Merge branch 'wr-cleanup' into k.o/for-4.4
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67
68 #include "cxgb4.h"
69 #include "t4_regs.h"
70 #include "t4_values.h"
71 #include "t4_msg.h"
72 #include "t4fw_api.h"
73 #include "t4fw_version.h"
74 #include "cxgb4_dcb.h"
75 #include "cxgb4_debugfs.h"
76 #include "clip_tbl.h"
77 #include "l2t.h"
78
79 char cxgb4_driver_name[] = KBUILD_MODNAME;
80
81 #ifdef DRV_VERSION
82 #undef DRV_VERSION
83 #endif
84 #define DRV_VERSION "2.0.0-ko"
85 const char cxgb4_driver_version[] = DRV_VERSION;
86 #define DRV_DESC "Chelsio T4/T5 Network Driver"
87
88 /* Host shadow copy of ingress filter entry.  This is in host native format
89  * and doesn't match the ordering or bit order, etc. of the hardware of the
90  * firmware command.  The use of bit-field structure elements is purely to
91  * remind ourselves of the field size limitations and save memory in the case
92  * where the filter table is large.
93  */
94 struct filter_entry {
95         /* Administrative fields for filter.
96          */
97         u32 valid:1;            /* filter allocated and valid */
98         u32 locked:1;           /* filter is administratively locked */
99
100         u32 pending:1;          /* filter action is pending firmware reply */
101         u32 smtidx:8;           /* Source MAC Table index for smac */
102         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
103
104         /* The filter itself.  Most of this is a straight copy of information
105          * provided by the extended ioctl().  Some fields are translated to
106          * internal forms -- for instance the Ingress Queue ID passed in from
107          * the ioctl() is translated into the Absolute Ingress Queue ID.
108          */
109         struct ch_filter_specification fs;
110 };
111
112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115
116 /* Macros needed to support the PCI Device ID Table ...
117  */
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
119         static const struct pci_device_id cxgb4_pci_tbl[] = {
120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
121
122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123  * called for both.
124  */
125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126
127 #define CH_PCI_ID_TABLE_ENTRY(devid) \
128                 {PCI_VDEVICE(CHELSIO, (devid)), 4}
129
130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131                 { 0, } \
132         }
133
134 #include "t4_pci_id_tbl.h"
135
136 #define FW4_FNAME "cxgb4/t4fw.bin"
137 #define FW5_FNAME "cxgb4/t5fw.bin"
138 #define FW6_FNAME "cxgb4/t6fw.bin"
139 #define FW4_CFNAME "cxgb4/t4-config.txt"
140 #define FW5_CFNAME "cxgb4/t5-config.txt"
141 #define FW6_CFNAME "cxgb4/t6-config.txt"
142 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
143 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
144 #define PHY_AQ1202_DEVICEID 0x4409
145 #define PHY_BCM84834_DEVICEID 0x4486
146
147 MODULE_DESCRIPTION(DRV_DESC);
148 MODULE_AUTHOR("Chelsio Communications");
149 MODULE_LICENSE("Dual BSD/GPL");
150 MODULE_VERSION(DRV_VERSION);
151 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
152 MODULE_FIRMWARE(FW4_FNAME);
153 MODULE_FIRMWARE(FW5_FNAME);
154
155 /*
156  * Normally we're willing to become the firmware's Master PF but will be happy
157  * if another PF has already become the Master and initialized the adapter.
158  * Setting "force_init" will cause this driver to forcibly establish itself as
159  * the Master PF and initialize the adapter.
160  */
161 static uint force_init;
162
163 module_param(force_init, uint, 0644);
164 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
165
166 /*
167  * Normally if the firmware we connect to has Configuration File support, we
168  * use that and only fall back to the old Driver-based initialization if the
169  * Configuration File fails for some reason.  If force_old_init is set, then
170  * we'll always use the old Driver-based initialization sequence.
171  */
172 static uint force_old_init;
173
174 module_param(force_old_init, uint, 0644);
175 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
176                  " parameter");
177
178 static int dflt_msg_enable = DFLT_MSG_ENABLE;
179
180 module_param(dflt_msg_enable, int, 0644);
181 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
182
183 /*
184  * The driver uses the best interrupt scheme available on a platform in the
185  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
186  * of these schemes the driver may consider as follows:
187  *
188  * msi = 2: choose from among all three options
189  * msi = 1: only consider MSI and INTx interrupts
190  * msi = 0: force INTx interrupts
191  */
192 static int msi = 2;
193
194 module_param(msi, int, 0644);
195 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
196
197 /*
198  * Queue interrupt hold-off timer values.  Queues default to the first of these
199  * upon creation.
200  */
201 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
202
203 module_param_array(intr_holdoff, uint, NULL, 0644);
204 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
205                  "0..4 in microseconds, deprecated parameter");
206
207 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
208
209 module_param_array(intr_cnt, uint, NULL, 0644);
210 MODULE_PARM_DESC(intr_cnt,
211                  "thresholds 1..3 for queue interrupt packet counters, "
212                  "deprecated parameter");
213
214 /*
215  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
216  * offset by 2 bytes in order to have the IP headers line up on 4-byte
217  * boundaries.  This is a requirement for many architectures which will throw
218  * a machine check fault if an attempt is made to access one of the 4-byte IP
219  * header fields on a non-4-byte boundary.  And it's a major performance issue
220  * even on some architectures which allow it like some implementations of the
221  * x86 ISA.  However, some architectures don't mind this and for some very
222  * edge-case performance sensitive applications (like forwarding large volumes
223  * of small packets), setting this DMA offset to 0 will decrease the number of
224  * PCI-E Bus transfers enough to measurably affect performance.
225  */
226 static int rx_dma_offset = 2;
227
228 static bool vf_acls;
229
230 #ifdef CONFIG_PCI_IOV
231 module_param(vf_acls, bool, 0644);
232 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
233                  "deprecated parameter");
234
235 /* Configure the number of PCI-E Virtual Function which are to be instantiated
236  * on SR-IOV Capable Physical Functions.
237  */
238 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
239
240 module_param_array(num_vf, uint, NULL, 0644);
241 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
242 #endif
243
244 /* TX Queue select used to determine what algorithm to use for selecting TX
245  * queue. Select between the kernel provided function (select_queue=0) or user
246  * cxgb_select_queue function (select_queue=1)
247  *
248  * Default: select_queue=0
249  */
250 static int select_queue;
251 module_param(select_queue, int, 0644);
252 MODULE_PARM_DESC(select_queue,
253                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
254
255 static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
256
257 module_param(tp_vlan_pri_map, uint, 0644);
258 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
259                  "deprecated parameter");
260
261 static struct dentry *cxgb4_debugfs_root;
262
263 static LIST_HEAD(adapter_list);
264 static DEFINE_MUTEX(uld_mutex);
265 /* Adapter list to be accessed from atomic context */
266 static LIST_HEAD(adap_rcu_list);
267 static DEFINE_SPINLOCK(adap_rcu_lock);
268 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
269 static const char *uld_str[] = { "RDMA", "iSCSI" };
270
271 static void link_report(struct net_device *dev)
272 {
273         if (!netif_carrier_ok(dev))
274                 netdev_info(dev, "link down\n");
275         else {
276                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
277
278                 const char *s = "10Mbps";
279                 const struct port_info *p = netdev_priv(dev);
280
281                 switch (p->link_cfg.speed) {
282                 case 10000:
283                         s = "10Gbps";
284                         break;
285                 case 1000:
286                         s = "1000Mbps";
287                         break;
288                 case 100:
289                         s = "100Mbps";
290                         break;
291                 case 40000:
292                         s = "40Gbps";
293                         break;
294                 }
295
296                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
297                             fc[p->link_cfg.fc]);
298         }
299 }
300
301 #ifdef CONFIG_CHELSIO_T4_DCB
302 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
303 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
304 {
305         struct port_info *pi = netdev_priv(dev);
306         struct adapter *adap = pi->adapter;
307         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
308         int i;
309
310         /* We use a simple mapping of Port TX Queue Index to DCB
311          * Priority when we're enabling DCB.
312          */
313         for (i = 0; i < pi->nqsets; i++, txq++) {
314                 u32 name, value;
315                 int err;
316
317                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
318                         FW_PARAMS_PARAM_X_V(
319                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
320                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
321                 value = enable ? i : 0xffffffff;
322
323                 /* Since we can be called while atomic (from "interrupt
324                  * level") we need to issue the Set Parameters Commannd
325                  * without sleeping (timeout < 0).
326                  */
327                 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
328                                             &name, &value,
329                                             -FW_CMD_MAX_TIMEOUT);
330
331                 if (err)
332                         dev_err(adap->pdev_dev,
333                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
334                                 enable ? "set" : "unset", pi->port_id, i, -err);
335                 else
336                         txq->dcb_prio = value;
337         }
338 }
339 #endif /* CONFIG_CHELSIO_T4_DCB */
340
341 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
342 {
343         struct net_device *dev = adapter->port[port_id];
344
345         /* Skip changes from disabled ports. */
346         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
347                 if (link_stat)
348                         netif_carrier_on(dev);
349                 else {
350 #ifdef CONFIG_CHELSIO_T4_DCB
351                         cxgb4_dcb_state_init(dev);
352                         dcb_tx_queue_prio_enable(dev, false);
353 #endif /* CONFIG_CHELSIO_T4_DCB */
354                         netif_carrier_off(dev);
355                 }
356
357                 link_report(dev);
358         }
359 }
360
361 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
362 {
363         static const char *mod_str[] = {
364                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
365         };
366
367         const struct net_device *dev = adap->port[port_id];
368         const struct port_info *pi = netdev_priv(dev);
369
370         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
371                 netdev_info(dev, "port module unplugged\n");
372         else if (pi->mod_type < ARRAY_SIZE(mod_str))
373                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
374 }
375
376 /*
377  * Configure the exact and hash address filters to handle a port's multicast
378  * and secondary unicast MAC addresses.
379  */
380 static int set_addr_filters(const struct net_device *dev, bool sleep)
381 {
382         u64 mhash = 0;
383         u64 uhash = 0;
384         bool free = true;
385         u16 filt_idx[7];
386         const u8 *addr[7];
387         int ret, naddr = 0;
388         const struct netdev_hw_addr *ha;
389         int uc_cnt = netdev_uc_count(dev);
390         int mc_cnt = netdev_mc_count(dev);
391         const struct port_info *pi = netdev_priv(dev);
392         unsigned int mb = pi->adapter->pf;
393
394         /* first do the secondary unicast addresses */
395         netdev_for_each_uc_addr(ha, dev) {
396                 addr[naddr++] = ha->addr;
397                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
398                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
399                                         naddr, addr, filt_idx, &uhash, sleep);
400                         if (ret < 0)
401                                 return ret;
402
403                         free = false;
404                         naddr = 0;
405                 }
406         }
407
408         /* next set up the multicast addresses */
409         netdev_for_each_mc_addr(ha, dev) {
410                 addr[naddr++] = ha->addr;
411                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
412                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
413                                         naddr, addr, filt_idx, &mhash, sleep);
414                         if (ret < 0)
415                                 return ret;
416
417                         free = false;
418                         naddr = 0;
419                 }
420         }
421
422         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
423                                 uhash | mhash, sleep);
424 }
425
426 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
427 module_param(dbfifo_int_thresh, int, 0644);
428 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
429
430 /*
431  * usecs to sleep while draining the dbfifo
432  */
433 static int dbfifo_drain_delay = 1000;
434 module_param(dbfifo_drain_delay, int, 0644);
435 MODULE_PARM_DESC(dbfifo_drain_delay,
436                  "usecs to sleep while draining the dbfifo");
437
438 /*
439  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
440  * If @mtu is -1 it is left unchanged.
441  */
442 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
443 {
444         int ret;
445         struct port_info *pi = netdev_priv(dev);
446
447         ret = set_addr_filters(dev, sleep_ok);
448         if (ret == 0)
449                 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, mtu,
450                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
451                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
452                                     sleep_ok);
453         return ret;
454 }
455
456 /**
457  *      link_start - enable a port
458  *      @dev: the port to enable
459  *
460  *      Performs the MAC and PHY actions needed to enable a port.
461  */
462 static int link_start(struct net_device *dev)
463 {
464         int ret;
465         struct port_info *pi = netdev_priv(dev);
466         unsigned int mb = pi->adapter->pf;
467
468         /*
469          * We do not set address filters and promiscuity here, the stack does
470          * that step explicitly.
471          */
472         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
473                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
474         if (ret == 0) {
475                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
476                                     pi->xact_addr_filt, dev->dev_addr, true,
477                                     true);
478                 if (ret >= 0) {
479                         pi->xact_addr_filt = ret;
480                         ret = 0;
481                 }
482         }
483         if (ret == 0)
484                 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
485                                     &pi->link_cfg);
486         if (ret == 0) {
487                 local_bh_disable();
488                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
489                                           true, CXGB4_DCB_ENABLED);
490                 local_bh_enable();
491         }
492
493         return ret;
494 }
495
496 int cxgb4_dcb_enabled(const struct net_device *dev)
497 {
498 #ifdef CONFIG_CHELSIO_T4_DCB
499         struct port_info *pi = netdev_priv(dev);
500
501         if (!pi->dcb.enabled)
502                 return 0;
503
504         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
505                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
506 #else
507         return 0;
508 #endif
509 }
510 EXPORT_SYMBOL(cxgb4_dcb_enabled);
511
512 #ifdef CONFIG_CHELSIO_T4_DCB
513 /* Handle a Data Center Bridging update message from the firmware. */
514 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
515 {
516         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
517         struct net_device *dev = adap->port[port];
518         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
519         int new_dcb_enabled;
520
521         cxgb4_dcb_handle_fw_update(adap, pcmd);
522         new_dcb_enabled = cxgb4_dcb_enabled(dev);
523
524         /* If the DCB has become enabled or disabled on the port then we're
525          * going to need to set up/tear down DCB Priority parameters for the
526          * TX Queues associated with the port.
527          */
528         if (new_dcb_enabled != old_dcb_enabled)
529                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
530 }
531 #endif /* CONFIG_CHELSIO_T4_DCB */
532
533 /* Clear a filter and release any of its resources that we own.  This also
534  * clears the filter's "pending" status.
535  */
536 static void clear_filter(struct adapter *adap, struct filter_entry *f)
537 {
538         /* If the new or old filter have loopback rewriteing rules then we'll
539          * need to free any existing Layer Two Table (L2T) entries of the old
540          * filter rule.  The firmware will handle freeing up any Source MAC
541          * Table (SMT) entries used for rewriting Source MAC Addresses in
542          * loopback rules.
543          */
544         if (f->l2t)
545                 cxgb4_l2t_release(f->l2t);
546
547         /* The zeroing of the filter rule below clears the filter valid,
548          * pending, locked flags, l2t pointer, etc. so it's all we need for
549          * this operation.
550          */
551         memset(f, 0, sizeof(*f));
552 }
553
554 /* Handle a filter write/deletion reply.
555  */
556 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
557 {
558         unsigned int idx = GET_TID(rpl);
559         unsigned int nidx = idx - adap->tids.ftid_base;
560         unsigned int ret;
561         struct filter_entry *f;
562
563         if (idx >= adap->tids.ftid_base && nidx <
564            (adap->tids.nftids + adap->tids.nsftids)) {
565                 idx = nidx;
566                 ret = TCB_COOKIE_G(rpl->cookie);
567                 f = &adap->tids.ftid_tab[idx];
568
569                 if (ret == FW_FILTER_WR_FLT_DELETED) {
570                         /* Clear the filter when we get confirmation from the
571                          * hardware that the filter has been deleted.
572                          */
573                         clear_filter(adap, f);
574                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
575                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
576                                 idx);
577                         clear_filter(adap, f);
578                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
579                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
580                         f->pending = 0;  /* asynchronous setup completed */
581                         f->valid = 1;
582                 } else {
583                         /* Something went wrong.  Issue a warning about the
584                          * problem and clear everything out.
585                          */
586                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
587                                 idx, ret);
588                         clear_filter(adap, f);
589                 }
590         }
591 }
592
593 /* Response queue handler for the FW event queue.
594  */
595 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
596                           const struct pkt_gl *gl)
597 {
598         u8 opcode = ((const struct rss_header *)rsp)->opcode;
599
600         rsp++;                                          /* skip RSS header */
601
602         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
603          */
604         if (unlikely(opcode == CPL_FW4_MSG &&
605            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
606                 rsp++;
607                 opcode = ((const struct rss_header *)rsp)->opcode;
608                 rsp++;
609                 if (opcode != CPL_SGE_EGR_UPDATE) {
610                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
611                                 , opcode);
612                         goto out;
613                 }
614         }
615
616         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
617                 const struct cpl_sge_egr_update *p = (void *)rsp;
618                 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
619                 struct sge_txq *txq;
620
621                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
622                 txq->restarts++;
623                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
624                         struct sge_eth_txq *eq;
625
626                         eq = container_of(txq, struct sge_eth_txq, q);
627                         netif_tx_wake_queue(eq->txq);
628                 } else {
629                         struct sge_ofld_txq *oq;
630
631                         oq = container_of(txq, struct sge_ofld_txq, q);
632                         tasklet_schedule(&oq->qresume_tsk);
633                 }
634         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
635                 const struct cpl_fw6_msg *p = (void *)rsp;
636
637 #ifdef CONFIG_CHELSIO_T4_DCB
638                 const struct fw_port_cmd *pcmd = (const void *)p->data;
639                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
640                 unsigned int action =
641                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
642
643                 if (cmd == FW_PORT_CMD &&
644                     action == FW_PORT_ACTION_GET_PORT_INFO) {
645                         int port = FW_PORT_CMD_PORTID_G(
646                                         be32_to_cpu(pcmd->op_to_portid));
647                         struct net_device *dev = q->adap->port[port];
648                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
649                                             FW_PORT_CMD_DCBXDIS_F)
650                                            ? CXGB4_DCB_INPUT_FW_DISABLED
651                                            : CXGB4_DCB_INPUT_FW_ENABLED);
652
653                         cxgb4_dcb_state_fsm(dev, state_input);
654                 }
655
656                 if (cmd == FW_PORT_CMD &&
657                     action == FW_PORT_ACTION_L2_DCB_CFG)
658                         dcb_rpl(q->adap, pcmd);
659                 else
660 #endif
661                         if (p->type == 0)
662                                 t4_handle_fw_rpl(q->adap, p->data);
663         } else if (opcode == CPL_L2T_WRITE_RPL) {
664                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
665
666                 do_l2t_write_rpl(q->adap, p);
667         } else if (opcode == CPL_SET_TCB_RPL) {
668                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
669
670                 filter_rpl(q->adap, p);
671         } else
672                 dev_err(q->adap->pdev_dev,
673                         "unexpected CPL %#x on FW event queue\n", opcode);
674 out:
675         return 0;
676 }
677
678 /**
679  *      uldrx_handler - response queue handler for ULD queues
680  *      @q: the response queue that received the packet
681  *      @rsp: the response queue descriptor holding the offload message
682  *      @gl: the gather list of packet fragments
683  *
684  *      Deliver an ingress offload packet to a ULD.  All processing is done by
685  *      the ULD, we just maintain statistics.
686  */
687 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
688                          const struct pkt_gl *gl)
689 {
690         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
691
692         /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
693          */
694         if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
695             ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
696                 rsp += 2;
697
698         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
699                 rxq->stats.nomem++;
700                 return -1;
701         }
702         if (gl == NULL)
703                 rxq->stats.imm++;
704         else if (gl == CXGB4_MSG_AN)
705                 rxq->stats.an++;
706         else
707                 rxq->stats.pkts++;
708         return 0;
709 }
710
711 static void disable_msi(struct adapter *adapter)
712 {
713         if (adapter->flags & USING_MSIX) {
714                 pci_disable_msix(adapter->pdev);
715                 adapter->flags &= ~USING_MSIX;
716         } else if (adapter->flags & USING_MSI) {
717                 pci_disable_msi(adapter->pdev);
718                 adapter->flags &= ~USING_MSI;
719         }
720 }
721
722 /*
723  * Interrupt handler for non-data events used with MSI-X.
724  */
725 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
726 {
727         struct adapter *adap = cookie;
728         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
729
730         if (v & PFSW_F) {
731                 adap->swintr = 1;
732                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
733         }
734         if (adap->flags & MASTER_PF)
735                 t4_slow_intr_handler(adap);
736         return IRQ_HANDLED;
737 }
738
739 /*
740  * Name the MSI-X interrupts.
741  */
742 static void name_msix_vecs(struct adapter *adap)
743 {
744         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
745
746         /* non-data interrupts */
747         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
748
749         /* FW events */
750         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
751                  adap->port[0]->name);
752
753         /* Ethernet queues */
754         for_each_port(adap, j) {
755                 struct net_device *d = adap->port[j];
756                 const struct port_info *pi = netdev_priv(d);
757
758                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
759                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
760                                  d->name, i);
761         }
762
763         /* offload queues */
764         for_each_ofldrxq(&adap->sge, i)
765                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
766                          adap->port[0]->name, i);
767
768         for_each_rdmarxq(&adap->sge, i)
769                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
770                          adap->port[0]->name, i);
771
772         for_each_rdmaciq(&adap->sge, i)
773                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
774                          adap->port[0]->name, i);
775 }
776
777 static int request_msix_queue_irqs(struct adapter *adap)
778 {
779         struct sge *s = &adap->sge;
780         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
781         int msi_index = 2;
782
783         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
784                           adap->msix_info[1].desc, &s->fw_evtq);
785         if (err)
786                 return err;
787
788         for_each_ethrxq(s, ethqidx) {
789                 err = request_irq(adap->msix_info[msi_index].vec,
790                                   t4_sge_intr_msix, 0,
791                                   adap->msix_info[msi_index].desc,
792                                   &s->ethrxq[ethqidx].rspq);
793                 if (err)
794                         goto unwind;
795                 msi_index++;
796         }
797         for_each_ofldrxq(s, ofldqidx) {
798                 err = request_irq(adap->msix_info[msi_index].vec,
799                                   t4_sge_intr_msix, 0,
800                                   adap->msix_info[msi_index].desc,
801                                   &s->ofldrxq[ofldqidx].rspq);
802                 if (err)
803                         goto unwind;
804                 msi_index++;
805         }
806         for_each_rdmarxq(s, rdmaqidx) {
807                 err = request_irq(adap->msix_info[msi_index].vec,
808                                   t4_sge_intr_msix, 0,
809                                   adap->msix_info[msi_index].desc,
810                                   &s->rdmarxq[rdmaqidx].rspq);
811                 if (err)
812                         goto unwind;
813                 msi_index++;
814         }
815         for_each_rdmaciq(s, rdmaciqqidx) {
816                 err = request_irq(adap->msix_info[msi_index].vec,
817                                   t4_sge_intr_msix, 0,
818                                   adap->msix_info[msi_index].desc,
819                                   &s->rdmaciq[rdmaciqqidx].rspq);
820                 if (err)
821                         goto unwind;
822                 msi_index++;
823         }
824         return 0;
825
826 unwind:
827         while (--rdmaciqqidx >= 0)
828                 free_irq(adap->msix_info[--msi_index].vec,
829                          &s->rdmaciq[rdmaciqqidx].rspq);
830         while (--rdmaqidx >= 0)
831                 free_irq(adap->msix_info[--msi_index].vec,
832                          &s->rdmarxq[rdmaqidx].rspq);
833         while (--ofldqidx >= 0)
834                 free_irq(adap->msix_info[--msi_index].vec,
835                          &s->ofldrxq[ofldqidx].rspq);
836         while (--ethqidx >= 0)
837                 free_irq(adap->msix_info[--msi_index].vec,
838                          &s->ethrxq[ethqidx].rspq);
839         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
840         return err;
841 }
842
843 static void free_msix_queue_irqs(struct adapter *adap)
844 {
845         int i, msi_index = 2;
846         struct sge *s = &adap->sge;
847
848         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
849         for_each_ethrxq(s, i)
850                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
851         for_each_ofldrxq(s, i)
852                 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
853         for_each_rdmarxq(s, i)
854                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
855         for_each_rdmaciq(s, i)
856                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
857 }
858
859 /**
860  *      cxgb4_write_rss - write the RSS table for a given port
861  *      @pi: the port
862  *      @queues: array of queue indices for RSS
863  *
864  *      Sets up the portion of the HW RSS table for the port's VI to distribute
865  *      packets to the Rx queues in @queues.
866  *      Should never be called before setting up sge eth rx queues
867  */
868 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
869 {
870         u16 *rss;
871         int i, err;
872         struct adapter *adapter = pi->adapter;
873         const struct sge_eth_rxq *rxq;
874
875         rxq = &adapter->sge.ethrxq[pi->first_qset];
876         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
877         if (!rss)
878                 return -ENOMEM;
879
880         /* map the queue indices to queue ids */
881         for (i = 0; i < pi->rss_size; i++, queues++)
882                 rss[i] = rxq[*queues].rspq.abs_id;
883
884         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
885                                   pi->rss_size, rss, pi->rss_size);
886         /* If Tunnel All Lookup isn't specified in the global RSS
887          * Configuration, then we need to specify a default Ingress
888          * Queue for any ingress packets which aren't hashed.  We'll
889          * use our first ingress queue ...
890          */
891         if (!err)
892                 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
893                                        FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
894                                        FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
895                                        FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
896                                        FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
897                                        FW_RSS_VI_CONFIG_CMD_UDPEN_F,
898                                        rss[0]);
899         kfree(rss);
900         return err;
901 }
902
903 /**
904  *      setup_rss - configure RSS
905  *      @adap: the adapter
906  *
907  *      Sets up RSS for each port.
908  */
909 static int setup_rss(struct adapter *adap)
910 {
911         int i, j, err;
912
913         for_each_port(adap, i) {
914                 const struct port_info *pi = adap2pinfo(adap, i);
915
916                 /* Fill default values with equal distribution */
917                 for (j = 0; j < pi->rss_size; j++)
918                         pi->rss[j] = j % pi->nqsets;
919
920                 err = cxgb4_write_rss(pi, pi->rss);
921                 if (err)
922                         return err;
923         }
924         return 0;
925 }
926
927 /*
928  * Return the channel of the ingress queue with the given qid.
929  */
930 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
931 {
932         qid -= p->ingr_start;
933         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
934 }
935
936 /*
937  * Wait until all NAPI handlers are descheduled.
938  */
939 static void quiesce_rx(struct adapter *adap)
940 {
941         int i;
942
943         for (i = 0; i < adap->sge.ingr_sz; i++) {
944                 struct sge_rspq *q = adap->sge.ingr_map[i];
945
946                 if (q && q->handler) {
947                         napi_disable(&q->napi);
948                         local_bh_disable();
949                         while (!cxgb_poll_lock_napi(q))
950                                 mdelay(1);
951                         local_bh_enable();
952                 }
953
954         }
955 }
956
957 /* Disable interrupt and napi handler */
958 static void disable_interrupts(struct adapter *adap)
959 {
960         if (adap->flags & FULL_INIT_DONE) {
961                 t4_intr_disable(adap);
962                 if (adap->flags & USING_MSIX) {
963                         free_msix_queue_irqs(adap);
964                         free_irq(adap->msix_info[0].vec, adap);
965                 } else {
966                         free_irq(adap->pdev->irq, adap);
967                 }
968                 quiesce_rx(adap);
969         }
970 }
971
972 /*
973  * Enable NAPI scheduling and interrupt generation for all Rx queues.
974  */
975 static void enable_rx(struct adapter *adap)
976 {
977         int i;
978
979         for (i = 0; i < adap->sge.ingr_sz; i++) {
980                 struct sge_rspq *q = adap->sge.ingr_map[i];
981
982                 if (!q)
983                         continue;
984                 if (q->handler) {
985                         cxgb_busy_poll_init_lock(q);
986                         napi_enable(&q->napi);
987                 }
988                 /* 0-increment GTS to start the timer and enable interrupts */
989                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
990                              SEINTARM_V(q->intr_params) |
991                              INGRESSQID_V(q->cntxt_id));
992         }
993 }
994
995 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
996                            unsigned int nq, unsigned int per_chan, int msi_idx,
997                            u16 *ids)
998 {
999         int i, err;
1000
1001         for (i = 0; i < nq; i++, q++) {
1002                 if (msi_idx > 0)
1003                         msi_idx++;
1004                 err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1005                                        adap->port[i / per_chan],
1006                                        msi_idx, q->fl.size ? &q->fl : NULL,
1007                                        uldrx_handler, 0);
1008                 if (err)
1009                         return err;
1010                 memset(&q->stats, 0, sizeof(q->stats));
1011                 if (ids)
1012                         ids[i] = q->rspq.abs_id;
1013         }
1014         return 0;
1015 }
1016
1017 /**
1018  *      setup_sge_queues - configure SGE Tx/Rx/response queues
1019  *      @adap: the adapter
1020  *
1021  *      Determines how many sets of SGE queues to use and initializes them.
1022  *      We support multiple queue sets per port if we have MSI-X, otherwise
1023  *      just one queue set per port.
1024  */
1025 static int setup_sge_queues(struct adapter *adap)
1026 {
1027         int err, msi_idx, i, j;
1028         struct sge *s = &adap->sge;
1029
1030         bitmap_zero(s->starving_fl, s->egr_sz);
1031         bitmap_zero(s->txq_maperr, s->egr_sz);
1032
1033         if (adap->flags & USING_MSIX)
1034                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1035         else {
1036                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1037                                        NULL, NULL, -1);
1038                 if (err)
1039                         return err;
1040                 msi_idx = -((int)s->intrq.abs_id + 1);
1041         }
1042
1043         /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1044          * don't forget to update the following which need to be
1045          * synchronized to and changes here.
1046          *
1047          * 1. The calculations of MAX_INGQ in cxgb4.h.
1048          *
1049          * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1050          *    to accommodate any new/deleted Ingress Queues
1051          *    which need MSI-X Vectors.
1052          *
1053          * 3. Update sge_qinfo_show() to include information on the
1054          *    new/deleted queues.
1055          */
1056         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1057                                msi_idx, NULL, fwevtq_handler, -1);
1058         if (err) {
1059 freeout:        t4_free_sge_resources(adap);
1060                 return err;
1061         }
1062
1063         for_each_port(adap, i) {
1064                 struct net_device *dev = adap->port[i];
1065                 struct port_info *pi = netdev_priv(dev);
1066                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1067                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1068
1069                 for (j = 0; j < pi->nqsets; j++, q++) {
1070                         if (msi_idx > 0)
1071                                 msi_idx++;
1072                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1073                                                msi_idx, &q->fl,
1074                                                t4_ethrx_handler,
1075                                                t4_get_mps_bg_map(adap,
1076                                                                  pi->tx_chan));
1077                         if (err)
1078                                 goto freeout;
1079                         q->rspq.idx = j;
1080                         memset(&q->stats, 0, sizeof(q->stats));
1081                 }
1082                 for (j = 0; j < pi->nqsets; j++, t++) {
1083                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1084                                         netdev_get_tx_queue(dev, j),
1085                                         s->fw_evtq.cntxt_id);
1086                         if (err)
1087                                 goto freeout;
1088                 }
1089         }
1090
1091         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1092         for_each_ofldrxq(s, i) {
1093                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1094                                             adap->port[i / j],
1095                                             s->fw_evtq.cntxt_id);
1096                 if (err)
1097                         goto freeout;
1098         }
1099
1100 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1101         err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1102         if (err) \
1103                 goto freeout; \
1104         if (msi_idx > 0) \
1105                 msi_idx += nq; \
1106 } while (0)
1107
1108         ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq);
1109         ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
1110         j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1111         ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
1112
1113 #undef ALLOC_OFLD_RXQS
1114
1115         for_each_port(adap, i) {
1116                 /*
1117                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1118                  * have RDMA queues, and that's the right value.
1119                  */
1120                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1121                                             s->fw_evtq.cntxt_id,
1122                                             s->rdmarxq[i].rspq.cntxt_id);
1123                 if (err)
1124                         goto freeout;
1125         }
1126
1127         t4_write_reg(adap, is_t4(adap->params.chip) ?
1128                                 MPS_TRC_RSS_CONTROL_A :
1129                                 MPS_T5_TRC_RSS_CONTROL_A,
1130                      RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1131                      QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1132         return 0;
1133 }
1134
1135 /*
1136  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1137  * The allocated memory is cleared.
1138  */
1139 void *t4_alloc_mem(size_t size)
1140 {
1141         void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1142
1143         if (!p)
1144                 p = vzalloc(size);
1145         return p;
1146 }
1147
1148 /*
1149  * Free memory allocated through alloc_mem().
1150  */
1151 void t4_free_mem(void *addr)
1152 {
1153         kvfree(addr);
1154 }
1155
1156 /* Send a Work Request to write the filter at a specified index.  We construct
1157  * a Firmware Filter Work Request to have the work done and put the indicated
1158  * filter into "pending" mode which will prevent any further actions against
1159  * it till we get a reply from the firmware on the completion status of the
1160  * request.
1161  */
1162 static int set_filter_wr(struct adapter *adapter, int fidx)
1163 {
1164         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1165         struct sk_buff *skb;
1166         struct fw_filter_wr *fwr;
1167         unsigned int ftid;
1168
1169         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1170         if (!skb)
1171                 return -ENOMEM;
1172
1173         /* If the new filter requires loopback Destination MAC and/or VLAN
1174          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1175          * the filter.
1176          */
1177         if (f->fs.newdmac || f->fs.newvlan) {
1178                 /* allocate L2T entry for new filter */
1179                 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1180                 if (f->l2t == NULL) {
1181                         kfree_skb(skb);
1182                         return -EAGAIN;
1183                 }
1184                 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1185                                         f->fs.eport, f->fs.dmac)) {
1186                         cxgb4_l2t_release(f->l2t);
1187                         f->l2t = NULL;
1188                         kfree_skb(skb);
1189                         return -ENOMEM;
1190                 }
1191         }
1192
1193         ftid = adapter->tids.ftid_base + fidx;
1194
1195         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1196         memset(fwr, 0, sizeof(*fwr));
1197
1198         /* It would be nice to put most of the following in t4_hw.c but most
1199          * of the work is translating the cxgbtool ch_filter_specification
1200          * into the Work Request and the definition of that structure is
1201          * currently in cxgbtool.h which isn't appropriate to pull into the
1202          * common code.  We may eventually try to come up with a more neutral
1203          * filter specification structure but for now it's easiest to simply
1204          * put this fairly direct code in line ...
1205          */
1206         fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1207         fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1208         fwr->tid_to_iq =
1209                 htonl(FW_FILTER_WR_TID_V(ftid) |
1210                       FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1211                       FW_FILTER_WR_NOREPLY_V(0) |
1212                       FW_FILTER_WR_IQ_V(f->fs.iq));
1213         fwr->del_filter_to_l2tix =
1214                 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1215                       FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1216                       FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1217                       FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1218                       FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1219                       FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1220                       FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1221                       FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1222                       FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1223                                              f->fs.newvlan == VLAN_REWRITE) |
1224                       FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1225                                             f->fs.newvlan == VLAN_REWRITE) |
1226                       FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1227                       FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1228                       FW_FILTER_WR_PRIO_V(f->fs.prio) |
1229                       FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1230         fwr->ethtype = htons(f->fs.val.ethtype);
1231         fwr->ethtypem = htons(f->fs.mask.ethtype);
1232         fwr->frag_to_ovlan_vldm =
1233                 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1234                  FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1235                  FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1236                  FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1237                  FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1238                  FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1239         fwr->smac_sel = 0;
1240         fwr->rx_chan_rx_rpl_iq =
1241                 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1242                       FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1243         fwr->maci_to_matchtypem =
1244                 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1245                       FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1246                       FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1247                       FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1248                       FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1249                       FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1250                       FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1251                       FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1252         fwr->ptcl = f->fs.val.proto;
1253         fwr->ptclm = f->fs.mask.proto;
1254         fwr->ttyp = f->fs.val.tos;
1255         fwr->ttypm = f->fs.mask.tos;
1256         fwr->ivlan = htons(f->fs.val.ivlan);
1257         fwr->ivlanm = htons(f->fs.mask.ivlan);
1258         fwr->ovlan = htons(f->fs.val.ovlan);
1259         fwr->ovlanm = htons(f->fs.mask.ovlan);
1260         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1261         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1262         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1263         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1264         fwr->lp = htons(f->fs.val.lport);
1265         fwr->lpm = htons(f->fs.mask.lport);
1266         fwr->fp = htons(f->fs.val.fport);
1267         fwr->fpm = htons(f->fs.mask.fport);
1268         if (f->fs.newsmac)
1269                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1270
1271         /* Mark the filter as "pending" and ship off the Filter Work Request.
1272          * When we get the Work Request Reply we'll clear the pending status.
1273          */
1274         f->pending = 1;
1275         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1276         t4_ofld_send(adapter, skb);
1277         return 0;
1278 }
1279
1280 /* Delete the filter at a specified index.
1281  */
1282 static int del_filter_wr(struct adapter *adapter, int fidx)
1283 {
1284         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1285         struct sk_buff *skb;
1286         struct fw_filter_wr *fwr;
1287         unsigned int len, ftid;
1288
1289         len = sizeof(*fwr);
1290         ftid = adapter->tids.ftid_base + fidx;
1291
1292         skb = alloc_skb(len, GFP_KERNEL);
1293         if (!skb)
1294                 return -ENOMEM;
1295
1296         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1297         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1298
1299         /* Mark the filter as "pending" and ship off the Filter Work Request.
1300          * When we get the Work Request Reply we'll clear the pending status.
1301          */
1302         f->pending = 1;
1303         t4_mgmt_tx(adapter, skb);
1304         return 0;
1305 }
1306
1307 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1308                              void *accel_priv, select_queue_fallback_t fallback)
1309 {
1310         int txq;
1311
1312 #ifdef CONFIG_CHELSIO_T4_DCB
1313         /* If a Data Center Bridging has been successfully negotiated on this
1314          * link then we'll use the skb's priority to map it to a TX Queue.
1315          * The skb's priority is determined via the VLAN Tag Priority Code
1316          * Point field.
1317          */
1318         if (cxgb4_dcb_enabled(dev)) {
1319                 u16 vlan_tci;
1320                 int err;
1321
1322                 err = vlan_get_tag(skb, &vlan_tci);
1323                 if (unlikely(err)) {
1324                         if (net_ratelimit())
1325                                 netdev_warn(dev,
1326                                             "TX Packet without VLAN Tag on DCB Link\n");
1327                         txq = 0;
1328                 } else {
1329                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1330 #ifdef CONFIG_CHELSIO_T4_FCOE
1331                         if (skb->protocol == htons(ETH_P_FCOE))
1332                                 txq = skb->priority & 0x7;
1333 #endif /* CONFIG_CHELSIO_T4_FCOE */
1334                 }
1335                 return txq;
1336         }
1337 #endif /* CONFIG_CHELSIO_T4_DCB */
1338
1339         if (select_queue) {
1340                 txq = (skb_rx_queue_recorded(skb)
1341                         ? skb_get_rx_queue(skb)
1342                         : smp_processor_id());
1343
1344                 while (unlikely(txq >= dev->real_num_tx_queues))
1345                         txq -= dev->real_num_tx_queues;
1346
1347                 return txq;
1348         }
1349
1350         return fallback(dev, skb) % dev->real_num_tx_queues;
1351 }
1352
1353 static int closest_timer(const struct sge *s, int time)
1354 {
1355         int i, delta, match = 0, min_delta = INT_MAX;
1356
1357         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1358                 delta = time - s->timer_val[i];
1359                 if (delta < 0)
1360                         delta = -delta;
1361                 if (delta < min_delta) {
1362                         min_delta = delta;
1363                         match = i;
1364                 }
1365         }
1366         return match;
1367 }
1368
1369 static int closest_thres(const struct sge *s, int thres)
1370 {
1371         int i, delta, match = 0, min_delta = INT_MAX;
1372
1373         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1374                 delta = thres - s->counter_val[i];
1375                 if (delta < 0)
1376                         delta = -delta;
1377                 if (delta < min_delta) {
1378                         min_delta = delta;
1379                         match = i;
1380                 }
1381         }
1382         return match;
1383 }
1384
1385 /**
1386  *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1387  *      @q: the Rx queue
1388  *      @us: the hold-off time in us, or 0 to disable timer
1389  *      @cnt: the hold-off packet count, or 0 to disable counter
1390  *
1391  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1392  *      one of the two needs to be enabled for the queue to generate interrupts.
1393  */
1394 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1395                                unsigned int us, unsigned int cnt)
1396 {
1397         struct adapter *adap = q->adap;
1398
1399         if ((us | cnt) == 0)
1400                 cnt = 1;
1401
1402         if (cnt) {
1403                 int err;
1404                 u32 v, new_idx;
1405
1406                 new_idx = closest_thres(&adap->sge, cnt);
1407                 if (q->desc && q->pktcnt_idx != new_idx) {
1408                         /* the queue has already been created, update it */
1409                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1410                             FW_PARAMS_PARAM_X_V(
1411                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1412                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1413                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1414                                             &v, &new_idx);
1415                         if (err)
1416                                 return err;
1417                 }
1418                 q->pktcnt_idx = new_idx;
1419         }
1420
1421         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1422         q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1423         return 0;
1424 }
1425
1426 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1427 {
1428         const struct port_info *pi = netdev_priv(dev);
1429         netdev_features_t changed = dev->features ^ features;
1430         int err;
1431
1432         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1433                 return 0;
1434
1435         err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1436                             -1, -1, -1,
1437                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1438         if (unlikely(err))
1439                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1440         return err;
1441 }
1442
1443 static int setup_debugfs(struct adapter *adap)
1444 {
1445         if (IS_ERR_OR_NULL(adap->debugfs_root))
1446                 return -1;
1447
1448 #ifdef CONFIG_DEBUG_FS
1449         t4_setup_debugfs(adap);
1450 #endif
1451         return 0;
1452 }
1453
1454 /*
1455  * upper-layer driver support
1456  */
1457
1458 /*
1459  * Allocate an active-open TID and set it to the supplied value.
1460  */
1461 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1462 {
1463         int atid = -1;
1464
1465         spin_lock_bh(&t->atid_lock);
1466         if (t->afree) {
1467                 union aopen_entry *p = t->afree;
1468
1469                 atid = (p - t->atid_tab) + t->atid_base;
1470                 t->afree = p->next;
1471                 p->data = data;
1472                 t->atids_in_use++;
1473         }
1474         spin_unlock_bh(&t->atid_lock);
1475         return atid;
1476 }
1477 EXPORT_SYMBOL(cxgb4_alloc_atid);
1478
1479 /*
1480  * Release an active-open TID.
1481  */
1482 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1483 {
1484         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1485
1486         spin_lock_bh(&t->atid_lock);
1487         p->next = t->afree;
1488         t->afree = p;
1489         t->atids_in_use--;
1490         spin_unlock_bh(&t->atid_lock);
1491 }
1492 EXPORT_SYMBOL(cxgb4_free_atid);
1493
1494 /*
1495  * Allocate a server TID and set it to the supplied value.
1496  */
1497 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1498 {
1499         int stid;
1500
1501         spin_lock_bh(&t->stid_lock);
1502         if (family == PF_INET) {
1503                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1504                 if (stid < t->nstids)
1505                         __set_bit(stid, t->stid_bmap);
1506                 else
1507                         stid = -1;
1508         } else {
1509                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1510                 if (stid < 0)
1511                         stid = -1;
1512         }
1513         if (stid >= 0) {
1514                 t->stid_tab[stid].data = data;
1515                 stid += t->stid_base;
1516                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1517                  * This is equivalent to 4 TIDs. With CLIP enabled it
1518                  * needs 2 TIDs.
1519                  */
1520                 if (family == PF_INET)
1521                         t->stids_in_use++;
1522                 else
1523                         t->stids_in_use += 4;
1524         }
1525         spin_unlock_bh(&t->stid_lock);
1526         return stid;
1527 }
1528 EXPORT_SYMBOL(cxgb4_alloc_stid);
1529
1530 /* Allocate a server filter TID and set it to the supplied value.
1531  */
1532 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1533 {
1534         int stid;
1535
1536         spin_lock_bh(&t->stid_lock);
1537         if (family == PF_INET) {
1538                 stid = find_next_zero_bit(t->stid_bmap,
1539                                 t->nstids + t->nsftids, t->nstids);
1540                 if (stid < (t->nstids + t->nsftids))
1541                         __set_bit(stid, t->stid_bmap);
1542                 else
1543                         stid = -1;
1544         } else {
1545                 stid = -1;
1546         }
1547         if (stid >= 0) {
1548                 t->stid_tab[stid].data = data;
1549                 stid -= t->nstids;
1550                 stid += t->sftid_base;
1551                 t->sftids_in_use++;
1552         }
1553         spin_unlock_bh(&t->stid_lock);
1554         return stid;
1555 }
1556 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1557
1558 /* Release a server TID.
1559  */
1560 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1561 {
1562         /* Is it a server filter TID? */
1563         if (t->nsftids && (stid >= t->sftid_base)) {
1564                 stid -= t->sftid_base;
1565                 stid += t->nstids;
1566         } else {
1567                 stid -= t->stid_base;
1568         }
1569
1570         spin_lock_bh(&t->stid_lock);
1571         if (family == PF_INET)
1572                 __clear_bit(stid, t->stid_bmap);
1573         else
1574                 bitmap_release_region(t->stid_bmap, stid, 2);
1575         t->stid_tab[stid].data = NULL;
1576         if (stid < t->nstids) {
1577                 if (family == PF_INET)
1578                         t->stids_in_use--;
1579                 else
1580                         t->stids_in_use -= 4;
1581         } else {
1582                 t->sftids_in_use--;
1583         }
1584         spin_unlock_bh(&t->stid_lock);
1585 }
1586 EXPORT_SYMBOL(cxgb4_free_stid);
1587
1588 /*
1589  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1590  */
1591 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1592                            unsigned int tid)
1593 {
1594         struct cpl_tid_release *req;
1595
1596         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1597         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1598         INIT_TP_WR(req, tid);
1599         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1600 }
1601
1602 /*
1603  * Queue a TID release request and if necessary schedule a work queue to
1604  * process it.
1605  */
1606 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1607                                     unsigned int tid)
1608 {
1609         void **p = &t->tid_tab[tid];
1610         struct adapter *adap = container_of(t, struct adapter, tids);
1611
1612         spin_lock_bh(&adap->tid_release_lock);
1613         *p = adap->tid_release_head;
1614         /* Low 2 bits encode the Tx channel number */
1615         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1616         if (!adap->tid_release_task_busy) {
1617                 adap->tid_release_task_busy = true;
1618                 queue_work(adap->workq, &adap->tid_release_task);
1619         }
1620         spin_unlock_bh(&adap->tid_release_lock);
1621 }
1622
1623 /*
1624  * Process the list of pending TID release requests.
1625  */
1626 static void process_tid_release_list(struct work_struct *work)
1627 {
1628         struct sk_buff *skb;
1629         struct adapter *adap;
1630
1631         adap = container_of(work, struct adapter, tid_release_task);
1632
1633         spin_lock_bh(&adap->tid_release_lock);
1634         while (adap->tid_release_head) {
1635                 void **p = adap->tid_release_head;
1636                 unsigned int chan = (uintptr_t)p & 3;
1637                 p = (void *)p - chan;
1638
1639                 adap->tid_release_head = *p;
1640                 *p = NULL;
1641                 spin_unlock_bh(&adap->tid_release_lock);
1642
1643                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1644                                          GFP_KERNEL)))
1645                         schedule_timeout_uninterruptible(1);
1646
1647                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1648                 t4_ofld_send(adap, skb);
1649                 spin_lock_bh(&adap->tid_release_lock);
1650         }
1651         adap->tid_release_task_busy = false;
1652         spin_unlock_bh(&adap->tid_release_lock);
1653 }
1654
1655 /*
1656  * Release a TID and inform HW.  If we are unable to allocate the release
1657  * message we defer to a work queue.
1658  */
1659 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1660 {
1661         struct sk_buff *skb;
1662         struct adapter *adap = container_of(t, struct adapter, tids);
1663
1664         WARN_ON(tid >= t->ntids);
1665
1666         if (t->tid_tab[tid]) {
1667                 t->tid_tab[tid] = NULL;
1668                 if (t->hash_base && (tid >= t->hash_base))
1669                         atomic_dec(&t->hash_tids_in_use);
1670                 else
1671                         atomic_dec(&t->tids_in_use);
1672         }
1673
1674         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1675         if (likely(skb)) {
1676                 mk_tid_release(skb, chan, tid);
1677                 t4_ofld_send(adap, skb);
1678         } else
1679                 cxgb4_queue_tid_release(t, chan, tid);
1680 }
1681 EXPORT_SYMBOL(cxgb4_remove_tid);
1682
1683 /*
1684  * Allocate and initialize the TID tables.  Returns 0 on success.
1685  */
1686 static int tid_init(struct tid_info *t)
1687 {
1688         size_t size;
1689         unsigned int stid_bmap_size;
1690         unsigned int natids = t->natids;
1691         struct adapter *adap = container_of(t, struct adapter, tids);
1692
1693         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1694         size = t->ntids * sizeof(*t->tid_tab) +
1695                natids * sizeof(*t->atid_tab) +
1696                t->nstids * sizeof(*t->stid_tab) +
1697                t->nsftids * sizeof(*t->stid_tab) +
1698                stid_bmap_size * sizeof(long) +
1699                t->nftids * sizeof(*t->ftid_tab) +
1700                t->nsftids * sizeof(*t->ftid_tab);
1701
1702         t->tid_tab = t4_alloc_mem(size);
1703         if (!t->tid_tab)
1704                 return -ENOMEM;
1705
1706         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1707         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1708         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1709         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1710         spin_lock_init(&t->stid_lock);
1711         spin_lock_init(&t->atid_lock);
1712
1713         t->stids_in_use = 0;
1714         t->sftids_in_use = 0;
1715         t->afree = NULL;
1716         t->atids_in_use = 0;
1717         atomic_set(&t->tids_in_use, 0);
1718         atomic_set(&t->hash_tids_in_use, 0);
1719
1720         /* Setup the free list for atid_tab and clear the stid bitmap. */
1721         if (natids) {
1722                 while (--natids)
1723                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1724                 t->afree = t->atid_tab;
1725         }
1726         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1727         /* Reserve stid 0 for T4/T5 adapters */
1728         if (!t->stid_base &&
1729             (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
1730                 __set_bit(0, t->stid_bmap);
1731
1732         return 0;
1733 }
1734
1735 /**
1736  *      cxgb4_create_server - create an IP server
1737  *      @dev: the device
1738  *      @stid: the server TID
1739  *      @sip: local IP address to bind server to
1740  *      @sport: the server's TCP port
1741  *      @queue: queue to direct messages from this server to
1742  *
1743  *      Create an IP server for the given port and address.
1744  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1745  */
1746 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1747                         __be32 sip, __be16 sport, __be16 vlan,
1748                         unsigned int queue)
1749 {
1750         unsigned int chan;
1751         struct sk_buff *skb;
1752         struct adapter *adap;
1753         struct cpl_pass_open_req *req;
1754         int ret;
1755
1756         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1757         if (!skb)
1758                 return -ENOMEM;
1759
1760         adap = netdev2adap(dev);
1761         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1762         INIT_TP_WR(req, 0);
1763         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1764         req->local_port = sport;
1765         req->peer_port = htons(0);
1766         req->local_ip = sip;
1767         req->peer_ip = htonl(0);
1768         chan = rxq_to_chan(&adap->sge, queue);
1769         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1770         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1771                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1772         ret = t4_mgmt_tx(adap, skb);
1773         return net_xmit_eval(ret);
1774 }
1775 EXPORT_SYMBOL(cxgb4_create_server);
1776
1777 /*      cxgb4_create_server6 - create an IPv6 server
1778  *      @dev: the device
1779  *      @stid: the server TID
1780  *      @sip: local IPv6 address to bind server to
1781  *      @sport: the server's TCP port
1782  *      @queue: queue to direct messages from this server to
1783  *
1784  *      Create an IPv6 server for the given port and address.
1785  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1786  */
1787 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1788                          const struct in6_addr *sip, __be16 sport,
1789                          unsigned int queue)
1790 {
1791         unsigned int chan;
1792         struct sk_buff *skb;
1793         struct adapter *adap;
1794         struct cpl_pass_open_req6 *req;
1795         int ret;
1796
1797         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1798         if (!skb)
1799                 return -ENOMEM;
1800
1801         adap = netdev2adap(dev);
1802         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1803         INIT_TP_WR(req, 0);
1804         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1805         req->local_port = sport;
1806         req->peer_port = htons(0);
1807         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1808         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1809         req->peer_ip_hi = cpu_to_be64(0);
1810         req->peer_ip_lo = cpu_to_be64(0);
1811         chan = rxq_to_chan(&adap->sge, queue);
1812         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1813         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1814                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1815         ret = t4_mgmt_tx(adap, skb);
1816         return net_xmit_eval(ret);
1817 }
1818 EXPORT_SYMBOL(cxgb4_create_server6);
1819
1820 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1821                         unsigned int queue, bool ipv6)
1822 {
1823         struct sk_buff *skb;
1824         struct adapter *adap;
1825         struct cpl_close_listsvr_req *req;
1826         int ret;
1827
1828         adap = netdev2adap(dev);
1829
1830         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1831         if (!skb)
1832                 return -ENOMEM;
1833
1834         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1835         INIT_TP_WR(req, 0);
1836         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1837         req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1838                                 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1839         ret = t4_mgmt_tx(adap, skb);
1840         return net_xmit_eval(ret);
1841 }
1842 EXPORT_SYMBOL(cxgb4_remove_server);
1843
1844 /**
1845  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1846  *      @mtus: the HW MTU table
1847  *      @mtu: the target MTU
1848  *      @idx: index of selected entry in the MTU table
1849  *
1850  *      Returns the index and the value in the HW MTU table that is closest to
1851  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1852  *      table, in which case that smallest available value is selected.
1853  */
1854 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1855                             unsigned int *idx)
1856 {
1857         unsigned int i = 0;
1858
1859         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1860                 ++i;
1861         if (idx)
1862                 *idx = i;
1863         return mtus[i];
1864 }
1865 EXPORT_SYMBOL(cxgb4_best_mtu);
1866
1867 /**
1868  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1869  *     @mtus: the HW MTU table
1870  *     @header_size: Header Size
1871  *     @data_size_max: maximum Data Segment Size
1872  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1873  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1874  *
1875  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1876  *     MTU Table based solely on a Maximum MTU parameter, we break that
1877  *     parameter up into a Header Size and Maximum Data Segment Size, and
1878  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1879  *     the Hardware MTU Table which will result in a Data Segment Size with
1880  *     the requested alignment _and_ that MTU isn't "too far" from the
1881  *     closest MTU, then we'll return that rather than the closest MTU.
1882  */
1883 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1884                                     unsigned short header_size,
1885                                     unsigned short data_size_max,
1886                                     unsigned short data_size_align,
1887                                     unsigned int *mtu_idxp)
1888 {
1889         unsigned short max_mtu = header_size + data_size_max;
1890         unsigned short data_size_align_mask = data_size_align - 1;
1891         int mtu_idx, aligned_mtu_idx;
1892
1893         /* Scan the MTU Table till we find an MTU which is larger than our
1894          * Maximum MTU or we reach the end of the table.  Along the way,
1895          * record the last MTU found, if any, which will result in a Data
1896          * Segment Length matching the requested alignment.
1897          */
1898         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1899                 unsigned short data_size = mtus[mtu_idx] - header_size;
1900
1901                 /* If this MTU minus the Header Size would result in a
1902                  * Data Segment Size of the desired alignment, remember it.
1903                  */
1904                 if ((data_size & data_size_align_mask) == 0)
1905                         aligned_mtu_idx = mtu_idx;
1906
1907                 /* If we're not at the end of the Hardware MTU Table and the
1908                  * next element is larger than our Maximum MTU, drop out of
1909                  * the loop.
1910                  */
1911                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1912                         break;
1913         }
1914
1915         /* If we fell out of the loop because we ran to the end of the table,
1916          * then we just have to use the last [largest] entry.
1917          */
1918         if (mtu_idx == NMTUS)
1919                 mtu_idx--;
1920
1921         /* If we found an MTU which resulted in the requested Data Segment
1922          * Length alignment and that's "not far" from the largest MTU which is
1923          * less than or equal to the maximum MTU, then use that.
1924          */
1925         if (aligned_mtu_idx >= 0 &&
1926             mtu_idx - aligned_mtu_idx <= 1)
1927                 mtu_idx = aligned_mtu_idx;
1928
1929         /* If the caller has passed in an MTU Index pointer, pass the
1930          * MTU Index back.  Return the MTU value.
1931          */
1932         if (mtu_idxp)
1933                 *mtu_idxp = mtu_idx;
1934         return mtus[mtu_idx];
1935 }
1936 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1937
1938 /**
1939  *      cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1940  *      @chip: chip type
1941  *      @viid: VI id of the given port
1942  *
1943  *      Return the SMT index for this VI.
1944  */
1945 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1946 {
1947         /* In T4/T5, SMT contains 256 SMAC entries organized in
1948          * 128 rows of 2 entries each.
1949          * In T6, SMT contains 256 SMAC entries in 256 rows.
1950          * TODO: The below code needs to be updated when we add support
1951          * for 256 VFs.
1952          */
1953         if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1954                 return ((viid & 0x7f) << 1);
1955         else
1956                 return (viid & 0x7f);
1957 }
1958 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1959
1960 /**
1961  *      cxgb4_port_chan - get the HW channel of a port
1962  *      @dev: the net device for the port
1963  *
1964  *      Return the HW Tx channel of the given port.
1965  */
1966 unsigned int cxgb4_port_chan(const struct net_device *dev)
1967 {
1968         return netdev2pinfo(dev)->tx_chan;
1969 }
1970 EXPORT_SYMBOL(cxgb4_port_chan);
1971
1972 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1973 {
1974         struct adapter *adap = netdev2adap(dev);
1975         u32 v1, v2, lp_count, hp_count;
1976
1977         v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1978         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1979         if (is_t4(adap->params.chip)) {
1980                 lp_count = LP_COUNT_G(v1);
1981                 hp_count = HP_COUNT_G(v1);
1982         } else {
1983                 lp_count = LP_COUNT_T5_G(v1);
1984                 hp_count = HP_COUNT_T5_G(v2);
1985         }
1986         return lpfifo ? lp_count : hp_count;
1987 }
1988 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1989
1990 /**
1991  *      cxgb4_port_viid - get the VI id of a port
1992  *      @dev: the net device for the port
1993  *
1994  *      Return the VI id of the given port.
1995  */
1996 unsigned int cxgb4_port_viid(const struct net_device *dev)
1997 {
1998         return netdev2pinfo(dev)->viid;
1999 }
2000 EXPORT_SYMBOL(cxgb4_port_viid);
2001
2002 /**
2003  *      cxgb4_port_idx - get the index of a port
2004  *      @dev: the net device for the port
2005  *
2006  *      Return the index of the given port.
2007  */
2008 unsigned int cxgb4_port_idx(const struct net_device *dev)
2009 {
2010         return netdev2pinfo(dev)->port_id;
2011 }
2012 EXPORT_SYMBOL(cxgb4_port_idx);
2013
2014 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2015                          struct tp_tcp_stats *v6)
2016 {
2017         struct adapter *adap = pci_get_drvdata(pdev);
2018
2019         spin_lock(&adap->stats_lock);
2020         t4_tp_get_tcp_stats(adap, v4, v6);
2021         spin_unlock(&adap->stats_lock);
2022 }
2023 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2024
2025 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2026                       const unsigned int *pgsz_order)
2027 {
2028         struct adapter *adap = netdev2adap(dev);
2029
2030         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2031         t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2032                      HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2033                      HPZ3_V(pgsz_order[3]));
2034 }
2035 EXPORT_SYMBOL(cxgb4_iscsi_init);
2036
2037 int cxgb4_flush_eq_cache(struct net_device *dev)
2038 {
2039         struct adapter *adap = netdev2adap(dev);
2040
2041         return t4_sge_ctxt_flush(adap, adap->mbox);
2042 }
2043 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2044
2045 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2046 {
2047         u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2048         __be64 indices;
2049         int ret;
2050
2051         spin_lock(&adap->win0_lock);
2052         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2053                            sizeof(indices), (__be32 *)&indices,
2054                            T4_MEMORY_READ);
2055         spin_unlock(&adap->win0_lock);
2056         if (!ret) {
2057                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2058                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2059         }
2060         return ret;
2061 }
2062
2063 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2064                         u16 size)
2065 {
2066         struct adapter *adap = netdev2adap(dev);
2067         u16 hw_pidx, hw_cidx;
2068         int ret;
2069
2070         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2071         if (ret)
2072                 goto out;
2073
2074         if (pidx != hw_pidx) {
2075                 u16 delta;
2076                 u32 val;
2077
2078                 if (pidx >= hw_pidx)
2079                         delta = pidx - hw_pidx;
2080                 else
2081                         delta = size - hw_pidx + pidx;
2082
2083                 if (is_t4(adap->params.chip))
2084                         val = PIDX_V(delta);
2085                 else
2086                         val = PIDX_T5_V(delta);
2087                 wmb();
2088                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2089                              QID_V(qid) | val);
2090         }
2091 out:
2092         return ret;
2093 }
2094 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2095
2096 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2097 {
2098         struct adapter *adap;
2099         u32 offset, memtype, memaddr;
2100         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2101         u32 edc0_end, edc1_end, mc0_end, mc1_end;
2102         int ret;
2103
2104         adap = netdev2adap(dev);
2105
2106         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2107
2108         /* Figure out where the offset lands in the Memory Type/Address scheme.
2109          * This code assumes that the memory is laid out starting at offset 0
2110          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2111          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2112          * MC0, and some have both MC0 and MC1.
2113          */
2114         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2115         edc0_size = EDRAM0_SIZE_G(size) << 20;
2116         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2117         edc1_size = EDRAM1_SIZE_G(size) << 20;
2118         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2119         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2120
2121         edc0_end = edc0_size;
2122         edc1_end = edc0_end + edc1_size;
2123         mc0_end = edc1_end + mc0_size;
2124
2125         if (offset < edc0_end) {
2126                 memtype = MEM_EDC0;
2127                 memaddr = offset;
2128         } else if (offset < edc1_end) {
2129                 memtype = MEM_EDC1;
2130                 memaddr = offset - edc0_end;
2131         } else {
2132                 if (offset < mc0_end) {
2133                         memtype = MEM_MC0;
2134                         memaddr = offset - edc1_end;
2135                 } else if (is_t5(adap->params.chip)) {
2136                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2137                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2138                         mc1_end = mc0_end + mc1_size;
2139                         if (offset < mc1_end) {
2140                                 memtype = MEM_MC1;
2141                                 memaddr = offset - mc0_end;
2142                         } else {
2143                                 /* offset beyond the end of any memory */
2144                                 goto err;
2145                         }
2146                 } else {
2147                         /* T4/T6 only has a single memory channel */
2148                         goto err;
2149                 }
2150         }
2151
2152         spin_lock(&adap->win0_lock);
2153         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2154         spin_unlock(&adap->win0_lock);
2155         return ret;
2156
2157 err:
2158         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2159                 stag, offset);
2160         return -EINVAL;
2161 }
2162 EXPORT_SYMBOL(cxgb4_read_tpte);
2163
2164 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2165 {
2166         u32 hi, lo;
2167         struct adapter *adap;
2168
2169         adap = netdev2adap(dev);
2170         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2171         hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2172
2173         return ((u64)hi << 32) | (u64)lo;
2174 }
2175 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2176
2177 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2178                          unsigned int qid,
2179                          enum cxgb4_bar2_qtype qtype,
2180                          int user,
2181                          u64 *pbar2_qoffset,
2182                          unsigned int *pbar2_qid)
2183 {
2184         return t4_bar2_sge_qregs(netdev2adap(dev),
2185                                  qid,
2186                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
2187                                   ? T4_BAR2_QTYPE_EGRESS
2188                                   : T4_BAR2_QTYPE_INGRESS),
2189                                  user,
2190                                  pbar2_qoffset,
2191                                  pbar2_qid);
2192 }
2193 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2194
2195 static struct pci_driver cxgb4_driver;
2196
2197 static void check_neigh_update(struct neighbour *neigh)
2198 {
2199         const struct device *parent;
2200         const struct net_device *netdev = neigh->dev;
2201
2202         if (netdev->priv_flags & IFF_802_1Q_VLAN)
2203                 netdev = vlan_dev_real_dev(netdev);
2204         parent = netdev->dev.parent;
2205         if (parent && parent->driver == &cxgb4_driver.driver)
2206                 t4_l2t_update(dev_get_drvdata(parent), neigh);
2207 }
2208
2209 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2210                        void *data)
2211 {
2212         switch (event) {
2213         case NETEVENT_NEIGH_UPDATE:
2214                 check_neigh_update(data);
2215                 break;
2216         case NETEVENT_REDIRECT:
2217         default:
2218                 break;
2219         }
2220         return 0;
2221 }
2222
2223 static bool netevent_registered;
2224 static struct notifier_block cxgb4_netevent_nb = {
2225         .notifier_call = netevent_cb
2226 };
2227
2228 static void drain_db_fifo(struct adapter *adap, int usecs)
2229 {
2230         u32 v1, v2, lp_count, hp_count;
2231
2232         do {
2233                 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2234                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2235                 if (is_t4(adap->params.chip)) {
2236                         lp_count = LP_COUNT_G(v1);
2237                         hp_count = HP_COUNT_G(v1);
2238                 } else {
2239                         lp_count = LP_COUNT_T5_G(v1);
2240                         hp_count = HP_COUNT_T5_G(v2);
2241                 }
2242
2243                 if (lp_count == 0 && hp_count == 0)
2244                         break;
2245                 set_current_state(TASK_UNINTERRUPTIBLE);
2246                 schedule_timeout(usecs_to_jiffies(usecs));
2247         } while (1);
2248 }
2249
2250 static void disable_txq_db(struct sge_txq *q)
2251 {
2252         unsigned long flags;
2253
2254         spin_lock_irqsave(&q->db_lock, flags);
2255         q->db_disabled = 1;
2256         spin_unlock_irqrestore(&q->db_lock, flags);
2257 }
2258
2259 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2260 {
2261         spin_lock_irq(&q->db_lock);
2262         if (q->db_pidx_inc) {
2263                 /* Make sure that all writes to the TX descriptors
2264                  * are committed before we tell HW about them.
2265                  */
2266                 wmb();
2267                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2268                              QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2269                 q->db_pidx_inc = 0;
2270         }
2271         q->db_disabled = 0;
2272         spin_unlock_irq(&q->db_lock);
2273 }
2274
2275 static void disable_dbs(struct adapter *adap)
2276 {
2277         int i;
2278
2279         for_each_ethrxq(&adap->sge, i)
2280                 disable_txq_db(&adap->sge.ethtxq[i].q);
2281         for_each_ofldrxq(&adap->sge, i)
2282                 disable_txq_db(&adap->sge.ofldtxq[i].q);
2283         for_each_port(adap, i)
2284                 disable_txq_db(&adap->sge.ctrlq[i].q);
2285 }
2286
2287 static void enable_dbs(struct adapter *adap)
2288 {
2289         int i;
2290
2291         for_each_ethrxq(&adap->sge, i)
2292                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2293         for_each_ofldrxq(&adap->sge, i)
2294                 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2295         for_each_port(adap, i)
2296                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2297 }
2298
2299 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2300 {
2301         if (adap->uld_handle[CXGB4_ULD_RDMA])
2302                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2303                                 cmd);
2304 }
2305
2306 static void process_db_full(struct work_struct *work)
2307 {
2308         struct adapter *adap;
2309
2310         adap = container_of(work, struct adapter, db_full_task);
2311
2312         drain_db_fifo(adap, dbfifo_drain_delay);
2313         enable_dbs(adap);
2314         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2315         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2316                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2317                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2318                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2319         else
2320                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2321                                  DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2322 }
2323
2324 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2325 {
2326         u16 hw_pidx, hw_cidx;
2327         int ret;
2328
2329         spin_lock_irq(&q->db_lock);
2330         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2331         if (ret)
2332                 goto out;
2333         if (q->db_pidx != hw_pidx) {
2334                 u16 delta;
2335                 u32 val;
2336
2337                 if (q->db_pidx >= hw_pidx)
2338                         delta = q->db_pidx - hw_pidx;
2339                 else
2340                         delta = q->size - hw_pidx + q->db_pidx;
2341
2342                 if (is_t4(adap->params.chip))
2343                         val = PIDX_V(delta);
2344                 else
2345                         val = PIDX_T5_V(delta);
2346                 wmb();
2347                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2348                              QID_V(q->cntxt_id) | val);
2349         }
2350 out:
2351         q->db_disabled = 0;
2352         q->db_pidx_inc = 0;
2353         spin_unlock_irq(&q->db_lock);
2354         if (ret)
2355                 CH_WARN(adap, "DB drop recovery failed.\n");
2356 }
2357 static void recover_all_queues(struct adapter *adap)
2358 {
2359         int i;
2360
2361         for_each_ethrxq(&adap->sge, i)
2362                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2363         for_each_ofldrxq(&adap->sge, i)
2364                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2365         for_each_port(adap, i)
2366                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2367 }
2368
2369 static void process_db_drop(struct work_struct *work)
2370 {
2371         struct adapter *adap;
2372
2373         adap = container_of(work, struct adapter, db_drop_task);
2374
2375         if (is_t4(adap->params.chip)) {
2376                 drain_db_fifo(adap, dbfifo_drain_delay);
2377                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2378                 drain_db_fifo(adap, dbfifo_drain_delay);
2379                 recover_all_queues(adap);
2380                 drain_db_fifo(adap, dbfifo_drain_delay);
2381                 enable_dbs(adap);
2382                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2383         } else if (is_t5(adap->params.chip)) {
2384                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2385                 u16 qid = (dropped_db >> 15) & 0x1ffff;
2386                 u16 pidx_inc = dropped_db & 0x1fff;
2387                 u64 bar2_qoffset;
2388                 unsigned int bar2_qid;
2389                 int ret;
2390
2391                 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2392                                         0, &bar2_qoffset, &bar2_qid);
2393                 if (ret)
2394                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
2395                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2396                 else
2397                         writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2398                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2399
2400                 /* Re-enable BAR2 WC */
2401                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2402         }
2403
2404         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2405                 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2406 }
2407
2408 void t4_db_full(struct adapter *adap)
2409 {
2410         if (is_t4(adap->params.chip)) {
2411                 disable_dbs(adap);
2412                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2413                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2414                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2415                 queue_work(adap->workq, &adap->db_full_task);
2416         }
2417 }
2418
2419 void t4_db_dropped(struct adapter *adap)
2420 {
2421         if (is_t4(adap->params.chip)) {
2422                 disable_dbs(adap);
2423                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2424         }
2425         queue_work(adap->workq, &adap->db_drop_task);
2426 }
2427
2428 static void uld_attach(struct adapter *adap, unsigned int uld)
2429 {
2430         void *handle;
2431         struct cxgb4_lld_info lli;
2432         unsigned short i;
2433
2434         lli.pdev = adap->pdev;
2435         lli.pf = adap->pf;
2436         lli.l2t = adap->l2t;
2437         lli.tids = &adap->tids;
2438         lli.ports = adap->port;
2439         lli.vr = &adap->vres;
2440         lli.mtus = adap->params.mtus;
2441         if (uld == CXGB4_ULD_RDMA) {
2442                 lli.rxq_ids = adap->sge.rdma_rxq;
2443                 lli.ciq_ids = adap->sge.rdma_ciq;
2444                 lli.nrxq = adap->sge.rdmaqs;
2445                 lli.nciq = adap->sge.rdmaciqs;
2446         } else if (uld == CXGB4_ULD_ISCSI) {
2447                 lli.rxq_ids = adap->sge.ofld_rxq;
2448                 lli.nrxq = adap->sge.ofldqsets;
2449         }
2450         lli.ntxq = adap->sge.ofldqsets;
2451         lli.nchan = adap->params.nports;
2452         lli.nports = adap->params.nports;
2453         lli.wr_cred = adap->params.ofldq_wr_cred;
2454         lli.adapter_type = adap->params.chip;
2455         lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2456         lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2457         lli.udb_density = 1 << adap->params.sge.eq_qpp;
2458         lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2459         lli.filt_mode = adap->params.tp.vlan_pri_map;
2460         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2461         for (i = 0; i < NCHAN; i++)
2462                 lli.tx_modq[i] = i;
2463         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2464         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2465         lli.fw_vers = adap->params.fw_vers;
2466         lli.dbfifo_int_thresh = dbfifo_int_thresh;
2467         lli.sge_ingpadboundary = adap->sge.fl_align;
2468         lli.sge_egrstatuspagesize = adap->sge.stat_len;
2469         lli.sge_pktshift = adap->sge.pktshift;
2470         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2471         lli.max_ordird_qp = adap->params.max_ordird_qp;
2472         lli.max_ird_adapter = adap->params.max_ird_adapter;
2473         lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2474         lli.nodeid = dev_to_node(adap->pdev_dev);
2475
2476         handle = ulds[uld].add(&lli);
2477         if (IS_ERR(handle)) {
2478                 dev_warn(adap->pdev_dev,
2479                          "could not attach to the %s driver, error %ld\n",
2480                          uld_str[uld], PTR_ERR(handle));
2481                 return;
2482         }
2483
2484         adap->uld_handle[uld] = handle;
2485
2486         if (!netevent_registered) {
2487                 register_netevent_notifier(&cxgb4_netevent_nb);
2488                 netevent_registered = true;
2489         }
2490
2491         if (adap->flags & FULL_INIT_DONE)
2492                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
2493 }
2494
2495 static void attach_ulds(struct adapter *adap)
2496 {
2497         unsigned int i;
2498
2499         spin_lock(&adap_rcu_lock);
2500         list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2501         spin_unlock(&adap_rcu_lock);
2502
2503         mutex_lock(&uld_mutex);
2504         list_add_tail(&adap->list_node, &adapter_list);
2505         for (i = 0; i < CXGB4_ULD_MAX; i++)
2506                 if (ulds[i].add)
2507                         uld_attach(adap, i);
2508         mutex_unlock(&uld_mutex);
2509 }
2510
2511 static void detach_ulds(struct adapter *adap)
2512 {
2513         unsigned int i;
2514
2515         mutex_lock(&uld_mutex);
2516         list_del(&adap->list_node);
2517         for (i = 0; i < CXGB4_ULD_MAX; i++)
2518                 if (adap->uld_handle[i]) {
2519                         ulds[i].state_change(adap->uld_handle[i],
2520                                              CXGB4_STATE_DETACH);
2521                         adap->uld_handle[i] = NULL;
2522                 }
2523         if (netevent_registered && list_empty(&adapter_list)) {
2524                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2525                 netevent_registered = false;
2526         }
2527         mutex_unlock(&uld_mutex);
2528
2529         spin_lock(&adap_rcu_lock);
2530         list_del_rcu(&adap->rcu_node);
2531         spin_unlock(&adap_rcu_lock);
2532 }
2533
2534 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2535 {
2536         unsigned int i;
2537
2538         mutex_lock(&uld_mutex);
2539         for (i = 0; i < CXGB4_ULD_MAX; i++)
2540                 if (adap->uld_handle[i])
2541                         ulds[i].state_change(adap->uld_handle[i], new_state);
2542         mutex_unlock(&uld_mutex);
2543 }
2544
2545 /**
2546  *      cxgb4_register_uld - register an upper-layer driver
2547  *      @type: the ULD type
2548  *      @p: the ULD methods
2549  *
2550  *      Registers an upper-layer driver with this driver and notifies the ULD
2551  *      about any presently available devices that support its type.  Returns
2552  *      %-EBUSY if a ULD of the same type is already registered.
2553  */
2554 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2555 {
2556         int ret = 0;
2557         struct adapter *adap;
2558
2559         if (type >= CXGB4_ULD_MAX)
2560                 return -EINVAL;
2561         mutex_lock(&uld_mutex);
2562         if (ulds[type].add) {
2563                 ret = -EBUSY;
2564                 goto out;
2565         }
2566         ulds[type] = *p;
2567         list_for_each_entry(adap, &adapter_list, list_node)
2568                 uld_attach(adap, type);
2569 out:    mutex_unlock(&uld_mutex);
2570         return ret;
2571 }
2572 EXPORT_SYMBOL(cxgb4_register_uld);
2573
2574 /**
2575  *      cxgb4_unregister_uld - unregister an upper-layer driver
2576  *      @type: the ULD type
2577  *
2578  *      Unregisters an existing upper-layer driver.
2579  */
2580 int cxgb4_unregister_uld(enum cxgb4_uld type)
2581 {
2582         struct adapter *adap;
2583
2584         if (type >= CXGB4_ULD_MAX)
2585                 return -EINVAL;
2586         mutex_lock(&uld_mutex);
2587         list_for_each_entry(adap, &adapter_list, list_node)
2588                 adap->uld_handle[type] = NULL;
2589         ulds[type].add = NULL;
2590         mutex_unlock(&uld_mutex);
2591         return 0;
2592 }
2593 EXPORT_SYMBOL(cxgb4_unregister_uld);
2594
2595 #if IS_ENABLED(CONFIG_IPV6)
2596 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2597                                    unsigned long event, void *data)
2598 {
2599         struct inet6_ifaddr *ifa = data;
2600         struct net_device *event_dev = ifa->idev->dev;
2601         const struct device *parent = NULL;
2602 #if IS_ENABLED(CONFIG_BONDING)
2603         struct adapter *adap;
2604 #endif
2605         if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2606                 event_dev = vlan_dev_real_dev(event_dev);
2607 #if IS_ENABLED(CONFIG_BONDING)
2608         if (event_dev->flags & IFF_MASTER) {
2609                 list_for_each_entry(adap, &adapter_list, list_node) {
2610                         switch (event) {
2611                         case NETDEV_UP:
2612                                 cxgb4_clip_get(adap->port[0],
2613                                                (const u32 *)ifa, 1);
2614                                 break;
2615                         case NETDEV_DOWN:
2616                                 cxgb4_clip_release(adap->port[0],
2617                                                    (const u32 *)ifa, 1);
2618                                 break;
2619                         default:
2620                                 break;
2621                         }
2622                 }
2623                 return NOTIFY_OK;
2624         }
2625 #endif
2626
2627         if (event_dev)
2628                 parent = event_dev->dev.parent;
2629
2630         if (parent && parent->driver == &cxgb4_driver.driver) {
2631                 switch (event) {
2632                 case NETDEV_UP:
2633                         cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2634                         break;
2635                 case NETDEV_DOWN:
2636                         cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2637                         break;
2638                 default:
2639                         break;
2640                 }
2641         }
2642         return NOTIFY_OK;
2643 }
2644
2645 static bool inet6addr_registered;
2646 static struct notifier_block cxgb4_inet6addr_notifier = {
2647         .notifier_call = cxgb4_inet6addr_handler
2648 };
2649
2650 static void update_clip(const struct adapter *adap)
2651 {
2652         int i;
2653         struct net_device *dev;
2654         int ret;
2655
2656         rcu_read_lock();
2657
2658         for (i = 0; i < MAX_NPORTS; i++) {
2659                 dev = adap->port[i];
2660                 ret = 0;
2661
2662                 if (dev)
2663                         ret = cxgb4_update_root_dev_clip(dev);
2664
2665                 if (ret < 0)
2666                         break;
2667         }
2668         rcu_read_unlock();
2669 }
2670 #endif /* IS_ENABLED(CONFIG_IPV6) */
2671
2672 /**
2673  *      cxgb_up - enable the adapter
2674  *      @adap: adapter being enabled
2675  *
2676  *      Called when the first port is enabled, this function performs the
2677  *      actions necessary to make an adapter operational, such as completing
2678  *      the initialization of HW modules, and enabling interrupts.
2679  *
2680  *      Must be called with the rtnl lock held.
2681  */
2682 static int cxgb_up(struct adapter *adap)
2683 {
2684         int err;
2685
2686         err = setup_sge_queues(adap);
2687         if (err)
2688                 goto out;
2689         err = setup_rss(adap);
2690         if (err)
2691                 goto freeq;
2692
2693         if (adap->flags & USING_MSIX) {
2694                 name_msix_vecs(adap);
2695                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2696                                   adap->msix_info[0].desc, adap);
2697                 if (err)
2698                         goto irq_err;
2699
2700                 err = request_msix_queue_irqs(adap);
2701                 if (err) {
2702                         free_irq(adap->msix_info[0].vec, adap);
2703                         goto irq_err;
2704                 }
2705         } else {
2706                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2707                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2708                                   adap->port[0]->name, adap);
2709                 if (err)
2710                         goto irq_err;
2711         }
2712         enable_rx(adap);
2713         t4_sge_start(adap);
2714         t4_intr_enable(adap);
2715         adap->flags |= FULL_INIT_DONE;
2716         notify_ulds(adap, CXGB4_STATE_UP);
2717 #if IS_ENABLED(CONFIG_IPV6)
2718         update_clip(adap);
2719 #endif
2720  out:
2721         return err;
2722  irq_err:
2723         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2724  freeq:
2725         t4_free_sge_resources(adap);
2726         goto out;
2727 }
2728
2729 static void cxgb_down(struct adapter *adapter)
2730 {
2731         cancel_work_sync(&adapter->tid_release_task);
2732         cancel_work_sync(&adapter->db_full_task);
2733         cancel_work_sync(&adapter->db_drop_task);
2734         adapter->tid_release_task_busy = false;
2735         adapter->tid_release_head = NULL;
2736
2737         t4_sge_stop(adapter);
2738         t4_free_sge_resources(adapter);
2739         adapter->flags &= ~FULL_INIT_DONE;
2740 }
2741
2742 /*
2743  * net_device operations
2744  */
2745 static int cxgb_open(struct net_device *dev)
2746 {
2747         int err;
2748         struct port_info *pi = netdev_priv(dev);
2749         struct adapter *adapter = pi->adapter;
2750
2751         netif_carrier_off(dev);
2752
2753         if (!(adapter->flags & FULL_INIT_DONE)) {
2754                 err = cxgb_up(adapter);
2755                 if (err < 0)
2756                         return err;
2757         }
2758
2759         err = link_start(dev);
2760         if (!err)
2761                 netif_tx_start_all_queues(dev);
2762         return err;
2763 }
2764
2765 static int cxgb_close(struct net_device *dev)
2766 {
2767         struct port_info *pi = netdev_priv(dev);
2768         struct adapter *adapter = pi->adapter;
2769
2770         netif_tx_stop_all_queues(dev);
2771         netif_carrier_off(dev);
2772         return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2773 }
2774
2775 /* Return an error number if the indicated filter isn't writable ...
2776  */
2777 static int writable_filter(struct filter_entry *f)
2778 {
2779         if (f->locked)
2780                 return -EPERM;
2781         if (f->pending)
2782                 return -EBUSY;
2783
2784         return 0;
2785 }
2786
2787 /* Delete the filter at the specified index (if valid).  The checks for all
2788  * the common problems with doing this like the filter being locked, currently
2789  * pending in another operation, etc.
2790  */
2791 static int delete_filter(struct adapter *adapter, unsigned int fidx)
2792 {
2793         struct filter_entry *f;
2794         int ret;
2795
2796         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2797                 return -EINVAL;
2798
2799         f = &adapter->tids.ftid_tab[fidx];
2800         ret = writable_filter(f);
2801         if (ret)
2802                 return ret;
2803         if (f->valid)
2804                 return del_filter_wr(adapter, fidx);
2805
2806         return 0;
2807 }
2808
2809 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2810                 __be32 sip, __be16 sport, __be16 vlan,
2811                 unsigned int queue, unsigned char port, unsigned char mask)
2812 {
2813         int ret;
2814         struct filter_entry *f;
2815         struct adapter *adap;
2816         int i;
2817         u8 *val;
2818
2819         adap = netdev2adap(dev);
2820
2821         /* Adjust stid to correct filter index */
2822         stid -= adap->tids.sftid_base;
2823         stid += adap->tids.nftids;
2824
2825         /* Check to make sure the filter requested is writable ...
2826          */
2827         f = &adap->tids.ftid_tab[stid];
2828         ret = writable_filter(f);
2829         if (ret)
2830                 return ret;
2831
2832         /* Clear out any old resources being used by the filter before
2833          * we start constructing the new filter.
2834          */
2835         if (f->valid)
2836                 clear_filter(adap, f);
2837
2838         /* Clear out filter specifications */
2839         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2840         f->fs.val.lport = cpu_to_be16(sport);
2841         f->fs.mask.lport  = ~0;
2842         val = (u8 *)&sip;
2843         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2844                 for (i = 0; i < 4; i++) {
2845                         f->fs.val.lip[i] = val[i];
2846                         f->fs.mask.lip[i] = ~0;
2847                 }
2848                 if (adap->params.tp.vlan_pri_map & PORT_F) {
2849                         f->fs.val.iport = port;
2850                         f->fs.mask.iport = mask;
2851                 }
2852         }
2853
2854         if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2855                 f->fs.val.proto = IPPROTO_TCP;
2856                 f->fs.mask.proto = ~0;
2857         }
2858
2859         f->fs.dirsteer = 1;
2860         f->fs.iq = queue;
2861         /* Mark filter as locked */
2862         f->locked = 1;
2863         f->fs.rpttid = 1;
2864
2865         ret = set_filter_wr(adap, stid);
2866         if (ret) {
2867                 clear_filter(adap, f);
2868                 return ret;
2869         }
2870
2871         return 0;
2872 }
2873 EXPORT_SYMBOL(cxgb4_create_server_filter);
2874
2875 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2876                 unsigned int queue, bool ipv6)
2877 {
2878         int ret;
2879         struct filter_entry *f;
2880         struct adapter *adap;
2881
2882         adap = netdev2adap(dev);
2883
2884         /* Adjust stid to correct filter index */
2885         stid -= adap->tids.sftid_base;
2886         stid += adap->tids.nftids;
2887
2888         f = &adap->tids.ftid_tab[stid];
2889         /* Unlock the filter */
2890         f->locked = 0;
2891
2892         ret = delete_filter(adap, stid);
2893         if (ret)
2894                 return ret;
2895
2896         return 0;
2897 }
2898 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2899
2900 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2901                                                 struct rtnl_link_stats64 *ns)
2902 {
2903         struct port_stats stats;
2904         struct port_info *p = netdev_priv(dev);
2905         struct adapter *adapter = p->adapter;
2906
2907         /* Block retrieving statistics during EEH error
2908          * recovery. Otherwise, the recovery might fail
2909          * and the PCI device will be removed permanently
2910          */
2911         spin_lock(&adapter->stats_lock);
2912         if (!netif_device_present(dev)) {
2913                 spin_unlock(&adapter->stats_lock);
2914                 return ns;
2915         }
2916         t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2917                                  &p->stats_base);
2918         spin_unlock(&adapter->stats_lock);
2919
2920         ns->tx_bytes   = stats.tx_octets;
2921         ns->tx_packets = stats.tx_frames;
2922         ns->rx_bytes   = stats.rx_octets;
2923         ns->rx_packets = stats.rx_frames;
2924         ns->multicast  = stats.rx_mcast_frames;
2925
2926         /* detailed rx_errors */
2927         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2928                                stats.rx_runt;
2929         ns->rx_over_errors   = 0;
2930         ns->rx_crc_errors    = stats.rx_fcs_err;
2931         ns->rx_frame_errors  = stats.rx_symbol_err;
2932         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2933                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2934                                stats.rx_trunc0 + stats.rx_trunc1 +
2935                                stats.rx_trunc2 + stats.rx_trunc3;
2936         ns->rx_missed_errors = 0;
2937
2938         /* detailed tx_errors */
2939         ns->tx_aborted_errors   = 0;
2940         ns->tx_carrier_errors   = 0;
2941         ns->tx_fifo_errors      = 0;
2942         ns->tx_heartbeat_errors = 0;
2943         ns->tx_window_errors    = 0;
2944
2945         ns->tx_errors = stats.tx_error_frames;
2946         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2947                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2948         return ns;
2949 }
2950
2951 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2952 {
2953         unsigned int mbox;
2954         int ret = 0, prtad, devad;
2955         struct port_info *pi = netdev_priv(dev);
2956         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2957
2958         switch (cmd) {
2959         case SIOCGMIIPHY:
2960                 if (pi->mdio_addr < 0)
2961                         return -EOPNOTSUPP;
2962                 data->phy_id = pi->mdio_addr;
2963                 break;
2964         case SIOCGMIIREG:
2965         case SIOCSMIIREG:
2966                 if (mdio_phy_id_is_c45(data->phy_id)) {
2967                         prtad = mdio_phy_id_prtad(data->phy_id);
2968                         devad = mdio_phy_id_devad(data->phy_id);
2969                 } else if (data->phy_id < 32) {
2970                         prtad = data->phy_id;
2971                         devad = 0;
2972                         data->reg_num &= 0x1f;
2973                 } else
2974                         return -EINVAL;
2975
2976                 mbox = pi->adapter->pf;
2977                 if (cmd == SIOCGMIIREG)
2978                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2979                                          data->reg_num, &data->val_out);
2980                 else
2981                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2982                                          data->reg_num, data->val_in);
2983                 break;
2984         default:
2985                 return -EOPNOTSUPP;
2986         }
2987         return ret;
2988 }
2989
2990 static void cxgb_set_rxmode(struct net_device *dev)
2991 {
2992         /* unfortunately we can't return errors to the stack */
2993         set_rxmode(dev, -1, false);
2994 }
2995
2996 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2997 {
2998         int ret;
2999         struct port_info *pi = netdev_priv(dev);
3000
3001         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
3002                 return -EINVAL;
3003         ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
3004                             -1, -1, -1, true);
3005         if (!ret)
3006                 dev->mtu = new_mtu;
3007         return ret;
3008 }
3009
3010 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3011 {
3012         int ret;
3013         struct sockaddr *addr = p;
3014         struct port_info *pi = netdev_priv(dev);
3015
3016         if (!is_valid_ether_addr(addr->sa_data))
3017                 return -EADDRNOTAVAIL;
3018
3019         ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
3020                             pi->xact_addr_filt, addr->sa_data, true, true);
3021         if (ret < 0)
3022                 return ret;
3023
3024         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3025         pi->xact_addr_filt = ret;
3026         return 0;
3027 }
3028
3029 #ifdef CONFIG_NET_POLL_CONTROLLER
3030 static void cxgb_netpoll(struct net_device *dev)
3031 {
3032         struct port_info *pi = netdev_priv(dev);
3033         struct adapter *adap = pi->adapter;
3034
3035         if (adap->flags & USING_MSIX) {
3036                 int i;
3037                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3038
3039                 for (i = pi->nqsets; i; i--, rx++)
3040                         t4_sge_intr_msix(0, &rx->rspq);
3041         } else
3042                 t4_intr_handler(adap)(0, adap);
3043 }
3044 #endif
3045
3046 static const struct net_device_ops cxgb4_netdev_ops = {
3047         .ndo_open             = cxgb_open,
3048         .ndo_stop             = cxgb_close,
3049         .ndo_start_xmit       = t4_eth_xmit,
3050         .ndo_select_queue     = cxgb_select_queue,
3051         .ndo_get_stats64      = cxgb_get_stats,
3052         .ndo_set_rx_mode      = cxgb_set_rxmode,
3053         .ndo_set_mac_address  = cxgb_set_mac_addr,
3054         .ndo_set_features     = cxgb_set_features,
3055         .ndo_validate_addr    = eth_validate_addr,
3056         .ndo_do_ioctl         = cxgb_ioctl,
3057         .ndo_change_mtu       = cxgb_change_mtu,
3058 #ifdef CONFIG_NET_POLL_CONTROLLER
3059         .ndo_poll_controller  = cxgb_netpoll,
3060 #endif
3061 #ifdef CONFIG_CHELSIO_T4_FCOE
3062         .ndo_fcoe_enable      = cxgb_fcoe_enable,
3063         .ndo_fcoe_disable     = cxgb_fcoe_disable,
3064 #endif /* CONFIG_CHELSIO_T4_FCOE */
3065 #ifdef CONFIG_NET_RX_BUSY_POLL
3066         .ndo_busy_poll        = cxgb_busy_poll,
3067 #endif
3068
3069 };
3070
3071 void t4_fatal_err(struct adapter *adap)
3072 {
3073         t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3074         t4_intr_disable(adap);
3075         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3076 }
3077
3078 static void setup_memwin(struct adapter *adap)
3079 {
3080         u32 nic_win_base = t4_get_util_window(adap);
3081
3082         t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3083 }
3084
3085 static void setup_memwin_rdma(struct adapter *adap)
3086 {
3087         if (adap->vres.ocq.size) {
3088                 u32 start;
3089                 unsigned int sz_kb;
3090
3091                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3092                 start &= PCI_BASE_ADDRESS_MEM_MASK;
3093                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3094                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3095                 t4_write_reg(adap,
3096                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3097                              start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3098                 t4_write_reg(adap,
3099                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3100                              adap->vres.ocq.start);
3101                 t4_read_reg(adap,
3102                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3103         }
3104 }
3105
3106 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3107 {
3108         u32 v;
3109         int ret;
3110
3111         /* get device capabilities */
3112         memset(c, 0, sizeof(*c));
3113         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3114                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
3115         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3116         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3117         if (ret < 0)
3118                 return ret;
3119
3120         /* select capabilities we'll be using */
3121         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3122                 if (!vf_acls)
3123                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3124                 else
3125                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3126         } else if (vf_acls) {
3127                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
3128                 return ret;
3129         }
3130         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3131                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3132         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3133         if (ret < 0)
3134                 return ret;
3135
3136         ret = t4_config_glbl_rss(adap, adap->pf,
3137                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3138                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3139                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3140         if (ret < 0)
3141                 return ret;
3142
3143         ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3144                           MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3145                           FW_CMD_CAP_PF);
3146         if (ret < 0)
3147                 return ret;
3148
3149         t4_sge_init(adap);
3150
3151         /* tweak some settings */
3152         t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3153         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3154         t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3155         v = t4_read_reg(adap, TP_PIO_DATA_A);
3156         t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3157
3158         /* first 4 Tx modulation queues point to consecutive Tx channels */
3159         adap->params.tp.tx_modq_map = 0xE4;
3160         t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3161                      TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3162
3163         /* associate each Tx modulation queue with consecutive Tx channels */
3164         v = 0x84218421;
3165         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3166                           &v, 1, TP_TX_SCHED_HDR_A);
3167         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3168                           &v, 1, TP_TX_SCHED_FIFO_A);
3169         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3170                           &v, 1, TP_TX_SCHED_PCMD_A);
3171
3172 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3173         if (is_offload(adap)) {
3174                 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3175                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3176                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3177                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3178                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3179                 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3180                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3181                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3182                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3183                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3184         }
3185
3186         /* get basic stuff going */
3187         return t4_early_init(adap, adap->pf);
3188 }
3189
3190 /*
3191  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3192  */
3193 #define MAX_ATIDS 8192U
3194
3195 /*
3196  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3197  *
3198  * If the firmware we're dealing with has Configuration File support, then
3199  * we use that to perform all configuration
3200  */
3201
3202 /*
3203  * Tweak configuration based on module parameters, etc.  Most of these have
3204  * defaults assigned to them by Firmware Configuration Files (if we're using
3205  * them) but need to be explicitly set if we're using hard-coded
3206  * initialization.  But even in the case of using Firmware Configuration
3207  * Files, we'd like to expose the ability to change these via module
3208  * parameters so these are essentially common tweaks/settings for
3209  * Configuration Files and hard-coded initialization ...
3210  */
3211 static int adap_init0_tweaks(struct adapter *adapter)
3212 {
3213         /*
3214          * Fix up various Host-Dependent Parameters like Page Size, Cache
3215          * Line Size, etc.  The firmware default is for a 4KB Page Size and
3216          * 64B Cache Line Size ...
3217          */
3218         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3219
3220         /*
3221          * Process module parameters which affect early initialization.
3222          */
3223         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3224                 dev_err(&adapter->pdev->dev,
3225                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
3226                         rx_dma_offset);
3227                 rx_dma_offset = 2;
3228         }
3229         t4_set_reg_field(adapter, SGE_CONTROL_A,
3230                          PKTSHIFT_V(PKTSHIFT_M),
3231                          PKTSHIFT_V(rx_dma_offset));
3232
3233         /*
3234          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3235          * adds the pseudo header itself.
3236          */
3237         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3238                                CSUM_HAS_PSEUDO_HDR_F, 0);
3239
3240         return 0;
3241 }
3242
3243 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3244  * unto themselves and they contain their own firmware to perform their
3245  * tasks ...
3246  */
3247 static int phy_aq1202_version(const u8 *phy_fw_data,
3248                               size_t phy_fw_size)
3249 {
3250         int offset;
3251
3252         /* At offset 0x8 you're looking for the primary image's
3253          * starting offset which is 3 Bytes wide
3254          *
3255          * At offset 0xa of the primary image, you look for the offset
3256          * of the DRAM segment which is 3 Bytes wide.
3257          *
3258          * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3259          * wide
3260          */
3261         #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3262         #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3263         #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3264
3265         offset = le24(phy_fw_data + 0x8) << 12;
3266         offset = le24(phy_fw_data + offset + 0xa);
3267         return be16(phy_fw_data + offset + 0x27e);
3268
3269         #undef be16
3270         #undef le16
3271         #undef le24
3272 }
3273
3274 static struct info_10gbt_phy_fw {
3275         unsigned int phy_fw_id;         /* PCI Device ID */
3276         char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
3277         int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3278         int phy_flash;                  /* Has FLASH for PHY Firmware */
3279 } phy_info_array[] = {
3280         {
3281                 PHY_AQ1202_DEVICEID,
3282                 PHY_AQ1202_FIRMWARE,
3283                 phy_aq1202_version,
3284                 1,
3285         },
3286         {
3287                 PHY_BCM84834_DEVICEID,
3288                 PHY_BCM84834_FIRMWARE,
3289                 NULL,
3290                 0,
3291         },
3292         { 0, NULL, NULL },
3293 };
3294
3295 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3296 {
3297         int i;
3298
3299         for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3300                 if (phy_info_array[i].phy_fw_id == devid)
3301                         return &phy_info_array[i];
3302         }
3303         return NULL;
3304 }
3305
3306 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3307  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3308  * we return a negative error number.  If we transfer new firmware we return 1
3309  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3310  */
3311 static int adap_init0_phy(struct adapter *adap)
3312 {
3313         const struct firmware *phyf;
3314         int ret;
3315         struct info_10gbt_phy_fw *phy_info;
3316
3317         /* Use the device ID to determine which PHY file to flash.
3318          */
3319         phy_info = find_phy_info(adap->pdev->device);
3320         if (!phy_info) {
3321                 dev_warn(adap->pdev_dev,
3322                          "No PHY Firmware file found for this PHY\n");
3323                 return -EOPNOTSUPP;
3324         }
3325
3326         /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3327          * use that. The adapter firmware provides us with a memory buffer
3328          * where we can load a PHY firmware file from the host if we want to
3329          * override the PHY firmware File in flash.
3330          */
3331         ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3332                                       adap->pdev_dev);
3333         if (ret < 0) {
3334                 /* For adapters without FLASH attached to PHY for their
3335                  * firmware, it's obviously a fatal error if we can't get the
3336                  * firmware to the adapter.  For adapters with PHY firmware
3337                  * FLASH storage, it's worth a warning if we can't find the
3338                  * PHY Firmware but we'll neuter the error ...
3339                  */
3340                 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3341                         "/lib/firmware/%s, error %d\n",
3342                         phy_info->phy_fw_file, -ret);
3343                 if (phy_info->phy_flash) {
3344                         int cur_phy_fw_ver = 0;
3345
3346                         t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3347                         dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3348                                  "FLASH copy, version %#x\n", cur_phy_fw_ver);
3349                         ret = 0;
3350                 }
3351
3352                 return ret;
3353         }
3354
3355         /* Load PHY Firmware onto adapter.
3356          */
3357         ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3358                              phy_info->phy_fw_version,
3359                              (u8 *)phyf->data, phyf->size);
3360         if (ret < 0)
3361                 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3362                         -ret);
3363         else if (ret > 0) {
3364                 int new_phy_fw_ver = 0;
3365
3366                 if (phy_info->phy_fw_version)
3367                         new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3368                                                                   phyf->size);
3369                 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3370                          "Firmware /lib/firmware/%s, version %#x\n",
3371                          phy_info->phy_fw_file, new_phy_fw_ver);
3372         }
3373
3374         release_firmware(phyf);
3375
3376         return ret;
3377 }
3378
3379 /*
3380  * Attempt to initialize the adapter via a Firmware Configuration File.
3381  */
3382 static int adap_init0_config(struct adapter *adapter, int reset)
3383 {
3384         struct fw_caps_config_cmd caps_cmd;
3385         const struct firmware *cf;
3386         unsigned long mtype = 0, maddr = 0;
3387         u32 finiver, finicsum, cfcsum;
3388         int ret;
3389         int config_issued = 0;
3390         char *fw_config_file, fw_config_file_path[256];
3391         char *config_name = NULL;
3392
3393         /*
3394          * Reset device if necessary.
3395          */
3396         if (reset) {
3397                 ret = t4_fw_reset(adapter, adapter->mbox,
3398                                   PIORSTMODE_F | PIORST_F);
3399                 if (ret < 0)
3400                         goto bye;
3401         }
3402
3403         /* If this is a 10Gb/s-BT adapter make sure the chip-external
3404          * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3405          * to be performed after any global adapter RESET above since some
3406          * PHYs only have local RAM copies of the PHY firmware.
3407          */
3408         if (is_10gbt_device(adapter->pdev->device)) {
3409                 ret = adap_init0_phy(adapter);
3410                 if (ret < 0)
3411                         goto bye;
3412         }
3413         /*
3414          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3415          * then use that.  Otherwise, use the configuration file stored
3416          * in the adapter flash ...
3417          */
3418         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3419         case CHELSIO_T4:
3420                 fw_config_file = FW4_CFNAME;
3421                 break;
3422         case CHELSIO_T5:
3423                 fw_config_file = FW5_CFNAME;
3424                 break;
3425         case CHELSIO_T6:
3426                 fw_config_file = FW6_CFNAME;
3427                 break;
3428         default:
3429                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3430                        adapter->pdev->device);
3431                 ret = -EINVAL;
3432                 goto bye;
3433         }
3434
3435         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3436         if (ret < 0) {
3437                 config_name = "On FLASH";
3438                 mtype = FW_MEMTYPE_CF_FLASH;
3439                 maddr = t4_flash_cfg_addr(adapter);
3440         } else {
3441                 u32 params[7], val[7];
3442
3443                 sprintf(fw_config_file_path,
3444                         "/lib/firmware/%s", fw_config_file);
3445                 config_name = fw_config_file_path;
3446
3447                 if (cf->size >= FLASH_CFG_MAX_SIZE)
3448                         ret = -ENOMEM;
3449                 else {
3450                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3451                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3452                         ret = t4_query_params(adapter, adapter->mbox,
3453                                               adapter->pf, 0, 1, params, val);
3454                         if (ret == 0) {
3455                                 /*
3456                                  * For t4_memory_rw() below addresses and
3457                                  * sizes have to be in terms of multiples of 4
3458                                  * bytes.  So, if the Configuration File isn't
3459                                  * a multiple of 4 bytes in length we'll have
3460                                  * to write that out separately since we can't
3461                                  * guarantee that the bytes following the
3462                                  * residual byte in the buffer returned by
3463                                  * request_firmware() are zeroed out ...
3464                                  */
3465                                 size_t resid = cf->size & 0x3;
3466                                 size_t size = cf->size & ~0x3;
3467                                 __be32 *data = (__be32 *)cf->data;
3468
3469                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3470                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3471
3472                                 spin_lock(&adapter->win0_lock);
3473                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3474                                                    size, data, T4_MEMORY_WRITE);
3475                                 if (ret == 0 && resid != 0) {
3476                                         union {
3477                                                 __be32 word;
3478                                                 char buf[4];
3479                                         } last;
3480                                         int i;
3481
3482                                         last.word = data[size >> 2];
3483                                         for (i = resid; i < 4; i++)
3484                                                 last.buf[i] = 0;
3485                                         ret = t4_memory_rw(adapter, 0, mtype,
3486                                                            maddr + size,
3487                                                            4, &last.word,
3488                                                            T4_MEMORY_WRITE);
3489                                 }
3490                                 spin_unlock(&adapter->win0_lock);
3491                         }
3492                 }
3493
3494                 release_firmware(cf);
3495                 if (ret)
3496                         goto bye;
3497         }
3498
3499         /*
3500          * Issue a Capability Configuration command to the firmware to get it
3501          * to parse the Configuration File.  We don't use t4_fw_config_file()
3502          * because we want the ability to modify various features after we've
3503          * processed the configuration file ...
3504          */
3505         memset(&caps_cmd, 0, sizeof(caps_cmd));
3506         caps_cmd.op_to_write =
3507                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3508                       FW_CMD_REQUEST_F |
3509                       FW_CMD_READ_F);
3510         caps_cmd.cfvalid_to_len16 =
3511                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3512                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3513                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3514                       FW_LEN16(caps_cmd));
3515         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3516                          &caps_cmd);
3517
3518         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3519          * Configuration File in FLASH), our last gasp effort is to use the
3520          * Firmware Configuration File which is embedded in the firmware.  A
3521          * very few early versions of the firmware didn't have one embedded
3522          * but we can ignore those.
3523          */
3524         if (ret == -ENOENT) {
3525                 memset(&caps_cmd, 0, sizeof(caps_cmd));
3526                 caps_cmd.op_to_write =
3527                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3528                                         FW_CMD_REQUEST_F |
3529                                         FW_CMD_READ_F);
3530                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3531                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3532                                 sizeof(caps_cmd), &caps_cmd);
3533                 config_name = "Firmware Default";
3534         }
3535
3536         config_issued = 1;
3537         if (ret < 0)
3538                 goto bye;
3539
3540         finiver = ntohl(caps_cmd.finiver);
3541         finicsum = ntohl(caps_cmd.finicsum);
3542         cfcsum = ntohl(caps_cmd.cfcsum);
3543         if (finicsum != cfcsum)
3544                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3545                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3546                          finicsum, cfcsum);
3547
3548         /*
3549          * And now tell the firmware to use the configuration we just loaded.
3550          */
3551         caps_cmd.op_to_write =
3552                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3553                       FW_CMD_REQUEST_F |
3554                       FW_CMD_WRITE_F);
3555         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3556         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3557                          NULL);
3558         if (ret < 0)
3559                 goto bye;
3560
3561         /*
3562          * Tweak configuration based on system architecture, module
3563          * parameters, etc.
3564          */
3565         ret = adap_init0_tweaks(adapter);
3566         if (ret < 0)
3567                 goto bye;
3568
3569         /*
3570          * And finally tell the firmware to initialize itself using the
3571          * parameters from the Configuration File.
3572          */
3573         ret = t4_fw_initialize(adapter, adapter->mbox);
3574         if (ret < 0)
3575                 goto bye;
3576
3577         /* Emit Firmware Configuration File information and return
3578          * successfully.
3579          */
3580         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3581                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3582                  config_name, finiver, cfcsum);
3583         return 0;
3584
3585         /*
3586          * Something bad happened.  Return the error ...  (If the "error"
3587          * is that there's no Configuration File on the adapter we don't
3588          * want to issue a warning since this is fairly common.)
3589          */
3590 bye:
3591         if (config_issued && ret != -ENOENT)
3592                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3593                          config_name, -ret);
3594         return ret;
3595 }
3596
3597 static struct fw_info fw_info_array[] = {
3598         {
3599                 .chip = CHELSIO_T4,
3600                 .fs_name = FW4_CFNAME,
3601                 .fw_mod_name = FW4_FNAME,
3602                 .fw_hdr = {
3603                         .chip = FW_HDR_CHIP_T4,
3604                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3605                         .intfver_nic = FW_INTFVER(T4, NIC),
3606                         .intfver_vnic = FW_INTFVER(T4, VNIC),
3607                         .intfver_ri = FW_INTFVER(T4, RI),
3608                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3609                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
3610                 },
3611         }, {
3612                 .chip = CHELSIO_T5,
3613                 .fs_name = FW5_CFNAME,
3614                 .fw_mod_name = FW5_FNAME,
3615                 .fw_hdr = {
3616                         .chip = FW_HDR_CHIP_T5,
3617                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3618                         .intfver_nic = FW_INTFVER(T5, NIC),
3619                         .intfver_vnic = FW_INTFVER(T5, VNIC),
3620                         .intfver_ri = FW_INTFVER(T5, RI),
3621                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3622                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
3623                 },
3624         }, {
3625                 .chip = CHELSIO_T6,
3626                 .fs_name = FW6_CFNAME,
3627                 .fw_mod_name = FW6_FNAME,
3628                 .fw_hdr = {
3629                         .chip = FW_HDR_CHIP_T6,
3630                         .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3631                         .intfver_nic = FW_INTFVER(T6, NIC),
3632                         .intfver_vnic = FW_INTFVER(T6, VNIC),
3633                         .intfver_ofld = FW_INTFVER(T6, OFLD),
3634                         .intfver_ri = FW_INTFVER(T6, RI),
3635                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3636                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3637                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3638                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
3639                 },
3640         }
3641
3642 };
3643
3644 static struct fw_info *find_fw_info(int chip)
3645 {
3646         int i;
3647
3648         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3649                 if (fw_info_array[i].chip == chip)
3650                         return &fw_info_array[i];
3651         }
3652         return NULL;
3653 }
3654
3655 /*
3656  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3657  */
3658 static int adap_init0(struct adapter *adap)
3659 {
3660         int ret;
3661         u32 v, port_vec;
3662         enum dev_state state;
3663         u32 params[7], val[7];
3664         struct fw_caps_config_cmd caps_cmd;
3665         int reset = 1;
3666
3667         /* Grab Firmware Device Log parameters as early as possible so we have
3668          * access to it for debugging, etc.
3669          */
3670         ret = t4_init_devlog_params(adap);
3671         if (ret < 0)
3672                 return ret;
3673
3674         /* Contact FW, advertising Master capability */
3675         ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3676         if (ret < 0) {
3677                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3678                         ret);
3679                 return ret;
3680         }
3681         if (ret == adap->mbox)
3682                 adap->flags |= MASTER_PF;
3683
3684         /*
3685          * If we're the Master PF Driver and the device is uninitialized,
3686          * then let's consider upgrading the firmware ...  (We always want
3687          * to check the firmware version number in order to A. get it for
3688          * later reporting and B. to warn if the currently loaded firmware
3689          * is excessively mismatched relative to the driver.)
3690          */
3691         t4_get_fw_version(adap, &adap->params.fw_vers);
3692         t4_get_tp_version(adap, &adap->params.tp_vers);
3693         ret = t4_check_fw_version(adap);
3694         /* If firmware is too old (not supported by driver) force an update. */
3695         if (ret == -EFAULT)
3696                 state = DEV_STATE_UNINIT;
3697         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3698                 struct fw_info *fw_info;
3699                 struct fw_hdr *card_fw;
3700                 const struct firmware *fw;
3701                 const u8 *fw_data = NULL;
3702                 unsigned int fw_size = 0;
3703
3704                 /* This is the firmware whose headers the driver was compiled
3705                  * against
3706                  */
3707                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3708                 if (fw_info == NULL) {
3709                         dev_err(adap->pdev_dev,
3710                                 "unable to get firmware info for chip %d.\n",
3711                                 CHELSIO_CHIP_VERSION(adap->params.chip));
3712                         return -EINVAL;
3713                 }
3714
3715                 /* allocate memory to read the header of the firmware on the
3716                  * card
3717                  */
3718                 card_fw = t4_alloc_mem(sizeof(*card_fw));
3719
3720                 /* Get FW from from /lib/firmware/ */
3721                 ret = request_firmware(&fw, fw_info->fw_mod_name,
3722                                        adap->pdev_dev);
3723                 if (ret < 0) {
3724                         dev_err(adap->pdev_dev,
3725                                 "unable to load firmware image %s, error %d\n",
3726                                 fw_info->fw_mod_name, ret);
3727                 } else {
3728                         fw_data = fw->data;
3729                         fw_size = fw->size;
3730                 }
3731
3732                 /* upgrade FW logic */
3733                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3734                                  state, &reset);
3735
3736                 /* Cleaning up */
3737                 release_firmware(fw);
3738                 t4_free_mem(card_fw);
3739
3740                 if (ret < 0)
3741                         goto bye;
3742         }
3743
3744         /*
3745          * Grab VPD parameters.  This should be done after we establish a
3746          * connection to the firmware since some of the VPD parameters
3747          * (notably the Core Clock frequency) are retrieved via requests to
3748          * the firmware.  On the other hand, we need these fairly early on
3749          * so we do this right after getting ahold of the firmware.
3750          */
3751         ret = t4_get_vpd_params(adap, &adap->params.vpd);
3752         if (ret < 0)
3753                 goto bye;
3754
3755         /*
3756          * Find out what ports are available to us.  Note that we need to do
3757          * this before calling adap_init0_no_config() since it needs nports
3758          * and portvec ...
3759          */
3760         v =
3761             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3762             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3763         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3764         if (ret < 0)
3765                 goto bye;
3766
3767         adap->params.nports = hweight32(port_vec);
3768         adap->params.portvec = port_vec;
3769
3770         /* If the firmware is initialized already, emit a simply note to that
3771          * effect. Otherwise, it's time to try initializing the adapter.
3772          */
3773         if (state == DEV_STATE_INIT) {
3774                 dev_info(adap->pdev_dev, "Coming up as %s: "\
3775                          "Adapter already initialized\n",
3776                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3777         } else {
3778                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3779                          "Initializing adapter\n");
3780
3781                 /* Find out whether we're dealing with a version of the
3782                  * firmware which has configuration file support.
3783                  */
3784                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3785                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3786                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3787                                       params, val);
3788
3789                 /* If the firmware doesn't support Configuration Files,
3790                  * return an error.
3791                  */
3792                 if (ret < 0) {
3793                         dev_err(adap->pdev_dev, "firmware doesn't support "
3794                                 "Firmware Configuration Files\n");
3795                         goto bye;
3796                 }
3797
3798                 /* The firmware provides us with a memory buffer where we can
3799                  * load a Configuration File from the host if we want to
3800                  * override the Configuration File in flash.
3801                  */
3802                 ret = adap_init0_config(adap, reset);
3803                 if (ret == -ENOENT) {
3804                         dev_err(adap->pdev_dev, "no Configuration File "
3805                                 "present on adapter.\n");
3806                         goto bye;
3807                 }
3808                 if (ret < 0) {
3809                         dev_err(adap->pdev_dev, "could not initialize "
3810                                 "adapter, error %d\n", -ret);
3811                         goto bye;
3812                 }
3813         }
3814
3815         /* Give the SGE code a chance to pull in anything that it needs ...
3816          * Note that this must be called after we retrieve our VPD parameters
3817          * in order to know how to convert core ticks to seconds, etc.
3818          */
3819         ret = t4_sge_init(adap);
3820         if (ret < 0)
3821                 goto bye;
3822
3823         if (is_bypass_device(adap->pdev->device))
3824                 adap->params.bypass = 1;
3825
3826         /*
3827          * Grab some of our basic fundamental operating parameters.
3828          */
3829 #define FW_PARAM_DEV(param) \
3830         (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3831         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3832
3833 #define FW_PARAM_PFVF(param) \
3834         FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3835         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3836         FW_PARAMS_PARAM_Y_V(0) | \
3837         FW_PARAMS_PARAM_Z_V(0)
3838
3839         params[0] = FW_PARAM_PFVF(EQ_START);
3840         params[1] = FW_PARAM_PFVF(L2T_START);
3841         params[2] = FW_PARAM_PFVF(L2T_END);
3842         params[3] = FW_PARAM_PFVF(FILTER_START);
3843         params[4] = FW_PARAM_PFVF(FILTER_END);
3844         params[5] = FW_PARAM_PFVF(IQFLINT_START);
3845         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3846         if (ret < 0)
3847                 goto bye;
3848         adap->sge.egr_start = val[0];
3849         adap->l2t_start = val[1];
3850         adap->l2t_end = val[2];
3851         adap->tids.ftid_base = val[3];
3852         adap->tids.nftids = val[4] - val[3] + 1;
3853         adap->sge.ingr_start = val[5];
3854
3855         /* qids (ingress/egress) returned from firmware can be anywhere
3856          * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3857          * Hence driver needs to allocate memory for this range to
3858          * store the queue info. Get the highest IQFLINT/EQ index returned
3859          * in FW_EQ_*_CMD.alloc command.
3860          */
3861         params[0] = FW_PARAM_PFVF(EQ_END);
3862         params[1] = FW_PARAM_PFVF(IQFLINT_END);
3863         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3864         if (ret < 0)
3865                 goto bye;
3866         adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3867         adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3868
3869         adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3870                                     sizeof(*adap->sge.egr_map), GFP_KERNEL);
3871         if (!adap->sge.egr_map) {
3872                 ret = -ENOMEM;
3873                 goto bye;
3874         }
3875
3876         adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3877                                      sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3878         if (!adap->sge.ingr_map) {
3879                 ret = -ENOMEM;
3880                 goto bye;
3881         }
3882
3883         /* Allocate the memory for the vaious egress queue bitmaps
3884          * ie starving_fl, txq_maperr and blocked_fl.
3885          */
3886         adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3887                                         sizeof(long), GFP_KERNEL);
3888         if (!adap->sge.starving_fl) {
3889                 ret = -ENOMEM;
3890                 goto bye;
3891         }
3892
3893         adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3894                                        sizeof(long), GFP_KERNEL);
3895         if (!adap->sge.txq_maperr) {
3896                 ret = -ENOMEM;
3897                 goto bye;
3898         }
3899
3900 #ifdef CONFIG_DEBUG_FS
3901         adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3902                                        sizeof(long), GFP_KERNEL);
3903         if (!adap->sge.blocked_fl) {
3904                 ret = -ENOMEM;
3905                 goto bye;
3906         }
3907 #endif
3908
3909         params[0] = FW_PARAM_PFVF(CLIP_START);
3910         params[1] = FW_PARAM_PFVF(CLIP_END);
3911         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3912         if (ret < 0)
3913                 goto bye;
3914         adap->clipt_start = val[0];
3915         adap->clipt_end = val[1];
3916
3917         /* query params related to active filter region */
3918         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3919         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3920         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3921         /* If Active filter size is set we enable establishing
3922          * offload connection through firmware work request
3923          */
3924         if ((val[0] != val[1]) && (ret >= 0)) {
3925                 adap->flags |= FW_OFLD_CONN;
3926                 adap->tids.aftid_base = val[0];
3927                 adap->tids.aftid_end = val[1];
3928         }
3929
3930         /* If we're running on newer firmware, let it know that we're
3931          * prepared to deal with encapsulated CPL messages.  Older
3932          * firmware won't understand this and we'll just get
3933          * unencapsulated messages ...
3934          */
3935         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3936         val[0] = 1;
3937         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3938
3939         /*
3940          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3941          * capability.  Earlier versions of the firmware didn't have the
3942          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3943          * permission to use ULPTX MEMWRITE DSGL.
3944          */
3945         if (is_t4(adap->params.chip)) {
3946                 adap->params.ulptx_memwrite_dsgl = false;
3947         } else {
3948                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3949                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3950                                       1, params, val);
3951                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3952         }
3953
3954         /*
3955          * Get device capabilities so we can determine what resources we need
3956          * to manage.
3957          */
3958         memset(&caps_cmd, 0, sizeof(caps_cmd));
3959         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3960                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
3961         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3962         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3963                          &caps_cmd);
3964         if (ret < 0)
3965                 goto bye;
3966
3967         if (caps_cmd.ofldcaps) {
3968                 /* query offload-related parameters */
3969                 params[0] = FW_PARAM_DEV(NTID);
3970                 params[1] = FW_PARAM_PFVF(SERVER_START);
3971                 params[2] = FW_PARAM_PFVF(SERVER_END);
3972                 params[3] = FW_PARAM_PFVF(TDDP_START);
3973                 params[4] = FW_PARAM_PFVF(TDDP_END);
3974                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3975                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3976                                       params, val);
3977                 if (ret < 0)
3978                         goto bye;
3979                 adap->tids.ntids = val[0];
3980                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3981                 adap->tids.stid_base = val[1];
3982                 adap->tids.nstids = val[2] - val[1] + 1;
3983                 /*
3984                  * Setup server filter region. Divide the available filter
3985                  * region into two parts. Regular filters get 1/3rd and server
3986                  * filters get 2/3rd part. This is only enabled if workarond
3987                  * path is enabled.
3988                  * 1. For regular filters.
3989                  * 2. Server filter: This are special filters which are used
3990                  * to redirect SYN packets to offload queue.
3991                  */
3992                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3993                         adap->tids.sftid_base = adap->tids.ftid_base +
3994                                         DIV_ROUND_UP(adap->tids.nftids, 3);
3995                         adap->tids.nsftids = adap->tids.nftids -
3996                                          DIV_ROUND_UP(adap->tids.nftids, 3);
3997                         adap->tids.nftids = adap->tids.sftid_base -
3998                                                 adap->tids.ftid_base;
3999                 }
4000                 adap->vres.ddp.start = val[3];
4001                 adap->vres.ddp.size = val[4] - val[3] + 1;
4002                 adap->params.ofldq_wr_cred = val[5];
4003
4004                 adap->params.offload = 1;
4005         }
4006         if (caps_cmd.rdmacaps) {
4007                 params[0] = FW_PARAM_PFVF(STAG_START);
4008                 params[1] = FW_PARAM_PFVF(STAG_END);
4009                 params[2] = FW_PARAM_PFVF(RQ_START);
4010                 params[3] = FW_PARAM_PFVF(RQ_END);
4011                 params[4] = FW_PARAM_PFVF(PBL_START);
4012                 params[5] = FW_PARAM_PFVF(PBL_END);
4013                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4014                                       params, val);
4015                 if (ret < 0)
4016                         goto bye;
4017                 adap->vres.stag.start = val[0];
4018                 adap->vres.stag.size = val[1] - val[0] + 1;
4019                 adap->vres.rq.start = val[2];
4020                 adap->vres.rq.size = val[3] - val[2] + 1;
4021                 adap->vres.pbl.start = val[4];
4022                 adap->vres.pbl.size = val[5] - val[4] + 1;
4023
4024                 params[0] = FW_PARAM_PFVF(SQRQ_START);
4025                 params[1] = FW_PARAM_PFVF(SQRQ_END);
4026                 params[2] = FW_PARAM_PFVF(CQ_START);
4027                 params[3] = FW_PARAM_PFVF(CQ_END);
4028                 params[4] = FW_PARAM_PFVF(OCQ_START);
4029                 params[5] = FW_PARAM_PFVF(OCQ_END);
4030                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4031                                       val);
4032                 if (ret < 0)
4033                         goto bye;
4034                 adap->vres.qp.start = val[0];
4035                 adap->vres.qp.size = val[1] - val[0] + 1;
4036                 adap->vres.cq.start = val[2];
4037                 adap->vres.cq.size = val[3] - val[2] + 1;
4038                 adap->vres.ocq.start = val[4];
4039                 adap->vres.ocq.size = val[5] - val[4] + 1;
4040
4041                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4042                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4043                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4044                                       val);
4045                 if (ret < 0) {
4046                         adap->params.max_ordird_qp = 8;
4047                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4048                         ret = 0;
4049                 } else {
4050                         adap->params.max_ordird_qp = val[0];
4051                         adap->params.max_ird_adapter = val[1];
4052                 }
4053                 dev_info(adap->pdev_dev,
4054                          "max_ordird_qp %d max_ird_adapter %d\n",
4055                          adap->params.max_ordird_qp,
4056                          adap->params.max_ird_adapter);
4057         }
4058         if (caps_cmd.iscsicaps) {
4059                 params[0] = FW_PARAM_PFVF(ISCSI_START);
4060                 params[1] = FW_PARAM_PFVF(ISCSI_END);
4061                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4062                                       params, val);
4063                 if (ret < 0)
4064                         goto bye;
4065                 adap->vres.iscsi.start = val[0];
4066                 adap->vres.iscsi.size = val[1] - val[0] + 1;
4067         }
4068 #undef FW_PARAM_PFVF
4069 #undef FW_PARAM_DEV
4070
4071         /* The MTU/MSS Table is initialized by now, so load their values.  If
4072          * we're initializing the adapter, then we'll make any modifications
4073          * we want to the MTU/MSS Table and also initialize the congestion
4074          * parameters.
4075          */
4076         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4077         if (state != DEV_STATE_INIT) {
4078                 int i;
4079
4080                 /* The default MTU Table contains values 1492 and 1500.
4081                  * However, for TCP, it's better to have two values which are
4082                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4083                  * This allows us to have a TCP Data Payload which is a
4084                  * multiple of 8 regardless of what combination of TCP Options
4085                  * are in use (always a multiple of 4 bytes) which is
4086                  * important for performance reasons.  For instance, if no
4087                  * options are in use, then we have a 20-byte IP header and a
4088                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
4089                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4090                  * which is not a multiple of 8.  So using an MSS of 1488 in
4091                  * this case results in a TCP Data Payload of 1448 bytes which
4092                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4093                  * Stamps have been negotiated, then an MTU of 1500 bytes
4094                  * results in a TCP Data Payload of 1448 bytes which, as
4095                  * above, is a multiple of 8 bytes ...
4096                  */
4097                 for (i = 0; i < NMTUS; i++)
4098                         if (adap->params.mtus[i] == 1492) {
4099                                 adap->params.mtus[i] = 1488;
4100                                 break;
4101                         }
4102
4103                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4104                              adap->params.b_wnd);
4105         }
4106         t4_init_sge_params(adap);
4107         adap->flags |= FW_OK;
4108         t4_init_tp_params(adap);
4109         return 0;
4110
4111         /*
4112          * Something bad happened.  If a command timed out or failed with EIO
4113          * FW does not operate within its spec or something catastrophic
4114          * happened to HW/FW, stop issuing commands.
4115          */
4116 bye:
4117         kfree(adap->sge.egr_map);
4118         kfree(adap->sge.ingr_map);
4119         kfree(adap->sge.starving_fl);
4120         kfree(adap->sge.txq_maperr);
4121 #ifdef CONFIG_DEBUG_FS
4122         kfree(adap->sge.blocked_fl);
4123 #endif
4124         if (ret != -ETIMEDOUT && ret != -EIO)
4125                 t4_fw_bye(adap, adap->mbox);
4126         return ret;
4127 }
4128
4129 /* EEH callbacks */
4130
4131 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4132                                          pci_channel_state_t state)
4133 {
4134         int i;
4135         struct adapter *adap = pci_get_drvdata(pdev);
4136
4137         if (!adap)
4138                 goto out;
4139
4140         rtnl_lock();
4141         adap->flags &= ~FW_OK;
4142         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4143         spin_lock(&adap->stats_lock);
4144         for_each_port(adap, i) {
4145                 struct net_device *dev = adap->port[i];
4146
4147                 netif_device_detach(dev);
4148                 netif_carrier_off(dev);
4149         }
4150         spin_unlock(&adap->stats_lock);
4151         disable_interrupts(adap);
4152         if (adap->flags & FULL_INIT_DONE)
4153                 cxgb_down(adap);
4154         rtnl_unlock();
4155         if ((adap->flags & DEV_ENABLED)) {
4156                 pci_disable_device(pdev);
4157                 adap->flags &= ~DEV_ENABLED;
4158         }
4159 out:    return state == pci_channel_io_perm_failure ?
4160                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4161 }
4162
4163 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4164 {
4165         int i, ret;
4166         struct fw_caps_config_cmd c;
4167         struct adapter *adap = pci_get_drvdata(pdev);
4168
4169         if (!adap) {
4170                 pci_restore_state(pdev);
4171                 pci_save_state(pdev);
4172                 return PCI_ERS_RESULT_RECOVERED;
4173         }
4174
4175         if (!(adap->flags & DEV_ENABLED)) {
4176                 if (pci_enable_device(pdev)) {
4177                         dev_err(&pdev->dev, "Cannot reenable PCI "
4178                                             "device after reset\n");
4179                         return PCI_ERS_RESULT_DISCONNECT;
4180                 }
4181                 adap->flags |= DEV_ENABLED;
4182         }
4183
4184         pci_set_master(pdev);
4185         pci_restore_state(pdev);
4186         pci_save_state(pdev);
4187         pci_cleanup_aer_uncorrect_error_status(pdev);
4188
4189         if (t4_wait_dev_ready(adap->regs) < 0)
4190                 return PCI_ERS_RESULT_DISCONNECT;
4191         if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4192                 return PCI_ERS_RESULT_DISCONNECT;
4193         adap->flags |= FW_OK;
4194         if (adap_init1(adap, &c))
4195                 return PCI_ERS_RESULT_DISCONNECT;
4196
4197         for_each_port(adap, i) {
4198                 struct port_info *p = adap2pinfo(adap, i);
4199
4200                 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4201                                   NULL, NULL);
4202                 if (ret < 0)
4203                         return PCI_ERS_RESULT_DISCONNECT;
4204                 p->viid = ret;
4205                 p->xact_addr_filt = -1;
4206         }
4207
4208         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4209                      adap->params.b_wnd);
4210         setup_memwin(adap);
4211         if (cxgb_up(adap))
4212                 return PCI_ERS_RESULT_DISCONNECT;
4213         return PCI_ERS_RESULT_RECOVERED;
4214 }
4215
4216 static void eeh_resume(struct pci_dev *pdev)
4217 {
4218         int i;
4219         struct adapter *adap = pci_get_drvdata(pdev);
4220
4221         if (!adap)
4222                 return;
4223
4224         rtnl_lock();
4225         for_each_port(adap, i) {
4226                 struct net_device *dev = adap->port[i];
4227
4228                 if (netif_running(dev)) {
4229                         link_start(dev);
4230                         cxgb_set_rxmode(dev);
4231                 }
4232                 netif_device_attach(dev);
4233         }
4234         rtnl_unlock();
4235 }
4236
4237 static const struct pci_error_handlers cxgb4_eeh = {
4238         .error_detected = eeh_err_detected,
4239         .slot_reset     = eeh_slot_reset,
4240         .resume         = eeh_resume,
4241 };
4242
4243 static inline bool is_x_10g_port(const struct link_config *lc)
4244 {
4245         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4246                (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4247 }
4248
4249 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4250                              unsigned int us, unsigned int cnt,
4251                              unsigned int size, unsigned int iqe_size)
4252 {
4253         q->adap = adap;
4254         cxgb4_set_rspq_intr_params(q, us, cnt);
4255         q->iqe_len = iqe_size;
4256         q->size = size;
4257 }
4258
4259 /*
4260  * Perform default configuration of DMA queues depending on the number and type
4261  * of ports we found and the number of available CPUs.  Most settings can be
4262  * modified by the admin prior to actual use.
4263  */
4264 static void cfg_queues(struct adapter *adap)
4265 {
4266         struct sge *s = &adap->sge;
4267         int i, n10g = 0, qidx = 0;
4268 #ifndef CONFIG_CHELSIO_T4_DCB
4269         int q10g = 0;
4270 #endif
4271         int ciq_size;
4272
4273         for_each_port(adap, i)
4274                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4275 #ifdef CONFIG_CHELSIO_T4_DCB
4276         /* For Data Center Bridging support we need to be able to support up
4277          * to 8 Traffic Priorities; each of which will be assigned to its
4278          * own TX Queue in order to prevent Head-Of-Line Blocking.
4279          */
4280         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4281                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4282                         MAX_ETH_QSETS, adap->params.nports * 8);
4283                 BUG_ON(1);
4284         }
4285
4286         for_each_port(adap, i) {
4287                 struct port_info *pi = adap2pinfo(adap, i);
4288
4289                 pi->first_qset = qidx;
4290                 pi->nqsets = 8;
4291                 qidx += pi->nqsets;
4292         }
4293 #else /* !CONFIG_CHELSIO_T4_DCB */
4294         /*
4295          * We default to 1 queue per non-10G port and up to # of cores queues
4296          * per 10G port.
4297          */
4298         if (n10g)
4299                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4300         if (q10g > netif_get_num_default_rss_queues())
4301                 q10g = netif_get_num_default_rss_queues();
4302
4303         for_each_port(adap, i) {
4304                 struct port_info *pi = adap2pinfo(adap, i);
4305
4306                 pi->first_qset = qidx;
4307                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4308                 qidx += pi->nqsets;
4309         }
4310 #endif /* !CONFIG_CHELSIO_T4_DCB */
4311
4312         s->ethqsets = qidx;
4313         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4314
4315         if (is_offload(adap)) {
4316                 /*
4317                  * For offload we use 1 queue/channel if all ports are up to 1G,
4318                  * otherwise we divide all available queues amongst the channels
4319                  * capped by the number of available cores.
4320                  */
4321                 if (n10g) {
4322                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
4323                                   num_online_cpus());
4324                         s->ofldqsets = roundup(i, adap->params.nports);
4325                 } else
4326                         s->ofldqsets = adap->params.nports;
4327                 /* For RDMA one Rx queue per channel suffices */
4328                 s->rdmaqs = adap->params.nports;
4329                 /* Try and allow at least 1 CIQ per cpu rounding down
4330                  * to the number of ports, with a minimum of 1 per port.
4331                  * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4332                  * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4333                  * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4334                  */
4335                 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4336                 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4337                                 adap->params.nports;
4338                 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4339         }
4340
4341         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4342                 struct sge_eth_rxq *r = &s->ethrxq[i];
4343
4344                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4345                 r->fl.size = 72;
4346         }
4347
4348         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4349                 s->ethtxq[i].q.size = 1024;
4350
4351         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4352                 s->ctrlq[i].q.size = 512;
4353
4354         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4355                 s->ofldtxq[i].q.size = 1024;
4356
4357         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
4358                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
4359
4360                 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4361                 r->rspq.uld = CXGB4_ULD_ISCSI;
4362                 r->fl.size = 72;
4363         }
4364
4365         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4366                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4367
4368                 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4369                 r->rspq.uld = CXGB4_ULD_RDMA;
4370                 r->fl.size = 72;
4371         }
4372
4373         ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4374         if (ciq_size > SGE_MAX_IQ_SIZE) {
4375                 CH_WARN(adap, "CIQ size too small for available IQs\n");
4376                 ciq_size = SGE_MAX_IQ_SIZE;
4377         }
4378
4379         for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4380                 struct sge_ofld_rxq *r = &s->rdmaciq[i];
4381
4382                 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4383                 r->rspq.uld = CXGB4_ULD_RDMA;
4384         }
4385
4386         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4387         init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4388 }
4389
4390 /*
4391  * Reduce the number of Ethernet queues across all ports to at most n.
4392  * n provides at least one queue per port.
4393  */
4394 static void reduce_ethqs(struct adapter *adap, int n)
4395 {
4396         int i;
4397         struct port_info *pi;
4398
4399         while (n < adap->sge.ethqsets)
4400                 for_each_port(adap, i) {
4401                         pi = adap2pinfo(adap, i);
4402                         if (pi->nqsets > 1) {
4403                                 pi->nqsets--;
4404                                 adap->sge.ethqsets--;
4405                                 if (adap->sge.ethqsets <= n)
4406                                         break;
4407                         }
4408                 }
4409
4410         n = 0;
4411         for_each_port(adap, i) {
4412                 pi = adap2pinfo(adap, i);
4413                 pi->first_qset = n;
4414                 n += pi->nqsets;
4415         }
4416 }
4417
4418 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4419 #define EXTRA_VECS 2
4420
4421 static int enable_msix(struct adapter *adap)
4422 {
4423         int ofld_need = 0;
4424         int i, want, need, allocated;
4425         struct sge *s = &adap->sge;
4426         unsigned int nchan = adap->params.nports;
4427         struct msix_entry *entries;
4428
4429         entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4430                           GFP_KERNEL);
4431         if (!entries)
4432                 return -ENOMEM;
4433
4434         for (i = 0; i < MAX_INGQ + 1; ++i)
4435                 entries[i].entry = i;
4436
4437         want = s->max_ethqsets + EXTRA_VECS;
4438         if (is_offload(adap)) {
4439                 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
4440                 /* need nchan for each possible ULD */
4441                 ofld_need = 3 * nchan;
4442         }
4443 #ifdef CONFIG_CHELSIO_T4_DCB
4444         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4445          * each port.
4446          */
4447         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4448 #else
4449         need = adap->params.nports + EXTRA_VECS + ofld_need;
4450 #endif
4451         allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4452         if (allocated < 0) {
4453                 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4454                          " not using MSI-X\n");
4455                 kfree(entries);
4456                 return allocated;
4457         }
4458
4459         /* Distribute available vectors to the various queue groups.
4460          * Every group gets its minimum requirement and NIC gets top
4461          * priority for leftovers.
4462          */
4463         i = allocated - EXTRA_VECS - ofld_need;
4464         if (i < s->max_ethqsets) {
4465                 s->max_ethqsets = i;
4466                 if (i < s->ethqsets)
4467                         reduce_ethqs(adap, i);
4468         }
4469         if (is_offload(adap)) {
4470                 if (allocated < want) {
4471                         s->rdmaqs = nchan;
4472                         s->rdmaciqs = nchan;
4473                 }
4474
4475                 /* leftovers go to OFLD */
4476                 i = allocated - EXTRA_VECS - s->max_ethqsets -
4477                     s->rdmaqs - s->rdmaciqs;
4478                 s->ofldqsets = (i / nchan) * nchan;  /* round down */
4479         }
4480         for (i = 0; i < allocated; ++i)
4481                 adap->msix_info[i].vec = entries[i].vector;
4482
4483         kfree(entries);
4484         return 0;
4485 }
4486
4487 #undef EXTRA_VECS
4488
4489 static int init_rss(struct adapter *adap)
4490 {
4491         unsigned int i;
4492         int err;
4493
4494         err = t4_init_rss_mode(adap, adap->mbox);
4495         if (err)
4496                 return err;
4497
4498         for_each_port(adap, i) {
4499                 struct port_info *pi = adap2pinfo(adap, i);
4500
4501                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4502                 if (!pi->rss)
4503                         return -ENOMEM;
4504         }
4505         return 0;
4506 }
4507
4508 static void print_port_info(const struct net_device *dev)
4509 {
4510         char buf[80];
4511         char *bufp = buf;
4512         const char *spd = "";
4513         const struct port_info *pi = netdev_priv(dev);
4514         const struct adapter *adap = pi->adapter;
4515
4516         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4517                 spd = " 2.5 GT/s";
4518         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4519                 spd = " 5 GT/s";
4520         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4521                 spd = " 8 GT/s";
4522
4523         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4524                 bufp += sprintf(bufp, "100/");
4525         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4526                 bufp += sprintf(bufp, "1000/");
4527         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4528                 bufp += sprintf(bufp, "10G/");
4529         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4530                 bufp += sprintf(bufp, "40G/");
4531         if (bufp != buf)
4532                 --bufp;
4533         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4534
4535         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
4536                     adap->params.vpd.id,
4537                     CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
4538                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
4539                     (adap->flags & USING_MSIX) ? " MSI-X" :
4540                     (adap->flags & USING_MSI) ? " MSI" : "");
4541         netdev_info(dev, "S/N: %s, P/N: %s\n",
4542                     adap->params.vpd.sn, adap->params.vpd.pn);
4543 }
4544
4545 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4546 {
4547         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4548 }
4549
4550 /*
4551  * Free the following resources:
4552  * - memory used for tables
4553  * - MSI/MSI-X
4554  * - net devices
4555  * - resources FW is holding for us
4556  */
4557 static void free_some_resources(struct adapter *adapter)
4558 {
4559         unsigned int i;
4560
4561         t4_free_mem(adapter->l2t);
4562         t4_free_mem(adapter->tids.tid_tab);
4563         kfree(adapter->sge.egr_map);
4564         kfree(adapter->sge.ingr_map);
4565         kfree(adapter->sge.starving_fl);
4566         kfree(adapter->sge.txq_maperr);
4567 #ifdef CONFIG_DEBUG_FS
4568         kfree(adapter->sge.blocked_fl);
4569 #endif
4570         disable_msi(adapter);
4571
4572         for_each_port(adapter, i)
4573                 if (adapter->port[i]) {
4574                         struct port_info *pi = adap2pinfo(adapter, i);
4575
4576                         if (pi->viid != 0)
4577                                 t4_free_vi(adapter, adapter->mbox, adapter->pf,
4578                                            0, pi->viid);
4579                         kfree(adap2pinfo(adapter, i)->rss);
4580                         free_netdev(adapter->port[i]);
4581                 }
4582         if (adapter->flags & FW_OK)
4583                 t4_fw_bye(adapter, adapter->pf);
4584 }
4585
4586 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4587 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4588                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4589 #define SEGMENT_SIZE 128
4590
4591 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4592 {
4593         u16 device_id;
4594
4595         /* Retrieve adapter's device ID */
4596         pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4597
4598         switch (device_id >> 12) {
4599         case CHELSIO_T4:
4600                 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4601         case CHELSIO_T5:
4602                 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4603         case CHELSIO_T6:
4604                 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4605         default:
4606                 dev_err(&pdev->dev, "Device %d is not supported\n",
4607                         device_id);
4608         }
4609         return -EINVAL;
4610 }
4611
4612 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4613 {
4614         int func, i, err, s_qpp, qpp, num_seg;
4615         struct port_info *pi;
4616         bool highdma = false;
4617         struct adapter *adapter = NULL;
4618         void __iomem *regs;
4619         u32 whoami, pl_rev;
4620         enum chip_type chip;
4621
4622         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4623
4624         err = pci_request_regions(pdev, KBUILD_MODNAME);
4625         if (err) {
4626                 /* Just info, some other driver may have claimed the device. */
4627                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4628                 return err;
4629         }
4630
4631         err = pci_enable_device(pdev);
4632         if (err) {
4633                 dev_err(&pdev->dev, "cannot enable PCI device\n");
4634                 goto out_release_regions;
4635         }
4636
4637         regs = pci_ioremap_bar(pdev, 0);
4638         if (!regs) {
4639                 dev_err(&pdev->dev, "cannot map device registers\n");
4640                 err = -ENOMEM;
4641                 goto out_disable_device;
4642         }
4643
4644         err = t4_wait_dev_ready(regs);
4645         if (err < 0)
4646                 goto out_unmap_bar0;
4647
4648         /* We control everything through one PF */
4649         whoami = readl(regs + PL_WHOAMI_A);
4650         pl_rev = REV_G(readl(regs + PL_REV_A));
4651         chip = get_chip_type(pdev, pl_rev);
4652         func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4653                 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4654         if (func != ent->driver_data) {
4655                 iounmap(regs);
4656                 pci_disable_device(pdev);
4657                 pci_save_state(pdev);        /* to restore SR-IOV later */
4658                 goto sriov;
4659         }
4660
4661         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4662                 highdma = true;
4663                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4664                 if (err) {
4665                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4666                                 "coherent allocations\n");
4667                         goto out_unmap_bar0;
4668                 }
4669         } else {
4670                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4671                 if (err) {
4672                         dev_err(&pdev->dev, "no usable DMA configuration\n");
4673                         goto out_unmap_bar0;
4674                 }
4675         }
4676
4677         pci_enable_pcie_error_reporting(pdev);
4678         enable_pcie_relaxed_ordering(pdev);
4679         pci_set_master(pdev);
4680         pci_save_state(pdev);
4681
4682         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4683         if (!adapter) {
4684                 err = -ENOMEM;
4685                 goto out_unmap_bar0;
4686         }
4687
4688         adapter->workq = create_singlethread_workqueue("cxgb4");
4689         if (!adapter->workq) {
4690                 err = -ENOMEM;
4691                 goto out_free_adapter;
4692         }
4693
4694         /* PCI device has been enabled */
4695         adapter->flags |= DEV_ENABLED;
4696
4697         adapter->regs = regs;
4698         adapter->pdev = pdev;
4699         adapter->pdev_dev = &pdev->dev;
4700         adapter->mbox = func;
4701         adapter->pf = func;
4702         adapter->msg_enable = dflt_msg_enable;
4703         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4704
4705         spin_lock_init(&adapter->stats_lock);
4706         spin_lock_init(&adapter->tid_release_lock);
4707         spin_lock_init(&adapter->win0_lock);
4708
4709         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4710         INIT_WORK(&adapter->db_full_task, process_db_full);
4711         INIT_WORK(&adapter->db_drop_task, process_db_drop);
4712
4713         err = t4_prep_adapter(adapter);
4714         if (err)
4715                 goto out_free_adapter;
4716
4717
4718         if (!is_t4(adapter->params.chip)) {
4719                 s_qpp = (QUEUESPERPAGEPF0_S +
4720                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4721                         adapter->pf);
4722                 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4723                       SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4724                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4725
4726                 /* Each segment size is 128B. Write coalescing is enabled only
4727                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4728                  * queue is less no of segments that can be accommodated in
4729                  * a page size.
4730                  */
4731                 if (qpp > num_seg) {
4732                         dev_err(&pdev->dev,
4733                                 "Incorrect number of egress queues per page\n");
4734                         err = -EINVAL;
4735                         goto out_free_adapter;
4736                 }
4737                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4738                 pci_resource_len(pdev, 2));
4739                 if (!adapter->bar2) {
4740                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
4741                         err = -ENOMEM;
4742                         goto out_free_adapter;
4743                 }
4744         }
4745
4746         setup_memwin(adapter);
4747         err = adap_init0(adapter);
4748 #ifdef CONFIG_DEBUG_FS
4749         bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4750 #endif
4751         setup_memwin_rdma(adapter);
4752         if (err)
4753                 goto out_unmap_bar;
4754
4755         /* configure SGE_STAT_CFG_A to read WC stats */
4756         if (!is_t4(adapter->params.chip))
4757                 t4_write_reg(adapter, SGE_STAT_CFG_A,
4758                              STATSOURCE_T5_V(7) | STATMODE_V(0));
4759
4760         for_each_port(adapter, i) {
4761                 struct net_device *netdev;
4762
4763                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4764                                            MAX_ETH_QSETS);
4765                 if (!netdev) {
4766                         err = -ENOMEM;
4767                         goto out_free_dev;
4768                 }
4769
4770                 SET_NETDEV_DEV(netdev, &pdev->dev);
4771
4772                 adapter->port[i] = netdev;
4773                 pi = netdev_priv(netdev);
4774                 pi->adapter = adapter;
4775                 pi->xact_addr_filt = -1;
4776                 pi->port_id = i;
4777                 netdev->irq = pdev->irq;
4778
4779                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4780                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4781                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
4782                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
4783                 if (highdma)
4784                         netdev->hw_features |= NETIF_F_HIGHDMA;
4785                 netdev->features |= netdev->hw_features;
4786                 netdev->vlan_features = netdev->features & VLAN_FEAT;
4787
4788                 netdev->priv_flags |= IFF_UNICAST_FLT;
4789
4790                 netdev->netdev_ops = &cxgb4_netdev_ops;
4791 #ifdef CONFIG_CHELSIO_T4_DCB
4792                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
4793                 cxgb4_dcb_state_init(netdev);
4794 #endif
4795                 cxgb4_set_ethtool_ops(netdev);
4796         }
4797
4798         pci_set_drvdata(pdev, adapter);
4799
4800         if (adapter->flags & FW_OK) {
4801                 err = t4_port_init(adapter, func, func, 0);
4802                 if (err)
4803                         goto out_free_dev;
4804         } else if (adapter->params.nports == 1) {
4805                 /* If we don't have a connection to the firmware -- possibly
4806                  * because of an error -- grab the raw VPD parameters so we
4807                  * can set the proper MAC Address on the debug network
4808                  * interface that we've created.
4809                  */
4810                 u8 hw_addr[ETH_ALEN];
4811                 u8 *na = adapter->params.vpd.na;
4812
4813                 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4814                 if (!err) {
4815                         for (i = 0; i < ETH_ALEN; i++)
4816                                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4817                                               hex2val(na[2 * i + 1]));
4818                         t4_set_hw_addr(adapter, 0, hw_addr);
4819                 }
4820         }
4821
4822         /* Configure queues and allocate tables now, they can be needed as
4823          * soon as the first register_netdev completes.
4824          */
4825         cfg_queues(adapter);
4826
4827         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4828         if (!adapter->l2t) {
4829                 /* We tolerate a lack of L2T, giving up some functionality */
4830                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4831                 adapter->params.offload = 0;
4832         }
4833
4834 #if IS_ENABLED(CONFIG_IPV6)
4835         adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4836                                           adapter->clipt_end);
4837         if (!adapter->clipt) {
4838                 /* We tolerate a lack of clip_table, giving up
4839                  * some functionality
4840                  */
4841                 dev_warn(&pdev->dev,
4842                          "could not allocate Clip table, continuing\n");
4843                 adapter->params.offload = 0;
4844         }
4845 #endif
4846         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4847                 dev_warn(&pdev->dev, "could not allocate TID table, "
4848                          "continuing\n");
4849                 adapter->params.offload = 0;
4850         }
4851
4852         if (is_offload(adapter)) {
4853                 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
4854                         u32 hash_base, hash_reg;
4855
4856                         if (chip <= CHELSIO_T5) {
4857                                 hash_reg = LE_DB_TID_HASHBASE_A;
4858                                 hash_base = t4_read_reg(adapter, hash_reg);
4859                                 adapter->tids.hash_base = hash_base / 4;
4860                         } else {
4861                                 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
4862                                 hash_base = t4_read_reg(adapter, hash_reg);
4863                                 adapter->tids.hash_base = hash_base;
4864                         }
4865                 }
4866         }
4867
4868         /* See what interrupts we'll be using */
4869         if (msi > 1 && enable_msix(adapter) == 0)
4870                 adapter->flags |= USING_MSIX;
4871         else if (msi > 0 && pci_enable_msi(pdev) == 0)
4872                 adapter->flags |= USING_MSI;
4873
4874         err = init_rss(adapter);
4875         if (err)
4876                 goto out_free_dev;
4877
4878         /*
4879          * The card is now ready to go.  If any errors occur during device
4880          * registration we do not fail the whole card but rather proceed only
4881          * with the ports we manage to register successfully.  However we must
4882          * register at least one net device.
4883          */
4884         for_each_port(adapter, i) {
4885                 pi = adap2pinfo(adapter, i);
4886                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4887                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4888
4889                 err = register_netdev(adapter->port[i]);
4890                 if (err)
4891                         break;
4892                 adapter->chan_map[pi->tx_chan] = i;
4893                 print_port_info(adapter->port[i]);
4894         }
4895         if (i == 0) {
4896                 dev_err(&pdev->dev, "could not register any net devices\n");
4897                 goto out_free_dev;
4898         }
4899         if (err) {
4900                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4901                 err = 0;
4902         }
4903
4904         if (cxgb4_debugfs_root) {
4905                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4906                                                            cxgb4_debugfs_root);
4907                 setup_debugfs(adapter);
4908         }
4909
4910         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4911         pdev->needs_freset = 1;
4912
4913         if (is_offload(adapter))
4914                 attach_ulds(adapter);
4915
4916 sriov:
4917 #ifdef CONFIG_PCI_IOV
4918         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
4919                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4920                         dev_info(&pdev->dev,
4921                                  "instantiated %u virtual functions\n",
4922                                  num_vf[func]);
4923 #endif
4924         return 0;
4925
4926  out_free_dev:
4927         free_some_resources(adapter);
4928  out_unmap_bar:
4929         if (!is_t4(adapter->params.chip))
4930                 iounmap(adapter->bar2);
4931  out_free_adapter:
4932         if (adapter->workq)
4933                 destroy_workqueue(adapter->workq);
4934
4935         kfree(adapter);
4936  out_unmap_bar0:
4937         iounmap(regs);
4938  out_disable_device:
4939         pci_disable_pcie_error_reporting(pdev);
4940         pci_disable_device(pdev);
4941  out_release_regions:
4942         pci_release_regions(pdev);
4943         return err;
4944 }
4945
4946 static void remove_one(struct pci_dev *pdev)
4947 {
4948         struct adapter *adapter = pci_get_drvdata(pdev);
4949
4950 #ifdef CONFIG_PCI_IOV
4951         pci_disable_sriov(pdev);
4952
4953 #endif
4954
4955         if (adapter) {
4956                 int i;
4957
4958                 /* Tear down per-adapter Work Queue first since it can contain
4959                  * references to our adapter data structure.
4960                  */
4961                 destroy_workqueue(adapter->workq);
4962
4963                 if (is_offload(adapter))
4964                         detach_ulds(adapter);
4965
4966                 disable_interrupts(adapter);
4967
4968                 for_each_port(adapter, i)
4969                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
4970                                 unregister_netdev(adapter->port[i]);
4971
4972                 debugfs_remove_recursive(adapter->debugfs_root);
4973
4974                 /* If we allocated filters, free up state associated with any
4975                  * valid filters ...
4976                  */
4977                 if (adapter->tids.ftid_tab) {
4978                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
4979                         for (i = 0; i < (adapter->tids.nftids +
4980                                         adapter->tids.nsftids); i++, f++)
4981                                 if (f->valid)
4982                                         clear_filter(adapter, f);
4983                 }
4984
4985                 if (adapter->flags & FULL_INIT_DONE)
4986                         cxgb_down(adapter);
4987
4988                 free_some_resources(adapter);
4989 #if IS_ENABLED(CONFIG_IPV6)
4990                 t4_cleanup_clip_tbl(adapter);
4991 #endif
4992                 iounmap(adapter->regs);
4993                 if (!is_t4(adapter->params.chip))
4994                         iounmap(adapter->bar2);
4995                 pci_disable_pcie_error_reporting(pdev);
4996                 if ((adapter->flags & DEV_ENABLED)) {
4997                         pci_disable_device(pdev);
4998                         adapter->flags &= ~DEV_ENABLED;
4999                 }
5000                 pci_release_regions(pdev);
5001                 synchronize_rcu();
5002                 kfree(adapter);
5003         } else
5004                 pci_release_regions(pdev);
5005 }
5006
5007 static struct pci_driver cxgb4_driver = {
5008         .name     = KBUILD_MODNAME,
5009         .id_table = cxgb4_pci_tbl,
5010         .probe    = init_one,
5011         .remove   = remove_one,
5012         .shutdown = remove_one,
5013         .err_handler = &cxgb4_eeh,
5014 };
5015
5016 static int __init cxgb4_init_module(void)
5017 {
5018         int ret;
5019
5020         /* Debugfs support is optional, just warn if this fails */
5021         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5022         if (!cxgb4_debugfs_root)
5023                 pr_warn("could not create debugfs entry, continuing\n");
5024
5025         ret = pci_register_driver(&cxgb4_driver);
5026         if (ret < 0)
5027                 debugfs_remove(cxgb4_debugfs_root);
5028
5029 #if IS_ENABLED(CONFIG_IPV6)
5030         if (!inet6addr_registered) {
5031                 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5032                 inet6addr_registered = true;
5033         }
5034 #endif
5035
5036         return ret;
5037 }
5038
5039 static void __exit cxgb4_cleanup_module(void)
5040 {
5041 #if IS_ENABLED(CONFIG_IPV6)
5042         if (inet6addr_registered) {
5043                 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5044                 inet6addr_registered = false;
5045         }
5046 #endif
5047         pci_unregister_driver(&cxgb4_driver);
5048         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5049 }
5050
5051 module_init(cxgb4_init_module);
5052 module_exit(cxgb4_cleanup_module);