Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[firefly-linux-kernel-4.4.55.git] / drivers / media / rc / nuvoton-cir.c
1 /*
2  * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
3  *
4  * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5  * Copyright (C) 2009 Nuvoton PS Team
6  *
7  * Special thanks to Nuvoton for providing hardware, spec sheets and
8  * sample code upon which portions of this driver are based. Indirect
9  * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10  * modeled after.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
25  * USA
26  */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pnp.h>
33 #include <linux/io.h>
34 #include <linux/interrupt.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <media/rc-core.h>
38 #include <linux/pci_ids.h>
39
40 #include "nuvoton-cir.h"
41
42 /* write val to config reg */
43 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
44 {
45         outb(reg, nvt->cr_efir);
46         outb(val, nvt->cr_efdr);
47 }
48
49 /* read val from config reg */
50 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
51 {
52         outb(reg, nvt->cr_efir);
53         return inb(nvt->cr_efdr);
54 }
55
56 /* update config register bit without changing other bits */
57 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
58 {
59         u8 tmp = nvt_cr_read(nvt, reg) | val;
60         nvt_cr_write(nvt, tmp, reg);
61 }
62
63 /* clear config register bit without changing other bits */
64 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
65 {
66         u8 tmp = nvt_cr_read(nvt, reg) & ~val;
67         nvt_cr_write(nvt, tmp, reg);
68 }
69
70 /* enter extended function mode */
71 static inline void nvt_efm_enable(struct nvt_dev *nvt)
72 {
73         /* Enabling Extended Function Mode explicitly requires writing 2x */
74         outb(EFER_EFM_ENABLE, nvt->cr_efir);
75         outb(EFER_EFM_ENABLE, nvt->cr_efir);
76 }
77
78 /* exit extended function mode */
79 static inline void nvt_efm_disable(struct nvt_dev *nvt)
80 {
81         outb(EFER_EFM_DISABLE, nvt->cr_efir);
82 }
83
84 /*
85  * When you want to address a specific logical device, write its logical
86  * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
87  * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
88  */
89 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
90 {
91         outb(CR_LOGICAL_DEV_SEL, nvt->cr_efir);
92         outb(ldev, nvt->cr_efdr);
93 }
94
95 /* write val to cir config register */
96 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
97 {
98         outb(val, nvt->cir_addr + offset);
99 }
100
101 /* read val from cir config register */
102 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
103 {
104         u8 val;
105
106         val = inb(nvt->cir_addr + offset);
107
108         return val;
109 }
110
111 /* write val to cir wake register */
112 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
113                                           u8 val, u8 offset)
114 {
115         outb(val, nvt->cir_wake_addr + offset);
116 }
117
118 /* read val from cir wake config register */
119 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
120 {
121         u8 val;
122
123         val = inb(nvt->cir_wake_addr + offset);
124
125         return val;
126 }
127
128 /* dump current cir register contents */
129 static void cir_dump_regs(struct nvt_dev *nvt)
130 {
131         nvt_efm_enable(nvt);
132         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
133
134         pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
135         pr_info(" * CR CIR ACTIVE :   0x%x\n",
136                 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
137         pr_info(" * CR CIR BASE ADDR: 0x%x\n",
138                 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
139                 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
140         pr_info(" * CR CIR IRQ NUM:   0x%x\n",
141                 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
142
143         nvt_efm_disable(nvt);
144
145         pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
146         pr_info(" * IRCON:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
147         pr_info(" * IRSTS:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
148         pr_info(" * IREN:      0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
149         pr_info(" * RXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
150         pr_info(" * CP:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
151         pr_info(" * CC:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
152         pr_info(" * SLCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
153         pr_info(" * SLCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
154         pr_info(" * FIFOCON:   0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
155         pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
156         pr_info(" * SRXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
157         pr_info(" * TXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
158         pr_info(" * STXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
159         pr_info(" * FCCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
160         pr_info(" * FCCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
161         pr_info(" * IRFSM:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
162 }
163
164 /* dump current cir wake register contents */
165 static void cir_wake_dump_regs(struct nvt_dev *nvt)
166 {
167         u8 i, fifo_len;
168
169         nvt_efm_enable(nvt);
170         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
171
172         pr_info("%s: Dump CIR WAKE logical device registers:\n",
173                 NVT_DRIVER_NAME);
174         pr_info(" * CR CIR WAKE ACTIVE :   0x%x\n",
175                 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
176         pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
177                 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
178                 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
179         pr_info(" * CR CIR WAKE IRQ NUM:   0x%x\n",
180                 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
181
182         nvt_efm_disable(nvt);
183
184         pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
185         pr_info(" * IRCON:          0x%x\n",
186                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
187         pr_info(" * IRSTS:          0x%x\n",
188                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
189         pr_info(" * IREN:           0x%x\n",
190                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
191         pr_info(" * FIFO CMP DEEP:  0x%x\n",
192                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
193         pr_info(" * FIFO CMP TOL:   0x%x\n",
194                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
195         pr_info(" * FIFO COUNT:     0x%x\n",
196                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
197         pr_info(" * SLCH:           0x%x\n",
198                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
199         pr_info(" * SLCL:           0x%x\n",
200                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
201         pr_info(" * FIFOCON:        0x%x\n",
202                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
203         pr_info(" * SRXFSTS:        0x%x\n",
204                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
205         pr_info(" * SAMPLE RX FIFO: 0x%x\n",
206                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
207         pr_info(" * WR FIFO DATA:   0x%x\n",
208                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
209         pr_info(" * RD FIFO ONLY:   0x%x\n",
210                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
211         pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
212                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
213         pr_info(" * FIFO IGNORE:    0x%x\n",
214                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
215         pr_info(" * IRFSM:          0x%x\n",
216                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
217
218         fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
219         pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
220         pr_info("* Contents =");
221         for (i = 0; i < fifo_len; i++)
222                 pr_cont(" %02x",
223                         nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
224         pr_cont("\n");
225 }
226
227 /* detect hardware features */
228 static int nvt_hw_detect(struct nvt_dev *nvt)
229 {
230         unsigned long flags;
231         u8 chip_major, chip_minor;
232         int ret = 0;
233         char chip_id[12];
234         bool chip_unknown = false;
235
236         nvt_efm_enable(nvt);
237
238         /* Check if we're wired for the alternate EFER setup */
239         chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
240         if (chip_major == 0xff) {
241                 nvt->cr_efir = CR_EFIR2;
242                 nvt->cr_efdr = CR_EFDR2;
243                 nvt_efm_enable(nvt);
244                 chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
245         }
246
247         chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
248
249         /* these are the known working chip revisions... */
250         switch (chip_major) {
251         case CHIP_ID_HIGH_667:
252                 strcpy(chip_id, "w83667hg\0");
253                 if (chip_minor != CHIP_ID_LOW_667)
254                         chip_unknown = true;
255                 break;
256         case CHIP_ID_HIGH_677B:
257                 strcpy(chip_id, "w83677hg\0");
258                 if (chip_minor != CHIP_ID_LOW_677B2 &&
259                     chip_minor != CHIP_ID_LOW_677B3)
260                         chip_unknown = true;
261                 break;
262         case CHIP_ID_HIGH_677C:
263                 strcpy(chip_id, "w83677hg-c\0");
264                 if (chip_minor != CHIP_ID_LOW_677C)
265                         chip_unknown = true;
266                 break;
267         default:
268                 strcpy(chip_id, "w836x7hg\0");
269                 chip_unknown = true;
270                 break;
271         }
272
273         /* warn, but still let the driver load, if we don't know this chip */
274         if (chip_unknown)
275                 nvt_pr(KERN_WARNING, "%s: unknown chip, id: 0x%02x 0x%02x, "
276                        "it may not work...", chip_id, chip_major, chip_minor);
277         else
278                 nvt_dbg("%s: chip id: 0x%02x 0x%02x",
279                         chip_id, chip_major, chip_minor);
280
281         nvt_efm_disable(nvt);
282
283         spin_lock_irqsave(&nvt->nvt_lock, flags);
284         nvt->chip_major = chip_major;
285         nvt->chip_minor = chip_minor;
286         spin_unlock_irqrestore(&nvt->nvt_lock, flags);
287
288         return ret;
289 }
290
291 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
292 {
293         u8 val, psreg, psmask, psval;
294
295         if (nvt->chip_major == CHIP_ID_HIGH_667) {
296                 psreg = CR_MULTIFUNC_PIN_SEL;
297                 psmask = MULTIFUNC_PIN_SEL_MASK;
298                 psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
299         } else {
300                 psreg = CR_OUTPUT_PIN_SEL;
301                 psmask = OUTPUT_PIN_SEL_MASK;
302                 psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
303         }
304
305         /* output pin selection: enable CIR, with WB sensor enabled */
306         val = nvt_cr_read(nvt, psreg);
307         val &= psmask;
308         val |= psval;
309         nvt_cr_write(nvt, val, psreg);
310
311         /* Select CIR logical device and enable */
312         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
313         nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
314
315         nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI);
316         nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO);
317
318         nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
319
320         nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
321                 nvt->cir_addr, nvt->cir_irq);
322 }
323
324 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
325 {
326         /* Select ACPI logical device, enable it and CIR Wake */
327         nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
328         nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
329
330         /* Enable CIR Wake via PSOUT# (Pin60) */
331         nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
332
333         /* enable cir interrupt of mouse/keyboard IRQ event */
334         nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS);
335
336         /* enable pme interrupt of cir wakeup event */
337         nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
338
339         /* Select CIR Wake logical device and enable */
340         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
341         nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
342
343         nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI);
344         nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO);
345
346         nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC);
347
348         nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
349                 nvt->cir_wake_addr, nvt->cir_wake_irq);
350 }
351
352 /* clear out the hardware's cir rx fifo */
353 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
354 {
355         u8 val;
356
357         val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
358         nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
359 }
360
361 /* clear out the hardware's cir wake rx fifo */
362 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
363 {
364         u8 val;
365
366         val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
367         nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
368                                CIR_WAKE_FIFOCON);
369 }
370
371 /* clear out the hardware's cir tx fifo */
372 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
373 {
374         u8 val;
375
376         val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
377         nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
378 }
379
380 /* enable RX Trigger Level Reach and Packet End interrupts */
381 static void nvt_set_cir_iren(struct nvt_dev *nvt)
382 {
383         u8 iren;
384
385         iren = CIR_IREN_RTR | CIR_IREN_PE;
386         nvt_cir_reg_write(nvt, iren, CIR_IREN);
387 }
388
389 static void nvt_cir_regs_init(struct nvt_dev *nvt)
390 {
391         /* set sample limit count (PE interrupt raised when reached) */
392         nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
393         nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
394
395         /* set fifo irq trigger levels */
396         nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
397                           CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
398
399         /*
400          * Enable TX and RX, specify carrier on = low, off = high, and set
401          * sample period (currently 50us)
402          */
403         nvt_cir_reg_write(nvt,
404                           CIR_IRCON_TXEN | CIR_IRCON_RXEN |
405                           CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
406                           CIR_IRCON);
407
408         /* clear hardware rx and tx fifos */
409         nvt_clear_cir_fifo(nvt);
410         nvt_clear_tx_fifo(nvt);
411
412         /* clear any and all stray interrupts */
413         nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
414
415         /* and finally, enable interrupts */
416         nvt_set_cir_iren(nvt);
417 }
418
419 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
420 {
421         /* set number of bytes needed for wake from s3 (default 65) */
422         nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES,
423                                CIR_WAKE_FIFO_CMP_DEEP);
424
425         /* set tolerance/variance allowed per byte during wake compare */
426         nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE,
427                                CIR_WAKE_FIFO_CMP_TOL);
428
429         /* set sample limit count (PE interrupt raised when reached) */
430         nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH);
431         nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL);
432
433         /* set cir wake fifo rx trigger level (currently 67) */
434         nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV,
435                                CIR_WAKE_FIFOCON);
436
437         /*
438          * Enable TX and RX, specific carrier on = low, off = high, and set
439          * sample period (currently 50us)
440          */
441         nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
442                                CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
443                                CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
444                                CIR_WAKE_IRCON);
445
446         /* clear cir wake rx fifo */
447         nvt_clear_cir_wake_fifo(nvt);
448
449         /* clear any and all stray interrupts */
450         nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
451 }
452
453 static void nvt_enable_wake(struct nvt_dev *nvt)
454 {
455         nvt_efm_enable(nvt);
456
457         nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
458         nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
459         nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS);
460         nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
461
462         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
463         nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
464
465         nvt_efm_disable(nvt);
466
467         nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
468                                CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
469                                CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
470                                CIR_WAKE_IRCON);
471         nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
472         nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
473 }
474
475 /* rx carrier detect only works in learning mode, must be called w/nvt_lock */
476 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
477 {
478         u32 count, carrier, duration = 0;
479         int i;
480
481         count = nvt_cir_reg_read(nvt, CIR_FCCL) |
482                 nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
483
484         for (i = 0; i < nvt->pkts; i++) {
485                 if (nvt->buf[i] & BUF_PULSE_BIT)
486                         duration += nvt->buf[i] & BUF_LEN_MASK;
487         }
488
489         duration *= SAMPLE_PERIOD;
490
491         if (!count || !duration) {
492                 nvt_pr(KERN_NOTICE, "Unable to determine carrier! (c:%u, d:%u)",
493                        count, duration);
494                 return 0;
495         }
496
497         carrier = MS_TO_NS(count) / duration;
498
499         if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
500                 nvt_dbg("WTF? Carrier frequency out of range!");
501
502         nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
503                 carrier, count, duration);
504
505         return carrier;
506 }
507
508 /*
509  * set carrier frequency
510  *
511  * set carrier on 2 registers: CP & CC
512  * always set CP as 0x81
513  * set CC by SPEC, CC = 3MHz/carrier - 1
514  */
515 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
516 {
517         struct nvt_dev *nvt = dev->priv;
518         u16 val;
519
520         nvt_cir_reg_write(nvt, 1, CIR_CP);
521         val = 3000000 / (carrier) - 1;
522         nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
523
524         nvt_dbg("cp: 0x%x cc: 0x%x\n",
525                 nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
526
527         return 0;
528 }
529
530 /*
531  * nvt_tx_ir
532  *
533  * 1) clean TX fifo first (handled by AP)
534  * 2) copy data from user space
535  * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
536  * 4) send 9 packets to TX FIFO to open TTR
537  * in interrupt_handler:
538  * 5) send all data out
539  * go back to write():
540  * 6) disable TX interrupts, re-enable RX interupts
541  *
542  * The key problem of this function is user space data may larger than
543  * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
544  * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
545  * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
546  * set TXFCONT as 0xff, until buf_count less than 0xff.
547  */
548 static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n)
549 {
550         struct nvt_dev *nvt = dev->priv;
551         unsigned long flags;
552         unsigned int i;
553         u8 iren;
554         int ret;
555
556         spin_lock_irqsave(&nvt->tx.lock, flags);
557
558         ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n);
559         nvt->tx.buf_count = (ret * sizeof(unsigned));
560
561         memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
562
563         nvt->tx.cur_buf_num = 0;
564
565         /* save currently enabled interrupts */
566         iren = nvt_cir_reg_read(nvt, CIR_IREN);
567
568         /* now disable all interrupts, save TFU & TTR */
569         nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
570
571         nvt->tx.tx_state = ST_TX_REPLY;
572
573         nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
574                           CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
575
576         /* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
577         for (i = 0; i < 9; i++)
578                 nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
579
580         spin_unlock_irqrestore(&nvt->tx.lock, flags);
581
582         wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
583
584         spin_lock_irqsave(&nvt->tx.lock, flags);
585         nvt->tx.tx_state = ST_TX_NONE;
586         spin_unlock_irqrestore(&nvt->tx.lock, flags);
587
588         /* restore enabled interrupts to prior state */
589         nvt_cir_reg_write(nvt, iren, CIR_IREN);
590
591         return ret;
592 }
593
594 /* dump contents of the last rx buffer we got from the hw rx fifo */
595 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
596 {
597         int i;
598
599         printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
600         for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
601                 printk(KERN_CONT "0x%02x ", nvt->buf[i]);
602         printk(KERN_CONT "\n");
603 }
604
605 /*
606  * Process raw data in rx driver buffer, store it in raw IR event kfifo,
607  * trigger decode when appropriate.
608  *
609  * We get IR data samples one byte at a time. If the msb is set, its a pulse,
610  * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
611  * (default 50us) intervals for that pulse/space. A discrete signal is
612  * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
613  * to signal more IR coming (repeats) or end of IR, respectively. We store
614  * sample data in the raw event kfifo until we see 0x7<something> (except f)
615  * or 0x80, at which time, we trigger a decode operation.
616  */
617 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
618 {
619         DEFINE_IR_RAW_EVENT(rawir);
620         u32 carrier;
621         u8 sample;
622         int i;
623
624         nvt_dbg_verbose("%s firing", __func__);
625
626         if (debug)
627                 nvt_dump_rx_buf(nvt);
628
629         if (nvt->carrier_detect_enabled)
630                 carrier = nvt_rx_carrier_detect(nvt);
631
632         nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
633
634         init_ir_raw_event(&rawir);
635
636         for (i = 0; i < nvt->pkts; i++) {
637                 sample = nvt->buf[i];
638
639                 rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
640                 rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
641                                           * SAMPLE_PERIOD);
642
643                 nvt_dbg("Storing %s with duration %d",
644                         rawir.pulse ? "pulse" : "space", rawir.duration);
645
646                 ir_raw_event_store_with_filter(nvt->rdev, &rawir);
647
648                 /*
649                  * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
650                  * indicates end of IR signal, but new data incoming. In both
651                  * cases, it means we're ready to call ir_raw_event_handle
652                  */
653                 if ((sample == BUF_PULSE_BIT) && (i + 1 < nvt->pkts)) {
654                         nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
655                         ir_raw_event_handle(nvt->rdev);
656                 }
657         }
658
659         nvt->pkts = 0;
660
661         nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
662         ir_raw_event_handle(nvt->rdev);
663
664         nvt_dbg_verbose("%s done", __func__);
665 }
666
667 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
668 {
669         nvt_pr(KERN_WARNING, "RX FIFO overrun detected, flushing data!");
670
671         nvt->pkts = 0;
672         nvt_clear_cir_fifo(nvt);
673         ir_raw_event_reset(nvt->rdev);
674 }
675
676 /* copy data from hardware rx fifo into driver buffer */
677 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
678 {
679         unsigned long flags;
680         u8 fifocount, val;
681         unsigned int b_idx;
682         bool overrun = false;
683         int i;
684
685         /* Get count of how many bytes to read from RX FIFO */
686         fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
687         /* if we get 0xff, probably means the logical dev is disabled */
688         if (fifocount == 0xff)
689                 return;
690         /* watch out for a fifo overrun condition */
691         else if (fifocount > RX_BUF_LEN) {
692                 overrun = true;
693                 fifocount = RX_BUF_LEN;
694         }
695
696         nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
697
698         spin_lock_irqsave(&nvt->nvt_lock, flags);
699
700         b_idx = nvt->pkts;
701
702         /* This should never happen, but lets check anyway... */
703         if (b_idx + fifocount > RX_BUF_LEN) {
704                 nvt_process_rx_ir_data(nvt);
705                 b_idx = 0;
706         }
707
708         /* Read fifocount bytes from CIR Sample RX FIFO register */
709         for (i = 0; i < fifocount; i++) {
710                 val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
711                 nvt->buf[b_idx + i] = val;
712         }
713
714         nvt->pkts += fifocount;
715         nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
716
717         nvt_process_rx_ir_data(nvt);
718
719         if (overrun)
720                 nvt_handle_rx_fifo_overrun(nvt);
721
722         spin_unlock_irqrestore(&nvt->nvt_lock, flags);
723 }
724
725 static void nvt_cir_log_irqs(u8 status, u8 iren)
726 {
727         nvt_pr(KERN_INFO, "IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
728                 status, iren,
729                 status & CIR_IRSTS_RDR  ? " RDR"        : "",
730                 status & CIR_IRSTS_RTR  ? " RTR"        : "",
731                 status & CIR_IRSTS_PE   ? " PE"         : "",
732                 status & CIR_IRSTS_RFO  ? " RFO"        : "",
733                 status & CIR_IRSTS_TE   ? " TE"         : "",
734                 status & CIR_IRSTS_TTR  ? " TTR"        : "",
735                 status & CIR_IRSTS_TFU  ? " TFU"        : "",
736                 status & CIR_IRSTS_GH   ? " GH"         : "",
737                 status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
738                            CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
739                            CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
740 }
741
742 static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
743 {
744         unsigned long flags;
745         bool tx_inactive;
746         u8 tx_state;
747
748         spin_lock_irqsave(&nvt->tx.lock, flags);
749         tx_state = nvt->tx.tx_state;
750         spin_unlock_irqrestore(&nvt->tx.lock, flags);
751
752         tx_inactive = (tx_state == ST_TX_NONE);
753
754         return tx_inactive;
755 }
756
757 /* interrupt service routine for incoming and outgoing CIR data */
758 static irqreturn_t nvt_cir_isr(int irq, void *data)
759 {
760         struct nvt_dev *nvt = data;
761         u8 status, iren, cur_state;
762         unsigned long flags;
763
764         nvt_dbg_verbose("%s firing", __func__);
765
766         nvt_efm_enable(nvt);
767         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
768         nvt_efm_disable(nvt);
769
770         /*
771          * Get IR Status register contents. Write 1 to ack/clear
772          *
773          * bit: reg name      - description
774          *   7: CIR_IRSTS_RDR - RX Data Ready
775          *   6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
776          *   5: CIR_IRSTS_PE  - Packet End
777          *   4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
778          *   3: CIR_IRSTS_TE  - TX FIFO Empty
779          *   2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
780          *   1: CIR_IRSTS_TFU - TX FIFO Underrun
781          *   0: CIR_IRSTS_GH  - Min Length Detected
782          */
783         status = nvt_cir_reg_read(nvt, CIR_IRSTS);
784         if (!status) {
785                 nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
786                 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
787                 return IRQ_RETVAL(IRQ_NONE);
788         }
789
790         /* ack/clear all irq flags we've got */
791         nvt_cir_reg_write(nvt, status, CIR_IRSTS);
792         nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
793
794         /* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
795         iren = nvt_cir_reg_read(nvt, CIR_IREN);
796         if (!iren) {
797                 nvt_dbg_verbose("%s exiting, CIR not enabled", __func__);
798                 return IRQ_RETVAL(IRQ_NONE);
799         }
800
801         if (debug)
802                 nvt_cir_log_irqs(status, iren);
803
804         if (status & CIR_IRSTS_RTR) {
805                 /* FIXME: add code for study/learn mode */
806                 /* We only do rx if not tx'ing */
807                 if (nvt_cir_tx_inactive(nvt))
808                         nvt_get_rx_ir_data(nvt);
809         }
810
811         if (status & CIR_IRSTS_PE) {
812                 if (nvt_cir_tx_inactive(nvt))
813                         nvt_get_rx_ir_data(nvt);
814
815                 spin_lock_irqsave(&nvt->nvt_lock, flags);
816
817                 cur_state = nvt->study_state;
818
819                 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
820
821                 if (cur_state == ST_STUDY_NONE)
822                         nvt_clear_cir_fifo(nvt);
823         }
824
825         if (status & CIR_IRSTS_TE)
826                 nvt_clear_tx_fifo(nvt);
827
828         if (status & CIR_IRSTS_TTR) {
829                 unsigned int pos, count;
830                 u8 tmp;
831
832                 spin_lock_irqsave(&nvt->tx.lock, flags);
833
834                 pos = nvt->tx.cur_buf_num;
835                 count = nvt->tx.buf_count;
836
837                 /* Write data into the hardware tx fifo while pos < count */
838                 if (pos < count) {
839                         nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
840                         nvt->tx.cur_buf_num++;
841                 /* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
842                 } else {
843                         tmp = nvt_cir_reg_read(nvt, CIR_IREN);
844                         nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
845                 }
846
847                 spin_unlock_irqrestore(&nvt->tx.lock, flags);
848
849         }
850
851         if (status & CIR_IRSTS_TFU) {
852                 spin_lock_irqsave(&nvt->tx.lock, flags);
853                 if (nvt->tx.tx_state == ST_TX_REPLY) {
854                         nvt->tx.tx_state = ST_TX_REQUEST;
855                         wake_up(&nvt->tx.queue);
856                 }
857                 spin_unlock_irqrestore(&nvt->tx.lock, flags);
858         }
859
860         nvt_dbg_verbose("%s done", __func__);
861         return IRQ_RETVAL(IRQ_HANDLED);
862 }
863
864 /* Interrupt service routine for CIR Wake */
865 static irqreturn_t nvt_cir_wake_isr(int irq, void *data)
866 {
867         u8 status, iren, val;
868         struct nvt_dev *nvt = data;
869         unsigned long flags;
870
871         nvt_dbg_wake("%s firing", __func__);
872
873         status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS);
874         if (!status)
875                 return IRQ_RETVAL(IRQ_NONE);
876
877         if (status & CIR_WAKE_IRSTS_IR_PENDING)
878                 nvt_clear_cir_wake_fifo(nvt);
879
880         nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS);
881         nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS);
882
883         /* Interrupt may be shared with CIR, bail if Wake not enabled */
884         iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN);
885         if (!iren) {
886                 nvt_dbg_wake("%s exiting, wake not enabled", __func__);
887                 return IRQ_RETVAL(IRQ_HANDLED);
888         }
889
890         if ((status & CIR_WAKE_IRSTS_PE) &&
891             (nvt->wake_state == ST_WAKE_START)) {
892                 while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) {
893                         val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
894                         nvt_dbg("setting wake up key: 0x%x", val);
895                 }
896
897                 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
898                 spin_lock_irqsave(&nvt->nvt_lock, flags);
899                 nvt->wake_state = ST_WAKE_FINISH;
900                 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
901         }
902
903         nvt_dbg_wake("%s done", __func__);
904         return IRQ_RETVAL(IRQ_HANDLED);
905 }
906
907 static void nvt_enable_cir(struct nvt_dev *nvt)
908 {
909         /* set function enable flags */
910         nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
911                           CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
912                           CIR_IRCON);
913
914         nvt_efm_enable(nvt);
915
916         /* enable the CIR logical device */
917         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
918         nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
919
920         nvt_efm_disable(nvt);
921
922         /* clear all pending interrupts */
923         nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
924
925         /* enable interrupts */
926         nvt_set_cir_iren(nvt);
927 }
928
929 static void nvt_disable_cir(struct nvt_dev *nvt)
930 {
931         /* disable CIR interrupts */
932         nvt_cir_reg_write(nvt, 0, CIR_IREN);
933
934         /* clear any and all pending interrupts */
935         nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
936
937         /* clear all function enable flags */
938         nvt_cir_reg_write(nvt, 0, CIR_IRCON);
939
940         /* clear hardware rx and tx fifos */
941         nvt_clear_cir_fifo(nvt);
942         nvt_clear_tx_fifo(nvt);
943
944         nvt_efm_enable(nvt);
945
946         /* disable the CIR logical device */
947         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
948         nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
949
950         nvt_efm_disable(nvt);
951 }
952
953 static int nvt_open(struct rc_dev *dev)
954 {
955         struct nvt_dev *nvt = dev->priv;
956         unsigned long flags;
957
958         spin_lock_irqsave(&nvt->nvt_lock, flags);
959         nvt_enable_cir(nvt);
960         spin_unlock_irqrestore(&nvt->nvt_lock, flags);
961
962         return 0;
963 }
964
965 static void nvt_close(struct rc_dev *dev)
966 {
967         struct nvt_dev *nvt = dev->priv;
968         unsigned long flags;
969
970         spin_lock_irqsave(&nvt->nvt_lock, flags);
971         nvt_disable_cir(nvt);
972         spin_unlock_irqrestore(&nvt->nvt_lock, flags);
973 }
974
975 /* Allocate memory, probe hardware, and initialize everything */
976 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
977 {
978         struct nvt_dev *nvt;
979         struct rc_dev *rdev;
980         int ret = -ENOMEM;
981
982         nvt = kzalloc(sizeof(struct nvt_dev), GFP_KERNEL);
983         if (!nvt)
984                 return ret;
985
986         /* input device for IR remote (and tx) */
987         rdev = rc_allocate_device();
988         if (!rdev)
989                 goto failure;
990
991         ret = -ENODEV;
992         /* validate pnp resources */
993         if (!pnp_port_valid(pdev, 0) ||
994             pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
995                 dev_err(&pdev->dev, "IR PNP Port not valid!\n");
996                 goto failure;
997         }
998
999         if (!pnp_irq_valid(pdev, 0)) {
1000                 dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1001                 goto failure;
1002         }
1003
1004         if (!pnp_port_valid(pdev, 1) ||
1005             pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
1006                 dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1007                 goto failure;
1008         }
1009
1010         nvt->cir_addr = pnp_port_start(pdev, 0);
1011         nvt->cir_irq  = pnp_irq(pdev, 0);
1012
1013         nvt->cir_wake_addr = pnp_port_start(pdev, 1);
1014         /* irq is always shared between cir and cir wake */
1015         nvt->cir_wake_irq  = nvt->cir_irq;
1016
1017         nvt->cr_efir = CR_EFIR;
1018         nvt->cr_efdr = CR_EFDR;
1019
1020         spin_lock_init(&nvt->nvt_lock);
1021         spin_lock_init(&nvt->tx.lock);
1022
1023         pnp_set_drvdata(pdev, nvt);
1024         nvt->pdev = pdev;
1025
1026         init_waitqueue_head(&nvt->tx.queue);
1027
1028         ret = nvt_hw_detect(nvt);
1029         if (ret)
1030                 goto failure;
1031
1032         /* Initialize CIR & CIR Wake Logical Devices */
1033         nvt_efm_enable(nvt);
1034         nvt_cir_ldev_init(nvt);
1035         nvt_cir_wake_ldev_init(nvt);
1036         nvt_efm_disable(nvt);
1037
1038         /* Initialize CIR & CIR Wake Config Registers */
1039         nvt_cir_regs_init(nvt);
1040         nvt_cir_wake_regs_init(nvt);
1041
1042         /* Set up the rc device */
1043         rdev->priv = nvt;
1044         rdev->driver_type = RC_DRIVER_IR_RAW;
1045         rdev->allowed_protos = RC_TYPE_ALL;
1046         rdev->open = nvt_open;
1047         rdev->close = nvt_close;
1048         rdev->tx_ir = nvt_tx_ir;
1049         rdev->s_tx_carrier = nvt_set_tx_carrier;
1050         rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1051         rdev->input_phys = "nuvoton/cir0";
1052         rdev->input_id.bustype = BUS_HOST;
1053         rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1054         rdev->input_id.product = nvt->chip_major;
1055         rdev->input_id.version = nvt->chip_minor;
1056         rdev->dev.parent = &pdev->dev;
1057         rdev->driver_name = NVT_DRIVER_NAME;
1058         rdev->map_name = RC_MAP_RC6_MCE;
1059         rdev->timeout = MS_TO_NS(100);
1060         /* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1061         rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1062 #if 0
1063         rdev->min_timeout = XYZ;
1064         rdev->max_timeout = XYZ;
1065         /* tx bits */
1066         rdev->tx_resolution = XYZ;
1067 #endif
1068
1069         ret = -EBUSY;
1070         /* now claim resources */
1071         if (!request_region(nvt->cir_addr,
1072                             CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1073                 goto failure;
1074
1075         if (request_irq(nvt->cir_irq, nvt_cir_isr, IRQF_SHARED,
1076                         NVT_DRIVER_NAME, (void *)nvt))
1077                 goto failure2;
1078
1079         if (!request_region(nvt->cir_wake_addr,
1080                             CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1081                 goto failure3;
1082
1083         if (request_irq(nvt->cir_wake_irq, nvt_cir_wake_isr, IRQF_SHARED,
1084                         NVT_DRIVER_NAME, (void *)nvt))
1085                 goto failure4;
1086
1087         ret = rc_register_device(rdev);
1088         if (ret)
1089                 goto failure5;
1090
1091         device_init_wakeup(&pdev->dev, true);
1092         nvt->rdev = rdev;
1093         nvt_pr(KERN_NOTICE, "driver has been successfully loaded\n");
1094         if (debug) {
1095                 cir_dump_regs(nvt);
1096                 cir_wake_dump_regs(nvt);
1097         }
1098
1099         return 0;
1100
1101 failure5:
1102         free_irq(nvt->cir_wake_irq, nvt);
1103 failure4:
1104         release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1105 failure3:
1106         free_irq(nvt->cir_irq, nvt);
1107 failure2:
1108         release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1109 failure:
1110         rc_free_device(rdev);
1111         kfree(nvt);
1112
1113         return ret;
1114 }
1115
1116 static void __devexit nvt_remove(struct pnp_dev *pdev)
1117 {
1118         struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1119         unsigned long flags;
1120
1121         spin_lock_irqsave(&nvt->nvt_lock, flags);
1122         /* disable CIR */
1123         nvt_cir_reg_write(nvt, 0, CIR_IREN);
1124         nvt_disable_cir(nvt);
1125         /* enable CIR Wake (for IR power-on) */
1126         nvt_enable_wake(nvt);
1127         spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1128
1129         /* free resources */
1130         free_irq(nvt->cir_irq, nvt);
1131         free_irq(nvt->cir_wake_irq, nvt);
1132         release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1133         release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1134
1135         rc_unregister_device(nvt->rdev);
1136
1137         kfree(nvt);
1138 }
1139
1140 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1141 {
1142         struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1143         unsigned long flags;
1144
1145         nvt_dbg("%s called", __func__);
1146
1147         /* zero out misc state tracking */
1148         spin_lock_irqsave(&nvt->nvt_lock, flags);
1149         nvt->study_state = ST_STUDY_NONE;
1150         nvt->wake_state = ST_WAKE_NONE;
1151         spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1152
1153         spin_lock_irqsave(&nvt->tx.lock, flags);
1154         nvt->tx.tx_state = ST_TX_NONE;
1155         spin_unlock_irqrestore(&nvt->tx.lock, flags);
1156
1157         /* disable all CIR interrupts */
1158         nvt_cir_reg_write(nvt, 0, CIR_IREN);
1159
1160         nvt_efm_enable(nvt);
1161
1162         /* disable cir logical dev */
1163         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1164         nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
1165
1166         nvt_efm_disable(nvt);
1167
1168         /* make sure wake is enabled */
1169         nvt_enable_wake(nvt);
1170
1171         return 0;
1172 }
1173
1174 static int nvt_resume(struct pnp_dev *pdev)
1175 {
1176         int ret = 0;
1177         struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1178
1179         nvt_dbg("%s called", __func__);
1180
1181         /* open interrupt */
1182         nvt_set_cir_iren(nvt);
1183
1184         /* Enable CIR logical device */
1185         nvt_efm_enable(nvt);
1186         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1187         nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
1188
1189         nvt_efm_disable(nvt);
1190
1191         nvt_cir_regs_init(nvt);
1192         nvt_cir_wake_regs_init(nvt);
1193
1194         return ret;
1195 }
1196
1197 static void nvt_shutdown(struct pnp_dev *pdev)
1198 {
1199         struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1200         nvt_enable_wake(nvt);
1201 }
1202
1203 static const struct pnp_device_id nvt_ids[] = {
1204         { "WEC0530", 0 },   /* CIR */
1205         { "NTN0530", 0 },   /* CIR for new chip's pnp id*/
1206         { "", 0 },
1207 };
1208
1209 static struct pnp_driver nvt_driver = {
1210         .name           = NVT_DRIVER_NAME,
1211         .id_table       = nvt_ids,
1212         .flags          = PNP_DRIVER_RES_DO_NOT_CHANGE,
1213         .probe          = nvt_probe,
1214         .remove         = __devexit_p(nvt_remove),
1215         .suspend        = nvt_suspend,
1216         .resume         = nvt_resume,
1217         .shutdown       = nvt_shutdown,
1218 };
1219
1220 int nvt_init(void)
1221 {
1222         return pnp_register_driver(&nvt_driver);
1223 }
1224
1225 void nvt_exit(void)
1226 {
1227         pnp_unregister_driver(&nvt_driver);
1228 }
1229
1230 module_param(debug, int, S_IRUGO | S_IWUSR);
1231 MODULE_PARM_DESC(debug, "Enable debugging output");
1232
1233 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1234 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1235
1236 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1237 MODULE_LICENSE("GPL");
1238
1239 module_init(nvt_init);
1240 module_exit(nvt_exit);