queue[i].head)
8013                         continue;
8014                 pci_free_consistent(h->pdev,
8015                                         h->reply_queue_size,
8016                                         h->reply_queue[i].head,
8017                                         h->reply_queue[i].busaddr);
8018                 h->reply_queue[i].head = NULL;
8019                 h->reply_queue[i].busaddr = 0;
8020         }
8021         h->reply_queue_size = 0;
8022 }
8023
8024 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8025 {
8026         hpsa_free_performant_mode(h);           /* init_one 7 */
8027         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8028         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8029         hpsa_free_irqs(h);                      /* init_one 4 */
8030         scsi_host_put(h->scsi_host);            /* init_one 3 */
8031         h->scsi_host = NULL;                    /* init_one 3 */
8032         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8033         free_percpu(h->lockup_detected);        /* init_one 2 */
8034         h->lockup_detected = NULL;              /* init_one 2 */
8035         if (h->resubmit_wq) {
8036                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8037                 h->resubmit_wq = NULL;
8038         }
8039         if (h->rescan_ctlr_wq) {
8040                 destroy_workqueue(h->rescan_ctlr_wq);
8041                 h->rescan_ctlr_wq = NULL;
8042         }
8043         kfree(h);                               /* init_one 1 */
8044 }
8045
8046 /* Called when controller lockup detected. */
8047 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8048 {
8049         int i, refcount;
8050         struct CommandList *c;
8051         int failcount = 0;
8052
8053         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8054         for (i = 0; i < h->nr_cmds; i++) {
8055                 c = h->cmd_pool + i;
8056                 refcount = atomic_inc_return(&c->refcount);
8057                 if (refcount > 1) {
8058                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8059                         finish_cmd(c);
8060                         atomic_dec(&h->commands_outstanding);
8061                         failcount++;
8062                 }
8063                 cmd_free(h, c);
8064         }
8065         dev_warn(&h->pdev->dev,
8066                 "failed %d commands in fail_all\n", failcount);
8067 }
8068
8069 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8070 {
8071         int cpu;
8072
8073         for_each_online_cpu(cpu) {
8074                 u32 *lockup_detected;
8075                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8076                 *lockup_detected = value;
8077         }
8078         wmb(); /* be sure the per-cpu variables are out to memory */
8079 }
8080
8081 static void controller_lockup_detected(struct ctlr_info *h)
8082 {
8083         unsigned long flags;
8084         u32 lockup_detected;
8085
8086         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8087         spin_lock_irqsave(&h->lock, flags);
8088         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8089         if (!lockup_detected) {
8090                 /* no heartbeat, but controller gave us a zero. */
8091                 dev_warn(&h->pdev->dev,
8092                         "lockup detected after %d but scratchpad register is zero\n",
8093                         h->heartbeat_sample_interval / HZ);
8094                 lockup_detected = 0xffffffff;
8095         }
8096         set_lockup_detected_for_all_cpus(h, lockup_detected);
8097         spin_unlock_irqrestore(&h->lock, flags);
8098         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8099                         lockup_detected, h->heartbeat_sample_interval / HZ);
8100         pci_disable_device(h->pdev);
8101         fail_all_outstanding_cmds(h);
8102 }
8103
8104 static int detect_controller_lockup(struct ctlr_info *h)
8105 {
8106         u64 now;
8107         u32 heartbeat;
8108         unsigned long flags;
8109
8110         now = get_jiffies_64();
8111         /* If we've received an interrupt recently, we're ok. */
8112         if (time_after64(h->last_intr_timestamp +
8113                                 (h->heartbeat_sample_interval), now))
8114                 return false;
8115
8116         /*
8117          * If we've already checked the heartbeat recently, we're ok.
8118          * This could happen if someone sends us a signal. We
8119          * otherwise don't care about signals in this thread.
8120          */
8121         if (time_after64(h->last_heartbeat_timestamp +
8122                                 (h->heartbeat_sample_interval), now))
8123                 return false;
8124
8125         /* If heartbeat has not changed since we last looked, we're not ok. */
8126         spin_lock_irqsave(&h->lock, flags);
8127         heartbeat = readl(&h->cfgtable->HeartBeat);
8128         spin_unlock_irqrestore(&h->lock, flags);
8129         if (h->last_heartbeat == heartbeat) {
8130                 controller_lockup_detected(h);
8131                 return true;
8132         }
8133
8134         /* We're ok. */
8135         h->last_heartbeat = heartbeat;
8136         h->last_heartbeat_timestamp = now;
8137         return false;
8138 }
8139
8140 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8141 {
8142         int i;
8143         char *event_type;
8144
8145         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8146                 return;
8147
8148         /* Ask the controller to clear the events we're handling. */
8149         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8150                         | CFGTBL_Trans_io_accel2)) &&
8151                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8152                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8153
8154                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8155                         event_type = "state change";
8156                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8157                         event_type = "configuration change";
8158                 /* Stop sending new RAID offload reqs via the IO accelerator */
8159                 scsi_block_requests(h->scsi_host);
8160                 for (i = 0; i < h->ndevices; i++)
8161                         h->dev[i]->offload_enabled = 0;
8162                 hpsa_drain_accel_commands(h);
8163                 /* Set 'accelerator path config change' bit */
8164                 dev_warn(&h->pdev->dev,
8165                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8166                         h->events, event_type);
8167                 writel(h->events, &(h->cfgtable->clear_event_notify));
8168                 /* Set the "clear event notify field update" bit 6 */
8169                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8170                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8171                 hpsa_wait_for_clear_event_notify_ack(h);
8172                 scsi_unblock_requests(h->scsi_host);
8173         } else {
8174                 /* Acknowledge controller notification events. */
8175                 writel(h->events, &(h->cfgtable->clear_event_notify));
8176                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8177                 hpsa_wait_for_clear_event_notify_ack(h);
8178 #if 0
8179                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8180                 hpsa_wait_for_mode_change_ack(h);
8181 #endif
8182         }
8183         return;
8184 }
8185
8186 /* Check a register on the controller to see if there are configuration
8187  * changes (added/changed/removed logical drives, etc.) which mean that
8188  * we should rescan the controller for devices.
8189  * Also check flag for driver-initiated rescan.
8190  */
8191 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8192 {
8193         if (h->drv_req_rescan) {
8194                 h->drv_req_rescan = 0;
8195                 return 1;
8196         }
8197
8198         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8199                 return 0;
8200
8201         h->events = readl(&(h->cfgtable->event_notify));
8202         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8203 }
8204
8205 /*
8206  * Check if any of the offline devices have become ready
8207  */
8208 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8209 {
8210         unsigned long flags;
8211         struct offline_device_entry *d;
8212         struct list_head *this, *tmp;
8213
8214         spin_lock_irqsave(&h->offline_device_lock, flags);
8215         list_for_each_safe(this, tmp, &h->offline_device_list) {
8216                 d = list_entry(this, struct offline_device_entry,
8217                                 offline_list);
8218                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8219                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8220                         spin_lock_irqsave(&h->offline_device_lock, flags);
8221                         list_del(&d->offline_list);
8222                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8223                         return 1;
8224                 }
8225                 spin_lock_irqsave(&h->offline_device_lock, flags);
8226         }
8227         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8228         return 0;
8229 }
8230
8231 static int hpsa_luns_changed(struct ctlr_info *h)
8232 {
8233         int rc = 1; /* assume there are changes */
8234         struct ReportLUNdata *logdev = NULL;
8235
8236         /* if we can't find out if lun data has changed,
8237          * assume that it has.
8238          */
8239
8240         if (!h->lastlogicals)
8241                 goto out;
8242
8243         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8244         if (!logdev) {
8245                 dev_warn(&h->pdev->dev,
8246                         "Out of memory, can't track lun changes.\n");
8247                 goto out;
8248         }
8249         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8250                 dev_warn(&h->pdev->dev,
8251                         "report luns failed, can't track lun changes.\n");
8252                 goto out;
8253         }
8254         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8255                 dev_info(&h->pdev->dev,
8256                         "Lun changes detected.\n");
8257                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8258                 goto out;
8259         } else
8260                 rc = 0; /* no changes detected. */
8261 out:
8262         kfree(logdev);
8263         return rc;
8264 }
8265
8266 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8267 {
8268         unsigned long flags;
8269         struct ctlr_info *h = container_of(to_delayed_work(work),
8270                                         struct ctlr_info, rescan_ctlr_work);
8271
8272
8273         if (h->remove_in_progress)
8274                 return;
8275
8276         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8277                 scsi_host_get(h->scsi_host);
8278                 hpsa_ack_ctlr_events(h);
8279                 hpsa_scan_start(h->scsi_host);
8280                 scsi_host_put(h->scsi_host);
8281         } else if (h->discovery_polling) {
8282                 hpsa_disable_rld_caching(h);
8283                 if (hpsa_luns_changed(h)) {
8284                         struct Scsi_Host *sh = NULL;
8285
8286                         dev_info(&h->pdev->dev,
8287                                 "driver discovery polling rescan.\n");
8288                         sh = scsi_host_get(h->scsi_host);
8289                         if (sh != NULL) {
8290                                 hpsa_scan_start(sh);
8291                                 scsi_host_put(sh);
8292                         }
8293                 }
8294         }
8295         spin_lock_irqsave(&h->lock, flags);
8296         if (!h->remove_in_progress)
8297                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8298                                 h->heartbeat_sample_interval);
8299         spin_unlock_irqrestore(&h->lock, flags);
8300 }
8301
8302 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8303 {
8304         unsigned long flags;
8305         struct ctlr_info *h = container_of(to_delayed_work(work),
8306                                         struct ctlr_info, monitor_ctlr_work);
8307
8308         detect_controller_lockup(h);
8309         if (lockup_detected(h))
8310                 return;
8311
8312         spin_lock_irqsave(&h->lock, flags);
8313         if (!h->remove_in_progress)
8314                 schedule_delayed_work(&h->monitor_ctlr_work,
8315                                 h->heartbeat_sample_interval);
8316         spin_unlock_irqrestore(&h->lock, flags);
8317 }
8318
8319 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8320                                                 char *name)
8321 {
8322         struct workqueue_struct *wq = NULL;
8323
8324         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8325         if (!wq)
8326                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8327
8328         return wq;
8329 }
8330
8331 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8332 {
8333         int dac, rc;
8334         struct ctlr_info *h;
8335         int try_soft_reset = 0;
8336         unsigned long flags;
8337         u32 board_id;
8338
8339         if (number_of_controllers == 0)
8340                 printk(KERN_INFO DRIVER_NAME "\n");
8341
8342         rc = hpsa_lookup_board_id(pdev, &board_id);
8343         if (rc < 0) {
8344                 dev_warn(&pdev->dev, "Board ID not found\n");
8345                 return rc;
8346         }
8347
8348         rc = hpsa_init_reset_devices(pdev, board_id);
8349         if (rc) {
8350                 if (rc != -ENOTSUPP)
8351                         return rc;
8352                 /* If the reset fails in a particular way (it has no way to do
8353                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8354                  * a soft reset once we get the controller configured up to the
8355                  * point that it can accept a command.
8356                  */
8357                 try_soft_reset = 1;
8358                 rc = 0;
8359         }
8360
8361 reinit_after_soft_reset:
8362
8363         /* Command structures must be aligned on a 32-byte boundary because
8364          * the 5 lower bits of the address are used by the hardware. and by
8365          * the driver.  See comments in hpsa.h for more info.
8366          */
8367         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8368         h = kzalloc(sizeof(*h), GFP_KERNEL);
8369         if (!h) {
8370                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8371                 return -ENOMEM;
8372         }
8373
8374         h->pdev = pdev;
8375
8376         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8377         INIT_LIST_HEAD(&h->offline_device_list);
8378         spin_lock_init(&h->lock);
8379         spin_lock_init(&h->offline_device_lock);
8380         spin_lock_init(&h->scan_lock);
8381         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8382         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8383
8384         /* Allocate and clear per-cpu variable lockup_detected */
8385         h->lockup_detected = alloc_percpu(u32);
8386         if (!h->lockup_detected) {
8387                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8388                 rc = -ENOMEM;
8389                 goto clean1;    /* aer/h */
8390         }
8391         set_lockup_detected_for_all_cpus(h, 0);
8392
8393         rc = hpsa_pci_init(h);
8394         if (rc)
8395                 goto clean2;    /* lu, aer/h */
8396
8397         /* relies on h-> settings made by hpsa_pci_init, including
8398          * interrupt_mode h->intr */
8399         rc = hpsa_scsi_host_alloc(h);
8400         if (rc)
8401                 goto clean2_5;  /* pci, lu, aer/h */
8402
8403         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8404         h->ctlr = number_of_controllers;
8405         number_of_controllers++;
8406
8407         /* configure PCI DMA stuff */
8408         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8409         if (rc == 0) {
8410                 dac = 1;
8411         } else {
8412                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8413                 if (rc == 0) {
8414                         dac = 0;
8415                 } else {
8416                         dev_err(&pdev->dev, "no suitable DMA available\n");
8417                         goto clean3;    /* shost, pci, lu, aer/h */
8418                 }
8419         }
8420
8421         /* make sure the board interrupts are off */
8422         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8423
8424         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8425         if (rc)
8426                 goto clean3;    /* shost, pci, lu, aer/h */
8427         rc = hpsa_alloc_cmd_pool(h);
8428         if (rc)
8429                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8430         rc = hpsa_alloc_sg_chain_blocks(h);
8431         if (rc)
8432                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8433         init_waitqueue_head(&h->scan_wait_queue);
8434         init_waitqueue_head(&h->abort_cmd_wait_queue);
8435         init_waitqueue_head(&h->event_sync_wait_queue);
8436         mutex_init(&h->reset_mutex);
8437         h->scan_finished = 1; /* no scan currently in progress */
8438
8439         pci_set_drvdata(pdev, h);
8440         h->ndevices = 0;
8441
8442         spin_lock_init(&h->devlock);
8443         rc = hpsa_put_ctlr_into_performant_mode(h);
8444         if (rc)
8445                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8446
8447         /* hook into SCSI subsystem */
8448         rc = hpsa_scsi_add_host(h);
8449         if (rc)
8450                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8451
8452         /* create the resubmit workqueue */
8453         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8454         if (!h->rescan_ctlr_wq) {
8455                 rc = -ENOMEM;
8456                 goto clean7;
8457         }
8458
8459         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8460         if (!h->resubmit_wq) {
8461                 rc = -ENOMEM;
8462                 goto clean7;    /* aer/h */
8463         }
8464
8465         /*
8466          * At this point, the controller is ready to take commands.
8467          * Now, if reset_devices and the hard reset didn't work, try
8468          * the soft reset and see if that works.
8469          */
8470         if (try_soft_reset) {
8471
8472                 /* This is kind of gross.  We may or may not get a completion
8473                  * from the soft reset command, and if we do, then the value
8474                  * from the fifo may or may not be valid.  So, we wait 10 secs
8475                  * after the reset throwing away any completions we get during
8476                  * that time.  Unregister the interrupt handler and register
8477                  * fake ones to scoop up any residual completions.
8478                  */
8479                 spin_lock_irqsave(&h->lock, flags);
8480                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8481                 spin_unlock_irqrestore(&h->lock, flags);
8482                 hpsa_free_irqs(h);
8483                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8484                                         hpsa_intx_discard_completions);
8485                 if (rc) {
8486                         dev_warn(&h->pdev->dev,
8487                                 "Failed to request_irq after soft reset.\n");
8488                         /*
8489                          * cannot goto clean7 or free_irqs will be called
8490                          * again. Instead, do its work
8491                          */
8492                         hpsa_free_performant_mode(h);   /* clean7 */
8493                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8494                         hpsa_free_cmd_pool(h);          /* clean5 */
8495                         /*
8496                          * skip hpsa_free_irqs(h) clean4 since that
8497                          * was just called before request_irqs failed
8498                          */
8499                         goto clean3;
8500                 }
8501
8502                 rc = hpsa_kdump_soft_reset(h);
8503                 if (rc)
8504                         /* Neither hard nor soft reset worked, we're hosed. */
8505                         goto clean7;
8506
8507                 dev_info(&h->pdev->dev, "Board READY.\n");
8508                 dev_info(&h->pdev->dev,
8509                         "Waiting for stale completions to drain.\n");
8510                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8511                 msleep(10000);
8512                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8513
8514                 rc = controller_reset_failed(h->cfgtable);
8515                 if (rc)
8516                         dev_info(&h->pdev->dev,
8517                                 "Soft reset appears to have failed.\n");
8518
8519                 /* since the controller's reset, we have to go back and re-init
8520                  * everything.  Easiest to just forget what we've done and do it
8521                  * all over again.
8522                  */
8523                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8524                 try_soft_reset = 0;
8525                 if (rc)
8526                         /* don't goto clean, we already unallocated */
8527                         return -ENODEV;
8528
8529                 goto reinit_after_soft_reset;
8530         }
8531
8532         /* Enable Accelerated IO path at driver layer */
8533         h->acciopath_status = 1;
8534         /* Disable discovery polling.*/
8535         h->discovery_polling = 0;
8536
8537
8538         /* Turn the interrupts on so we can service requests */
8539         h->access.set_intr_mask(h, HPSA_INTR_ON);
8540
8541         hpsa_hba_inquiry(h);
8542
8543         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8544         if (!h->lastlogicals)
8545                 dev_info(&h->pdev->dev,
8546                         "Can't track change to report lun data\n");
8547
8548         /* Monitor the controller for firmware lockups */
8549         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8550         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8551         schedule_delayed_work(&h->monitor_ctlr_work,
8552                                 h->heartbeat_sample_interval);
8553         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8554         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8555                                 h->heartbeat_sample_interval);
8556         return 0;
8557
8558 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8559         hpsa_free_performant_mode(h);
8560         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8561 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8562         hpsa_free_sg_chain_blocks(h);
8563 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8564         hpsa_free_cmd_pool(h);
8565 clean4: /* irq, shost, pci, lu, aer/h */
8566         hpsa_free_irqs(h);
8567 clean3: /* shost, pci, lu, aer/h */
8568         scsi_host_put(h->scsi_host);
8569         h->scsi_host = NULL;
8570 clean2_5: /* pci, lu, aer/h */
8571         hpsa_free_pci_init(h);
8572 clean2: /* lu, aer/h */
8573         if (h->lockup_detected) {
8574                 free_percpu(h->lockup_detected);
8575                 h->lockup_detected = NULL;
8576         }
8577 clean1: /* wq/aer/h */
8578         if (h->resubmit_wq) {
8579                 destroy_workqueue(h->resubmit_wq);
8580                 h->resubmit_wq = NULL;
8581         }
8582         if (h->rescan_ctlr_wq) {
8583                 destroy_workqueue(h->rescan_ctlr_wq);
8584                 h->rescan_ctlr_wq = NULL;
8585         }
8586         kfree(h);
8587         return rc;
8588 }
8589
8590 static void hpsa_flush_cache(struct ctlr_info *h)
8591 {
8592         char *flush_buf;
8593         struct CommandList *c;
8594         int rc;
8595
8596         if (unlikely(lockup_detected(h)))
8597                 return;
8598         flush_buf = kzalloc(4, GFP_KERNEL);
8599         if (!flush_buf)
8600                 return;
8601
8602         c = cmd_alloc(h);
8603
8604         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8605                 RAID_CTLR_LUNID, TYPE_CMD)) {
8606                 goto out;
8607         }
8608         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8609                                         PCI_DMA_TODEVICE, NO_TIMEOUT);
8610         if (rc)
8611                 goto out;
8612         if (c->err_info->CommandStatus != 0)
8613 out:
8614                 dev_warn(&h->pdev->dev,
8615                         "error flushing cache on controller\n");
8616         cmd_free(h, c);
8617         kfree(flush_buf);
8618 }
8619
8620 /* Make controller gather fresh report lun data each time we
8621  * send down a report luns request
8622  */
8623 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8624 {
8625         u32 *options;
8626         struct CommandList *c;
8627         int rc;
8628
8629         /* Don't bother trying to set diag options if locked up */
8630         if (unlikely(h->lockup_detected))
8631                 return;
8632
8633         options = kzalloc(sizeof(*options), GFP_KERNEL);
8634         if (!options) {
8635                 dev_err(&h->pdev->dev,
8636                         "Error: failed to disable rld caching, during alloc.\n");
8637                 return;
8638         }
8639
8640         c = cmd_alloc(h);
8641
8642         /* first, get the current diag options settings */
8643         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8644                 RAID_CTLR_LUNID, TYPE_CMD))
8645                 goto errout;
8646
8647         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8648                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8649         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8650                 goto errout;
8651
8652         /* Now, set the bit for disabling the RLD caching */
8653         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8654
8655         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8656                 RAID_CTLR_LUNID, TYPE_CMD))
8657                 goto errout;
8658
8659         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8660                 PCI_DMA_TODEVICE, NO_TIMEOUT);
8661         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8662                 goto errout;
8663
8664         /* Now verify that it got set: */
8665         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8666                 RAID_CTLR_LUNID, TYPE_CMD))
8667                 goto errout;
8668
8669         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8670                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8671         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8672                 goto errout;
8673
8674         if (*options && HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8675                 goto out;
8676
8677 errout:
8678         dev_err(&h->pdev->dev,
8679                         "Error: failed to disable report lun data caching.\n");
8680 out:
8681         cmd_free(h, c);
8682         kfree(options);
8683 }
8684
8685 static void hpsa_shutdown(struct pci_dev *pdev)
8686 {
8687         struct ctlr_info *h;
8688
8689         h = pci_get_drvdata(pdev);
8690         /* Turn board interrupts off  and send the flush cache command
8691          * sendcmd will turn off interrupt, and send the flush...
8692          * To write all data in the battery backed cache to disks
8693          */
8694         hpsa_flush_cache(h);
8695         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8696         hpsa_free_irqs(h);                      /* init_one 4 */
8697         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8698 }
8699
8700 static void hpsa_free_device_info(struct ctlr_info *h)
8701 {
8702         int i;
8703
8704         for (i = 0; i < h->ndevices; i++) {
8705                 kfree(h->dev[i]);
8706                 h->dev[i] = NULL;
8707         }
8708 }
8709
8710 static void hpsa_remove_one(struct pci_dev *pdev)
8711 {
8712         struct ctlr_info *h;
8713         unsigned long flags;
8714
8715         if (pci_get_drvdata(pdev) == NULL) {
8716                 dev_err(&pdev->dev, "unable to remove device\n");
8717                 return;
8718         }
8719         h = pci_get_drvdata(pdev);
8720
8721         /* Get rid of any controller monitoring work items */
8722         spin_lock_irqsave(&h->lock, flags);
8723         h->remove_in_progress = 1;
8724         spin_unlock_irqrestore(&h->lock, flags);
8725         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8726         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8727         destroy_workqueue(h->rescan_ctlr_wq);
8728         destroy_workqueue(h->resubmit_wq);
8729
8730         /*
8731          * Call before disabling interrupts.
8732          * scsi_remove_host can trigger I/O operations especially
8733          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8734          * operations which cannot complete and will hang the system.
8735          */
8736         if (h->scsi_host)
8737                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8738         /* includes hpsa_free_irqs - init_one 4 */
8739         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8740         hpsa_shutdown(pdev);
8741
8742         hpsa_free_device_info(h);               /* scan */
8743
8744         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8745         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8746         hpsa_free_ioaccel2_sg_chain_blocks(h);
8747         hpsa_free_performant_mode(h);                   /* init_one 7 */
8748         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8749         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8750         kfree(h->lastlogicals);
8751
8752         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8753
8754         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8755         h->scsi_host = NULL;                            /* init_one 3 */
8756
8757         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8758         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8759
8760         free_percpu(h->lockup_detected);                /* init_one 2 */
8761         h->lockup_detected = NULL;                      /* init_one 2 */
8762         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8763
8764         hpsa_delete_sas_host(h);
8765
8766         kfree(h);                                       /* init_one 1 */
8767 }
8768
8769 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8770         __attribute__((unused)) pm_message_t state)
8771 {
8772         return -ENOSYS;
8773 }
8774
8775 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8776 {
8777         return -ENOSYS;
8778 }
8779
8780 static struct pci_driver hpsa_pci_driver = {
8781         .name = HPSA,
8782         .probe = hpsa_init_one,
8783         .remove = hpsa_remove_one,
8784         .id_table = hpsa_pci_device_id, /* id_table */
8785         .shutdown = hpsa_shutdown,
8786         .suspend = hpsa_suspend,
8787         .resume = hpsa_resume,
8788 };
8789
8790 /* Fill in bucket_map[], given nsgs (the max number of
8791  * scatter gather elements supported) and bucket[],
8792  * which is an array of 8 integers.  The bucket[] array
8793  * contains 8 different DMA transfer sizes (in 16
8794  * byte increments) which the controller uses to fetch
8795  * commands.  This function fills in bucket_map[], which
8796  * maps a given number of scatter gather elements to one of
8797  * the 8 DMA transfer sizes.  The point of it is to allow the
8798  * controller to only do as much DMA as needed to fetch the
8799  * command, with the DMA transfer size encoded in the lower
8800  * bits of the command address.
8801  */
8802 static void  calc_bucket_map(int bucket[], int num_buckets,
8803         int nsgs, int min_blocks, u32 *bucket_map)
8804 {
8805         int i, j, b, size;
8806
8807         /* Note, bucket_map must have nsgs+1 entries. */
8808         for (i = 0; i <= nsgs; i++) {
8809                 /* Compute size of a command with i SG entries */
8810                 size = i + min_blocks;
8811                 b = num_buckets; /* Assume the biggest bucket */
8812                 /* Find the bucket that is just big enough */
8813                 for (j = 0; j < num_buckets; j++) {
8814                         if (bucket[j] >= size) {
8815                                 b = j;
8816                                 break;
8817                         }
8818                 }
8819                 /* for a command with i SG entries, use bucket b. */
8820                 bucket_map[i] = b;
8821         }
8822 }
8823
8824 /*
8825  * return -ENODEV on err, 0 on success (or no action)
8826  * allocates numerous items that must be freed later
8827  */
8828 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8829 {
8830         int i;
8831         unsigned long register_value;
8832         unsigned long transMethod = CFGTBL_Trans_Performant |
8833                         (trans_support & CFGTBL_Trans_use_short_tags) |
8834                                 CFGTBL_Trans_enable_directed_msix |
8835                         (trans_support & (CFGTBL_Trans_io_accel1 |
8836                                 CFGTBL_Trans_io_accel2));
8837         struct access_method access = SA5_performant_access;
8838
8839         /* This is a bit complicated.  There are 8 registers on
8840          * the controller which we write to to tell it 8 different
8841          * sizes of commands which there may be.  It's a way of
8842          * reducing the DMA done to fetch each command.  Encoded into
8843          * each command's tag are 3 bits which communicate to the controller
8844          * which of the eight sizes that command fits within.  The size of
8845          * each command depends on how many scatter gather entries there are.
8846          * Each SG entry requires 16 bytes.  The eight registers are programmed
8847          * with the number of 16-byte blocks a command of that size requires.
8848          * The smallest command possible requires 5 such 16 byte blocks.
8849          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8850          * blocks.  Note, this only extends to the SG entries contained
8851          * within the command block, and does not extend to chained blocks
8852          * of SG elements.   bft[] contains the eight values we write to
8853          * the registers.  They are not evenly distributed, but have more
8854          * sizes for small commands, and fewer sizes for larger commands.
8855          */
8856         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8857 #define MIN_IOACCEL2_BFT_ENTRY 5
8858 #define HPSA_IOACCEL2_HEADER_SZ 4
8859         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8860                         13, 14, 15, 16, 17, 18, 19,
8861                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8862         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8863         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8864         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8865                                  16 * MIN_IOACCEL2_BFT_ENTRY);
8866         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8867         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8868         /*  5 = 1 s/g entry or 4k
8869          *  6 = 2 s/g entry or 8k
8870          *  8 = 4 s/g entry or 16k
8871          * 10 = 6 s/g entry or 24k
8872          */
8873
8874         /* If the controller supports either ioaccel method then
8875          * we can also use the RAID stack submit path that does not
8876          * perform the superfluous readl() after each command submission.
8877          */
8878         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8879                 access = SA5_performant_access_no_read;
8880
8881         /* Controller spec: zero out this buffer. */
8882         for (i = 0; i < h->nreply_queues; i++)
8883                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8884
8885         bft[7] = SG_ENTRIES_IN_CMD + 4;
8886         calc_bucket_map(bft, ARRAY_SIZE(bft),
8887                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8888         for (i = 0; i < 8; i++)
8889                 writel(bft[i], &h->transtable->BlockFetch[i]);
8890
8891         /* size of controller ring buffer */
8892         writel(h->max_commands, &h->transtable->RepQSize);
8893         writel(h->nreply_queues, &h->transtable->RepQCount);
8894         writel(0, &h->transtable->RepQCtrAddrLow32);
8895         writel(0, &h->transtable->RepQCtrAddrHigh32);
8896
8897         for (i = 0; i < h->nreply_queues; i++) {
8898                 writel(0, &h->transtable->RepQAddr[i].upper);
8899                 writel(h->reply_queue[i].busaddr,
8900                         &h->transtable->RepQAddr[i].lower);
8901         }
8902
8903         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8904         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8905         /*
8906          * enable outbound interrupt coalescing in accelerator mode;
8907          */
8908         if (trans_support & CFGTBL_Trans_io_accel1) {
8909                 access = SA5_ioaccel_mode1_access;
8910                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8911                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8912         } else {
8913                 if (trans_support & CFGTBL_Trans_io_accel2) {
8914                         access = SA5_ioaccel_mode2_access;
8915                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8916                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8917                 }
8918         }
8919         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8920         if (hpsa_wait_for_mode_change_ack(h)) {
8921                 dev_err(&h->pdev->dev,
8922                         "performant mode problem - doorbell timeout\n");
8923                 return -ENODEV;
8924         }
8925         register_value = readl(&(h->cfgtable->TransportActive));
8926         if (!(register_value & CFGTBL_Trans_Performant)) {
8927                 dev_err(&h->pdev->dev,
8928                         "performant mode problem - transport not active\n");
8929                 return -ENODEV;
8930         }
8931         /* Change the access methods to the performant access methods */
8932         h->access = access;
8933         h->transMethod = transMethod;
8934
8935         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8936                 (trans_support & CFGTBL_Trans_io_accel2)))
8937                 return 0;
8938
8939         if (trans_support & CFGTBL_Trans_io_accel1) {
8940                 /* Set up I/O accelerator mode */
8941                 for (i = 0; i < h->nreply_queues; i++) {
8942                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8943                         h->reply_queue[i].current_entry =
8944                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8945                 }
8946                 bft[7] = h->ioaccel_maxsg + 8;
8947                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8948                                 h->ioaccel1_blockFetchTable);
8949
8950                 /* initialize all reply queue entries to unused */
8951                 for (i = 0; i < h->nreply_queues; i++)
8952                         memset(h->reply_queue[i].head,
8953                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
8954                                 h->reply_queue_size);
8955
8956                 /* set all the constant fields in the accelerator command
8957                  * frames once at init time to save CPU cycles later.
8958                  */
8959                 for (i = 0; i < h->nr_cmds; i++) {
8960                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8961
8962                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
8963                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
8964                                         (i * sizeof(struct ErrorInfo)));
8965                         cp->err_info_len = sizeof(struct ErrorInfo);
8966                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
8967                         cp->host_context_flags =
8968                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8969                         cp->timeout_sec = 0;
8970                         cp->ReplyQueue = 0;
8971                         cp->tag =
8972                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8973                         cp->host_addr =
8974                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8975                                         (i * sizeof(struct io_accel1_cmd)));
8976                 }
8977         } else if (trans_support & CFGTBL_Trans_io_accel2) {
8978                 u64 cfg_offset, cfg_base_addr_index;
8979                 u32 bft2_offset, cfg_base_addr;
8980                 int rc;
8981
8982                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8983                         &cfg_base_addr_index, &cfg_offset);
8984                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8985                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8986                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8987                                 4, h->ioaccel2_blockFetchTable);
8988                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8989                 BUILD_BUG_ON(offsetof(struct CfgTable,
8990                                 io_accel_request_size_offset) != 0xb8);
8991                 h->ioaccel2_bft2_regs =
8992                         remap_pci_mem(pci_resource_start(h->pdev,
8993                                         cfg_base_addr_index) +
8994                                         cfg_offset + bft2_offset,
8995                                         ARRAY_SIZE(bft2) *
8996                                         sizeof(*h->ioaccel2_bft2_regs));
8997                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
8998                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8999         }
9000         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9001         if (hpsa_wait_for_mode_change_ack(h)) {
9002                 dev_err(&h->pdev->dev,
9003                         "performant mode problem - enabling ioaccel mode\n");
9004                 return -ENODEV;
9005         }
9006         return 0;
9007 }
9008
9009 /* Free ioaccel1 mode command blocks and block fetch table */
9010 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9011 {
9012         if (h->ioaccel_cmd_pool) {
9013                 pci_free_consistent(h->pdev,
9014                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9015                         h->ioaccel_cmd_pool,
9016                         h->ioaccel_cmd_pool_dhandle);
9017                 h->ioaccel_cmd_pool = NULL;
9018                 h->ioaccel_cmd_pool_dhandle = 0;
9019         }
9020         kfree(h->ioaccel1_blockFetchTable);
9021         h->ioaccel1_blockFetchTable = NULL;
9022 }
9023
9024 /* Allocate ioaccel1 mode command blocks and block fetch table */
9025 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9026 {
9027         h->ioaccel_maxsg =
9028                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9029         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9030                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9031
9032         /* Command structures must be aligned on a 128-byte boundary
9033          * because the 7 lower bits of the address are used by the
9034          * hardware.
9035          */
9036         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9037                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9038         h->ioaccel_cmd_pool =
9039                 pci_alloc_consistent(h->pdev,
9040                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9041                         &(h->ioaccel_cmd_pool_dhandle));
9042
9043         h->ioaccel1_blockFetchTable =
9044                 kmalloc(((h->ioaccel_maxsg + 1) *
9045                                 sizeof(u32)), GFP_KERNEL);
9046
9047         if ((h->ioaccel_cmd_pool == NULL) ||
9048                 (h->ioaccel1_blockFetchTable == NULL))
9049                 goto clean_up;
9050
9051         memset(h->ioaccel_cmd_pool, 0,
9052                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9053         return 0;
9054
9055 clean_up:
9056         hpsa_free_ioaccel1_cmd_and_bft(h);
9057         return -ENOMEM;
9058 }
9059
9060 /* Free ioaccel2 mode command blocks and block fetch table */
9061 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9062 {
9063         hpsa_free_ioaccel2_sg_chain_blocks(h);
9064
9065         if (h->ioaccel2_cmd_pool) {
9066                 pci_free_consistent(h->pdev,
9067                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9068                         h->ioaccel2_cmd_pool,
9069                         h->ioaccel2_cmd_pool_dhandle);
9070                 h->ioaccel2_cmd_pool = NULL;
9071                 h->ioaccel2_cmd_pool_dhandle = 0;
9072         }
9073         kfree(h->ioaccel2_blockFetchTable);
9074         h->ioaccel2_blockFetchTable = NULL;
9075 }
9076
9077 /* Allocate ioaccel2 mode command blocks and block fetch table */
9078 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9079 {
9080         int rc;
9081
9082         /* Allocate ioaccel2 mode command blocks and block fetch table */
9083
9084         h->ioaccel_maxsg =
9085                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9086         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9087                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9088
9089         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9090                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9091         h->ioaccel2_cmd_pool =
9092                 pci_alloc_consistent(h->pdev,
9093                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9094                         &(h->ioaccel2_cmd_pool_dhandle));
9095
9096         h->ioaccel2_blockFetchTable =
9097                 kmalloc(((h->ioaccel_maxsg + 1) *
9098                                 sizeof(u32)), GFP_KERNEL);
9099
9100         if ((h->ioaccel2_cmd_pool == NULL) ||
9101                 (h->ioaccel2_blockFetchTable == NULL)) {
9102                 rc = -ENOMEM;
9103                 goto clean_up;
9104         }
9105
9106         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9107         if (rc)
9108                 goto clean_up;
9109
9110         memset(h->ioaccel2_cmd_pool, 0,
9111                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9112         return 0;
9113
9114 clean_up:
9115         hpsa_free_ioaccel2_cmd_and_bft(h);
9116         return rc;
9117 }
9118
9119 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9120 static void hpsa_free_performant_mode(struct ctlr_info *h)
9121 {
9122         kfree(h->blockFetchTable);
9123         h->blockFetchTable = NULL;
9124         hpsa_free_reply_queues(h);
9125         hpsa_free_ioaccel1_cmd_and_bft(h);
9126         hpsa_free_ioaccel2_cmd_and_bft(h);
9127 }
9128
9129 /* return -ENODEV on error, 0 on success (or no action)
9130  * allocates numerous items that must be freed later
9131  */
9132 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9133 {
9134         u32 trans_support;
9135         unsigned long transMethod = CFGTBL_Trans_Performant |
9136                                         CFGTBL_Trans_use_short_tags;
9137         int i, rc;
9138
9139         if (hpsa_simple_mode)
9140                 return 0;
9141
9142         trans_support = readl(&(h->cfgtable->TransportSupport));
9143         if (!(trans_support & PERFORMANT_MODE))
9144                 return 0;
9145
9146         /* Check for I/O accelerator mode support */
9147         if (trans_support & CFGTBL_Trans_io_accel1) {
9148                 transMethod |= CFGTBL_Trans_io_accel1 |
9149                                 CFGTBL_Trans_enable_directed_msix;
9150                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9151                 if (rc)
9152                         return rc;
9153         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9154                 transMethod |= CFGTBL_Trans_io_accel2 |
9155                                 CFGTBL_Trans_enable_directed_msix;
9156                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9157                 if (rc)
9158                         return rc;
9159         }
9160
9161         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9162         hpsa_get_max_perf_mode_cmds(h);
9163         /* Performant mode ring buffer and supporting data structures */
9164         h->reply_queue_size = h->max_commands * sizeof(u64);
9165
9166         for (i = 0; i < h->nreply_queues; i++) {
9167                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9168                                                 h->reply_queue_size,
9169                                                 &(h->reply_queue[i].busaddr));
9170                 if (!h->reply_queue[i].head) {
9171                         rc = -ENOMEM;
9172                         goto clean1;    /* rq, ioaccel */
9173                 }
9174                 h->reply_queue[i].size = h->max_commands;
9175                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9176                 h->reply_queue[i].current_entry = 0;
9177         }
9178
9179         /* Need a block fetch table for performant mode */
9180         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9181                                 sizeof(u32)), GFP_KERNEL);
9182         if (!h->blockFetchTable) {
9183                 rc = -ENOMEM;
9184                 goto clean1;    /* rq, ioaccel */
9185         }
9186
9187         rc = hpsa_enter_performant_mode(h, trans_support);
9188         if (rc)
9189                 goto clean2;    /* bft, rq, ioaccel */
9190         return 0;
9191
9192 clean2: /* bft, rq, ioaccel */
9193         kfree(h->blockFetchTable);
9194         h->blockFetchTable = NULL;
9195 clean1: /* rq, ioaccel */
9196         hpsa_free_reply_queues(h);
9197         hpsa_free_ioaccel1_cmd_and_bft(h);
9198         hpsa_free_ioaccel2_cmd_and_bft(h);
9199         return rc;
9200 }
9201
9202 static int is_accelerated_cmd(struct CommandList *c)
9203 {
9204         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9205 }
9206
9207 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9208 {
9209         struct CommandList *c = NULL;
9210         int i, accel_cmds_out;
9211         int refcount;
9212
9213         do { /* wait for all outstanding ioaccel commands to drain out */
9214                 accel_cmds_out = 0;
9215                 for (i = 0; i < h->nr_cmds; i++) {
9216                         c = h->cmd_pool + i;
9217                         refcount = atomic_inc_return(&c->refcount);
9218                         if (refcount > 1) /* Command is allocated */
9219                                 accel_cmds_out += is_accelerated_cmd(c);
9220                         cmd_free(h, c);
9221                 }
9222                 if (accel_cmds_out <= 0)
9223                         break;
9224                 msleep(100);
9225         } while (1);
9226 }
9227
9228 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9229                                 struct hpsa_sas_port *hpsa_sas_port)
9230 {
9231         struct hpsa_sas_phy *hpsa_sas_phy;
9232         struct sas_phy *phy;
9233
9234         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9235         if (!hpsa_sas_phy)
9236                 return NULL;
9237
9238         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9239                 hpsa_sas_port->next_phy_index);
9240         if (!phy) {
9241                 kfree(hpsa_sas_phy);
9242                 return NULL;
9243         }
9244
9245         hpsa_sas_port->next_phy_index++;
9246         hpsa_sas_phy->phy = phy;
9247         hpsa_sas_phy->parent_port = hpsa_sas_port;
9248
9249         return hpsa_sas_phy;
9250 }
9251
9252 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9253 {
9254         struct sas_phy *phy = hpsa_sas_phy->phy;
9255
9256         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9257         sas_phy_free(phy);
9258         if (hpsa_sas_phy->added_to_port)
9259                 list_del(&hpsa_sas_phy->phy_list_entry);
9260         kfree(hpsa_sas_phy);
9261 }
9262
9263 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9264 {
9265         int rc;
9266         struct hpsa_sas_port *hpsa_sas_port;
9267         struct sas_phy *phy;
9268         struct sas_identify *identify;
9269
9270         hpsa_sas_port = hpsa_sas_phy->parent_port;
9271         phy = hpsa_sas_phy->phy;
9272
9273         identify = &phy->identify;
9274         memset(identify, 0, sizeof(*identify));
9275         identify->sas_address = hpsa_sas_port->sas_address;
9276         identify->device_type = SAS_END_DEVICE;
9277         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9278         identify->target_port_protocols = SAS_PROTOCOL_STP;
9279         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9280         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9281         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9282         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9283         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9284
9285         rc = sas_phy_add(hpsa_sas_phy->phy);
9286         if (rc)
9287                 return rc;
9288
9289         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9290         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9291                         &hpsa_sas_port->phy_list_head);
9292         hpsa_sas_phy->added_to_port = true;
9293
9294         return 0;
9295 }
9296
9297 static int
9298         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9299                                 struct sas_rphy *rphy)
9300 {
9301         struct sas_identify *identify;
9302
9303         identify = &rphy->identify;
9304         identify->sas_address = hpsa_sas_port->sas_address;
9305         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9306         identify->target_port_protocols = SAS_PROTOCOL_STP;
9307
9308         return sas_rphy_add(rphy);
9309 }
9310
9311 static struct hpsa_sas_port
9312         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9313                                 u64 sas_address)
9314 {
9315         int rc;
9316         struct hpsa_sas_port *hpsa_sas_port;
9317         struct sas_port *port;
9318
9319         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9320         if (!hpsa_sas_port)
9321                 return NULL;
9322
9323         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9324         hpsa_sas_port->parent_node = hpsa_sas_node;
9325
9326         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9327         if (!port)
9328                 goto free_hpsa_port;
9329
9330         rc = sas_port_add(port);
9331         if (rc)
9332                 goto free_sas_port;
9333
9334         hpsa_sas_port->port = port;
9335         hpsa_sas_port->sas_address = sas_address;
9336         list_add_tail(&hpsa_sas_port->port_list_entry,
9337                         &hpsa_sas_node->port_list_head);
9338
9339         return hpsa_sas_port;
9340
9341 free_sas_port:
9342         sas_port_free(port);
9343 free_hpsa_port:
9344         kfree(hpsa_sas_port);
9345
9346         return NULL;
9347 }
9348
9349 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9350 {
9351         struct hpsa_sas_phy *hpsa_sas_phy;
9352         struct hpsa_sas_phy *next;
9353
9354         list_for_each_entry_safe(hpsa_sas_phy, next,
9355                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9356                 hpsa_free_sas_phy(hpsa_sas_phy);
9357
9358         sas_port_delete(hpsa_sas_port->port);
9359         list_del(&hpsa_sas_port->port_list_entry);
9360         kfree(hpsa_sas_port);
9361 }
9362
9363 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9364 {
9365         struct hpsa_sas_node *hpsa_sas_node;
9366
9367         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9368         if (hpsa_sas_node) {
9369                 hpsa_sas_node->parent_dev = parent_dev;
9370                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9371         }
9372
9373         return hpsa_sas_node;
9374 }
9375
9376 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9377 {
9378         struct hpsa_sas_port *hpsa_sas_port;
9379         struct hpsa_sas_port *next;
9380
9381         if (!hpsa_sas_node)
9382                 return;
9383
9384         list_for_each_entry_safe(hpsa_sas_port, next,
9385                         &hpsa_sas_node->port_list_head, port_list_entry)
9386                 hpsa_free_sas_port(hpsa_sas_port);
9387
9388         kfree(hpsa_sas_node);
9389 }
9390
9391 static struct hpsa_scsi_dev_t
9392         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9393                                         struct sas_rphy *rphy)
9394 {
9395         int i;
9396         struct hpsa_scsi_dev_t *device;
9397
9398         for (i = 0; i < h->ndevices; i++) {
9399                 device = h->dev[i];
9400                 if (!device->sas_port)
9401                         continue;
9402                 if (device->sas_port->rphy == rphy)
9403                         return device;
9404         }
9405
9406         return NULL;
9407 }
9408
9409 static int hpsa_add_sas_host(struct ctlr_info *h)
9410 {
9411         int rc;
9412         struct device *parent_dev;
9413         struct hpsa_sas_node *hpsa_sas_node;
9414         struct hpsa_sas_port *hpsa_sas_port;
9415         struct hpsa_sas_phy *hpsa_sas_phy;
9416
9417         parent_dev = &h->scsi_host->shost_gendev;
9418
9419         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9420         if (!hpsa_sas_node)
9421                 return -ENOMEM;
9422
9423         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9424         if (!hpsa_sas_port) {
9425                 rc = -ENODEV;
9426                 goto free_sas_node;
9427         }
9428
9429         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9430         if (!hpsa_sas_phy) {
9431                 rc = -ENODEV;
9432                 goto free_sas_port;
9433         }
9434
9435         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9436         if (rc)
9437                 goto free_sas_phy;
9438
9439         h->sas_host = hpsa_sas_node;
9440
9441         return 0;
9442
9443 free_sas_phy:
9444         hpsa_free_sas_phy(hpsa_sas_phy);
9445 free_sas_port:
9446         hpsa_free_sas_port(hpsa_sas_port);
9447 free_sas_node:
9448         hpsa_free_sas_node(hpsa_sas_node);
9449
9450         return rc;
9451 }
9452
9453 static void hpsa_delete_sas_host(struct ctlr_info *h)
9454 {
9455         hpsa_free_sas_node(h->sas_host);
9456 }
9457
9458 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9459                                 struct hpsa_scsi_dev_t *device)
9460 {
9461         int rc;
9462         struct hpsa_sas_port *hpsa_sas_port;
9463         struct sas_rphy *rphy;
9464
9465         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9466         if (!hpsa_sas_port)
9467                 return -ENOMEM;
9468
9469         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9470         if (!rphy) {
9471                 rc = -ENODEV;
9472                 goto free_sas_port;
9473         }
9474
9475         hpsa_sas_port->rphy = rphy;
9476         device->sas_port = hpsa_sas_port;
9477
9478         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9479         if (rc)
9480                 goto free_sas_port;
9481
9482         return 0;
9483
9484 free_sas_port:
9485         hpsa_free_sas_port(hpsa_sas_port);
9486         device->sas_port = NULL;
9487
9488         return rc;
9489 }
9490
9491 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9492 {
9493         if (device->sas_port) {
9494                 hpsa_free_sas_port(device->sas_port);
9495                 device->sas_port = NULL;
9496         }
9497 }
9498
9499 static int
9500 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9501 {
9502         return 0;
9503 }
9504
9505 static int
9506 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9507 {
9508         return 0;
9509 }
9510
9511 static int
9512 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9513 {
9514         return -ENXIO;
9515 }
9516
9517 static int
9518 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9519 {
9520         return 0;
9521 }
9522
9523 static int
9524 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9525 {
9526         return 0;
9527 }
9528
9529 static int
9530 hpsa_sas_phy_setup(struct sas_phy *phy)
9531 {
9532         return 0;
9533 }
9534
9535 static void
9536 hpsa_sas_phy_release(struct sas_phy *phy)
9537 {
9538 }
9539
9540 static int
9541 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9542 {
9543         return -EINVAL;
9544 }
9545
9546 /* SMP = Serial Management Protocol */
9547 static int
9548 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9549 struct request *req)
9550 {
9551         return -EINVAL;
9552 }
9553
9554 static struct sas_function_template hpsa_sas_transport_functions = {
9555         .get_linkerrors = hpsa_sas_get_linkerrors,
9556         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9557         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9558         .phy_reset = hpsa_sas_phy_reset,
9559         .phy_enable = hpsa_sas_phy_enable,
9560         .phy_setup = hpsa_sas_phy_setup,
9561         .phy_release = hpsa_sas_phy_release,
9562         .set_phy_speed = hpsa_sas_phy_speed,
9563         .smp_handler = hpsa_sas_smp_handler,
9564 };
9565
9566 /*
9567  *  This is it.  Register the PCI driver information for the cards we control
9568  *  the OS will call our registered routines when it finds one of our cards.
9569  */
9570 static int __init hpsa_init(void)
9571 {
9572         int rc;
9573
9574         hpsa_sas_transport_template =
9575                 sas_attach_transport(&hpsa_sas_transport_functions);
9576         if (!hpsa_sas_transport_template)
9577                 return -ENODEV;
9578
9579         rc = pci_register_driver(&hpsa_pci_driver);
9580
9581         if (rc)
9582                 sas_release_transport(hpsa_sas_transport_template);
9583
9584         return rc;
9585 }
9586
9587 static void __exit hpsa_cleanup(void)
9588 {
9589         pci_unregister_driver(&hpsa_pci_driver);
9590         sas_release_transport(hpsa_sas_transport_template);
9591 }
9592
9593 static void __attribute__((unused)) verify_offsets(void)
9594 {
9595 #define VERIFY_OFFSET(member, offset) \
9596         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9597
9598         VERIFY_OFFSET(structure_size, 0);
9599         VERIFY_OFFSET(volume_blk_size, 4);
9600         VERIFY_OFFSET(volume_blk_cnt, 8);
9601         VERIFY_OFFSET(phys_blk_shift, 16);
9602         VERIFY_OFFSET(parity_rotation_shift, 17);
9603         VERIFY_OFFSET(strip_size, 18);
9604         VERIFY_OFFSET(disk_starting_blk, 20);
9605         VERIFY_OFFSET(disk_blk_cnt, 28);
9606         VERIFY_OFFSET(data_disks_per_row, 36);
9607         VERIFY_OFFSET(metadata_disks_per_row, 38);
9608         VERIFY_OFFSET(row_cnt, 40);
9609         VERIFY_OFFSET(layout_map_count, 42);
9610         VERIFY_OFFSET(flags, 44);
9611         VERIFY_OFFSET(dekindex, 46);
9612         /* VERIFY_OFFSET(reserved, 48 */
9613         VERIFY_OFFSET(data, 64);
9614
9615 #undef VERIFY_OFFSET
9616
9617 #define VERIFY_OFFSET(member, offset) \
9618         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9619
9620         VERIFY_OFFSET(IU_type, 0);
9621         VERIFY_OFFSET(direction, 1);
9622         VERIFY_OFFSET(reply_queue, 2);
9623         /* VERIFY_OFFSET(reserved1, 3);  */
9624         VERIFY_OFFSET(scsi_nexus, 4);
9625         VERIFY_OFFSET(Tag, 8);
9626         VERIFY_OFFSET(cdb, 16);
9627         VERIFY_OFFSET(cciss_lun, 32);
9628         VERIFY_OFFSET(data_len, 40);
9629         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9630         VERIFY_OFFSET(sg_count, 45);
9631         /* VERIFY_OFFSET(reserved3 */
9632         VERIFY_OFFSET(err_ptr, 48);
9633         VERIFY_OFFSET(err_len, 56);
9634         /* VERIFY_OFFSET(reserved4  */
9635         VERIFY_OFFSET(sg, 64);
9636
9637 #undef VERIFY_OFFSET
9638
9639 #define VERIFY_OFFSET(member, offset) \
9640         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9641
9642         VERIFY_OFFSET(dev_handle, 0x00);
9643         VERIFY_OFFSET(reserved1, 0x02);
9644         VERIFY_OFFSET(function, 0x03);
9645         VERIFY_OFFSET(reserved2, 0x04);
9646         VERIFY_OFFSET(err_info, 0x0C);
9647         VERIFY_OFFSET(reserved3, 0x10);
9648         VERIFY_OFFSET(err_info_len, 0x12);
9649         VERIFY_OFFSET(reserved4, 0x13);
9650         VERIFY_OFFSET(sgl_offset, 0x14);
9651         VERIFY_OFFSET(reserved5, 0x15);
9652         VERIFY_OFFSET(transfer_len, 0x1C);
9653         VERIFY_OFFSET(reserved6, 0x20);
9654         VERIFY_OFFSET(io_flags, 0x24);
9655         VERIFY_OFFSET(reserved7, 0x26);
9656         VERIFY_OFFSET(LUN, 0x34);
9657         VERIFY_OFFSET(control, 0x3C);
9658         VERIFY_OFFSET(CDB, 0x40);
9659         VERIFY_OFFSET(reserved8, 0x50);
9660         VERIFY_OFFSET(host_context_flags, 0x60);
9661         VERIFY_OFFSET(timeout_sec, 0x62);
9662         VERIFY_OFFSET(ReplyQueue, 0x64);
9663         VERIFY_OFFSET(reserved9, 0x65);
9664         VERIFY_OFFSET(tag, 0x68);
9665         VERIFY_OFFSET(host_addr, 0x70);
9666         VERIFY_OFFSET(CISS_LUN, 0x78);
9667         VERIFY_OFFSET(SG, 0x78 + 8);
9668 #undef VERIFY_OFFSET
9669 }
9670
9671 module_init(hpsa_init);
9672 module_exit(hpsa_cleanup);