power: rk818-battery: restore coffset when update fail
[firefly-linux-kernel-4.4.55.git] / drivers / power / rk818_battery.c
1 /*
2  * rk818 battery driver
3  *
4  * Copyright (C) 2016 Rockchip Electronics Co., Ltd
5  * chenjh <chenjh@rock-chips.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  */
17
18 #include <linux/delay.h>
19 #include <linux/fb.h>
20 #include <linux/gpio.h>
21 #include <linux/iio/consumer.h>
22 #include <linux/iio/iio.h>
23 #include <linux/irq.h>
24 #include <linux/irqdomain.h>
25 #include <linux/jiffies.h>
26 #include <linux/mfd/rk808.h>
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/of_gpio.h>
30 #include <linux/platform_device.h>
31 #include <linux/power_supply.h>
32 #include <linux/power/rk_usbbc.h>
33 #include <linux/regmap.h>
34 #include <linux/rtc.h>
35 #include <linux/timer.h>
36 #include <linux/wakelock.h>
37 #include <linux/workqueue.h>
38 #include "rk818_battery.h"
39
40 static int dbg_enable = 0;
41 module_param_named(dbg_level, dbg_enable, int, 0644);
42
43 #define DBG(args...) \
44         do { \
45                 if (dbg_enable) { \
46                         pr_info(args); \
47                 } \
48         } while (0)
49
50 #define BAT_INFO(fmt, args...) pr_info("rk818-bat: "fmt, ##args)
51
52 /* default param */
53 #define DEFAULT_BAT_RES                 135
54 #define DEFAULT_SLP_ENTER_CUR           300
55 #define DEFAULT_SLP_EXIT_CUR            300
56 #define DEFAULT_SLP_FILTER_CUR          100
57 #define DEFAULT_PWROFF_VOL_THRESD       3400
58 #define DEFAULT_MONITOR_SEC             5
59 #define DEFAULT_ALGR_VOL_THRESD1        3850
60 #define DEFAULT_ALGR_VOL_THRESD2        3950
61 #define DEFAULT_MAX_SOC_OFFSET          60
62 #define DEFAULT_FB_TEMP                 TEMP_105C
63 #define DEFAULT_ZERO_RESERVE_DSOC       10
64 #define DEFAULT_POFFSET                 42
65 #define DEFAULT_COFFSET                 0x832
66 #define DEFAULT_SAMPLE_RES              20
67 #define DEFAULT_ENERGY_MODE             0
68 #define INVALID_COFFSET_MIN             0x780
69 #define INVALID_COFFSET_MAX             0x980
70 #define INVALID_VOL_THRESD              2500
71
72 /* sample resistor and division */
73 #define SAMPLE_RES_10MR                 10
74 #define SAMPLE_RES_20MR                 20
75 #define SAMPLE_RES_DIV1                 1
76 #define SAMPLE_RES_DIV2                 2
77
78 /* virtual params */
79 #define VIRTUAL_CURRENT                 1000
80 #define VIRTUAL_VOLTAGE                 3888
81 #define VIRTUAL_SOC                     66
82 #define VIRTUAL_PRESET                  1
83 #define VIRTUAL_TEMPERATURE             188
84 #define VIRTUAL_STATUS                  POWER_SUPPLY_STATUS_CHARGING
85
86 /* charge */
87 #define FINISH_CHRG_CUR1                        1000
88 #define FINISH_CHRG_CUR2                1500
89 #define FINISH_MAX_SOC_DELAY            20
90 #define TERM_CHRG_DSOC                  88
91 #define TERM_CHRG_CURR                  600
92 #define TERM_CHRG_K                     650
93 #define SIMULATE_CHRG_INTV              8
94 #define SIMULATE_CHRG_CURR              400
95 #define SIMULATE_CHRG_K                 1500
96 #define FULL_CHRG_K                     400
97
98 /* zero algorithm */
99 #define PWROFF_THRESD                   3400
100 #define MIN_ZERO_DSOC_ACCURACY          10      /*0.01%*/
101 #define MIN_ZERO_OVERCNT                100
102 #define MIN_ACCURACY                    1
103 #define DEF_PWRPATH_RES                 50
104 #define WAIT_DSOC_DROP_SEC              15
105 #define WAIT_SHTD_DROP_SEC              30
106 #define ZERO_GAP_XSOC1                  10
107 #define ZERO_GAP_XSOC2                  5
108 #define ZERO_GAP_XSOC3                  3
109 #define ZERO_LOAD_LVL1                  1400
110 #define ZERO_LOAD_LVL2                  600
111 #define ZERO_GAP_CALIB                  5
112
113 #define ADC_CALIB_THRESHOLD             4
114 #define ADC_CALIB_LMT_MIN               3
115 #define ADC_CALIB_CNT                   5
116 #define NTC_CALC_FACTOR                 7
117
118 /* time */
119 #define POWER_ON_SEC_BASE               1
120 #define MINUTE(x)                       ((x) * 60)
121
122 /* sleep */
123 #define SLP_CURR_MAX                    40
124 #define SLP_CURR_MIN                    6
125 #define DISCHRG_TIME_STEP1              MINUTE(10)
126 #define DISCHRG_TIME_STEP2              MINUTE(60)
127 #define SLP_DSOC_VOL_THRESD             3600
128 #define REBOOT_PERIOD_SEC               180
129 #define REBOOT_MAX_CNT                  80
130
131 /* fcc */
132 #define MIN_FCC                         500
133
134 static const char *bat_status[] = {
135         "charge off", "dead charge", "trickle charge", "cc cv",
136         "finish", "usb over vol", "bat temp error", "timer error",
137 };
138
139 struct rk818_battery {
140         struct platform_device          *pdev;
141         struct rk808                    *rk818;
142         struct regmap                   *regmap;
143         struct device                   *dev;
144         struct power_supply             *bat;
145         struct battery_platform_data    *pdata;
146         struct workqueue_struct         *bat_monitor_wq;
147         struct delayed_work             bat_delay_work;
148         struct delayed_work             calib_delay_work;
149         struct wake_lock                wake_lock;
150         struct notifier_block           fb_nb;
151         struct timer_list               caltimer;
152         struct timeval                  rtc_base;
153         int                             bat_res;
154         int                             chrg_status;
155         bool                            is_initialized;
156         bool                            is_first_power_on;
157         u8                              res_div;
158         int                             current_avg;
159         int                             voltage_avg;
160         int                             voltage_ocv;
161         int                             voltage_relax;
162         int                             voltage_k;
163         int                             voltage_b;
164         int                             remain_cap;
165         int                             design_cap;
166         int                             nac;
167         int                             fcc;
168         int                             qmax;
169         int                             dsoc;
170         int                             rsoc;
171         int                             poffset;
172         int                             age_ocv_soc;
173         bool                            age_allow_update;
174         int                             age_level;
175         int                             age_ocv_cap;
176         int                             age_voltage;
177         int                             age_adjust_cap;
178         unsigned long                   age_keep_sec;
179         int                             zero_timeout_cnt;
180         int                             zero_remain_cap;
181         int                             zero_dsoc;
182         int                             zero_linek;
183         u64                             zero_drop_sec;
184         u64                             shtd_drop_sec;
185         int                             sm_remain_cap;
186         int                             sm_linek;
187         int                             sm_chrg_dsoc;
188         int                             sm_dischrg_dsoc;
189         int                             algo_rest_val;
190         int                             algo_rest_mode;
191         int                             sleep_sum_cap;
192         int                             sleep_remain_cap;
193         unsigned long                   sleep_dischrg_sec;
194         unsigned long                   sleep_sum_sec;
195         bool                            sleep_chrg_online;
196         u8                              sleep_chrg_status;
197         bool                            adc_allow_update;
198         int                             fb_blank;
199         bool                            s2r; /*suspend to resume*/
200         u32                             work_mode;
201         int                             temperature;
202         u32                             monitor_ms;
203         u32                             pwroff_min;
204         u32                             adc_calib_cnt;
205         unsigned long                   finish_base;
206         unsigned long                   boot_base;
207         unsigned long                   flat_match_sec;
208         unsigned long                   plug_in_base;
209         unsigned long                   plug_out_base;
210         u8                              halt_cnt;
211         bool                            is_halt;
212         bool                            is_max_soc_offset;
213         bool                            is_sw_reset;
214         bool                            is_ocv_calib;
215         bool                            is_first_on;
216         bool                            is_force_calib;
217         int                             last_dsoc;
218         int                             ocv_pre_dsoc;
219         int                             ocv_new_dsoc;
220         int                             max_pre_dsoc;
221         int                             max_new_dsoc;
222         int                             force_pre_dsoc;
223         int                             force_new_dsoc;
224         int                             dbg_cap_low0;
225         int                             dbg_pwr_dsoc;
226         int                             dbg_pwr_rsoc;
227         int                             dbg_pwr_vol;
228         int                             dbg_chrg_min[10];
229         int                             dbg_meet_soc;
230         int                             dbg_calc_dsoc;
231         int                             dbg_calc_rsoc;
232 };
233
234 #define DIV(x)  ((x) ? (x) : 1)
235
236 static u64 get_boot_sec(void)
237 {
238         struct timespec ts;
239
240         get_monotonic_boottime(&ts);
241
242         return ts.tv_sec;
243 }
244
245 static unsigned long base2sec(unsigned long x)
246 {
247         if (x)
248                 return (get_boot_sec() > x) ? (get_boot_sec() - x) : 0;
249         else
250                 return 0;
251 }
252
253 static unsigned long base2min(unsigned long x)
254 {
255         return base2sec(x) / 60;
256 }
257
258 static u32 interpolate(int value, u32 *table, int size)
259 {
260         u8 i;
261         u16 d;
262
263         for (i = 0; i < size; i++) {
264                 if (value < table[i])
265                         break;
266         }
267
268         if ((i > 0) && (i < size)) {
269                 d = (value - table[i - 1]) * (MAX_INTERPOLATE / (size - 1));
270                 d /= table[i] - table[i - 1];
271                 d = d + (i - 1) * (MAX_INTERPOLATE / (size - 1));
272         } else {
273                 d = i * ((MAX_INTERPOLATE + size / 2) / size);
274         }
275
276         if (d > 1000)
277                 d = 1000;
278
279         return d;
280 }
281
282 /* (a*b)/c */
283 static int32_t ab_div_c(u32 a, u32 b, u32 c)
284 {
285         bool sign;
286         u32 ans = MAX_INT;
287         int tmp;
288
289         sign = ((((a ^ b) ^ c) & 0x80000000) != 0);
290         if (c != 0) {
291                 if (sign)
292                         c = -c;
293                 tmp = (a * b + (c >> 1)) / c;
294                 if (tmp < MAX_INT)
295                         ans = tmp;
296         }
297
298         if (sign)
299                 ans = -ans;
300
301         return ans;
302 }
303
304 static int rk818_bat_read(struct rk818_battery *di, u8 reg)
305 {
306         int ret, val;
307
308         ret = regmap_read(di->regmap, reg, &val);
309         if (ret)
310                 dev_err(di->dev, "read reg:0x%x failed\n", reg);
311
312         return val;
313 }
314
315 static int rk818_bat_write(struct rk818_battery *di, u8 reg, u8 buf)
316 {
317         int ret;
318
319         ret = regmap_write(di->regmap, reg, buf);
320         if (ret)
321                 dev_err(di->dev, "i2c write reg: 0x%2x error\n", reg);
322
323         return ret;
324 }
325
326 static int rk818_bat_set_bits(struct rk818_battery *di, u8 reg, u8 mask, u8 buf)
327 {
328         int ret;
329
330         ret = regmap_update_bits(di->regmap, reg, mask, buf);
331         if (ret)
332                 dev_err(di->dev, "write reg:0x%x failed\n", reg);
333
334         return ret;
335 }
336
337 static int rk818_bat_clear_bits(struct rk818_battery *di, u8 reg, u8 mask)
338 {
339         int ret;
340
341         ret = regmap_update_bits(di->regmap, reg, mask, 0);
342         if (ret)
343                 dev_err(di->dev, "clr reg:0x%02x failed\n", reg);
344
345         return ret;
346 }
347
348 static void rk818_bat_dump_regs(struct rk818_battery *di, u8 start, u8 end)
349 {
350         int i;
351
352         if (!dbg_enable)
353                 return;
354
355         DBG("dump regs from: 0x%x-->0x%x\n", start, end);
356         for (i = start; i < end; i++)
357                 DBG("0x%x: 0x%0x\n", i, rk818_bat_read(di, i));
358 }
359
360 static bool rk818_bat_chrg_online(struct rk818_battery *di)
361 {
362         u8 buf;
363
364         buf = rk818_bat_read(di, RK818_VB_MON_REG);
365
366         return (buf & PLUG_IN_STS) ? true : false;
367 }
368
369 static int rk818_bat_get_coulomb_cap(struct rk818_battery *di)
370 {
371         int val = 0;
372
373         val |= rk818_bat_read(di, RK818_GASCNT3_REG) << 24;
374         val |= rk818_bat_read(di, RK818_GASCNT2_REG) << 16;
375         val |= rk818_bat_read(di, RK818_GASCNT1_REG) << 8;
376         val |= rk818_bat_read(di, RK818_GASCNT0_REG) << 0;
377
378         return (val / 2390) * di->res_div;
379 }
380
381 static int rk818_bat_get_rsoc(struct rk818_battery *di)
382 {
383         int remain_cap;
384
385         remain_cap = rk818_bat_get_coulomb_cap(di);
386         return (remain_cap + di->fcc / 200) * 100 / DIV(di->fcc);
387 }
388
389 static ssize_t bat_info_store(struct device *dev, struct device_attribute *attr,
390                               const char *buf, size_t count)
391 {
392         char cmd;
393         struct rk818_battery *di = dev_get_drvdata(dev);
394
395         sscanf(buf, "%c", &cmd);
396
397         if (cmd == 'n')
398                 rk818_bat_set_bits(di, RK818_MISC_MARK_REG,
399                                    FG_RESET_NOW, FG_RESET_NOW);
400         else if (cmd == 'm')
401                 rk818_bat_set_bits(di, RK818_MISC_MARK_REG,
402                                    FG_RESET_LATE, FG_RESET_LATE);
403         else if (cmd == 'c')
404                 rk818_bat_clear_bits(di, RK818_MISC_MARK_REG,
405                                      FG_RESET_LATE | FG_RESET_NOW);
406         else if (cmd == 'r')
407                 BAT_INFO("0x%2x\n", rk818_bat_read(di, RK818_MISC_MARK_REG));
408         else
409                 BAT_INFO("command error\n");
410
411         return count;
412 }
413
414 static struct device_attribute rk818_bat_attr[] = {
415         __ATTR(bat, 0664, NULL, bat_info_store),
416 };
417
418 static void rk818_bat_enable_gauge(struct rk818_battery *di)
419 {
420         u8 buf;
421
422         buf = rk818_bat_read(di, RK818_TS_CTRL_REG);
423         buf |= GG_EN;
424         rk818_bat_write(di, RK818_TS_CTRL_REG, buf);
425 }
426
427 static void rk818_bat_save_age_level(struct rk818_battery *di, u8 level)
428 {
429         rk818_bat_write(di, RK818_UPDAT_LEVE_REG, level);
430 }
431
432 static u8 rk818_bat_get_age_level(struct  rk818_battery *di)
433 {
434         return rk818_bat_read(di, RK818_UPDAT_LEVE_REG);
435 }
436
437 static int rk818_bat_get_vcalib0(struct rk818_battery *di)
438 {
439         int val = 0;
440
441         val |= rk818_bat_read(di, RK818_VCALIB0_REGL) << 0;
442         val |= rk818_bat_read(di, RK818_VCALIB0_REGH) << 8;
443
444         DBG("<%s>. voffset0: 0x%x\n", __func__, val);
445         return val;
446 }
447
448 static int rk818_bat_get_vcalib1(struct rk818_battery *di)
449 {
450         int val = 0;
451
452         val |= rk818_bat_read(di, RK818_VCALIB1_REGL) << 0;
453         val |= rk818_bat_read(di, RK818_VCALIB1_REGH) << 8;
454
455         DBG("<%s>. voffset1: 0x%x\n", __func__, val);
456         return val;
457 }
458
459 static int rk818_bat_get_ioffset(struct rk818_battery *di)
460 {
461         int val = 0;
462
463         val |= rk818_bat_read(di, RK818_IOFFSET_REGL) << 0;
464         val |= rk818_bat_read(di, RK818_IOFFSET_REGH) << 8;
465
466         DBG("<%s>. ioffset: 0x%x\n", __func__, val);
467         return val;
468 }
469
470 static int rk818_bat_get_coffset(struct rk818_battery *di)
471 {
472         int val = 0;
473
474         val |= rk818_bat_read(di, RK818_CAL_OFFSET_REGL) << 0;
475         val |= rk818_bat_read(di, RK818_CAL_OFFSET_REGH) << 8;
476
477         DBG("<%s>. coffset: 0x%x\n", __func__, val);
478         return val;
479 }
480
481 static void rk818_bat_set_coffset(struct rk818_battery *di, int val)
482 {
483         u8 buf;
484
485         if ((val < INVALID_COFFSET_MIN) || (val > INVALID_COFFSET_MAX)) {
486                 BAT_INFO("set invalid coffset=0x%x\n", val);
487                 return;
488         }
489
490         buf = (val >> 8) & 0xff;
491         rk818_bat_write(di, RK818_CAL_OFFSET_REGH, buf);
492         buf = (val >> 0) & 0xff;
493         rk818_bat_write(di, RK818_CAL_OFFSET_REGL, buf);
494         DBG("<%s>. coffset: 0x%x\n", __func__, val);
495 }
496
497 static void rk818_bat_init_voltage_kb(struct rk818_battery *di)
498 {
499         int vcalib0, vcalib1;
500
501         vcalib0 = rk818_bat_get_vcalib0(di);
502         vcalib1 = rk818_bat_get_vcalib1(di);
503         di->voltage_k = (4200 - 3000) * 1000 / DIV(vcalib1 - vcalib0);
504         di->voltage_b = 4200 - (di->voltage_k * vcalib1) / 1000;
505
506         DBG("voltage_k=%d(*1000),voltage_b=%d\n", di->voltage_k, di->voltage_b);
507 }
508
509 static int rk818_bat_get_ocv_voltage(struct rk818_battery *di)
510 {
511         int vol, val = 0;
512
513         val |= rk818_bat_read(di, RK818_BAT_OCV_REGL) << 0;
514         val |= rk818_bat_read(di, RK818_BAT_OCV_REGH) << 8;
515
516         vol = di->voltage_k * val / 1000 + di->voltage_b;
517
518         return vol;
519 }
520
521 static int rk818_bat_get_avg_voltage(struct rk818_battery *di)
522 {
523         int vol, val = 0;
524
525         val |= rk818_bat_read(di, RK818_BAT_VOL_REGL) << 0;
526         val |= rk818_bat_read(di, RK818_BAT_VOL_REGH) << 8;
527
528         vol = di->voltage_k * val / 1000 + di->voltage_b;
529
530         return vol;
531 }
532
533 static bool is_rk818_bat_relax_mode(struct rk818_battery *di)
534 {
535         u8 status;
536
537         status = rk818_bat_read(di, RK818_GGSTS_REG);
538         if (!(status & RELAX_VOL1_UPD) || !(status & RELAX_VOL2_UPD))
539                 return false;
540         else
541                 return true;
542 }
543
544 static u16 rk818_bat_get_relax_vol1(struct rk818_battery *di)
545 {
546         u16 vol, val = 0;
547
548         val |= rk818_bat_read(di, RK818_RELAX_VOL1_REGL) << 0;
549         val |= rk818_bat_read(di, RK818_RELAX_VOL1_REGH) << 8;
550         vol = di->voltage_k * val / 1000 + di->voltage_b;
551
552         return vol;
553 }
554
555 static u16 rk818_bat_get_relax_vol2(struct rk818_battery *di)
556 {
557         u16 vol, val = 0;
558
559         val |= rk818_bat_read(di, RK818_RELAX_VOL2_REGL) << 0;
560         val |= rk818_bat_read(di, RK818_RELAX_VOL2_REGH) << 8;
561         vol = di->voltage_k * val / 1000 + di->voltage_b;
562
563         return vol;
564 }
565
566 static u16 rk818_bat_get_relax_voltage(struct rk818_battery *di)
567 {
568         u16 relax_vol1, relax_vol2;
569
570         if (!is_rk818_bat_relax_mode(di))
571                 return 0;
572
573         relax_vol1 = rk818_bat_get_relax_vol1(di);
574         relax_vol2 = rk818_bat_get_relax_vol2(di);
575
576         return relax_vol1 > relax_vol2 ? relax_vol1 : relax_vol2;
577 }
578
579 static int rk818_bat_get_avg_current(struct rk818_battery *di)
580 {
581         int cur, val = 0;
582
583         val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGL) << 0;
584         val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGH) << 8;
585
586         if (val & 0x800)
587                 val -= 4096;
588         cur = val * di->res_div * 1506 / 1000;
589
590         return cur;
591 }
592
593 static int rk818_bat_vol_to_ocvsoc(struct rk818_battery *di, int voltage)
594 {
595         u32 *ocv_table, temp;
596         int ocv_size, ocv_soc;
597
598         ocv_table = di->pdata->ocv_table;
599         ocv_size = di->pdata->ocv_size;
600         temp = interpolate(voltage, ocv_table, ocv_size);
601         ocv_soc = ab_div_c(temp, MAX_PERCENTAGE, MAX_INTERPOLATE);
602
603         return ocv_soc;
604 }
605
606 static int rk818_bat_vol_to_ocvcap(struct rk818_battery *di, int voltage)
607 {
608         u32 *ocv_table, temp;
609         int ocv_size, cap;
610
611         ocv_table = di->pdata->ocv_table;
612         ocv_size = di->pdata->ocv_size;
613         temp = interpolate(voltage, ocv_table, ocv_size);
614         cap = ab_div_c(temp, di->fcc, MAX_INTERPOLATE);
615
616         return cap;
617 }
618
619 static int rk818_bat_vol_to_zerosoc(struct rk818_battery *di, int voltage)
620 {
621         u32 *ocv_table, temp;
622         int ocv_size, ocv_soc;
623
624         ocv_table = di->pdata->zero_table;
625         ocv_size = di->pdata->ocv_size;
626         temp = interpolate(voltage, ocv_table, ocv_size);
627         ocv_soc = ab_div_c(temp, MAX_PERCENTAGE, MAX_INTERPOLATE);
628
629         return ocv_soc;
630 }
631
632 static int rk818_bat_vol_to_zerocap(struct rk818_battery *di, int voltage)
633 {
634         u32 *ocv_table, temp;
635         int ocv_size, cap;
636
637         ocv_table = di->pdata->zero_table;
638         ocv_size = di->pdata->ocv_size;
639         temp = interpolate(voltage, ocv_table, ocv_size);
640         cap = ab_div_c(temp, di->fcc, MAX_INTERPOLATE);
641
642         return cap;
643 }
644
645 static int rk818_bat_get_iadc(struct rk818_battery *di)
646 {
647         int val = 0;
648
649         val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGL) << 0;
650         val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGH) << 8;
651         if (val > 2047)
652                 val -= 4096;
653
654         return val;
655 }
656
657 static bool rk818_bat_adc_calib(struct rk818_battery *di)
658 {
659         int i, ioffset, coffset, adc, save_coffset;
660
661         if ((di->chrg_status != CHARGE_FINISH) ||
662             (di->adc_calib_cnt > ADC_CALIB_CNT) ||
663             (base2min(di->boot_base) < ADC_CALIB_LMT_MIN) ||
664             (abs(di->current_avg) < ADC_CALIB_THRESHOLD))
665                 return false;
666
667         di->adc_calib_cnt++;
668         save_coffset = rk818_bat_get_coffset(di);
669         for (i = 0; i < 5; i++) {
670                 adc = rk818_bat_get_iadc(di);
671                 if (!rk818_bat_chrg_online(di)) {
672                         rk818_bat_set_coffset(di, save_coffset);
673                         BAT_INFO("quit, charger plugout when calib adc\n");
674                         return false;
675                 }
676                 coffset = rk818_bat_get_coffset(di);
677                 rk818_bat_set_coffset(di, coffset + adc);
678                 msleep(2000);
679                 adc = rk818_bat_get_iadc(di);
680                 if (abs(adc) < ADC_CALIB_THRESHOLD) {
681                         coffset = rk818_bat_get_coffset(di);
682                         ioffset = rk818_bat_get_ioffset(di);
683                         di->poffset = coffset - ioffset;
684                         rk818_bat_write(di, RK818_POFFSET_REG, di->poffset);
685                         BAT_INFO("new offset:c=0x%x, i=0x%x, p=0x%x\n",
686                                  coffset, ioffset, di->poffset);
687                         return true;
688                 } else {
689                         BAT_INFO("coffset calib again %d.., max_cnt=%d\n",
690                                  i, di->adc_calib_cnt);
691                         rk818_bat_set_coffset(di, coffset);
692                         msleep(2000);
693                 }
694         }
695
696         rk818_bat_set_coffset(di, save_coffset);
697
698         return false;
699 }
700
701 static void rk818_bat_set_ioffset_sample(struct rk818_battery *di)
702 {
703         u8 ggcon;
704
705         ggcon = rk818_bat_read(di, RK818_GGCON_REG);
706         ggcon &= ~ADC_CAL_MIN_MSK;
707         ggcon |= ADC_CAL_8MIN;
708         rk818_bat_write(di, RK818_GGCON_REG, ggcon);
709 }
710
711 static void rk818_bat_set_ocv_sample(struct rk818_battery *di)
712 {
713         u8 ggcon;
714
715         ggcon = rk818_bat_read(di, RK818_GGCON_REG);
716         ggcon &= ~OCV_SAMP_MIN_MSK;
717         ggcon |= OCV_SAMP_8MIN;
718         rk818_bat_write(di, RK818_GGCON_REG, ggcon);
719 }
720
721 static void rk818_bat_restart_relax(struct rk818_battery *di)
722 {
723         u8 ggsts;
724
725         ggsts = rk818_bat_read(di, RK818_GGSTS_REG);
726         ggsts &= ~RELAX_VOL12_UPD_MSK;
727         rk818_bat_write(di, RK818_GGSTS_REG, ggsts);
728 }
729
730 static void rk818_bat_set_relax_sample(struct rk818_battery *di)
731 {
732         u8 buf;
733         int enter_thres, exit_thres;
734         struct battery_platform_data *pdata = di->pdata;
735
736         enter_thres = pdata->sleep_enter_current * 1000 / 1506 / DIV(di->res_div);
737         exit_thres = pdata->sleep_exit_current * 1000 / 1506 / DIV(di->res_div);
738
739         /* set relax enter and exit threshold */
740         buf = enter_thres & 0xff;
741         rk818_bat_write(di, RK818_RELAX_ENTRY_THRES_REGL, buf);
742         buf = (enter_thres >> 8) & 0xff;
743         rk818_bat_write(di, RK818_RELAX_ENTRY_THRES_REGH, buf);
744
745         buf = exit_thres & 0xff;
746         rk818_bat_write(di, RK818_RELAX_EXIT_THRES_REGL, buf);
747         buf = (exit_thres >> 8) & 0xff;
748         rk818_bat_write(di, RK818_RELAX_EXIT_THRES_REGH, buf);
749
750         /* reset relax update state */
751         rk818_bat_restart_relax(di);
752         DBG("<%s>. sleep_enter_current = %d, sleep_exit_current = %d\n",
753             __func__, pdata->sleep_enter_current, pdata->sleep_exit_current);
754 }
755
756 static bool is_rk818_bat_exist(struct rk818_battery *di)
757 {
758         return (rk818_bat_read(di, RK818_SUP_STS_REG) & BAT_EXS) ? true : false;
759 }
760
761 static bool is_rk818_bat_first_pwron(struct rk818_battery *di)
762 {
763         u8 buf;
764
765         buf = rk818_bat_read(di, RK818_GGSTS_REG);
766         if (buf & BAT_CON) {
767                 buf &= ~BAT_CON;
768                 rk818_bat_write(di, RK818_GGSTS_REG, buf);
769                 return true;
770         }
771
772         return false;
773 }
774
775 static u8 rk818_bat_get_pwroff_min(struct rk818_battery *di)
776 {
777         u8 cur, last;
778
779         cur = rk818_bat_read(di, RK818_NON_ACT_TIMER_CNT_REG);
780         last = rk818_bat_read(di, RK818_NON_ACT_TIMER_CNT_SAVE_REG);
781         rk818_bat_write(di, RK818_NON_ACT_TIMER_CNT_SAVE_REG, cur);
782
783         return (cur != last) ? cur : 0;
784 }
785
786 static u8 is_rk818_bat_initialized(struct rk818_battery *di)
787 {
788         u8 val = rk818_bat_read(di, RK818_MISC_MARK_REG);
789
790         if (val & FG_INIT) {
791                 val &= ~FG_INIT;
792                 rk818_bat_write(di, RK818_MISC_MARK_REG, val);
793                 return true;
794         } else {
795                 return false;
796         }
797 }
798
799 static bool is_rk818_bat_ocv_valid(struct rk818_battery *di)
800 {
801         return (!di->is_initialized && di->pwroff_min >= 30) ? true : false;
802 }
803
804 static void rk818_bat_init_age_algorithm(struct rk818_battery *di)
805 {
806         int age_level, ocv_soc, ocv_cap, ocv_vol;
807
808         if (di->is_first_power_on || is_rk818_bat_ocv_valid(di)) {
809                 DBG("<%s> enter.\n", __func__);
810                 ocv_vol = rk818_bat_get_ocv_voltage(di);
811                 ocv_soc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
812                 ocv_cap = rk818_bat_vol_to_ocvcap(di, ocv_vol);
813                 if (ocv_soc < 20) {
814                         di->age_voltage = ocv_vol;
815                         di->age_ocv_cap = ocv_cap;
816                         di->age_ocv_soc = ocv_soc;
817                         di->age_adjust_cap = 0;
818
819                         if (ocv_soc <= 0)
820                                 di->age_level = 100;
821                         else if (ocv_soc < 5)
822                                 di->age_level = 95;
823                         else if (ocv_soc < 10)
824                                 di->age_level = 90;
825                         else
826                                 di->age_level = 80;
827
828                         age_level = rk818_bat_get_age_level(di);
829                         if (age_level > di->age_level) {
830                                 di->age_allow_update = false;
831                                 age_level -= 5;
832                                 if (age_level <= 80)
833                                         age_level = 80;
834                                 rk818_bat_save_age_level(di, age_level);
835                         } else {
836                                 di->age_allow_update = true;
837                                 di->age_keep_sec = get_boot_sec();
838                         }
839
840                         BAT_INFO("init_age_algorithm: "
841                                  "age_vol:%d, age_ocv_cap:%d, "
842                                  "age_ocv_soc:%d, old_age_level:%d, "
843                                  "age_allow_update:%d, new_age_level:%d\n",
844                                  di->age_voltage, di->age_ocv_cap,
845                                  ocv_soc, age_level, di->age_allow_update,
846                                  di->age_level);
847                 }
848         }
849 }
850
851 static enum power_supply_property rk818_bat_props[] = {
852         POWER_SUPPLY_PROP_CURRENT_NOW,
853         POWER_SUPPLY_PROP_VOLTAGE_NOW,
854         POWER_SUPPLY_PROP_PRESENT,
855         POWER_SUPPLY_PROP_HEALTH,
856         POWER_SUPPLY_PROP_CAPACITY,
857         POWER_SUPPLY_PROP_TEMP,
858         POWER_SUPPLY_PROP_STATUS,
859 };
860
861 static int rk818_battery_get_property(struct power_supply *psy,
862                                       enum power_supply_property psp,
863                                       union power_supply_propval *val)
864 {
865         struct rk818_battery *di = power_supply_get_drvdata(psy);
866
867         switch (psp) {
868         case POWER_SUPPLY_PROP_CURRENT_NOW:
869                 val->intval = di->current_avg * 1000;/*uA*/
870                 if (di->pdata->bat_mode == MODE_VIRTUAL)
871                         val->intval = VIRTUAL_CURRENT * 1000;
872                 break;
873         case POWER_SUPPLY_PROP_VOLTAGE_NOW:
874                 val->intval = di->voltage_avg * 1000;/*uV*/
875                 if (di->pdata->bat_mode == MODE_VIRTUAL)
876                         val->intval = VIRTUAL_VOLTAGE * 1000;
877                 break;
878         case POWER_SUPPLY_PROP_PRESENT:
879                 val->intval = is_rk818_bat_exist(di);
880                 if (di->pdata->bat_mode == MODE_VIRTUAL)
881                         val->intval = VIRTUAL_PRESET;
882                 break;
883         case POWER_SUPPLY_PROP_CAPACITY:
884                 val->intval = di->dsoc;
885                 if (di->pdata->bat_mode == MODE_VIRTUAL)
886                         val->intval = VIRTUAL_SOC;
887                 DBG("<%s>. report dsoc: %d\n", __func__, val->intval);
888                 break;
889         case POWER_SUPPLY_PROP_HEALTH:
890                 val->intval = POWER_SUPPLY_HEALTH_GOOD;
891                 break;
892         case POWER_SUPPLY_PROP_TEMP:
893                 val->intval = di->temperature;
894                 if (di->pdata->bat_mode == MODE_VIRTUAL)
895                         val->intval = VIRTUAL_TEMPERATURE;
896                 break;
897         case POWER_SUPPLY_PROP_STATUS:
898                 if (di->pdata->bat_mode == MODE_VIRTUAL)
899                         val->intval = VIRTUAL_STATUS;
900                 else if (di->dsoc == 100)
901                         val->intval = POWER_SUPPLY_STATUS_FULL;
902                 else if (rk818_bat_chrg_online(di))
903                         val->intval = POWER_SUPPLY_STATUS_CHARGING;
904                 else
905                         val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
906                 break;
907         default:
908                 return -EINVAL;
909         }
910
911         return 0;
912 }
913
914 static const struct power_supply_desc rk818_bat_desc = {
915         .name           = "battery",
916         .type           = POWER_SUPPLY_TYPE_BATTERY,
917         .properties     = rk818_bat_props,
918         .num_properties = ARRAY_SIZE(rk818_bat_props),
919         .get_property   = rk818_battery_get_property,
920 };
921
922 static int rk818_bat_init_power_supply(struct rk818_battery *di)
923 {
924         struct power_supply_config psy_cfg = { .drv_data = di, };
925
926         di->bat = devm_power_supply_register(di->dev, &rk818_bat_desc, &psy_cfg);
927         if (IS_ERR(di->bat)) {
928                 dev_err(di->dev, "register bat power supply fail\n");
929                 return PTR_ERR(di->bat);
930         }
931
932         return 0;
933 }
934
935 static void rk818_bat_save_cap(struct rk818_battery *di, int cap)
936 {
937         u8 buf;
938         static u32 old_cap;
939
940         if (cap >= di->qmax)
941                 cap = di->qmax;
942         if (cap <= 0)
943                 cap = 0;
944         if (old_cap == cap)
945                 return;
946
947         old_cap = cap;
948         buf = (cap >> 24) & 0xff;
949         rk818_bat_write(di, RK818_REMAIN_CAP_REG3, buf);
950         buf = (cap >> 16) & 0xff;
951         rk818_bat_write(di, RK818_REMAIN_CAP_REG2, buf);
952         buf = (cap >> 8) & 0xff;
953         rk818_bat_write(di, RK818_REMAIN_CAP_REG1, buf);
954         buf = (cap >> 0) & 0xff;
955         rk818_bat_write(di, RK818_REMAIN_CAP_REG0, buf);
956 }
957
958 static int rk818_bat_get_prev_cap(struct rk818_battery *di)
959 {
960         int val = 0;
961
962         val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG3) << 24;
963         val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG2) << 16;
964         val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG1) << 8;
965         val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG0) << 0;
966
967         return val;
968 }
969
970 static void rk818_bat_save_fcc(struct rk818_battery *di, u32 fcc)
971 {
972         u8 buf;
973
974         buf = (fcc >> 24) & 0xff;
975         rk818_bat_write(di, RK818_NEW_FCC_REG3, buf);
976         buf = (fcc >> 16) & 0xff;
977         rk818_bat_write(di, RK818_NEW_FCC_REG2, buf);
978         buf = (fcc >> 8) & 0xff;
979         rk818_bat_write(di, RK818_NEW_FCC_REG1, buf);
980         buf = (fcc >> 0) & 0xff;
981         rk818_bat_write(di, RK818_NEW_FCC_REG0, buf);
982
983         BAT_INFO("save fcc: %d\n", fcc);
984 }
985
986 static int rk818_bat_get_fcc(struct rk818_battery *di)
987 {
988         u32 fcc = 0;
989
990         fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG3) << 24;
991         fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG2) << 16;
992         fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG1) << 8;
993         fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG0) << 0;
994
995         if (fcc < MIN_FCC) {
996                 BAT_INFO("invalid fcc(%d), use design cap", fcc);
997                 fcc = di->pdata->design_capacity;
998                 rk818_bat_save_fcc(di, fcc);
999         } else if (fcc > di->pdata->design_qmax) {
1000                 BAT_INFO("invalid fcc(%d), use qmax", fcc);
1001                 fcc = di->pdata->design_qmax;
1002                 rk818_bat_save_fcc(di, fcc);
1003         }
1004
1005         return fcc;
1006 }
1007
1008 static void rk818_bat_init_coulomb_cap(struct rk818_battery *di, u32 capacity)
1009 {
1010         u8 buf;
1011         u32 cap;
1012
1013         cap = capacity * 2390 / DIV(di->res_div);
1014         buf = (cap >> 24) & 0xff;
1015         rk818_bat_write(di, RK818_GASCNT_CAL_REG3, buf);
1016         buf = (cap >> 16) & 0xff;
1017         rk818_bat_write(di, RK818_GASCNT_CAL_REG2, buf);
1018         buf = (cap >> 8) & 0xff;
1019         rk818_bat_write(di, RK818_GASCNT_CAL_REG1, buf);
1020         buf = ((cap >> 0) & 0xff);
1021         rk818_bat_write(di, RK818_GASCNT_CAL_REG0, buf);
1022
1023         DBG("<%s>. new coulomb cap = %d\n", __func__, capacity);
1024         di->remain_cap = capacity;
1025         di->rsoc = rk818_bat_get_rsoc(di);
1026 }
1027
1028 static void rk818_bat_save_dsoc(struct rk818_battery *di, u8 save_soc)
1029 {
1030         static int last_soc = -1;
1031
1032         if (last_soc != save_soc) {
1033                 rk818_bat_write(di, RK818_SOC_REG, save_soc);
1034                 last_soc = save_soc;
1035         }
1036 }
1037
1038 static int rk818_bat_get_prev_dsoc(struct rk818_battery *di)
1039 {
1040         return rk818_bat_read(di, RK818_SOC_REG);
1041 }
1042
1043 static void rk818_bat_save_reboot_cnt(struct rk818_battery *di, u8 save_cnt)
1044 {
1045         rk818_bat_write(di, RK818_REBOOT_CNT_REG, save_cnt);
1046 }
1047
1048 static int rk818_bat_fb_notifier(struct notifier_block *nb,
1049                                  unsigned long event, void *data)
1050 {
1051         struct rk818_battery *di;
1052         struct fb_event *evdata = data;
1053
1054         di = container_of(nb, struct rk818_battery, fb_nb);
1055         di->fb_blank = *(int *)evdata->data;
1056
1057         return 0;
1058 }
1059
1060 static int rk818_bat_register_fb_notify(struct rk818_battery *di)
1061 {
1062         memset(&di->fb_nb, 0, sizeof(di->fb_nb));
1063         di->fb_nb.notifier_call = rk818_bat_fb_notifier;
1064
1065         return fb_register_client(&di->fb_nb);
1066 }
1067
1068 static int rk818_bat_unregister_fb_notify(struct rk818_battery *di)
1069 {
1070         return fb_unregister_client(&di->fb_nb);
1071 }
1072
1073 static u8 rk818_bat_get_halt_cnt(struct rk818_battery *di)
1074 {
1075         return rk818_bat_read(di, RK818_HALT_CNT_REG);
1076 }
1077
1078 static void rk818_bat_inc_halt_cnt(struct rk818_battery *di)
1079 {
1080         u8 cnt;
1081
1082         cnt = rk818_bat_read(di, RK818_HALT_CNT_REG);
1083         rk818_bat_write(di, RK818_HALT_CNT_REG, ++cnt);
1084 }
1085
1086 static bool is_rk818_bat_last_halt(struct rk818_battery *di)
1087 {
1088         int pre_cap = rk818_bat_get_prev_cap(di);
1089         int now_cap = rk818_bat_get_coulomb_cap(di);
1090
1091         /* over 10%: system halt last time */
1092         if (abs(now_cap - pre_cap) > (di->fcc / 10)) {
1093                 rk818_bat_inc_halt_cnt(di);
1094                 return true;
1095         } else {
1096                 return false;
1097         }
1098 }
1099
1100 static void rk818_bat_first_pwron(struct rk818_battery *di)
1101 {
1102         int ocv_vol;
1103
1104         rk818_bat_save_fcc(di, di->design_cap);
1105         ocv_vol = rk818_bat_get_ocv_voltage(di);
1106         di->fcc = rk818_bat_get_fcc(di);
1107         di->nac = rk818_bat_vol_to_ocvcap(di, ocv_vol);
1108         di->rsoc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
1109         di->dsoc = di->rsoc;
1110         di->is_first_on = true;
1111
1112         BAT_INFO("first on: dsoc=%d, rsoc=%d cap=%d, fcc=%d, ov=%d\n",
1113                  di->dsoc, di->rsoc, di->nac, di->fcc, ocv_vol);
1114 }
1115
1116 static void rk818_bat_not_first_pwron(struct rk818_battery *di)
1117 {
1118         int now_cap, pre_soc, pre_cap, ocv_cap, ocv_soc, ocv_vol;
1119
1120         di->fcc = rk818_bat_get_fcc(di);
1121         pre_soc = rk818_bat_get_prev_dsoc(di);
1122         pre_cap = rk818_bat_get_prev_cap(di);
1123         now_cap = rk818_bat_get_coulomb_cap(di);
1124         di->is_halt = is_rk818_bat_last_halt(di);
1125         di->halt_cnt = rk818_bat_get_halt_cnt(di);
1126         di->is_initialized = is_rk818_bat_initialized(di);
1127         di->is_ocv_calib = is_rk818_bat_ocv_valid(di);
1128
1129         if (di->is_halt) {
1130                 BAT_INFO("system halt last time... cap: pre=%d, now=%d\n",
1131                          pre_cap, now_cap);
1132                 if (now_cap < 0)
1133                         now_cap = 0;
1134                 rk818_bat_init_coulomb_cap(di, now_cap);
1135                 pre_cap = now_cap;
1136                 pre_soc = di->rsoc;
1137                 goto finish;
1138         } else if (di->is_initialized) {
1139                 BAT_INFO("initialized yet..\n");
1140                 goto finish;
1141         } else if (di->is_ocv_calib) {
1142                 ocv_vol = rk818_bat_get_ocv_voltage(di);
1143                 ocv_soc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
1144                 ocv_cap = rk818_bat_vol_to_ocvcap(di, ocv_vol);
1145                 pre_cap = ocv_cap;
1146                 di->ocv_pre_dsoc = pre_soc;
1147                 di->ocv_new_dsoc = ocv_soc;
1148                 if (abs(ocv_soc - pre_soc) >= di->pdata->max_soc_offset) {
1149                         di->ocv_pre_dsoc = pre_soc;
1150                         di->ocv_new_dsoc = ocv_soc;
1151                         di->is_max_soc_offset = true;
1152                         BAT_INFO("trigger max soc offset, dsoc: %d -> %d\n",
1153                                  pre_soc, ocv_soc);
1154                         pre_soc = ocv_soc;
1155                 }
1156                 BAT_INFO("OCV calib: cap=%d, rsoc=%d\n", ocv_cap, ocv_soc);
1157         } else if (di->pwroff_min > 0) {
1158                 ocv_vol = rk818_bat_get_ocv_voltage(di);
1159                 ocv_soc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
1160                 ocv_cap = rk818_bat_vol_to_ocvcap(di, ocv_vol);
1161                 di->force_pre_dsoc = pre_soc;
1162                 di->force_new_dsoc = ocv_soc;
1163                 if (abs(ocv_soc - pre_soc) >= 80) {
1164                         di->is_force_calib = true;
1165                         BAT_INFO("dsoc force calib: %d -> %d\n",
1166                                  pre_soc, ocv_soc);
1167                         pre_soc = ocv_soc;
1168                         pre_cap = ocv_cap;
1169                 }
1170         }
1171
1172 finish:
1173         di->dsoc = pre_soc;
1174         di->nac = pre_cap;
1175         if (di->nac < 0)
1176                 di->nac = 0;
1177
1178         BAT_INFO("dsoc=%d cap=%d v=%d ov=%d rv=%d min=%d psoc=%d pcap=%d\n",
1179                  di->dsoc, di->nac, rk818_bat_get_avg_voltage(di),
1180                  rk818_bat_get_ocv_voltage(di), rk818_bat_get_relax_voltage(di),
1181                  di->pwroff_min, rk818_bat_get_prev_dsoc(di),
1182                  rk818_bat_get_prev_cap(di));
1183 }
1184
1185 static bool rk818_bat_ocv_sw_reset(struct rk818_battery *di)
1186 {
1187         u8 buf;
1188
1189         buf = rk818_bat_read(di, RK818_MISC_MARK_REG);
1190         if (((buf & FG_RESET_LATE) && di->pwroff_min >= 30) ||
1191             (buf & FG_RESET_NOW)) {
1192                 buf &= ~FG_RESET_LATE;
1193                 buf &= ~FG_RESET_NOW;
1194                 rk818_bat_write(di, RK818_MISC_MARK_REG, buf);
1195                 BAT_INFO("manual reset fuel gauge\n");
1196                 return true;
1197         } else {
1198                 return false;
1199         }
1200 }
1201
1202 static void rk818_bat_init_rsoc(struct rk818_battery *di)
1203 {
1204         di->is_first_power_on = is_rk818_bat_first_pwron(di);
1205         di->is_sw_reset = rk818_bat_ocv_sw_reset(di);
1206         di->pwroff_min = rk818_bat_get_pwroff_min(di);
1207
1208         if (di->is_first_power_on || di->is_sw_reset)
1209                 rk818_bat_first_pwron(di);
1210         else
1211                 rk818_bat_not_first_pwron(di);
1212 }
1213
1214 static u8 rk818_bat_get_chrg_status(struct rk818_battery *di)
1215 {
1216         u8 status;
1217
1218         status = rk818_bat_read(di, RK818_SUP_STS_REG) & CHRG_STATUS_MSK;
1219         switch (status) {
1220         case CHARGE_OFF:
1221                 DBG("CHARGE-OFF ...\n");
1222                 break;
1223         case DEAD_CHARGE:
1224                 BAT_INFO("DEAD CHARGE...\n");
1225                 break;
1226         case TRICKLE_CHARGE:
1227                 BAT_INFO("TRICKLE CHARGE...\n ");
1228                 break;
1229         case CC_OR_CV:
1230                 DBG("CC or CV...\n");
1231                 break;
1232         case CHARGE_FINISH:
1233                 DBG("CHARGE FINISH...\n");
1234                 break;
1235         case USB_OVER_VOL:
1236                 BAT_INFO("USB OVER VOL...\n");
1237                 break;
1238         case BAT_TMP_ERR:
1239                 BAT_INFO("BAT TMP ERROR...\n");
1240                 break;
1241         case TIMER_ERR:
1242                 BAT_INFO("TIMER ERROR...\n");
1243                 break;
1244         case USB_EXIST:
1245                 BAT_INFO("USB EXIST...\n");
1246                 break;
1247         case USB_EFF:
1248                 BAT_INFO("USB EFF...\n");
1249                 break;
1250         default:
1251                 return -EINVAL;
1252         }
1253
1254         return status;
1255 }
1256
1257 static u8 rk818_bat_parse_fb_temperature(struct rk818_battery *di)
1258 {
1259         u8 reg;
1260         int index, fb_temp;
1261
1262         reg = DEFAULT_FB_TEMP;
1263         fb_temp = di->pdata->fb_temp;
1264         for (index = 0; index < ARRAY_SIZE(feedback_temp_array); index++) {
1265                 if (fb_temp < feedback_temp_array[index])
1266                         break;
1267                 reg = (index << FB_TEMP_SHIFT);
1268         }
1269
1270         return reg;
1271 }
1272
1273 static u8 rk818_bat_parse_finish_ma(struct rk818_battery *di, int fcc)
1274 {
1275         u8 ma;
1276
1277         if (di->pdata->sample_res == SAMPLE_RES_10MR)
1278                 ma = FINISH_100MA;
1279         else if (fcc > 5000)
1280                 ma = FINISH_250MA;
1281         else if (fcc >= 4000)
1282                 ma = FINISH_200MA;
1283         else if (fcc >= 3000)
1284                 ma = FINISH_150MA;
1285         else
1286                 ma = FINISH_100MA;
1287
1288         return ma;
1289 }
1290
1291 static void rk818_bat_init_chrg_config(struct rk818_battery *di)
1292 {
1293         u8 usb_ctrl, chrg_ctrl2, chrg_ctrl3;
1294         u8 thermal, ggcon, finish_ma, fb_temp;
1295
1296         finish_ma = rk818_bat_parse_finish_ma(di, di->fcc);
1297         fb_temp = rk818_bat_parse_fb_temperature(di);
1298
1299         ggcon = rk818_bat_read(di, RK818_GGCON_REG);
1300         thermal = rk818_bat_read(di, RK818_THERMAL_REG);
1301         usb_ctrl = rk818_bat_read(di, RK818_USB_CTRL_REG);
1302         chrg_ctrl2 = rk818_bat_read(di, RK818_CHRG_CTRL_REG2);
1303         chrg_ctrl3 = rk818_bat_read(di, RK818_CHRG_CTRL_REG3);
1304
1305         /* set charge finish current */
1306         chrg_ctrl3 |= CHRG_TERM_DIG_SIGNAL;
1307         chrg_ctrl2 &= ~FINISH_CUR_MSK;
1308         chrg_ctrl2 |= finish_ma;
1309
1310         /* disable cccv mode */
1311         chrg_ctrl3 &= ~CHRG_TIMER_CCCV_EN;
1312
1313         /* set feed back temperature */
1314         if (di->pdata->fb_temp)
1315                 usb_ctrl |= CHRG_CT_EN;
1316         else
1317                 usb_ctrl &= ~CHRG_CT_EN;
1318         thermal &= ~FB_TEMP_MSK;
1319         thermal |= fb_temp;
1320
1321         /* adc current mode */
1322         ggcon |= ADC_CUR_MODE;
1323
1324         rk818_bat_write(di, RK818_GGCON_REG, ggcon);
1325         rk818_bat_write(di, RK818_THERMAL_REG, thermal);
1326         rk818_bat_write(di, RK818_USB_CTRL_REG, usb_ctrl);
1327         rk818_bat_write(di, RK818_CHRG_CTRL_REG2, chrg_ctrl2);
1328         rk818_bat_write(di, RK818_CHRG_CTRL_REG3, chrg_ctrl3);
1329 }
1330
1331 static void rk818_bat_init_coffset(struct rk818_battery *di)
1332 {
1333         int coffset, ioffset;
1334
1335         ioffset = rk818_bat_get_ioffset(di);
1336         di->poffset = rk818_bat_read(di, RK818_POFFSET_REG);
1337         if (!di->poffset)
1338                 di->poffset = DEFAULT_POFFSET;
1339
1340         coffset = di->poffset + ioffset;
1341         if (coffset < INVALID_COFFSET_MIN || coffset > INVALID_COFFSET_MAX)
1342                 coffset = DEFAULT_COFFSET;
1343
1344         rk818_bat_set_coffset(di, coffset);
1345
1346         DBG("<%s>. offset: p=0x%x, i=0x%x, c=0x%x\n",
1347             __func__, di->poffset, ioffset, rk818_bat_get_coffset(di));
1348 }
1349
1350 static void rk818_bat_caltimer_isr(unsigned long data)
1351 {
1352         struct rk818_battery *di = (struct rk818_battery *)data;
1353
1354         mod_timer(&di->caltimer, jiffies + MINUTE(8) * HZ);
1355         queue_delayed_work(di->bat_monitor_wq, &di->calib_delay_work,
1356                            msecs_to_jiffies(10));
1357 }
1358
1359 static void rk818_bat_internal_calib(struct work_struct *work)
1360 {
1361         int ioffset, poffset;
1362         struct rk818_battery *di = container_of(work,
1363                         struct rk818_battery, calib_delay_work.work);
1364
1365         /* calib coffset */
1366         poffset = rk818_bat_read(di, RK818_POFFSET_REG);
1367         if (poffset)
1368                 di->poffset = poffset;
1369         else
1370                 di->poffset = DEFAULT_POFFSET;
1371
1372         ioffset = rk818_bat_get_ioffset(di);
1373         rk818_bat_set_coffset(di, ioffset + di->poffset);
1374
1375         /* calib voltage kb */
1376         rk818_bat_init_voltage_kb(di);
1377         BAT_INFO("caltimer: ioffset=0x%x, coffset=0x%x, poffset=%d\n",
1378                  ioffset, rk818_bat_get_coffset(di), di->poffset);
1379 }
1380
1381 static void rk818_bat_init_caltimer(struct rk818_battery *di)
1382 {
1383         setup_timer(&di->caltimer, rk818_bat_caltimer_isr, (unsigned long)di);
1384         di->caltimer.expires = jiffies + MINUTE(8) * HZ;
1385         add_timer(&di->caltimer);
1386         INIT_DELAYED_WORK(&di->calib_delay_work, rk818_bat_internal_calib);
1387 }
1388
1389 static void rk818_bat_init_zero_table(struct rk818_battery *di)
1390 {
1391         int i, diff, min, max;
1392         size_t ocv_size, length;
1393
1394         ocv_size = di->pdata->ocv_size;
1395         length = sizeof(di->pdata->zero_table) * ocv_size;
1396         di->pdata->zero_table =
1397                         devm_kzalloc(di->dev, length, GFP_KERNEL);
1398         if (!di->pdata->zero_table) {
1399                 di->pdata->zero_table = di->pdata->ocv_table;
1400                 dev_err(di->dev, "malloc zero table fail\n");
1401                 return;
1402         }
1403
1404         min = di->pdata->pwroff_vol,
1405         max = di->pdata->ocv_table[ocv_size - 4];
1406         diff = (max - min) / DIV(ocv_size - 1);
1407         for (i = 0; i < ocv_size; i++)
1408                 di->pdata->zero_table[i] = min + (i * diff);
1409
1410         for (i = 0; i < ocv_size; i++)
1411                 DBG("zero[%d] = %d\n", i, di->pdata->zero_table[i]);
1412
1413         for (i = 0; i < ocv_size; i++)
1414                 DBG("ocv[%d] = %d\n", i, di->pdata->ocv_table[i]);
1415 }
1416
1417 static void rk818_bat_calc_sm_linek(struct rk818_battery *di)
1418 {
1419         int linek, current_avg;
1420         u8 diff, delta;
1421
1422         delta = abs(di->dsoc - di->rsoc);
1423         diff = delta * 3;/* speed:3/4 */
1424         current_avg = rk818_bat_get_avg_current(di);
1425         if (current_avg >= 0) {
1426                 if (di->dsoc < di->rsoc)
1427                         linek = 1000 * (delta + diff) / DIV(diff);
1428                 else if (di->dsoc > di->rsoc)
1429                         linek = 1000 * diff / DIV(delta + diff);
1430                 else
1431                         linek = 1000;
1432                 di->dbg_meet_soc = (di->dsoc >= di->rsoc) ?
1433                                    (di->dsoc + diff) : (di->rsoc + diff);
1434         } else {
1435                 if (di->dsoc < di->rsoc)
1436                         linek = -1000 * diff / DIV(delta + diff);
1437                 else if (di->dsoc > di->rsoc)
1438                         linek = -1000 * (delta + diff) / DIV(diff);
1439                 else
1440                         linek = -1000;
1441                 di->dbg_meet_soc = (di->dsoc >= di->rsoc) ?
1442                                    (di->dsoc - diff) : (di->rsoc - diff);
1443         }
1444
1445         di->sm_linek = linek;
1446         di->sm_remain_cap = di->remain_cap;
1447         di->dbg_calc_dsoc = di->dsoc;
1448         di->dbg_calc_rsoc = di->rsoc;
1449
1450         DBG("<%s>.diff=%d, k=%d, cur=%d\n", __func__, diff, linek, current_avg);
1451 }
1452
1453 static void rk818_bat_calc_zero_linek(struct rk818_battery *di)
1454 {
1455         int dead_voltage, ocv_voltage;
1456         int voltage_avg, current_avg, vsys;
1457         int ocv_cap, dead_cap, xsoc;
1458         int ocv_soc, dead_soc;
1459         int pwroff_vol;
1460         int i, cnt, vol_old, vol_now;
1461         int org_linek = 0, min_gap_xsoc;
1462
1463         if ((abs(di->current_avg) < 500) && (di->dsoc > 10))
1464                 pwroff_vol = di->pdata->pwroff_vol + 50;
1465         else
1466                 pwroff_vol = di->pdata->pwroff_vol;
1467
1468         do {
1469                 vol_old = rk818_bat_get_avg_voltage(di);
1470                 msleep(100);
1471                 vol_now = rk818_bat_get_avg_voltage(di);
1472                 cnt++;
1473         } while ((vol_old == vol_now) && (cnt < 11));
1474
1475         voltage_avg = 0;
1476         for (i = 0; i < 10; i++) {
1477                 voltage_avg += rk818_bat_get_avg_voltage(di);
1478                 msleep(100);
1479         }
1480
1481         /* calc estimate ocv voltage */
1482         voltage_avg /= 10;
1483         current_avg = rk818_bat_get_avg_current(di);
1484         vsys = voltage_avg + (current_avg * DEF_PWRPATH_RES) / 1000;
1485
1486         DBG("ZERO0: shtd_vol: org = %d, now = %d, zero_reserve_dsoc = %d\n",
1487             di->pdata->pwroff_vol, pwroff_vol, di->pdata->zero_reserve_dsoc);
1488
1489         dead_voltage = pwroff_vol - current_avg *
1490                                 (di->bat_res + DEF_PWRPATH_RES) / 1000;
1491         ocv_voltage = voltage_avg - (current_avg * di->bat_res) / 1000;
1492         DBG("ZERO0: dead_voltage(shtd) = %d, ocv_voltage(now) = %d\n",
1493             dead_voltage, ocv_voltage);
1494
1495         /* calc estimate soc and cap */
1496         dead_soc = rk818_bat_vol_to_zerosoc(di, dead_voltage);
1497         dead_cap = rk818_bat_vol_to_zerocap(di, dead_voltage);
1498         DBG("ZERO0: dead_soc = %d, dead_cap = %d\n",
1499             dead_soc, dead_cap);
1500
1501         ocv_soc = rk818_bat_vol_to_zerosoc(di, ocv_voltage);
1502         ocv_cap = rk818_bat_vol_to_zerocap(di, ocv_voltage);
1503         DBG("ZERO0: ocv_soc = %d, ocv_cap = %d\n",
1504             ocv_soc, ocv_cap);
1505
1506         /* xsoc: available rsoc */
1507         xsoc = ocv_soc - dead_soc;
1508
1509         /* min_gap_xsoc: reserve xsoc */
1510         if (abs(current_avg) > ZERO_LOAD_LVL1)
1511                 min_gap_xsoc = ZERO_GAP_XSOC3;
1512         else if (abs(current_avg) > ZERO_LOAD_LVL2)
1513                 min_gap_xsoc = ZERO_GAP_XSOC2;
1514         else
1515                 min_gap_xsoc = ZERO_GAP_XSOC1;
1516
1517         if ((xsoc <= 30) && (di->dsoc >= di->pdata->zero_reserve_dsoc))
1518                 min_gap_xsoc = min_gap_xsoc + ZERO_GAP_CALIB;
1519
1520         di->zero_remain_cap = di->remain_cap;
1521         di->zero_timeout_cnt = 0;
1522         if ((di->dsoc <= 1) && (xsoc > 0)) {
1523                 di->zero_linek = 400;
1524                 di->zero_drop_sec = 0;
1525         } else if (xsoc >= 0) {
1526                 di->zero_drop_sec = 0;
1527                 di->zero_linek = (di->zero_dsoc + xsoc / 2) / DIV(xsoc);
1528                 org_linek = di->zero_linek;
1529                 /* battery energy mode to use up voltage */
1530                 if ((di->pdata->energy_mode) &&
1531                     (xsoc - di->dsoc >= ZERO_GAP_XSOC3) &&
1532                     (di->dsoc <= 10) && (di->zero_linek < 300)) {
1533                         di->zero_linek = 300;
1534                         DBG("ZERO-new: zero_linek adjust step0...\n");
1535                 /* reserve enough power yet, slow down any way */
1536                 } else if ((xsoc - di->dsoc >= min_gap_xsoc) ||
1537                            ((xsoc - di->dsoc >= ZERO_GAP_XSOC2) &&
1538                             (di->dsoc <= 10) && (xsoc > 15))) {
1539                         if (xsoc <= 20 &&
1540                             di->dsoc >= di->pdata->zero_reserve_dsoc)
1541                                 di->zero_linek = 1200;
1542                         else if (xsoc - di->dsoc >= 2 * min_gap_xsoc)
1543                                 di->zero_linek = 400;
1544                         else if (xsoc - di->dsoc >= 3 + min_gap_xsoc)
1545                                 di->zero_linek = 600;
1546                         else
1547                                 di->zero_linek = 800;
1548                         DBG("ZERO-new: zero_linek adjust step1...\n");
1549                 /* control zero mode beginning enter */
1550                 } else if ((di->zero_linek > 1800) && (di->dsoc > 70)) {
1551                         di->zero_linek = 1800;
1552                         DBG("ZERO-new: zero_linek adjust step2...\n");
1553                 /* dsoc close to xsoc: it must reserve power */
1554                 } else if ((di->zero_linek > 1000) && (di->zero_linek < 1200)) {
1555                         di->zero_linek = 1200;
1556                         DBG("ZERO-new: zero_linek adjust step3...\n");
1557                 /* dsoc[5~15], dsoc < xsoc */
1558                 } else if ((di->dsoc <= 15 && di->dsoc > 5) &&
1559                            (di->zero_linek <= 1200)) {
1560                         /* slow down */
1561                         if (xsoc - di->dsoc >= min_gap_xsoc)
1562                                 di->zero_linek = 800;
1563                         /* reserve power */
1564                         else
1565                                 di->zero_linek = 1200;
1566                         DBG("ZERO-new: zero_linek adjust step4...\n");
1567                 /* dsoc[5, 100], dsoc < xsoc */
1568                 } else if ((di->zero_linek < 1000) && (di->dsoc >= 5)) {
1569                         if ((xsoc - di->dsoc) < min_gap_xsoc) {
1570                                 /* reserve power */
1571                                 di->zero_linek = 1200;
1572                         } else {
1573                                 if (abs(di->current_avg) > 500)/* heavy */
1574                                         di->zero_linek = 900;
1575                                 else
1576                                         di->zero_linek = 1000;
1577                         }
1578                         DBG("ZERO-new: zero_linek adjust step5...\n");
1579                 /* dsoc[0~5], dsoc < xsoc */
1580                 } else if ((di->zero_linek < 1000) && (di->dsoc <= 5)) {
1581                         if ((xsoc - di->dsoc) <= 3)
1582                                 di->zero_linek = 1200;
1583                         else
1584                                 di->zero_linek = 800;
1585                                 DBG("ZERO-new: zero_linek adjust step6...\n");
1586                 }
1587         } else {
1588                 /* xsoc < 0 */
1589                 di->zero_linek = 1000;
1590                 if (!di->zero_drop_sec)
1591                         di->zero_drop_sec = get_boot_sec();
1592                 if (base2sec(di->zero_drop_sec) >= WAIT_DSOC_DROP_SEC) {
1593                         DBG("ZERO0: t=%lu\n", base2sec(di->zero_drop_sec));
1594                         di->zero_drop_sec = 0;
1595                         di->dsoc--;
1596                         di->zero_dsoc = (di->dsoc + 1) * 1000 -
1597                                                 MIN_ACCURACY;
1598                 }
1599         }
1600
1601         if (voltage_avg < pwroff_vol - 70) {
1602                 if (!di->shtd_drop_sec)
1603                         di->shtd_drop_sec = get_boot_sec();
1604                 if (base2sec(di->shtd_drop_sec) > WAIT_SHTD_DROP_SEC) {
1605                         BAT_INFO("voltage extreme low...soc:%d->0\n", di->dsoc);
1606                         di->shtd_drop_sec = 0;
1607                         di->dsoc = 0;
1608                 }
1609         } else {
1610                 di->shtd_drop_sec = 0;
1611         }
1612
1613         DBG("ZERO-new: org_linek=%d, zero_linek=%d, dsoc=%d, Xsoc=%d, "
1614             "rsoc=%d, gap=%d, v=%d, vsys=%d\n"
1615             "ZERO-new: di->zero_dsoc=%d, zero_remain_cap=%d, zero_drop=%ld, "
1616             "sht_drop=%ld\n\n",
1617             org_linek, di->zero_linek, di->dsoc, xsoc, di->rsoc,
1618             min_gap_xsoc, voltage_avg, vsys, di->zero_dsoc, di->zero_remain_cap,
1619             base2sec(di->zero_drop_sec), base2sec(di->shtd_drop_sec));
1620 }
1621
1622 static void rk818_bat_finish_algo_prepare(struct rk818_battery *di)
1623 {
1624         di->finish_base = get_boot_sec();
1625         if (!di->finish_base)
1626                 di->finish_base = 1;
1627 }
1628
1629 static void rk818_bat_smooth_algo_prepare(struct rk818_battery *di)
1630 {
1631         int tmp_soc;
1632
1633         tmp_soc = di->sm_chrg_dsoc / 1000;
1634         if (tmp_soc != di->dsoc)
1635                 di->sm_chrg_dsoc = di->dsoc * 1000;
1636
1637         tmp_soc = di->sm_dischrg_dsoc / 1000;
1638         if (tmp_soc != di->dsoc)
1639                 di->sm_dischrg_dsoc =
1640                 (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1641
1642         DBG("<%s>. tmp_soc=%d, dsoc=%d, dsoc:sm_dischrg=%d, sm_chrg=%d\n",
1643             __func__, tmp_soc, di->dsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
1644
1645         rk818_bat_calc_sm_linek(di);
1646 }
1647
1648 static void rk818_bat_zero_algo_prepare(struct rk818_battery *di)
1649 {
1650         int tmp_dsoc;
1651
1652         di->zero_timeout_cnt = 0;
1653         tmp_dsoc = di->zero_dsoc / 1000;
1654         if (tmp_dsoc != di->dsoc)
1655                 di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1656
1657         DBG("<%s>. first calc, reinit linek\n", __func__);
1658
1659         rk818_bat_calc_zero_linek(di);
1660 }
1661
1662 static void rk818_bat_calc_zero_algorithm(struct rk818_battery *di)
1663 {
1664         int tmp_soc = 0, sm_delta_dsoc = 0;
1665
1666         tmp_soc = di->zero_dsoc / 1000;
1667         if (tmp_soc == di->dsoc)
1668                 goto out;
1669
1670         DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc);
1671         /* when discharge slow down, take sm chrg into calc */
1672         if (di->dsoc < di->rsoc) {
1673                 /* take sm charge rest into calc */
1674                 tmp_soc = di->sm_chrg_dsoc / 1000;
1675                 if (tmp_soc == di->dsoc) {
1676                         sm_delta_dsoc = di->sm_chrg_dsoc - di->dsoc * 1000;
1677                         di->sm_chrg_dsoc = di->dsoc * 1000;
1678                         di->zero_dsoc += sm_delta_dsoc;
1679                         DBG("ZERO1: take sm chrg,delta=%d\n", sm_delta_dsoc);
1680                 }
1681         }
1682
1683         /* when discharge speed up, take sm dischrg into calc */
1684         if (di->dsoc > di->rsoc) {
1685                 /* take sm discharge rest into calc */
1686                 tmp_soc = di->sm_dischrg_dsoc / 1000;
1687                 if (tmp_soc == di->dsoc) {
1688                         sm_delta_dsoc = di->sm_dischrg_dsoc -
1689                                 ((di->dsoc + 1) * 1000 - MIN_ACCURACY);
1690                         di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 -
1691                                                                 MIN_ACCURACY;
1692                         di->zero_dsoc += sm_delta_dsoc;
1693                         DBG("ZERO1: take sm dischrg,delta=%d\n", sm_delta_dsoc);
1694                 }
1695         }
1696
1697         /* check overflow */
1698         if (di->zero_dsoc > (di->dsoc + 1) * 1000 - MIN_ACCURACY) {
1699                 DBG("ZERO1: zero dsoc overflow: %d\n", di->zero_dsoc);
1700                 di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1701         }
1702
1703         /* check new dsoc */
1704         tmp_soc = di->zero_dsoc / 1000;
1705         if (tmp_soc != di->dsoc) {
1706                 /* avoid dsoc jump when heavy load */
1707                 if ((di->dsoc - tmp_soc) > 1) {
1708                         di->dsoc--;
1709                         di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1710                         DBG("ZERO1: heavy load...\n");
1711                 } else {
1712                         di->dsoc = tmp_soc;
1713                 }
1714                 di->zero_drop_sec = 0;
1715         }
1716
1717 out:
1718         DBG("ZERO1: zero_dsoc(Y0)=%d, dsoc=%d, rsoc=%d, tmp_soc=%d\n",
1719             di->zero_dsoc, di->dsoc, di->rsoc, tmp_soc);
1720         DBG("ZERO1: sm_dischrg_dsoc=%d, sm_chrg_dsoc=%d\n",
1721             di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
1722 }
1723
1724 static void rk818_bat_zero_algorithm(struct rk818_battery *di)
1725 {
1726         int delta_cap = 0, delta_soc = 0;
1727
1728         di->zero_timeout_cnt++;
1729         delta_cap = di->zero_remain_cap - di->remain_cap;
1730         delta_soc = di->zero_linek * (delta_cap * 100) / DIV(di->fcc);
1731
1732         DBG("ZERO1: zero_linek=%d, zero_dsoc(Y0)=%d, dsoc=%d, rsoc=%d\n"
1733             "ZERO1: delta_soc(X0)=%d, delta_cap=%d, zero_remain_cap = %d\n"
1734             "ZERO1: timeout_cnt=%d, sm_dischrg=%d, sm_chrg=%d\n\n",
1735             di->zero_linek, di->zero_dsoc, di->dsoc, di->rsoc,
1736             delta_soc, delta_cap, di->zero_remain_cap,
1737             di->zero_timeout_cnt, di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
1738
1739         if ((delta_soc >= MIN_ZERO_DSOC_ACCURACY) ||
1740             (di->zero_timeout_cnt > MIN_ZERO_OVERCNT) ||
1741             (di->zero_linek == 0)) {
1742                 DBG("ZERO1:--------- enter calc -----------\n");
1743                 di->zero_timeout_cnt = 0;
1744                 di->zero_dsoc -= delta_soc;
1745                 rk818_bat_calc_zero_algorithm(di);
1746                 rk818_bat_calc_zero_linek(di);
1747         }
1748 }
1749
1750 static void rk818_bat_dump_time_table(struct rk818_battery *di)
1751 {
1752         u8 i;
1753         static int old_index;
1754         static int old_min;
1755         int mod = di->dsoc % 10;
1756         int index = di->dsoc / 10;
1757         u32 time;
1758
1759         if (rk818_bat_chrg_online(di))
1760                 time = base2min(di->plug_in_base);
1761         else
1762                 time = base2min(di->plug_out_base);
1763
1764         if ((mod == 0) && (index > 0) && (old_index != index)) {
1765                 di->dbg_chrg_min[index - 1] = time - old_min;
1766                 old_min = time;
1767                 old_index = index;
1768         }
1769
1770         for (i = 1; i < 11; i++)
1771                 DBG("Time[%d]=%d, ", (i * 10), di->dbg_chrg_min[i - 1]);
1772         DBG("\n");
1773 }
1774
1775 static void rk818_bat_debug_info(struct rk818_battery *di)
1776 {
1777         u8 sup_tst, ggcon, ggsts, vb_mod, ts_ctrl, reboot_cnt;
1778         u8 usb_ctrl, chrg_ctrl1, thermal;
1779         u8 int_sts1, int_sts2;
1780         u8 int_msk1, int_msk2;
1781         u8 chrg_ctrl2, chrg_ctrl3, rtc, misc, dcdc_en;
1782         char *work_mode[] = {"ZERO", "FINISH", "UN", "UN", "SMOOTH"};
1783         char *bat_mode[] = {"BAT", "VIRTUAL"};
1784
1785         if (rk818_bat_chrg_online(di))
1786                 di->plug_out_base = get_boot_sec();
1787         else
1788                 di->plug_in_base = get_boot_sec();
1789
1790         rk818_bat_dump_time_table(di);
1791
1792         if (!dbg_enable)
1793                 return;
1794
1795         ts_ctrl = rk818_bat_read(di, RK818_TS_CTRL_REG);
1796         misc = rk818_bat_read(di, RK818_MISC_MARK_REG);
1797         ggcon = rk818_bat_read(di, RK818_GGCON_REG);
1798         ggsts = rk818_bat_read(di, RK818_GGSTS_REG);
1799         sup_tst = rk818_bat_read(di, RK818_SUP_STS_REG);
1800         vb_mod = rk818_bat_read(di, RK818_VB_MON_REG);
1801         usb_ctrl = rk818_bat_read(di, RK818_USB_CTRL_REG);
1802         chrg_ctrl1 = rk818_bat_read(di, RK818_CHRG_CTRL_REG1);
1803         chrg_ctrl2 = rk818_bat_read(di, RK818_CHRG_CTRL_REG2);
1804         chrg_ctrl3 = rk818_bat_read(di, RK818_CHRG_CTRL_REG3);
1805         rtc = rk818_bat_read(di, 0);
1806         thermal = rk818_bat_read(di, RK818_THERMAL_REG);
1807         int_sts1 = rk818_bat_read(di, RK818_INT_STS_REG1);
1808         int_sts2 = rk818_bat_read(di, RK818_INT_STS_REG2);
1809         int_msk1 = rk818_bat_read(di, RK818_INT_STS_MSK_REG1);
1810         int_msk2 = rk818_bat_read(di, RK818_INT_STS_MSK_REG2);
1811         dcdc_en = rk818_bat_read(di, RK818_DCDC_EN_REG);
1812         reboot_cnt = rk818_bat_read(di, RK818_REBOOT_CNT_REG);
1813
1814         DBG("\n------- DEBUG REGS, [Ver: %s] -------------------\n"
1815             "GGCON=0x%2x, GGSTS=0x%2x, RTC=0x%2x, DCDC_EN2=0x%2x\n"
1816             "SUP_STS= 0x%2x, VB_MOD=0x%2x, USB_CTRL=0x%2x\n"
1817             "THERMAL=0x%2x, MISC_MARK=0x%2x, TS_CTRL=0x%2x\n"
1818             "CHRG_CTRL:REG1=0x%2x, REG2=0x%2x, REG3=0x%2x\n"
1819             "INT_STS:  REG1=0x%2x, REG2=0x%2x\n"
1820             "INT_MSK:  REG1=0x%2x, REG2=0x%2x\n",
1821             DRIVER_VERSION, ggcon, ggsts, rtc, dcdc_en,
1822             sup_tst, vb_mod, usb_ctrl,
1823             thermal, misc, ts_ctrl,
1824             chrg_ctrl1, chrg_ctrl2, chrg_ctrl3,
1825             int_sts1, int_sts2, int_msk1, int_msk2
1826            );
1827
1828         DBG("###############################################################\n"
1829             "Dsoc=%d, Rsoc=%d, Vavg=%d, Iavg=%d, Cap=%d, Fcc=%d, d=%d\n"
1830             "K=%d, Mode=%s, Oldcap=%d, Is=%d, Ip=%d, Vs=%d\n"
1831             "fb_temp=%d, bat_temp=%d, sample_res=%d\n"
1832             "off:i=0x%x, c=0x%x, p=%d, Rbat=%d, age_ocv_cap=%d, fb=%d\n"
1833             "adp:finish=%lu, boot_min=%lu, sleep_min=%lu, adc=%d, Vsys=%d\n"
1834             "bat:%s, meet: soc=%d, calc: dsoc=%d, rsoc=%d, Vocv=%d\n"
1835             "pwr: dsoc=%d, rsoc=%d, vol=%d, halt: st=%d, cnt=%d, reboot=%d\n"
1836             "ocv_c=%d: %d -> %d; max_c=%d: %d -> %d; force_c=%d: %d -> %d\n"
1837             "min=%d, init=%d, sw=%d, below0=%d, first=%d, changed=%d\n"
1838             "###############################################################\n",
1839             di->dsoc, di->rsoc, di->voltage_avg, di->current_avg,
1840             di->remain_cap, di->fcc, di->rsoc - di->dsoc,
1841             di->sm_linek, work_mode[di->work_mode], di->sm_remain_cap,
1842             di->res_div * chrg_cur_sel_array[chrg_ctrl1 & 0x0f],
1843             chrg_cur_input_array[usb_ctrl & 0x0f],
1844             chrg_vol_sel_array[(chrg_ctrl1 & 0x70) >> 4],
1845             feedback_temp_array[(thermal & 0x0c) >> 2], di->temperature,
1846             di->pdata->sample_res, rk818_bat_get_ioffset(di),
1847             rk818_bat_get_coffset(di), di->poffset, di->bat_res,
1848             di->age_adjust_cap, di->fb_blank, base2min(di->finish_base),
1849             base2min(di->boot_base), di->sleep_sum_sec / 60,
1850             di->adc_allow_update,
1851             di->voltage_avg + di->current_avg * DEF_PWRPATH_RES / 1000,
1852             bat_mode[di->pdata->bat_mode], di->dbg_meet_soc, di->dbg_calc_dsoc,
1853             di->dbg_calc_rsoc, di->voltage_ocv, di->dbg_pwr_dsoc,
1854             di->dbg_pwr_rsoc, di->dbg_pwr_vol, di->is_halt, di->halt_cnt,
1855             reboot_cnt, di->is_ocv_calib, di->ocv_pre_dsoc, di->ocv_new_dsoc,
1856             di->is_max_soc_offset, di->max_pre_dsoc, di->max_new_dsoc,
1857             di->is_force_calib, di->force_pre_dsoc, di->force_new_dsoc,
1858             di->pwroff_min, di->is_initialized, di->is_sw_reset,
1859             di->dbg_cap_low0, di->is_first_on, di->last_dsoc
1860            );
1861 }
1862
1863 static void rk818_bat_init_capacity(struct rk818_battery *di, u32 cap)
1864 {
1865         int delta_cap;
1866
1867         delta_cap = cap - di->remain_cap;
1868         if (!delta_cap)
1869                 return;
1870
1871         di->age_adjust_cap += delta_cap;
1872         rk818_bat_init_coulomb_cap(di, cap);
1873         rk818_bat_smooth_algo_prepare(di);
1874         rk818_bat_zero_algo_prepare(di);
1875 }
1876
1877 static void rk818_bat_update_age_fcc(struct rk818_battery *di)
1878 {
1879         int fcc, remain_cap, age_keep_min, lock_fcc;
1880
1881         lock_fcc = rk818_bat_get_coulomb_cap(di);
1882         remain_cap = lock_fcc - di->age_ocv_cap - di->age_adjust_cap;
1883         age_keep_min = base2min(di->age_keep_sec);
1884
1885         DBG("%s: lock_fcc=%d, age_ocv_cap=%d, age_adjust_cap=%d, remain_cap=%d,"
1886             "age_allow_update=%d, age_keep_min=%d\n",
1887             __func__, lock_fcc, di->age_ocv_cap, di->age_adjust_cap, remain_cap,
1888             di->age_allow_update, age_keep_min);
1889
1890         if ((di->chrg_status == CHARGE_FINISH) && (di->age_allow_update) &&
1891             (age_keep_min < 1200)) {
1892                 di->age_allow_update = false;
1893                 fcc = remain_cap * 100 / DIV(100 - di->age_ocv_soc);
1894                 BAT_INFO("lock_fcc=%d, calc_cap=%d, age: soc=%d, cap=%d, "
1895                          "level=%d, fcc:%d->%d?\n",
1896                          lock_fcc, remain_cap, di->age_ocv_soc,
1897                          di->age_ocv_cap, di->age_level, di->fcc, fcc);
1898
1899                 if ((fcc < di->qmax) && (fcc > MIN_FCC)) {
1900                         BAT_INFO("fcc:%d->%d!\n", di->fcc, fcc);
1901                         di->fcc = fcc;
1902                         rk818_bat_init_capacity(di, di->fcc);
1903                         rk818_bat_save_fcc(di, di->fcc);
1904                         rk818_bat_save_age_level(di, di->age_level);
1905                 }
1906         }
1907 }
1908
1909 static void rk818_bat_wait_finish_sig(struct rk818_battery *di)
1910 {
1911         int chrg_finish_vol = di->pdata->max_chrg_voltage;
1912
1913         if (!rk818_bat_chrg_online(di))
1914                 return;
1915
1916         if ((di->chrg_status == CHARGE_FINISH) && (di->adc_allow_update) &&
1917             (di->voltage_avg > chrg_finish_vol - 150)) {
1918                 rk818_bat_update_age_fcc(di);
1919                 if (rk818_bat_adc_calib(di))
1920                         di->adc_allow_update = false;
1921         }
1922 }
1923
1924 static void rk818_bat_finish_algorithm(struct rk818_battery *di)
1925 {
1926         unsigned long finish_sec, soc_sec;
1927         int plus_soc, finish_current, rest = 0;
1928
1929         /* rsoc */
1930         if ((di->remain_cap != di->fcc) &&
1931             (rk818_bat_get_chrg_status(di) == CHARGE_FINISH)) {
1932                 di->age_adjust_cap += (di->fcc - di->remain_cap);
1933                 rk818_bat_init_coulomb_cap(di, di->fcc);
1934         }
1935
1936         /* dsoc */
1937         if (di->dsoc < 100) {
1938                 if (!di->finish_base)
1939                         di->finish_base = get_boot_sec();
1940                 finish_current = (di->rsoc - di->dsoc) >  FINISH_MAX_SOC_DELAY ?
1941                                         FINISH_CHRG_CUR2 : FINISH_CHRG_CUR1;
1942                 finish_sec = base2sec(di->finish_base);
1943                 soc_sec = di->fcc * 3600 / 100 / DIV(finish_current);
1944                 plus_soc = finish_sec / DIV(soc_sec);
1945                 if (finish_sec > soc_sec) {
1946                         rest = finish_sec % soc_sec;
1947                         di->dsoc += plus_soc;
1948                         di->finish_base = get_boot_sec();
1949                         if (di->finish_base > rest)
1950                                 di->finish_base = get_boot_sec() - rest;
1951                 }
1952                 DBG("<%s>.CHARGE_FINISH:dsoc<100,dsoc=%d\n"
1953                     "soc_time=%lu, sec_finish=%lu, plus_soc=%d, rest=%d\n",
1954                     __func__, di->dsoc, soc_sec, finish_sec, plus_soc, rest);
1955         }
1956 }
1957
1958 static void rk818_bat_calc_smooth_dischrg(struct rk818_battery *di)
1959 {
1960         int tmp_soc = 0, sm_delta_dsoc = 0, zero_delta_dsoc = 0;
1961
1962         tmp_soc = di->sm_dischrg_dsoc / 1000;
1963         if (tmp_soc == di->dsoc)
1964                 goto out;
1965
1966         DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc);
1967         /* when dischrge slow down, take sm charge rest into calc */
1968         if (di->dsoc < di->rsoc) {
1969                 tmp_soc = di->sm_chrg_dsoc / 1000;
1970                 if (tmp_soc == di->dsoc) {
1971                         sm_delta_dsoc = di->sm_chrg_dsoc - di->dsoc * 1000;
1972                         di->sm_chrg_dsoc = di->dsoc * 1000;
1973                         di->sm_dischrg_dsoc += sm_delta_dsoc;
1974                         DBG("<%s>. take sm dischrg, delta=%d\n",
1975                             __func__, sm_delta_dsoc);
1976                 }
1977         }
1978
1979         /* when discharge speed up, take zero discharge rest into calc */
1980         if (di->dsoc > di->rsoc) {
1981                 tmp_soc = di->zero_dsoc / 1000;
1982                 if (tmp_soc == di->dsoc) {
1983                         zero_delta_dsoc = di->zero_dsoc - ((di->dsoc + 1) *
1984                                                 1000 - MIN_ACCURACY);
1985                         di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1986                         di->sm_dischrg_dsoc += zero_delta_dsoc;
1987                         DBG("<%s>. take zero schrg, delta=%d\n",
1988                             __func__, zero_delta_dsoc);
1989                 }
1990         }
1991
1992         /* check up overflow */
1993         if ((di->sm_dischrg_dsoc) > ((di->dsoc + 1) * 1000 - MIN_ACCURACY)) {
1994                 DBG("<%s>. dischrg_dsoc up overflow\n", __func__);
1995                 di->sm_dischrg_dsoc = (di->dsoc + 1) *
1996                                         1000 - MIN_ACCURACY;
1997         }
1998
1999         /* check new dsoc */
2000         tmp_soc = di->sm_dischrg_dsoc / 1000;
2001         if (tmp_soc != di->dsoc) {
2002                 di->dsoc = tmp_soc;
2003                 di->sm_chrg_dsoc = di->dsoc * 1000;
2004         }
2005 out:
2006         DBG("<%s>. dsoc=%d, rsoc=%d, dsoc:sm_dischrg=%d, sm_chrg=%d, zero=%d\n",
2007             __func__, di->dsoc, di->rsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc,
2008             di->zero_dsoc);
2009
2010 }
2011
2012 static void rk818_bat_calc_smooth_chrg(struct rk818_battery *di)
2013 {
2014         int tmp_soc = 0, sm_delta_dsoc = 0, zero_delta_dsoc = 0;
2015
2016         tmp_soc = di->sm_chrg_dsoc / 1000;
2017         if (tmp_soc == di->dsoc)
2018                 goto out;
2019
2020         DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc);
2021         /* when charge slow down, take zero & sm dischrg into calc */
2022         if (di->dsoc > di->rsoc) {
2023                 /* take sm discharge rest into calc */
2024                 tmp_soc = di->sm_dischrg_dsoc / 1000;
2025                 if (tmp_soc == di->dsoc) {
2026                         sm_delta_dsoc = di->sm_dischrg_dsoc -
2027                                         ((di->dsoc + 1) * 1000 - MIN_ACCURACY);
2028                         di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 -
2029                                                         MIN_ACCURACY;
2030                         di->sm_chrg_dsoc += sm_delta_dsoc;
2031                         DBG("<%s>. take sm dischrg, delta=%d\n",
2032                            __func__, sm_delta_dsoc);
2033                 }
2034
2035                 /* take zero discharge rest into calc */
2036                 tmp_soc = di->zero_dsoc / 1000;
2037                 if (tmp_soc == di->dsoc) {
2038                         zero_delta_dsoc = di->zero_dsoc -
2039                         ((di->dsoc + 1) * 1000 - MIN_ACCURACY);
2040                         di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
2041                         di->sm_chrg_dsoc += zero_delta_dsoc;
2042                         DBG("<%s>. take zero dischrg, delta=%d\n",
2043                             __func__, zero_delta_dsoc);
2044                 }
2045         }
2046
2047         /* check down overflow */
2048         if (di->sm_chrg_dsoc < di->dsoc * 1000) {
2049                 DBG("<%s>. chrg_dsoc down overflow\n", __func__);
2050                 di->sm_chrg_dsoc = di->dsoc * 1000;
2051         }
2052
2053         /* check new dsoc */
2054         tmp_soc = di->sm_chrg_dsoc / 1000;
2055         if (tmp_soc != di->dsoc) {
2056                 di->dsoc = tmp_soc;
2057                 di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
2058         }
2059 out:
2060         DBG("<%s>.dsoc=%d, rsoc=%d, dsoc: sm_dischrg=%d, sm_chrg=%d, zero=%d\n",
2061             __func__, di->dsoc, di->rsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc,
2062             di->zero_dsoc);
2063 }
2064
2065 static void rk818_bat_smooth_algorithm(struct rk818_battery *di)
2066 {
2067         int ydsoc = 0, delta_cap = 0, old_cap = 0;
2068         unsigned long tgt_sec = 0;
2069
2070         di->remain_cap = rk818_bat_get_coulomb_cap(di);
2071
2072         /* full charge: slow down */
2073         if ((di->dsoc == 99) && (di->chrg_status == CC_OR_CV)) {
2074                 di->sm_linek = FULL_CHRG_K;
2075         /* terminal charge, slow down */
2076         } else if ((di->current_avg >= TERM_CHRG_CURR) &&
2077             (di->chrg_status == CC_OR_CV) && (di->dsoc >= TERM_CHRG_DSOC)) {
2078                 di->sm_linek = TERM_CHRG_K;
2079                 DBG("<%s>. terminal mode..\n", __func__);
2080         /* simulate charge, speed up */
2081         } else if ((di->current_avg <= SIMULATE_CHRG_CURR) &&
2082                    (di->current_avg > 0) && (di->chrg_status == CC_OR_CV) &&
2083                    (di->dsoc < TERM_CHRG_DSOC) &&
2084                    ((di->rsoc - di->dsoc) >= SIMULATE_CHRG_INTV)) {
2085                 di->sm_linek = SIMULATE_CHRG_K;
2086                 DBG("<%s>. simulate mode..\n", __func__);
2087         } else {
2088                 /* charge and discharge switch */
2089                 if ((di->sm_linek * di->current_avg <= 0) ||
2090                     (di->sm_linek == TERM_CHRG_K) ||
2091                     (di->sm_linek == FULL_CHRG_K) ||
2092                     (di->sm_linek == SIMULATE_CHRG_K)) {
2093                         DBG("<%s>. linek mode, retinit sm linek..\n", __func__);
2094                         rk818_bat_calc_sm_linek(di);
2095                 }
2096         }
2097
2098         old_cap = di->sm_remain_cap;
2099         /*
2100          * when dsoc equal rsoc(not include full, term, simulate case),
2101          * sm_linek should change to -1000/1000 smoothly to avoid dsoc+1/-1
2102          * right away, so change it after flat seconds
2103          */
2104         if ((di->dsoc == di->rsoc) && (abs(di->sm_linek) != 1000) &&
2105             (di->sm_linek != FULL_CHRG_K && di->sm_linek != TERM_CHRG_K &&
2106              di->sm_linek != SIMULATE_CHRG_K)) {
2107                 if (!di->flat_match_sec)
2108                         di->flat_match_sec = get_boot_sec();
2109                 tgt_sec = di->fcc * 3600 / 100 / DIV(abs(di->current_avg)) / 3;
2110                 if (base2sec(di->flat_match_sec) >= tgt_sec) {
2111                         di->flat_match_sec = 0;
2112                         di->sm_linek = (di->current_avg >= 0) ? 1000 : -1000;
2113                 }
2114                 DBG("<%s>. flat_sec=%ld, tgt_sec=%ld, sm_k=%d\n", __func__,
2115                     base2sec(di->flat_match_sec), tgt_sec, di->sm_linek);
2116         } else {
2117                 di->flat_match_sec = 0;
2118         }
2119
2120         /* abs(k)=1000 or dsoc=100, stop calc */
2121         if ((abs(di->sm_linek) == 1000) || (di->current_avg >= 0 &&
2122              di->chrg_status == CC_OR_CV && di->dsoc >= 100)) {
2123                 DBG("<%s>. sm_linek=%d\n", __func__, di->sm_linek);
2124                 if (abs(di->sm_linek) == 1000) {
2125                         di->dsoc = di->rsoc;
2126                         di->sm_linek = (di->sm_linek > 0) ? 1000 : -1000;
2127                         DBG("<%s>. dsoc == rsoc, sm_linek=%d\n",
2128                             __func__, di->sm_linek);
2129                 }
2130                 di->sm_remain_cap = di->remain_cap;
2131                 di->sm_chrg_dsoc = di->dsoc * 1000;
2132                 di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
2133                 DBG("<%s>. sm_dischrg_dsoc=%d, sm_chrg_dsoc=%d\n",
2134                     __func__, di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
2135         } else {
2136                 delta_cap = di->remain_cap - di->sm_remain_cap;
2137                 if (delta_cap == 0) {
2138                         DBG("<%s>. delta_cap = 0\n", __func__);
2139                         return;
2140                 }
2141                 ydsoc = di->sm_linek * abs(delta_cap) * 100 / DIV(di->fcc);
2142                 if (ydsoc == 0) {
2143                         DBG("<%s>. ydsoc = 0\n", __func__);
2144                         return;
2145                 }
2146                 di->sm_remain_cap = di->remain_cap;
2147
2148                 DBG("<%s>. k=%d, ydsoc=%d; cap:old=%d, new:%d; delta_cap=%d\n",
2149                     __func__, di->sm_linek, ydsoc, old_cap,
2150                     di->sm_remain_cap, delta_cap);
2151
2152                 /* discharge mode */
2153                 if (ydsoc < 0) {
2154                         di->sm_dischrg_dsoc += ydsoc;
2155                         rk818_bat_calc_smooth_dischrg(di);
2156                 /* charge mode */
2157                 } else {
2158                         di->sm_chrg_dsoc += ydsoc;
2159                         rk818_bat_calc_smooth_chrg(di);
2160                 }
2161
2162                 if (di->s2r) {
2163                         di->s2r = false;
2164                         rk818_bat_calc_sm_linek(di);
2165                 }
2166         }
2167 }
2168
2169 /*
2170  * cccv and finish switch all the time will cause dsoc freeze,
2171  * if so, do finish chrg, 100ma is less than min finish_ma.
2172  */
2173 static bool rk818_bat_fake_finish_mode(struct rk818_battery *di)
2174 {
2175         if ((di->rsoc == 100) && (rk818_bat_get_chrg_status(di) == CC_OR_CV) &&
2176             (abs(di->current_avg) <= 100))
2177                 return true;
2178         else
2179                 return false;
2180 }
2181
2182 static void rk818_bat_display_smooth(struct rk818_battery *di)
2183 {
2184         /* discharge: reinit "zero & smooth" algorithm to avoid handling dsoc */
2185         if (di->s2r && !di->sleep_chrg_online) {
2186                 DBG("s2r: discharge, reset algorithm...\n");
2187                 di->s2r = false;
2188                 rk818_bat_zero_algo_prepare(di);
2189                 rk818_bat_smooth_algo_prepare(di);
2190                 return;
2191         }
2192
2193         if (di->work_mode == MODE_FINISH) {
2194                 DBG("step1: charge finish...\n");
2195                 rk818_bat_finish_algorithm(di);
2196                 if ((rk818_bat_get_chrg_status(di) != CHARGE_FINISH) &&
2197                     !rk818_bat_fake_finish_mode(di)) {
2198                         if ((di->current_avg < 0) &&
2199                             (di->voltage_avg < di->pdata->zero_algorithm_vol)) {
2200                                 DBG("step1: change to zero mode...\n");
2201                                 rk818_bat_zero_algo_prepare(di);
2202                                 di->work_mode = MODE_ZERO;
2203                         } else {
2204                                 DBG("step1: change to smooth mode...\n");
2205                                 rk818_bat_smooth_algo_prepare(di);
2206                                 di->work_mode = MODE_SMOOTH;
2207                         }
2208                 }
2209         } else if (di->work_mode == MODE_ZERO) {
2210                 DBG("step2: zero algorithm...\n");
2211                 rk818_bat_zero_algorithm(di);
2212                 if ((di->voltage_avg >= di->pdata->zero_algorithm_vol + 50) ||
2213                     (di->current_avg >= 0)) {
2214                         DBG("step2: change to smooth mode...\n");
2215                         rk818_bat_smooth_algo_prepare(di);
2216                         di->work_mode = MODE_SMOOTH;
2217                 } else if ((rk818_bat_get_chrg_status(di) == CHARGE_FINISH) ||
2218                            rk818_bat_fake_finish_mode(di)) {
2219                         DBG("step2: change to finish mode...\n");
2220                         rk818_bat_finish_algo_prepare(di);
2221                         di->work_mode = MODE_FINISH;
2222                 }
2223         } else {
2224                 DBG("step3: smooth algorithm...\n");
2225                 rk818_bat_smooth_algorithm(di);
2226                 if ((di->current_avg < 0) &&
2227                     (di->voltage_avg < di->pdata->zero_algorithm_vol)) {
2228                         DBG("step3: change to zero mode...\n");
2229                         rk818_bat_zero_algo_prepare(di);
2230                         di->work_mode = MODE_ZERO;
2231                 } else if ((rk818_bat_get_chrg_status(di) == CHARGE_FINISH) ||
2232                            rk818_bat_fake_finish_mode(di)) {
2233                         DBG("step3: change to finish mode...\n");
2234                         rk818_bat_finish_algo_prepare(di);
2235                         di->work_mode = MODE_FINISH;
2236                 }
2237         }
2238 }
2239
2240 static void rk818_bat_relax_vol_calib(struct rk818_battery *di)
2241 {
2242         int soc, cap, vol;
2243
2244         vol = di->voltage_relax;
2245         soc = rk818_bat_vol_to_ocvsoc(di, vol);
2246         cap = rk818_bat_vol_to_ocvcap(di, vol);
2247         rk818_bat_init_capacity(di, cap);
2248         BAT_INFO("sleep ocv calib: rsoc=%d, cap=%d\n", soc, cap);
2249 }
2250
2251 static void rk818_bat_relife_age_flag(struct rk818_battery *di)
2252 {
2253         u8 ocv_soc, ocv_cap, soc_level;
2254
2255         if (di->voltage_relax <= 0)
2256                 return;
2257
2258         ocv_soc = rk818_bat_vol_to_ocvsoc(di, di->voltage_relax);
2259         ocv_cap = rk818_bat_vol_to_ocvcap(di, di->voltage_relax);
2260         DBG("<%s>. ocv_soc=%d, min=%lu, vol=%d\n", __func__,
2261             ocv_soc, di->sleep_dischrg_sec / 60, di->voltage_relax);
2262
2263         /* sleep enough time and ocv_soc enough low */
2264         if (!di->age_allow_update && ocv_soc <= 10) {
2265                 di->age_voltage = di->voltage_relax;
2266                 di->age_ocv_cap = ocv_cap;
2267                 di->age_ocv_soc = ocv_soc;
2268                 di->age_adjust_cap = 0;
2269
2270                 if (ocv_soc <= 1)
2271                         di->age_level = 100;
2272                 else if (ocv_soc < 5)
2273                         di->age_level = 90;
2274                 else
2275                         di->age_level = 80;
2276
2277                 soc_level = rk818_bat_get_age_level(di);
2278                 if (soc_level > di->age_level) {
2279                         di->age_allow_update = false;
2280                 } else {
2281                         di->age_allow_update = true;
2282                         di->age_keep_sec = get_boot_sec();
2283                 }
2284
2285                 BAT_INFO("resume: age_vol:%d, age_ocv_cap:%d, age_ocv_soc:%d, "
2286                          "soc_level:%d, age_allow_update:%d, "
2287                          "age_level:%d\n",
2288                          di->age_voltage, di->age_ocv_cap, ocv_soc, soc_level,
2289                          di->age_allow_update, di->age_level);
2290         }
2291 }
2292
2293 static int rk818_bat_sleep_dischrg(struct rk818_battery *di)
2294 {
2295         bool ocv_soc_updated = false;
2296         int tgt_dsoc, gap_soc, sleep_soc = 0;
2297         int pwroff_vol = di->pdata->pwroff_vol;
2298         unsigned long sleep_sec = di->sleep_dischrg_sec;
2299
2300         DBG("<%s>. enter: dsoc=%d, rsoc=%d, rv=%d, v=%d, sleep_min=%lu\n",
2301             __func__, di->dsoc, di->rsoc, di->voltage_relax,
2302             di->voltage_avg, sleep_sec / 60);
2303
2304         if (di->voltage_relax >= di->voltage_avg) {
2305                 rk818_bat_relax_vol_calib(di);
2306                 rk818_bat_restart_relax(di);
2307                 rk818_bat_relife_age_flag(di);
2308                 ocv_soc_updated = true;
2309         }
2310
2311         /* handle dsoc */
2312         if (di->dsoc <= di->rsoc) {
2313                 di->sleep_sum_cap = (SLP_CURR_MIN * sleep_sec / 3600);
2314                 sleep_soc = di->sleep_sum_cap * 100 / DIV(di->fcc);
2315                 tgt_dsoc = di->dsoc - sleep_soc;
2316                 if (sleep_soc > 0) {
2317                         BAT_INFO("calib0: rl=%d, dl=%d, intval=%d\n",
2318                                  di->rsoc, di->dsoc, sleep_soc);
2319                         if (di->dsoc < 5) {
2320                                 di->dsoc--;
2321                         } else if ((tgt_dsoc < 5) && (di->dsoc >= 5)) {
2322                                 if (di->dsoc == 5)
2323                                         di->dsoc--;
2324                                 else
2325                                         di->dsoc = 5;
2326                         } else if (tgt_dsoc > 5) {
2327                                 di->dsoc = tgt_dsoc;
2328                         }
2329                 }
2330
2331                 DBG("%s: dsoc<=rsoc, sum_cap=%d==>sleep_soc=%d, tgt_dsoc=%d\n",
2332                     __func__, di->sleep_sum_cap, sleep_soc, tgt_dsoc);
2333         } else {
2334                 /* di->dsoc > di->rsoc */
2335                 di->sleep_sum_cap = (SLP_CURR_MAX * sleep_sec / 3600);
2336                 sleep_soc = di->sleep_sum_cap / DIV(di->fcc / 100);
2337                 gap_soc = di->dsoc - di->rsoc;
2338
2339                 BAT_INFO("calib1: rsoc=%d, dsoc=%d, intval=%d\n",
2340                          di->rsoc, di->dsoc, sleep_soc);
2341                 if (gap_soc > sleep_soc) {
2342                         if ((gap_soc - 5) > (sleep_soc * 2))
2343                                 di->dsoc -= (sleep_soc * 2);
2344                         else
2345                                 di->dsoc -= sleep_soc;
2346                 } else {
2347                         di->dsoc = di->rsoc;
2348                 }
2349
2350                 DBG("%s: dsoc>rsoc, sum_cap=%d=>sleep_soc=%d, gap_soc=%d\n",
2351                     __func__, di->sleep_sum_cap, sleep_soc, gap_soc);
2352         }
2353
2354         if (di->voltage_avg <= pwroff_vol - 70) {
2355                 di->dsoc = 0;
2356                 rk_send_wakeup_key();
2357                 BAT_INFO("low power sleeping, shutdown... %d\n", di->dsoc);
2358         }
2359
2360         if (ocv_soc_updated && sleep_soc && (di->rsoc - di->dsoc) < 5 &&
2361             di->dsoc < 40) {
2362                 di->dsoc--;
2363                 BAT_INFO("low power sleeping, reserved... %d\n", di->dsoc);
2364         }
2365
2366         if (di->dsoc <= 0) {
2367                 di->dsoc = 0;
2368                 rk_send_wakeup_key();
2369                 BAT_INFO("sleep dsoc is %d...\n", di->dsoc);
2370         }
2371
2372         DBG("<%s>. out: dsoc=%d, rsoc=%d, sum_cap=%d\n",
2373             __func__, di->dsoc, di->rsoc, di->sleep_sum_cap);
2374
2375         return sleep_soc;
2376 }
2377
2378 static void rk818_bat_power_supply_changed(struct rk818_battery *di)
2379 {
2380         u8 status;
2381         static int old_soc = -1;
2382
2383         if (di->dsoc > 100)
2384                 di->dsoc = 100;
2385         else if (di->dsoc < 0)
2386                 di->dsoc = 0;
2387
2388         if (di->dsoc == old_soc)
2389                 return;
2390
2391         status = rk818_bat_read(di, RK818_SUP_STS_REG);
2392         status = (status & CHRG_STATUS_MSK) >> 4;
2393         old_soc = di->dsoc;
2394         di->last_dsoc = di->dsoc;
2395         power_supply_changed(di->bat);
2396         BAT_INFO("changed: dsoc=%d, rsoc=%d, v=%d, ov=%d c=%d, "
2397                  "cap=%d, f=%d, st=%s\n",
2398                  di->dsoc, di->rsoc, di->voltage_avg, di->voltage_ocv,
2399                  di->current_avg, di->remain_cap, di->fcc, bat_status[status]);
2400
2401         BAT_INFO("dl=%d, rl=%d, v=%d, halt=%d, halt_n=%d, max=%d, "
2402                  "init=%d, sw=%d, calib=%d, below0=%d, force=%d\n",
2403                  di->dbg_pwr_dsoc, di->dbg_pwr_rsoc, di->dbg_pwr_vol,
2404                  di->is_halt, di->halt_cnt, di->is_max_soc_offset,
2405                  di->is_initialized, di->is_sw_reset, di->is_ocv_calib,
2406                  di->dbg_cap_low0, di->is_force_calib);
2407 }
2408
2409 static u8 rk818_bat_check_reboot(struct rk818_battery *di)
2410 {
2411         u8 cnt;
2412
2413         cnt = rk818_bat_read(di, RK818_REBOOT_CNT_REG);
2414         cnt++;
2415
2416         if (cnt >= REBOOT_MAX_CNT) {
2417                 BAT_INFO("reboot: %d --> %d\n", di->dsoc, di->rsoc);
2418                 di->dsoc = di->rsoc;
2419                 if (di->dsoc > 100)
2420                         di->dsoc = 100;
2421                 else if (di->dsoc < 0)
2422                         di->dsoc = 0;
2423                 rk818_bat_save_dsoc(di, di->dsoc);
2424                 cnt = REBOOT_MAX_CNT;
2425         }
2426
2427         rk818_bat_save_reboot_cnt(di, cnt);
2428         DBG("reboot cnt: %d\n", cnt);
2429
2430         return cnt;
2431 }
2432
2433 static void rk818_bat_rsoc_daemon(struct rk818_battery *di)
2434 {
2435         int est_vol, remain_cap;
2436         static unsigned long sec;
2437
2438         if ((di->remain_cap < 0) && (di->fb_blank != 0)) {
2439                 if (!sec)
2440                         sec = get_boot_sec();
2441                 wake_lock_timeout(&di->wake_lock,
2442                                   (di->pdata->monitor_sec + 1) * HZ);
2443
2444                 DBG("sec=%ld, hold_sec=%ld\n", sec, base2sec(sec));
2445                 if (base2sec(sec) >= 60) {
2446                         sec = 0;
2447                         di->dbg_cap_low0++;
2448                         est_vol = di->voltage_avg -
2449                                         (di->bat_res * di->current_avg) / 1000;
2450                         remain_cap = rk818_bat_vol_to_ocvcap(di, est_vol);
2451                         rk818_bat_init_capacity(di, remain_cap);
2452                         BAT_INFO("adjust cap below 0 --> %d, rsoc=%d\n",
2453                                  di->remain_cap, di->rsoc);
2454                         wake_unlock(&di->wake_lock);
2455                 }
2456         } else {
2457                 sec = 0;
2458         }
2459 }
2460
2461 static void rk818_bat_update_info(struct rk818_battery *di)
2462 {
2463         di->voltage_avg = rk818_bat_get_avg_voltage(di);
2464         di->current_avg = rk818_bat_get_avg_current(di);
2465         di->voltage_relax = rk818_bat_get_relax_voltage(di);
2466         di->rsoc = rk818_bat_get_rsoc(di);
2467         di->remain_cap = rk818_bat_get_coulomb_cap(di);
2468         di->chrg_status = rk818_bat_get_chrg_status(di);
2469
2470         /* smooth charge */
2471         if (di->remain_cap > di->fcc) {
2472                 di->sm_remain_cap -= (di->remain_cap - di->fcc);
2473                 DBG("<%s>. cap: remain=%d, sm_remain=%d\n",
2474                     __func__, di->remain_cap, di->sm_remain_cap);
2475                 rk818_bat_init_coulomb_cap(di, di->fcc);
2476         }
2477
2478         if (di->chrg_status != CHARGE_FINISH)
2479                 di->finish_base = get_boot_sec();
2480
2481         /*
2482          * we need update fcc in continuous charging state, if discharge state
2483          * keep at least 2 hour, we decide not to update fcc, so clear the
2484          * fcc update flag: age_allow_update.
2485          */
2486         if (base2min(di->plug_out_base) > 120)
2487                 di->age_allow_update = false;
2488
2489         /* do adc calib: status must from cccv mode to finish mode */
2490         if (di->chrg_status == CC_OR_CV) {
2491                 di->adc_allow_update = true;
2492                 di->adc_calib_cnt = 0;
2493         }
2494 }
2495
2496 /* get ntc resistance */
2497 static int rk818_bat_get_ntc_res(struct rk818_battery *di)
2498 {
2499         int val = 0;
2500
2501         val |= rk818_bat_read(di, RK818_TS1_ADC_REGL) << 0;
2502         val |= rk818_bat_read(di, RK818_TS1_ADC_REGH) << 8;
2503
2504         val = val * NTC_CALC_FACTOR; /*reference voltage 2.2V,current 80ua*/
2505         DBG("<%s>. ntc_res=%d\n", __func__, val);
2506
2507         return val;
2508 }
2509
2510 static void rk818_bat_update_temperature(struct rk818_battery *di)
2511 {
2512         u32 ntc_size, *ntc_table;
2513         int i, res;
2514
2515         ntc_table = di->pdata->ntc_table;
2516         ntc_size = di->pdata->ntc_size;
2517         di->temperature = VIRTUAL_TEMPERATURE;
2518
2519         if (ntc_size) {
2520                 res = rk818_bat_get_ntc_res(di);
2521                 if (res < ntc_table[ntc_size - 1]) {
2522                         BAT_INFO("bat ntc upper max degree: R=%d\n", res);
2523                 } else if (res > ntc_table[0]) {
2524                         BAT_INFO("bat ntc lower min degree: R=%d\n", res);
2525                 } else {
2526                         for (i = 0; i < ntc_size; i++) {
2527                                 if (res >= ntc_table[i])
2528                                         break;
2529                         }
2530                         di->temperature = (i + di->pdata->ntc_degree_from) * 10;
2531                 }
2532         }
2533 }
2534
2535 static void rk818_bat_init_dsoc_algorithm(struct rk818_battery *di)
2536 {
2537         u8 buf;
2538         int16_t rest = 0;
2539         unsigned long soc_sec;
2540         const char *mode_name[] = { "MODE_ZERO", "MODE_FINISH",
2541                 "MODE_SMOOTH_CHRG", "MODE_SMOOTH_DISCHRG", "MODE_SMOOTH", };
2542
2543         /* get rest */
2544         rest |= rk818_bat_read(di, RK818_CALC_REST_REGH) << 8;
2545         rest |= rk818_bat_read(di, RK818_CALC_REST_REGL) << 0;
2546
2547         /* get mode */
2548         buf = rk818_bat_read(di, RK818_MISC_MARK_REG);
2549         di->algo_rest_mode = (buf & ALGO_REST_MODE_MSK) >> ALGO_REST_MODE_SHIFT;
2550
2551         if (rk818_bat_get_chrg_status(di) == CHARGE_FINISH) {
2552                 if (di->algo_rest_mode == MODE_FINISH) {
2553                         soc_sec = di->fcc * 3600 / 100 / FINISH_CHRG_CUR1;
2554                         if ((rest / DIV(soc_sec)) > 0) {
2555                                 if (di->dsoc < 100) {
2556                                         di->dsoc++;
2557                                         di->algo_rest_val = rest % soc_sec;
2558                                         BAT_INFO("algorithm rest(%d) dsoc "
2559                                                  "inc: %d\n",
2560                                                  rest, di->dsoc);
2561                                 } else {
2562                                         di->algo_rest_val = 0;
2563                                 }
2564                         } else {
2565                                 di->algo_rest_val = rest;
2566                         }
2567                 } else {
2568                         di->algo_rest_val = rest;
2569                 }
2570         } else {
2571                 /* charge speed up */
2572                 if ((rest / 1000) > 0 && rk818_bat_chrg_online(di)) {
2573                         if (di->dsoc < di->rsoc) {
2574                                 di->dsoc++;
2575                                 di->algo_rest_val = rest % 1000;
2576                                 BAT_INFO("algorithm rest(%d) dsoc inc: %d\n",
2577                                          rest, di->dsoc);
2578                         } else {
2579                                 di->algo_rest_val = 0;
2580                         }
2581                 /* discharge speed up */
2582                 } else if (((rest / 1000) < 0) && !rk818_bat_chrg_online(di)) {
2583                         if (di->dsoc > di->rsoc) {
2584                                 di->dsoc--;
2585                                 di->algo_rest_val = rest % 1000;
2586                                 BAT_INFO("algorithm rest(%d) dsoc sub: %d\n",
2587                                          rest, di->dsoc);
2588                         } else {
2589                                 di->algo_rest_val = 0;
2590                         }
2591                 } else {
2592                         di->algo_rest_val = rest;
2593                 }
2594         }
2595
2596         if (di->dsoc >= 100)
2597                 di->dsoc = 100;
2598         else if (di->dsoc <= 0)
2599                 di->dsoc = 0;
2600
2601         /* init current mode */
2602         di->voltage_avg = rk818_bat_get_avg_voltage(di);
2603         di->current_avg = rk818_bat_get_avg_current(di);
2604         if (rk818_bat_get_chrg_status(di) == CHARGE_FINISH) {
2605                 rk818_bat_finish_algo_prepare(di);
2606                 di->work_mode = MODE_FINISH;
2607         } else {
2608                 rk818_bat_smooth_algo_prepare(di);
2609                 di->work_mode = MODE_SMOOTH;
2610         }
2611
2612         DBG("<%s>. init: org_rest=%d, rest=%d, mode=%s; "
2613             "doc(x1000): zero=%d, chrg=%d, dischrg=%d, finish=%lu\n",
2614             __func__, rest, di->algo_rest_val, mode_name[di->algo_rest_mode],
2615             di->zero_dsoc, di->sm_chrg_dsoc, di->sm_dischrg_dsoc,
2616             di->finish_base);
2617 }
2618
2619 static void rk818_bat_save_algo_rest(struct rk818_battery *di)
2620 {
2621         u8 buf, mode;
2622         int16_t algo_rest = 0;
2623         int tmp_soc;
2624         int zero_rest = 0, sm_chrg_rest = 0;
2625         int sm_dischrg_rest = 0, finish_rest = 0;
2626         const char *mode_name[] = { "MODE_ZERO", "MODE_FINISH",
2627                 "MODE_SMOOTH_CHRG", "MODE_SMOOTH_DISCHRG", "MODE_SMOOTH", };
2628
2629         /* zero dischrg */
2630         tmp_soc = (di->zero_dsoc) / 1000;
2631         if (tmp_soc == di->dsoc)
2632                 zero_rest = di->zero_dsoc - ((di->dsoc + 1) * 1000 -
2633                                 MIN_ACCURACY);
2634
2635         /* sm chrg */
2636         tmp_soc = di->sm_chrg_dsoc / 1000;
2637         if (tmp_soc == di->dsoc)
2638                 sm_chrg_rest = di->sm_chrg_dsoc - di->dsoc * 1000;
2639
2640         /* sm dischrg */
2641         tmp_soc = (di->sm_dischrg_dsoc) / 1000;
2642         if (tmp_soc == di->dsoc)
2643                 sm_dischrg_rest = di->sm_dischrg_dsoc - ((di->dsoc + 1) * 1000 -
2644                                 MIN_ACCURACY);
2645
2646         /* last time is also finish chrg, then add last rest */
2647         if (di->algo_rest_mode == MODE_FINISH && di->algo_rest_val)
2648                 finish_rest = base2sec(di->finish_base) + di->algo_rest_val;
2649         else
2650                 finish_rest = base2sec(di->finish_base);
2651
2652         /* total calc */
2653         if ((rk818_bat_chrg_online(di) && (di->dsoc > di->rsoc)) ||
2654             (!rk818_bat_chrg_online(di) && (di->dsoc < di->rsoc)) ||
2655             (di->dsoc == di->rsoc)) {
2656                 di->algo_rest_val = 0;
2657                 algo_rest = 0;
2658                 DBG("<%s>. step1..\n", __func__);
2659         } else if (di->work_mode == MODE_FINISH) {
2660                 algo_rest = finish_rest;
2661                 DBG("<%s>. step2..\n", __func__);
2662         } else if (di->algo_rest_mode == MODE_FINISH) {
2663                 algo_rest = zero_rest + sm_dischrg_rest + sm_chrg_rest;
2664                 DBG("<%s>. step3..\n", __func__);
2665         } else {
2666                 if (rk818_bat_chrg_online(di) && (di->dsoc < di->rsoc))
2667                         algo_rest = sm_chrg_rest + di->algo_rest_val;
2668                 else if (!rk818_bat_chrg_online(di) && (di->dsoc > di->rsoc))
2669                         algo_rest = zero_rest + sm_dischrg_rest +
2670                                     di->algo_rest_val;
2671                 else
2672                         algo_rest = zero_rest + sm_dischrg_rest + sm_chrg_rest +
2673                                     di->algo_rest_val;
2674                 DBG("<%s>. step4..\n", __func__);
2675         }
2676
2677         /* check mode */
2678         if ((di->work_mode == MODE_FINISH) || (di->work_mode == MODE_ZERO)) {
2679                 mode = di->work_mode;
2680         } else {/* MODE_SMOOTH */
2681                 if (di->sm_linek > 0)
2682                         mode = MODE_SMOOTH_CHRG;
2683                 else
2684                         mode = MODE_SMOOTH_DISCHRG;
2685         }
2686
2687         /* save mode */
2688         buf = rk818_bat_read(di, RK818_MISC_MARK_REG);
2689         buf &= ~ALGO_REST_MODE_MSK;
2690         buf |= (mode << ALGO_REST_MODE_SHIFT);
2691         rk818_bat_write(di, RK818_MISC_MARK_REG, buf);
2692
2693         /* save rest */
2694         buf = (algo_rest >> 8) & 0xff;
2695         rk818_bat_write(di, RK818_CALC_REST_REGH, buf);
2696         buf = (algo_rest >> 0) & 0xff;
2697         rk818_bat_write(di, RK818_CALC_REST_REGL, buf);
2698
2699         DBG("<%s>. rest: algo=%d, mode=%s, last_rest=%d; zero=%d, "
2700             "chrg=%d, dischrg=%d, finish=%lu\n",
2701             __func__, algo_rest, mode_name[mode], di->algo_rest_val, zero_rest,
2702             sm_chrg_rest, sm_dischrg_rest, base2sec(di->finish_base));
2703 }
2704
2705 static void rk818_bat_save_data(struct rk818_battery *di)
2706 {
2707         rk818_bat_save_dsoc(di, di->dsoc);
2708         rk818_bat_save_cap(di, di->remain_cap);
2709         rk818_bat_save_algo_rest(di);
2710 }
2711
2712 static void rk818_battery_work(struct work_struct *work)
2713 {
2714         struct rk818_battery *di =
2715                 container_of(work, struct rk818_battery, bat_delay_work.work);
2716
2717         rk818_bat_update_info(di);
2718         rk818_bat_wait_finish_sig(di);
2719         rk818_bat_rsoc_daemon(di);
2720         rk818_bat_update_temperature(di);
2721         rk818_bat_display_smooth(di);
2722         rk818_bat_power_supply_changed(di);
2723         rk818_bat_save_data(di);
2724         rk818_bat_debug_info(di);
2725
2726         queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work,
2727                            msecs_to_jiffies(di->monitor_ms));
2728 }
2729
2730 static irqreturn_t rk818_vb_low_irq(int irq, void *bat)
2731 {
2732         struct rk818_battery *di = (struct rk818_battery *)bat;
2733
2734         di->dsoc = 0;
2735         rk_send_wakeup_key();
2736         BAT_INFO("lower power yet, power off system! v=%d, c=%d, dsoc=%d\n",
2737                  di->voltage_avg, di->current_avg, di->dsoc);
2738
2739         return IRQ_HANDLED;
2740 }
2741
2742 static void rk818_bat_init_sysfs(struct rk818_battery *di)
2743 {
2744         int i, ret;
2745
2746         for (i = 0; i < ARRAY_SIZE(rk818_bat_attr); i++) {
2747                 ret = sysfs_create_file(&di->dev->kobj,
2748                                         &rk818_bat_attr[i].attr);
2749                 if (ret)
2750                         dev_err(di->dev, "create bat node(%s) error\n",
2751                                 rk818_bat_attr[i].attr.name);
2752         }
2753 }
2754
2755 static int rk818_bat_init_irqs(struct rk818_battery *di)
2756 {
2757         struct rk808 *rk818 = di->rk818;
2758         struct platform_device *pdev = di->pdev;
2759         int ret, vb_lo_irq;
2760
2761         vb_lo_irq = regmap_irq_get_virq(rk818->irq_data, RK818_IRQ_VB_LO);
2762         if (vb_lo_irq < 0) {
2763                 dev_err(di->dev, "vb_lo_irq request failed!\n");
2764                 return vb_lo_irq;
2765         }
2766
2767         ret = devm_request_threaded_irq(di->dev, vb_lo_irq, NULL,
2768                                         rk818_vb_low_irq, IRQF_TRIGGER_HIGH,
2769                                         "rk818_vb_low", di);
2770         if (ret) {
2771                 dev_err(&pdev->dev, "vb_lo_irq request failed!\n");
2772                 return ret;
2773         }
2774         enable_irq_wake(vb_lo_irq);
2775
2776         return 0;
2777 }
2778
2779 static void rk818_bat_init_info(struct rk818_battery *di)
2780 {
2781         di->design_cap = di->pdata->design_capacity;
2782         di->qmax = di->pdata->design_qmax;
2783         di->bat_res = di->pdata->bat_res;
2784         di->monitor_ms = di->pdata->monitor_sec * TIMER_MS_COUNTS;
2785         di->boot_base = POWER_ON_SEC_BASE;
2786         di->res_div = (di->pdata->sample_res == SAMPLE_RES_20MR) ?
2787                        SAMPLE_RES_DIV1 : SAMPLE_RES_DIV2;
2788 }
2789
2790 static int rk818_bat_rtc_sleep_sec(struct rk818_battery *di)
2791 {
2792         int err;
2793         int interval_sec = 0;
2794         struct rtc_time tm;
2795         struct timespec tv = { .tv_nsec = NSEC_PER_SEC >> 1, };
2796         struct rtc_device *rtc = rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE);
2797
2798         err = rtc_read_time(rtc, &tm);
2799         if (err) {
2800                 dev_err(rtc->dev.parent, "hctosys: read hardware clk failed\n");
2801                 return 0;
2802         }
2803
2804         err = rtc_valid_tm(&tm);
2805         if (err) {
2806                 dev_err(rtc->dev.parent, "hctosys: invalid date time\n");
2807                 return 0;
2808         }
2809
2810         rtc_tm_to_time(&tm, &tv.tv_sec);
2811         interval_sec = tv.tv_sec - di->rtc_base.tv_sec;
2812
2813         return (interval_sec > 0) ? interval_sec : 0;
2814 }
2815
2816 static void rk818_bat_init_ts1_detect(struct rk818_battery *di)
2817 {
2818         u8 buf;
2819
2820         if (!di->pdata->ntc_size)
2821                 return;
2822
2823         /* ADC_TS1_EN */
2824         buf = rk818_bat_read(di, RK818_ADC_CTRL_REG);
2825         buf |= ADC_TS1_EN;
2826         rk818_bat_write(di, RK818_ADC_CTRL_REG, buf);
2827 }
2828
2829 static void rk818_bat_set_shtd_vol(struct rk818_battery *di)
2830 {
2831         u8 val;
2832
2833         /* set vbat lowest 3.0v shutdown */
2834         val = rk818_bat_read(di, RK818_VB_MON_REG);
2835         val &= ~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK);
2836         val |= (RK818_VBAT_LOW_3V0 | EN_VABT_LOW_SHUT_DOWN);
2837         rk818_bat_write(di, RK818_VB_MON_REG, val);
2838
2839         /* disable low irq */
2840         rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1,
2841                            VB_LOW_INT_EN, VB_LOW_INT_EN);
2842 }
2843
2844 static void rk818_bat_init_fg(struct rk818_battery *di)
2845 {
2846         rk818_bat_enable_gauge(di);
2847         rk818_bat_init_voltage_kb(di);
2848         rk818_bat_init_coffset(di);
2849         rk818_bat_set_relax_sample(di);
2850         rk818_bat_set_ioffset_sample(di);
2851         rk818_bat_set_ocv_sample(di);
2852         rk818_bat_init_ts1_detect(di);
2853         rk818_bat_init_rsoc(di);
2854         rk818_bat_init_coulomb_cap(di, di->nac);
2855         rk818_bat_init_age_algorithm(di);
2856         rk818_bat_init_chrg_config(di);
2857         rk818_bat_set_shtd_vol(di);
2858         rk818_bat_init_zero_table(di);
2859         rk818_bat_init_caltimer(di);
2860         rk818_bat_init_dsoc_algorithm(di);
2861
2862         di->voltage_avg = rk818_bat_get_avg_voltage(di);
2863         di->voltage_ocv = rk818_bat_get_ocv_voltage(di);
2864         di->voltage_relax = rk818_bat_get_relax_voltage(di);
2865         di->current_avg = rk818_bat_get_avg_current(di);
2866         di->remain_cap = rk818_bat_get_coulomb_cap(di);
2867         di->dbg_pwr_dsoc = di->dsoc;
2868         di->dbg_pwr_rsoc = di->rsoc;
2869         di->dbg_pwr_vol = di->voltage_avg;
2870
2871         rk818_bat_dump_regs(di, 0x99, 0xee);
2872         DBG("nac=%d cap=%d ov=%d v=%d rv=%d dl=%d rl=%d c=%d\n",
2873             di->nac, di->remain_cap, di->voltage_ocv, di->voltage_avg,
2874             di->voltage_relax, di->dsoc, di->rsoc, di->current_avg);
2875 }
2876
2877 #ifdef CONFIG_OF
2878 static int rk818_bat_parse_dt(struct rk818_battery *di)
2879 {
2880         u32 out_value;
2881         int length, ret;
2882         size_t size;
2883         struct device_node *np = di->dev->of_node;
2884         struct battery_platform_data *pdata;
2885         struct device *dev = di->dev;
2886
2887         pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2888         if (!pdata)
2889                 return -ENOMEM;
2890
2891         di->pdata = pdata;
2892         /* init default param */
2893         pdata->bat_res = DEFAULT_BAT_RES;
2894         pdata->monitor_sec = DEFAULT_MONITOR_SEC;
2895         pdata->pwroff_vol = DEFAULT_PWROFF_VOL_THRESD;
2896         pdata->sleep_exit_current = DEFAULT_SLP_EXIT_CUR;
2897         pdata->sleep_enter_current = DEFAULT_SLP_ENTER_CUR;
2898         pdata->bat_mode = MODE_BATTARY;
2899         pdata->max_soc_offset = DEFAULT_MAX_SOC_OFFSET;
2900         pdata->sample_res = DEFAULT_SAMPLE_RES;
2901         pdata->energy_mode = DEFAULT_ENERGY_MODE;
2902         pdata->fb_temp = DEFAULT_FB_TEMP;
2903         pdata->zero_reserve_dsoc = DEFAULT_ZERO_RESERVE_DSOC;
2904
2905         /* parse necessary param */
2906         if (!of_find_property(np, "ocv_table", &length)) {
2907                 dev_err(dev, "ocv_table not found!\n");
2908                 return -EINVAL;
2909         }
2910
2911         pdata->ocv_size = length / sizeof(u32);
2912         if (pdata->ocv_size <= 0) {
2913                 dev_err(dev, "invalid ocv table\n");
2914                 return -EINVAL;
2915         }
2916
2917         size = sizeof(*pdata->ocv_table) * pdata->ocv_size;
2918         pdata->ocv_table = devm_kzalloc(di->dev, size, GFP_KERNEL);
2919         if (!pdata->ocv_table)
2920                 return -ENOMEM;
2921
2922         ret = of_property_read_u32_array(np, "ocv_table",
2923                                          pdata->ocv_table,
2924                                          pdata->ocv_size);
2925         if (ret < 0)
2926                 return ret;
2927
2928         ret = of_property_read_u32(np, "design_capacity", &out_value);
2929         if (ret < 0) {
2930                 dev_err(dev, "design_capacity not found!\n");
2931                 return ret;
2932         }
2933         pdata->design_capacity = out_value;
2934
2935         ret = of_property_read_u32(np, "design_qmax", &out_value);
2936         if (ret < 0) {
2937                 dev_err(dev, "design_qmax not found!\n");
2938                 return ret;
2939         }
2940         pdata->design_qmax = out_value;
2941         ret = of_property_read_u32(np, "max_chrg_voltage", &out_value);
2942         if (ret < 0) {
2943                 dev_err(dev, "max_chrg_voltage missing!\n");
2944                 return ret;
2945         }
2946         pdata->max_chrg_voltage = out_value;
2947         if (out_value >= 4300)
2948                 pdata->zero_algorithm_vol = DEFAULT_ALGR_VOL_THRESD2;
2949         else
2950                 pdata->zero_algorithm_vol = DEFAULT_ALGR_VOL_THRESD1;
2951
2952         ret = of_property_read_u32(np, "fb_temperature", &pdata->fb_temp);
2953         if (ret < 0)
2954                 dev_err(dev, "fb_temperature missing!\n");
2955
2956         ret = of_property_read_u32(np, "sample_res", &pdata->sample_res);
2957         if (ret < 0)
2958                 dev_err(dev, "sample_res missing!\n");
2959
2960         ret = of_property_read_u32(np, "energy_mode", &pdata->energy_mode);
2961         if (ret < 0)
2962                 dev_err(dev, "energy_mode missing!\n");
2963
2964         ret = of_property_read_u32(np, "max_soc_offset",
2965                                    &pdata->max_soc_offset);
2966         if (ret < 0)
2967                 dev_err(dev, "max_soc_offset missing!\n");
2968
2969         ret = of_property_read_u32(np, "monitor_sec", &pdata->monitor_sec);
2970         if (ret < 0)
2971                 dev_err(dev, "monitor_sec missing!\n");
2972
2973         ret = of_property_read_u32(np, "zero_algorithm_vol",
2974                                    &pdata->zero_algorithm_vol);
2975         if (ret < 0)
2976                 dev_err(dev, "zero_algorithm_vol missing!\n");
2977
2978         ret = of_property_read_u32(np, "zero_reserve_dsoc",
2979                                   &pdata->zero_reserve_dsoc);
2980
2981         ret = of_property_read_u32(np, "virtual_power", &pdata->bat_mode);
2982         if (ret < 0)
2983                 dev_err(dev, "virtual_power missing!\n");
2984
2985         ret = of_property_read_u32(np, "bat_res", &pdata->bat_res);
2986         if (ret < 0)
2987                 dev_err(dev, "bat_res missing!\n");
2988
2989         ret = of_property_read_u32(np, "sleep_enter_current",
2990                                    &pdata->sleep_enter_current);
2991         if (ret < 0)
2992                 dev_err(dev, "sleep_enter_current missing!\n");
2993
2994         ret = of_property_read_u32(np, "sleep_exit_current",
2995                                    &pdata->sleep_exit_current);
2996         if (ret < 0)
2997                 dev_err(dev, "sleep_exit_current missing!\n");
2998
2999         ret = of_property_read_u32(np, "power_off_thresd", &pdata->pwroff_vol);
3000         if (ret < 0)
3001                 dev_err(dev, "power_off_thresd missing!\n");
3002
3003         if (!of_find_property(np, "ntc_table", &length)) {
3004                 pdata->ntc_size = 0;
3005         } else {
3006                 /* get ntc degree base value */
3007                 ret = of_property_read_u32_index(np, "ntc_degree_from", 1,
3008                                                  &pdata->ntc_degree_from);
3009                 if (ret) {
3010                         dev_err(dev, "invalid ntc_degree_from\n");
3011                         return -EINVAL;
3012                 }
3013
3014                 of_property_read_u32_index(np, "ntc_degree_from", 0,
3015                                            &out_value);
3016                 if (out_value)
3017                         pdata->ntc_degree_from = -pdata->ntc_degree_from;
3018
3019                 pdata->ntc_size = length / sizeof(u32);
3020         }
3021
3022         if (pdata->ntc_size) {
3023                 size = sizeof(*pdata->ntc_table) * pdata->ntc_size;
3024                 pdata->ntc_table = devm_kzalloc(di->dev, size, GFP_KERNEL);
3025                 if (!pdata->ntc_table)
3026                         return -ENOMEM;
3027
3028                 ret = of_property_read_u32_array(np, "ntc_table",
3029                                                  pdata->ntc_table,
3030                                                  pdata->ntc_size);
3031                 if (ret < 0)
3032                         return ret;
3033         }
3034
3035         DBG("the battery dts info dump:\n"
3036             "bat_res:%d\n"
3037             "design_capacity:%d\n"
3038             "design_qmax :%d\n"
3039             "sleep_enter_current:%d\n"
3040             "sleep_exit_current:%d\n"
3041             "zero_algorithm_vol:%d\n"
3042             "zero_reserve_dsoc:%d\n"
3043             "monitor_sec:%d\n"
3044             "max_soc_offset:%d\n"
3045             "virtual_power:%d\n"
3046             "pwroff_vol:%d\n"
3047             "sample_res:%d\n"
3048             "ntc_size=%d\n"
3049             "ntc_degree_from:%d\n"
3050             "ntc_degree_to:%d\n",
3051             pdata->bat_res, pdata->design_capacity, pdata->design_qmax,
3052             pdata->sleep_enter_current, pdata->sleep_exit_current,
3053             pdata->zero_algorithm_vol, pdata->zero_reserve_dsoc,
3054             pdata->monitor_sec,
3055             pdata->max_soc_offset, pdata->bat_mode, pdata->pwroff_vol,
3056             pdata->sample_res, pdata->ntc_size, pdata->ntc_degree_from,
3057             pdata->ntc_degree_from + pdata->ntc_size - 1
3058             );
3059
3060         return 0;
3061 }
3062 #else
3063 static int rk818_bat_parse_dt(struct rk818_battery *di)
3064 {
3065         return -ENODEV;
3066 }
3067 #endif
3068
3069 static const struct of_device_id rk818_battery_of_match[] = {
3070         {.compatible = "rk818-battery",},
3071         { },
3072 };
3073
3074 static int rk818_battery_probe(struct platform_device *pdev)
3075 {
3076         const struct of_device_id *of_id =
3077                         of_match_device(rk818_battery_of_match, &pdev->dev);
3078         struct rk818_battery *di;
3079         struct rk808 *rk818 = dev_get_drvdata(pdev->dev.parent);
3080         int ret;
3081
3082         if (!of_id) {
3083                 dev_err(&pdev->dev, "Failed to find matching dt id\n");
3084                 return -ENODEV;
3085         }
3086
3087         di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
3088         if (!di)
3089                 return -ENOMEM;
3090
3091         di->rk818 = rk818;
3092         di->pdev = pdev;
3093         di->dev = &pdev->dev;
3094         di->regmap = rk818->regmap;
3095         platform_set_drvdata(pdev, di);
3096
3097         ret = rk818_bat_parse_dt(di);
3098         if (ret < 0) {
3099                 dev_err(di->dev, "rk818 battery parse dt failed!\n");
3100                 return ret;
3101         }
3102
3103         if (!is_rk818_bat_exist(di)) {
3104                 di->pdata->bat_mode = MODE_VIRTUAL;
3105                 dev_err(di->dev, "no battery, virtual power mode\n");
3106         }
3107
3108         ret = rk818_bat_init_irqs(di);
3109         if (ret != 0) {
3110                 dev_err(di->dev, "rk818 bat init irqs failed!\n");
3111                 return ret;
3112         }
3113
3114         ret = rk818_bat_init_power_supply(di);
3115         if (ret) {
3116                 dev_err(di->dev, "rk818 power supply register failed!\n");
3117                 return ret;
3118         }
3119
3120         rk818_bat_init_info(di);
3121         rk818_bat_init_fg(di);
3122         rk818_bat_init_sysfs(di);
3123         rk818_bat_register_fb_notify(di);
3124         wake_lock_init(&di->wake_lock, WAKE_LOCK_SUSPEND, "rk818_bat_lock");
3125         di->bat_monitor_wq = alloc_ordered_workqueue("%s",
3126                         WQ_MEM_RECLAIM | WQ_FREEZABLE, "rk818-bat-monitor-wq");
3127         INIT_DELAYED_WORK(&di->bat_delay_work, rk818_battery_work);
3128         queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work,
3129                            msecs_to_jiffies(TIMER_MS_COUNTS * 5));
3130
3131         BAT_INFO("driver version %s\n", DRIVER_VERSION);
3132
3133         return ret;
3134 }
3135
3136 static int rk818_battery_suspend(struct platform_device *dev,
3137                                  pm_message_t state)
3138 {
3139         struct rk818_battery *di = platform_get_drvdata(dev);
3140         u8 val, st;
3141
3142         cancel_delayed_work_sync(&di->bat_delay_work);
3143
3144         di->s2r = false;
3145         di->sleep_chrg_online = rk818_bat_chrg_online(di);
3146         di->sleep_chrg_status = rk818_bat_get_chrg_status(di);
3147         di->current_avg = rk818_bat_get_avg_current(di);
3148         di->remain_cap = rk818_bat_get_coulomb_cap(di);
3149         di->rsoc = rk818_bat_get_rsoc(di);
3150         do_gettimeofday(&di->rtc_base);
3151         rk818_bat_save_data(di);
3152         st = (rk818_bat_read(di, RK818_SUP_STS_REG) & CHRG_STATUS_MSK) >> 4;
3153
3154         /* if not CHARGE_FINISH, reinit finish_base.
3155          * avoid sleep loop between suspend and resume
3156          */
3157         if (di->sleep_chrg_status != CHARGE_FINISH)
3158                 di->finish_base = get_boot_sec();
3159
3160         /* avoid: enter suspend from MODE_ZERO: load from heavy to light */
3161         if ((di->work_mode == MODE_ZERO) &&
3162             (di->sleep_chrg_online) && (di->current_avg >= 0)) {
3163                 DBG("suspend: MODE_ZERO exit...\n");
3164                 /* it need't do prepare for mode finish and smooth, it will
3165                  * be done in display_smooth
3166                  */
3167                 if (di->sleep_chrg_status == CHARGE_FINISH) {
3168                         di->work_mode = MODE_FINISH;
3169                         di->finish_base = get_boot_sec();
3170                 } else {
3171                         di->work_mode = MODE_SMOOTH;
3172                         rk818_bat_smooth_algo_prepare(di);
3173                 }
3174         }
3175
3176         /* set vbat low than 3.4v to generate a wakeup irq */
3177         val = rk818_bat_read(di, RK818_VB_MON_REG);
3178         val &= (~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK));
3179         val |= (RK818_VBAT_LOW_3V4 | EN_VBAT_LOW_IRQ);
3180         rk818_bat_write(di, RK818_VB_MON_REG, val);
3181         rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1, VB_LOW_INT_EN, 0);
3182
3183         BAT_INFO("suspend: dl=%d rl=%d c=%d v=%d cap=%d at=%ld ch=%d st=%s\n",
3184                  di->dsoc, di->rsoc, di->current_avg,
3185                  rk818_bat_get_avg_voltage(di), rk818_bat_get_coulomb_cap(di),
3186                  di->sleep_dischrg_sec, di->sleep_chrg_online, bat_status[st]);
3187
3188         return 0;
3189 }
3190
3191 static int rk818_battery_resume(struct platform_device *dev)
3192 {
3193         struct rk818_battery *di = platform_get_drvdata(dev);
3194         int interval_sec, time_step, pwroff_vol;
3195         u8 val, st;
3196
3197         di->s2r = true;
3198         di->current_avg = rk818_bat_get_avg_current(di);
3199         di->voltage_relax = rk818_bat_get_relax_voltage(di);
3200         di->voltage_avg = rk818_bat_get_avg_voltage(di);
3201         di->remain_cap = rk818_bat_get_coulomb_cap(di);
3202         di->rsoc = rk818_bat_get_rsoc(di);
3203         interval_sec = rk818_bat_rtc_sleep_sec(di);
3204         di->sleep_sum_sec += interval_sec;
3205         pwroff_vol = di->pdata->pwroff_vol;
3206         st = (rk818_bat_read(di, RK818_SUP_STS_REG) & CHRG_STATUS_MSK) >> 4;
3207
3208         if (!di->sleep_chrg_online) {
3209                 /* only add up discharge sleep seconds */
3210                 di->sleep_dischrg_sec += interval_sec;
3211                 if (di->voltage_avg <= pwroff_vol + 50)
3212                         time_step = DISCHRG_TIME_STEP1;
3213                 else
3214                         time_step = DISCHRG_TIME_STEP2;
3215         }
3216
3217         BAT_INFO("resume: dl=%d rl=%d c=%d v=%d rv=%d "
3218                  "cap=%d dt=%d at=%ld ch=%d st=%s\n",
3219                  di->dsoc, di->rsoc, di->current_avg, di->voltage_avg,
3220                  di->voltage_relax, rk818_bat_get_coulomb_cap(di), interval_sec,
3221                  di->sleep_dischrg_sec, di->sleep_chrg_online, bat_status[st]);
3222
3223         /* sleep: enough time and discharge */
3224         if ((di->sleep_dischrg_sec > time_step) && (!di->sleep_chrg_online)) {
3225                 if (rk818_bat_sleep_dischrg(di))
3226                         di->sleep_dischrg_sec = 0;
3227         }
3228
3229         rk818_bat_save_data(di);
3230
3231         /* set vbat lowest 3.0v shutdown */
3232         val = rk818_bat_read(di, RK818_VB_MON_REG);
3233         val &= ~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK);
3234         val |= (RK818_VBAT_LOW_3V0 | EN_VABT_LOW_SHUT_DOWN);
3235         rk818_bat_write(di, RK818_VB_MON_REG, val);
3236         rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1,
3237                            VB_LOW_INT_EN, VB_LOW_INT_EN);
3238
3239         /* charge/lowpower lock: for battery work to update dsoc and rsoc */
3240         if ((di->sleep_chrg_online) ||
3241             (!di->sleep_chrg_online && di->voltage_avg < di->pdata->pwroff_vol))
3242                 wake_lock_timeout(&di->wake_lock, msecs_to_jiffies(2000));
3243
3244         queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work,
3245                            msecs_to_jiffies(1000));
3246
3247         return 0;
3248 }
3249
3250 static void rk818_battery_shutdown(struct platform_device *dev)
3251 {
3252         u8 cnt = 0;
3253         struct rk818_battery *di = platform_get_drvdata(dev);
3254
3255         cancel_delayed_work_sync(&di->bat_delay_work);
3256         cancel_delayed_work_sync(&di->calib_delay_work);
3257         rk818_bat_unregister_fb_notify(di);
3258         del_timer(&di->caltimer);
3259         if (base2sec(di->boot_base) < REBOOT_PERIOD_SEC)
3260                 cnt = rk818_bat_check_reboot(di);
3261         else
3262                 rk818_bat_save_reboot_cnt(di, 0);
3263
3264         BAT_INFO("shutdown: dl=%d rl=%d c=%d v=%d cap=%d f=%d ch=%d n=%d "
3265                  "mode=%d rest=%d\n",
3266                  di->dsoc, di->rsoc, di->current_avg, di->voltage_avg,
3267                  di->remain_cap, di->fcc, rk818_bat_chrg_online(di), cnt,
3268                  di->algo_rest_mode, di->algo_rest_val);
3269 }
3270
3271 static struct platform_driver rk818_battery_driver = {
3272         .probe = rk818_battery_probe,
3273         .suspend = rk818_battery_suspend,
3274         .resume = rk818_battery_resume,
3275         .shutdown = rk818_battery_shutdown,
3276         .driver = {
3277                 .name = "rk818-battery",
3278                 .of_match_table = rk818_battery_of_match,
3279         },
3280 };
3281
3282 static int __init battery_init(void)
3283 {
3284         return platform_driver_register(&rk818_battery_driver);
3285 }
3286 fs_initcall_sync(battery_init);
3287
3288 static void __exit battery_exit(void)
3289 {
3290         platform_driver_unregister(&rk818_battery_driver);
3291 }
3292 module_exit(battery_exit);
3293
3294 MODULE_LICENSE("GPL");
3295 MODULE_ALIAS("platform:rk818-battery");
3296 MODULE_AUTHOR("chenjh<chenjh@rock-chips.com>");