Merge remote-tracking branch 'lsk/v3.10/topic/gator' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71         HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79                 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83         "Use 'simple mode' rather than 'performant mode'");
84
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1920},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1925},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x334d},
111         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
112                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
113         {0,}
114 };
115
116 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
117
118 /*  board_id = Subsystem Device ID & Vendor ID
119  *  product = Marketing Name for the board
120  *  access = Address of the struct of function pointers
121  */
122 static struct board_type products[] = {
123         {0x3241103C, "Smart Array P212", &SA5_access},
124         {0x3243103C, "Smart Array P410", &SA5_access},
125         {0x3245103C, "Smart Array P410i", &SA5_access},
126         {0x3247103C, "Smart Array P411", &SA5_access},
127         {0x3249103C, "Smart Array P812", &SA5_access},
128         {0x324a103C, "Smart Array P712m", &SA5_access},
129         {0x324b103C, "Smart Array P711m", &SA5_access},
130         {0x3350103C, "Smart Array P222", &SA5_access},
131         {0x3351103C, "Smart Array P420", &SA5_access},
132         {0x3352103C, "Smart Array P421", &SA5_access},
133         {0x3353103C, "Smart Array P822", &SA5_access},
134         {0x3354103C, "Smart Array P420i", &SA5_access},
135         {0x3355103C, "Smart Array P220i", &SA5_access},
136         {0x3356103C, "Smart Array P721m", &SA5_access},
137         {0x1920103C, "Smart Array", &SA5_access},
138         {0x1921103C, "Smart Array", &SA5_access},
139         {0x1922103C, "Smart Array", &SA5_access},
140         {0x1923103C, "Smart Array", &SA5_access},
141         {0x1924103C, "Smart Array", &SA5_access},
142         {0x1925103C, "Smart Array", &SA5_access},
143         {0x1926103C, "Smart Array", &SA5_access},
144         {0x1928103C, "Smart Array", &SA5_access},
145         {0x334d103C, "Smart Array P822se", &SA5_access},
146         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
147 };
148
149 static int number_of_controllers;
150
151 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
152 static spinlock_t lockup_detector_lock;
153 static struct task_struct *hpsa_lockup_detector;
154
155 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
156 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
157 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
158 static void start_io(struct ctlr_info *h);
159
160 #ifdef CONFIG_COMPAT
161 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
162 #endif
163
164 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
165 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
166 static struct CommandList *cmd_alloc(struct ctlr_info *h);
167 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
168 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
169         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
170         int cmd_type);
171
172 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
173 static void hpsa_scan_start(struct Scsi_Host *);
174 static int hpsa_scan_finished(struct Scsi_Host *sh,
175         unsigned long elapsed_time);
176 static int hpsa_change_queue_depth(struct scsi_device *sdev,
177         int qdepth, int reason);
178
179 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
180 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
181 static int hpsa_slave_alloc(struct scsi_device *sdev);
182 static void hpsa_slave_destroy(struct scsi_device *sdev);
183
184 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
185 static int check_for_unit_attention(struct ctlr_info *h,
186         struct CommandList *c);
187 static void check_ioctl_unit_attention(struct ctlr_info *h,
188         struct CommandList *c);
189 /* performant mode helper functions */
190 static void calc_bucket_map(int *bucket, int num_buckets,
191         int nsgs, int *bucket_map);
192 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
193 static inline u32 next_command(struct ctlr_info *h, u8 q);
194 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
195                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
196                                u64 *cfg_offset);
197 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
198                                     unsigned long *memory_bar);
199 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
200 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
201                                      int wait_for_ready);
202 static inline void finish_cmd(struct CommandList *c);
203 #define BOARD_NOT_READY 0
204 #define BOARD_READY 1
205
206 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
207 {
208         unsigned long *priv = shost_priv(sdev->host);
209         return (struct ctlr_info *) *priv;
210 }
211
212 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
213 {
214         unsigned long *priv = shost_priv(sh);
215         return (struct ctlr_info *) *priv;
216 }
217
218 static int check_for_unit_attention(struct ctlr_info *h,
219         struct CommandList *c)
220 {
221         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
222                 return 0;
223
224         switch (c->err_info->SenseInfo[12]) {
225         case STATE_CHANGED:
226                 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
227                         "detected, command retried\n", h->ctlr);
228                 break;
229         case LUN_FAILED:
230                 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
231                         "detected, action required\n", h->ctlr);
232                 break;
233         case REPORT_LUNS_CHANGED:
234                 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
235                         "changed, action required\n", h->ctlr);
236         /*
237          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
238          * target (array) devices.
239          */
240                 break;
241         case POWER_OR_RESET:
242                 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
243                         "or device reset detected\n", h->ctlr);
244                 break;
245         case UNIT_ATTENTION_CLEARED:
246                 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
247                     "cleared by another initiator\n", h->ctlr);
248                 break;
249         default:
250                 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
251                         "unit attention detected\n", h->ctlr);
252                 break;
253         }
254         return 1;
255 }
256
257 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
258 {
259         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
260                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
261                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
262                 return 0;
263         dev_warn(&h->pdev->dev, HPSA "device busy");
264         return 1;
265 }
266
267 static ssize_t host_store_rescan(struct device *dev,
268                                  struct device_attribute *attr,
269                                  const char *buf, size_t count)
270 {
271         struct ctlr_info *h;
272         struct Scsi_Host *shost = class_to_shost(dev);
273         h = shost_to_hba(shost);
274         hpsa_scan_start(h->scsi_host);
275         return count;
276 }
277
278 static ssize_t host_show_firmware_revision(struct device *dev,
279              struct device_attribute *attr, char *buf)
280 {
281         struct ctlr_info *h;
282         struct Scsi_Host *shost = class_to_shost(dev);
283         unsigned char *fwrev;
284
285         h = shost_to_hba(shost);
286         if (!h->hba_inquiry_data)
287                 return 0;
288         fwrev = &h->hba_inquiry_data[32];
289         return snprintf(buf, 20, "%c%c%c%c\n",
290                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
291 }
292
293 static ssize_t host_show_commands_outstanding(struct device *dev,
294              struct device_attribute *attr, char *buf)
295 {
296         struct Scsi_Host *shost = class_to_shost(dev);
297         struct ctlr_info *h = shost_to_hba(shost);
298
299         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
300 }
301
302 static ssize_t host_show_transport_mode(struct device *dev,
303         struct device_attribute *attr, char *buf)
304 {
305         struct ctlr_info *h;
306         struct Scsi_Host *shost = class_to_shost(dev);
307
308         h = shost_to_hba(shost);
309         return snprintf(buf, 20, "%s\n",
310                 h->transMethod & CFGTBL_Trans_Performant ?
311                         "performant" : "simple");
312 }
313
314 /* List of controllers which cannot be hard reset on kexec with reset_devices */
315 static u32 unresettable_controller[] = {
316         0x324a103C, /* Smart Array P712m */
317         0x324b103C, /* SmartArray P711m */
318         0x3223103C, /* Smart Array P800 */
319         0x3234103C, /* Smart Array P400 */
320         0x3235103C, /* Smart Array P400i */
321         0x3211103C, /* Smart Array E200i */
322         0x3212103C, /* Smart Array E200 */
323         0x3213103C, /* Smart Array E200i */
324         0x3214103C, /* Smart Array E200i */
325         0x3215103C, /* Smart Array E200i */
326         0x3237103C, /* Smart Array E500 */
327         0x323D103C, /* Smart Array P700m */
328         0x40800E11, /* Smart Array 5i */
329         0x409C0E11, /* Smart Array 6400 */
330         0x409D0E11, /* Smart Array 6400 EM */
331         0x40700E11, /* Smart Array 5300 */
332         0x40820E11, /* Smart Array 532 */
333         0x40830E11, /* Smart Array 5312 */
334         0x409A0E11, /* Smart Array 641 */
335         0x409B0E11, /* Smart Array 642 */
336         0x40910E11, /* Smart Array 6i */
337 };
338
339 /* List of controllers which cannot even be soft reset */
340 static u32 soft_unresettable_controller[] = {
341         0x40800E11, /* Smart Array 5i */
342         0x40700E11, /* Smart Array 5300 */
343         0x40820E11, /* Smart Array 532 */
344         0x40830E11, /* Smart Array 5312 */
345         0x409A0E11, /* Smart Array 641 */
346         0x409B0E11, /* Smart Array 642 */
347         0x40910E11, /* Smart Array 6i */
348         /* Exclude 640x boards.  These are two pci devices in one slot
349          * which share a battery backed cache module.  One controls the
350          * cache, the other accesses the cache through the one that controls
351          * it.  If we reset the one controlling the cache, the other will
352          * likely not be happy.  Just forbid resetting this conjoined mess.
353          * The 640x isn't really supported by hpsa anyway.
354          */
355         0x409C0E11, /* Smart Array 6400 */
356         0x409D0E11, /* Smart Array 6400 EM */
357 };
358
359 static int ctlr_is_hard_resettable(u32 board_id)
360 {
361         int i;
362
363         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
364                 if (unresettable_controller[i] == board_id)
365                         return 0;
366         return 1;
367 }
368
369 static int ctlr_is_soft_resettable(u32 board_id)
370 {
371         int i;
372
373         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
374                 if (soft_unresettable_controller[i] == board_id)
375                         return 0;
376         return 1;
377 }
378
379 static int ctlr_is_resettable(u32 board_id)
380 {
381         return ctlr_is_hard_resettable(board_id) ||
382                 ctlr_is_soft_resettable(board_id);
383 }
384
385 static ssize_t host_show_resettable(struct device *dev,
386         struct device_attribute *attr, char *buf)
387 {
388         struct ctlr_info *h;
389         struct Scsi_Host *shost = class_to_shost(dev);
390
391         h = shost_to_hba(shost);
392         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
393 }
394
395 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
396 {
397         return (scsi3addr[3] & 0xC0) == 0x40;
398 }
399
400 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
401         "1(ADM)", "UNKNOWN"
402 };
403 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
404
405 static ssize_t raid_level_show(struct device *dev,
406              struct device_attribute *attr, char *buf)
407 {
408         ssize_t l = 0;
409         unsigned char rlevel;
410         struct ctlr_info *h;
411         struct scsi_device *sdev;
412         struct hpsa_scsi_dev_t *hdev;
413         unsigned long flags;
414
415         sdev = to_scsi_device(dev);
416         h = sdev_to_hba(sdev);
417         spin_lock_irqsave(&h->lock, flags);
418         hdev = sdev->hostdata;
419         if (!hdev) {
420                 spin_unlock_irqrestore(&h->lock, flags);
421                 return -ENODEV;
422         }
423
424         /* Is this even a logical drive? */
425         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
426                 spin_unlock_irqrestore(&h->lock, flags);
427                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
428                 return l;
429         }
430
431         rlevel = hdev->raid_level;
432         spin_unlock_irqrestore(&h->lock, flags);
433         if (rlevel > RAID_UNKNOWN)
434                 rlevel = RAID_UNKNOWN;
435         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
436         return l;
437 }
438
439 static ssize_t lunid_show(struct device *dev,
440              struct device_attribute *attr, char *buf)
441 {
442         struct ctlr_info *h;
443         struct scsi_device *sdev;
444         struct hpsa_scsi_dev_t *hdev;
445         unsigned long flags;
446         unsigned char lunid[8];
447
448         sdev = to_scsi_device(dev);
449         h = sdev_to_hba(sdev);
450         spin_lock_irqsave(&h->lock, flags);
451         hdev = sdev->hostdata;
452         if (!hdev) {
453                 spin_unlock_irqrestore(&h->lock, flags);
454                 return -ENODEV;
455         }
456         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
457         spin_unlock_irqrestore(&h->lock, flags);
458         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
459                 lunid[0], lunid[1], lunid[2], lunid[3],
460                 lunid[4], lunid[5], lunid[6], lunid[7]);
461 }
462
463 static ssize_t unique_id_show(struct device *dev,
464              struct device_attribute *attr, char *buf)
465 {
466         struct ctlr_info *h;
467         struct scsi_device *sdev;
468         struct hpsa_scsi_dev_t *hdev;
469         unsigned long flags;
470         unsigned char sn[16];
471
472         sdev = to_scsi_device(dev);
473         h = sdev_to_hba(sdev);
474         spin_lock_irqsave(&h->lock, flags);
475         hdev = sdev->hostdata;
476         if (!hdev) {
477                 spin_unlock_irqrestore(&h->lock, flags);
478                 return -ENODEV;
479         }
480         memcpy(sn, hdev->device_id, sizeof(sn));
481         spin_unlock_irqrestore(&h->lock, flags);
482         return snprintf(buf, 16 * 2 + 2,
483                         "%02X%02X%02X%02X%02X%02X%02X%02X"
484                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
485                         sn[0], sn[1], sn[2], sn[3],
486                         sn[4], sn[5], sn[6], sn[7],
487                         sn[8], sn[9], sn[10], sn[11],
488                         sn[12], sn[13], sn[14], sn[15]);
489 }
490
491 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
492 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
493 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
494 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
495 static DEVICE_ATTR(firmware_revision, S_IRUGO,
496         host_show_firmware_revision, NULL);
497 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
498         host_show_commands_outstanding, NULL);
499 static DEVICE_ATTR(transport_mode, S_IRUGO,
500         host_show_transport_mode, NULL);
501 static DEVICE_ATTR(resettable, S_IRUGO,
502         host_show_resettable, NULL);
503
504 static struct device_attribute *hpsa_sdev_attrs[] = {
505         &dev_attr_raid_level,
506         &dev_attr_lunid,
507         &dev_attr_unique_id,
508         NULL,
509 };
510
511 static struct device_attribute *hpsa_shost_attrs[] = {
512         &dev_attr_rescan,
513         &dev_attr_firmware_revision,
514         &dev_attr_commands_outstanding,
515         &dev_attr_transport_mode,
516         &dev_attr_resettable,
517         NULL,
518 };
519
520 static struct scsi_host_template hpsa_driver_template = {
521         .module                 = THIS_MODULE,
522         .name                   = HPSA,
523         .proc_name              = HPSA,
524         .queuecommand           = hpsa_scsi_queue_command,
525         .scan_start             = hpsa_scan_start,
526         .scan_finished          = hpsa_scan_finished,
527         .change_queue_depth     = hpsa_change_queue_depth,
528         .this_id                = -1,
529         .use_clustering         = ENABLE_CLUSTERING,
530         .eh_abort_handler       = hpsa_eh_abort_handler,
531         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
532         .ioctl                  = hpsa_ioctl,
533         .slave_alloc            = hpsa_slave_alloc,
534         .slave_destroy          = hpsa_slave_destroy,
535 #ifdef CONFIG_COMPAT
536         .compat_ioctl           = hpsa_compat_ioctl,
537 #endif
538         .sdev_attrs = hpsa_sdev_attrs,
539         .shost_attrs = hpsa_shost_attrs,
540         .max_sectors = 8192,
541         .no_write_same = 1,
542 };
543
544
545 /* Enqueuing and dequeuing functions for cmdlists. */
546 static inline void addQ(struct list_head *list, struct CommandList *c)
547 {
548         list_add_tail(&c->list, list);
549 }
550
551 static inline u32 next_command(struct ctlr_info *h, u8 q)
552 {
553         u32 a;
554         struct reply_pool *rq = &h->reply_queue[q];
555         unsigned long flags;
556
557         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
558                 return h->access.command_completed(h, q);
559
560         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
561                 a = rq->head[rq->current_entry];
562                 rq->current_entry++;
563                 spin_lock_irqsave(&h->lock, flags);
564                 h->commands_outstanding--;
565                 spin_unlock_irqrestore(&h->lock, flags);
566         } else {
567                 a = FIFO_EMPTY;
568         }
569         /* Check for wraparound */
570         if (rq->current_entry == h->max_commands) {
571                 rq->current_entry = 0;
572                 rq->wraparound ^= 1;
573         }
574         return a;
575 }
576
577 /* set_performant_mode: Modify the tag for cciss performant
578  * set bit 0 for pull model, bits 3-1 for block fetch
579  * register number
580  */
581 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
582 {
583         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
584                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
585                 if (likely(h->msix_vector))
586                         c->Header.ReplyQueue =
587                                 smp_processor_id() % h->nreply_queues;
588         }
589 }
590
591 static int is_firmware_flash_cmd(u8 *cdb)
592 {
593         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
594 }
595
596 /*
597  * During firmware flash, the heartbeat register may not update as frequently
598  * as it should.  So we dial down lockup detection during firmware flash. and
599  * dial it back up when firmware flash completes.
600  */
601 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
602 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
603 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
604                 struct CommandList *c)
605 {
606         if (!is_firmware_flash_cmd(c->Request.CDB))
607                 return;
608         atomic_inc(&h->firmware_flash_in_progress);
609         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
610 }
611
612 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
613                 struct CommandList *c)
614 {
615         if (is_firmware_flash_cmd(c->Request.CDB) &&
616                 atomic_dec_and_test(&h->firmware_flash_in_progress))
617                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
618 }
619
620 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
621         struct CommandList *c)
622 {
623         unsigned long flags;
624
625         set_performant_mode(h, c);
626         dial_down_lockup_detection_during_fw_flash(h, c);
627         spin_lock_irqsave(&h->lock, flags);
628         addQ(&h->reqQ, c);
629         h->Qdepth++;
630         spin_unlock_irqrestore(&h->lock, flags);
631         start_io(h);
632 }
633
634 static inline void removeQ(struct CommandList *c)
635 {
636         if (WARN_ON(list_empty(&c->list)))
637                 return;
638         list_del_init(&c->list);
639 }
640
641 static inline int is_hba_lunid(unsigned char scsi3addr[])
642 {
643         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
644 }
645
646 static inline int is_scsi_rev_5(struct ctlr_info *h)
647 {
648         if (!h->hba_inquiry_data)
649                 return 0;
650         if ((h->hba_inquiry_data[2] & 0x07) == 5)
651                 return 1;
652         return 0;
653 }
654
655 static int hpsa_find_target_lun(struct ctlr_info *h,
656         unsigned char scsi3addr[], int bus, int *target, int *lun)
657 {
658         /* finds an unused bus, target, lun for a new physical device
659          * assumes h->devlock is held
660          */
661         int i, found = 0;
662         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
663
664         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
665
666         for (i = 0; i < h->ndevices; i++) {
667                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
668                         __set_bit(h->dev[i]->target, lun_taken);
669         }
670
671         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
672         if (i < HPSA_MAX_DEVICES) {
673                 /* *bus = 1; */
674                 *target = i;
675                 *lun = 0;
676                 found = 1;
677         }
678         return !found;
679 }
680
681 /* Add an entry into h->dev[] array. */
682 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
683                 struct hpsa_scsi_dev_t *device,
684                 struct hpsa_scsi_dev_t *added[], int *nadded)
685 {
686         /* assumes h->devlock is held */
687         int n = h->ndevices;
688         int i;
689         unsigned char addr1[8], addr2[8];
690         struct hpsa_scsi_dev_t *sd;
691
692         if (n >= HPSA_MAX_DEVICES) {
693                 dev_err(&h->pdev->dev, "too many devices, some will be "
694                         "inaccessible.\n");
695                 return -1;
696         }
697
698         /* physical devices do not have lun or target assigned until now. */
699         if (device->lun != -1)
700                 /* Logical device, lun is already assigned. */
701                 goto lun_assigned;
702
703         /* If this device a non-zero lun of a multi-lun device
704          * byte 4 of the 8-byte LUN addr will contain the logical
705          * unit no, zero otherise.
706          */
707         if (device->scsi3addr[4] == 0) {
708                 /* This is not a non-zero lun of a multi-lun device */
709                 if (hpsa_find_target_lun(h, device->scsi3addr,
710                         device->bus, &device->target, &device->lun) != 0)
711                         return -1;
712                 goto lun_assigned;
713         }
714
715         /* This is a non-zero lun of a multi-lun device.
716          * Search through our list and find the device which
717          * has the same 8 byte LUN address, excepting byte 4.
718          * Assign the same bus and target for this new LUN.
719          * Use the logical unit number from the firmware.
720          */
721         memcpy(addr1, device->scsi3addr, 8);
722         addr1[4] = 0;
723         for (i = 0; i < n; i++) {
724                 sd = h->dev[i];
725                 memcpy(addr2, sd->scsi3addr, 8);
726                 addr2[4] = 0;
727                 /* differ only in byte 4? */
728                 if (memcmp(addr1, addr2, 8) == 0) {
729                         device->bus = sd->bus;
730                         device->target = sd->target;
731                         device->lun = device->scsi3addr[4];
732                         break;
733                 }
734         }
735         if (device->lun == -1) {
736                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
737                         " suspect firmware bug or unsupported hardware "
738                         "configuration.\n");
739                         return -1;
740         }
741
742 lun_assigned:
743
744         h->dev[n] = device;
745         h->ndevices++;
746         added[*nadded] = device;
747         (*nadded)++;
748
749         /* initially, (before registering with scsi layer) we don't
750          * know our hostno and we don't want to print anything first
751          * time anyway (the scsi layer's inquiries will show that info)
752          */
753         /* if (hostno != -1) */
754                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
755                         scsi_device_type(device->devtype), hostno,
756                         device->bus, device->target, device->lun);
757         return 0;
758 }
759
760 /* Update an entry in h->dev[] array. */
761 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
762         int entry, struct hpsa_scsi_dev_t *new_entry)
763 {
764         /* assumes h->devlock is held */
765         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
766
767         /* Raid level changed. */
768         h->dev[entry]->raid_level = new_entry->raid_level;
769         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
770                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
771                 new_entry->target, new_entry->lun);
772 }
773
774 /* Replace an entry from h->dev[] array. */
775 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
776         int entry, struct hpsa_scsi_dev_t *new_entry,
777         struct hpsa_scsi_dev_t *added[], int *nadded,
778         struct hpsa_scsi_dev_t *removed[], int *nremoved)
779 {
780         /* assumes h->devlock is held */
781         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
782         removed[*nremoved] = h->dev[entry];
783         (*nremoved)++;
784
785         /*
786          * New physical devices won't have target/lun assigned yet
787          * so we need to preserve the values in the slot we are replacing.
788          */
789         if (new_entry->target == -1) {
790                 new_entry->target = h->dev[entry]->target;
791                 new_entry->lun = h->dev[entry]->lun;
792         }
793
794         h->dev[entry] = new_entry;
795         added[*nadded] = new_entry;
796         (*nadded)++;
797         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
798                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
799                         new_entry->target, new_entry->lun);
800 }
801
802 /* Remove an entry from h->dev[] array. */
803 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
804         struct hpsa_scsi_dev_t *removed[], int *nremoved)
805 {
806         /* assumes h->devlock is held */
807         int i;
808         struct hpsa_scsi_dev_t *sd;
809
810         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
811
812         sd = h->dev[entry];
813         removed[*nremoved] = h->dev[entry];
814         (*nremoved)++;
815
816         for (i = entry; i < h->ndevices-1; i++)
817                 h->dev[i] = h->dev[i+1];
818         h->ndevices--;
819         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
820                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
821                 sd->lun);
822 }
823
824 #define SCSI3ADDR_EQ(a, b) ( \
825         (a)[7] == (b)[7] && \
826         (a)[6] == (b)[6] && \
827         (a)[5] == (b)[5] && \
828         (a)[4] == (b)[4] && \
829         (a)[3] == (b)[3] && \
830         (a)[2] == (b)[2] && \
831         (a)[1] == (b)[1] && \
832         (a)[0] == (b)[0])
833
834 static void fixup_botched_add(struct ctlr_info *h,
835         struct hpsa_scsi_dev_t *added)
836 {
837         /* called when scsi_add_device fails in order to re-adjust
838          * h->dev[] to match the mid layer's view.
839          */
840         unsigned long flags;
841         int i, j;
842
843         spin_lock_irqsave(&h->lock, flags);
844         for (i = 0; i < h->ndevices; i++) {
845                 if (h->dev[i] == added) {
846                         for (j = i; j < h->ndevices-1; j++)
847                                 h->dev[j] = h->dev[j+1];
848                         h->ndevices--;
849                         break;
850                 }
851         }
852         spin_unlock_irqrestore(&h->lock, flags);
853         kfree(added);
854 }
855
856 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
857         struct hpsa_scsi_dev_t *dev2)
858 {
859         /* we compare everything except lun and target as these
860          * are not yet assigned.  Compare parts likely
861          * to differ first
862          */
863         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
864                 sizeof(dev1->scsi3addr)) != 0)
865                 return 0;
866         if (memcmp(dev1->device_id, dev2->device_id,
867                 sizeof(dev1->device_id)) != 0)
868                 return 0;
869         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
870                 return 0;
871         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
872                 return 0;
873         if (dev1->devtype != dev2->devtype)
874                 return 0;
875         if (dev1->bus != dev2->bus)
876                 return 0;
877         return 1;
878 }
879
880 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
881         struct hpsa_scsi_dev_t *dev2)
882 {
883         /* Device attributes that can change, but don't mean
884          * that the device is a different device, nor that the OS
885          * needs to be told anything about the change.
886          */
887         if (dev1->raid_level != dev2->raid_level)
888                 return 1;
889         return 0;
890 }
891
892 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
893  * and return needle location in *index.  If scsi3addr matches, but not
894  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
895  * location in *index.
896  * In the case of a minor device attribute change, such as RAID level, just
897  * return DEVICE_UPDATED, along with the updated device's location in index.
898  * If needle not found, return DEVICE_NOT_FOUND.
899  */
900 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
901         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
902         int *index)
903 {
904         int i;
905 #define DEVICE_NOT_FOUND 0
906 #define DEVICE_CHANGED 1
907 #define DEVICE_SAME 2
908 #define DEVICE_UPDATED 3
909         for (i = 0; i < haystack_size; i++) {
910                 if (haystack[i] == NULL) /* previously removed. */
911                         continue;
912                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
913                         *index = i;
914                         if (device_is_the_same(needle, haystack[i])) {
915                                 if (device_updated(needle, haystack[i]))
916                                         return DEVICE_UPDATED;
917                                 return DEVICE_SAME;
918                         } else {
919                                 return DEVICE_CHANGED;
920                         }
921                 }
922         }
923         *index = -1;
924         return DEVICE_NOT_FOUND;
925 }
926
927 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
928         struct hpsa_scsi_dev_t *sd[], int nsds)
929 {
930         /* sd contains scsi3 addresses and devtypes, and inquiry
931          * data.  This function takes what's in sd to be the current
932          * reality and updates h->dev[] to reflect that reality.
933          */
934         int i, entry, device_change, changes = 0;
935         struct hpsa_scsi_dev_t *csd;
936         unsigned long flags;
937         struct hpsa_scsi_dev_t **added, **removed;
938         int nadded, nremoved;
939         struct Scsi_Host *sh = NULL;
940
941         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
942         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
943
944         if (!added || !removed) {
945                 dev_warn(&h->pdev->dev, "out of memory in "
946                         "adjust_hpsa_scsi_table\n");
947                 goto free_and_out;
948         }
949
950         spin_lock_irqsave(&h->devlock, flags);
951
952         /* find any devices in h->dev[] that are not in
953          * sd[] and remove them from h->dev[], and for any
954          * devices which have changed, remove the old device
955          * info and add the new device info.
956          * If minor device attributes change, just update
957          * the existing device structure.
958          */
959         i = 0;
960         nremoved = 0;
961         nadded = 0;
962         while (i < h->ndevices) {
963                 csd = h->dev[i];
964                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
965                 if (device_change == DEVICE_NOT_FOUND) {
966                         changes++;
967                         hpsa_scsi_remove_entry(h, hostno, i,
968                                 removed, &nremoved);
969                         continue; /* remove ^^^, hence i not incremented */
970                 } else if (device_change == DEVICE_CHANGED) {
971                         changes++;
972                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
973                                 added, &nadded, removed, &nremoved);
974                         /* Set it to NULL to prevent it from being freed
975                          * at the bottom of hpsa_update_scsi_devices()
976                          */
977                         sd[entry] = NULL;
978                 } else if (device_change == DEVICE_UPDATED) {
979                         hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
980                 }
981                 i++;
982         }
983
984         /* Now, make sure every device listed in sd[] is also
985          * listed in h->dev[], adding them if they aren't found
986          */
987
988         for (i = 0; i < nsds; i++) {
989                 if (!sd[i]) /* if already added above. */
990                         continue;
991                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
992                                         h->ndevices, &entry);
993                 if (device_change == DEVICE_NOT_FOUND) {
994                         changes++;
995                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
996                                 added, &nadded) != 0)
997                                 break;
998                         sd[i] = NULL; /* prevent from being freed later. */
999                 } else if (device_change == DEVICE_CHANGED) {
1000                         /* should never happen... */
1001                         changes++;
1002                         dev_warn(&h->pdev->dev,
1003                                 "device unexpectedly changed.\n");
1004                         /* but if it does happen, we just ignore that device */
1005                 }
1006         }
1007         spin_unlock_irqrestore(&h->devlock, flags);
1008
1009         /* Don't notify scsi mid layer of any changes the first time through
1010          * (or if there are no changes) scsi_scan_host will do it later the
1011          * first time through.
1012          */
1013         if (hostno == -1 || !changes)
1014                 goto free_and_out;
1015
1016         sh = h->scsi_host;
1017         /* Notify scsi mid layer of any removed devices */
1018         for (i = 0; i < nremoved; i++) {
1019                 struct scsi_device *sdev =
1020                         scsi_device_lookup(sh, removed[i]->bus,
1021                                 removed[i]->target, removed[i]->lun);
1022                 if (sdev != NULL) {
1023                         scsi_remove_device(sdev);
1024                         scsi_device_put(sdev);
1025                 } else {
1026                         /* We don't expect to get here.
1027                          * future cmds to this device will get selection
1028                          * timeout as if the device was gone.
1029                          */
1030                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1031                                 " for removal.", hostno, removed[i]->bus,
1032                                 removed[i]->target, removed[i]->lun);
1033                 }
1034                 kfree(removed[i]);
1035                 removed[i] = NULL;
1036         }
1037
1038         /* Notify scsi mid layer of any added devices */
1039         for (i = 0; i < nadded; i++) {
1040                 if (scsi_add_device(sh, added[i]->bus,
1041                         added[i]->target, added[i]->lun) == 0)
1042                         continue;
1043                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1044                         "device not added.\n", hostno, added[i]->bus,
1045                         added[i]->target, added[i]->lun);
1046                 /* now we have to remove it from h->dev,
1047                  * since it didn't get added to scsi mid layer
1048                  */
1049                 fixup_botched_add(h, added[i]);
1050         }
1051
1052 free_and_out:
1053         kfree(added);
1054         kfree(removed);
1055 }
1056
1057 /*
1058  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
1059  * Assume's h->devlock is held.
1060  */
1061 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1062         int bus, int target, int lun)
1063 {
1064         int i;
1065         struct hpsa_scsi_dev_t *sd;
1066
1067         for (i = 0; i < h->ndevices; i++) {
1068                 sd = h->dev[i];
1069                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1070                         return sd;
1071         }
1072         return NULL;
1073 }
1074
1075 /* link sdev->hostdata to our per-device structure. */
1076 static int hpsa_slave_alloc(struct scsi_device *sdev)
1077 {
1078         struct hpsa_scsi_dev_t *sd;
1079         unsigned long flags;
1080         struct ctlr_info *h;
1081
1082         h = sdev_to_hba(sdev);
1083         spin_lock_irqsave(&h->devlock, flags);
1084         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1085                 sdev_id(sdev), sdev->lun);
1086         if (sd != NULL)
1087                 sdev->hostdata = sd;
1088         spin_unlock_irqrestore(&h->devlock, flags);
1089         return 0;
1090 }
1091
1092 static void hpsa_slave_destroy(struct scsi_device *sdev)
1093 {
1094         /* nothing to do. */
1095 }
1096
1097 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1098 {
1099         int i;
1100
1101         if (!h->cmd_sg_list)
1102                 return;
1103         for (i = 0; i < h->nr_cmds; i++) {
1104                 kfree(h->cmd_sg_list[i]);
1105                 h->cmd_sg_list[i] = NULL;
1106         }
1107         kfree(h->cmd_sg_list);
1108         h->cmd_sg_list = NULL;
1109 }
1110
1111 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1112 {
1113         int i;
1114
1115         if (h->chainsize <= 0)
1116                 return 0;
1117
1118         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1119                                 GFP_KERNEL);
1120         if (!h->cmd_sg_list)
1121                 return -ENOMEM;
1122         for (i = 0; i < h->nr_cmds; i++) {
1123                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1124                                                 h->chainsize, GFP_KERNEL);
1125                 if (!h->cmd_sg_list[i])
1126                         goto clean;
1127         }
1128         return 0;
1129
1130 clean:
1131         hpsa_free_sg_chain_blocks(h);
1132         return -ENOMEM;
1133 }
1134
1135 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1136         struct CommandList *c)
1137 {
1138         struct SGDescriptor *chain_sg, *chain_block;
1139         u64 temp64;
1140
1141         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1142         chain_block = h->cmd_sg_list[c->cmdindex];
1143         chain_sg->Ext = HPSA_SG_CHAIN;
1144         chain_sg->Len = sizeof(*chain_sg) *
1145                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1146         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1147                                 PCI_DMA_TODEVICE);
1148         if (dma_mapping_error(&h->pdev->dev, temp64)) {
1149                 /* prevent subsequent unmapping */
1150                 chain_sg->Addr.lower = 0;
1151                 chain_sg->Addr.upper = 0;
1152                 return -1;
1153         }
1154         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1155         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1156         return 0;
1157 }
1158
1159 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1160         struct CommandList *c)
1161 {
1162         struct SGDescriptor *chain_sg;
1163         union u64bit temp64;
1164
1165         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1166                 return;
1167
1168         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1169         temp64.val32.lower = chain_sg->Addr.lower;
1170         temp64.val32.upper = chain_sg->Addr.upper;
1171         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1172 }
1173
1174 static void complete_scsi_command(struct CommandList *cp)
1175 {
1176         struct scsi_cmnd *cmd;
1177         struct ctlr_info *h;
1178         struct ErrorInfo *ei;
1179
1180         unsigned char sense_key;
1181         unsigned char asc;      /* additional sense code */
1182         unsigned char ascq;     /* additional sense code qualifier */
1183         unsigned long sense_data_size;
1184
1185         ei = cp->err_info;
1186         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1187         h = cp->h;
1188
1189         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1190         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1191                 hpsa_unmap_sg_chain_block(h, cp);
1192
1193         cmd->result = (DID_OK << 16);           /* host byte */
1194         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1195         cmd->result |= ei->ScsiStatus;
1196
1197         /* copy the sense data whether we need to or not. */
1198         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1199                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1200         else
1201                 sense_data_size = sizeof(ei->SenseInfo);
1202         if (ei->SenseLen < sense_data_size)
1203                 sense_data_size = ei->SenseLen;
1204
1205         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1206         scsi_set_resid(cmd, ei->ResidualCnt);
1207
1208         if (ei->CommandStatus == 0) {
1209                 cmd->scsi_done(cmd);
1210                 cmd_free(h, cp);
1211                 return;
1212         }
1213
1214         /* an error has occurred */
1215         switch (ei->CommandStatus) {
1216
1217         case CMD_TARGET_STATUS:
1218                 if (ei->ScsiStatus) {
1219                         /* Get sense key */
1220                         sense_key = 0xf & ei->SenseInfo[2];
1221                         /* Get additional sense code */
1222                         asc = ei->SenseInfo[12];
1223                         /* Get addition sense code qualifier */
1224                         ascq = ei->SenseInfo[13];
1225                 }
1226
1227                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1228                         if (check_for_unit_attention(h, cp)) {
1229                                 cmd->result = DID_SOFT_ERROR << 16;
1230                                 break;
1231                         }
1232                         if (sense_key == ILLEGAL_REQUEST) {
1233                                 /*
1234                                  * SCSI REPORT_LUNS is commonly unsupported on
1235                                  * Smart Array.  Suppress noisy complaint.
1236                                  */
1237                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1238                                         break;
1239
1240                                 /* If ASC/ASCQ indicate Logical Unit
1241                                  * Not Supported condition,
1242                                  */
1243                                 if ((asc == 0x25) && (ascq == 0x0)) {
1244                                         dev_warn(&h->pdev->dev, "cp %p "
1245                                                 "has check condition\n", cp);
1246                                         break;
1247                                 }
1248                         }
1249
1250                         if (sense_key == NOT_READY) {
1251                                 /* If Sense is Not Ready, Logical Unit
1252                                  * Not ready, Manual Intervention
1253                                  * required
1254                                  */
1255                                 if ((asc == 0x04) && (ascq == 0x03)) {
1256                                         dev_warn(&h->pdev->dev, "cp %p "
1257                                                 "has check condition: unit "
1258                                                 "not ready, manual "
1259                                                 "intervention required\n", cp);
1260                                         break;
1261                                 }
1262                         }
1263                         if (sense_key == ABORTED_COMMAND) {
1264                                 /* Aborted command is retryable */
1265                                 dev_warn(&h->pdev->dev, "cp %p "
1266                                         "has check condition: aborted command: "
1267                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1268                                         cp, asc, ascq);
1269                                 cmd->result |= DID_SOFT_ERROR << 16;
1270                                 break;
1271                         }
1272                         /* Must be some other type of check condition */
1273                         dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1274                                         "unknown type: "
1275                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1276                                         "Returning result: 0x%x, "
1277                                         "cmd=[%02x %02x %02x %02x %02x "
1278                                         "%02x %02x %02x %02x %02x %02x "
1279                                         "%02x %02x %02x %02x %02x]\n",
1280                                         cp, sense_key, asc, ascq,
1281                                         cmd->result,
1282                                         cmd->cmnd[0], cmd->cmnd[1],
1283                                         cmd->cmnd[2], cmd->cmnd[3],
1284                                         cmd->cmnd[4], cmd->cmnd[5],
1285                                         cmd->cmnd[6], cmd->cmnd[7],
1286                                         cmd->cmnd[8], cmd->cmnd[9],
1287                                         cmd->cmnd[10], cmd->cmnd[11],
1288                                         cmd->cmnd[12], cmd->cmnd[13],
1289                                         cmd->cmnd[14], cmd->cmnd[15]);
1290                         break;
1291                 }
1292
1293
1294                 /* Problem was not a check condition
1295                  * Pass it up to the upper layers...
1296                  */
1297                 if (ei->ScsiStatus) {
1298                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1299                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1300                                 "Returning result: 0x%x\n",
1301                                 cp, ei->ScsiStatus,
1302                                 sense_key, asc, ascq,
1303                                 cmd->result);
1304                 } else {  /* scsi status is zero??? How??? */
1305                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1306                                 "Returning no connection.\n", cp),
1307
1308                         /* Ordinarily, this case should never happen,
1309                          * but there is a bug in some released firmware
1310                          * revisions that allows it to happen if, for
1311                          * example, a 4100 backplane loses power and
1312                          * the tape drive is in it.  We assume that
1313                          * it's a fatal error of some kind because we
1314                          * can't show that it wasn't. We will make it
1315                          * look like selection timeout since that is
1316                          * the most common reason for this to occur,
1317                          * and it's severe enough.
1318                          */
1319
1320                         cmd->result = DID_NO_CONNECT << 16;
1321                 }
1322                 break;
1323
1324         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1325                 break;
1326         case CMD_DATA_OVERRUN:
1327                 dev_warn(&h->pdev->dev, "cp %p has"
1328                         " completed with data overrun "
1329                         "reported\n", cp);
1330                 break;
1331         case CMD_INVALID: {
1332                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1333                 print_cmd(cp); */
1334                 /* We get CMD_INVALID if you address a non-existent device
1335                  * instead of a selection timeout (no response).  You will
1336                  * see this if you yank out a drive, then try to access it.
1337                  * This is kind of a shame because it means that any other
1338                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1339                  * missing target. */
1340                 cmd->result = DID_NO_CONNECT << 16;
1341         }
1342                 break;
1343         case CMD_PROTOCOL_ERR:
1344                 cmd->result = DID_ERROR << 16;
1345                 dev_warn(&h->pdev->dev, "cp %p has "
1346                         "protocol error\n", cp);
1347                 break;
1348         case CMD_HARDWARE_ERR:
1349                 cmd->result = DID_ERROR << 16;
1350                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1351                 break;
1352         case CMD_CONNECTION_LOST:
1353                 cmd->result = DID_ERROR << 16;
1354                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1355                 break;
1356         case CMD_ABORTED:
1357                 cmd->result = DID_ABORT << 16;
1358                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1359                                 cp, ei->ScsiStatus);
1360                 break;
1361         case CMD_ABORT_FAILED:
1362                 cmd->result = DID_ERROR << 16;
1363                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1364                 break;
1365         case CMD_UNSOLICITED_ABORT:
1366                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1367                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1368                         "abort\n", cp);
1369                 break;
1370         case CMD_TIMEOUT:
1371                 cmd->result = DID_TIME_OUT << 16;
1372                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1373                 break;
1374         case CMD_UNABORTABLE:
1375                 cmd->result = DID_ERROR << 16;
1376                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1377                 break;
1378         default:
1379                 cmd->result = DID_ERROR << 16;
1380                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1381                                 cp, ei->CommandStatus);
1382         }
1383         cmd->scsi_done(cmd);
1384         cmd_free(h, cp);
1385 }
1386
1387 static void hpsa_pci_unmap(struct pci_dev *pdev,
1388         struct CommandList *c, int sg_used, int data_direction)
1389 {
1390         int i;
1391         union u64bit addr64;
1392
1393         for (i = 0; i < sg_used; i++) {
1394                 addr64.val32.lower = c->SG[i].Addr.lower;
1395                 addr64.val32.upper = c->SG[i].Addr.upper;
1396                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1397                         data_direction);
1398         }
1399 }
1400
1401 static int hpsa_map_one(struct pci_dev *pdev,
1402                 struct CommandList *cp,
1403                 unsigned char *buf,
1404                 size_t buflen,
1405                 int data_direction)
1406 {
1407         u64 addr64;
1408
1409         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1410                 cp->Header.SGList = 0;
1411                 cp->Header.SGTotal = 0;
1412                 return 0;
1413         }
1414
1415         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1416         if (dma_mapping_error(&pdev->dev, addr64)) {
1417                 /* Prevent subsequent unmap of something never mapped */
1418                 cp->Header.SGList = 0;
1419                 cp->Header.SGTotal = 0;
1420                 return -1;
1421         }
1422         cp->SG[0].Addr.lower =
1423           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1424         cp->SG[0].Addr.upper =
1425           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1426         cp->SG[0].Len = buflen;
1427         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1428         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1429         return 0;
1430 }
1431
1432 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1433         struct CommandList *c)
1434 {
1435         DECLARE_COMPLETION_ONSTACK(wait);
1436
1437         c->waiting = &wait;
1438         enqueue_cmd_and_start_io(h, c);
1439         wait_for_completion(&wait);
1440 }
1441
1442 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1443         struct CommandList *c)
1444 {
1445         unsigned long flags;
1446
1447         /* If controller lockup detected, fake a hardware error. */
1448         spin_lock_irqsave(&h->lock, flags);
1449         if (unlikely(h->lockup_detected)) {
1450                 spin_unlock_irqrestore(&h->lock, flags);
1451                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1452         } else {
1453                 spin_unlock_irqrestore(&h->lock, flags);
1454                 hpsa_scsi_do_simple_cmd_core(h, c);
1455         }
1456 }
1457
1458 #define MAX_DRIVER_CMD_RETRIES 25
1459 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1460         struct CommandList *c, int data_direction)
1461 {
1462         int backoff_time = 10, retry_count = 0;
1463
1464         do {
1465                 memset(c->err_info, 0, sizeof(*c->err_info));
1466                 hpsa_scsi_do_simple_cmd_core(h, c);
1467                 retry_count++;
1468                 if (retry_count > 3) {
1469                         msleep(backoff_time);
1470                         if (backoff_time < 1000)
1471                                 backoff_time *= 2;
1472                 }
1473         } while ((check_for_unit_attention(h, c) ||
1474                         check_for_busy(h, c)) &&
1475                         retry_count <= MAX_DRIVER_CMD_RETRIES);
1476         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1477 }
1478
1479 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1480 {
1481         struct ErrorInfo *ei;
1482         struct device *d = &cp->h->pdev->dev;
1483
1484         ei = cp->err_info;
1485         switch (ei->CommandStatus) {
1486         case CMD_TARGET_STATUS:
1487                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1488                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1489                                 ei->ScsiStatus);
1490                 if (ei->ScsiStatus == 0)
1491                         dev_warn(d, "SCSI status is abnormally zero.  "
1492                         "(probably indicates selection timeout "
1493                         "reported incorrectly due to a known "
1494                         "firmware bug, circa July, 2001.)\n");
1495                 break;
1496         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1497                         dev_info(d, "UNDERRUN\n");
1498                 break;
1499         case CMD_DATA_OVERRUN:
1500                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1501                 break;
1502         case CMD_INVALID: {
1503                 /* controller unfortunately reports SCSI passthru's
1504                  * to non-existent targets as invalid commands.
1505                  */
1506                 dev_warn(d, "cp %p is reported invalid (probably means "
1507                         "target device no longer present)\n", cp);
1508                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1509                 print_cmd(cp);  */
1510                 }
1511                 break;
1512         case CMD_PROTOCOL_ERR:
1513                 dev_warn(d, "cp %p has protocol error \n", cp);
1514                 break;
1515         case CMD_HARDWARE_ERR:
1516                 /* cmd->result = DID_ERROR << 16; */
1517                 dev_warn(d, "cp %p had hardware error\n", cp);
1518                 break;
1519         case CMD_CONNECTION_LOST:
1520                 dev_warn(d, "cp %p had connection lost\n", cp);
1521                 break;
1522         case CMD_ABORTED:
1523                 dev_warn(d, "cp %p was aborted\n", cp);
1524                 break;
1525         case CMD_ABORT_FAILED:
1526                 dev_warn(d, "cp %p reports abort failed\n", cp);
1527                 break;
1528         case CMD_UNSOLICITED_ABORT:
1529                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1530                 break;
1531         case CMD_TIMEOUT:
1532                 dev_warn(d, "cp %p timed out\n", cp);
1533                 break;
1534         case CMD_UNABORTABLE:
1535                 dev_warn(d, "Command unabortable\n");
1536                 break;
1537         default:
1538                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1539                                 ei->CommandStatus);
1540         }
1541 }
1542
1543 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1544                         unsigned char page, unsigned char *buf,
1545                         unsigned char bufsize)
1546 {
1547         int rc = IO_OK;
1548         struct CommandList *c;
1549         struct ErrorInfo *ei;
1550
1551         c = cmd_special_alloc(h);
1552
1553         if (c == NULL) {                        /* trouble... */
1554                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1555                 return -ENOMEM;
1556         }
1557
1558         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
1559                         page, scsi3addr, TYPE_CMD)) {
1560                 rc = -1;
1561                 goto out;
1562         }
1563         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1564         ei = c->err_info;
1565         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1566                 hpsa_scsi_interpret_error(c);
1567                 rc = -1;
1568         }
1569 out:
1570         cmd_special_free(h, c);
1571         return rc;
1572 }
1573
1574 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1575 {
1576         int rc = IO_OK;
1577         struct CommandList *c;
1578         struct ErrorInfo *ei;
1579
1580         c = cmd_special_alloc(h);
1581
1582         if (c == NULL) {                        /* trouble... */
1583                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1584                 return -ENOMEM;
1585         }
1586
1587         /* fill_cmd can't fail here, no data buffer to map. */
1588         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h,
1589                         NULL, 0, 0, scsi3addr, TYPE_MSG);
1590         hpsa_scsi_do_simple_cmd_core(h, c);
1591         /* no unmap needed here because no data xfer. */
1592
1593         ei = c->err_info;
1594         if (ei->CommandStatus != 0) {
1595                 hpsa_scsi_interpret_error(c);
1596                 rc = -1;
1597         }
1598         cmd_special_free(h, c);
1599         return rc;
1600 }
1601
1602 static void hpsa_get_raid_level(struct ctlr_info *h,
1603         unsigned char *scsi3addr, unsigned char *raid_level)
1604 {
1605         int rc;
1606         unsigned char *buf;
1607
1608         *raid_level = RAID_UNKNOWN;
1609         buf = kzalloc(64, GFP_KERNEL);
1610         if (!buf)
1611                 return;
1612         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1613         if (rc == 0)
1614                 *raid_level = buf[8];
1615         if (*raid_level > RAID_UNKNOWN)
1616                 *raid_level = RAID_UNKNOWN;
1617         kfree(buf);
1618         return;
1619 }
1620
1621 /* Get the device id from inquiry page 0x83 */
1622 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1623         unsigned char *device_id, int buflen)
1624 {
1625         int rc;
1626         unsigned char *buf;
1627
1628         if (buflen > 16)
1629                 buflen = 16;
1630         buf = kzalloc(64, GFP_KERNEL);
1631         if (!buf)
1632                 return -1;
1633         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1634         if (rc == 0)
1635                 memcpy(device_id, &buf[8], buflen);
1636         kfree(buf);
1637         return rc != 0;
1638 }
1639
1640 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1641                 struct ReportLUNdata *buf, int bufsize,
1642                 int extended_response)
1643 {
1644         int rc = IO_OK;
1645         struct CommandList *c;
1646         unsigned char scsi3addr[8];
1647         struct ErrorInfo *ei;
1648
1649         c = cmd_special_alloc(h);
1650         if (c == NULL) {                        /* trouble... */
1651                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1652                 return -1;
1653         }
1654         /* address the controller */
1655         memset(scsi3addr, 0, sizeof(scsi3addr));
1656         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1657                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
1658                 rc = -1;
1659                 goto out;
1660         }
1661         if (extended_response)
1662                 c->Request.CDB[1] = extended_response;
1663         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1664         ei = c->err_info;
1665         if (ei->CommandStatus != 0 &&
1666             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1667                 hpsa_scsi_interpret_error(c);
1668                 rc = -1;
1669         }
1670 out:
1671         cmd_special_free(h, c);
1672         return rc;
1673 }
1674
1675 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1676                 struct ReportLUNdata *buf,
1677                 int bufsize, int extended_response)
1678 {
1679         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1680 }
1681
1682 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1683                 struct ReportLUNdata *buf, int bufsize)
1684 {
1685         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1686 }
1687
1688 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1689         int bus, int target, int lun)
1690 {
1691         device->bus = bus;
1692         device->target = target;
1693         device->lun = lun;
1694 }
1695
1696 static int hpsa_update_device_info(struct ctlr_info *h,
1697         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1698         unsigned char *is_OBDR_device)
1699 {
1700
1701 #define OBDR_SIG_OFFSET 43
1702 #define OBDR_TAPE_SIG "$DR-10"
1703 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1704 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1705
1706         unsigned char *inq_buff;
1707         unsigned char *obdr_sig;
1708
1709         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1710         if (!inq_buff)
1711                 goto bail_out;
1712
1713         /* Do an inquiry to the device to see what it is. */
1714         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1715                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1716                 /* Inquiry failed (msg printed already) */
1717                 dev_err(&h->pdev->dev,
1718                         "hpsa_update_device_info: inquiry failed\n");
1719                 goto bail_out;
1720         }
1721
1722         this_device->devtype = (inq_buff[0] & 0x1f);
1723         memcpy(this_device->scsi3addr, scsi3addr, 8);
1724         memcpy(this_device->vendor, &inq_buff[8],
1725                 sizeof(this_device->vendor));
1726         memcpy(this_device->model, &inq_buff[16],
1727                 sizeof(this_device->model));
1728         memset(this_device->device_id, 0,
1729                 sizeof(this_device->device_id));
1730         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1731                 sizeof(this_device->device_id));
1732
1733         if (this_device->devtype == TYPE_DISK &&
1734                 is_logical_dev_addr_mode(scsi3addr))
1735                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1736         else
1737                 this_device->raid_level = RAID_UNKNOWN;
1738
1739         if (is_OBDR_device) {
1740                 /* See if this is a One-Button-Disaster-Recovery device
1741                  * by looking for "$DR-10" at offset 43 in inquiry data.
1742                  */
1743                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1744                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1745                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
1746                                                 OBDR_SIG_LEN) == 0);
1747         }
1748
1749         kfree(inq_buff);
1750         return 0;
1751
1752 bail_out:
1753         kfree(inq_buff);
1754         return 1;
1755 }
1756
1757 static unsigned char *ext_target_model[] = {
1758         "MSA2012",
1759         "MSA2024",
1760         "MSA2312",
1761         "MSA2324",
1762         "P2000 G3 SAS",
1763         NULL,
1764 };
1765
1766 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1767 {
1768         int i;
1769
1770         for (i = 0; ext_target_model[i]; i++)
1771                 if (strncmp(device->model, ext_target_model[i],
1772                         strlen(ext_target_model[i])) == 0)
1773                         return 1;
1774         return 0;
1775 }
1776
1777 /* Helper function to assign bus, target, lun mapping of devices.
1778  * Puts non-external target logical volumes on bus 0, external target logical
1779  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1780  * Logical drive target and lun are assigned at this time, but
1781  * physical device lun and target assignment are deferred (assigned
1782  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1783  */
1784 static void figure_bus_target_lun(struct ctlr_info *h,
1785         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1786 {
1787         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1788
1789         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1790                 /* physical device, target and lun filled in later */
1791                 if (is_hba_lunid(lunaddrbytes))
1792                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1793                 else
1794                         /* defer target, lun assignment for physical devices */
1795                         hpsa_set_bus_target_lun(device, 2, -1, -1);
1796                 return;
1797         }
1798         /* It's a logical device */
1799         if (is_ext_target(h, device)) {
1800                 /* external target way, put logicals on bus 1
1801                  * and match target/lun numbers box
1802                  * reports, other smart array, bus 0, target 0, match lunid
1803                  */
1804                 hpsa_set_bus_target_lun(device,
1805                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1806                 return;
1807         }
1808         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1809 }
1810
1811 /*
1812  * If there is no lun 0 on a target, linux won't find any devices.
1813  * For the external targets (arrays), we have to manually detect the enclosure
1814  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1815  * it for some reason.  *tmpdevice is the target we're adding,
1816  * this_device is a pointer into the current element of currentsd[]
1817  * that we're building up in update_scsi_devices(), below.
1818  * lunzerobits is a bitmap that tracks which targets already have a
1819  * lun 0 assigned.
1820  * Returns 1 if an enclosure was added, 0 if not.
1821  */
1822 static int add_ext_target_dev(struct ctlr_info *h,
1823         struct hpsa_scsi_dev_t *tmpdevice,
1824         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1825         unsigned long lunzerobits[], int *n_ext_target_devs)
1826 {
1827         unsigned char scsi3addr[8];
1828
1829         if (test_bit(tmpdevice->target, lunzerobits))
1830                 return 0; /* There is already a lun 0 on this target. */
1831
1832         if (!is_logical_dev_addr_mode(lunaddrbytes))
1833                 return 0; /* It's the logical targets that may lack lun 0. */
1834
1835         if (!is_ext_target(h, tmpdevice))
1836                 return 0; /* Only external target devices have this problem. */
1837
1838         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1839                 return 0;
1840
1841         memset(scsi3addr, 0, 8);
1842         scsi3addr[3] = tmpdevice->target;
1843         if (is_hba_lunid(scsi3addr))
1844                 return 0; /* Don't add the RAID controller here. */
1845
1846         if (is_scsi_rev_5(h))
1847                 return 0; /* p1210m doesn't need to do this. */
1848
1849         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1850                 dev_warn(&h->pdev->dev, "Maximum number of external "
1851                         "target devices exceeded.  Check your hardware "
1852                         "configuration.");
1853                 return 0;
1854         }
1855
1856         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1857                 return 0;
1858         (*n_ext_target_devs)++;
1859         hpsa_set_bus_target_lun(this_device,
1860                                 tmpdevice->bus, tmpdevice->target, 0);
1861         set_bit(tmpdevice->target, lunzerobits);
1862         return 1;
1863 }
1864
1865 /*
1866  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1867  * logdev.  The number of luns in physdev and logdev are returned in
1868  * *nphysicals and *nlogicals, respectively.
1869  * Returns 0 on success, -1 otherwise.
1870  */
1871 static int hpsa_gather_lun_info(struct ctlr_info *h,
1872         int reportlunsize,
1873         struct ReportLUNdata *physdev, u32 *nphysicals,
1874         struct ReportLUNdata *logdev, u32 *nlogicals)
1875 {
1876         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1877                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1878                 return -1;
1879         }
1880         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1881         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1882                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1883                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1884                         *nphysicals - HPSA_MAX_PHYS_LUN);
1885                 *nphysicals = HPSA_MAX_PHYS_LUN;
1886         }
1887         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1888                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1889                 return -1;
1890         }
1891         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1892         /* Reject Logicals in excess of our max capability. */
1893         if (*nlogicals > HPSA_MAX_LUN) {
1894                 dev_warn(&h->pdev->dev,
1895                         "maximum logical LUNs (%d) exceeded.  "
1896                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1897                         *nlogicals - HPSA_MAX_LUN);
1898                         *nlogicals = HPSA_MAX_LUN;
1899         }
1900         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1901                 dev_warn(&h->pdev->dev,
1902                         "maximum logical + physical LUNs (%d) exceeded. "
1903                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1904                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1905                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1906         }
1907         return 0;
1908 }
1909
1910 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1911         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1912         struct ReportLUNdata *logdev_list)
1913 {
1914         /* Helper function, figure out where the LUN ID info is coming from
1915          * given index i, lists of physical and logical devices, where in
1916          * the list the raid controller is supposed to appear (first or last)
1917          */
1918
1919         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1920         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1921
1922         if (i == raid_ctlr_position)
1923                 return RAID_CTLR_LUNID;
1924
1925         if (i < logicals_start)
1926                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1927
1928         if (i < last_device)
1929                 return &logdev_list->LUN[i - nphysicals -
1930                         (raid_ctlr_position == 0)][0];
1931         BUG();
1932         return NULL;
1933 }
1934
1935 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1936 {
1937         /* the idea here is we could get notified
1938          * that some devices have changed, so we do a report
1939          * physical luns and report logical luns cmd, and adjust
1940          * our list of devices accordingly.
1941          *
1942          * The scsi3addr's of devices won't change so long as the
1943          * adapter is not reset.  That means we can rescan and
1944          * tell which devices we already know about, vs. new
1945          * devices, vs.  disappearing devices.
1946          */
1947         struct ReportLUNdata *physdev_list = NULL;
1948         struct ReportLUNdata *logdev_list = NULL;
1949         u32 nphysicals = 0;
1950         u32 nlogicals = 0;
1951         u32 ndev_allocated = 0;
1952         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1953         int ncurrent = 0;
1954         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1955         int i, n_ext_target_devs, ndevs_to_allocate;
1956         int raid_ctlr_position;
1957         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1958
1959         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1960         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1961         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1962         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1963
1964         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1965                 dev_err(&h->pdev->dev, "out of memory\n");
1966                 goto out;
1967         }
1968         memset(lunzerobits, 0, sizeof(lunzerobits));
1969
1970         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1971                         logdev_list, &nlogicals))
1972                 goto out;
1973
1974         /* We might see up to the maximum number of logical and physical disks
1975          * plus external target devices, and a device for the local RAID
1976          * controller.
1977          */
1978         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
1979
1980         /* Allocate the per device structures */
1981         for (i = 0; i < ndevs_to_allocate; i++) {
1982                 if (i >= HPSA_MAX_DEVICES) {
1983                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1984                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
1985                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
1986                         break;
1987                 }
1988
1989                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1990                 if (!currentsd[i]) {
1991                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1992                                 __FILE__, __LINE__);
1993                         goto out;
1994                 }
1995                 ndev_allocated++;
1996         }
1997
1998         if (unlikely(is_scsi_rev_5(h)))
1999                 raid_ctlr_position = 0;
2000         else
2001                 raid_ctlr_position = nphysicals + nlogicals;
2002
2003         /* adjust our table of devices */
2004         n_ext_target_devs = 0;
2005         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
2006                 u8 *lunaddrbytes, is_OBDR = 0;
2007
2008                 /* Figure out where the LUN ID info is coming from */
2009                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
2010                         i, nphysicals, nlogicals, physdev_list, logdev_list);
2011                 /* skip masked physical devices. */
2012                 if (lunaddrbytes[3] & 0xC0 &&
2013                         i < nphysicals + (raid_ctlr_position == 0))
2014                         continue;
2015
2016                 /* Get device type, vendor, model, device id */
2017                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
2018                                                         &is_OBDR))
2019                         continue; /* skip it if we can't talk to it. */
2020                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
2021                 this_device = currentsd[ncurrent];
2022
2023                 /*
2024                  * For external target devices, we have to insert a LUN 0 which
2025                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
2026                  * is nonetheless an enclosure device there.  We have to
2027                  * present that otherwise linux won't find anything if
2028                  * there is no lun 0.
2029                  */
2030                 if (add_ext_target_dev(h, tmpdevice, this_device,
2031                                 lunaddrbytes, lunzerobits,
2032                                 &n_ext_target_devs)) {
2033                         ncurrent++;
2034                         this_device = currentsd[ncurrent];
2035                 }
2036
2037                 *this_device = *tmpdevice;
2038
2039                 switch (this_device->devtype) {
2040                 case TYPE_ROM:
2041                         /* We don't *really* support actual CD-ROM devices,
2042                          * just "One Button Disaster Recovery" tape drive
2043                          * which temporarily pretends to be a CD-ROM drive.
2044                          * So we check that the device is really an OBDR tape
2045                          * device by checking for "$DR-10" in bytes 43-48 of
2046                          * the inquiry data.
2047                          */
2048                         if (is_OBDR)
2049                                 ncurrent++;
2050                         break;
2051                 case TYPE_DISK:
2052                         if (i < nphysicals)
2053                                 break;
2054                         ncurrent++;
2055                         break;
2056                 case TYPE_TAPE:
2057                 case TYPE_MEDIUM_CHANGER:
2058                         ncurrent++;
2059                         break;
2060                 case TYPE_RAID:
2061                         /* Only present the Smartarray HBA as a RAID controller.
2062                          * If it's a RAID controller other than the HBA itself
2063                          * (an external RAID controller, MSA500 or similar)
2064                          * don't present it.
2065                          */
2066                         if (!is_hba_lunid(lunaddrbytes))
2067                                 break;
2068                         ncurrent++;
2069                         break;
2070                 default:
2071                         break;
2072                 }
2073                 if (ncurrent >= HPSA_MAX_DEVICES)
2074                         break;
2075         }
2076         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2077 out:
2078         kfree(tmpdevice);
2079         for (i = 0; i < ndev_allocated; i++)
2080                 kfree(currentsd[i]);
2081         kfree(currentsd);
2082         kfree(physdev_list);
2083         kfree(logdev_list);
2084 }
2085
2086 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2087  * dma mapping  and fills in the scatter gather entries of the
2088  * hpsa command, cp.
2089  */
2090 static int hpsa_scatter_gather(struct ctlr_info *h,
2091                 struct CommandList *cp,
2092                 struct scsi_cmnd *cmd)
2093 {
2094         unsigned int len;
2095         struct scatterlist *sg;
2096         u64 addr64;
2097         int use_sg, i, sg_index, chained;
2098         struct SGDescriptor *curr_sg;
2099
2100         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2101
2102         use_sg = scsi_dma_map(cmd);
2103         if (use_sg < 0)
2104                 return use_sg;
2105
2106         if (!use_sg)
2107                 goto sglist_finished;
2108
2109         curr_sg = cp->SG;
2110         chained = 0;
2111         sg_index = 0;
2112         scsi_for_each_sg(cmd, sg, use_sg, i) {
2113                 if (i == h->max_cmd_sg_entries - 1 &&
2114                         use_sg > h->max_cmd_sg_entries) {
2115                         chained = 1;
2116                         curr_sg = h->cmd_sg_list[cp->cmdindex];
2117                         sg_index = 0;
2118                 }
2119                 addr64 = (u64) sg_dma_address(sg);
2120                 len  = sg_dma_len(sg);
2121                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2122                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2123                 curr_sg->Len = len;
2124                 curr_sg->Ext = 0;  /* we are not chaining */
2125                 curr_sg++;
2126         }
2127
2128         if (use_sg + chained > h->maxSG)
2129                 h->maxSG = use_sg + chained;
2130
2131         if (chained) {
2132                 cp->Header.SGList = h->max_cmd_sg_entries;
2133                 cp->Header.SGTotal = (u16) (use_sg + 1);
2134                 if (hpsa_map_sg_chain_block(h, cp)) {
2135                         scsi_dma_unmap(cmd);
2136                         return -1;
2137                 }
2138                 return 0;
2139         }
2140
2141 sglist_finished:
2142
2143         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2144         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2145         return 0;
2146 }
2147
2148
2149 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2150         void (*done)(struct scsi_cmnd *))
2151 {
2152         struct ctlr_info *h;
2153         struct hpsa_scsi_dev_t *dev;
2154         unsigned char scsi3addr[8];
2155         struct CommandList *c;
2156         unsigned long flags;
2157
2158         /* Get the ptr to our adapter structure out of cmd->host. */
2159         h = sdev_to_hba(cmd->device);
2160         dev = cmd->device->hostdata;
2161         if (!dev) {
2162                 cmd->result = DID_NO_CONNECT << 16;
2163                 done(cmd);
2164                 return 0;
2165         }
2166         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2167
2168         spin_lock_irqsave(&h->lock, flags);
2169         if (unlikely(h->lockup_detected)) {
2170                 spin_unlock_irqrestore(&h->lock, flags);
2171                 cmd->result = DID_ERROR << 16;
2172                 done(cmd);
2173                 return 0;
2174         }
2175         spin_unlock_irqrestore(&h->lock, flags);
2176         c = cmd_alloc(h);
2177         if (c == NULL) {                        /* trouble... */
2178                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2179                 return SCSI_MLQUEUE_HOST_BUSY;
2180         }
2181
2182         /* Fill in the command list header */
2183
2184         cmd->scsi_done = done;    /* save this for use by completion code */
2185
2186         /* save c in case we have to abort it  */
2187         cmd->host_scribble = (unsigned char *) c;
2188
2189         c->cmd_type = CMD_SCSI;
2190         c->scsi_cmd = cmd;
2191         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2192         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2193         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2194         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2195
2196         /* Fill in the request block... */
2197
2198         c->Request.Timeout = 0;
2199         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2200         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2201         c->Request.CDBLen = cmd->cmd_len;
2202         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2203         c->Request.Type.Type = TYPE_CMD;
2204         c->Request.Type.Attribute = ATTR_SIMPLE;
2205         switch (cmd->sc_data_direction) {
2206         case DMA_TO_DEVICE:
2207                 c->Request.Type.Direction = XFER_WRITE;
2208                 break;
2209         case DMA_FROM_DEVICE:
2210                 c->Request.Type.Direction = XFER_READ;
2211                 break;
2212         case DMA_NONE:
2213                 c->Request.Type.Direction = XFER_NONE;
2214                 break;
2215         case DMA_BIDIRECTIONAL:
2216                 /* This can happen if a buggy application does a scsi passthru
2217                  * and sets both inlen and outlen to non-zero. ( see
2218                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2219                  */
2220
2221                 c->Request.Type.Direction = XFER_RSVD;
2222                 /* This is technically wrong, and hpsa controllers should
2223                  * reject it with CMD_INVALID, which is the most correct
2224                  * response, but non-fibre backends appear to let it
2225                  * slide by, and give the same results as if this field
2226                  * were set correctly.  Either way is acceptable for
2227                  * our purposes here.
2228                  */
2229
2230                 break;
2231
2232         default:
2233                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2234                         cmd->sc_data_direction);
2235                 BUG();
2236                 break;
2237         }
2238
2239         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2240                 cmd_free(h, c);
2241                 return SCSI_MLQUEUE_HOST_BUSY;
2242         }
2243         enqueue_cmd_and_start_io(h, c);
2244         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2245         return 0;
2246 }
2247
2248 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2249
2250 static void hpsa_scan_start(struct Scsi_Host *sh)
2251 {
2252         struct ctlr_info *h = shost_to_hba(sh);
2253         unsigned long flags;
2254
2255         /* wait until any scan already in progress is finished. */
2256         while (1) {
2257                 spin_lock_irqsave(&h->scan_lock, flags);
2258                 if (h->scan_finished)
2259                         break;
2260                 spin_unlock_irqrestore(&h->scan_lock, flags);
2261                 wait_event(h->scan_wait_queue, h->scan_finished);
2262                 /* Note: We don't need to worry about a race between this
2263                  * thread and driver unload because the midlayer will
2264                  * have incremented the reference count, so unload won't
2265                  * happen if we're in here.
2266                  */
2267         }
2268         h->scan_finished = 0; /* mark scan as in progress */
2269         spin_unlock_irqrestore(&h->scan_lock, flags);
2270
2271         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2272
2273         spin_lock_irqsave(&h->scan_lock, flags);
2274         h->scan_finished = 1; /* mark scan as finished. */
2275         wake_up_all(&h->scan_wait_queue);
2276         spin_unlock_irqrestore(&h->scan_lock, flags);
2277 }
2278
2279 static int hpsa_scan_finished(struct Scsi_Host *sh,
2280         unsigned long elapsed_time)
2281 {
2282         struct ctlr_info *h = shost_to_hba(sh);
2283         unsigned long flags;
2284         int finished;
2285
2286         spin_lock_irqsave(&h->scan_lock, flags);
2287         finished = h->scan_finished;
2288         spin_unlock_irqrestore(&h->scan_lock, flags);
2289         return finished;
2290 }
2291
2292 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2293         int qdepth, int reason)
2294 {
2295         struct ctlr_info *h = sdev_to_hba(sdev);
2296
2297         if (reason != SCSI_QDEPTH_DEFAULT)
2298                 return -ENOTSUPP;
2299
2300         if (qdepth < 1)
2301                 qdepth = 1;
2302         else
2303                 if (qdepth > h->nr_cmds)
2304                         qdepth = h->nr_cmds;
2305         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2306         return sdev->queue_depth;
2307 }
2308
2309 static void hpsa_unregister_scsi(struct ctlr_info *h)
2310 {
2311         /* we are being forcibly unloaded, and may not refuse. */
2312         scsi_remove_host(h->scsi_host);
2313         scsi_host_put(h->scsi_host);
2314         h->scsi_host = NULL;
2315 }
2316
2317 static int hpsa_register_scsi(struct ctlr_info *h)
2318 {
2319         struct Scsi_Host *sh;
2320         int error;
2321
2322         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2323         if (sh == NULL)
2324                 goto fail;
2325
2326         sh->io_port = 0;
2327         sh->n_io_port = 0;
2328         sh->this_id = -1;
2329         sh->max_channel = 3;
2330         sh->max_cmd_len = MAX_COMMAND_SIZE;
2331         sh->max_lun = HPSA_MAX_LUN;
2332         sh->max_id = HPSA_MAX_LUN;
2333         sh->can_queue = h->nr_cmds;
2334         sh->cmd_per_lun = h->nr_cmds;
2335         sh->sg_tablesize = h->maxsgentries;
2336         h->scsi_host = sh;
2337         sh->hostdata[0] = (unsigned long) h;
2338         sh->irq = h->intr[h->intr_mode];
2339         sh->unique_id = sh->irq;
2340         error = scsi_add_host(sh, &h->pdev->dev);
2341         if (error)
2342                 goto fail_host_put;
2343         scsi_scan_host(sh);
2344         return 0;
2345
2346  fail_host_put:
2347         dev_err(&h->pdev->dev, "%s: scsi_add_host"
2348                 " failed for controller %d\n", __func__, h->ctlr);
2349         scsi_host_put(sh);
2350         return error;
2351  fail:
2352         dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2353                 " failed for controller %d\n", __func__, h->ctlr);
2354         return -ENOMEM;
2355 }
2356
2357 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2358         unsigned char lunaddr[])
2359 {
2360         int rc = 0;
2361         int count = 0;
2362         int waittime = 1; /* seconds */
2363         struct CommandList *c;
2364
2365         c = cmd_special_alloc(h);
2366         if (!c) {
2367                 dev_warn(&h->pdev->dev, "out of memory in "
2368                         "wait_for_device_to_become_ready.\n");
2369                 return IO_ERROR;
2370         }
2371
2372         /* Send test unit ready until device ready, or give up. */
2373         while (count < HPSA_TUR_RETRY_LIMIT) {
2374
2375                 /* Wait for a bit.  do this first, because if we send
2376                  * the TUR right away, the reset will just abort it.
2377                  */
2378                 msleep(1000 * waittime);
2379                 count++;
2380
2381                 /* Increase wait time with each try, up to a point. */
2382                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2383                         waittime = waittime * 2;
2384
2385                 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
2386                 (void) fill_cmd(c, TEST_UNIT_READY, h,
2387                                 NULL, 0, 0, lunaddr, TYPE_CMD);
2388                 hpsa_scsi_do_simple_cmd_core(h, c);
2389                 /* no unmap needed here because no data xfer. */
2390
2391                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2392                         break;
2393
2394                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2395                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2396                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2397                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2398                         break;
2399
2400                 dev_warn(&h->pdev->dev, "waiting %d secs "
2401                         "for device to become ready.\n", waittime);
2402                 rc = 1; /* device not ready. */
2403         }
2404
2405         if (rc)
2406                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2407         else
2408                 dev_warn(&h->pdev->dev, "device is ready.\n");
2409
2410         cmd_special_free(h, c);
2411         return rc;
2412 }
2413
2414 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2415  * complaining.  Doing a host- or bus-reset can't do anything good here.
2416  */
2417 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2418 {
2419         int rc;
2420         struct ctlr_info *h;
2421         struct hpsa_scsi_dev_t *dev;
2422
2423         /* find the controller to which the command to be aborted was sent */
2424         h = sdev_to_hba(scsicmd->device);
2425         if (h == NULL) /* paranoia */
2426                 return FAILED;
2427         dev = scsicmd->device->hostdata;
2428         if (!dev) {
2429                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2430                         "device lookup failed.\n");
2431                 return FAILED;
2432         }
2433         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2434                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2435         /* send a reset to the SCSI LUN which the command was sent to */
2436         rc = hpsa_send_reset(h, dev->scsi3addr);
2437         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2438                 return SUCCESS;
2439
2440         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2441         return FAILED;
2442 }
2443
2444 static void swizzle_abort_tag(u8 *tag)
2445 {
2446         u8 original_tag[8];
2447
2448         memcpy(original_tag, tag, 8);
2449         tag[0] = original_tag[3];
2450         tag[1] = original_tag[2];
2451         tag[2] = original_tag[1];
2452         tag[3] = original_tag[0];
2453         tag[4] = original_tag[7];
2454         tag[5] = original_tag[6];
2455         tag[6] = original_tag[5];
2456         tag[7] = original_tag[4];
2457 }
2458
2459 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2460         struct CommandList *abort, int swizzle)
2461 {
2462         int rc = IO_OK;
2463         struct CommandList *c;
2464         struct ErrorInfo *ei;
2465
2466         c = cmd_special_alloc(h);
2467         if (c == NULL) {        /* trouble... */
2468                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2469                 return -ENOMEM;
2470         }
2471
2472         /* fill_cmd can't fail here, no buffer to map */
2473         (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
2474                 0, 0, scsi3addr, TYPE_MSG);
2475         if (swizzle)
2476                 swizzle_abort_tag(&c->Request.CDB[4]);
2477         hpsa_scsi_do_simple_cmd_core(h, c);
2478         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2479                 __func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
2480         /* no unmap needed here because no data xfer. */
2481
2482         ei = c->err_info;
2483         switch (ei->CommandStatus) {
2484         case CMD_SUCCESS:
2485                 break;
2486         case CMD_UNABORTABLE: /* Very common, don't make noise. */
2487                 rc = -1;
2488                 break;
2489         default:
2490                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2491                         __func__, abort->Header.Tag.upper,
2492                         abort->Header.Tag.lower);
2493                 hpsa_scsi_interpret_error(c);
2494                 rc = -1;
2495                 break;
2496         }
2497         cmd_special_free(h, c);
2498         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
2499                 abort->Header.Tag.upper, abort->Header.Tag.lower);
2500         return rc;
2501 }
2502
2503 /*
2504  * hpsa_find_cmd_in_queue
2505  *
2506  * Used to determine whether a command (find) is still present
2507  * in queue_head.   Optionally excludes the last element of queue_head.
2508  *
2509  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
2510  * not yet been submitted, and so can be aborted by the driver without
2511  * sending an abort to the hardware.
2512  *
2513  * Returns pointer to command if found in queue, NULL otherwise.
2514  */
2515 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
2516                         struct scsi_cmnd *find, struct list_head *queue_head)
2517 {
2518         unsigned long flags;
2519         struct CommandList *c = NULL;   /* ptr into cmpQ */
2520
2521         if (!find)
2522                 return 0;
2523         spin_lock_irqsave(&h->lock, flags);
2524         list_for_each_entry(c, queue_head, list) {
2525                 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
2526                         continue;
2527                 if (c->scsi_cmd == find) {
2528                         spin_unlock_irqrestore(&h->lock, flags);
2529                         return c;
2530                 }
2531         }
2532         spin_unlock_irqrestore(&h->lock, flags);
2533         return NULL;
2534 }
2535
2536 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
2537                                         u8 *tag, struct list_head *queue_head)
2538 {
2539         unsigned long flags;
2540         struct CommandList *c;
2541
2542         spin_lock_irqsave(&h->lock, flags);
2543         list_for_each_entry(c, queue_head, list) {
2544                 if (memcmp(&c->Header.Tag, tag, 8) != 0)
2545                         continue;
2546                 spin_unlock_irqrestore(&h->lock, flags);
2547                 return c;
2548         }
2549         spin_unlock_irqrestore(&h->lock, flags);
2550         return NULL;
2551 }
2552
2553 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
2554  * tell which kind we're dealing with, so we send the abort both ways.  There
2555  * shouldn't be any collisions between swizzled and unswizzled tags due to the
2556  * way we construct our tags but we check anyway in case the assumptions which
2557  * make this true someday become false.
2558  */
2559 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
2560         unsigned char *scsi3addr, struct CommandList *abort)
2561 {
2562         u8 swizzled_tag[8];
2563         struct CommandList *c;
2564         int rc = 0, rc2 = 0;
2565
2566         /* we do not expect to find the swizzled tag in our queue, but
2567          * check anyway just to be sure the assumptions which make this
2568          * the case haven't become wrong.
2569          */
2570         memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
2571         swizzle_abort_tag(swizzled_tag);
2572         c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
2573         if (c != NULL) {
2574                 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
2575                 return hpsa_send_abort(h, scsi3addr, abort, 0);
2576         }
2577         rc = hpsa_send_abort(h, scsi3addr, abort, 0);
2578
2579         /* if the command is still in our queue, we can't conclude that it was
2580          * aborted (it might have just completed normally) but in any case
2581          * we don't need to try to abort it another way.
2582          */
2583         c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
2584         if (c)
2585                 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
2586         return rc && rc2;
2587 }
2588
2589 /* Send an abort for the specified command.
2590  *      If the device and controller support it,
2591  *              send a task abort request.
2592  */
2593 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
2594 {
2595
2596         int i, rc;
2597         struct ctlr_info *h;
2598         struct hpsa_scsi_dev_t *dev;
2599         struct CommandList *abort; /* pointer to command to be aborted */
2600         struct CommandList *found;
2601         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
2602         char msg[256];          /* For debug messaging. */
2603         int ml = 0;
2604
2605         /* Find the controller of the command to be aborted */
2606         h = sdev_to_hba(sc->device);
2607         if (WARN(h == NULL,
2608                         "ABORT REQUEST FAILED, Controller lookup failed.\n"))
2609                 return FAILED;
2610
2611         /* Check that controller supports some kind of task abort */
2612         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
2613                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
2614                 return FAILED;
2615
2616         memset(msg, 0, sizeof(msg));
2617         ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2618                 h->scsi_host->host_no, sc->device->channel,
2619                 sc->device->id, sc->device->lun);
2620
2621         /* Find the device of the command to be aborted */
2622         dev = sc->device->hostdata;
2623         if (!dev) {
2624                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
2625                                 msg);
2626                 return FAILED;
2627         }
2628
2629         /* Get SCSI command to be aborted */
2630         abort = (struct CommandList *) sc->host_scribble;
2631         if (abort == NULL) {
2632                 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
2633                                 msg);
2634                 return FAILED;
2635         }
2636
2637         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
2638                 abort->Header.Tag.upper, abort->Header.Tag.lower);
2639         as  = (struct scsi_cmnd *) abort->scsi_cmd;
2640         if (as != NULL)
2641                 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
2642                         as->cmnd[0], as->serial_number);
2643         dev_dbg(&h->pdev->dev, "%s\n", msg);
2644         dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
2645                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2646
2647         /* Search reqQ to See if command is queued but not submitted,
2648          * if so, complete the command with aborted status and remove
2649          * it from the reqQ.
2650          */
2651         found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
2652         if (found) {
2653                 found->err_info->CommandStatus = CMD_ABORTED;
2654                 finish_cmd(found);
2655                 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
2656                                 msg);
2657                 return SUCCESS;
2658         }
2659
2660         /* not in reqQ, if also not in cmpQ, must have already completed */
2661         found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2662         if (!found)  {
2663                 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
2664                                 msg);
2665                 return SUCCESS;
2666         }
2667
2668         /*
2669          * Command is in flight, or possibly already completed
2670          * by the firmware (but not to the scsi mid layer) but we can't
2671          * distinguish which.  Send the abort down.
2672          */
2673         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2674         if (rc != 0) {
2675                 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
2676                 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2677                         h->scsi_host->host_no,
2678                         dev->bus, dev->target, dev->lun);
2679                 return FAILED;
2680         }
2681         dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
2682
2683         /* If the abort(s) above completed and actually aborted the
2684          * command, then the command to be aborted should already be
2685          * completed.  If not, wait around a bit more to see if they
2686          * manage to complete normally.
2687          */
2688 #define ABORT_COMPLETE_WAIT_SECS 30
2689         for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
2690                 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2691                 if (!found)
2692                         return SUCCESS;
2693                 msleep(100);
2694         }
2695         dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2696                 msg, ABORT_COMPLETE_WAIT_SECS);
2697         return FAILED;
2698 }
2699
2700
2701 /*
2702  * For operations that cannot sleep, a command block is allocated at init,
2703  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2704  * which ones are free or in use.  Lock must be held when calling this.
2705  * cmd_free() is the complement.
2706  */
2707 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2708 {
2709         struct CommandList *c;
2710         int i;
2711         union u64bit temp64;
2712         dma_addr_t cmd_dma_handle, err_dma_handle;
2713         unsigned long flags;
2714
2715         spin_lock_irqsave(&h->lock, flags);
2716         do {
2717                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2718                 if (i == h->nr_cmds) {
2719                         spin_unlock_irqrestore(&h->lock, flags);
2720                         return NULL;
2721                 }
2722         } while (test_and_set_bit
2723                  (i & (BITS_PER_LONG - 1),
2724                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2725         h->nr_allocs++;
2726         spin_unlock_irqrestore(&h->lock, flags);
2727
2728         c = h->cmd_pool + i;
2729         memset(c, 0, sizeof(*c));
2730         cmd_dma_handle = h->cmd_pool_dhandle
2731             + i * sizeof(*c);
2732         c->err_info = h->errinfo_pool + i;
2733         memset(c->err_info, 0, sizeof(*c->err_info));
2734         err_dma_handle = h->errinfo_pool_dhandle
2735             + i * sizeof(*c->err_info);
2736
2737         c->cmdindex = i;
2738
2739         INIT_LIST_HEAD(&c->list);
2740         c->busaddr = (u32) cmd_dma_handle;
2741         temp64.val = (u64) err_dma_handle;
2742         c->ErrDesc.Addr.lower = temp64.val32.lower;
2743         c->ErrDesc.Addr.upper = temp64.val32.upper;
2744         c->ErrDesc.Len = sizeof(*c->err_info);
2745
2746         c->h = h;
2747         return c;
2748 }
2749
2750 /* For operations that can wait for kmalloc to possibly sleep,
2751  * this routine can be called. Lock need not be held to call
2752  * cmd_special_alloc. cmd_special_free() is the complement.
2753  */
2754 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2755 {
2756         struct CommandList *c;
2757         union u64bit temp64;
2758         dma_addr_t cmd_dma_handle, err_dma_handle;
2759
2760         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2761         if (c == NULL)
2762                 return NULL;
2763         memset(c, 0, sizeof(*c));
2764
2765         c->cmdindex = -1;
2766
2767         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2768                     &err_dma_handle);
2769
2770         if (c->err_info == NULL) {
2771                 pci_free_consistent(h->pdev,
2772                         sizeof(*c), c, cmd_dma_handle);
2773                 return NULL;
2774         }
2775         memset(c->err_info, 0, sizeof(*c->err_info));
2776
2777         INIT_LIST_HEAD(&c->list);
2778         c->busaddr = (u32) cmd_dma_handle;
2779         temp64.val = (u64) err_dma_handle;
2780         c->ErrDesc.Addr.lower = temp64.val32.lower;
2781         c->ErrDesc.Addr.upper = temp64.val32.upper;
2782         c->ErrDesc.Len = sizeof(*c->err_info);
2783
2784         c->h = h;
2785         return c;
2786 }
2787
2788 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2789 {
2790         int i;
2791         unsigned long flags;
2792
2793         i = c - h->cmd_pool;
2794         spin_lock_irqsave(&h->lock, flags);
2795         clear_bit(i & (BITS_PER_LONG - 1),
2796                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2797         h->nr_frees++;
2798         spin_unlock_irqrestore(&h->lock, flags);
2799 }
2800
2801 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2802 {
2803         union u64bit temp64;
2804
2805         temp64.val32.lower = c->ErrDesc.Addr.lower;
2806         temp64.val32.upper = c->ErrDesc.Addr.upper;
2807         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2808                             c->err_info, (dma_addr_t) temp64.val);
2809         pci_free_consistent(h->pdev, sizeof(*c),
2810                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2811 }
2812
2813 #ifdef CONFIG_COMPAT
2814
2815 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2816 {
2817         IOCTL32_Command_struct __user *arg32 =
2818             (IOCTL32_Command_struct __user *) arg;
2819         IOCTL_Command_struct arg64;
2820         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2821         int err;
2822         u32 cp;
2823
2824         memset(&arg64, 0, sizeof(arg64));
2825         err = 0;
2826         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2827                            sizeof(arg64.LUN_info));
2828         err |= copy_from_user(&arg64.Request, &arg32->Request,
2829                            sizeof(arg64.Request));
2830         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2831                            sizeof(arg64.error_info));
2832         err |= get_user(arg64.buf_size, &arg32->buf_size);
2833         err |= get_user(cp, &arg32->buf);
2834         arg64.buf = compat_ptr(cp);
2835         err |= copy_to_user(p, &arg64, sizeof(arg64));
2836
2837         if (err)
2838                 return -EFAULT;
2839
2840         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2841         if (err)
2842                 return err;
2843         err |= copy_in_user(&arg32->error_info, &p->error_info,
2844                          sizeof(arg32->error_info));
2845         if (err)
2846                 return -EFAULT;
2847         return err;
2848 }
2849
2850 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2851         int cmd, void *arg)
2852 {
2853         BIG_IOCTL32_Command_struct __user *arg32 =
2854             (BIG_IOCTL32_Command_struct __user *) arg;
2855         BIG_IOCTL_Command_struct arg64;
2856         BIG_IOCTL_Command_struct __user *p =
2857             compat_alloc_user_space(sizeof(arg64));
2858         int err;
2859         u32 cp;
2860
2861         memset(&arg64, 0, sizeof(arg64));
2862         err = 0;
2863         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2864                            sizeof(arg64.LUN_info));
2865         err |= copy_from_user(&arg64.Request, &arg32->Request,
2866                            sizeof(arg64.Request));
2867         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2868                            sizeof(arg64.error_info));
2869         err |= get_user(arg64.buf_size, &arg32->buf_size);
2870         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2871         err |= get_user(cp, &arg32->buf);
2872         arg64.buf = compat_ptr(cp);
2873         err |= copy_to_user(p, &arg64, sizeof(arg64));
2874
2875         if (err)
2876                 return -EFAULT;
2877
2878         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2879         if (err)
2880                 return err;
2881         err |= copy_in_user(&arg32->error_info, &p->error_info,
2882                          sizeof(arg32->error_info));
2883         if (err)
2884                 return -EFAULT;
2885         return err;
2886 }
2887
2888 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2889 {
2890         switch (cmd) {
2891         case CCISS_GETPCIINFO:
2892         case CCISS_GETINTINFO:
2893         case CCISS_SETINTINFO:
2894         case CCISS_GETNODENAME:
2895         case CCISS_SETNODENAME:
2896         case CCISS_GETHEARTBEAT:
2897         case CCISS_GETBUSTYPES:
2898         case CCISS_GETFIRMVER:
2899         case CCISS_GETDRIVVER:
2900         case CCISS_REVALIDVOLS:
2901         case CCISS_DEREGDISK:
2902         case CCISS_REGNEWDISK:
2903         case CCISS_REGNEWD:
2904         case CCISS_RESCANDISK:
2905         case CCISS_GETLUNINFO:
2906                 return hpsa_ioctl(dev, cmd, arg);
2907
2908         case CCISS_PASSTHRU32:
2909                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2910         case CCISS_BIG_PASSTHRU32:
2911                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2912
2913         default:
2914                 return -ENOIOCTLCMD;
2915         }
2916 }
2917 #endif
2918
2919 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2920 {
2921         struct hpsa_pci_info pciinfo;
2922
2923         if (!argp)
2924                 return -EINVAL;
2925         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2926         pciinfo.bus = h->pdev->bus->number;
2927         pciinfo.dev_fn = h->pdev->devfn;
2928         pciinfo.board_id = h->board_id;
2929         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2930                 return -EFAULT;
2931         return 0;
2932 }
2933
2934 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2935 {
2936         DriverVer_type DriverVer;
2937         unsigned char vmaj, vmin, vsubmin;
2938         int rc;
2939
2940         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2941                 &vmaj, &vmin, &vsubmin);
2942         if (rc != 3) {
2943                 dev_info(&h->pdev->dev, "driver version string '%s' "
2944                         "unrecognized.", HPSA_DRIVER_VERSION);
2945                 vmaj = 0;
2946                 vmin = 0;
2947                 vsubmin = 0;
2948         }
2949         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2950         if (!argp)
2951                 return -EINVAL;
2952         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2953                 return -EFAULT;
2954         return 0;
2955 }
2956
2957 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2958 {
2959         IOCTL_Command_struct iocommand;
2960         struct CommandList *c;
2961         char *buff = NULL;
2962         union u64bit temp64;
2963         int rc = 0;
2964
2965         if (!argp)
2966                 return -EINVAL;
2967         if (!capable(CAP_SYS_RAWIO))
2968                 return -EPERM;
2969         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2970                 return -EFAULT;
2971         if ((iocommand.buf_size < 1) &&
2972             (iocommand.Request.Type.Direction != XFER_NONE)) {
2973                 return -EINVAL;
2974         }
2975         if (iocommand.buf_size > 0) {
2976                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2977                 if (buff == NULL)
2978                         return -EFAULT;
2979                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2980                         /* Copy the data into the buffer we created */
2981                         if (copy_from_user(buff, iocommand.buf,
2982                                 iocommand.buf_size)) {
2983                                 rc = -EFAULT;
2984                                 goto out_kfree;
2985                         }
2986                 } else {
2987                         memset(buff, 0, iocommand.buf_size);
2988                 }
2989         }
2990         c = cmd_special_alloc(h);
2991         if (c == NULL) {
2992                 rc = -ENOMEM;
2993                 goto out_kfree;
2994         }
2995         /* Fill in the command type */
2996         c->cmd_type = CMD_IOCTL_PEND;
2997         /* Fill in Command Header */
2998         c->Header.ReplyQueue = 0; /* unused in simple mode */
2999         if (iocommand.buf_size > 0) {   /* buffer to fill */
3000                 c->Header.SGList = 1;
3001                 c->Header.SGTotal = 1;
3002         } else  { /* no buffers to fill */
3003                 c->Header.SGList = 0;
3004                 c->Header.SGTotal = 0;
3005         }
3006         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
3007         /* use the kernel address the cmd block for tag */
3008         c->Header.Tag.lower = c->busaddr;
3009
3010         /* Fill in Request block */
3011         memcpy(&c->Request, &iocommand.Request,
3012                 sizeof(c->Request));
3013
3014         /* Fill in the scatter gather information */
3015         if (iocommand.buf_size > 0) {
3016                 temp64.val = pci_map_single(h->pdev, buff,
3017                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
3018                 if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3019                         c->SG[0].Addr.lower = 0;
3020                         c->SG[0].Addr.upper = 0;
3021                         c->SG[0].Len = 0;
3022                         rc = -ENOMEM;
3023                         goto out;
3024                 }
3025                 c->SG[0].Addr.lower = temp64.val32.lower;
3026                 c->SG[0].Addr.upper = temp64.val32.upper;
3027                 c->SG[0].Len = iocommand.buf_size;
3028                 c->SG[0].Ext = 0; /* we are not chaining*/
3029         }
3030         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3031         if (iocommand.buf_size > 0)
3032                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
3033         check_ioctl_unit_attention(h, c);
3034
3035         /* Copy the error information out */
3036         memcpy(&iocommand.error_info, c->err_info,
3037                 sizeof(iocommand.error_info));
3038         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
3039                 rc = -EFAULT;
3040                 goto out;
3041         }
3042         if (iocommand.Request.Type.Direction == XFER_READ &&
3043                 iocommand.buf_size > 0) {
3044                 /* Copy the data out of the buffer we created */
3045                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
3046                         rc = -EFAULT;
3047                         goto out;
3048                 }
3049         }
3050 out:
3051         cmd_special_free(h, c);
3052 out_kfree:
3053         kfree(buff);
3054         return rc;
3055 }
3056
3057 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
3058 {
3059         BIG_IOCTL_Command_struct *ioc;
3060         struct CommandList *c;
3061         unsigned char **buff = NULL;
3062         int *buff_size = NULL;
3063         union u64bit temp64;
3064         BYTE sg_used = 0;
3065         int status = 0;
3066         int i;
3067         u32 left;
3068         u32 sz;
3069         BYTE __user *data_ptr;
3070
3071         if (!argp)
3072                 return -EINVAL;
3073         if (!capable(CAP_SYS_RAWIO))
3074                 return -EPERM;
3075         ioc = (BIG_IOCTL_Command_struct *)
3076             kmalloc(sizeof(*ioc), GFP_KERNEL);
3077         if (!ioc) {
3078                 status = -ENOMEM;
3079                 goto cleanup1;
3080         }
3081         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
3082                 status = -EFAULT;
3083                 goto cleanup1;
3084         }
3085         if ((ioc->buf_size < 1) &&
3086             (ioc->Request.Type.Direction != XFER_NONE)) {
3087                 status = -EINVAL;
3088                 goto cleanup1;
3089         }
3090         /* Check kmalloc limits  using all SGs */
3091         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
3092                 status = -EINVAL;
3093                 goto cleanup1;
3094         }
3095         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3096                 status = -EINVAL;
3097                 goto cleanup1;
3098         }
3099         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3100         if (!buff) {
3101                 status = -ENOMEM;
3102                 goto cleanup1;
3103         }
3104         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3105         if (!buff_size) {
3106                 status = -ENOMEM;
3107                 goto cleanup1;
3108         }
3109         left = ioc->buf_size;
3110         data_ptr = ioc->buf;
3111         while (left) {
3112                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
3113                 buff_size[sg_used] = sz;
3114                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
3115                 if (buff[sg_used] == NULL) {
3116                         status = -ENOMEM;
3117                         goto cleanup1;
3118                 }
3119                 if (ioc->Request.Type.Direction == XFER_WRITE) {
3120                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
3121                                 status = -ENOMEM;
3122                                 goto cleanup1;
3123                         }
3124                 } else
3125                         memset(buff[sg_used], 0, sz);
3126                 left -= sz;
3127                 data_ptr += sz;
3128                 sg_used++;
3129         }
3130         c = cmd_special_alloc(h);
3131         if (c == NULL) {
3132                 status = -ENOMEM;
3133                 goto cleanup1;
3134         }
3135         c->cmd_type = CMD_IOCTL_PEND;
3136         c->Header.ReplyQueue = 0;
3137         c->Header.SGList = c->Header.SGTotal = sg_used;
3138         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
3139         c->Header.Tag.lower = c->busaddr;
3140         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
3141         if (ioc->buf_size > 0) {
3142                 int i;
3143                 for (i = 0; i < sg_used; i++) {
3144                         temp64.val = pci_map_single(h->pdev, buff[i],
3145                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
3146                         if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3147                                 c->SG[i].Addr.lower = 0;
3148                                 c->SG[i].Addr.upper = 0;
3149                                 c->SG[i].Len = 0;
3150                                 hpsa_pci_unmap(h->pdev, c, i,
3151                                         PCI_DMA_BIDIRECTIONAL);
3152                                 status = -ENOMEM;
3153                                 goto cleanup1;
3154                         }
3155                         c->SG[i].Addr.lower = temp64.val32.lower;
3156                         c->SG[i].Addr.upper = temp64.val32.upper;
3157                         c->SG[i].Len = buff_size[i];
3158                         /* we are not chaining */
3159                         c->SG[i].Ext = 0;
3160                 }
3161         }
3162         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3163         if (sg_used)
3164                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3165         check_ioctl_unit_attention(h, c);
3166         /* Copy the error information out */
3167         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
3168         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
3169                 cmd_special_free(h, c);
3170                 status = -EFAULT;
3171                 goto cleanup1;
3172         }
3173         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3174                 /* Copy the data out of the buffer we created */
3175                 BYTE __user *ptr = ioc->buf;
3176                 for (i = 0; i < sg_used; i++) {
3177                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
3178                                 cmd_special_free(h, c);
3179                                 status = -EFAULT;
3180                                 goto cleanup1;
3181                         }
3182                         ptr += buff_size[i];
3183                 }
3184         }
3185         cmd_special_free(h, c);
3186         status = 0;
3187 cleanup1:
3188         if (buff) {
3189                 for (i = 0; i < sg_used; i++)
3190                         kfree(buff[i]);
3191                 kfree(buff);
3192         }
3193         kfree(buff_size);
3194         kfree(ioc);
3195         return status;
3196 }
3197
3198 static void check_ioctl_unit_attention(struct ctlr_info *h,
3199         struct CommandList *c)
3200 {
3201         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
3202                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
3203                 (void) check_for_unit_attention(h, c);
3204 }
3205 /*
3206  * ioctl
3207  */
3208 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
3209 {
3210         struct ctlr_info *h;
3211         void __user *argp = (void __user *)arg;
3212
3213         h = sdev_to_hba(dev);
3214
3215         switch (cmd) {
3216         case CCISS_DEREGDISK:
3217         case CCISS_REGNEWDISK:
3218         case CCISS_REGNEWD:
3219                 hpsa_scan_start(h->scsi_host);
3220                 return 0;
3221         case CCISS_GETPCIINFO:
3222                 return hpsa_getpciinfo_ioctl(h, argp);
3223         case CCISS_GETDRIVVER:
3224                 return hpsa_getdrivver_ioctl(h, argp);
3225         case CCISS_PASSTHRU:
3226                 return hpsa_passthru_ioctl(h, argp);
3227         case CCISS_BIG_PASSTHRU:
3228                 return hpsa_big_passthru_ioctl(h, argp);
3229         default:
3230                 return -ENOTTY;
3231         }
3232 }
3233
3234 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3235                                 u8 reset_type)
3236 {
3237         struct CommandList *c;
3238
3239         c = cmd_alloc(h);
3240         if (!c)
3241                 return -ENOMEM;
3242         /* fill_cmd can't fail here, no data buffer to map */
3243         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3244                 RAID_CTLR_LUNID, TYPE_MSG);
3245         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
3246         c->waiting = NULL;
3247         enqueue_cmd_and_start_io(h, c);
3248         /* Don't wait for completion, the reset won't complete.  Don't free
3249          * the command either.  This is the last command we will send before
3250          * re-initializing everything, so it doesn't matter and won't leak.
3251          */
3252         return 0;
3253 }
3254
3255 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3256         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3257         int cmd_type)
3258 {
3259         int pci_dir = XFER_NONE;
3260         struct CommandList *a; /* for commands to be aborted */
3261
3262         c->cmd_type = CMD_IOCTL_PEND;
3263         c->Header.ReplyQueue = 0;
3264         if (buff != NULL && size > 0) {
3265                 c->Header.SGList = 1;
3266                 c->Header.SGTotal = 1;
3267         } else {
3268                 c->Header.SGList = 0;
3269                 c->Header.SGTotal = 0;
3270         }
3271         c->Header.Tag.lower = c->busaddr;
3272         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
3273
3274         c->Request.Type.Type = cmd_type;
3275         if (cmd_type == TYPE_CMD) {
3276                 switch (cmd) {
3277                 case HPSA_INQUIRY:
3278                         /* are we trying to read a vital product page */
3279                         if (page_code != 0) {
3280                                 c->Request.CDB[1] = 0x01;
3281                                 c->Request.CDB[2] = page_code;
3282                         }
3283                         c->Request.CDBLen = 6;
3284                         c->Request.Type.Attribute = ATTR_SIMPLE;
3285                         c->Request.Type.Direction = XFER_READ;
3286                         c->Request.Timeout = 0;
3287                         c->Request.CDB[0] = HPSA_INQUIRY;
3288                         c->Request.CDB[4] = size & 0xFF;
3289                         break;
3290                 case HPSA_REPORT_LOG:
3291                 case HPSA_REPORT_PHYS:
3292                         /* Talking to controller so It's a physical command
3293                            mode = 00 target = 0.  Nothing to write.
3294                          */
3295                         c->Request.CDBLen = 12;
3296                         c->Request.Type.Attribute = ATTR_SIMPLE;
3297                         c->Request.Type.Direction = XFER_READ;
3298                         c->Request.Timeout = 0;
3299                         c->Request.CDB[0] = cmd;
3300                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
3301                         c->Request.CDB[7] = (size >> 16) & 0xFF;
3302                         c->Request.CDB[8] = (size >> 8) & 0xFF;
3303                         c->Request.CDB[9] = size & 0xFF;
3304                         break;
3305                 case HPSA_CACHE_FLUSH:
3306                         c->Request.CDBLen = 12;
3307                         c->Request.Type.Attribute = ATTR_SIMPLE;
3308                         c->Request.Type.Direction = XFER_WRITE;
3309                         c->Request.Timeout = 0;
3310                         c->Request.CDB[0] = BMIC_WRITE;
3311                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3312                         c->Request.CDB[7] = (size >> 8) & 0xFF;
3313                         c->Request.CDB[8] = size & 0xFF;
3314                         break;
3315                 case TEST_UNIT_READY:
3316                         c->Request.CDBLen = 6;
3317                         c->Request.Type.Attribute = ATTR_SIMPLE;
3318                         c->Request.Type.Direction = XFER_NONE;
3319                         c->Request.Timeout = 0;
3320                         break;
3321                 default:
3322                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
3323                         BUG();
3324                         return -1;
3325                 }
3326         } else if (cmd_type == TYPE_MSG) {
3327                 switch (cmd) {
3328
3329                 case  HPSA_DEVICE_RESET_MSG:
3330                         c->Request.CDBLen = 16;
3331                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
3332                         c->Request.Type.Attribute = ATTR_SIMPLE;
3333                         c->Request.Type.Direction = XFER_NONE;
3334                         c->Request.Timeout = 0; /* Don't time out */
3335                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
3336                         c->Request.CDB[0] =  cmd;
3337                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
3338                         /* If bytes 4-7 are zero, it means reset the */
3339                         /* LunID device */
3340                         c->Request.CDB[4] = 0x00;
3341                         c->Request.CDB[5] = 0x00;
3342                         c->Request.CDB[6] = 0x00;
3343                         c->Request.CDB[7] = 0x00;
3344                         break;
3345                 case  HPSA_ABORT_MSG:
3346                         a = buff;       /* point to command to be aborted */
3347                         dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3348                                 a->Header.Tag.upper, a->Header.Tag.lower,
3349                                 c->Header.Tag.upper, c->Header.Tag.lower);
3350                         c->Request.CDBLen = 16;
3351                         c->Request.Type.Type = TYPE_MSG;
3352                         c->Request.Type.Attribute = ATTR_SIMPLE;
3353                         c->Request.Type.Direction = XFER_WRITE;
3354                         c->Request.Timeout = 0; /* Don't time out */
3355                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
3356                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
3357                         c->Request.CDB[2] = 0x00; /* reserved */
3358                         c->Request.CDB[3] = 0x00; /* reserved */
3359                         /* Tag to abort goes in CDB[4]-CDB[11] */
3360                         c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
3361                         c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
3362                         c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
3363                         c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
3364                         c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
3365                         c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
3366                         c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
3367                         c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
3368                         c->Request.CDB[12] = 0x00; /* reserved */
3369                         c->Request.CDB[13] = 0x00; /* reserved */
3370                         c->Request.CDB[14] = 0x00; /* reserved */
3371                         c->Request.CDB[15] = 0x00; /* reserved */
3372                 break;
3373                 default:
3374                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
3375                                 cmd);
3376                         BUG();
3377                 }
3378         } else {
3379                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3380                 BUG();
3381         }
3382
3383         switch (c->Request.Type.Direction) {
3384         case XFER_READ:
3385                 pci_dir = PCI_DMA_FROMDEVICE;
3386                 break;
3387         case XFER_WRITE:
3388                 pci_dir = PCI_DMA_TODEVICE;
3389                 break;
3390         case XFER_NONE:
3391                 pci_dir = PCI_DMA_NONE;
3392                 break;
3393         default:
3394                 pci_dir = PCI_DMA_BIDIRECTIONAL;
3395         }
3396         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
3397                 return -1;
3398         return 0;
3399 }
3400
3401 /*
3402  * Map (physical) PCI mem into (virtual) kernel space
3403  */
3404 static void __iomem *remap_pci_mem(ulong base, ulong size)
3405 {
3406         ulong page_base = ((ulong) base) & PAGE_MASK;
3407         ulong page_offs = ((ulong) base) - page_base;
3408         void __iomem *page_remapped = ioremap_nocache(page_base,
3409                 page_offs + size);
3410
3411         return page_remapped ? (page_remapped + page_offs) : NULL;
3412 }
3413
3414 /* Takes cmds off the submission queue and sends them to the hardware,
3415  * then puts them on the queue of cmds waiting for completion.
3416  */
3417 static void start_io(struct ctlr_info *h)
3418 {
3419         struct CommandList *c;
3420         unsigned long flags;
3421
3422         spin_lock_irqsave(&h->lock, flags);
3423         while (!list_empty(&h->reqQ)) {
3424                 c = list_entry(h->reqQ.next, struct CommandList, list);
3425                 /* can't do anything if fifo is full */
3426                 if ((h->access.fifo_full(h))) {
3427                         dev_warn(&h->pdev->dev, "fifo full\n");
3428                         break;
3429                 }
3430
3431                 /* Get the first entry from the Request Q */
3432                 removeQ(c);
3433                 h->Qdepth--;
3434
3435                 /* Put job onto the completed Q */
3436                 addQ(&h->cmpQ, c);
3437
3438                 /* Must increment commands_outstanding before unlocking
3439                  * and submitting to avoid race checking for fifo full
3440                  * condition.
3441                  */
3442                 h->commands_outstanding++;
3443                 if (h->commands_outstanding > h->max_outstanding)
3444                         h->max_outstanding = h->commands_outstanding;
3445
3446                 /* Tell the controller execute command */
3447                 spin_unlock_irqrestore(&h->lock, flags);
3448                 h->access.submit_command(h, c);
3449                 spin_lock_irqsave(&h->lock, flags);
3450         }
3451         spin_unlock_irqrestore(&h->lock, flags);
3452 }
3453
3454 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3455 {
3456         return h->access.command_completed(h, q);
3457 }
3458
3459 static inline bool interrupt_pending(struct ctlr_info *h)
3460 {
3461         return h->access.intr_pending(h);
3462 }
3463
3464 static inline long interrupt_not_for_us(struct ctlr_info *h)
3465 {
3466         return (h->access.intr_pending(h) == 0) ||
3467                 (h->interrupts_enabled == 0);
3468 }
3469
3470 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3471         u32 raw_tag)
3472 {
3473         if (unlikely(tag_index >= h->nr_cmds)) {
3474                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3475                 return 1;
3476         }
3477         return 0;
3478 }
3479
3480 static inline void finish_cmd(struct CommandList *c)
3481 {
3482         unsigned long flags;
3483
3484         spin_lock_irqsave(&c->h->lock, flags);
3485         removeQ(c);
3486         spin_unlock_irqrestore(&c->h->lock, flags);
3487         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3488         if (likely(c->cmd_type == CMD_SCSI))
3489                 complete_scsi_command(c);
3490         else if (c->cmd_type == CMD_IOCTL_PEND)
3491                 complete(c->waiting);
3492 }
3493
3494 static inline u32 hpsa_tag_contains_index(u32 tag)
3495 {
3496         return tag & DIRECT_LOOKUP_BIT;
3497 }
3498
3499 static inline u32 hpsa_tag_to_index(u32 tag)
3500 {
3501         return tag >> DIRECT_LOOKUP_SHIFT;
3502 }
3503
3504
3505 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3506 {
3507 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3508 #define HPSA_SIMPLE_ERROR_BITS 0x03
3509         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3510                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3511         return tag & ~HPSA_PERF_ERROR_BITS;
3512 }
3513
3514 /* process completion of an indexed ("direct lookup") command */
3515 static inline void process_indexed_cmd(struct ctlr_info *h,
3516         u32 raw_tag)
3517 {
3518         u32 tag_index;
3519         struct CommandList *c;
3520
3521         tag_index = hpsa_tag_to_index(raw_tag);
3522         if (!bad_tag(h, tag_index, raw_tag)) {
3523                 c = h->cmd_pool + tag_index;
3524                 finish_cmd(c);
3525         }
3526 }
3527
3528 /* process completion of a non-indexed command */
3529 static inline void process_nonindexed_cmd(struct ctlr_info *h,
3530         u32 raw_tag)
3531 {
3532         u32 tag;
3533         struct CommandList *c = NULL;
3534         unsigned long flags;
3535
3536         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3537         spin_lock_irqsave(&h->lock, flags);
3538         list_for_each_entry(c, &h->cmpQ, list) {
3539                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3540                         spin_unlock_irqrestore(&h->lock, flags);
3541                         finish_cmd(c);
3542                         return;
3543                 }
3544         }
3545         spin_unlock_irqrestore(&h->lock, flags);
3546         bad_tag(h, h->nr_cmds + 1, raw_tag);
3547 }
3548
3549 /* Some controllers, like p400, will give us one interrupt
3550  * after a soft reset, even if we turned interrupts off.
3551  * Only need to check for this in the hpsa_xxx_discard_completions
3552  * functions.
3553  */
3554 static int ignore_bogus_interrupt(struct ctlr_info *h)
3555 {
3556         if (likely(!reset_devices))
3557                 return 0;
3558
3559         if (likely(h->interrupts_enabled))
3560                 return 0;
3561
3562         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3563                 "(known firmware bug.)  Ignoring.\n");
3564
3565         return 1;
3566 }
3567
3568 /*
3569  * Convert &h->q[x] (passed to interrupt handlers) back to h.
3570  * Relies on (h-q[x] == x) being true for x such that
3571  * 0 <= x < MAX_REPLY_QUEUES.
3572  */
3573 static struct ctlr_info *queue_to_hba(u8 *queue)
3574 {
3575         return container_of((queue - *queue), struct ctlr_info, q[0]);
3576 }
3577
3578 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
3579 {
3580         struct ctlr_info *h = queue_to_hba(queue);
3581         u8 q = *(u8 *) queue;
3582         u32 raw_tag;
3583
3584         if (ignore_bogus_interrupt(h))
3585                 return IRQ_NONE;
3586
3587         if (interrupt_not_for_us(h))
3588                 return IRQ_NONE;
3589         h->last_intr_timestamp = get_jiffies_64();
3590         while (interrupt_pending(h)) {
3591                 raw_tag = get_next_completion(h, q);
3592                 while (raw_tag != FIFO_EMPTY)
3593                         raw_tag = next_command(h, q);
3594         }
3595         return IRQ_HANDLED;
3596 }
3597
3598 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3599 {
3600         struct ctlr_info *h = queue_to_hba(queue);
3601         u32 raw_tag;
3602         u8 q = *(u8 *) queue;
3603
3604         if (ignore_bogus_interrupt(h))
3605                 return IRQ_NONE;
3606
3607         h->last_intr_timestamp = get_jiffies_64();
3608         raw_tag = get_next_completion(h, q);
3609         while (raw_tag != FIFO_EMPTY)
3610                 raw_tag = next_command(h, q);
3611         return IRQ_HANDLED;
3612 }
3613
3614 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3615 {
3616         struct ctlr_info *h = queue_to_hba((u8 *) queue);
3617         u32 raw_tag;
3618         u8 q = *(u8 *) queue;
3619
3620         if (interrupt_not_for_us(h))
3621                 return IRQ_NONE;
3622         h->last_intr_timestamp = get_jiffies_64();
3623         while (interrupt_pending(h)) {
3624                 raw_tag = get_next_completion(h, q);
3625                 while (raw_tag != FIFO_EMPTY) {
3626                         if (likely(hpsa_tag_contains_index(raw_tag)))
3627                                 process_indexed_cmd(h, raw_tag);
3628                         else
3629                                 process_nonindexed_cmd(h, raw_tag);
3630                         raw_tag = next_command(h, q);
3631                 }
3632         }
3633         return IRQ_HANDLED;
3634 }
3635
3636 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3637 {
3638         struct ctlr_info *h = queue_to_hba(queue);
3639         u32 raw_tag;
3640         u8 q = *(u8 *) queue;
3641
3642         h->last_intr_timestamp = get_jiffies_64();
3643         raw_tag = get_next_completion(h, q);
3644         while (raw_tag != FIFO_EMPTY) {
3645                 if (likely(hpsa_tag_contains_index(raw_tag)))
3646                         process_indexed_cmd(h, raw_tag);
3647                 else
3648                         process_nonindexed_cmd(h, raw_tag);
3649                 raw_tag = next_command(h, q);
3650         }
3651         return IRQ_HANDLED;
3652 }
3653
3654 /* Send a message CDB to the firmware. Careful, this only works
3655  * in simple mode, not performant mode due to the tag lookup.
3656  * We only ever use this immediately after a controller reset.
3657  */
3658 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3659                         unsigned char type)
3660 {
3661         struct Command {
3662                 struct CommandListHeader CommandHeader;
3663                 struct RequestBlock Request;
3664                 struct ErrDescriptor ErrorDescriptor;
3665         };
3666         struct Command *cmd;
3667         static const size_t cmd_sz = sizeof(*cmd) +
3668                                         sizeof(cmd->ErrorDescriptor);
3669         dma_addr_t paddr64;
3670         uint32_t paddr32, tag;
3671         void __iomem *vaddr;
3672         int i, err;
3673
3674         vaddr = pci_ioremap_bar(pdev, 0);
3675         if (vaddr == NULL)
3676                 return -ENOMEM;
3677
3678         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3679          * CCISS commands, so they must be allocated from the lower 4GiB of
3680          * memory.
3681          */
3682         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3683         if (err) {
3684                 iounmap(vaddr);
3685                 return -ENOMEM;
3686         }
3687
3688         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3689         if (cmd == NULL) {
3690                 iounmap(vaddr);
3691                 return -ENOMEM;
3692         }
3693
3694         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3695          * although there's no guarantee, we assume that the address is at
3696          * least 4-byte aligned (most likely, it's page-aligned).
3697          */
3698         paddr32 = paddr64;
3699
3700         cmd->CommandHeader.ReplyQueue = 0;
3701         cmd->CommandHeader.SGList = 0;
3702         cmd->CommandHeader.SGTotal = 0;
3703         cmd->CommandHeader.Tag.lower = paddr32;
3704         cmd->CommandHeader.Tag.upper = 0;
3705         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3706
3707         cmd->Request.CDBLen = 16;
3708         cmd->Request.Type.Type = TYPE_MSG;
3709         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3710         cmd->Request.Type.Direction = XFER_NONE;
3711         cmd->Request.Timeout = 0; /* Don't time out */
3712         cmd->Request.CDB[0] = opcode;
3713         cmd->Request.CDB[1] = type;
3714         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3715         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3716         cmd->ErrorDescriptor.Addr.upper = 0;
3717         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3718
3719         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3720
3721         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3722                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3723                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3724                         break;
3725                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3726         }
3727
3728         iounmap(vaddr);
3729
3730         /* we leak the DMA buffer here ... no choice since the controller could
3731          *  still complete the command.
3732          */
3733         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3734                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3735                         opcode, type);
3736                 return -ETIMEDOUT;
3737         }
3738
3739         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3740
3741         if (tag & HPSA_ERROR_BIT) {
3742                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3743                         opcode, type);
3744                 return -EIO;
3745         }
3746
3747         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3748                 opcode, type);
3749         return 0;
3750 }
3751
3752 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3753
3754 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3755         void * __iomem vaddr, u32 use_doorbell)
3756 {
3757         u16 pmcsr;
3758         int pos;
3759
3760         if (use_doorbell) {
3761                 /* For everything after the P600, the PCI power state method
3762                  * of resetting the controller doesn't work, so we have this
3763                  * other way using the doorbell register.
3764                  */
3765                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3766                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3767         } else { /* Try to do it the PCI power state way */
3768
3769                 /* Quoting from the Open CISS Specification: "The Power
3770                  * Management Control/Status Register (CSR) controls the power
3771                  * state of the device.  The normal operating state is D0,
3772                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3773                  * the controller, place the interface device in D3 then to D0,
3774                  * this causes a secondary PCI reset which will reset the
3775                  * controller." */
3776
3777                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3778                 if (pos == 0) {
3779                         dev_err(&pdev->dev,
3780                                 "hpsa_reset_controller: "
3781                                 "PCI PM not supported\n");
3782                         return -ENODEV;
3783                 }
3784                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3785                 /* enter the D3hot power management state */
3786                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3787                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3788                 pmcsr |= PCI_D3hot;
3789                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3790
3791                 msleep(500);
3792
3793                 /* enter the D0 power management state */
3794                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3795                 pmcsr |= PCI_D0;
3796                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3797
3798                 /*
3799                  * The P600 requires a small delay when changing states.
3800                  * Otherwise we may think the board did not reset and we bail.
3801                  * This for kdump only and is particular to the P600.
3802                  */
3803                 msleep(500);
3804         }
3805         return 0;
3806 }
3807
3808 static void init_driver_version(char *driver_version, int len)
3809 {
3810         memset(driver_version, 0, len);
3811         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3812 }
3813
3814 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
3815 {
3816         char *driver_version;
3817         int i, size = sizeof(cfgtable->driver_version);
3818
3819         driver_version = kmalloc(size, GFP_KERNEL);
3820         if (!driver_version)
3821                 return -ENOMEM;
3822
3823         init_driver_version(driver_version, size);
3824         for (i = 0; i < size; i++)
3825                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3826         kfree(driver_version);
3827         return 0;
3828 }
3829
3830 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
3831                                           unsigned char *driver_ver)
3832 {
3833         int i;
3834
3835         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3836                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3837 }
3838
3839 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
3840 {
3841
3842         char *driver_ver, *old_driver_ver;
3843         int rc, size = sizeof(cfgtable->driver_version);
3844
3845         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3846         if (!old_driver_ver)
3847                 return -ENOMEM;
3848         driver_ver = old_driver_ver + size;
3849
3850         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3851          * should have been changed, otherwise we know the reset failed.
3852          */
3853         init_driver_version(old_driver_ver, size);
3854         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3855         rc = !memcmp(driver_ver, old_driver_ver, size);
3856         kfree(old_driver_ver);
3857         return rc;
3858 }
3859 /* This does a hard reset of the controller using PCI power management
3860  * states or the using the doorbell register.
3861  */
3862 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3863 {
3864         u64 cfg_offset;
3865         u32 cfg_base_addr;
3866         u64 cfg_base_addr_index;
3867         void __iomem *vaddr;
3868         unsigned long paddr;
3869         u32 misc_fw_support;
3870         int rc;
3871         struct CfgTable __iomem *cfgtable;
3872         u32 use_doorbell;
3873         u32 board_id;
3874         u16 command_register;
3875
3876         /* For controllers as old as the P600, this is very nearly
3877          * the same thing as
3878          *
3879          * pci_save_state(pci_dev);
3880          * pci_set_power_state(pci_dev, PCI_D3hot);
3881          * pci_set_power_state(pci_dev, PCI_D0);
3882          * pci_restore_state(pci_dev);
3883          *
3884          * For controllers newer than the P600, the pci power state
3885          * method of resetting doesn't work so we have another way
3886          * using the doorbell register.
3887          */
3888
3889         rc = hpsa_lookup_board_id(pdev, &board_id);
3890         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3891                 dev_warn(&pdev->dev, "Not resetting device.\n");
3892                 return -ENODEV;
3893         }
3894
3895         /* if controller is soft- but not hard resettable... */
3896         if (!ctlr_is_hard_resettable(board_id))
3897                 return -ENOTSUPP; /* try soft reset later. */
3898
3899         /* Save the PCI command register */
3900         pci_read_config_word(pdev, 4, &command_register);
3901         /* Turn the board off.  This is so that later pci_restore_state()
3902          * won't turn the board on before the rest of config space is ready.
3903          */
3904         pci_disable_device(pdev);
3905         pci_save_state(pdev);
3906
3907         /* find the first memory BAR, so we can find the cfg table */
3908         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3909         if (rc)
3910                 return rc;
3911         vaddr = remap_pci_mem(paddr, 0x250);
3912         if (!vaddr)
3913                 return -ENOMEM;
3914
3915         /* find cfgtable in order to check if reset via doorbell is supported */
3916         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3917                                         &cfg_base_addr_index, &cfg_offset);
3918         if (rc)
3919                 goto unmap_vaddr;
3920         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3921                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3922         if (!cfgtable) {
3923                 rc = -ENOMEM;
3924                 goto unmap_vaddr;
3925         }
3926         rc = write_driver_ver_to_cfgtable(cfgtable);
3927         if (rc)
3928                 goto unmap_vaddr;
3929
3930         /* If reset via doorbell register is supported, use that.
3931          * There are two such methods.  Favor the newest method.
3932          */
3933         misc_fw_support = readl(&cfgtable->misc_fw_support);
3934         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3935         if (use_doorbell) {
3936                 use_doorbell = DOORBELL_CTLR_RESET2;
3937         } else {
3938                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3939                 if (use_doorbell) {
3940                         dev_warn(&pdev->dev, "Soft reset not supported. "
3941                                 "Firmware update is required.\n");
3942                         rc = -ENOTSUPP; /* try soft reset */
3943                         goto unmap_cfgtable;
3944                 }
3945         }
3946
3947         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3948         if (rc)
3949                 goto unmap_cfgtable;
3950
3951         pci_restore_state(pdev);
3952         rc = pci_enable_device(pdev);
3953         if (rc) {
3954                 dev_warn(&pdev->dev, "failed to enable device.\n");
3955                 goto unmap_cfgtable;
3956         }
3957         pci_write_config_word(pdev, 4, command_register);
3958
3959         /* Some devices (notably the HP Smart Array 5i Controller)
3960            need a little pause here */
3961         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3962
3963         /* Wait for board to become not ready, then ready. */
3964         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3965         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3966         if (rc) {
3967                 dev_warn(&pdev->dev,
3968                         "failed waiting for board to reset."
3969                         " Will try soft reset.\n");
3970                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3971                 goto unmap_cfgtable;
3972         }
3973         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3974         if (rc) {
3975                 dev_warn(&pdev->dev,
3976                         "failed waiting for board to become ready "
3977                         "after hard reset\n");
3978                 goto unmap_cfgtable;
3979         }
3980
3981         rc = controller_reset_failed(vaddr);
3982         if (rc < 0)
3983                 goto unmap_cfgtable;
3984         if (rc) {
3985                 dev_warn(&pdev->dev, "Unable to successfully reset "
3986                         "controller. Will try soft reset.\n");
3987                 rc = -ENOTSUPP;
3988         } else {
3989                 dev_info(&pdev->dev, "board ready after hard reset.\n");
3990         }
3991
3992 unmap_cfgtable:
3993         iounmap(cfgtable);
3994
3995 unmap_vaddr:
3996         iounmap(vaddr);
3997         return rc;
3998 }
3999
4000 /*
4001  *  We cannot read the structure directly, for portability we must use
4002  *   the io functions.
4003  *   This is for debug only.
4004  */
4005 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
4006 {
4007 #ifdef HPSA_DEBUG
4008         int i;
4009         char temp_name[17];
4010
4011         dev_info(dev, "Controller Configuration information\n");
4012         dev_info(dev, "------------------------------------\n");
4013         for (i = 0; i < 4; i++)
4014                 temp_name[i] = readb(&(tb->Signature[i]));
4015         temp_name[4] = '\0';
4016         dev_info(dev, "   Signature = %s\n", temp_name);
4017         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
4018         dev_info(dev, "   Transport methods supported = 0x%x\n",
4019                readl(&(tb->TransportSupport)));
4020         dev_info(dev, "   Transport methods active = 0x%x\n",
4021                readl(&(tb->TransportActive)));
4022         dev_info(dev, "   Requested transport Method = 0x%x\n",
4023                readl(&(tb->HostWrite.TransportRequest)));
4024         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
4025                readl(&(tb->HostWrite.CoalIntDelay)));
4026         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
4027                readl(&(tb->HostWrite.CoalIntCount)));
4028         dev_info(dev, "   Max outstanding commands = 0x%d\n",
4029                readl(&(tb->CmdsOutMax)));
4030         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
4031         for (i = 0; i < 16; i++)
4032                 temp_name[i] = readb(&(tb->ServerName[i]));
4033         temp_name[16] = '\0';
4034         dev_info(dev, "   Server Name = %s\n", temp_name);
4035         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
4036                 readl(&(tb->HeartBeat)));
4037 #endif                          /* HPSA_DEBUG */
4038 }
4039
4040 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
4041 {
4042         int i, offset, mem_type, bar_type;
4043
4044         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
4045                 return 0;
4046         offset = 0;
4047         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4048                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
4049                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
4050                         offset += 4;
4051                 else {
4052                         mem_type = pci_resource_flags(pdev, i) &
4053                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
4054                         switch (mem_type) {
4055                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
4056                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
4057                                 offset += 4;    /* 32 bit */
4058                                 break;
4059                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
4060                                 offset += 8;
4061                                 break;
4062                         default:        /* reserved in PCI 2.2 */
4063                                 dev_warn(&pdev->dev,
4064                                        "base address is invalid\n");
4065                                 return -1;
4066                                 break;
4067                         }
4068                 }
4069                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
4070                         return i + 1;
4071         }
4072         return -1;
4073 }
4074
4075 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4076  * controllers that are capable. If not, we use IO-APIC mode.
4077  */
4078
4079 static void hpsa_interrupt_mode(struct ctlr_info *h)
4080 {
4081 #ifdef CONFIG_PCI_MSI
4082         int err, i;
4083         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
4084
4085         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
4086                 hpsa_msix_entries[i].vector = 0;
4087                 hpsa_msix_entries[i].entry = i;
4088         }
4089
4090         /* Some boards advertise MSI but don't really support it */
4091         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4092             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4093                 goto default_int_mode;
4094         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4095                 dev_info(&h->pdev->dev, "MSIX\n");
4096                 err = pci_enable_msix(h->pdev, hpsa_msix_entries,
4097                                                 MAX_REPLY_QUEUES);
4098                 if (!err) {
4099                         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4100                                 h->intr[i] = hpsa_msix_entries[i].vector;
4101                         h->msix_vector = 1;
4102                         return;
4103                 }
4104                 if (err > 0) {
4105                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4106                                "available\n", err);
4107                         goto default_int_mode;
4108                 } else {
4109                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4110                                err);
4111                         goto default_int_mode;
4112                 }
4113         }
4114         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4115                 dev_info(&h->pdev->dev, "MSI\n");
4116                 if (!pci_enable_msi(h->pdev))
4117                         h->msi_vector = 1;
4118                 else
4119                         dev_warn(&h->pdev->dev, "MSI init failed\n");
4120         }
4121 default_int_mode:
4122 #endif                          /* CONFIG_PCI_MSI */
4123         /* if we get here we're going to use the default interrupt mode */
4124         h->intr[h->intr_mode] = h->pdev->irq;
4125 }
4126
4127 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4128 {
4129         int i;
4130         u32 subsystem_vendor_id, subsystem_device_id;
4131
4132         subsystem_vendor_id = pdev->subsystem_vendor;
4133         subsystem_device_id = pdev->subsystem_device;
4134         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4135                     subsystem_vendor_id;
4136
4137         for (i = 0; i < ARRAY_SIZE(products); i++)
4138                 if (*board_id == products[i].board_id)
4139                         return i;
4140
4141         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
4142                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
4143                 !hpsa_allow_any) {
4144                 dev_warn(&pdev->dev, "unrecognized board ID: "
4145                         "0x%08x, ignoring.\n", *board_id);
4146                         return -ENODEV;
4147         }
4148         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
4149 }
4150
4151 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
4152                                     unsigned long *memory_bar)
4153 {
4154         int i;
4155
4156         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4157                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4158                         /* addressing mode bits already removed */
4159                         *memory_bar = pci_resource_start(pdev, i);
4160                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4161                                 *memory_bar);
4162                         return 0;
4163                 }
4164         dev_warn(&pdev->dev, "no memory BAR found\n");
4165         return -ENODEV;
4166 }
4167
4168 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
4169                                      int wait_for_ready)
4170 {
4171         int i, iterations;
4172         u32 scratchpad;
4173         if (wait_for_ready)
4174                 iterations = HPSA_BOARD_READY_ITERATIONS;
4175         else
4176                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4177
4178         for (i = 0; i < iterations; i++) {
4179                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4180                 if (wait_for_ready) {
4181                         if (scratchpad == HPSA_FIRMWARE_READY)
4182                                 return 0;
4183                 } else {
4184                         if (scratchpad != HPSA_FIRMWARE_READY)
4185                                 return 0;
4186                 }
4187                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
4188         }
4189         dev_warn(&pdev->dev, "board not ready, timed out.\n");
4190         return -ENODEV;
4191 }
4192
4193 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4194                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4195                                u64 *cfg_offset)
4196 {
4197         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4198         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4199         *cfg_base_addr &= (u32) 0x0000ffff;
4200         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4201         if (*cfg_base_addr_index == -1) {
4202                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
4203                 return -ENODEV;
4204         }
4205         return 0;
4206 }
4207
4208 static int hpsa_find_cfgtables(struct ctlr_info *h)
4209 {
4210         u64 cfg_offset;
4211         u32 cfg_base_addr;
4212         u64 cfg_base_addr_index;
4213         u32 trans_offset;
4214         int rc;
4215
4216         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4217                 &cfg_base_addr_index, &cfg_offset);
4218         if (rc)
4219                 return rc;
4220         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4221                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4222         if (!h->cfgtable)
4223                 return -ENOMEM;
4224         rc = write_driver_ver_to_cfgtable(h->cfgtable);
4225         if (rc)
4226                 return rc;
4227         /* Find performant mode table. */
4228         trans_offset = readl(&h->cfgtable->TransMethodOffset);
4229         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4230                                 cfg_base_addr_index)+cfg_offset+trans_offset,
4231                                 sizeof(*h->transtable));
4232         if (!h->transtable)
4233                 return -ENOMEM;
4234         return 0;
4235 }
4236
4237 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4238 {
4239         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4240
4241         /* Limit commands in memory limited kdump scenario. */
4242         if (reset_devices && h->max_commands > 32)
4243                 h->max_commands = 32;
4244
4245         if (h->max_commands < 16) {
4246                 dev_warn(&h->pdev->dev, "Controller reports "
4247                         "max supported commands of %d, an obvious lie. "
4248                         "Using 16.  Ensure that firmware is up to date.\n",
4249                         h->max_commands);
4250                 h->max_commands = 16;
4251         }
4252 }
4253
4254 /* Interrogate the hardware for some limits:
4255  * max commands, max SG elements without chaining, and with chaining,
4256  * SG chain block size, etc.
4257  */
4258 static void hpsa_find_board_params(struct ctlr_info *h)
4259 {
4260         hpsa_get_max_perf_mode_cmds(h);
4261         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4262         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
4263         /*
4264          * Limit in-command s/g elements to 32 save dma'able memory.
4265          * Howvever spec says if 0, use 31
4266          */
4267         h->max_cmd_sg_entries = 31;
4268         if (h->maxsgentries > 512) {
4269                 h->max_cmd_sg_entries = 32;
4270                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
4271                 h->maxsgentries--; /* save one for chain pointer */
4272         } else {
4273                 h->maxsgentries = 31; /* default to traditional values */
4274                 h->chainsize = 0;
4275         }
4276
4277         /* Find out what task management functions are supported and cache */
4278         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4279 }
4280
4281 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
4282 {
4283         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4284                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4285                 return false;
4286         }
4287         return true;
4288 }
4289
4290 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4291 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
4292 {
4293 #ifdef CONFIG_X86
4294         u32 prefetch;
4295
4296         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4297         prefetch |= 0x100;
4298         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4299 #endif
4300 }
4301
4302 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4303  * in a prefetch beyond physical memory.
4304  */
4305 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
4306 {
4307         u32 dma_prefetch;
4308
4309         if (h->board_id != 0x3225103C)
4310                 return;
4311         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4312         dma_prefetch |= 0x8000;
4313         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4314 }
4315
4316 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4317 {
4318         int i;
4319         u32 doorbell_value;
4320         unsigned long flags;
4321
4322         /* under certain very rare conditions, this can take awhile.
4323          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4324          * as we enter this code.)
4325          */
4326         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4327                 spin_lock_irqsave(&h->lock, flags);
4328                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
4329                 spin_unlock_irqrestore(&h->lock, flags);
4330                 if (!(doorbell_value & CFGTBL_ChangeReq))
4331                         break;
4332                 /* delay and try again */
4333                 usleep_range(10000, 20000);
4334         }
4335 }
4336
4337 static int hpsa_enter_simple_mode(struct ctlr_info *h)
4338 {
4339         u32 trans_support;
4340
4341         trans_support = readl(&(h->cfgtable->TransportSupport));
4342         if (!(trans_support & SIMPLE_MODE))
4343                 return -ENOTSUPP;
4344
4345         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
4346         /* Update the field, and then ring the doorbell */
4347         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
4348         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4349         hpsa_wait_for_mode_change_ack(h);
4350         print_cfg_table(&h->pdev->dev, h->cfgtable);
4351         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
4352                 dev_warn(&h->pdev->dev,
4353                         "unable to get board into simple mode\n");
4354                 return -ENODEV;
4355         }
4356         h->transMethod = CFGTBL_Trans_Simple;
4357         return 0;
4358 }
4359
4360 static int hpsa_pci_init(struct ctlr_info *h)
4361 {
4362         int prod_index, err;
4363
4364         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
4365         if (prod_index < 0)
4366                 return -ENODEV;
4367         h->product_name = products[prod_index].product_name;
4368         h->access = *(products[prod_index].access);
4369
4370         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4371                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4372
4373         err = pci_enable_device(h->pdev);
4374         if (err) {
4375                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4376                 return err;
4377         }
4378
4379         /* Enable bus mastering (pci_disable_device may disable this) */
4380         pci_set_master(h->pdev);
4381
4382         err = pci_request_regions(h->pdev, HPSA);
4383         if (err) {
4384                 dev_err(&h->pdev->dev,
4385                         "cannot obtain PCI resources, aborting\n");
4386                 return err;
4387         }
4388         hpsa_interrupt_mode(h);
4389         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4390         if (err)
4391                 goto err_out_free_res;
4392         h->vaddr = remap_pci_mem(h->paddr, 0x250);
4393         if (!h->vaddr) {
4394                 err = -ENOMEM;
4395                 goto err_out_free_res;
4396         }
4397         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4398         if (err)
4399                 goto err_out_free_res;
4400         err = hpsa_find_cfgtables(h);
4401         if (err)
4402                 goto err_out_free_res;
4403         hpsa_find_board_params(h);
4404
4405         if (!hpsa_CISS_signature_present(h)) {
4406                 err = -ENODEV;
4407                 goto err_out_free_res;
4408         }
4409         hpsa_enable_scsi_prefetch(h);
4410         hpsa_p600_dma_prefetch_quirk(h);
4411         err = hpsa_enter_simple_mode(h);
4412         if (err)
4413                 goto err_out_free_res;
4414         return 0;
4415
4416 err_out_free_res:
4417         if (h->transtable)
4418                 iounmap(h->transtable);
4419         if (h->cfgtable)
4420                 iounmap(h->cfgtable);
4421         if (h->vaddr)
4422                 iounmap(h->vaddr);
4423         pci_disable_device(h->pdev);
4424         pci_release_regions(h->pdev);
4425         return err;
4426 }
4427
4428 static void hpsa_hba_inquiry(struct ctlr_info *h)
4429 {
4430         int rc;
4431
4432 #define HBA_INQUIRY_BYTE_COUNT 64
4433         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4434         if (!h->hba_inquiry_data)
4435                 return;
4436         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4437                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4438         if (rc != 0) {
4439                 kfree(h->hba_inquiry_data);
4440                 h->hba_inquiry_data = NULL;
4441         }
4442 }
4443
4444 static int hpsa_init_reset_devices(struct pci_dev *pdev)
4445 {
4446         int rc, i;
4447
4448         if (!reset_devices)
4449                 return 0;
4450
4451         /* Reset the controller with a PCI power-cycle or via doorbell */
4452         rc = hpsa_kdump_hard_reset_controller(pdev);
4453
4454         /* -ENOTSUPP here means we cannot reset the controller
4455          * but it's already (and still) up and running in
4456          * "performant mode".  Or, it might be 640x, which can't reset
4457          * due to concerns about shared bbwc between 6402/6404 pair.
4458          */
4459         if (rc == -ENOTSUPP)
4460                 return rc; /* just try to do the kdump anyhow. */
4461         if (rc)
4462                 return -ENODEV;
4463
4464         /* Now try to get the controller to respond to a no-op */
4465         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4466         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4467                 if (hpsa_noop(pdev) == 0)
4468                         break;
4469                 else
4470                         dev_warn(&pdev->dev, "no-op failed%s\n",
4471                                         (i < 11 ? "; re-trying" : ""));
4472         }
4473         return 0;
4474 }
4475
4476 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4477 {
4478         h->cmd_pool_bits = kzalloc(
4479                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4480                 sizeof(unsigned long), GFP_KERNEL);
4481         h->cmd_pool = pci_alloc_consistent(h->pdev,
4482                     h->nr_cmds * sizeof(*h->cmd_pool),
4483                     &(h->cmd_pool_dhandle));
4484         h->errinfo_pool = pci_alloc_consistent(h->pdev,
4485                     h->nr_cmds * sizeof(*h->errinfo_pool),
4486                     &(h->errinfo_pool_dhandle));
4487         if ((h->cmd_pool_bits == NULL)
4488             || (h->cmd_pool == NULL)
4489             || (h->errinfo_pool == NULL)) {
4490                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4491                 return -ENOMEM;
4492         }
4493         return 0;
4494 }
4495
4496 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4497 {
4498         kfree(h->cmd_pool_bits);
4499         if (h->cmd_pool)
4500                 pci_free_consistent(h->pdev,
4501                             h->nr_cmds * sizeof(struct CommandList),
4502                             h->cmd_pool, h->cmd_pool_dhandle);
4503         if (h->errinfo_pool)
4504                 pci_free_consistent(h->pdev,
4505                             h->nr_cmds * sizeof(struct ErrorInfo),
4506                             h->errinfo_pool,
4507                             h->errinfo_pool_dhandle);
4508 }
4509
4510 static int hpsa_request_irq(struct ctlr_info *h,
4511         irqreturn_t (*msixhandler)(int, void *),
4512         irqreturn_t (*intxhandler)(int, void *))
4513 {
4514         int rc, i;
4515
4516         /*
4517          * initialize h->q[x] = x so that interrupt handlers know which
4518          * queue to process.
4519          */
4520         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4521                 h->q[i] = (u8) i;
4522
4523         if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
4524                 /* If performant mode and MSI-X, use multiple reply queues */
4525                 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4526                         rc = request_irq(h->intr[i], msixhandler,
4527                                         0, h->devname,
4528                                         &h->q[i]);
4529         } else {
4530                 /* Use single reply pool */
4531                 if (h->msix_vector || h->msi_vector) {
4532                         rc = request_irq(h->intr[h->intr_mode],
4533                                 msixhandler, 0, h->devname,
4534                                 &h->q[h->intr_mode]);
4535                 } else {
4536                         rc = request_irq(h->intr[h->intr_mode],
4537                                 intxhandler, IRQF_SHARED, h->devname,
4538                                 &h->q[h->intr_mode]);
4539                 }
4540         }
4541         if (rc) {
4542                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4543                        h->intr[h->intr_mode], h->devname);
4544                 return -ENODEV;
4545         }
4546         return 0;
4547 }
4548
4549 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
4550 {
4551         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4552                 HPSA_RESET_TYPE_CONTROLLER)) {
4553                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4554                 return -EIO;
4555         }
4556
4557         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4558         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4559                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4560                 return -1;
4561         }
4562
4563         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4564         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4565                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4566                         "after soft reset.\n");
4567                 return -1;
4568         }
4569
4570         return 0;
4571 }
4572
4573 static void free_irqs(struct ctlr_info *h)
4574 {
4575         int i;
4576
4577         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
4578                 /* Single reply queue, only one irq to free */
4579                 i = h->intr_mode;
4580                 free_irq(h->intr[i], &h->q[i]);
4581                 return;
4582         }
4583
4584         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4585                 free_irq(h->intr[i], &h->q[i]);
4586 }
4587
4588 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4589 {
4590         free_irqs(h);
4591 #ifdef CONFIG_PCI_MSI
4592         if (h->msix_vector) {
4593                 if (h->pdev->msix_enabled)
4594                         pci_disable_msix(h->pdev);
4595         } else if (h->msi_vector) {
4596                 if (h->pdev->msi_enabled)
4597                         pci_disable_msi(h->pdev);
4598         }
4599 #endif /* CONFIG_PCI_MSI */
4600 }
4601
4602 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4603 {
4604         hpsa_free_irqs_and_disable_msix(h);
4605         hpsa_free_sg_chain_blocks(h);
4606         hpsa_free_cmd_pool(h);
4607         kfree(h->blockFetchTable);
4608         pci_free_consistent(h->pdev, h->reply_pool_size,
4609                 h->reply_pool, h->reply_pool_dhandle);
4610         if (h->vaddr)
4611                 iounmap(h->vaddr);
4612         if (h->transtable)
4613                 iounmap(h->transtable);
4614         if (h->cfgtable)
4615                 iounmap(h->cfgtable);
4616         pci_release_regions(h->pdev);
4617         kfree(h);
4618 }
4619
4620 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4621 {
4622         assert_spin_locked(&lockup_detector_lock);
4623         if (!hpsa_lockup_detector)
4624                 return;
4625         if (h->lockup_detected)
4626                 return; /* already stopped the lockup detector */
4627         list_del(&h->lockup_list);
4628 }
4629
4630 /* Called when controller lockup detected. */
4631 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4632 {
4633         struct CommandList *c = NULL;
4634
4635         assert_spin_locked(&h->lock);
4636         /* Mark all outstanding commands as failed and complete them. */
4637         while (!list_empty(list)) {
4638                 c = list_entry(list->next, struct CommandList, list);
4639                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4640                 finish_cmd(c);
4641         }
4642 }
4643
4644 static void controller_lockup_detected(struct ctlr_info *h)
4645 {
4646         unsigned long flags;
4647
4648         assert_spin_locked(&lockup_detector_lock);
4649         remove_ctlr_from_lockup_detector_list(h);
4650         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4651         spin_lock_irqsave(&h->lock, flags);
4652         h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4653         spin_unlock_irqrestore(&h->lock, flags);
4654         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4655                         h->lockup_detected);
4656         pci_disable_device(h->pdev);
4657         spin_lock_irqsave(&h->lock, flags);
4658         fail_all_cmds_on_list(h, &h->cmpQ);
4659         fail_all_cmds_on_list(h, &h->reqQ);
4660         spin_unlock_irqrestore(&h->lock, flags);
4661 }
4662
4663 static void detect_controller_lockup(struct ctlr_info *h)
4664 {
4665         u64 now;
4666         u32 heartbeat;
4667         unsigned long flags;
4668
4669         assert_spin_locked(&lockup_detector_lock);
4670         now = get_jiffies_64();
4671         /* If we've received an interrupt recently, we're ok. */
4672         if (time_after64(h->last_intr_timestamp +
4673                                 (h->heartbeat_sample_interval), now))
4674                 return;
4675
4676         /*
4677          * If we've already checked the heartbeat recently, we're ok.
4678          * This could happen if someone sends us a signal. We
4679          * otherwise don't care about signals in this thread.
4680          */
4681         if (time_after64(h->last_heartbeat_timestamp +
4682                                 (h->heartbeat_sample_interval), now))
4683                 return;
4684
4685         /* If heartbeat has not changed since we last looked, we're not ok. */
4686         spin_lock_irqsave(&h->lock, flags);
4687         heartbeat = readl(&h->cfgtable->HeartBeat);
4688         spin_unlock_irqrestore(&h->lock, flags);
4689         if (h->last_heartbeat == heartbeat) {
4690                 controller_lockup_detected(h);
4691                 return;
4692         }
4693
4694         /* We're ok. */
4695         h->last_heartbeat = heartbeat;
4696         h->last_heartbeat_timestamp = now;
4697 }
4698
4699 static int detect_controller_lockup_thread(void *notused)
4700 {
4701         struct ctlr_info *h;
4702         unsigned long flags;
4703
4704         while (1) {
4705                 struct list_head *this, *tmp;
4706
4707                 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4708                 if (kthread_should_stop())
4709                         break;
4710                 spin_lock_irqsave(&lockup_detector_lock, flags);
4711                 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4712                         h = list_entry(this, struct ctlr_info, lockup_list);
4713                         detect_controller_lockup(h);
4714                 }
4715                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4716         }
4717         return 0;
4718 }
4719
4720 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4721 {
4722         unsigned long flags;
4723
4724         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4725         spin_lock_irqsave(&lockup_detector_lock, flags);
4726         list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4727         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4728 }
4729
4730 static void start_controller_lockup_detector(struct ctlr_info *h)
4731 {
4732         /* Start the lockup detector thread if not already started */
4733         if (!hpsa_lockup_detector) {
4734                 spin_lock_init(&lockup_detector_lock);
4735                 hpsa_lockup_detector =
4736                         kthread_run(detect_controller_lockup_thread,
4737                                                 NULL, HPSA);
4738         }
4739         if (!hpsa_lockup_detector) {
4740                 dev_warn(&h->pdev->dev,
4741                         "Could not start lockup detector thread\n");
4742                 return;
4743         }
4744         add_ctlr_to_lockup_detector_list(h);
4745 }
4746
4747 static void stop_controller_lockup_detector(struct ctlr_info *h)
4748 {
4749         unsigned long flags;
4750
4751         spin_lock_irqsave(&lockup_detector_lock, flags);
4752         remove_ctlr_from_lockup_detector_list(h);
4753         /* If the list of ctlr's to monitor is empty, stop the thread */
4754         if (list_empty(&hpsa_ctlr_list)) {
4755                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4756                 kthread_stop(hpsa_lockup_detector);
4757                 spin_lock_irqsave(&lockup_detector_lock, flags);
4758                 hpsa_lockup_detector = NULL;
4759         }
4760         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4761 }
4762
4763 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4764 {
4765         int dac, rc;
4766         struct ctlr_info *h;
4767         int try_soft_reset = 0;
4768         unsigned long flags;
4769
4770         if (number_of_controllers == 0)
4771                 printk(KERN_INFO DRIVER_NAME "\n");
4772
4773         rc = hpsa_init_reset_devices(pdev);
4774         if (rc) {
4775                 if (rc != -ENOTSUPP)
4776                         return rc;
4777                 /* If the reset fails in a particular way (it has no way to do
4778                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4779                  * a soft reset once we get the controller configured up to the
4780                  * point that it can accept a command.
4781                  */
4782                 try_soft_reset = 1;
4783                 rc = 0;
4784         }
4785
4786 reinit_after_soft_reset:
4787
4788         /* Command structures must be aligned on a 32-byte boundary because
4789          * the 5 lower bits of the address are used by the hardware. and by
4790          * the driver.  See comments in hpsa.h for more info.
4791          */
4792 #define COMMANDLIST_ALIGNMENT 32
4793         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4794         h = kzalloc(sizeof(*h), GFP_KERNEL);
4795         if (!h)
4796                 return -ENOMEM;
4797
4798         h->pdev = pdev;
4799         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4800         INIT_LIST_HEAD(&h->cmpQ);
4801         INIT_LIST_HEAD(&h->reqQ);
4802         spin_lock_init(&h->lock);
4803         spin_lock_init(&h->scan_lock);
4804         rc = hpsa_pci_init(h);
4805         if (rc != 0)
4806                 goto clean1;
4807
4808         sprintf(h->devname, HPSA "%d", number_of_controllers);
4809         h->ctlr = number_of_controllers;
4810         number_of_controllers++;
4811
4812         /* configure PCI DMA stuff */
4813         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4814         if (rc == 0) {
4815                 dac = 1;
4816         } else {
4817                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4818                 if (rc == 0) {
4819                         dac = 0;
4820                 } else {
4821                         dev_err(&pdev->dev, "no suitable DMA available\n");
4822                         goto clean1;
4823                 }
4824         }
4825
4826         /* make sure the board interrupts are off */
4827         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4828
4829         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4830                 goto clean2;
4831         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4832                h->devname, pdev->device,
4833                h->intr[h->intr_mode], dac ? "" : " not");
4834         if (hpsa_allocate_cmd_pool(h))
4835                 goto clean4;
4836         if (hpsa_allocate_sg_chain_blocks(h))
4837                 goto clean4;
4838         init_waitqueue_head(&h->scan_wait_queue);
4839         h->scan_finished = 1; /* no scan currently in progress */
4840
4841         pci_set_drvdata(pdev, h);
4842         h->ndevices = 0;
4843         h->scsi_host = NULL;
4844         spin_lock_init(&h->devlock);
4845         hpsa_put_ctlr_into_performant_mode(h);
4846
4847         /* At this point, the controller is ready to take commands.
4848          * Now, if reset_devices and the hard reset didn't work, try
4849          * the soft reset and see if that works.
4850          */
4851         if (try_soft_reset) {
4852
4853                 /* This is kind of gross.  We may or may not get a completion
4854                  * from the soft reset command, and if we do, then the value
4855                  * from the fifo may or may not be valid.  So, we wait 10 secs
4856                  * after the reset throwing away any completions we get during
4857                  * that time.  Unregister the interrupt handler and register
4858                  * fake ones to scoop up any residual completions.
4859                  */
4860                 spin_lock_irqsave(&h->lock, flags);
4861                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4862                 spin_unlock_irqrestore(&h->lock, flags);
4863                 free_irqs(h);
4864                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4865                                         hpsa_intx_discard_completions);
4866                 if (rc) {
4867                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4868                                 "soft reset.\n");
4869                         goto clean4;
4870                 }
4871
4872                 rc = hpsa_kdump_soft_reset(h);
4873                 if (rc)
4874                         /* Neither hard nor soft reset worked, we're hosed. */
4875                         goto clean4;
4876
4877                 dev_info(&h->pdev->dev, "Board READY.\n");
4878                 dev_info(&h->pdev->dev,
4879                         "Waiting for stale completions to drain.\n");
4880                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4881                 msleep(10000);
4882                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4883
4884                 rc = controller_reset_failed(h->cfgtable);
4885                 if (rc)
4886                         dev_info(&h->pdev->dev,
4887                                 "Soft reset appears to have failed.\n");
4888
4889                 /* since the controller's reset, we have to go back and re-init
4890                  * everything.  Easiest to just forget what we've done and do it
4891                  * all over again.
4892                  */
4893                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4894                 try_soft_reset = 0;
4895                 if (rc)
4896                         /* don't go to clean4, we already unallocated */
4897                         return -ENODEV;
4898
4899                 goto reinit_after_soft_reset;
4900         }
4901
4902         /* Turn the interrupts on so we can service requests */
4903         h->access.set_intr_mask(h, HPSA_INTR_ON);
4904
4905         hpsa_hba_inquiry(h);
4906         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4907         start_controller_lockup_detector(h);
4908         return 0;
4909
4910 clean4:
4911         hpsa_free_sg_chain_blocks(h);
4912         hpsa_free_cmd_pool(h);
4913         free_irqs(h);
4914 clean2:
4915 clean1:
4916         kfree(h);
4917         return rc;
4918 }
4919
4920 static void hpsa_flush_cache(struct ctlr_info *h)
4921 {
4922         char *flush_buf;
4923         struct CommandList *c;
4924
4925         flush_buf = kzalloc(4, GFP_KERNEL);
4926         if (!flush_buf)
4927                 return;
4928
4929         c = cmd_special_alloc(h);
4930         if (!c) {
4931                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4932                 goto out_of_memory;
4933         }
4934         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4935                 RAID_CTLR_LUNID, TYPE_CMD)) {
4936                 goto out;
4937         }
4938         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4939         if (c->err_info->CommandStatus != 0)
4940 out:
4941                 dev_warn(&h->pdev->dev,
4942                         "error flushing cache on controller\n");
4943         cmd_special_free(h, c);
4944 out_of_memory:
4945         kfree(flush_buf);
4946 }
4947
4948 static void hpsa_shutdown(struct pci_dev *pdev)
4949 {
4950         struct ctlr_info *h;
4951
4952         h = pci_get_drvdata(pdev);
4953         /* Turn board interrupts off  and send the flush cache command
4954          * sendcmd will turn off interrupt, and send the flush...
4955          * To write all data in the battery backed cache to disks
4956          */
4957         hpsa_flush_cache(h);
4958         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4959         hpsa_free_irqs_and_disable_msix(h);
4960 }
4961
4962 static void hpsa_free_device_info(struct ctlr_info *h)
4963 {
4964         int i;
4965
4966         for (i = 0; i < h->ndevices; i++)
4967                 kfree(h->dev[i]);
4968 }
4969
4970 static void hpsa_remove_one(struct pci_dev *pdev)
4971 {
4972         struct ctlr_info *h;
4973
4974         if (pci_get_drvdata(pdev) == NULL) {
4975                 dev_err(&pdev->dev, "unable to remove device\n");
4976                 return;
4977         }
4978         h = pci_get_drvdata(pdev);
4979         stop_controller_lockup_detector(h);
4980         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4981         hpsa_shutdown(pdev);
4982         iounmap(h->vaddr);
4983         iounmap(h->transtable);
4984         iounmap(h->cfgtable);
4985         hpsa_free_device_info(h);
4986         hpsa_free_sg_chain_blocks(h);
4987         pci_free_consistent(h->pdev,
4988                 h->nr_cmds * sizeof(struct CommandList),
4989                 h->cmd_pool, h->cmd_pool_dhandle);
4990         pci_free_consistent(h->pdev,
4991                 h->nr_cmds * sizeof(struct ErrorInfo),
4992                 h->errinfo_pool, h->errinfo_pool_dhandle);
4993         pci_free_consistent(h->pdev, h->reply_pool_size,
4994                 h->reply_pool, h->reply_pool_dhandle);
4995         kfree(h->cmd_pool_bits);
4996         kfree(h->blockFetchTable);
4997         kfree(h->hba_inquiry_data);
4998         pci_disable_device(pdev);
4999         pci_release_regions(pdev);
5000         pci_set_drvdata(pdev, NULL);
5001         kfree(h);
5002 }
5003
5004 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
5005         __attribute__((unused)) pm_message_t state)
5006 {
5007         return -ENOSYS;
5008 }
5009
5010 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
5011 {
5012         return -ENOSYS;
5013 }
5014
5015 static struct pci_driver hpsa_pci_driver = {
5016         .name = HPSA,
5017         .probe = hpsa_init_one,
5018         .remove = hpsa_remove_one,
5019         .id_table = hpsa_pci_device_id, /* id_table */
5020         .shutdown = hpsa_shutdown,
5021         .suspend = hpsa_suspend,
5022         .resume = hpsa_resume,
5023 };
5024
5025 /* Fill in bucket_map[], given nsgs (the max number of
5026  * scatter gather elements supported) and bucket[],
5027  * which is an array of 8 integers.  The bucket[] array
5028  * contains 8 different DMA transfer sizes (in 16
5029  * byte increments) which the controller uses to fetch
5030  * commands.  This function fills in bucket_map[], which
5031  * maps a given number of scatter gather elements to one of
5032  * the 8 DMA transfer sizes.  The point of it is to allow the
5033  * controller to only do as much DMA as needed to fetch the
5034  * command, with the DMA transfer size encoded in the lower
5035  * bits of the command address.
5036  */
5037 static void  calc_bucket_map(int bucket[], int num_buckets,
5038         int nsgs, int *bucket_map)
5039 {
5040         int i, j, b, size;
5041
5042         /* even a command with 0 SGs requires 4 blocks */
5043 #define MINIMUM_TRANSFER_BLOCKS 4
5044 #define NUM_BUCKETS 8
5045         /* Note, bucket_map must have nsgs+1 entries. */
5046         for (i = 0; i <= nsgs; i++) {
5047                 /* Compute size of a command with i SG entries */
5048                 size = i + MINIMUM_TRANSFER_BLOCKS;
5049                 b = num_buckets; /* Assume the biggest bucket */
5050                 /* Find the bucket that is just big enough */
5051                 for (j = 0; j < 8; j++) {
5052                         if (bucket[j] >= size) {
5053                                 b = j;
5054                                 break;
5055                         }
5056                 }
5057                 /* for a command with i SG entries, use bucket b. */
5058                 bucket_map[i] = b;
5059         }
5060 }
5061
5062 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 use_short_tags)
5063 {
5064         int i;
5065         unsigned long register_value;
5066
5067         /* This is a bit complicated.  There are 8 registers on
5068          * the controller which we write to to tell it 8 different
5069          * sizes of commands which there may be.  It's a way of
5070          * reducing the DMA done to fetch each command.  Encoded into
5071          * each command's tag are 3 bits which communicate to the controller
5072          * which of the eight sizes that command fits within.  The size of
5073          * each command depends on how many scatter gather entries there are.
5074          * Each SG entry requires 16 bytes.  The eight registers are programmed
5075          * with the number of 16-byte blocks a command of that size requires.
5076          * The smallest command possible requires 5 such 16 byte blocks.
5077          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5078          * blocks.  Note, this only extends to the SG entries contained
5079          * within the command block, and does not extend to chained blocks
5080          * of SG elements.   bft[] contains the eight values we write to
5081          * the registers.  They are not evenly distributed, but have more
5082          * sizes for small commands, and fewer sizes for larger commands.
5083          */
5084         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
5085         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5086         /*  5 = 1 s/g entry or 4k
5087          *  6 = 2 s/g entry or 8k
5088          *  8 = 4 s/g entry or 16k
5089          * 10 = 6 s/g entry or 24k
5090          */
5091
5092         /* Controller spec: zero out this buffer. */
5093         memset(h->reply_pool, 0, h->reply_pool_size);
5094
5095         bft[7] = SG_ENTRIES_IN_CMD + 4;
5096         calc_bucket_map(bft, ARRAY_SIZE(bft),
5097                                 SG_ENTRIES_IN_CMD, h->blockFetchTable);
5098         for (i = 0; i < 8; i++)
5099                 writel(bft[i], &h->transtable->BlockFetch[i]);
5100
5101         /* size of controller ring buffer */
5102         writel(h->max_commands, &h->transtable->RepQSize);
5103         writel(h->nreply_queues, &h->transtable->RepQCount);
5104         writel(0, &h->transtable->RepQCtrAddrLow32);
5105         writel(0, &h->transtable->RepQCtrAddrHigh32);
5106
5107         for (i = 0; i < h->nreply_queues; i++) {
5108                 writel(0, &h->transtable->RepQAddr[i].upper);
5109                 writel(h->reply_pool_dhandle +
5110                         (h->max_commands * sizeof(u64) * i),
5111                         &h->transtable->RepQAddr[i].lower);
5112         }
5113
5114         writel(CFGTBL_Trans_Performant | use_short_tags |
5115                 CFGTBL_Trans_enable_directed_msix,
5116                 &(h->cfgtable->HostWrite.TransportRequest));
5117         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5118         hpsa_wait_for_mode_change_ack(h);
5119         register_value = readl(&(h->cfgtable->TransportActive));
5120         if (!(register_value & CFGTBL_Trans_Performant)) {
5121                 dev_warn(&h->pdev->dev, "unable to get board into"
5122                                         " performant mode\n");
5123                 return;
5124         }
5125         /* Change the access methods to the performant access methods */
5126         h->access = SA5_performant_access;
5127         h->transMethod = CFGTBL_Trans_Performant;
5128 }
5129
5130 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5131 {
5132         u32 trans_support;
5133         int i;
5134
5135         if (hpsa_simple_mode)
5136                 return;
5137
5138         trans_support = readl(&(h->cfgtable->TransportSupport));
5139         if (!(trans_support & PERFORMANT_MODE))
5140                 return;
5141
5142         h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
5143         hpsa_get_max_perf_mode_cmds(h);
5144         /* Performant mode ring buffer and supporting data structures */
5145         h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5146         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
5147                                 &(h->reply_pool_dhandle));
5148
5149         for (i = 0; i < h->nreply_queues; i++) {
5150                 h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
5151                 h->reply_queue[i].size = h->max_commands;
5152                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
5153                 h->reply_queue[i].current_entry = 0;
5154         }
5155
5156         /* Need a block fetch table for performant mode */
5157         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
5158                                 sizeof(u32)), GFP_KERNEL);
5159
5160         if ((h->reply_pool == NULL)
5161                 || (h->blockFetchTable == NULL))
5162                 goto clean_up;
5163
5164         hpsa_enter_performant_mode(h,
5165                 trans_support & CFGTBL_Trans_use_short_tags);
5166
5167         return;
5168
5169 clean_up:
5170         if (h->reply_pool)
5171                 pci_free_consistent(h->pdev, h->reply_pool_size,
5172                         h->reply_pool, h->reply_pool_dhandle);
5173         kfree(h->blockFetchTable);
5174 }
5175
5176 /*
5177  *  This is it.  Register the PCI driver information for the cards we control
5178  *  the OS will call our registered routines when it finds one of our cards.
5179  */
5180 static int __init hpsa_init(void)
5181 {
5182         return pci_register_driver(&hpsa_pci_driver);
5183 }
5184
5185 static void __exit hpsa_cleanup(void)
5186 {
5187         pci_unregister_driver(&hpsa_pci_driver);
5188 }
5189
5190 module_init(hpsa_init);
5191 module_exit(hpsa_cleanup);