stmmac: do not sleep in atomic context while suspend/resume
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4
5         Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25   Documentation available at:
26         http://www.stlinux.com
27   Support available at:
28         https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 #include <linux/of_mdio.h>
56
57 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
58
59 /* Module parameters */
60 #define TX_TIMEO        5000
61 static int watchdog = TX_TIMEO;
62 module_param(watchdog, int, S_IRUGO | S_IWUSR);
63 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
64
65 static int debug = -1;
66 module_param(debug, int, S_IRUGO | S_IWUSR);
67 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
68
69 static int phyaddr = -1;
70 module_param(phyaddr, int, S_IRUGO);
71 MODULE_PARM_DESC(phyaddr, "Physical device address");
72
73 #define DMA_TX_SIZE 256
74 static int dma_txsize = DMA_TX_SIZE;
75 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
76 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
77
78 #define DMA_RX_SIZE 256
79 static int dma_rxsize = DMA_RX_SIZE;
80 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
81 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
82
83 static int flow_ctrl = FLOW_OFF;
84 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
85 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
86
87 static int pause = PAUSE_TIME;
88 module_param(pause, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
90
91 #define TC_DEFAULT 64
92 static int tc = TC_DEFAULT;
93 module_param(tc, int, S_IRUGO | S_IWUSR);
94 MODULE_PARM_DESC(tc, "DMA threshold control value");
95
96 #define DEFAULT_BUFSIZE 1536
97 static int buf_sz = DEFAULT_BUFSIZE;
98 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
99 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
100
101 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
102                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
103                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
104
105 #define STMMAC_DEFAULT_LPI_TIMER        1000
106 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
107 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
109 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
110
111 /* By default the driver will use the ring mode to manage tx and rx descriptors
112  * but passing this value so user can force to use the chain instead of the ring
113  */
114 static unsigned int chain_mode;
115 module_param(chain_mode, int, S_IRUGO);
116 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
117
118 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
119
120 #ifdef CONFIG_DEBUG_FS
121 static int stmmac_init_fs(struct net_device *dev);
122 static void stmmac_exit_fs(struct net_device *dev);
123 #endif
124
125 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
126
127 /**
128  * stmmac_verify_args - verify the driver parameters.
129  * Description: it checks the driver parameters and set a default in case of
130  * errors.
131  */
132 static void stmmac_verify_args(void)
133 {
134         if (unlikely(watchdog < 0))
135                 watchdog = TX_TIMEO;
136         if (unlikely(dma_rxsize < 0))
137                 dma_rxsize = DMA_RX_SIZE;
138         if (unlikely(dma_txsize < 0))
139                 dma_txsize = DMA_TX_SIZE;
140         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
141                 buf_sz = DEFAULT_BUFSIZE;
142         if (unlikely(flow_ctrl > 1))
143                 flow_ctrl = FLOW_AUTO;
144         else if (likely(flow_ctrl < 0))
145                 flow_ctrl = FLOW_OFF;
146         if (unlikely((pause < 0) || (pause > 0xffff)))
147                 pause = PAUSE_TIME;
148         if (eee_timer < 0)
149                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
150 }
151
152 /**
153  * stmmac_clk_csr_set - dynamically set the MDC clock
154  * @priv: driver private structure
155  * Description: this is to dynamically set the MDC clock according to the csr
156  * clock input.
157  * Note:
158  *      If a specific clk_csr value is passed from the platform
159  *      this means that the CSR Clock Range selection cannot be
160  *      changed at run-time and it is fixed (as reported in the driver
161  *      documentation). Viceversa the driver will try to set the MDC
162  *      clock dynamically according to the actual clock input.
163  */
164 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
165 {
166         u32 clk_rate;
167
168         clk_rate = clk_get_rate(priv->stmmac_clk);
169
170         /* Platform provided default clk_csr would be assumed valid
171          * for all other cases except for the below mentioned ones.
172          * For values higher than the IEEE 802.3 specified frequency
173          * we can not estimate the proper divider as it is not known
174          * the frequency of clk_csr_i. So we do not change the default
175          * divider.
176          */
177         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
178                 if (clk_rate < CSR_F_35M)
179                         priv->clk_csr = STMMAC_CSR_20_35M;
180                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
181                         priv->clk_csr = STMMAC_CSR_35_60M;
182                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
183                         priv->clk_csr = STMMAC_CSR_60_100M;
184                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
185                         priv->clk_csr = STMMAC_CSR_100_150M;
186                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
187                         priv->clk_csr = STMMAC_CSR_150_250M;
188                 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
189                         priv->clk_csr = STMMAC_CSR_250_300M;
190         }
191 }
192
193 static void print_pkt(unsigned char *buf, int len)
194 {
195         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
196         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
197 }
198
199 /* minimum number of free TX descriptors required to wake up TX process */
200 #define STMMAC_TX_THRESH(x)     (x->dma_tx_size/4)
201
202 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
203 {
204         return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
205 }
206
207 /**
208  * stmmac_hw_fix_mac_speed - callback for speed selection
209  * @priv: driver private structure
210  * Description: on some platforms (e.g. ST), some HW system configuraton
211  * registers have to be set according to the link speed negotiated.
212  */
213 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
214 {
215         struct phy_device *phydev = priv->phydev;
216
217         if (likely(priv->plat->fix_mac_speed))
218                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
219 }
220
221 /**
222  * stmmac_enable_eee_mode - check and enter in LPI mode
223  * @priv: driver private structure
224  * Description: this function is to verify and enter in LPI mode in case of
225  * EEE.
226  */
227 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
228 {
229         /* Check and enter in LPI mode */
230         if ((priv->dirty_tx == priv->cur_tx) &&
231             (priv->tx_path_in_lpi_mode == false))
232                 priv->hw->mac->set_eee_mode(priv->hw);
233 }
234
235 /**
236  * stmmac_disable_eee_mode - disable and exit from LPI mode
237  * @priv: driver private structure
238  * Description: this function is to exit and disable EEE in case of
239  * LPI state is true. This is called by the xmit.
240  */
241 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
242 {
243         priv->hw->mac->reset_eee_mode(priv->hw);
244         del_timer_sync(&priv->eee_ctrl_timer);
245         priv->tx_path_in_lpi_mode = false;
246 }
247
248 /**
249  * stmmac_eee_ctrl_timer - EEE TX SW timer.
250  * @arg : data hook
251  * Description:
252  *  if there is no data transfer and if we are not in LPI state,
253  *  then MAC Transmitter can be moved to LPI state.
254  */
255 static void stmmac_eee_ctrl_timer(unsigned long arg)
256 {
257         struct stmmac_priv *priv = (struct stmmac_priv *)arg;
258
259         stmmac_enable_eee_mode(priv);
260         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
261 }
262
263 /**
264  * stmmac_eee_init - init EEE
265  * @priv: driver private structure
266  * Description:
267  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
268  *  can also manage EEE, this function enable the LPI state and start related
269  *  timer.
270  */
271 bool stmmac_eee_init(struct stmmac_priv *priv)
272 {
273         char *phy_bus_name = priv->plat->phy_bus_name;
274         unsigned long flags;
275         bool ret = false;
276
277         /* Using PCS we cannot dial with the phy registers at this stage
278          * so we do not support extra feature like EEE.
279          */
280         if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
281             (priv->pcs == STMMAC_PCS_RTBI))
282                 goto out;
283
284         /* Never init EEE in case of a switch is attached */
285         if (phy_bus_name && (!strcmp(phy_bus_name, "fixed")))
286                 goto out;
287
288         /* MAC core supports the EEE feature. */
289         if (priv->dma_cap.eee) {
290                 int tx_lpi_timer = priv->tx_lpi_timer;
291
292                 /* Check if the PHY supports EEE */
293                 if (phy_init_eee(priv->phydev, 1)) {
294                         /* To manage at run-time if the EEE cannot be supported
295                          * anymore (for example because the lp caps have been
296                          * changed).
297                          * In that case the driver disable own timers.
298                          */
299                         spin_lock_irqsave(&priv->lock, flags);
300                         if (priv->eee_active) {
301                                 pr_debug("stmmac: disable EEE\n");
302                                 del_timer_sync(&priv->eee_ctrl_timer);
303                                 priv->hw->mac->set_eee_timer(priv->hw, 0,
304                                                              tx_lpi_timer);
305                         }
306                         priv->eee_active = 0;
307                         spin_unlock_irqrestore(&priv->lock, flags);
308                         goto out;
309                 }
310                 /* Activate the EEE and start timers */
311                 spin_lock_irqsave(&priv->lock, flags);
312                 if (!priv->eee_active) {
313                         priv->eee_active = 1;
314                         setup_timer(&priv->eee_ctrl_timer,
315                                     stmmac_eee_ctrl_timer,
316                                     (unsigned long)priv);
317                         mod_timer(&priv->eee_ctrl_timer,
318                                   STMMAC_LPI_T(eee_timer));
319
320                         priv->hw->mac->set_eee_timer(priv->hw,
321                                                      STMMAC_DEFAULT_LIT_LS,
322                                                      tx_lpi_timer);
323                 }
324                 /* Set HW EEE according to the speed */
325                 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
326
327                 ret = true;
328                 spin_unlock_irqrestore(&priv->lock, flags);
329
330                 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
331         }
332 out:
333         return ret;
334 }
335
336 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
337  * @priv: driver private structure
338  * @entry : descriptor index to be used.
339  * @skb : the socket buffer
340  * Description :
341  * This function will read timestamp from the descriptor & pass it to stack.
342  * and also perform some sanity checks.
343  */
344 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
345                                    unsigned int entry, struct sk_buff *skb)
346 {
347         struct skb_shared_hwtstamps shhwtstamp;
348         u64 ns;
349         void *desc = NULL;
350
351         if (!priv->hwts_tx_en)
352                 return;
353
354         /* exit if skb doesn't support hw tstamp */
355         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
356                 return;
357
358         if (priv->adv_ts)
359                 desc = (priv->dma_etx + entry);
360         else
361                 desc = (priv->dma_tx + entry);
362
363         /* check tx tstamp status */
364         if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
365                 return;
366
367         /* get the valid tstamp */
368         ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
369
370         memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
371         shhwtstamp.hwtstamp = ns_to_ktime(ns);
372         /* pass tstamp to stack */
373         skb_tstamp_tx(skb, &shhwtstamp);
374
375         return;
376 }
377
378 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
379  * @priv: driver private structure
380  * @entry : descriptor index to be used.
381  * @skb : the socket buffer
382  * Description :
383  * This function will read received packet's timestamp from the descriptor
384  * and pass it to stack. It also perform some sanity checks.
385  */
386 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
387                                    unsigned int entry, struct sk_buff *skb)
388 {
389         struct skb_shared_hwtstamps *shhwtstamp = NULL;
390         u64 ns;
391         void *desc = NULL;
392
393         if (!priv->hwts_rx_en)
394                 return;
395
396         if (priv->adv_ts)
397                 desc = (priv->dma_erx + entry);
398         else
399                 desc = (priv->dma_rx + entry);
400
401         /* exit if rx tstamp is not valid */
402         if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
403                 return;
404
405         /* get valid tstamp */
406         ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
407         shhwtstamp = skb_hwtstamps(skb);
408         memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
409         shhwtstamp->hwtstamp = ns_to_ktime(ns);
410 }
411
412 /**
413  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
414  *  @dev: device pointer.
415  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
416  *  a proprietary structure used to pass information to the driver.
417  *  Description:
418  *  This function configures the MAC to enable/disable both outgoing(TX)
419  *  and incoming(RX) packets time stamping based on user input.
420  *  Return Value:
421  *  0 on success and an appropriate -ve integer on failure.
422  */
423 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
424 {
425         struct stmmac_priv *priv = netdev_priv(dev);
426         struct hwtstamp_config config;
427         struct timespec64 now;
428         u64 temp = 0;
429         u32 ptp_v2 = 0;
430         u32 tstamp_all = 0;
431         u32 ptp_over_ipv4_udp = 0;
432         u32 ptp_over_ipv6_udp = 0;
433         u32 ptp_over_ethernet = 0;
434         u32 snap_type_sel = 0;
435         u32 ts_master_en = 0;
436         u32 ts_event_en = 0;
437         u32 value = 0;
438
439         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
440                 netdev_alert(priv->dev, "No support for HW time stamping\n");
441                 priv->hwts_tx_en = 0;
442                 priv->hwts_rx_en = 0;
443
444                 return -EOPNOTSUPP;
445         }
446
447         if (copy_from_user(&config, ifr->ifr_data,
448                            sizeof(struct hwtstamp_config)))
449                 return -EFAULT;
450
451         pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
452                  __func__, config.flags, config.tx_type, config.rx_filter);
453
454         /* reserved for future extensions */
455         if (config.flags)
456                 return -EINVAL;
457
458         if (config.tx_type != HWTSTAMP_TX_OFF &&
459             config.tx_type != HWTSTAMP_TX_ON)
460                 return -ERANGE;
461
462         if (priv->adv_ts) {
463                 switch (config.rx_filter) {
464                 case HWTSTAMP_FILTER_NONE:
465                         /* time stamp no incoming packet at all */
466                         config.rx_filter = HWTSTAMP_FILTER_NONE;
467                         break;
468
469                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
470                         /* PTP v1, UDP, any kind of event packet */
471                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
472                         /* take time stamp for all event messages */
473                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
474
475                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
476                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
477                         break;
478
479                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
480                         /* PTP v1, UDP, Sync packet */
481                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
482                         /* take time stamp for SYNC messages only */
483                         ts_event_en = PTP_TCR_TSEVNTENA;
484
485                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
486                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
487                         break;
488
489                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
490                         /* PTP v1, UDP, Delay_req packet */
491                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
492                         /* take time stamp for Delay_Req messages only */
493                         ts_master_en = PTP_TCR_TSMSTRENA;
494                         ts_event_en = PTP_TCR_TSEVNTENA;
495
496                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
497                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
498                         break;
499
500                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
501                         /* PTP v2, UDP, any kind of event packet */
502                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
503                         ptp_v2 = PTP_TCR_TSVER2ENA;
504                         /* take time stamp for all event messages */
505                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
506
507                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
508                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
509                         break;
510
511                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
512                         /* PTP v2, UDP, Sync packet */
513                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
514                         ptp_v2 = PTP_TCR_TSVER2ENA;
515                         /* take time stamp for SYNC messages only */
516                         ts_event_en = PTP_TCR_TSEVNTENA;
517
518                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
519                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
520                         break;
521
522                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
523                         /* PTP v2, UDP, Delay_req packet */
524                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
525                         ptp_v2 = PTP_TCR_TSVER2ENA;
526                         /* take time stamp for Delay_Req messages only */
527                         ts_master_en = PTP_TCR_TSMSTRENA;
528                         ts_event_en = PTP_TCR_TSEVNTENA;
529
530                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
531                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
532                         break;
533
534                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
535                         /* PTP v2/802.AS1 any layer, any kind of event packet */
536                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
537                         ptp_v2 = PTP_TCR_TSVER2ENA;
538                         /* take time stamp for all event messages */
539                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
540
541                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
542                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
543                         ptp_over_ethernet = PTP_TCR_TSIPENA;
544                         break;
545
546                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
547                         /* PTP v2/802.AS1, any layer, Sync packet */
548                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
549                         ptp_v2 = PTP_TCR_TSVER2ENA;
550                         /* take time stamp for SYNC messages only */
551                         ts_event_en = PTP_TCR_TSEVNTENA;
552
553                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
554                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
555                         ptp_over_ethernet = PTP_TCR_TSIPENA;
556                         break;
557
558                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
559                         /* PTP v2/802.AS1, any layer, Delay_req packet */
560                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
561                         ptp_v2 = PTP_TCR_TSVER2ENA;
562                         /* take time stamp for Delay_Req messages only */
563                         ts_master_en = PTP_TCR_TSMSTRENA;
564                         ts_event_en = PTP_TCR_TSEVNTENA;
565
566                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
567                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
568                         ptp_over_ethernet = PTP_TCR_TSIPENA;
569                         break;
570
571                 case HWTSTAMP_FILTER_ALL:
572                         /* time stamp any incoming packet */
573                         config.rx_filter = HWTSTAMP_FILTER_ALL;
574                         tstamp_all = PTP_TCR_TSENALL;
575                         break;
576
577                 default:
578                         return -ERANGE;
579                 }
580         } else {
581                 switch (config.rx_filter) {
582                 case HWTSTAMP_FILTER_NONE:
583                         config.rx_filter = HWTSTAMP_FILTER_NONE;
584                         break;
585                 default:
586                         /* PTP v1, UDP, any kind of event packet */
587                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
588                         break;
589                 }
590         }
591         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
592         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
593
594         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
595                 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
596         else {
597                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
598                          tstamp_all | ptp_v2 | ptp_over_ethernet |
599                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
600                          ts_master_en | snap_type_sel);
601
602                 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
603
604                 /* program Sub Second Increment reg */
605                 priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
606
607                 /* calculate default added value:
608                  * formula is :
609                  * addend = (2^32)/freq_div_ratio;
610                  * where, freq_div_ratio = clk_ptp_ref_i/50MHz
611                  * hence, addend = ((2^32) * 50MHz)/clk_ptp_ref_i;
612                  * NOTE: clk_ptp_ref_i should be >= 50MHz to
613                  *       achieve 20ns accuracy.
614                  *
615                  * 2^x * y == (y << x), hence
616                  * 2^32 * 50000000 ==> (50000000 << 32)
617                  */
618                 temp = (u64) (50000000ULL << 32);
619                 priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
620                 priv->hw->ptp->config_addend(priv->ioaddr,
621                                              priv->default_addend);
622
623                 /* initialize system time */
624                 ktime_get_real_ts64(&now);
625
626                 /* lower 32 bits of tv_sec are safe until y2106 */
627                 priv->hw->ptp->init_systime(priv->ioaddr, (u32)now.tv_sec,
628                                             now.tv_nsec);
629         }
630
631         return copy_to_user(ifr->ifr_data, &config,
632                             sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
633 }
634
635 /**
636  * stmmac_init_ptp - init PTP
637  * @priv: driver private structure
638  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
639  * This is done by looking at the HW cap. register.
640  * This function also registers the ptp driver.
641  */
642 static int stmmac_init_ptp(struct stmmac_priv *priv)
643 {
644         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
645                 return -EOPNOTSUPP;
646
647         /* Fall-back to main clock in case of no PTP ref is passed */
648         priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
649         if (IS_ERR(priv->clk_ptp_ref)) {
650                 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
651                 priv->clk_ptp_ref = NULL;
652         } else {
653                 clk_prepare_enable(priv->clk_ptp_ref);
654                 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
655         }
656
657         priv->adv_ts = 0;
658         if (priv->dma_cap.atime_stamp && priv->extend_desc)
659                 priv->adv_ts = 1;
660
661         if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
662                 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
663
664         if (netif_msg_hw(priv) && priv->adv_ts)
665                 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
666
667         priv->hw->ptp = &stmmac_ptp;
668         priv->hwts_tx_en = 0;
669         priv->hwts_rx_en = 0;
670
671         return stmmac_ptp_register(priv);
672 }
673
674 static void stmmac_release_ptp(struct stmmac_priv *priv)
675 {
676         if (priv->clk_ptp_ref)
677                 clk_disable_unprepare(priv->clk_ptp_ref);
678         stmmac_ptp_unregister(priv);
679 }
680
681 /**
682  * stmmac_adjust_link - adjusts the link parameters
683  * @dev: net device structure
684  * Description: this is the helper called by the physical abstraction layer
685  * drivers to communicate the phy link status. According the speed and duplex
686  * this driver can invoke registered glue-logic as well.
687  * It also invoke the eee initialization because it could happen when switch
688  * on different networks (that are eee capable).
689  */
690 static void stmmac_adjust_link(struct net_device *dev)
691 {
692         struct stmmac_priv *priv = netdev_priv(dev);
693         struct phy_device *phydev = priv->phydev;
694         unsigned long flags;
695         int new_state = 0;
696         unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
697
698         if (phydev == NULL)
699                 return;
700
701         spin_lock_irqsave(&priv->lock, flags);
702
703         if (phydev->link) {
704                 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
705
706                 /* Now we make sure that we can be in full duplex mode.
707                  * If not, we operate in half-duplex mode. */
708                 if (phydev->duplex != priv->oldduplex) {
709                         new_state = 1;
710                         if (!(phydev->duplex))
711                                 ctrl &= ~priv->hw->link.duplex;
712                         else
713                                 ctrl |= priv->hw->link.duplex;
714                         priv->oldduplex = phydev->duplex;
715                 }
716                 /* Flow Control operation */
717                 if (phydev->pause)
718                         priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
719                                                  fc, pause_time);
720
721                 if (phydev->speed != priv->speed) {
722                         new_state = 1;
723                         switch (phydev->speed) {
724                         case 1000:
725                                 if (likely(priv->plat->has_gmac))
726                                         ctrl &= ~priv->hw->link.port;
727                                 stmmac_hw_fix_mac_speed(priv);
728                                 break;
729                         case 100:
730                         case 10:
731                                 if (priv->plat->has_gmac) {
732                                         ctrl |= priv->hw->link.port;
733                                         if (phydev->speed == SPEED_100) {
734                                                 ctrl |= priv->hw->link.speed;
735                                         } else {
736                                                 ctrl &= ~(priv->hw->link.speed);
737                                         }
738                                 } else {
739                                         ctrl &= ~priv->hw->link.port;
740                                 }
741                                 stmmac_hw_fix_mac_speed(priv);
742                                 break;
743                         default:
744                                 if (netif_msg_link(priv))
745                                         pr_warn("%s: Speed (%d) not 10/100\n",
746                                                 dev->name, phydev->speed);
747                                 break;
748                         }
749
750                         priv->speed = phydev->speed;
751                 }
752
753                 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
754
755                 if (!priv->oldlink) {
756                         new_state = 1;
757                         priv->oldlink = 1;
758                 }
759         } else if (priv->oldlink) {
760                 new_state = 1;
761                 priv->oldlink = 0;
762                 priv->speed = 0;
763                 priv->oldduplex = -1;
764         }
765
766         if (new_state && netif_msg_link(priv))
767                 phy_print_status(phydev);
768
769         spin_unlock_irqrestore(&priv->lock, flags);
770
771         /* At this stage, it could be needed to setup the EEE or adjust some
772          * MAC related HW registers.
773          */
774         priv->eee_enabled = stmmac_eee_init(priv);
775 }
776
777 /**
778  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
779  * @priv: driver private structure
780  * Description: this is to verify if the HW supports the PCS.
781  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
782  * configured for the TBI, RTBI, or SGMII PHY interface.
783  */
784 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
785 {
786         int interface = priv->plat->interface;
787
788         if (priv->dma_cap.pcs) {
789                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
790                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
791                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
792                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
793                         pr_debug("STMMAC: PCS RGMII support enable\n");
794                         priv->pcs = STMMAC_PCS_RGMII;
795                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
796                         pr_debug("STMMAC: PCS SGMII support enable\n");
797                         priv->pcs = STMMAC_PCS_SGMII;
798                 }
799         }
800 }
801
802 /**
803  * stmmac_init_phy - PHY initialization
804  * @dev: net device structure
805  * Description: it initializes the driver's PHY state, and attaches the PHY
806  * to the mac driver.
807  *  Return value:
808  *  0 on success
809  */
810 static int stmmac_init_phy(struct net_device *dev)
811 {
812         struct stmmac_priv *priv = netdev_priv(dev);
813         struct phy_device *phydev;
814         char phy_id_fmt[MII_BUS_ID_SIZE + 3];
815         char bus_id[MII_BUS_ID_SIZE];
816         int interface = priv->plat->interface;
817         int max_speed = priv->plat->max_speed;
818         priv->oldlink = 0;
819         priv->speed = 0;
820         priv->oldduplex = -1;
821
822         if (priv->plat->phy_node) {
823                 phydev = of_phy_connect(dev, priv->plat->phy_node,
824                                         &stmmac_adjust_link, 0, interface);
825         } else {
826                 if (priv->plat->phy_bus_name)
827                         snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
828                                  priv->plat->phy_bus_name, priv->plat->bus_id);
829                 else
830                         snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
831                                  priv->plat->bus_id);
832
833                 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
834                          priv->plat->phy_addr);
835                 pr_debug("stmmac_init_phy:  trying to attach to %s\n",
836                          phy_id_fmt);
837
838                 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
839                                      interface);
840         }
841
842         if (IS_ERR_OR_NULL(phydev)) {
843                 pr_err("%s: Could not attach to PHY\n", dev->name);
844                 if (!phydev)
845                         return -ENODEV;
846
847                 return PTR_ERR(phydev);
848         }
849
850         /* Stop Advertising 1000BASE Capability if interface is not GMII */
851         if ((interface == PHY_INTERFACE_MODE_MII) ||
852             (interface == PHY_INTERFACE_MODE_RMII) ||
853                 (max_speed < 1000 && max_speed > 0))
854                 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
855                                          SUPPORTED_1000baseT_Full);
856
857         /*
858          * Broken HW is sometimes missing the pull-up resistor on the
859          * MDIO line, which results in reads to non-existent devices returning
860          * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
861          * device as well.
862          * Note: phydev->phy_id is the result of reading the UID PHY registers.
863          */
864         if (!priv->plat->phy_node && phydev->phy_id == 0) {
865                 phy_disconnect(phydev);
866                 return -ENODEV;
867         }
868         pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
869                  " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
870
871         priv->phydev = phydev;
872
873         return 0;
874 }
875
876 /**
877  * stmmac_display_ring - display ring
878  * @head: pointer to the head of the ring passed.
879  * @size: size of the ring.
880  * @extend_desc: to verify if extended descriptors are used.
881  * Description: display the control/status and buffer descriptors.
882  */
883 static void stmmac_display_ring(void *head, int size, int extend_desc)
884 {
885         int i;
886         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
887         struct dma_desc *p = (struct dma_desc *)head;
888
889         for (i = 0; i < size; i++) {
890                 u64 x;
891                 if (extend_desc) {
892                         x = *(u64 *) ep;
893                         pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
894                                 i, (unsigned int)virt_to_phys(ep),
895                                 (unsigned int)x, (unsigned int)(x >> 32),
896                                 ep->basic.des2, ep->basic.des3);
897                         ep++;
898                 } else {
899                         x = *(u64 *) p;
900                         pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
901                                 i, (unsigned int)virt_to_phys(p),
902                                 (unsigned int)x, (unsigned int)(x >> 32),
903                                 p->des2, p->des3);
904                         p++;
905                 }
906                 pr_info("\n");
907         }
908 }
909
910 static void stmmac_display_rings(struct stmmac_priv *priv)
911 {
912         unsigned int txsize = priv->dma_tx_size;
913         unsigned int rxsize = priv->dma_rx_size;
914
915         if (priv->extend_desc) {
916                 pr_info("Extended RX descriptor ring:\n");
917                 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
918                 pr_info("Extended TX descriptor ring:\n");
919                 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
920         } else {
921                 pr_info("RX descriptor ring:\n");
922                 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
923                 pr_info("TX descriptor ring:\n");
924                 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
925         }
926 }
927
928 static int stmmac_set_bfsize(int mtu, int bufsize)
929 {
930         int ret = bufsize;
931
932         if (mtu >= BUF_SIZE_4KiB)
933                 ret = BUF_SIZE_8KiB;
934         else if (mtu >= BUF_SIZE_2KiB)
935                 ret = BUF_SIZE_4KiB;
936         else if (mtu > DEFAULT_BUFSIZE)
937                 ret = BUF_SIZE_2KiB;
938         else
939                 ret = DEFAULT_BUFSIZE;
940
941         return ret;
942 }
943
944 /**
945  * stmmac_clear_descriptors - clear descriptors
946  * @priv: driver private structure
947  * Description: this function is called to clear the tx and rx descriptors
948  * in case of both basic and extended descriptors are used.
949  */
950 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
951 {
952         int i;
953         unsigned int txsize = priv->dma_tx_size;
954         unsigned int rxsize = priv->dma_rx_size;
955
956         /* Clear the Rx/Tx descriptors */
957         for (i = 0; i < rxsize; i++)
958                 if (priv->extend_desc)
959                         priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
960                                                      priv->use_riwt, priv->mode,
961                                                      (i == rxsize - 1));
962                 else
963                         priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
964                                                      priv->use_riwt, priv->mode,
965                                                      (i == rxsize - 1));
966         for (i = 0; i < txsize; i++)
967                 if (priv->extend_desc)
968                         priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
969                                                      priv->mode,
970                                                      (i == txsize - 1));
971                 else
972                         priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
973                                                      priv->mode,
974                                                      (i == txsize - 1));
975 }
976
977 /**
978  * stmmac_init_rx_buffers - init the RX descriptor buffer.
979  * @priv: driver private structure
980  * @p: descriptor pointer
981  * @i: descriptor index
982  * @flags: gfp flag.
983  * Description: this function is called to allocate a receive buffer, perform
984  * the DMA mapping and init the descriptor.
985  */
986 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
987                                   int i, gfp_t flags)
988 {
989         struct sk_buff *skb;
990
991         skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
992         if (!skb) {
993                 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
994                 return -ENOMEM;
995         }
996         priv->rx_skbuff[i] = skb;
997         priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
998                                                 priv->dma_buf_sz,
999                                                 DMA_FROM_DEVICE);
1000         if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
1001                 pr_err("%s: DMA mapping error\n", __func__);
1002                 dev_kfree_skb_any(skb);
1003                 return -EINVAL;
1004         }
1005
1006         p->des2 = priv->rx_skbuff_dma[i];
1007
1008         if ((priv->hw->mode->init_desc3) &&
1009             (priv->dma_buf_sz == BUF_SIZE_16KiB))
1010                 priv->hw->mode->init_desc3(p);
1011
1012         return 0;
1013 }
1014
1015 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1016 {
1017         if (priv->rx_skbuff[i]) {
1018                 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1019                                  priv->dma_buf_sz, DMA_FROM_DEVICE);
1020                 dev_kfree_skb_any(priv->rx_skbuff[i]);
1021         }
1022         priv->rx_skbuff[i] = NULL;
1023 }
1024
1025 /**
1026  * init_dma_desc_rings - init the RX/TX descriptor rings
1027  * @dev: net device structure
1028  * @flags: gfp flag.
1029  * Description: this function initializes the DMA RX/TX descriptors
1030  * and allocates the socket buffers. It suppors the chained and ring
1031  * modes.
1032  */
1033 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1034 {
1035         int i;
1036         struct stmmac_priv *priv = netdev_priv(dev);
1037         unsigned int txsize = priv->dma_tx_size;
1038         unsigned int rxsize = priv->dma_rx_size;
1039         unsigned int bfsize = 0;
1040         int ret = -ENOMEM;
1041
1042         if (priv->hw->mode->set_16kib_bfsize)
1043                 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1044
1045         if (bfsize < BUF_SIZE_16KiB)
1046                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1047
1048         priv->dma_buf_sz = bfsize;
1049
1050         if (netif_msg_probe(priv))
1051                 pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1052                          txsize, rxsize, bfsize);
1053
1054         if (netif_msg_probe(priv)) {
1055                 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1056                          (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1057
1058                 /* RX INITIALIZATION */
1059                 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1060         }
1061         for (i = 0; i < rxsize; i++) {
1062                 struct dma_desc *p;
1063                 if (priv->extend_desc)
1064                         p = &((priv->dma_erx + i)->basic);
1065                 else
1066                         p = priv->dma_rx + i;
1067
1068                 ret = stmmac_init_rx_buffers(priv, p, i, flags);
1069                 if (ret)
1070                         goto err_init_rx_buffers;
1071
1072                 if (netif_msg_probe(priv))
1073                         pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1074                                  priv->rx_skbuff[i]->data,
1075                                  (unsigned int)priv->rx_skbuff_dma[i]);
1076         }
1077         priv->cur_rx = 0;
1078         priv->dirty_rx = (unsigned int)(i - rxsize);
1079         buf_sz = bfsize;
1080
1081         /* Setup the chained descriptor addresses */
1082         if (priv->mode == STMMAC_CHAIN_MODE) {
1083                 if (priv->extend_desc) {
1084                         priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1085                                              rxsize, 1);
1086                         priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1087                                              txsize, 1);
1088                 } else {
1089                         priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1090                                              rxsize, 0);
1091                         priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1092                                              txsize, 0);
1093                 }
1094         }
1095
1096         /* TX INITIALIZATION */
1097         for (i = 0; i < txsize; i++) {
1098                 struct dma_desc *p;
1099                 if (priv->extend_desc)
1100                         p = &((priv->dma_etx + i)->basic);
1101                 else
1102                         p = priv->dma_tx + i;
1103                 p->des2 = 0;
1104                 priv->tx_skbuff_dma[i].buf = 0;
1105                 priv->tx_skbuff_dma[i].map_as_page = false;
1106                 priv->tx_skbuff[i] = NULL;
1107         }
1108
1109         priv->dirty_tx = 0;
1110         priv->cur_tx = 0;
1111         netdev_reset_queue(priv->dev);
1112
1113         stmmac_clear_descriptors(priv);
1114
1115         if (netif_msg_hw(priv))
1116                 stmmac_display_rings(priv);
1117
1118         return 0;
1119 err_init_rx_buffers:
1120         while (--i >= 0)
1121                 stmmac_free_rx_buffers(priv, i);
1122         return ret;
1123 }
1124
1125 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1126 {
1127         int i;
1128
1129         for (i = 0; i < priv->dma_rx_size; i++)
1130                 stmmac_free_rx_buffers(priv, i);
1131 }
1132
1133 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1134 {
1135         int i;
1136
1137         for (i = 0; i < priv->dma_tx_size; i++) {
1138                 struct dma_desc *p;
1139
1140                 if (priv->extend_desc)
1141                         p = &((priv->dma_etx + i)->basic);
1142                 else
1143                         p = priv->dma_tx + i;
1144
1145                 if (priv->tx_skbuff_dma[i].buf) {
1146                         if (priv->tx_skbuff_dma[i].map_as_page)
1147                                 dma_unmap_page(priv->device,
1148                                                priv->tx_skbuff_dma[i].buf,
1149                                                priv->hw->desc->get_tx_len(p),
1150                                                DMA_TO_DEVICE);
1151                         else
1152                                 dma_unmap_single(priv->device,
1153                                                  priv->tx_skbuff_dma[i].buf,
1154                                                  priv->hw->desc->get_tx_len(p),
1155                                                  DMA_TO_DEVICE);
1156                 }
1157
1158                 if (priv->tx_skbuff[i] != NULL) {
1159                         dev_kfree_skb_any(priv->tx_skbuff[i]);
1160                         priv->tx_skbuff[i] = NULL;
1161                         priv->tx_skbuff_dma[i].buf = 0;
1162                         priv->tx_skbuff_dma[i].map_as_page = false;
1163                 }
1164         }
1165 }
1166
1167 /**
1168  * alloc_dma_desc_resources - alloc TX/RX resources.
1169  * @priv: private structure
1170  * Description: according to which descriptor can be used (extend or basic)
1171  * this function allocates the resources for TX and RX paths. In case of
1172  * reception, for example, it pre-allocated the RX socket buffer in order to
1173  * allow zero-copy mechanism.
1174  */
1175 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1176 {
1177         unsigned int txsize = priv->dma_tx_size;
1178         unsigned int rxsize = priv->dma_rx_size;
1179         int ret = -ENOMEM;
1180
1181         priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1182                                             GFP_KERNEL);
1183         if (!priv->rx_skbuff_dma)
1184                 return -ENOMEM;
1185
1186         priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1187                                         GFP_KERNEL);
1188         if (!priv->rx_skbuff)
1189                 goto err_rx_skbuff;
1190
1191         priv->tx_skbuff_dma = kmalloc_array(txsize,
1192                                             sizeof(*priv->tx_skbuff_dma),
1193                                             GFP_KERNEL);
1194         if (!priv->tx_skbuff_dma)
1195                 goto err_tx_skbuff_dma;
1196
1197         priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1198                                         GFP_KERNEL);
1199         if (!priv->tx_skbuff)
1200                 goto err_tx_skbuff;
1201
1202         if (priv->extend_desc) {
1203                 priv->dma_erx = dma_zalloc_coherent(priv->device, rxsize *
1204                                                     sizeof(struct
1205                                                            dma_extended_desc),
1206                                                     &priv->dma_rx_phy,
1207                                                     GFP_KERNEL);
1208                 if (!priv->dma_erx)
1209                         goto err_dma;
1210
1211                 priv->dma_etx = dma_zalloc_coherent(priv->device, txsize *
1212                                                     sizeof(struct
1213                                                            dma_extended_desc),
1214                                                     &priv->dma_tx_phy,
1215                                                     GFP_KERNEL);
1216                 if (!priv->dma_etx) {
1217                         dma_free_coherent(priv->device, priv->dma_rx_size *
1218                                           sizeof(struct dma_extended_desc),
1219                                           priv->dma_erx, priv->dma_rx_phy);
1220                         goto err_dma;
1221                 }
1222         } else {
1223                 priv->dma_rx = dma_zalloc_coherent(priv->device, rxsize *
1224                                                    sizeof(struct dma_desc),
1225                                                    &priv->dma_rx_phy,
1226                                                    GFP_KERNEL);
1227                 if (!priv->dma_rx)
1228                         goto err_dma;
1229
1230                 priv->dma_tx = dma_zalloc_coherent(priv->device, txsize *
1231                                                    sizeof(struct dma_desc),
1232                                                    &priv->dma_tx_phy,
1233                                                    GFP_KERNEL);
1234                 if (!priv->dma_tx) {
1235                         dma_free_coherent(priv->device, priv->dma_rx_size *
1236                                           sizeof(struct dma_desc),
1237                                           priv->dma_rx, priv->dma_rx_phy);
1238                         goto err_dma;
1239                 }
1240         }
1241
1242         return 0;
1243
1244 err_dma:
1245         kfree(priv->tx_skbuff);
1246 err_tx_skbuff:
1247         kfree(priv->tx_skbuff_dma);
1248 err_tx_skbuff_dma:
1249         kfree(priv->rx_skbuff);
1250 err_rx_skbuff:
1251         kfree(priv->rx_skbuff_dma);
1252         return ret;
1253 }
1254
1255 static void free_dma_desc_resources(struct stmmac_priv *priv)
1256 {
1257         /* Release the DMA TX/RX socket buffers */
1258         dma_free_rx_skbufs(priv);
1259         dma_free_tx_skbufs(priv);
1260
1261         /* Free DMA regions of consistent memory previously allocated */
1262         if (!priv->extend_desc) {
1263                 dma_free_coherent(priv->device,
1264                                   priv->dma_tx_size * sizeof(struct dma_desc),
1265                                   priv->dma_tx, priv->dma_tx_phy);
1266                 dma_free_coherent(priv->device,
1267                                   priv->dma_rx_size * sizeof(struct dma_desc),
1268                                   priv->dma_rx, priv->dma_rx_phy);
1269         } else {
1270                 dma_free_coherent(priv->device, priv->dma_tx_size *
1271                                   sizeof(struct dma_extended_desc),
1272                                   priv->dma_etx, priv->dma_tx_phy);
1273                 dma_free_coherent(priv->device, priv->dma_rx_size *
1274                                   sizeof(struct dma_extended_desc),
1275                                   priv->dma_erx, priv->dma_rx_phy);
1276         }
1277         kfree(priv->rx_skbuff_dma);
1278         kfree(priv->rx_skbuff);
1279         kfree(priv->tx_skbuff_dma);
1280         kfree(priv->tx_skbuff);
1281 }
1282
1283 /**
1284  *  stmmac_dma_operation_mode - HW DMA operation mode
1285  *  @priv: driver private structure
1286  *  Description: it is used for configuring the DMA operation mode register in
1287  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1288  */
1289 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1290 {
1291         int rxfifosz = priv->plat->rx_fifo_size;
1292
1293         if (priv->plat->force_thresh_dma_mode)
1294                 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1295         else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1296                 /*
1297                  * In case of GMAC, SF mode can be enabled
1298                  * to perform the TX COE in HW. This depends on:
1299                  * 1) TX COE if actually supported
1300                  * 2) There is no bugged Jumbo frame support
1301                  *    that needs to not insert csum in the TDES.
1302                  */
1303                 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1304                                         rxfifosz);
1305                 priv->xstats.threshold = SF_DMA_MODE;
1306         } else
1307                 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1308                                         rxfifosz);
1309 }
1310
1311 /**
1312  * stmmac_tx_clean - to manage the transmission completion
1313  * @priv: driver private structure
1314  * Description: it reclaims the transmit resources after transmission completes.
1315  */
1316 static void stmmac_tx_clean(struct stmmac_priv *priv)
1317 {
1318         unsigned int txsize = priv->dma_tx_size;
1319         unsigned int bytes_compl = 0, pkts_compl = 0;
1320
1321         spin_lock(&priv->tx_lock);
1322
1323         priv->xstats.tx_clean++;
1324
1325         while (priv->dirty_tx != priv->cur_tx) {
1326                 int last;
1327                 unsigned int entry = priv->dirty_tx % txsize;
1328                 struct sk_buff *skb = priv->tx_skbuff[entry];
1329                 struct dma_desc *p;
1330
1331                 if (priv->extend_desc)
1332                         p = (struct dma_desc *)(priv->dma_etx + entry);
1333                 else
1334                         p = priv->dma_tx + entry;
1335
1336                 /* Check if the descriptor is owned by the DMA. */
1337                 if (priv->hw->desc->get_tx_owner(p))
1338                         break;
1339
1340                 /* Verify tx error by looking at the last segment. */
1341                 last = priv->hw->desc->get_tx_ls(p);
1342                 if (likely(last)) {
1343                         int tx_error =
1344                             priv->hw->desc->tx_status(&priv->dev->stats,
1345                                                       &priv->xstats, p,
1346                                                       priv->ioaddr);
1347                         if (likely(tx_error == 0)) {
1348                                 priv->dev->stats.tx_packets++;
1349                                 priv->xstats.tx_pkt_n++;
1350                         } else
1351                                 priv->dev->stats.tx_errors++;
1352
1353                         stmmac_get_tx_hwtstamp(priv, entry, skb);
1354                 }
1355                 if (netif_msg_tx_done(priv))
1356                         pr_debug("%s: curr %d, dirty %d\n", __func__,
1357                                  priv->cur_tx, priv->dirty_tx);
1358
1359                 if (likely(priv->tx_skbuff_dma[entry].buf)) {
1360                         if (priv->tx_skbuff_dma[entry].map_as_page)
1361                                 dma_unmap_page(priv->device,
1362                                                priv->tx_skbuff_dma[entry].buf,
1363                                                priv->hw->desc->get_tx_len(p),
1364                                                DMA_TO_DEVICE);
1365                         else
1366                                 dma_unmap_single(priv->device,
1367                                                  priv->tx_skbuff_dma[entry].buf,
1368                                                  priv->hw->desc->get_tx_len(p),
1369                                                  DMA_TO_DEVICE);
1370                         priv->tx_skbuff_dma[entry].buf = 0;
1371                         priv->tx_skbuff_dma[entry].map_as_page = false;
1372                 }
1373                 priv->hw->mode->clean_desc3(priv, p);
1374
1375                 if (likely(skb != NULL)) {
1376                         pkts_compl++;
1377                         bytes_compl += skb->len;
1378                         dev_consume_skb_any(skb);
1379                         priv->tx_skbuff[entry] = NULL;
1380                 }
1381
1382                 priv->hw->desc->release_tx_desc(p, priv->mode);
1383
1384                 priv->dirty_tx++;
1385         }
1386
1387         netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1388
1389         if (unlikely(netif_queue_stopped(priv->dev) &&
1390                      stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1391                 netif_tx_lock(priv->dev);
1392                 if (netif_queue_stopped(priv->dev) &&
1393                     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1394                         if (netif_msg_tx_done(priv))
1395                                 pr_debug("%s: restart transmit\n", __func__);
1396                         netif_wake_queue(priv->dev);
1397                 }
1398                 netif_tx_unlock(priv->dev);
1399         }
1400
1401         if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1402                 stmmac_enable_eee_mode(priv);
1403                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1404         }
1405         spin_unlock(&priv->tx_lock);
1406 }
1407
1408 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1409 {
1410         priv->hw->dma->enable_dma_irq(priv->ioaddr);
1411 }
1412
1413 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1414 {
1415         priv->hw->dma->disable_dma_irq(priv->ioaddr);
1416 }
1417
1418 /**
1419  * stmmac_tx_err - to manage the tx error
1420  * @priv: driver private structure
1421  * Description: it cleans the descriptors and restarts the transmission
1422  * in case of transmission errors.
1423  */
1424 static void stmmac_tx_err(struct stmmac_priv *priv)
1425 {
1426         int i;
1427         int txsize = priv->dma_tx_size;
1428         netif_stop_queue(priv->dev);
1429
1430         priv->hw->dma->stop_tx(priv->ioaddr);
1431         dma_free_tx_skbufs(priv);
1432         for (i = 0; i < txsize; i++)
1433                 if (priv->extend_desc)
1434                         priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1435                                                      priv->mode,
1436                                                      (i == txsize - 1));
1437                 else
1438                         priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1439                                                      priv->mode,
1440                                                      (i == txsize - 1));
1441         priv->dirty_tx = 0;
1442         priv->cur_tx = 0;
1443         netdev_reset_queue(priv->dev);
1444         priv->hw->dma->start_tx(priv->ioaddr);
1445
1446         priv->dev->stats.tx_errors++;
1447         netif_wake_queue(priv->dev);
1448 }
1449
1450 /**
1451  * stmmac_dma_interrupt - DMA ISR
1452  * @priv: driver private structure
1453  * Description: this is the DMA ISR. It is called by the main ISR.
1454  * It calls the dwmac dma routine and schedule poll method in case of some
1455  * work can be done.
1456  */
1457 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1458 {
1459         int status;
1460         int rxfifosz = priv->plat->rx_fifo_size;
1461
1462         status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1463         if (likely((status & handle_rx)) || (status & handle_tx)) {
1464                 if (likely(napi_schedule_prep(&priv->napi))) {
1465                         stmmac_disable_dma_irq(priv);
1466                         __napi_schedule(&priv->napi);
1467                 }
1468         }
1469         if (unlikely(status & tx_hard_error_bump_tc)) {
1470                 /* Try to bump up the dma threshold on this failure */
1471                 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1472                     (tc <= 256)) {
1473                         tc += 64;
1474                         if (priv->plat->force_thresh_dma_mode)
1475                                 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1476                                                         rxfifosz);
1477                         else
1478                                 priv->hw->dma->dma_mode(priv->ioaddr, tc,
1479                                                         SF_DMA_MODE, rxfifosz);
1480                         priv->xstats.threshold = tc;
1481                 }
1482         } else if (unlikely(status == tx_hard_error))
1483                 stmmac_tx_err(priv);
1484 }
1485
1486 /**
1487  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1488  * @priv: driver private structure
1489  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1490  */
1491 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1492 {
1493         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1494             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1495
1496         dwmac_mmc_intr_all_mask(priv->ioaddr);
1497
1498         if (priv->dma_cap.rmon) {
1499                 dwmac_mmc_ctrl(priv->ioaddr, mode);
1500                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1501         } else
1502                 pr_info(" No MAC Management Counters available\n");
1503 }
1504
1505 /**
1506  * stmmac_get_synopsys_id - return the SYINID.
1507  * @priv: driver private structure
1508  * Description: this simple function is to decode and return the SYINID
1509  * starting from the HW core register.
1510  */
1511 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1512 {
1513         u32 hwid = priv->hw->synopsys_uid;
1514
1515         /* Check Synopsys Id (not available on old chips) */
1516         if (likely(hwid)) {
1517                 u32 uid = ((hwid & 0x0000ff00) >> 8);
1518                 u32 synid = (hwid & 0x000000ff);
1519
1520                 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1521                         uid, synid);
1522
1523                 return synid;
1524         }
1525         return 0;
1526 }
1527
1528 /**
1529  * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1530  * @priv: driver private structure
1531  * Description: select the Enhanced/Alternate or Normal descriptors.
1532  * In case of Enhanced/Alternate, it checks if the extended descriptors are
1533  * supported by the HW capability register.
1534  */
1535 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1536 {
1537         if (priv->plat->enh_desc) {
1538                 pr_info(" Enhanced/Alternate descriptors\n");
1539
1540                 /* GMAC older than 3.50 has no extended descriptors */
1541                 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1542                         pr_info("\tEnabled extended descriptors\n");
1543                         priv->extend_desc = 1;
1544                 } else
1545                         pr_warn("Extended descriptors not supported\n");
1546
1547                 priv->hw->desc = &enh_desc_ops;
1548         } else {
1549                 pr_info(" Normal descriptors\n");
1550                 priv->hw->desc = &ndesc_ops;
1551         }
1552 }
1553
1554 /**
1555  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1556  * @priv: driver private structure
1557  * Description:
1558  *  new GMAC chip generations have a new register to indicate the
1559  *  presence of the optional feature/functions.
1560  *  This can be also used to override the value passed through the
1561  *  platform and necessary for old MAC10/100 and GMAC chips.
1562  */
1563 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1564 {
1565         u32 hw_cap = 0;
1566
1567         if (priv->hw->dma->get_hw_feature) {
1568                 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1569
1570                 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1571                 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1572                 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1573                 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1574                 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1575                 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1576                 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1577                 priv->dma_cap.pmt_remote_wake_up =
1578                     (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1579                 priv->dma_cap.pmt_magic_frame =
1580                     (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1581                 /* MMC */
1582                 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1583                 /* IEEE 1588-2002 */
1584                 priv->dma_cap.time_stamp =
1585                     (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1586                 /* IEEE 1588-2008 */
1587                 priv->dma_cap.atime_stamp =
1588                     (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1589                 /* 802.3az - Energy-Efficient Ethernet (EEE) */
1590                 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1591                 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1592                 /* TX and RX csum */
1593                 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1594                 priv->dma_cap.rx_coe_type1 =
1595                     (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1596                 priv->dma_cap.rx_coe_type2 =
1597                     (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1598                 priv->dma_cap.rxfifo_over_2048 =
1599                     (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1600                 /* TX and RX number of channels */
1601                 priv->dma_cap.number_rx_channel =
1602                     (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1603                 priv->dma_cap.number_tx_channel =
1604                     (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1605                 /* Alternate (enhanced) DESC mode */
1606                 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1607         }
1608
1609         return hw_cap;
1610 }
1611
1612 /**
1613  * stmmac_check_ether_addr - check if the MAC addr is valid
1614  * @priv: driver private structure
1615  * Description:
1616  * it is to verify if the MAC address is valid, in case of failures it
1617  * generates a random MAC address
1618  */
1619 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1620 {
1621         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1622                 priv->hw->mac->get_umac_addr(priv->hw,
1623                                              priv->dev->dev_addr, 0);
1624                 if (!is_valid_ether_addr(priv->dev->dev_addr))
1625                         eth_hw_addr_random(priv->dev);
1626                 pr_info("%s: device MAC address %pM\n", priv->dev->name,
1627                         priv->dev->dev_addr);
1628         }
1629 }
1630
1631 /**
1632  * stmmac_init_dma_engine - DMA init.
1633  * @priv: driver private structure
1634  * Description:
1635  * It inits the DMA invoking the specific MAC/GMAC callback.
1636  * Some DMA parameters can be passed from the platform;
1637  * in case of these are not passed a default is kept for the MAC or GMAC.
1638  */
1639 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1640 {
1641         int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1642         int mixed_burst = 0;
1643         int atds = 0;
1644
1645         if (priv->plat->dma_cfg) {
1646                 pbl = priv->plat->dma_cfg->pbl;
1647                 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1648                 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1649                 burst_len = priv->plat->dma_cfg->burst_len;
1650         }
1651
1652         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1653                 atds = 1;
1654
1655         return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1656                                    burst_len, priv->dma_tx_phy,
1657                                    priv->dma_rx_phy, atds);
1658 }
1659
1660 /**
1661  * stmmac_tx_timer - mitigation sw timer for tx.
1662  * @data: data pointer
1663  * Description:
1664  * This is the timer handler to directly invoke the stmmac_tx_clean.
1665  */
1666 static void stmmac_tx_timer(unsigned long data)
1667 {
1668         struct stmmac_priv *priv = (struct stmmac_priv *)data;
1669
1670         stmmac_tx_clean(priv);
1671 }
1672
1673 /**
1674  * stmmac_init_tx_coalesce - init tx mitigation options.
1675  * @priv: driver private structure
1676  * Description:
1677  * This inits the transmit coalesce parameters: i.e. timer rate,
1678  * timer handler and default threshold used for enabling the
1679  * interrupt on completion bit.
1680  */
1681 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1682 {
1683         priv->tx_coal_frames = STMMAC_TX_FRAMES;
1684         priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1685         init_timer(&priv->txtimer);
1686         priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1687         priv->txtimer.data = (unsigned long)priv;
1688         priv->txtimer.function = stmmac_tx_timer;
1689         add_timer(&priv->txtimer);
1690 }
1691
1692 /**
1693  * stmmac_hw_setup - setup mac in a usable state.
1694  *  @dev : pointer to the device structure.
1695  *  Description:
1696  *  this is the main function to setup the HW in a usable state because the
1697  *  dma engine is reset, the core registers are configured (e.g. AXI,
1698  *  Checksum features, timers). The DMA is ready to start receiving and
1699  *  transmitting.
1700  *  Return value:
1701  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1702  *  file on failure.
1703  */
1704 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1705 {
1706         struct stmmac_priv *priv = netdev_priv(dev);
1707         int ret;
1708
1709         /* DMA initialization and SW reset */
1710         ret = stmmac_init_dma_engine(priv);
1711         if (ret < 0) {
1712                 pr_err("%s: DMA engine initialization failed\n", __func__);
1713                 return ret;
1714         }
1715
1716         /* Copy the MAC addr into the HW  */
1717         priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1718
1719         /* If required, perform hw setup of the bus. */
1720         if (priv->plat->bus_setup)
1721                 priv->plat->bus_setup(priv->ioaddr);
1722
1723         /* Initialize the MAC Core */
1724         priv->hw->mac->core_init(priv->hw, dev->mtu);
1725
1726         ret = priv->hw->mac->rx_ipc(priv->hw);
1727         if (!ret) {
1728                 pr_warn(" RX IPC Checksum Offload disabled\n");
1729                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1730                 priv->hw->rx_csum = 0;
1731         }
1732
1733         /* Enable the MAC Rx/Tx */
1734         stmmac_set_mac(priv->ioaddr, true);
1735
1736         /* Set the HW DMA mode and the COE */
1737         stmmac_dma_operation_mode(priv);
1738
1739         stmmac_mmc_setup(priv);
1740
1741         if (init_ptp) {
1742                 ret = stmmac_init_ptp(priv);
1743                 if (ret && ret != -EOPNOTSUPP)
1744                         pr_warn("%s: failed PTP initialisation\n", __func__);
1745         }
1746
1747 #ifdef CONFIG_DEBUG_FS
1748         if (init_ptp) {
1749                 ret = stmmac_init_fs(dev);
1750                 if (ret < 0)
1751                         pr_warn("%s: failed debugFS registration\n", __func__);
1752         }
1753 #endif
1754         /* Start the ball rolling... */
1755         pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1756         priv->hw->dma->start_tx(priv->ioaddr);
1757         priv->hw->dma->start_rx(priv->ioaddr);
1758
1759         /* Dump DMA/MAC registers */
1760         if (netif_msg_hw(priv)) {
1761                 priv->hw->mac->dump_regs(priv->hw);
1762                 priv->hw->dma->dump_regs(priv->ioaddr);
1763         }
1764         priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1765
1766         if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1767                 priv->rx_riwt = MAX_DMA_RIWT;
1768                 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1769         }
1770
1771         if (priv->pcs && priv->hw->mac->ctrl_ane)
1772                 priv->hw->mac->ctrl_ane(priv->hw, 0);
1773
1774         return 0;
1775 }
1776
1777 /**
1778  *  stmmac_open - open entry point of the driver
1779  *  @dev : pointer to the device structure.
1780  *  Description:
1781  *  This function is the open entry point of the driver.
1782  *  Return value:
1783  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1784  *  file on failure.
1785  */
1786 static int stmmac_open(struct net_device *dev)
1787 {
1788         struct stmmac_priv *priv = netdev_priv(dev);
1789         int ret;
1790
1791         stmmac_check_ether_addr(priv);
1792
1793         if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1794             priv->pcs != STMMAC_PCS_RTBI) {
1795                 ret = stmmac_init_phy(dev);
1796                 if (ret) {
1797                         pr_err("%s: Cannot attach to PHY (error: %d)\n",
1798                                __func__, ret);
1799                         return ret;
1800                 }
1801         }
1802
1803         /* Extra statistics */
1804         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1805         priv->xstats.threshold = tc;
1806
1807         /* Create and initialize the TX/RX descriptors chains. */
1808         priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1809         priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1810         priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1811
1812         ret = alloc_dma_desc_resources(priv);
1813         if (ret < 0) {
1814                 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1815                 goto dma_desc_error;
1816         }
1817
1818         ret = init_dma_desc_rings(dev, GFP_KERNEL);
1819         if (ret < 0) {
1820                 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1821                 goto init_error;
1822         }
1823
1824         ret = stmmac_hw_setup(dev, true);
1825         if (ret < 0) {
1826                 pr_err("%s: Hw setup failed\n", __func__);
1827                 goto init_error;
1828         }
1829
1830         stmmac_init_tx_coalesce(priv);
1831
1832         if (priv->phydev)
1833                 phy_start(priv->phydev);
1834
1835         /* Request the IRQ lines */
1836         ret = request_irq(dev->irq, stmmac_interrupt,
1837                           IRQF_SHARED, dev->name, dev);
1838         if (unlikely(ret < 0)) {
1839                 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1840                        __func__, dev->irq, ret);
1841                 goto init_error;
1842         }
1843
1844         /* Request the Wake IRQ in case of another line is used for WoL */
1845         if (priv->wol_irq != dev->irq) {
1846                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1847                                   IRQF_SHARED, dev->name, dev);
1848                 if (unlikely(ret < 0)) {
1849                         pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1850                                __func__, priv->wol_irq, ret);
1851                         goto wolirq_error;
1852                 }
1853         }
1854
1855         /* Request the IRQ lines */
1856         if (priv->lpi_irq > 0) {
1857                 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1858                                   dev->name, dev);
1859                 if (unlikely(ret < 0)) {
1860                         pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1861                                __func__, priv->lpi_irq, ret);
1862                         goto lpiirq_error;
1863                 }
1864         }
1865
1866         napi_enable(&priv->napi);
1867         netif_start_queue(dev);
1868
1869         return 0;
1870
1871 lpiirq_error:
1872         if (priv->wol_irq != dev->irq)
1873                 free_irq(priv->wol_irq, dev);
1874 wolirq_error:
1875         free_irq(dev->irq, dev);
1876
1877 init_error:
1878         free_dma_desc_resources(priv);
1879 dma_desc_error:
1880         if (priv->phydev)
1881                 phy_disconnect(priv->phydev);
1882
1883         return ret;
1884 }
1885
1886 /**
1887  *  stmmac_release - close entry point of the driver
1888  *  @dev : device pointer.
1889  *  Description:
1890  *  This is the stop entry point of the driver.
1891  */
1892 static int stmmac_release(struct net_device *dev)
1893 {
1894         struct stmmac_priv *priv = netdev_priv(dev);
1895
1896         if (priv->eee_enabled)
1897                 del_timer_sync(&priv->eee_ctrl_timer);
1898
1899         /* Stop and disconnect the PHY */
1900         if (priv->phydev) {
1901                 phy_stop(priv->phydev);
1902                 phy_disconnect(priv->phydev);
1903                 priv->phydev = NULL;
1904         }
1905
1906         netif_stop_queue(dev);
1907
1908         napi_disable(&priv->napi);
1909
1910         del_timer_sync(&priv->txtimer);
1911
1912         /* Free the IRQ lines */
1913         free_irq(dev->irq, dev);
1914         if (priv->wol_irq != dev->irq)
1915                 free_irq(priv->wol_irq, dev);
1916         if (priv->lpi_irq > 0)
1917                 free_irq(priv->lpi_irq, dev);
1918
1919         /* Stop TX/RX DMA and clear the descriptors */
1920         priv->hw->dma->stop_tx(priv->ioaddr);
1921         priv->hw->dma->stop_rx(priv->ioaddr);
1922
1923         /* Release and free the Rx/Tx resources */
1924         free_dma_desc_resources(priv);
1925
1926         /* Disable the MAC Rx/Tx */
1927         stmmac_set_mac(priv->ioaddr, false);
1928
1929         netif_carrier_off(dev);
1930
1931 #ifdef CONFIG_DEBUG_FS
1932         stmmac_exit_fs(dev);
1933 #endif
1934
1935         stmmac_release_ptp(priv);
1936
1937         return 0;
1938 }
1939
1940 /**
1941  *  stmmac_xmit - Tx entry point of the driver
1942  *  @skb : the socket buffer
1943  *  @dev : device pointer
1944  *  Description : this is the tx entry point of the driver.
1945  *  It programs the chain or the ring and supports oversized frames
1946  *  and SG feature.
1947  */
1948 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1949 {
1950         struct stmmac_priv *priv = netdev_priv(dev);
1951         unsigned int txsize = priv->dma_tx_size;
1952         int entry;
1953         int i, csum_insertion = 0, is_jumbo = 0;
1954         int nfrags = skb_shinfo(skb)->nr_frags;
1955         struct dma_desc *desc, *first;
1956         unsigned int nopaged_len = skb_headlen(skb);
1957         unsigned int enh_desc = priv->plat->enh_desc;
1958
1959         spin_lock(&priv->tx_lock);
1960
1961         if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1962                 spin_unlock(&priv->tx_lock);
1963                 if (!netif_queue_stopped(dev)) {
1964                         netif_stop_queue(dev);
1965                         /* This is a hard error, log it. */
1966                         pr_err("%s: Tx Ring full when queue awake\n", __func__);
1967                 }
1968                 return NETDEV_TX_BUSY;
1969         }
1970
1971         if (priv->tx_path_in_lpi_mode)
1972                 stmmac_disable_eee_mode(priv);
1973
1974         entry = priv->cur_tx % txsize;
1975
1976         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1977
1978         if (priv->extend_desc)
1979                 desc = (struct dma_desc *)(priv->dma_etx + entry);
1980         else
1981                 desc = priv->dma_tx + entry;
1982
1983         first = desc;
1984
1985         /* To program the descriptors according to the size of the frame */
1986         if (enh_desc)
1987                 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1988
1989         if (likely(!is_jumbo)) {
1990                 desc->des2 = dma_map_single(priv->device, skb->data,
1991                                             nopaged_len, DMA_TO_DEVICE);
1992                 if (dma_mapping_error(priv->device, desc->des2))
1993                         goto dma_map_err;
1994                 priv->tx_skbuff_dma[entry].buf = desc->des2;
1995                 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1996                                                 csum_insertion, priv->mode);
1997         } else {
1998                 desc = first;
1999                 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
2000                 if (unlikely(entry < 0))
2001                         goto dma_map_err;
2002         }
2003
2004         for (i = 0; i < nfrags; i++) {
2005                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2006                 int len = skb_frag_size(frag);
2007
2008                 priv->tx_skbuff[entry] = NULL;
2009                 entry = (++priv->cur_tx) % txsize;
2010                 if (priv->extend_desc)
2011                         desc = (struct dma_desc *)(priv->dma_etx + entry);
2012                 else
2013                         desc = priv->dma_tx + entry;
2014
2015                 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
2016                                               DMA_TO_DEVICE);
2017                 if (dma_mapping_error(priv->device, desc->des2))
2018                         goto dma_map_err; /* should reuse desc w/o issues */
2019
2020                 priv->tx_skbuff_dma[entry].buf = desc->des2;
2021                 priv->tx_skbuff_dma[entry].map_as_page = true;
2022                 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2023                                                 priv->mode);
2024                 wmb();
2025                 priv->hw->desc->set_tx_owner(desc);
2026                 wmb();
2027         }
2028
2029         priv->tx_skbuff[entry] = skb;
2030
2031         /* Finalize the latest segment. */
2032         priv->hw->desc->close_tx_desc(desc);
2033
2034         wmb();
2035         /* According to the coalesce parameter the IC bit for the latest
2036          * segment could be reset and the timer re-started to invoke the
2037          * stmmac_tx function. This approach takes care about the fragments.
2038          */
2039         priv->tx_count_frames += nfrags + 1;
2040         if (priv->tx_coal_frames > priv->tx_count_frames) {
2041                 priv->hw->desc->clear_tx_ic(desc);
2042                 priv->xstats.tx_reset_ic_bit++;
2043                 mod_timer(&priv->txtimer,
2044                           STMMAC_COAL_TIMER(priv->tx_coal_timer));
2045         } else
2046                 priv->tx_count_frames = 0;
2047
2048         /* To avoid raise condition */
2049         priv->hw->desc->set_tx_owner(first);
2050         wmb();
2051
2052         priv->cur_tx++;
2053
2054         if (netif_msg_pktdata(priv)) {
2055                 pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
2056                         __func__, (priv->cur_tx % txsize),
2057                         (priv->dirty_tx % txsize), entry, first, nfrags);
2058
2059                 if (priv->extend_desc)
2060                         stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
2061                 else
2062                         stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
2063
2064                 pr_debug(">>> frame to be transmitted: ");
2065                 print_pkt(skb->data, skb->len);
2066         }
2067         if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2068                 if (netif_msg_hw(priv))
2069                         pr_debug("%s: stop transmitted packets\n", __func__);
2070                 netif_stop_queue(dev);
2071         }
2072
2073         dev->stats.tx_bytes += skb->len;
2074
2075         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2076                      priv->hwts_tx_en)) {
2077                 /* declare that device is doing timestamping */
2078                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2079                 priv->hw->desc->enable_tx_timestamp(first);
2080         }
2081
2082         if (!priv->hwts_tx_en)
2083                 skb_tx_timestamp(skb);
2084
2085         netdev_sent_queue(dev, skb->len);
2086         priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2087
2088         spin_unlock(&priv->tx_lock);
2089         return NETDEV_TX_OK;
2090
2091 dma_map_err:
2092         spin_unlock(&priv->tx_lock);
2093         dev_err(priv->device, "Tx dma map failed\n");
2094         dev_kfree_skb(skb);
2095         priv->dev->stats.tx_dropped++;
2096         return NETDEV_TX_OK;
2097 }
2098
2099 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2100 {
2101         struct ethhdr *ehdr;
2102         u16 vlanid;
2103
2104         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2105             NETIF_F_HW_VLAN_CTAG_RX &&
2106             !__vlan_get_tag(skb, &vlanid)) {
2107                 /* pop the vlan tag */
2108                 ehdr = (struct ethhdr *)skb->data;
2109                 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2110                 skb_pull(skb, VLAN_HLEN);
2111                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2112         }
2113 }
2114
2115
2116 /**
2117  * stmmac_rx_refill - refill used skb preallocated buffers
2118  * @priv: driver private structure
2119  * Description : this is to reallocate the skb for the reception process
2120  * that is based on zero-copy.
2121  */
2122 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2123 {
2124         unsigned int rxsize = priv->dma_rx_size;
2125         int bfsize = priv->dma_buf_sz;
2126
2127         for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2128                 unsigned int entry = priv->dirty_rx % rxsize;
2129                 struct dma_desc *p;
2130
2131                 if (priv->extend_desc)
2132                         p = (struct dma_desc *)(priv->dma_erx + entry);
2133                 else
2134                         p = priv->dma_rx + entry;
2135
2136                 if (likely(priv->rx_skbuff[entry] == NULL)) {
2137                         struct sk_buff *skb;
2138
2139                         skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2140
2141                         if (unlikely(skb == NULL))
2142                                 break;
2143
2144                         priv->rx_skbuff[entry] = skb;
2145                         priv->rx_skbuff_dma[entry] =
2146                             dma_map_single(priv->device, skb->data, bfsize,
2147                                            DMA_FROM_DEVICE);
2148                         if (dma_mapping_error(priv->device,
2149                                               priv->rx_skbuff_dma[entry])) {
2150                                 dev_err(priv->device, "Rx dma map failed\n");
2151                                 dev_kfree_skb(skb);
2152                                 break;
2153                         }
2154                         p->des2 = priv->rx_skbuff_dma[entry];
2155
2156                         priv->hw->mode->refill_desc3(priv, p);
2157
2158                         if (netif_msg_rx_status(priv))
2159                                 pr_debug("\trefill entry #%d\n", entry);
2160                 }
2161                 wmb();
2162                 priv->hw->desc->set_rx_owner(p);
2163                 wmb();
2164         }
2165 }
2166
2167 /**
2168  * stmmac_rx - manage the receive process
2169  * @priv: driver private structure
2170  * @limit: napi bugget.
2171  * Description :  this the function called by the napi poll method.
2172  * It gets all the frames inside the ring.
2173  */
2174 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2175 {
2176         unsigned int rxsize = priv->dma_rx_size;
2177         unsigned int entry = priv->cur_rx % rxsize;
2178         unsigned int next_entry;
2179         unsigned int count = 0;
2180         int coe = priv->hw->rx_csum;
2181
2182         if (netif_msg_rx_status(priv)) {
2183                 pr_debug("%s: descriptor ring:\n", __func__);
2184                 if (priv->extend_desc)
2185                         stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2186                 else
2187                         stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2188         }
2189         while (count < limit) {
2190                 int status;
2191                 struct dma_desc *p;
2192
2193                 if (priv->extend_desc)
2194                         p = (struct dma_desc *)(priv->dma_erx + entry);
2195                 else
2196                         p = priv->dma_rx + entry;
2197
2198                 if (priv->hw->desc->get_rx_owner(p))
2199                         break;
2200
2201                 count++;
2202
2203                 next_entry = (++priv->cur_rx) % rxsize;
2204                 if (priv->extend_desc)
2205                         prefetch(priv->dma_erx + next_entry);
2206                 else
2207                         prefetch(priv->dma_rx + next_entry);
2208
2209                 /* read the status of the incoming frame */
2210                 status = priv->hw->desc->rx_status(&priv->dev->stats,
2211                                                    &priv->xstats, p);
2212                 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2213                         priv->hw->desc->rx_extended_status(&priv->dev->stats,
2214                                                            &priv->xstats,
2215                                                            priv->dma_erx +
2216                                                            entry);
2217                 if (unlikely(status == discard_frame)) {
2218                         priv->dev->stats.rx_errors++;
2219                         if (priv->hwts_rx_en && !priv->extend_desc) {
2220                                 /* DESC2 & DESC3 will be overwitten by device
2221                                  * with timestamp value, hence reinitialize
2222                                  * them in stmmac_rx_refill() function so that
2223                                  * device can reuse it.
2224                                  */
2225                                 priv->rx_skbuff[entry] = NULL;
2226                                 dma_unmap_single(priv->device,
2227                                                  priv->rx_skbuff_dma[entry],
2228                                                  priv->dma_buf_sz,
2229                                                  DMA_FROM_DEVICE);
2230                         }
2231                 } else {
2232                         struct sk_buff *skb;
2233                         int frame_len;
2234
2235                         frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2236
2237                         /*  check if frame_len fits the preallocated memory */
2238                         if (frame_len > priv->dma_buf_sz) {
2239                                 priv->dev->stats.rx_length_errors++;
2240                                 break;
2241                         }
2242
2243                         /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2244                          * Type frames (LLC/LLC-SNAP)
2245                          */
2246                         if (unlikely(status != llc_snap))
2247                                 frame_len -= ETH_FCS_LEN;
2248
2249                         if (netif_msg_rx_status(priv)) {
2250                                 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2251                                          p, entry, p->des2);
2252                                 if (frame_len > ETH_FRAME_LEN)
2253                                         pr_debug("\tframe size %d, COE: %d\n",
2254                                                  frame_len, status);
2255                         }
2256                         skb = priv->rx_skbuff[entry];
2257                         if (unlikely(!skb)) {
2258                                 pr_err("%s: Inconsistent Rx descriptor chain\n",
2259                                        priv->dev->name);
2260                                 priv->dev->stats.rx_dropped++;
2261                                 break;
2262                         }
2263                         prefetch(skb->data - NET_IP_ALIGN);
2264                         priv->rx_skbuff[entry] = NULL;
2265
2266                         stmmac_get_rx_hwtstamp(priv, entry, skb);
2267
2268                         skb_put(skb, frame_len);
2269                         dma_unmap_single(priv->device,
2270                                          priv->rx_skbuff_dma[entry],
2271                                          priv->dma_buf_sz, DMA_FROM_DEVICE);
2272
2273                         if (netif_msg_pktdata(priv)) {
2274                                 pr_debug("frame received (%dbytes)", frame_len);
2275                                 print_pkt(skb->data, frame_len);
2276                         }
2277
2278                         stmmac_rx_vlan(priv->dev, skb);
2279
2280                         skb->protocol = eth_type_trans(skb, priv->dev);
2281
2282                         if (unlikely(!coe))
2283                                 skb_checksum_none_assert(skb);
2284                         else
2285                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2286
2287                         napi_gro_receive(&priv->napi, skb);
2288
2289                         priv->dev->stats.rx_packets++;
2290                         priv->dev->stats.rx_bytes += frame_len;
2291                 }
2292                 entry = next_entry;
2293         }
2294
2295         stmmac_rx_refill(priv);
2296
2297         priv->xstats.rx_pkt_n += count;
2298
2299         return count;
2300 }
2301
2302 /**
2303  *  stmmac_poll - stmmac poll method (NAPI)
2304  *  @napi : pointer to the napi structure.
2305  *  @budget : maximum number of packets that the current CPU can receive from
2306  *            all interfaces.
2307  *  Description :
2308  *  To look at the incoming frames and clear the tx resources.
2309  */
2310 static int stmmac_poll(struct napi_struct *napi, int budget)
2311 {
2312         struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2313         int work_done = 0;
2314
2315         priv->xstats.napi_poll++;
2316         stmmac_tx_clean(priv);
2317
2318         work_done = stmmac_rx(priv, budget);
2319         if (work_done < budget) {
2320                 napi_complete(napi);
2321                 stmmac_enable_dma_irq(priv);
2322         }
2323         return work_done;
2324 }
2325
2326 /**
2327  *  stmmac_tx_timeout
2328  *  @dev : Pointer to net device structure
2329  *  Description: this function is called when a packet transmission fails to
2330  *   complete within a reasonable time. The driver will mark the error in the
2331  *   netdev structure and arrange for the device to be reset to a sane state
2332  *   in order to transmit a new packet.
2333  */
2334 static void stmmac_tx_timeout(struct net_device *dev)
2335 {
2336         struct stmmac_priv *priv = netdev_priv(dev);
2337
2338         /* Clear Tx resources and restart transmitting again */
2339         stmmac_tx_err(priv);
2340 }
2341
2342 /**
2343  *  stmmac_set_rx_mode - entry point for multicast addressing
2344  *  @dev : pointer to the device structure
2345  *  Description:
2346  *  This function is a driver entry point which gets called by the kernel
2347  *  whenever multicast addresses must be enabled/disabled.
2348  *  Return value:
2349  *  void.
2350  */
2351 static void stmmac_set_rx_mode(struct net_device *dev)
2352 {
2353         struct stmmac_priv *priv = netdev_priv(dev);
2354
2355         priv->hw->mac->set_filter(priv->hw, dev);
2356 }
2357
2358 /**
2359  *  stmmac_change_mtu - entry point to change MTU size for the device.
2360  *  @dev : device pointer.
2361  *  @new_mtu : the new MTU size for the device.
2362  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2363  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2364  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2365  *  Return value:
2366  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2367  *  file on failure.
2368  */
2369 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2370 {
2371         struct stmmac_priv *priv = netdev_priv(dev);
2372         int max_mtu;
2373
2374         if (netif_running(dev)) {
2375                 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2376                 return -EBUSY;
2377         }
2378
2379         if (priv->plat->enh_desc)
2380                 max_mtu = JUMBO_LEN;
2381         else
2382                 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2383
2384         if (priv->plat->maxmtu < max_mtu)
2385                 max_mtu = priv->plat->maxmtu;
2386
2387         if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2388                 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2389                 return -EINVAL;
2390         }
2391
2392         dev->mtu = new_mtu;
2393         netdev_update_features(dev);
2394
2395         return 0;
2396 }
2397
2398 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2399                                              netdev_features_t features)
2400 {
2401         struct stmmac_priv *priv = netdev_priv(dev);
2402
2403         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2404                 features &= ~NETIF_F_RXCSUM;
2405
2406         if (!priv->plat->tx_coe)
2407                 features &= ~NETIF_F_ALL_CSUM;
2408
2409         /* Some GMAC devices have a bugged Jumbo frame support that
2410          * needs to have the Tx COE disabled for oversized frames
2411          * (due to limited buffer sizes). In this case we disable
2412          * the TX csum insertionin the TDES and not use SF.
2413          */
2414         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2415                 features &= ~NETIF_F_ALL_CSUM;
2416
2417         return features;
2418 }
2419
2420 static int stmmac_set_features(struct net_device *netdev,
2421                                netdev_features_t features)
2422 {
2423         struct stmmac_priv *priv = netdev_priv(netdev);
2424
2425         /* Keep the COE Type in case of csum is supporting */
2426         if (features & NETIF_F_RXCSUM)
2427                 priv->hw->rx_csum = priv->plat->rx_coe;
2428         else
2429                 priv->hw->rx_csum = 0;
2430         /* No check needed because rx_coe has been set before and it will be
2431          * fixed in case of issue.
2432          */
2433         priv->hw->mac->rx_ipc(priv->hw);
2434
2435         return 0;
2436 }
2437
2438 /**
2439  *  stmmac_interrupt - main ISR
2440  *  @irq: interrupt number.
2441  *  @dev_id: to pass the net device pointer.
2442  *  Description: this is the main driver interrupt service routine.
2443  *  It can call:
2444  *  o DMA service routine (to manage incoming frame reception and transmission
2445  *    status)
2446  *  o Core interrupts to manage: remote wake-up, management counter, LPI
2447  *    interrupts.
2448  */
2449 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2450 {
2451         struct net_device *dev = (struct net_device *)dev_id;
2452         struct stmmac_priv *priv = netdev_priv(dev);
2453
2454         if (priv->irq_wake)
2455                 pm_wakeup_event(priv->device, 0);
2456
2457         if (unlikely(!dev)) {
2458                 pr_err("%s: invalid dev pointer\n", __func__);
2459                 return IRQ_NONE;
2460         }
2461
2462         /* To handle GMAC own interrupts */
2463         if (priv->plat->has_gmac) {
2464                 int status = priv->hw->mac->host_irq_status(priv->hw,
2465                                                             &priv->xstats);
2466                 if (unlikely(status)) {
2467                         /* For LPI we need to save the tx status */
2468                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2469                                 priv->tx_path_in_lpi_mode = true;
2470                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2471                                 priv->tx_path_in_lpi_mode = false;
2472                 }
2473         }
2474
2475         /* To handle DMA interrupts */
2476         stmmac_dma_interrupt(priv);
2477
2478         return IRQ_HANDLED;
2479 }
2480
2481 #ifdef CONFIG_NET_POLL_CONTROLLER
2482 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2483  * to allow network I/O with interrupts disabled.
2484  */
2485 static void stmmac_poll_controller(struct net_device *dev)
2486 {
2487         disable_irq(dev->irq);
2488         stmmac_interrupt(dev->irq, dev);
2489         enable_irq(dev->irq);
2490 }
2491 #endif
2492
2493 /**
2494  *  stmmac_ioctl - Entry point for the Ioctl
2495  *  @dev: Device pointer.
2496  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2497  *  a proprietary structure used to pass information to the driver.
2498  *  @cmd: IOCTL command
2499  *  Description:
2500  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2501  */
2502 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2503 {
2504         struct stmmac_priv *priv = netdev_priv(dev);
2505         int ret = -EOPNOTSUPP;
2506
2507         if (!netif_running(dev))
2508                 return -EINVAL;
2509
2510         switch (cmd) {
2511         case SIOCGMIIPHY:
2512         case SIOCGMIIREG:
2513         case SIOCSMIIREG:
2514                 if (!priv->phydev)
2515                         return -EINVAL;
2516                 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2517                 break;
2518         case SIOCSHWTSTAMP:
2519                 ret = stmmac_hwtstamp_ioctl(dev, rq);
2520                 break;
2521         default:
2522                 break;
2523         }
2524
2525         return ret;
2526 }
2527
2528 #ifdef CONFIG_DEBUG_FS
2529 static struct dentry *stmmac_fs_dir;
2530
2531 static void sysfs_display_ring(void *head, int size, int extend_desc,
2532                                struct seq_file *seq)
2533 {
2534         int i;
2535         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2536         struct dma_desc *p = (struct dma_desc *)head;
2537
2538         for (i = 0; i < size; i++) {
2539                 u64 x;
2540                 if (extend_desc) {
2541                         x = *(u64 *) ep;
2542                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2543                                    i, (unsigned int)virt_to_phys(ep),
2544                                    (unsigned int)x, (unsigned int)(x >> 32),
2545                                    ep->basic.des2, ep->basic.des3);
2546                         ep++;
2547                 } else {
2548                         x = *(u64 *) p;
2549                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2550                                    i, (unsigned int)virt_to_phys(ep),
2551                                    (unsigned int)x, (unsigned int)(x >> 32),
2552                                    p->des2, p->des3);
2553                         p++;
2554                 }
2555                 seq_printf(seq, "\n");
2556         }
2557 }
2558
2559 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2560 {
2561         struct net_device *dev = seq->private;
2562         struct stmmac_priv *priv = netdev_priv(dev);
2563         unsigned int txsize = priv->dma_tx_size;
2564         unsigned int rxsize = priv->dma_rx_size;
2565
2566         if (priv->extend_desc) {
2567                 seq_printf(seq, "Extended RX descriptor ring:\n");
2568                 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2569                 seq_printf(seq, "Extended TX descriptor ring:\n");
2570                 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2571         } else {
2572                 seq_printf(seq, "RX descriptor ring:\n");
2573                 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2574                 seq_printf(seq, "TX descriptor ring:\n");
2575                 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2576         }
2577
2578         return 0;
2579 }
2580
2581 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2582 {
2583         return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2584 }
2585
2586 static const struct file_operations stmmac_rings_status_fops = {
2587         .owner = THIS_MODULE,
2588         .open = stmmac_sysfs_ring_open,
2589         .read = seq_read,
2590         .llseek = seq_lseek,
2591         .release = single_release,
2592 };
2593
2594 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2595 {
2596         struct net_device *dev = seq->private;
2597         struct stmmac_priv *priv = netdev_priv(dev);
2598
2599         if (!priv->hw_cap_support) {
2600                 seq_printf(seq, "DMA HW features not supported\n");
2601                 return 0;
2602         }
2603
2604         seq_printf(seq, "==============================\n");
2605         seq_printf(seq, "\tDMA HW features\n");
2606         seq_printf(seq, "==============================\n");
2607
2608         seq_printf(seq, "\t10/100 Mbps %s\n",
2609                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2610         seq_printf(seq, "\t1000 Mbps %s\n",
2611                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
2612         seq_printf(seq, "\tHalf duple %s\n",
2613                    (priv->dma_cap.half_duplex) ? "Y" : "N");
2614         seq_printf(seq, "\tHash Filter: %s\n",
2615                    (priv->dma_cap.hash_filter) ? "Y" : "N");
2616         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2617                    (priv->dma_cap.multi_addr) ? "Y" : "N");
2618         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2619                    (priv->dma_cap.pcs) ? "Y" : "N");
2620         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2621                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
2622         seq_printf(seq, "\tPMT Remote wake up: %s\n",
2623                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2624         seq_printf(seq, "\tPMT Magic Frame: %s\n",
2625                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2626         seq_printf(seq, "\tRMON module: %s\n",
2627                    (priv->dma_cap.rmon) ? "Y" : "N");
2628         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2629                    (priv->dma_cap.time_stamp) ? "Y" : "N");
2630         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2631                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
2632         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2633                    (priv->dma_cap.eee) ? "Y" : "N");
2634         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2635         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2636                    (priv->dma_cap.tx_coe) ? "Y" : "N");
2637         seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2638                    (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2639         seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2640                    (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2641         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2642                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2643         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2644                    priv->dma_cap.number_rx_channel);
2645         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2646                    priv->dma_cap.number_tx_channel);
2647         seq_printf(seq, "\tEnhanced descriptors: %s\n",
2648                    (priv->dma_cap.enh_desc) ? "Y" : "N");
2649
2650         return 0;
2651 }
2652
2653 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2654 {
2655         return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2656 }
2657
2658 static const struct file_operations stmmac_dma_cap_fops = {
2659         .owner = THIS_MODULE,
2660         .open = stmmac_sysfs_dma_cap_open,
2661         .read = seq_read,
2662         .llseek = seq_lseek,
2663         .release = single_release,
2664 };
2665
2666 static int stmmac_init_fs(struct net_device *dev)
2667 {
2668         struct stmmac_priv *priv = netdev_priv(dev);
2669
2670         /* Create per netdev entries */
2671         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
2672
2673         if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
2674                 pr_err("ERROR %s/%s, debugfs create directory failed\n",
2675                        STMMAC_RESOURCE_NAME, dev->name);
2676
2677                 return -ENOMEM;
2678         }
2679
2680         /* Entry to report DMA RX/TX rings */
2681         priv->dbgfs_rings_status =
2682                 debugfs_create_file("descriptors_status", S_IRUGO,
2683                                     priv->dbgfs_dir, dev,
2684                                     &stmmac_rings_status_fops);
2685
2686         if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
2687                 pr_info("ERROR creating stmmac ring debugfs file\n");
2688                 debugfs_remove_recursive(priv->dbgfs_dir);
2689
2690                 return -ENOMEM;
2691         }
2692
2693         /* Entry to report the DMA HW features */
2694         priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
2695                                             priv->dbgfs_dir,
2696                                             dev, &stmmac_dma_cap_fops);
2697
2698         if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
2699                 pr_info("ERROR creating stmmac MMC debugfs file\n");
2700                 debugfs_remove_recursive(priv->dbgfs_dir);
2701
2702                 return -ENOMEM;
2703         }
2704
2705         return 0;
2706 }
2707
2708 static void stmmac_exit_fs(struct net_device *dev)
2709 {
2710         struct stmmac_priv *priv = netdev_priv(dev);
2711
2712         debugfs_remove_recursive(priv->dbgfs_dir);
2713 }
2714 #endif /* CONFIG_DEBUG_FS */
2715
2716 static const struct net_device_ops stmmac_netdev_ops = {
2717         .ndo_open = stmmac_open,
2718         .ndo_start_xmit = stmmac_xmit,
2719         .ndo_stop = stmmac_release,
2720         .ndo_change_mtu = stmmac_change_mtu,
2721         .ndo_fix_features = stmmac_fix_features,
2722         .ndo_set_features = stmmac_set_features,
2723         .ndo_set_rx_mode = stmmac_set_rx_mode,
2724         .ndo_tx_timeout = stmmac_tx_timeout,
2725         .ndo_do_ioctl = stmmac_ioctl,
2726 #ifdef CONFIG_NET_POLL_CONTROLLER
2727         .ndo_poll_controller = stmmac_poll_controller,
2728 #endif
2729         .ndo_set_mac_address = eth_mac_addr,
2730 };
2731
2732 /**
2733  *  stmmac_hw_init - Init the MAC device
2734  *  @priv: driver private structure
2735  *  Description: this function is to configure the MAC device according to
2736  *  some platform parameters or the HW capability register. It prepares the
2737  *  driver to use either ring or chain modes and to setup either enhanced or
2738  *  normal descriptors.
2739  */
2740 static int stmmac_hw_init(struct stmmac_priv *priv)
2741 {
2742         struct mac_device_info *mac;
2743
2744         /* Identify the MAC HW device */
2745         if (priv->plat->has_gmac) {
2746                 priv->dev->priv_flags |= IFF_UNICAST_FLT;
2747                 mac = dwmac1000_setup(priv->ioaddr,
2748                                       priv->plat->multicast_filter_bins,
2749                                       priv->plat->unicast_filter_entries);
2750         } else {
2751                 mac = dwmac100_setup(priv->ioaddr);
2752         }
2753         if (!mac)
2754                 return -ENOMEM;
2755
2756         priv->hw = mac;
2757
2758         /* Get and dump the chip ID */
2759         priv->synopsys_id = stmmac_get_synopsys_id(priv);
2760
2761         /* To use the chained or ring mode */
2762         if (chain_mode) {
2763                 priv->hw->mode = &chain_mode_ops;
2764                 pr_info(" Chain mode enabled\n");
2765                 priv->mode = STMMAC_CHAIN_MODE;
2766         } else {
2767                 priv->hw->mode = &ring_mode_ops;
2768                 pr_info(" Ring mode enabled\n");
2769                 priv->mode = STMMAC_RING_MODE;
2770         }
2771
2772         /* Get the HW capability (new GMAC newer than 3.50a) */
2773         priv->hw_cap_support = stmmac_get_hw_features(priv);
2774         if (priv->hw_cap_support) {
2775                 pr_info(" DMA HW capability register supported");
2776
2777                 /* We can override some gmac/dma configuration fields: e.g.
2778                  * enh_desc, tx_coe (e.g. that are passed through the
2779                  * platform) with the values from the HW capability
2780                  * register (if supported).
2781                  */
2782                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
2783                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2784
2785                 /* TXCOE doesn't work in thresh DMA mode */
2786                 if (priv->plat->force_thresh_dma_mode)
2787                         priv->plat->tx_coe = 0;
2788                 else
2789                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
2790
2791                 if (priv->dma_cap.rx_coe_type2)
2792                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2793                 else if (priv->dma_cap.rx_coe_type1)
2794                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2795
2796         } else
2797                 pr_info(" No HW DMA feature register supported");
2798
2799         /* To use alternate (extended) or normal descriptor structures */
2800         stmmac_selec_desc_mode(priv);
2801
2802         if (priv->plat->rx_coe) {
2803                 priv->hw->rx_csum = priv->plat->rx_coe;
2804                 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2805                         priv->plat->rx_coe);
2806         }
2807         if (priv->plat->tx_coe)
2808                 pr_info(" TX Checksum insertion supported\n");
2809
2810         if (priv->plat->pmt) {
2811                 pr_info(" Wake-Up On Lan supported\n");
2812                 device_set_wakeup_capable(priv->device, 1);
2813         }
2814
2815         return 0;
2816 }
2817
2818 /**
2819  * stmmac_dvr_probe
2820  * @device: device pointer
2821  * @plat_dat: platform data pointer
2822  * @res: stmmac resource pointer
2823  * Description: this is the main probe function used to
2824  * call the alloc_etherdev, allocate the priv structure.
2825  * Return:
2826  * returns 0 on success, otherwise errno.
2827  */
2828 int stmmac_dvr_probe(struct device *device,
2829                      struct plat_stmmacenet_data *plat_dat,
2830                      struct stmmac_resources *res)
2831 {
2832         int ret = 0;
2833         struct net_device *ndev = NULL;
2834         struct stmmac_priv *priv;
2835
2836         ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2837         if (!ndev)
2838                 return -ENOMEM;
2839
2840         SET_NETDEV_DEV(ndev, device);
2841
2842         priv = netdev_priv(ndev);
2843         priv->device = device;
2844         priv->dev = ndev;
2845
2846         stmmac_set_ethtool_ops(ndev);
2847         priv->pause = pause;
2848         priv->plat = plat_dat;
2849         priv->ioaddr = res->addr;
2850         priv->dev->base_addr = (unsigned long)res->addr;
2851
2852         priv->dev->irq = res->irq;
2853         priv->wol_irq = res->wol_irq;
2854         priv->lpi_irq = res->lpi_irq;
2855
2856         if (res->mac)
2857                 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
2858
2859         dev_set_drvdata(device, priv->dev);
2860
2861         /* Verify driver arguments */
2862         stmmac_verify_args();
2863
2864         /* Override with kernel parameters if supplied XXX CRS XXX
2865          * this needs to have multiple instances
2866          */
2867         if ((phyaddr >= 0) && (phyaddr <= 31))
2868                 priv->plat->phy_addr = phyaddr;
2869
2870         priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2871         if (IS_ERR(priv->stmmac_clk)) {
2872                 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2873                          __func__);
2874                 /* If failed to obtain stmmac_clk and specific clk_csr value
2875                  * is NOT passed from the platform, probe fail.
2876                  */
2877                 if (!priv->plat->clk_csr) {
2878                         ret = PTR_ERR(priv->stmmac_clk);
2879                         goto error_clk_get;
2880                 } else {
2881                         priv->stmmac_clk = NULL;
2882                 }
2883         }
2884         clk_prepare_enable(priv->stmmac_clk);
2885
2886         priv->pclk = devm_clk_get(priv->device, "pclk");
2887         if (IS_ERR(priv->pclk)) {
2888                 if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
2889                         ret = -EPROBE_DEFER;
2890                         goto error_pclk_get;
2891                 }
2892                 priv->pclk = NULL;
2893         }
2894         clk_prepare_enable(priv->pclk);
2895
2896         priv->stmmac_rst = devm_reset_control_get(priv->device,
2897                                                   STMMAC_RESOURCE_NAME);
2898         if (IS_ERR(priv->stmmac_rst)) {
2899                 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2900                         ret = -EPROBE_DEFER;
2901                         goto error_hw_init;
2902                 }
2903                 dev_info(priv->device, "no reset control found\n");
2904                 priv->stmmac_rst = NULL;
2905         }
2906         if (priv->stmmac_rst)
2907                 reset_control_deassert(priv->stmmac_rst);
2908
2909         /* Init MAC and get the capabilities */
2910         ret = stmmac_hw_init(priv);
2911         if (ret)
2912                 goto error_hw_init;
2913
2914         ndev->netdev_ops = &stmmac_netdev_ops;
2915
2916         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2917                             NETIF_F_RXCSUM;
2918         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2919         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2920 #ifdef STMMAC_VLAN_TAG_USED
2921         /* Both mac100 and gmac support receive VLAN tag detection */
2922         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2923 #endif
2924         priv->msg_enable = netif_msg_init(debug, default_msg_level);
2925
2926         if (flow_ctrl)
2927                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
2928
2929         /* Rx Watchdog is available in the COREs newer than the 3.40.
2930          * In some case, for example on bugged HW this feature
2931          * has to be disable and this can be done by passing the
2932          * riwt_off field from the platform.
2933          */
2934         if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2935                 priv->use_riwt = 1;
2936                 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2937         }
2938
2939         netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2940
2941         spin_lock_init(&priv->lock);
2942         spin_lock_init(&priv->tx_lock);
2943
2944         ret = register_netdev(ndev);
2945         if (ret) {
2946                 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2947                 goto error_netdev_register;
2948         }
2949
2950         /* If a specific clk_csr value is passed from the platform
2951          * this means that the CSR Clock Range selection cannot be
2952          * changed at run-time and it is fixed. Viceversa the driver'll try to
2953          * set the MDC clock dynamically according to the csr actual
2954          * clock input.
2955          */
2956         if (!priv->plat->clk_csr)
2957                 stmmac_clk_csr_set(priv);
2958         else
2959                 priv->clk_csr = priv->plat->clk_csr;
2960
2961         stmmac_check_pcs_mode(priv);
2962
2963         if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2964             priv->pcs != STMMAC_PCS_RTBI) {
2965                 /* MDIO bus Registration */
2966                 ret = stmmac_mdio_register(ndev);
2967                 if (ret < 0) {
2968                         pr_debug("%s: MDIO bus (id: %d) registration failed",
2969                                  __func__, priv->plat->bus_id);
2970                         goto error_mdio_register;
2971                 }
2972         }
2973
2974         return 0;
2975
2976 error_mdio_register:
2977         unregister_netdev(ndev);
2978 error_netdev_register:
2979         netif_napi_del(&priv->napi);
2980 error_hw_init:
2981         clk_disable_unprepare(priv->pclk);
2982 error_pclk_get:
2983         clk_disable_unprepare(priv->stmmac_clk);
2984 error_clk_get:
2985         free_netdev(ndev);
2986
2987         return ret;
2988 }
2989 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
2990
2991 /**
2992  * stmmac_dvr_remove
2993  * @ndev: net device pointer
2994  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2995  * changes the link status, releases the DMA descriptor rings.
2996  */
2997 int stmmac_dvr_remove(struct net_device *ndev)
2998 {
2999         struct stmmac_priv *priv = netdev_priv(ndev);
3000
3001         pr_info("%s:\n\tremoving driver", __func__);
3002
3003         priv->hw->dma->stop_rx(priv->ioaddr);
3004         priv->hw->dma->stop_tx(priv->ioaddr);
3005
3006         stmmac_set_mac(priv->ioaddr, false);
3007         netif_carrier_off(ndev);
3008         unregister_netdev(ndev);
3009         if (priv->stmmac_rst)
3010                 reset_control_assert(priv->stmmac_rst);
3011         clk_disable_unprepare(priv->pclk);
3012         clk_disable_unprepare(priv->stmmac_clk);
3013         if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
3014             priv->pcs != STMMAC_PCS_RTBI)
3015                 stmmac_mdio_unregister(ndev);
3016         free_netdev(ndev);
3017
3018         return 0;
3019 }
3020 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3021
3022 /**
3023  * stmmac_suspend - suspend callback
3024  * @ndev: net device pointer
3025  * Description: this is the function to suspend the device and it is called
3026  * by the platform driver to stop the network queue, release the resources,
3027  * program the PMT register (for WoL), clean and release driver resources.
3028  */
3029 int stmmac_suspend(struct net_device *ndev)
3030 {
3031         struct stmmac_priv *priv = netdev_priv(ndev);
3032         unsigned long flags;
3033
3034         if (!ndev || !netif_running(ndev))
3035                 return 0;
3036
3037         if (priv->phydev)
3038                 phy_stop(priv->phydev);
3039
3040         netif_device_detach(ndev);
3041         netif_stop_queue(ndev);
3042
3043         napi_disable(&priv->napi);
3044
3045         spin_lock_irqsave(&priv->lock, flags);
3046
3047         /* Stop TX/RX DMA */
3048         priv->hw->dma->stop_tx(priv->ioaddr);
3049         priv->hw->dma->stop_rx(priv->ioaddr);
3050
3051         /* Enable Power down mode by programming the PMT regs */
3052         if (device_may_wakeup(priv->device)) {
3053                 priv->hw->mac->pmt(priv->hw, priv->wolopts);
3054                 priv->irq_wake = 1;
3055         } else {
3056                 stmmac_set_mac(priv->ioaddr, false);
3057                 pinctrl_pm_select_sleep_state(priv->device);
3058                 /* Disable clock in case of PWM is off */
3059                 clk_disable(priv->pclk);
3060                 clk_disable(priv->stmmac_clk);
3061         }
3062         spin_unlock_irqrestore(&priv->lock, flags);
3063
3064         priv->oldlink = 0;
3065         priv->speed = 0;
3066         priv->oldduplex = -1;
3067         return 0;
3068 }
3069 EXPORT_SYMBOL_GPL(stmmac_suspend);
3070
3071 /**
3072  * stmmac_resume - resume callback
3073  * @ndev: net device pointer
3074  * Description: when resume this function is invoked to setup the DMA and CORE
3075  * in a usable state.
3076  */
3077 int stmmac_resume(struct net_device *ndev)
3078 {
3079         struct stmmac_priv *priv = netdev_priv(ndev);
3080         unsigned long flags;
3081
3082         if (!netif_running(ndev))
3083                 return 0;
3084
3085         /* Power Down bit, into the PM register, is cleared
3086          * automatically as soon as a magic packet or a Wake-up frame
3087          * is received. Anyway, it's better to manually clear
3088          * this bit because it can generate problems while resuming
3089          * from another devices (e.g. serial console).
3090          */
3091         if (device_may_wakeup(priv->device)) {
3092                 spin_lock_irqsave(&priv->lock, flags);
3093                 priv->hw->mac->pmt(priv->hw, 0);
3094                 spin_unlock_irqrestore(&priv->lock, flags);
3095                 priv->irq_wake = 0;
3096         } else {
3097                 pinctrl_pm_select_default_state(priv->device);
3098                 /* enable the clk prevously disabled */
3099                 clk_enable(priv->stmmac_clk);
3100                 clk_enable(priv->pclk);
3101                 /* reset the phy so that it's ready */
3102                 if (priv->mii)
3103                         stmmac_mdio_reset(priv->mii);
3104         }
3105
3106         netif_device_attach(ndev);
3107
3108         spin_lock_irqsave(&priv->lock, flags);
3109
3110         priv->cur_rx = 0;
3111         priv->dirty_rx = 0;
3112         priv->dirty_tx = 0;
3113         priv->cur_tx = 0;
3114         stmmac_clear_descriptors(priv);
3115
3116         stmmac_hw_setup(ndev, false);
3117         stmmac_init_tx_coalesce(priv);
3118         stmmac_set_rx_mode(ndev);
3119
3120         napi_enable(&priv->napi);
3121
3122         netif_start_queue(ndev);
3123
3124         spin_unlock_irqrestore(&priv->lock, flags);
3125
3126         if (priv->phydev)
3127                 phy_start(priv->phydev);
3128
3129         return 0;
3130 }
3131 EXPORT_SYMBOL_GPL(stmmac_resume);
3132
3133 #ifndef MODULE
3134 static int __init stmmac_cmdline_opt(char *str)
3135 {
3136         char *opt;
3137
3138         if (!str || !*str)
3139                 return -EINVAL;
3140         while ((opt = strsep(&str, ",")) != NULL) {
3141                 if (!strncmp(opt, "debug:", 6)) {
3142                         if (kstrtoint(opt + 6, 0, &debug))
3143                                 goto err;
3144                 } else if (!strncmp(opt, "phyaddr:", 8)) {
3145                         if (kstrtoint(opt + 8, 0, &phyaddr))
3146                                 goto err;
3147                 } else if (!strncmp(opt, "dma_txsize:", 11)) {
3148                         if (kstrtoint(opt + 11, 0, &dma_txsize))
3149                                 goto err;
3150                 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
3151                         if (kstrtoint(opt + 11, 0, &dma_rxsize))
3152                                 goto err;
3153                 } else if (!strncmp(opt, "buf_sz:", 7)) {
3154                         if (kstrtoint(opt + 7, 0, &buf_sz))
3155                                 goto err;
3156                 } else if (!strncmp(opt, "tc:", 3)) {
3157                         if (kstrtoint(opt + 3, 0, &tc))
3158                                 goto err;
3159                 } else if (!strncmp(opt, "watchdog:", 9)) {
3160                         if (kstrtoint(opt + 9, 0, &watchdog))
3161                                 goto err;
3162                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3163                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
3164                                 goto err;
3165                 } else if (!strncmp(opt, "pause:", 6)) {
3166                         if (kstrtoint(opt + 6, 0, &pause))
3167                                 goto err;
3168                 } else if (!strncmp(opt, "eee_timer:", 10)) {
3169                         if (kstrtoint(opt + 10, 0, &eee_timer))
3170                                 goto err;
3171                 } else if (!strncmp(opt, "chain_mode:", 11)) {
3172                         if (kstrtoint(opt + 11, 0, &chain_mode))
3173                                 goto err;
3174                 }
3175         }
3176         return 0;
3177
3178 err:
3179         pr_err("%s: ERROR broken module parameter conversion", __func__);
3180         return -EINVAL;
3181 }
3182
3183 __setup("stmmaceth=", stmmac_cmdline_opt);
3184 #endif /* MODULE */
3185
3186 static int __init stmmac_init(void)
3187 {
3188 #ifdef CONFIG_DEBUG_FS
3189         /* Create debugfs main directory if it doesn't exist yet */
3190         if (!stmmac_fs_dir) {
3191                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3192
3193                 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3194                         pr_err("ERROR %s, debugfs create directory failed\n",
3195                                STMMAC_RESOURCE_NAME);
3196
3197                         return -ENOMEM;
3198                 }
3199         }
3200 #endif
3201
3202         return 0;
3203 }
3204
3205 static void __exit stmmac_exit(void)
3206 {
3207 #ifdef CONFIG_DEBUG_FS
3208         debugfs_remove_recursive(stmmac_fs_dir);
3209 #endif
3210 }
3211
3212 module_init(stmmac_init)
3213 module_exit(stmmac_exit)
3214
3215 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3216 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3217 MODULE_LICENSE("GPL");