Merge branch 'v3.10/topic/misc' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt61pci
23         Abstract: rt61pci device specific routines.
24         Supported chipsets: RT2561, RT2561s, RT2661.
25  */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/slab.h>
34 #include <linux/pci.h>
35 #include <linux/eeprom_93cx6.h>
36
37 #include "rt2x00.h"
38 #include "rt2x00mmio.h"
39 #include "rt2x00pci.h"
40 #include "rt61pci.h"
41
42 /*
43  * Allow hardware encryption to be disabled.
44  */
45 static bool modparam_nohwcrypt = false;
46 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
47 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
48
49 /*
50  * Register access.
51  * BBP and RF register require indirect register access,
52  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
53  * These indirect registers work with busy bits,
54  * and we will try maximal REGISTER_BUSY_COUNT times to access
55  * the register while taking a REGISTER_BUSY_DELAY us delay
56  * between each attempt. When the busy bit is still set at that time,
57  * the access attempt is considered to have failed,
58  * and we will print an error.
59  */
60 #define WAIT_FOR_BBP(__dev, __reg) \
61         rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
62 #define WAIT_FOR_RF(__dev, __reg) \
63         rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
64 #define WAIT_FOR_MCU(__dev, __reg) \
65         rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
66                                 H2M_MAILBOX_CSR_OWNER, (__reg))
67
68 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
69                               const unsigned int word, const u8 value)
70 {
71         u32 reg;
72
73         mutex_lock(&rt2x00dev->csr_mutex);
74
75         /*
76          * Wait until the BBP becomes available, afterwards we
77          * can safely write the new data into the register.
78          */
79         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
80                 reg = 0;
81                 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
82                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
83                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
84                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
85
86                 rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
87         }
88
89         mutex_unlock(&rt2x00dev->csr_mutex);
90 }
91
92 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
93                              const unsigned int word, u8 *value)
94 {
95         u32 reg;
96
97         mutex_lock(&rt2x00dev->csr_mutex);
98
99         /*
100          * Wait until the BBP becomes available, afterwards we
101          * can safely write the read request into the register.
102          * After the data has been written, we wait until hardware
103          * returns the correct value, if at any time the register
104          * doesn't become available in time, reg will be 0xffffffff
105          * which means we return 0xff to the caller.
106          */
107         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
108                 reg = 0;
109                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
110                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
111                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
112
113                 rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
114
115                 WAIT_FOR_BBP(rt2x00dev, &reg);
116         }
117
118         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
119
120         mutex_unlock(&rt2x00dev->csr_mutex);
121 }
122
123 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
124                              const unsigned int word, const u32 value)
125 {
126         u32 reg;
127
128         mutex_lock(&rt2x00dev->csr_mutex);
129
130         /*
131          * Wait until the RF becomes available, afterwards we
132          * can safely write the new data into the register.
133          */
134         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
135                 reg = 0;
136                 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
137                 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
138                 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
139                 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
140
141                 rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg);
142                 rt2x00_rf_write(rt2x00dev, word, value);
143         }
144
145         mutex_unlock(&rt2x00dev->csr_mutex);
146 }
147
148 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
149                                 const u8 command, const u8 token,
150                                 const u8 arg0, const u8 arg1)
151 {
152         u32 reg;
153
154         mutex_lock(&rt2x00dev->csr_mutex);
155
156         /*
157          * Wait until the MCU becomes available, afterwards we
158          * can safely write the new data into the register.
159          */
160         if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
161                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
162                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
163                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
164                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
165                 rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
166
167                 rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
168                 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
169                 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
170                 rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg);
171         }
172
173         mutex_unlock(&rt2x00dev->csr_mutex);
174
175 }
176
177 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
178 {
179         struct rt2x00_dev *rt2x00dev = eeprom->data;
180         u32 reg;
181
182         rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
183
184         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
185         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
186         eeprom->reg_data_clock =
187             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
188         eeprom->reg_chip_select =
189             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
190 }
191
192 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
193 {
194         struct rt2x00_dev *rt2x00dev = eeprom->data;
195         u32 reg = 0;
196
197         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
198         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
199         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
200                            !!eeprom->reg_data_clock);
201         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
202                            !!eeprom->reg_chip_select);
203
204         rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
205 }
206
207 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
208 static const struct rt2x00debug rt61pci_rt2x00debug = {
209         .owner  = THIS_MODULE,
210         .csr    = {
211                 .read           = rt2x00mmio_register_read,
212                 .write          = rt2x00mmio_register_write,
213                 .flags          = RT2X00DEBUGFS_OFFSET,
214                 .word_base      = CSR_REG_BASE,
215                 .word_size      = sizeof(u32),
216                 .word_count     = CSR_REG_SIZE / sizeof(u32),
217         },
218         .eeprom = {
219                 .read           = rt2x00_eeprom_read,
220                 .write          = rt2x00_eeprom_write,
221                 .word_base      = EEPROM_BASE,
222                 .word_size      = sizeof(u16),
223                 .word_count     = EEPROM_SIZE / sizeof(u16),
224         },
225         .bbp    = {
226                 .read           = rt61pci_bbp_read,
227                 .write          = rt61pci_bbp_write,
228                 .word_base      = BBP_BASE,
229                 .word_size      = sizeof(u8),
230                 .word_count     = BBP_SIZE / sizeof(u8),
231         },
232         .rf     = {
233                 .read           = rt2x00_rf_read,
234                 .write          = rt61pci_rf_write,
235                 .word_base      = RF_BASE,
236                 .word_size      = sizeof(u32),
237                 .word_count     = RF_SIZE / sizeof(u32),
238         },
239 };
240 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
241
242 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
243 {
244         u32 reg;
245
246         rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
247         return rt2x00_get_field32(reg, MAC_CSR13_VAL5);
248 }
249
250 #ifdef CONFIG_RT2X00_LIB_LEDS
251 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
252                                    enum led_brightness brightness)
253 {
254         struct rt2x00_led *led =
255             container_of(led_cdev, struct rt2x00_led, led_dev);
256         unsigned int enabled = brightness != LED_OFF;
257         unsigned int a_mode =
258             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
259         unsigned int bg_mode =
260             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
261
262         if (led->type == LED_TYPE_RADIO) {
263                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
264                                    MCU_LEDCS_RADIO_STATUS, enabled);
265
266                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
267                                     (led->rt2x00dev->led_mcu_reg & 0xff),
268                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
269         } else if (led->type == LED_TYPE_ASSOC) {
270                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
271                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
272                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
273                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
274
275                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
276                                     (led->rt2x00dev->led_mcu_reg & 0xff),
277                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
278         } else if (led->type == LED_TYPE_QUALITY) {
279                 /*
280                  * The brightness is divided into 6 levels (0 - 5),
281                  * this means we need to convert the brightness
282                  * argument into the matching level within that range.
283                  */
284                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
285                                     brightness / (LED_FULL / 6), 0);
286         }
287 }
288
289 static int rt61pci_blink_set(struct led_classdev *led_cdev,
290                              unsigned long *delay_on,
291                              unsigned long *delay_off)
292 {
293         struct rt2x00_led *led =
294             container_of(led_cdev, struct rt2x00_led, led_dev);
295         u32 reg;
296
297         rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14, &reg);
298         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
299         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
300         rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg);
301
302         return 0;
303 }
304
305 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
306                              struct rt2x00_led *led,
307                              enum led_type type)
308 {
309         led->rt2x00dev = rt2x00dev;
310         led->type = type;
311         led->led_dev.brightness_set = rt61pci_brightness_set;
312         led->led_dev.blink_set = rt61pci_blink_set;
313         led->flags = LED_INITIALIZED;
314 }
315 #endif /* CONFIG_RT2X00_LIB_LEDS */
316
317 /*
318  * Configuration handlers.
319  */
320 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
321                                      struct rt2x00lib_crypto *crypto,
322                                      struct ieee80211_key_conf *key)
323 {
324         struct hw_key_entry key_entry;
325         struct rt2x00_field32 field;
326         u32 mask;
327         u32 reg;
328
329         if (crypto->cmd == SET_KEY) {
330                 /*
331                  * rt2x00lib can't determine the correct free
332                  * key_idx for shared keys. We have 1 register
333                  * with key valid bits. The goal is simple, read
334                  * the register, if that is full we have no slots
335                  * left.
336                  * Note that each BSS is allowed to have up to 4
337                  * shared keys, so put a mask over the allowed
338                  * entries.
339                  */
340                 mask = (0xf << crypto->bssidx);
341
342                 rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, &reg);
343                 reg &= mask;
344
345                 if (reg && reg == mask)
346                         return -ENOSPC;
347
348                 key->hw_key_idx += reg ? ffz(reg) : 0;
349
350                 /*
351                  * Upload key to hardware
352                  */
353                 memcpy(key_entry.key, crypto->key,
354                        sizeof(key_entry.key));
355                 memcpy(key_entry.tx_mic, crypto->tx_mic,
356                        sizeof(key_entry.tx_mic));
357                 memcpy(key_entry.rx_mic, crypto->rx_mic,
358                        sizeof(key_entry.rx_mic));
359
360                 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
361                 rt2x00mmio_register_multiwrite(rt2x00dev, reg,
362                                                &key_entry, sizeof(key_entry));
363
364                 /*
365                  * The cipher types are stored over 2 registers.
366                  * bssidx 0 and 1 keys are stored in SEC_CSR1 and
367                  * bssidx 1 and 2 keys are stored in SEC_CSR5.
368                  * Using the correct defines correctly will cause overhead,
369                  * so just calculate the correct offset.
370                  */
371                 if (key->hw_key_idx < 8) {
372                         field.bit_offset = (3 * key->hw_key_idx);
373                         field.bit_mask = 0x7 << field.bit_offset;
374
375                         rt2x00mmio_register_read(rt2x00dev, SEC_CSR1, &reg);
376                         rt2x00_set_field32(&reg, field, crypto->cipher);
377                         rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, reg);
378                 } else {
379                         field.bit_offset = (3 * (key->hw_key_idx - 8));
380                         field.bit_mask = 0x7 << field.bit_offset;
381
382                         rt2x00mmio_register_read(rt2x00dev, SEC_CSR5, &reg);
383                         rt2x00_set_field32(&reg, field, crypto->cipher);
384                         rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, reg);
385                 }
386
387                 /*
388                  * The driver does not support the IV/EIV generation
389                  * in hardware. However it doesn't support the IV/EIV
390                  * inside the ieee80211 frame either, but requires it
391                  * to be provided separately for the descriptor.
392                  * rt2x00lib will cut the IV/EIV data out of all frames
393                  * given to us by mac80211, but we must tell mac80211
394                  * to generate the IV/EIV data.
395                  */
396                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
397         }
398
399         /*
400          * SEC_CSR0 contains only single-bit fields to indicate
401          * a particular key is valid. Because using the FIELD32()
402          * defines directly will cause a lot of overhead, we use
403          * a calculation to determine the correct bit directly.
404          */
405         mask = 1 << key->hw_key_idx;
406
407         rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, &reg);
408         if (crypto->cmd == SET_KEY)
409                 reg |= mask;
410         else if (crypto->cmd == DISABLE_KEY)
411                 reg &= ~mask;
412         rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, reg);
413
414         return 0;
415 }
416
417 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
418                                        struct rt2x00lib_crypto *crypto,
419                                        struct ieee80211_key_conf *key)
420 {
421         struct hw_pairwise_ta_entry addr_entry;
422         struct hw_key_entry key_entry;
423         u32 mask;
424         u32 reg;
425
426         if (crypto->cmd == SET_KEY) {
427                 /*
428                  * rt2x00lib can't determine the correct free
429                  * key_idx for pairwise keys. We have 2 registers
430                  * with key valid bits. The goal is simple: read
431                  * the first register. If that is full, move to
432                  * the next register.
433                  * When both registers are full, we drop the key.
434                  * Otherwise, we use the first invalid entry.
435                  */
436                 rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, &reg);
437                 if (reg && reg == ~0) {
438                         key->hw_key_idx = 32;
439                         rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, &reg);
440                         if (reg && reg == ~0)
441                                 return -ENOSPC;
442                 }
443
444                 key->hw_key_idx += reg ? ffz(reg) : 0;
445
446                 /*
447                  * Upload key to hardware
448                  */
449                 memcpy(key_entry.key, crypto->key,
450                        sizeof(key_entry.key));
451                 memcpy(key_entry.tx_mic, crypto->tx_mic,
452                        sizeof(key_entry.tx_mic));
453                 memcpy(key_entry.rx_mic, crypto->rx_mic,
454                        sizeof(key_entry.rx_mic));
455
456                 memset(&addr_entry, 0, sizeof(addr_entry));
457                 memcpy(&addr_entry, crypto->address, ETH_ALEN);
458                 addr_entry.cipher = crypto->cipher;
459
460                 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
461                 rt2x00mmio_register_multiwrite(rt2x00dev, reg,
462                                                &key_entry, sizeof(key_entry));
463
464                 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
465                 rt2x00mmio_register_multiwrite(rt2x00dev, reg,
466                                                &addr_entry, sizeof(addr_entry));
467
468                 /*
469                  * Enable pairwise lookup table for given BSS idx.
470                  * Without this, received frames will not be decrypted
471                  * by the hardware.
472                  */
473                 rt2x00mmio_register_read(rt2x00dev, SEC_CSR4, &reg);
474                 reg |= (1 << crypto->bssidx);
475                 rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg);
476
477                 /*
478                  * The driver does not support the IV/EIV generation
479                  * in hardware. However it doesn't support the IV/EIV
480                  * inside the ieee80211 frame either, but requires it
481                  * to be provided separately for the descriptor.
482                  * rt2x00lib will cut the IV/EIV data out of all frames
483                  * given to us by mac80211, but we must tell mac80211
484                  * to generate the IV/EIV data.
485                  */
486                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
487         }
488
489         /*
490          * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
491          * a particular key is valid. Because using the FIELD32()
492          * defines directly will cause a lot of overhead, we use
493          * a calculation to determine the correct bit directly.
494          */
495         if (key->hw_key_idx < 32) {
496                 mask = 1 << key->hw_key_idx;
497
498                 rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, &reg);
499                 if (crypto->cmd == SET_KEY)
500                         reg |= mask;
501                 else if (crypto->cmd == DISABLE_KEY)
502                         reg &= ~mask;
503                 rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg);
504         } else {
505                 mask = 1 << (key->hw_key_idx - 32);
506
507                 rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, &reg);
508                 if (crypto->cmd == SET_KEY)
509                         reg |= mask;
510                 else if (crypto->cmd == DISABLE_KEY)
511                         reg &= ~mask;
512                 rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg);
513         }
514
515         return 0;
516 }
517
518 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
519                                   const unsigned int filter_flags)
520 {
521         u32 reg;
522
523         /*
524          * Start configuration steps.
525          * Note that the version error will always be dropped
526          * and broadcast frames will always be accepted since
527          * there is no filter for it at this time.
528          */
529         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
530         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
531                            !(filter_flags & FIF_FCSFAIL));
532         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
533                            !(filter_flags & FIF_PLCPFAIL));
534         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
535                            !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
536         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
537                            !(filter_flags & FIF_PROMISC_IN_BSS));
538         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
539                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
540                            !rt2x00dev->intf_ap_count);
541         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
542         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
543                            !(filter_flags & FIF_ALLMULTI));
544         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
545         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
546                            !(filter_flags & FIF_CONTROL));
547         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
548 }
549
550 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
551                                 struct rt2x00_intf *intf,
552                                 struct rt2x00intf_conf *conf,
553                                 const unsigned int flags)
554 {
555         u32 reg;
556
557         if (flags & CONFIG_UPDATE_TYPE) {
558                 /*
559                  * Enable synchronisation.
560                  */
561                 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
562                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
563                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
564         }
565
566         if (flags & CONFIG_UPDATE_MAC) {
567                 reg = le32_to_cpu(conf->mac[1]);
568                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
569                 conf->mac[1] = cpu_to_le32(reg);
570
571                 rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2,
572                                                conf->mac, sizeof(conf->mac));
573         }
574
575         if (flags & CONFIG_UPDATE_BSSID) {
576                 reg = le32_to_cpu(conf->bssid[1]);
577                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
578                 conf->bssid[1] = cpu_to_le32(reg);
579
580                 rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4,
581                                                conf->bssid,
582                                                sizeof(conf->bssid));
583         }
584 }
585
586 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
587                                struct rt2x00lib_erp *erp,
588                                u32 changed)
589 {
590         u32 reg;
591
592         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
593         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
594         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
595         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
596
597         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
598                 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, &reg);
599                 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
600                 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
601                                    !!erp->short_preamble);
602                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
603         }
604
605         if (changed & BSS_CHANGED_BASIC_RATES)
606                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5,
607                                           erp->basic_rates);
608
609         if (changed & BSS_CHANGED_BEACON_INT) {
610                 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
611                 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
612                                    erp->beacon_int * 16);
613                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
614         }
615
616         if (changed & BSS_CHANGED_ERP_SLOT) {
617                 rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, &reg);
618                 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
619                 rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
620
621                 rt2x00mmio_register_read(rt2x00dev, MAC_CSR8, &reg);
622                 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
623                 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
624                 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
625                 rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg);
626         }
627 }
628
629 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
630                                       struct antenna_setup *ant)
631 {
632         u8 r3;
633         u8 r4;
634         u8 r77;
635
636         rt61pci_bbp_read(rt2x00dev, 3, &r3);
637         rt61pci_bbp_read(rt2x00dev, 4, &r4);
638         rt61pci_bbp_read(rt2x00dev, 77, &r77);
639
640         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
641
642         /*
643          * Configure the RX antenna.
644          */
645         switch (ant->rx) {
646         case ANTENNA_HW_DIVERSITY:
647                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
648                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
649                                   (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
650                 break;
651         case ANTENNA_A:
652                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
653                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
654                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
655                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
656                 else
657                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
658                 break;
659         case ANTENNA_B:
660         default:
661                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
662                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
663                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
664                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
665                 else
666                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
667                 break;
668         }
669
670         rt61pci_bbp_write(rt2x00dev, 77, r77);
671         rt61pci_bbp_write(rt2x00dev, 3, r3);
672         rt61pci_bbp_write(rt2x00dev, 4, r4);
673 }
674
675 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
676                                       struct antenna_setup *ant)
677 {
678         u8 r3;
679         u8 r4;
680         u8 r77;
681
682         rt61pci_bbp_read(rt2x00dev, 3, &r3);
683         rt61pci_bbp_read(rt2x00dev, 4, &r4);
684         rt61pci_bbp_read(rt2x00dev, 77, &r77);
685
686         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
687         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
688                           !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags));
689
690         /*
691          * Configure the RX antenna.
692          */
693         switch (ant->rx) {
694         case ANTENNA_HW_DIVERSITY:
695                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
696                 break;
697         case ANTENNA_A:
698                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
699                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
700                 break;
701         case ANTENNA_B:
702         default:
703                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
704                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
705                 break;
706         }
707
708         rt61pci_bbp_write(rt2x00dev, 77, r77);
709         rt61pci_bbp_write(rt2x00dev, 3, r3);
710         rt61pci_bbp_write(rt2x00dev, 4, r4);
711 }
712
713 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
714                                            const int p1, const int p2)
715 {
716         u32 reg;
717
718         rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
719
720         rt2x00_set_field32(&reg, MAC_CSR13_DIR4, 0);
721         rt2x00_set_field32(&reg, MAC_CSR13_VAL4, p1);
722
723         rt2x00_set_field32(&reg, MAC_CSR13_DIR3, 0);
724         rt2x00_set_field32(&reg, MAC_CSR13_VAL3, !p2);
725
726         rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
727 }
728
729 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
730                                         struct antenna_setup *ant)
731 {
732         u8 r3;
733         u8 r4;
734         u8 r77;
735
736         rt61pci_bbp_read(rt2x00dev, 3, &r3);
737         rt61pci_bbp_read(rt2x00dev, 4, &r4);
738         rt61pci_bbp_read(rt2x00dev, 77, &r77);
739
740         /*
741          * Configure the RX antenna.
742          */
743         switch (ant->rx) {
744         case ANTENNA_A:
745                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
746                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
747                 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
748                 break;
749         case ANTENNA_HW_DIVERSITY:
750                 /*
751                  * FIXME: Antenna selection for the rf 2529 is very confusing
752                  * in the legacy driver. Just default to antenna B until the
753                  * legacy code can be properly translated into rt2x00 code.
754                  */
755         case ANTENNA_B:
756         default:
757                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
758                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
759                 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
760                 break;
761         }
762
763         rt61pci_bbp_write(rt2x00dev, 77, r77);
764         rt61pci_bbp_write(rt2x00dev, 3, r3);
765         rt61pci_bbp_write(rt2x00dev, 4, r4);
766 }
767
768 struct antenna_sel {
769         u8 word;
770         /*
771          * value[0] -> non-LNA
772          * value[1] -> LNA
773          */
774         u8 value[2];
775 };
776
777 static const struct antenna_sel antenna_sel_a[] = {
778         { 96,  { 0x58, 0x78 } },
779         { 104, { 0x38, 0x48 } },
780         { 75,  { 0xfe, 0x80 } },
781         { 86,  { 0xfe, 0x80 } },
782         { 88,  { 0xfe, 0x80 } },
783         { 35,  { 0x60, 0x60 } },
784         { 97,  { 0x58, 0x58 } },
785         { 98,  { 0x58, 0x58 } },
786 };
787
788 static const struct antenna_sel antenna_sel_bg[] = {
789         { 96,  { 0x48, 0x68 } },
790         { 104, { 0x2c, 0x3c } },
791         { 75,  { 0xfe, 0x80 } },
792         { 86,  { 0xfe, 0x80 } },
793         { 88,  { 0xfe, 0x80 } },
794         { 35,  { 0x50, 0x50 } },
795         { 97,  { 0x48, 0x48 } },
796         { 98,  { 0x48, 0x48 } },
797 };
798
799 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
800                                struct antenna_setup *ant)
801 {
802         const struct antenna_sel *sel;
803         unsigned int lna;
804         unsigned int i;
805         u32 reg;
806
807         /*
808          * We should never come here because rt2x00lib is supposed
809          * to catch this and send us the correct antenna explicitely.
810          */
811         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
812                ant->tx == ANTENNA_SW_DIVERSITY);
813
814         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
815                 sel = antenna_sel_a;
816                 lna = test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
817         } else {
818                 sel = antenna_sel_bg;
819                 lna = test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
820         }
821
822         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
823                 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
824
825         rt2x00mmio_register_read(rt2x00dev, PHY_CSR0, &reg);
826
827         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
828                            rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
829         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
830                            rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
831
832         rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg);
833
834         if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
835                 rt61pci_config_antenna_5x(rt2x00dev, ant);
836         else if (rt2x00_rf(rt2x00dev, RF2527))
837                 rt61pci_config_antenna_2x(rt2x00dev, ant);
838         else if (rt2x00_rf(rt2x00dev, RF2529)) {
839                 if (test_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags))
840                         rt61pci_config_antenna_2x(rt2x00dev, ant);
841                 else
842                         rt61pci_config_antenna_2529(rt2x00dev, ant);
843         }
844 }
845
846 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
847                                     struct rt2x00lib_conf *libconf)
848 {
849         u16 eeprom;
850         short lna_gain = 0;
851
852         if (libconf->conf->chandef.chan->band == IEEE80211_BAND_2GHZ) {
853                 if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags))
854                         lna_gain += 14;
855
856                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
857                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
858         } else {
859                 if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags))
860                         lna_gain += 14;
861
862                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
863                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
864         }
865
866         rt2x00dev->lna_gain = lna_gain;
867 }
868
869 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
870                                    struct rf_channel *rf, const int txpower)
871 {
872         u8 r3;
873         u8 r94;
874         u8 smart;
875
876         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
877         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
878
879         smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
880
881         rt61pci_bbp_read(rt2x00dev, 3, &r3);
882         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
883         rt61pci_bbp_write(rt2x00dev, 3, r3);
884
885         r94 = 6;
886         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
887                 r94 += txpower - MAX_TXPOWER;
888         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
889                 r94 += txpower;
890         rt61pci_bbp_write(rt2x00dev, 94, r94);
891
892         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
893         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
894         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
895         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
896
897         udelay(200);
898
899         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
900         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
901         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
902         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
903
904         udelay(200);
905
906         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
907         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
908         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
909         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
910
911         msleep(1);
912 }
913
914 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
915                                    const int txpower)
916 {
917         struct rf_channel rf;
918
919         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
920         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
921         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
922         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
923
924         rt61pci_config_channel(rt2x00dev, &rf, txpower);
925 }
926
927 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
928                                     struct rt2x00lib_conf *libconf)
929 {
930         u32 reg;
931
932         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, &reg);
933         rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
934         rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
935         rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
936         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
937                            libconf->conf->long_frame_max_tx_count);
938         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
939                            libconf->conf->short_frame_max_tx_count);
940         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
941 }
942
943 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
944                                 struct rt2x00lib_conf *libconf)
945 {
946         enum dev_state state =
947             (libconf->conf->flags & IEEE80211_CONF_PS) ?
948                 STATE_SLEEP : STATE_AWAKE;
949         u32 reg;
950
951         if (state == STATE_SLEEP) {
952                 rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, &reg);
953                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
954                                    rt2x00dev->beacon_int - 10);
955                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
956                                    libconf->conf->listen_interval - 1);
957                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
958
959                 /* We must first disable autowake before it can be enabled */
960                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
961                 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
962
963                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
964                 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
965
966                 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
967                                           0x00000005);
968                 rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
969                 rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
970
971                 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
972         } else {
973                 rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, &reg);
974                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
975                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
976                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
977                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
978                 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
979
980                 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
981                                           0x00000007);
982                 rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
983                 rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
984
985                 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
986         }
987 }
988
989 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
990                            struct rt2x00lib_conf *libconf,
991                            const unsigned int flags)
992 {
993         /* Always recalculate LNA gain before changing configuration */
994         rt61pci_config_lna_gain(rt2x00dev, libconf);
995
996         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
997                 rt61pci_config_channel(rt2x00dev, &libconf->rf,
998                                        libconf->conf->power_level);
999         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
1000             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
1001                 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1002         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1003                 rt61pci_config_retry_limit(rt2x00dev, libconf);
1004         if (flags & IEEE80211_CONF_CHANGE_PS)
1005                 rt61pci_config_ps(rt2x00dev, libconf);
1006 }
1007
1008 /*
1009  * Link tuning
1010  */
1011 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1012                                struct link_qual *qual)
1013 {
1014         u32 reg;
1015
1016         /*
1017          * Update FCS error count from register.
1018          */
1019         rt2x00mmio_register_read(rt2x00dev, STA_CSR0, &reg);
1020         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1021
1022         /*
1023          * Update False CCA count from register.
1024          */
1025         rt2x00mmio_register_read(rt2x00dev, STA_CSR1, &reg);
1026         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1027 }
1028
1029 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1030                                    struct link_qual *qual, u8 vgc_level)
1031 {
1032         if (qual->vgc_level != vgc_level) {
1033                 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1034                 qual->vgc_level = vgc_level;
1035                 qual->vgc_level_reg = vgc_level;
1036         }
1037 }
1038
1039 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1040                                 struct link_qual *qual)
1041 {
1042         rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1043 }
1044
1045 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1046                                struct link_qual *qual, const u32 count)
1047 {
1048         u8 up_bound;
1049         u8 low_bound;
1050
1051         /*
1052          * Determine r17 bounds.
1053          */
1054         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1055                 low_bound = 0x28;
1056                 up_bound = 0x48;
1057                 if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) {
1058                         low_bound += 0x10;
1059                         up_bound += 0x10;
1060                 }
1061         } else {
1062                 low_bound = 0x20;
1063                 up_bound = 0x40;
1064                 if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags)) {
1065                         low_bound += 0x10;
1066                         up_bound += 0x10;
1067                 }
1068         }
1069
1070         /*
1071          * If we are not associated, we should go straight to the
1072          * dynamic CCA tuning.
1073          */
1074         if (!rt2x00dev->intf_associated)
1075                 goto dynamic_cca_tune;
1076
1077         /*
1078          * Special big-R17 for very short distance
1079          */
1080         if (qual->rssi >= -35) {
1081                 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1082                 return;
1083         }
1084
1085         /*
1086          * Special big-R17 for short distance
1087          */
1088         if (qual->rssi >= -58) {
1089                 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1090                 return;
1091         }
1092
1093         /*
1094          * Special big-R17 for middle-short distance
1095          */
1096         if (qual->rssi >= -66) {
1097                 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1098                 return;
1099         }
1100
1101         /*
1102          * Special mid-R17 for middle distance
1103          */
1104         if (qual->rssi >= -74) {
1105                 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1106                 return;
1107         }
1108
1109         /*
1110          * Special case: Change up_bound based on the rssi.
1111          * Lower up_bound when rssi is weaker then -74 dBm.
1112          */
1113         up_bound -= 2 * (-74 - qual->rssi);
1114         if (low_bound > up_bound)
1115                 up_bound = low_bound;
1116
1117         if (qual->vgc_level > up_bound) {
1118                 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1119                 return;
1120         }
1121
1122 dynamic_cca_tune:
1123
1124         /*
1125          * r17 does not yet exceed upper limit, continue and base
1126          * the r17 tuning on the false CCA count.
1127          */
1128         if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1129                 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1130         else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1131                 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1132 }
1133
1134 /*
1135  * Queue handlers.
1136  */
1137 static void rt61pci_start_queue(struct data_queue *queue)
1138 {
1139         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1140         u32 reg;
1141
1142         switch (queue->qid) {
1143         case QID_RX:
1144                 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1145                 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1146                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1147                 break;
1148         case QID_BEACON:
1149                 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1150                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1151                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1152                 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1153                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1154                 break;
1155         default:
1156                 break;
1157         }
1158 }
1159
1160 static void rt61pci_kick_queue(struct data_queue *queue)
1161 {
1162         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1163         u32 reg;
1164
1165         switch (queue->qid) {
1166         case QID_AC_VO:
1167                 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1168                 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1169                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1170                 break;
1171         case QID_AC_VI:
1172                 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1173                 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1174                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1175                 break;
1176         case QID_AC_BE:
1177                 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1178                 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1179                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1180                 break;
1181         case QID_AC_BK:
1182                 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1183                 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1184                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1185                 break;
1186         default:
1187                 break;
1188         }
1189 }
1190
1191 static void rt61pci_stop_queue(struct data_queue *queue)
1192 {
1193         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1194         u32 reg;
1195
1196         switch (queue->qid) {
1197         case QID_AC_VO:
1198                 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1199                 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1200                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1201                 break;
1202         case QID_AC_VI:
1203                 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1204                 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1205                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1206                 break;
1207         case QID_AC_BE:
1208                 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1209                 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1210                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1211                 break;
1212         case QID_AC_BK:
1213                 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1214                 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1215                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1216                 break;
1217         case QID_RX:
1218                 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1219                 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1220                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1221                 break;
1222         case QID_BEACON:
1223                 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1224                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1225                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1226                 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1227                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1228
1229                 /*
1230                  * Wait for possibly running tbtt tasklets.
1231                  */
1232                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1233                 break;
1234         default:
1235                 break;
1236         }
1237 }
1238
1239 /*
1240  * Firmware functions
1241  */
1242 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1243 {
1244         u16 chip;
1245         char *fw_name;
1246
1247         pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1248         switch (chip) {
1249         case RT2561_PCI_ID:
1250                 fw_name = FIRMWARE_RT2561;
1251                 break;
1252         case RT2561s_PCI_ID:
1253                 fw_name = FIRMWARE_RT2561s;
1254                 break;
1255         case RT2661_PCI_ID:
1256                 fw_name = FIRMWARE_RT2661;
1257                 break;
1258         default:
1259                 fw_name = NULL;
1260                 break;
1261         }
1262
1263         return fw_name;
1264 }
1265
1266 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1267                                   const u8 *data, const size_t len)
1268 {
1269         u16 fw_crc;
1270         u16 crc;
1271
1272         /*
1273          * Only support 8kb firmware files.
1274          */
1275         if (len != 8192)
1276                 return FW_BAD_LENGTH;
1277
1278         /*
1279          * The last 2 bytes in the firmware array are the crc checksum itself.
1280          * This means that we should never pass those 2 bytes to the crc
1281          * algorithm.
1282          */
1283         fw_crc = (data[len - 2] << 8 | data[len - 1]);
1284
1285         /*
1286          * Use the crc itu-t algorithm.
1287          */
1288         crc = crc_itu_t(0, data, len - 2);
1289         crc = crc_itu_t_byte(crc, 0);
1290         crc = crc_itu_t_byte(crc, 0);
1291
1292         return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1293 }
1294
1295 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1296                                  const u8 *data, const size_t len)
1297 {
1298         int i;
1299         u32 reg;
1300
1301         /*
1302          * Wait for stable hardware.
1303          */
1304         for (i = 0; i < 100; i++) {
1305                 rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, &reg);
1306                 if (reg)
1307                         break;
1308                 msleep(1);
1309         }
1310
1311         if (!reg) {
1312                 rt2x00_err(rt2x00dev, "Unstable hardware\n");
1313                 return -EBUSY;
1314         }
1315
1316         /*
1317          * Prepare MCU and mailbox for firmware loading.
1318          */
1319         reg = 0;
1320         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1321         rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1322         rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1323         rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1324         rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1325
1326         /*
1327          * Write firmware to device.
1328          */
1329         reg = 0;
1330         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1331         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1332         rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1333
1334         rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1335                                        data, len);
1336
1337         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1338         rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1339
1340         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1341         rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1342
1343         for (i = 0; i < 100; i++) {
1344                 rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1345                 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1346                         break;
1347                 msleep(1);
1348         }
1349
1350         if (i == 100) {
1351                 rt2x00_err(rt2x00dev, "MCU Control register not ready\n");
1352                 return -EBUSY;
1353         }
1354
1355         /*
1356          * Hardware needs another millisecond before it is ready.
1357          */
1358         msleep(1);
1359
1360         /*
1361          * Reset MAC and BBP registers.
1362          */
1363         reg = 0;
1364         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1365         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1366         rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1367
1368         rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1369         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1370         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1371         rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1372
1373         rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1374         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1375         rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1376
1377         return 0;
1378 }
1379
1380 /*
1381  * Initialization functions.
1382  */
1383 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1384 {
1385         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1386         u32 word;
1387
1388         if (entry->queue->qid == QID_RX) {
1389                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1390
1391                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1392         } else {
1393                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1394
1395                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1396                         rt2x00_get_field32(word, TXD_W0_VALID));
1397         }
1398 }
1399
1400 static void rt61pci_clear_entry(struct queue_entry *entry)
1401 {
1402         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1403         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1404         u32 word;
1405
1406         if (entry->queue->qid == QID_RX) {
1407                 rt2x00_desc_read(entry_priv->desc, 5, &word);
1408                 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1409                                    skbdesc->skb_dma);
1410                 rt2x00_desc_write(entry_priv->desc, 5, word);
1411
1412                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1413                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1414                 rt2x00_desc_write(entry_priv->desc, 0, word);
1415         } else {
1416                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1417                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1418                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1419                 rt2x00_desc_write(entry_priv->desc, 0, word);
1420         }
1421 }
1422
1423 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1424 {
1425         struct queue_entry_priv_mmio *entry_priv;
1426         u32 reg;
1427
1428         /*
1429          * Initialize registers.
1430          */
1431         rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1432         rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1433                            rt2x00dev->tx[0].limit);
1434         rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1435                            rt2x00dev->tx[1].limit);
1436         rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1437                            rt2x00dev->tx[2].limit);
1438         rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1439                            rt2x00dev->tx[3].limit);
1440         rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg);
1441
1442         rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1443         rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1444                            rt2x00dev->tx[0].desc_size / 4);
1445         rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg);
1446
1447         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1448         rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1449         rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1450                            entry_priv->desc_dma);
1451         rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1452
1453         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1454         rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1455         rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1456                            entry_priv->desc_dma);
1457         rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1458
1459         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1460         rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1461         rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1462                            entry_priv->desc_dma);
1463         rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1464
1465         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1466         rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1467         rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1468                            entry_priv->desc_dma);
1469         rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1470
1471         rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR, &reg);
1472         rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1473         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1474                            rt2x00dev->rx->desc_size / 4);
1475         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1476         rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg);
1477
1478         entry_priv = rt2x00dev->rx->entries[0].priv_data;
1479         rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1480         rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1481                            entry_priv->desc_dma);
1482         rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg);
1483
1484         rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1485         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1486         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1487         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1488         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1489         rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1490
1491         rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1492         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1493         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1494         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1495         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1496         rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1497
1498         rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1499         rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1500         rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1501
1502         return 0;
1503 }
1504
1505 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1506 {
1507         u32 reg;
1508
1509         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1510         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1511         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1512         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1513         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1514
1515         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1, &reg);
1516         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1517         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1518         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1519         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1520         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1521         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1522         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1523         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1524         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg);
1525
1526         /*
1527          * CCK TXD BBP registers
1528          */
1529         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2, &reg);
1530         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1531         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1532         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1533         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1534         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1535         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1536         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1537         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1538         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg);
1539
1540         /*
1541          * OFDM TXD BBP registers
1542          */
1543         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3, &reg);
1544         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1545         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1546         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1547         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1548         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1549         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1550         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg);
1551
1552         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7, &reg);
1553         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1554         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1555         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1556         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1557         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg);
1558
1559         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8, &reg);
1560         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1561         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1562         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1563         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1564         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg);
1565
1566         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1567         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1568         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1569         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1570         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1571         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1572         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1573         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1574
1575         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1576
1577         rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1578
1579         rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, &reg);
1580         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1581         rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
1582
1583         rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1584
1585         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1586                 return -EBUSY;
1587
1588         rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1589
1590         /*
1591          * Invalidate all Shared Keys (SEC_CSR0),
1592          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1593          */
1594         rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1595         rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1596         rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1597
1598         rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1599         rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1600         rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1601         rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1602
1603         rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1604
1605         rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1606
1607         rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1608
1609         /*
1610          * Clear all beacons
1611          * For the Beacon base registers we only need to clear
1612          * the first byte since that byte contains the VALID and OWNER
1613          * bits which (when set to 0) will invalidate the entire beacon.
1614          */
1615         rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1616         rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1617         rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1618         rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1619
1620         /*
1621          * We must clear the error counters.
1622          * These registers are cleared on read,
1623          * so we may pass a useless variable to store the value.
1624          */
1625         rt2x00mmio_register_read(rt2x00dev, STA_CSR0, &reg);
1626         rt2x00mmio_register_read(rt2x00dev, STA_CSR1, &reg);
1627         rt2x00mmio_register_read(rt2x00dev, STA_CSR2, &reg);
1628
1629         /*
1630          * Reset MAC and BBP registers.
1631          */
1632         rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1633         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1634         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1635         rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1636
1637         rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1638         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1639         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1640         rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1641
1642         rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1643         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1644         rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1645
1646         return 0;
1647 }
1648
1649 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1650 {
1651         unsigned int i;
1652         u8 value;
1653
1654         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1655                 rt61pci_bbp_read(rt2x00dev, 0, &value);
1656                 if ((value != 0xff) && (value != 0x00))
1657                         return 0;
1658                 udelay(REGISTER_BUSY_DELAY);
1659         }
1660
1661         rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1662         return -EACCES;
1663 }
1664
1665 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1666 {
1667         unsigned int i;
1668         u16 eeprom;
1669         u8 reg_id;
1670         u8 value;
1671
1672         if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1673                 return -EACCES;
1674
1675         rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1676         rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1677         rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1678         rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1679         rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1680         rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1681         rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1682         rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1683         rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1684         rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1685         rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1686         rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1687         rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1688         rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1689         rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1690         rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1691         rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1692         rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1693         rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1694         rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1695         rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1696         rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1697         rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1698         rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1699
1700         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1701                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1702
1703                 if (eeprom != 0xffff && eeprom != 0x0000) {
1704                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1705                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1706                         rt61pci_bbp_write(rt2x00dev, reg_id, value);
1707                 }
1708         }
1709
1710         return 0;
1711 }
1712
1713 /*
1714  * Device state switch handlers.
1715  */
1716 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1717                                enum dev_state state)
1718 {
1719         int mask = (state == STATE_RADIO_IRQ_OFF);
1720         u32 reg;
1721         unsigned long flags;
1722
1723         /*
1724          * When interrupts are being enabled, the interrupt registers
1725          * should clear the register to assure a clean state.
1726          */
1727         if (state == STATE_RADIO_IRQ_ON) {
1728                 rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1729                 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1730
1731                 rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1732                 rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1733         }
1734
1735         /*
1736          * Only toggle the interrupts bits we are going to use.
1737          * Non-checked interrupt bits are disabled by default.
1738          */
1739         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1740
1741         rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1742         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1743         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1744         rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1745         rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1746         rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1747         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
1748
1749         rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1750         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1751         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1752         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1753         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1754         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1755         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1756         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1757         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1758         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1759         rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1760
1761         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1762
1763         if (state == STATE_RADIO_IRQ_OFF) {
1764                 /*
1765                  * Ensure that all tasklets are finished.
1766                  */
1767                 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1768                 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1769                 tasklet_kill(&rt2x00dev->autowake_tasklet);
1770                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1771         }
1772 }
1773
1774 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1775 {
1776         u32 reg;
1777
1778         /*
1779          * Initialize all registers.
1780          */
1781         if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1782                      rt61pci_init_registers(rt2x00dev) ||
1783                      rt61pci_init_bbp(rt2x00dev)))
1784                 return -EIO;
1785
1786         /*
1787          * Enable RX.
1788          */
1789         rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1790         rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1791         rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1792
1793         return 0;
1794 }
1795
1796 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1797 {
1798         /*
1799          * Disable power
1800          */
1801         rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1802 }
1803
1804 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1805 {
1806         u32 reg, reg2;
1807         unsigned int i;
1808         char put_to_sleep;
1809
1810         put_to_sleep = (state != STATE_AWAKE);
1811
1812         rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, &reg);
1813         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1814         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1815         rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1816
1817         /*
1818          * Device is not guaranteed to be in the requested state yet.
1819          * We must wait until the register indicates that the
1820          * device has entered the correct state.
1821          */
1822         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1823                 rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, &reg2);
1824                 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1825                 if (state == !put_to_sleep)
1826                         return 0;
1827                 rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1828                 msleep(10);
1829         }
1830
1831         return -EBUSY;
1832 }
1833
1834 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1835                                     enum dev_state state)
1836 {
1837         int retval = 0;
1838
1839         switch (state) {
1840         case STATE_RADIO_ON:
1841                 retval = rt61pci_enable_radio(rt2x00dev);
1842                 break;
1843         case STATE_RADIO_OFF:
1844                 rt61pci_disable_radio(rt2x00dev);
1845                 break;
1846         case STATE_RADIO_IRQ_ON:
1847         case STATE_RADIO_IRQ_OFF:
1848                 rt61pci_toggle_irq(rt2x00dev, state);
1849                 break;
1850         case STATE_DEEP_SLEEP:
1851         case STATE_SLEEP:
1852         case STATE_STANDBY:
1853         case STATE_AWAKE:
1854                 retval = rt61pci_set_state(rt2x00dev, state);
1855                 break;
1856         default:
1857                 retval = -ENOTSUPP;
1858                 break;
1859         }
1860
1861         if (unlikely(retval))
1862                 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1863                            state, retval);
1864
1865         return retval;
1866 }
1867
1868 /*
1869  * TX descriptor initialization
1870  */
1871 static void rt61pci_write_tx_desc(struct queue_entry *entry,
1872                                   struct txentry_desc *txdesc)
1873 {
1874         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1875         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1876         __le32 *txd = entry_priv->desc;
1877         u32 word;
1878
1879         /*
1880          * Start writing the descriptor words.
1881          */
1882         rt2x00_desc_read(txd, 1, &word);
1883         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1884         rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1885         rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1886         rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1887         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1888         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1889                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1890         rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1891         rt2x00_desc_write(txd, 1, word);
1892
1893         rt2x00_desc_read(txd, 2, &word);
1894         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1895         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1896         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1897                            txdesc->u.plcp.length_low);
1898         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1899                            txdesc->u.plcp.length_high);
1900         rt2x00_desc_write(txd, 2, word);
1901
1902         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1903                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1904                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1905         }
1906
1907         rt2x00_desc_read(txd, 5, &word);
1908         rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1909         rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1910                            skbdesc->entry->entry_idx);
1911         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1912                            TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1913         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1914         rt2x00_desc_write(txd, 5, word);
1915
1916         if (entry->queue->qid != QID_BEACON) {
1917                 rt2x00_desc_read(txd, 6, &word);
1918                 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1919                                    skbdesc->skb_dma);
1920                 rt2x00_desc_write(txd, 6, word);
1921
1922                 rt2x00_desc_read(txd, 11, &word);
1923                 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1924                                    txdesc->length);
1925                 rt2x00_desc_write(txd, 11, word);
1926         }
1927
1928         /*
1929          * Writing TXD word 0 must the last to prevent a race condition with
1930          * the device, whereby the device may take hold of the TXD before we
1931          * finished updating it.
1932          */
1933         rt2x00_desc_read(txd, 0, &word);
1934         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1935         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1936         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1937                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1938         rt2x00_set_field32(&word, TXD_W0_ACK,
1939                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1940         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1941                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1942         rt2x00_set_field32(&word, TXD_W0_OFDM,
1943                            (txdesc->rate_mode == RATE_MODE_OFDM));
1944         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1945         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1946                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1947         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1948                            test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1949         rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1950                            test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1951         rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1952         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1953         rt2x00_set_field32(&word, TXD_W0_BURST,
1954                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1955         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1956         rt2x00_desc_write(txd, 0, word);
1957
1958         /*
1959          * Register descriptor details in skb frame descriptor.
1960          */
1961         skbdesc->desc = txd;
1962         skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1963                             TXD_DESC_SIZE;
1964 }
1965
1966 /*
1967  * TX data initialization
1968  */
1969 static void rt61pci_write_beacon(struct queue_entry *entry,
1970                                  struct txentry_desc *txdesc)
1971 {
1972         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1973         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1974         unsigned int beacon_base;
1975         unsigned int padding_len;
1976         u32 orig_reg, reg;
1977
1978         /*
1979          * Disable beaconing while we are reloading the beacon data,
1980          * otherwise we might be sending out invalid data.
1981          */
1982         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1983         orig_reg = reg;
1984         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1985         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1986
1987         /*
1988          * Write the TX descriptor for the beacon.
1989          */
1990         rt61pci_write_tx_desc(entry, txdesc);
1991
1992         /*
1993          * Dump beacon to userspace through debugfs.
1994          */
1995         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1996
1997         /*
1998          * Write entire beacon with descriptor and padding to register.
1999          */
2000         padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
2001         if (padding_len && skb_pad(entry->skb, padding_len)) {
2002                 rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
2003                 /* skb freed by skb_pad() on failure */
2004                 entry->skb = NULL;
2005                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2006                 return;
2007         }
2008
2009         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
2010         rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base,
2011                                        entry_priv->desc, TXINFO_SIZE);
2012         rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
2013                                        entry->skb->data,
2014                                        entry->skb->len + padding_len);
2015
2016         /*
2017          * Enable beaconing again.
2018          *
2019          * For Wi-Fi faily generated beacons between participating
2020          * stations. Set TBTT phase adaptive adjustment step to 8us.
2021          */
2022         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
2023
2024         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2025         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
2026
2027         /*
2028          * Clean up beacon skb.
2029          */
2030         dev_kfree_skb_any(entry->skb);
2031         entry->skb = NULL;
2032 }
2033
2034 static void rt61pci_clear_beacon(struct queue_entry *entry)
2035 {
2036         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2037         u32 reg;
2038
2039         /*
2040          * Disable beaconing while we are reloading the beacon data,
2041          * otherwise we might be sending out invalid data.
2042          */
2043         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
2044         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
2045         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
2046
2047         /*
2048          * Clear beacon.
2049          */
2050         rt2x00mmio_register_write(rt2x00dev,
2051                                   HW_BEACON_OFFSET(entry->entry_idx), 0);
2052
2053         /*
2054          * Enable beaconing again.
2055          */
2056         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2057         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
2058 }
2059
2060 /*
2061  * RX control handlers
2062  */
2063 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
2064 {
2065         u8 offset = rt2x00dev->lna_gain;
2066         u8 lna;
2067
2068         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
2069         switch (lna) {
2070         case 3:
2071                 offset += 90;
2072                 break;
2073         case 2:
2074                 offset += 74;
2075                 break;
2076         case 1:
2077                 offset += 64;
2078                 break;
2079         default:
2080                 return 0;
2081         }
2082
2083         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
2084                 if (lna == 3 || lna == 2)
2085                         offset += 10;
2086         }
2087
2088         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
2089 }
2090
2091 static void rt61pci_fill_rxdone(struct queue_entry *entry,
2092                                 struct rxdone_entry_desc *rxdesc)
2093 {
2094         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2095         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
2096         u32 word0;
2097         u32 word1;
2098
2099         rt2x00_desc_read(entry_priv->desc, 0, &word0);
2100         rt2x00_desc_read(entry_priv->desc, 1, &word1);
2101
2102         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2103                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2104
2105         rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2106         rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2107
2108         if (rxdesc->cipher != CIPHER_NONE) {
2109                 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
2110                 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2111                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2112
2113                 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2114                 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2115
2116                 /*
2117                  * Hardware has stripped IV/EIV data from 802.11 frame during
2118                  * decryption. It has provided the data separately but rt2x00lib
2119                  * should decide if it should be reinserted.
2120                  */
2121                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2122
2123                 /*
2124                  * The hardware has already checked the Michael Mic and has
2125                  * stripped it from the frame. Signal this to mac80211.
2126                  */
2127                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2128
2129                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2130                         rxdesc->flags |= RX_FLAG_DECRYPTED;
2131                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2132                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2133         }
2134
2135         /*
2136          * Obtain the status about this packet.
2137          * When frame was received with an OFDM bitrate,
2138          * the signal is the PLCP value. If it was received with
2139          * a CCK bitrate the signal is the rate in 100kbit/s.
2140          */
2141         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2142         rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2143         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2144
2145         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2146                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2147         else
2148                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2149         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2150                 rxdesc->dev_flags |= RXDONE_MY_BSS;
2151 }
2152
2153 /*
2154  * Interrupt functions.
2155  */
2156 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2157 {
2158         struct data_queue *queue;
2159         struct queue_entry *entry;
2160         struct queue_entry *entry_done;
2161         struct queue_entry_priv_mmio *entry_priv;
2162         struct txdone_entry_desc txdesc;
2163         u32 word;
2164         u32 reg;
2165         int type;
2166         int index;
2167         int i;
2168
2169         /*
2170          * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2171          * at most X times and also stop processing once the TX_STA_FIFO_VALID
2172          * flag is not set anymore.
2173          *
2174          * The legacy drivers use X=TX_RING_SIZE but state in a comment
2175          * that the TX_STA_FIFO stack has a size of 16. We stick to our
2176          * tx ring size for now.
2177          */
2178         for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
2179                 rt2x00mmio_register_read(rt2x00dev, STA_CSR4, &reg);
2180                 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2181                         break;
2182
2183                 /*
2184                  * Skip this entry when it contains an invalid
2185                  * queue identication number.
2186                  */
2187                 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2188                 queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
2189                 if (unlikely(!queue))
2190                         continue;
2191
2192                 /*
2193                  * Skip this entry when it contains an invalid
2194                  * index number.
2195                  */
2196                 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2197                 if (unlikely(index >= queue->limit))
2198                         continue;
2199
2200                 entry = &queue->entries[index];
2201                 entry_priv = entry->priv_data;
2202                 rt2x00_desc_read(entry_priv->desc, 0, &word);
2203
2204                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2205                     !rt2x00_get_field32(word, TXD_W0_VALID))
2206                         return;
2207
2208                 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2209                 while (entry != entry_done) {
2210                         /* Catch up.
2211                          * Just report any entries we missed as failed.
2212                          */
2213                         rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n",
2214                                     entry_done->entry_idx);
2215
2216                         rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2217                         entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2218                 }
2219
2220                 /*
2221                  * Obtain the status about this packet.
2222                  */
2223                 txdesc.flags = 0;
2224                 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2225                 case 0: /* Success, maybe with retry */
2226                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2227                         break;
2228                 case 6: /* Failure, excessive retries */
2229                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2230                         /* Don't break, this is a failed frame! */
2231                 default: /* Failure */
2232                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
2233                 }
2234                 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2235
2236                 /*
2237                  * the frame was retried at least once
2238                  * -> hw used fallback rates
2239                  */
2240                 if (txdesc.retry)
2241                         __set_bit(TXDONE_FALLBACK, &txdesc.flags);
2242
2243                 rt2x00lib_txdone(entry, &txdesc);
2244         }
2245 }
2246
2247 static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2248 {
2249         struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };
2250
2251         rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2252 }
2253
2254 static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
2255                                             struct rt2x00_field32 irq_field)
2256 {
2257         u32 reg;
2258
2259         /*
2260          * Enable a single interrupt. The interrupt mask register
2261          * access needs locking.
2262          */
2263         spin_lock_irq(&rt2x00dev->irqmask_lock);
2264
2265         rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2266         rt2x00_set_field32(&reg, irq_field, 0);
2267         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2268
2269         spin_unlock_irq(&rt2x00dev->irqmask_lock);
2270 }
2271
2272 static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
2273                                          struct rt2x00_field32 irq_field)
2274 {
2275         u32 reg;
2276
2277         /*
2278          * Enable a single MCU interrupt. The interrupt mask register
2279          * access needs locking.
2280          */
2281         spin_lock_irq(&rt2x00dev->irqmask_lock);
2282
2283         rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2284         rt2x00_set_field32(&reg, irq_field, 0);
2285         rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2286
2287         spin_unlock_irq(&rt2x00dev->irqmask_lock);
2288 }
2289
2290 static void rt61pci_txstatus_tasklet(unsigned long data)
2291 {
2292         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2293         rt61pci_txdone(rt2x00dev);
2294         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2295                 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
2296 }
2297
2298 static void rt61pci_tbtt_tasklet(unsigned long data)
2299 {
2300         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2301         rt2x00lib_beacondone(rt2x00dev);
2302         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2303                 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
2304 }
2305
2306 static void rt61pci_rxdone_tasklet(unsigned long data)
2307 {
2308         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2309         if (rt2x00mmio_rxdone(rt2x00dev))
2310                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2311         else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2312                 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
2313 }
2314
2315 static void rt61pci_autowake_tasklet(unsigned long data)
2316 {
2317         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2318         rt61pci_wakeup(rt2x00dev);
2319         rt2x00mmio_register_write(rt2x00dev,
2320                                   M2H_CMD_DONE_CSR, 0xffffffff);
2321         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2322                 rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
2323 }
2324
2325 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2326 {
2327         struct rt2x00_dev *rt2x00dev = dev_instance;
2328         u32 reg_mcu, mask_mcu;
2329         u32 reg, mask;
2330
2331         /*
2332          * Get the interrupt sources & saved to local variable.
2333          * Write register value back to clear pending interrupts.
2334          */
2335         rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2336         rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2337
2338         rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2339         rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2340
2341         if (!reg && !reg_mcu)
2342                 return IRQ_NONE;
2343
2344         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2345                 return IRQ_HANDLED;
2346
2347         /*
2348          * Schedule tasklets for interrupt handling.
2349          */
2350         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2351                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2352
2353         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2354                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
2355
2356         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2357                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
2358
2359         if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2360                 tasklet_schedule(&rt2x00dev->autowake_tasklet);
2361
2362         /*
2363          * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2364          * for interrupts and interrupt masks we can just use the value of
2365          * INT_SOURCE_CSR to create the interrupt mask.
2366          */
2367         mask = reg;
2368         mask_mcu = reg_mcu;
2369
2370         /*
2371          * Disable all interrupts for which a tasklet was scheduled right now,
2372          * the tasklet will reenable the appropriate interrupts.
2373          */
2374         spin_lock(&rt2x00dev->irqmask_lock);
2375
2376         rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2377         reg |= mask;
2378         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2379
2380         rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2381         reg |= mask_mcu;
2382         rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2383
2384         spin_unlock(&rt2x00dev->irqmask_lock);
2385
2386         return IRQ_HANDLED;
2387 }
2388
2389 /*
2390  * Device probe functions.
2391  */
2392 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2393 {
2394         struct eeprom_93cx6 eeprom;
2395         u32 reg;
2396         u16 word;
2397         u8 *mac;
2398         s8 value;
2399
2400         rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
2401
2402         eeprom.data = rt2x00dev;
2403         eeprom.register_read = rt61pci_eepromregister_read;
2404         eeprom.register_write = rt61pci_eepromregister_write;
2405         eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2406             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2407         eeprom.reg_data_in = 0;
2408         eeprom.reg_data_out = 0;
2409         eeprom.reg_data_clock = 0;
2410         eeprom.reg_chip_select = 0;
2411
2412         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2413                                EEPROM_SIZE / sizeof(u16));
2414
2415         /*
2416          * Start validation of the data that has been read.
2417          */
2418         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2419         if (!is_valid_ether_addr(mac)) {
2420                 eth_random_addr(mac);
2421                 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
2422         }
2423
2424         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2425         if (word == 0xffff) {
2426                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2427                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2428                                    ANTENNA_B);
2429                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2430                                    ANTENNA_B);
2431                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2432                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2433                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2434                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2435                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2436                 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
2437         }
2438
2439         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2440         if (word == 0xffff) {
2441                 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2442                 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2443                 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2444                 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2445                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2446                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2447                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2448                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2449                 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
2450         }
2451
2452         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2453         if (word == 0xffff) {
2454                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2455                                    LED_MODE_DEFAULT);
2456                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2457                 rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
2458         }
2459
2460         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2461         if (word == 0xffff) {
2462                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2463                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2464                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2465                 rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
2466         }
2467
2468         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2469         if (word == 0xffff) {
2470                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2471                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2472                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2473                 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2474         } else {
2475                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2476                 if (value < -10 || value > 10)
2477                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2478                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2479                 if (value < -10 || value > 10)
2480                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2481                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2482         }
2483
2484         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2485         if (word == 0xffff) {
2486                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2487                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2488                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2489                 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2490         } else {
2491                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2492                 if (value < -10 || value > 10)
2493                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2494                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2495                 if (value < -10 || value > 10)
2496                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2497                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2498         }
2499
2500         return 0;
2501 }
2502
2503 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2504 {
2505         u32 reg;
2506         u16 value;
2507         u16 eeprom;
2508
2509         /*
2510          * Read EEPROM word for configuration.
2511          */
2512         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2513
2514         /*
2515          * Identify RF chipset.
2516          */
2517         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2518         rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, &reg);
2519         rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2520                         value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2521
2522         if (!rt2x00_rf(rt2x00dev, RF5225) &&
2523             !rt2x00_rf(rt2x00dev, RF5325) &&
2524             !rt2x00_rf(rt2x00dev, RF2527) &&
2525             !rt2x00_rf(rt2x00dev, RF2529)) {
2526                 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
2527                 return -ENODEV;
2528         }
2529
2530         /*
2531          * Determine number of antennas.
2532          */
2533         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2534                 __set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
2535
2536         /*
2537          * Identify default antenna configuration.
2538          */
2539         rt2x00dev->default_ant.tx =
2540             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2541         rt2x00dev->default_ant.rx =
2542             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2543
2544         /*
2545          * Read the Frame type.
2546          */
2547         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2548                 __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
2549
2550         /*
2551          * Detect if this device has a hardware controlled radio.
2552          */
2553         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2554                 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
2555
2556         /*
2557          * Read frequency offset and RF programming sequence.
2558          */
2559         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2560         if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2561                 __set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
2562
2563         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2564
2565         /*
2566          * Read external LNA informations.
2567          */
2568         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2569
2570         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2571                 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
2572         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2573                 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
2574
2575         /*
2576          * When working with a RF2529 chip without double antenna,
2577          * the antenna settings should be gathered from the NIC
2578          * eeprom word.
2579          */
2580         if (rt2x00_rf(rt2x00dev, RF2529) &&
2581             !test_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags)) {
2582                 rt2x00dev->default_ant.rx =
2583                     ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2584                 rt2x00dev->default_ant.tx =
2585                     ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2586
2587                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2588                         rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2589                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2590                         rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2591         }
2592
2593         /*
2594          * Store led settings, for correct led behaviour.
2595          * If the eeprom value is invalid,
2596          * switch to default led mode.
2597          */
2598 #ifdef CONFIG_RT2X00_LIB_LEDS
2599         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2600         value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2601
2602         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2603         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2604         if (value == LED_MODE_SIGNAL_STRENGTH)
2605                 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2606                                  LED_TYPE_QUALITY);
2607
2608         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2609         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2610                            rt2x00_get_field16(eeprom,
2611                                               EEPROM_LED_POLARITY_GPIO_0));
2612         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2613                            rt2x00_get_field16(eeprom,
2614                                               EEPROM_LED_POLARITY_GPIO_1));
2615         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2616                            rt2x00_get_field16(eeprom,
2617                                               EEPROM_LED_POLARITY_GPIO_2));
2618         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2619                            rt2x00_get_field16(eeprom,
2620                                               EEPROM_LED_POLARITY_GPIO_3));
2621         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2622                            rt2x00_get_field16(eeprom,
2623                                               EEPROM_LED_POLARITY_GPIO_4));
2624         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2625                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2626         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2627                            rt2x00_get_field16(eeprom,
2628                                               EEPROM_LED_POLARITY_RDY_G));
2629         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2630                            rt2x00_get_field16(eeprom,
2631                                               EEPROM_LED_POLARITY_RDY_A));
2632 #endif /* CONFIG_RT2X00_LIB_LEDS */
2633
2634         return 0;
2635 }
2636
2637 /*
2638  * RF value list for RF5225 & RF5325
2639  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2640  */
2641 static const struct rf_channel rf_vals_noseq[] = {
2642         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2643         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2644         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2645         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2646         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2647         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2648         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2649         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2650         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2651         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2652         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2653         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2654         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2655         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2656
2657         /* 802.11 UNI / HyperLan 2 */
2658         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2659         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2660         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2661         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2662         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2663         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2664         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2665         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2666
2667         /* 802.11 HyperLan 2 */
2668         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2669         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2670         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2671         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2672         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2673         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2674         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2675         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2676         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2677         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2678
2679         /* 802.11 UNII */
2680         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2681         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2682         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2683         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2684         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2685         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2686
2687         /* MMAC(Japan)J52 ch 34,38,42,46 */
2688         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2689         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2690         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2691         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2692 };
2693
2694 /*
2695  * RF value list for RF5225 & RF5325
2696  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2697  */
2698 static const struct rf_channel rf_vals_seq[] = {
2699         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2700         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2701         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2702         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2703         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2704         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2705         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2706         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2707         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2708         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2709         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2710         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2711         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2712         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2713
2714         /* 802.11 UNI / HyperLan 2 */
2715         { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2716         { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2717         { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2718         { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2719         { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2720         { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2721         { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2722         { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2723
2724         /* 802.11 HyperLan 2 */
2725         { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2726         { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2727         { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2728         { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2729         { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2730         { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2731         { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2732         { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2733         { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2734         { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2735
2736         /* 802.11 UNII */
2737         { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2738         { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2739         { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2740         { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2741         { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2742         { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2743
2744         /* MMAC(Japan)J52 ch 34,38,42,46 */
2745         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2746         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2747         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2748         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2749 };
2750
2751 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2752 {
2753         struct hw_mode_spec *spec = &rt2x00dev->spec;
2754         struct channel_info *info;
2755         char *tx_power;
2756         unsigned int i;
2757
2758         /*
2759          * Disable powersaving as default.
2760          */
2761         rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2762
2763         /*
2764          * Initialize all hw fields.
2765          */
2766         rt2x00dev->hw->flags =
2767             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2768             IEEE80211_HW_SIGNAL_DBM |
2769             IEEE80211_HW_SUPPORTS_PS |
2770             IEEE80211_HW_PS_NULLFUNC_STACK;
2771
2772         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2773         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2774                                 rt2x00_eeprom_addr(rt2x00dev,
2775                                                    EEPROM_MAC_ADDR_0));
2776
2777         /*
2778          * As rt61 has a global fallback table we cannot specify
2779          * more then one tx rate per frame but since the hw will
2780          * try several rates (based on the fallback table) we should
2781          * initialize max_report_rates to the maximum number of rates
2782          * we are going to try. Otherwise mac80211 will truncate our
2783          * reported tx rates and the rc algortihm will end up with
2784          * incorrect data.
2785          */
2786         rt2x00dev->hw->max_rates = 1;
2787         rt2x00dev->hw->max_report_rates = 7;
2788         rt2x00dev->hw->max_rate_tries = 1;
2789
2790         /*
2791          * Initialize hw_mode information.
2792          */
2793         spec->supported_bands = SUPPORT_BAND_2GHZ;
2794         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2795
2796         if (!test_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags)) {
2797                 spec->num_channels = 14;
2798                 spec->channels = rf_vals_noseq;
2799         } else {
2800                 spec->num_channels = 14;
2801                 spec->channels = rf_vals_seq;
2802         }
2803
2804         if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2805                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2806                 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2807         }
2808
2809         /*
2810          * Create channel information array
2811          */
2812         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2813         if (!info)
2814                 return -ENOMEM;
2815
2816         spec->channels_info = info;
2817
2818         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2819         for (i = 0; i < 14; i++) {
2820                 info[i].max_power = MAX_TXPOWER;
2821                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2822         }
2823
2824         if (spec->num_channels > 14) {
2825                 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2826                 for (i = 14; i < spec->num_channels; i++) {
2827                         info[i].max_power = MAX_TXPOWER;
2828                         info[i].default_power1 =
2829                                         TXPOWER_FROM_DEV(tx_power[i - 14]);
2830                 }
2831         }
2832
2833         return 0;
2834 }
2835
2836 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2837 {
2838         int retval;
2839         u32 reg;
2840
2841         /*
2842          * Disable power saving.
2843          */
2844         rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2845
2846         /*
2847          * Allocate eeprom data.
2848          */
2849         retval = rt61pci_validate_eeprom(rt2x00dev);
2850         if (retval)
2851                 return retval;
2852
2853         retval = rt61pci_init_eeprom(rt2x00dev);
2854         if (retval)
2855                 return retval;
2856
2857         /*
2858          * Enable rfkill polling by setting GPIO direction of the
2859          * rfkill switch GPIO pin correctly.
2860          */
2861         rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
2862         rt2x00_set_field32(&reg, MAC_CSR13_DIR5, 1);
2863         rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
2864
2865         /*
2866          * Initialize hw specifications.
2867          */
2868         retval = rt61pci_probe_hw_mode(rt2x00dev);
2869         if (retval)
2870                 return retval;
2871
2872         /*
2873          * This device has multiple filters for control frames,
2874          * but has no a separate filter for PS Poll frames.
2875          */
2876         __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2877
2878         /*
2879          * This device requires firmware and DMA mapped skbs.
2880          */
2881         __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2882         __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
2883         if (!modparam_nohwcrypt)
2884                 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2885         __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2886
2887         /*
2888          * Set the rssi offset.
2889          */
2890         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2891
2892         return 0;
2893 }
2894
2895 /*
2896  * IEEE80211 stack callback functions.
2897  */
2898 static int rt61pci_conf_tx(struct ieee80211_hw *hw,
2899                            struct ieee80211_vif *vif, u16 queue_idx,
2900                            const struct ieee80211_tx_queue_params *params)
2901 {
2902         struct rt2x00_dev *rt2x00dev = hw->priv;
2903         struct data_queue *queue;
2904         struct rt2x00_field32 field;
2905         int retval;
2906         u32 reg;
2907         u32 offset;
2908
2909         /*
2910          * First pass the configuration through rt2x00lib, that will
2911          * update the queue settings and validate the input. After that
2912          * we are free to update the registers based on the value
2913          * in the queue parameter.
2914          */
2915         retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2916         if (retval)
2917                 return retval;
2918
2919         /*
2920          * We only need to perform additional register initialization
2921          * for WMM queues.
2922          */
2923         if (queue_idx >= 4)
2924                 return 0;
2925
2926         queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2927
2928         /* Update WMM TXOP register */
2929         offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2930         field.bit_offset = (queue_idx & 1) * 16;
2931         field.bit_mask = 0xffff << field.bit_offset;
2932
2933         rt2x00mmio_register_read(rt2x00dev, offset, &reg);
2934         rt2x00_set_field32(&reg, field, queue->txop);
2935         rt2x00mmio_register_write(rt2x00dev, offset, reg);
2936
2937         /* Update WMM registers */
2938         field.bit_offset = queue_idx * 4;
2939         field.bit_mask = 0xf << field.bit_offset;
2940
2941         rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR, &reg);
2942         rt2x00_set_field32(&reg, field, queue->aifs);
2943         rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg);
2944
2945         rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR, &reg);
2946         rt2x00_set_field32(&reg, field, queue->cw_min);
2947         rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg);
2948
2949         rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR, &reg);
2950         rt2x00_set_field32(&reg, field, queue->cw_max);
2951         rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg);
2952
2953         return 0;
2954 }
2955
2956 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2957 {
2958         struct rt2x00_dev *rt2x00dev = hw->priv;
2959         u64 tsf;
2960         u32 reg;
2961
2962         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13, &reg);
2963         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2964         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12, &reg);
2965         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2966
2967         return tsf;
2968 }
2969
2970 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2971         .tx                     = rt2x00mac_tx,
2972         .start                  = rt2x00mac_start,
2973         .stop                   = rt2x00mac_stop,
2974         .add_interface          = rt2x00mac_add_interface,
2975         .remove_interface       = rt2x00mac_remove_interface,
2976         .config                 = rt2x00mac_config,
2977         .configure_filter       = rt2x00mac_configure_filter,
2978         .set_key                = rt2x00mac_set_key,
2979         .sw_scan_start          = rt2x00mac_sw_scan_start,
2980         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
2981         .get_stats              = rt2x00mac_get_stats,
2982         .bss_info_changed       = rt2x00mac_bss_info_changed,
2983         .conf_tx                = rt61pci_conf_tx,
2984         .get_tsf                = rt61pci_get_tsf,
2985         .rfkill_poll            = rt2x00mac_rfkill_poll,
2986         .flush                  = rt2x00mac_flush,
2987         .set_antenna            = rt2x00mac_set_antenna,
2988         .get_antenna            = rt2x00mac_get_antenna,
2989         .get_ringparam          = rt2x00mac_get_ringparam,
2990         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
2991 };
2992
2993 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2994         .irq_handler            = rt61pci_interrupt,
2995         .txstatus_tasklet       = rt61pci_txstatus_tasklet,
2996         .tbtt_tasklet           = rt61pci_tbtt_tasklet,
2997         .rxdone_tasklet         = rt61pci_rxdone_tasklet,
2998         .autowake_tasklet       = rt61pci_autowake_tasklet,
2999         .probe_hw               = rt61pci_probe_hw,
3000         .get_firmware_name      = rt61pci_get_firmware_name,
3001         .check_firmware         = rt61pci_check_firmware,
3002         .load_firmware          = rt61pci_load_firmware,
3003         .initialize             = rt2x00mmio_initialize,
3004         .uninitialize           = rt2x00mmio_uninitialize,
3005         .get_entry_state        = rt61pci_get_entry_state,
3006         .clear_entry            = rt61pci_clear_entry,
3007         .set_device_state       = rt61pci_set_device_state,
3008         .rfkill_poll            = rt61pci_rfkill_poll,
3009         .link_stats             = rt61pci_link_stats,
3010         .reset_tuner            = rt61pci_reset_tuner,
3011         .link_tuner             = rt61pci_link_tuner,
3012         .start_queue            = rt61pci_start_queue,
3013         .kick_queue             = rt61pci_kick_queue,
3014         .stop_queue             = rt61pci_stop_queue,
3015         .flush_queue            = rt2x00mmio_flush_queue,
3016         .write_tx_desc          = rt61pci_write_tx_desc,
3017         .write_beacon           = rt61pci_write_beacon,
3018         .clear_beacon           = rt61pci_clear_beacon,
3019         .fill_rxdone            = rt61pci_fill_rxdone,
3020         .config_shared_key      = rt61pci_config_shared_key,
3021         .config_pairwise_key    = rt61pci_config_pairwise_key,
3022         .config_filter          = rt61pci_config_filter,
3023         .config_intf            = rt61pci_config_intf,
3024         .config_erp             = rt61pci_config_erp,
3025         .config_ant             = rt61pci_config_ant,
3026         .config                 = rt61pci_config,
3027 };
3028
3029 static const struct data_queue_desc rt61pci_queue_rx = {
3030         .entry_num              = 32,
3031         .data_size              = DATA_FRAME_SIZE,
3032         .desc_size              = RXD_DESC_SIZE,
3033         .priv_size              = sizeof(struct queue_entry_priv_mmio),
3034 };
3035
3036 static const struct data_queue_desc rt61pci_queue_tx = {
3037         .entry_num              = 32,
3038         .data_size              = DATA_FRAME_SIZE,
3039         .desc_size              = TXD_DESC_SIZE,
3040         .priv_size              = sizeof(struct queue_entry_priv_mmio),
3041 };
3042
3043 static const struct data_queue_desc rt61pci_queue_bcn = {
3044         .entry_num              = 4,
3045         .data_size              = 0, /* No DMA required for beacons */
3046         .desc_size              = TXINFO_SIZE,
3047         .priv_size              = sizeof(struct queue_entry_priv_mmio),
3048 };
3049
3050 static const struct rt2x00_ops rt61pci_ops = {
3051         .name                   = KBUILD_MODNAME,
3052         .max_ap_intf            = 4,
3053         .eeprom_size            = EEPROM_SIZE,
3054         .rf_size                = RF_SIZE,
3055         .tx_queues              = NUM_TX_QUEUES,
3056         .extra_tx_headroom      = 0,
3057         .rx                     = &rt61pci_queue_rx,
3058         .tx                     = &rt61pci_queue_tx,
3059         .bcn                    = &rt61pci_queue_bcn,
3060         .lib                    = &rt61pci_rt2x00_ops,
3061         .hw                     = &rt61pci_mac80211_ops,
3062 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
3063         .debugfs                = &rt61pci_rt2x00debug,
3064 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
3065 };
3066
3067 /*
3068  * RT61pci module information.
3069  */
3070 static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
3071         /* RT2561s */
3072         { PCI_DEVICE(0x1814, 0x0301) },
3073         /* RT2561 v2 */
3074         { PCI_DEVICE(0x1814, 0x0302) },
3075         /* RT2661 */
3076         { PCI_DEVICE(0x1814, 0x0401) },
3077         { 0, }
3078 };
3079
3080 MODULE_AUTHOR(DRV_PROJECT);
3081 MODULE_VERSION(DRV_VERSION);
3082 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3083 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
3084                         "PCI & PCMCIA chipset based cards");
3085 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
3086 MODULE_FIRMWARE(FIRMWARE_RT2561);
3087 MODULE_FIRMWARE(FIRMWARE_RT2561s);
3088 MODULE_FIRMWARE(FIRMWARE_RT2661);
3089 MODULE_LICENSE("GPL");
3090
3091 static int rt61pci_probe(struct pci_dev *pci_dev,
3092                          const struct pci_device_id *id)
3093 {
3094         return rt2x00pci_probe(pci_dev, &rt61pci_ops);
3095 }
3096
3097 static struct pci_driver rt61pci_driver = {
3098         .name           = KBUILD_MODNAME,
3099         .id_table       = rt61pci_device_table,
3100         .probe          = rt61pci_probe,
3101         .remove         = rt2x00pci_remove,
3102         .suspend        = rt2x00pci_suspend,
3103         .resume         = rt2x00pci_resume,
3104 };
3105
3106 module_pci_driver(rt61pci_driver);