arm64: dts add Rockchip RK3328 EVB board for wifi
[firefly-linux-kernel-4.4.55.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio_list *return_bi)
227 {
228         struct bio *bi;
229         while ((bi = bio_list_pop(return_bi)) != NULL) {
230                 bi->bi_iter.bi_size = 0;
231                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232                                          bi, 0);
233                 bio_endio(bi);
234         }
235 }
236
237 static void print_raid5_conf (struct r5conf *conf);
238
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241         return sh->check_state || sh->reconstruct_state ||
242                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248         struct r5conf *conf = sh->raid_conf;
249         struct r5worker_group *group;
250         int thread_cnt;
251         int i, cpu = sh->cpu;
252
253         if (!cpu_online(cpu)) {
254                 cpu = cpumask_any(cpu_online_mask);
255                 sh->cpu = cpu;
256         }
257
258         if (list_empty(&sh->lru)) {
259                 struct r5worker_group *group;
260                 group = conf->worker_groups + cpu_to_group(cpu);
261                 list_add_tail(&sh->lru, &group->handle_list);
262                 group->stripes_cnt++;
263                 sh->group = group;
264         }
265
266         if (conf->worker_cnt_per_group == 0) {
267                 md_wakeup_thread(conf->mddev->thread);
268                 return;
269         }
270
271         group = conf->worker_groups + cpu_to_group(sh->cpu);
272
273         group->workers[0].working = true;
274         /* at least one worker should run to avoid race */
275         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278         /* wakeup more workers */
279         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280                 if (group->workers[i].working == false) {
281                         group->workers[i].working = true;
282                         queue_work_on(sh->cpu, raid5_wq,
283                                       &group->workers[i].work);
284                         thread_cnt--;
285                 }
286         }
287 }
288
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290                               struct list_head *temp_inactive_list)
291 {
292         BUG_ON(!list_empty(&sh->lru));
293         BUG_ON(atomic_read(&conf->active_stripes)==0);
294         if (test_bit(STRIPE_HANDLE, &sh->state)) {
295                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
296                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297                         list_add_tail(&sh->lru, &conf->delayed_list);
298                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299                            sh->bm_seq - conf->seq_write > 0)
300                         list_add_tail(&sh->lru, &conf->bitmap_list);
301                 else {
302                         clear_bit(STRIPE_DELAYED, &sh->state);
303                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
304                         if (conf->worker_cnt_per_group == 0) {
305                                 list_add_tail(&sh->lru, &conf->handle_list);
306                         } else {
307                                 raid5_wakeup_stripe_thread(sh);
308                                 return;
309                         }
310                 }
311                 md_wakeup_thread(conf->mddev->thread);
312         } else {
313                 BUG_ON(stripe_operations_active(sh));
314                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315                         if (atomic_dec_return(&conf->preread_active_stripes)
316                             < IO_THRESHOLD)
317                                 md_wakeup_thread(conf->mddev->thread);
318                 atomic_dec(&conf->active_stripes);
319                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320                         list_add_tail(&sh->lru, temp_inactive_list);
321         }
322 }
323
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325                              struct list_head *temp_inactive_list)
326 {
327         if (atomic_dec_and_test(&sh->count))
328                 do_release_stripe(conf, sh, temp_inactive_list);
329 }
330
331 /*
332  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333  *
334  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335  * given time. Adding stripes only takes device lock, while deleting stripes
336  * only takes hash lock.
337  */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339                                          struct list_head *temp_inactive_list,
340                                          int hash)
341 {
342         int size;
343         bool do_wakeup = false;
344         unsigned long flags;
345
346         if (hash == NR_STRIPE_HASH_LOCKS) {
347                 size = NR_STRIPE_HASH_LOCKS;
348                 hash = NR_STRIPE_HASH_LOCKS - 1;
349         } else
350                 size = 1;
351         while (size) {
352                 struct list_head *list = &temp_inactive_list[size - 1];
353
354                 /*
355                  * We don't hold any lock here yet, raid5_get_active_stripe() might
356                  * remove stripes from the list
357                  */
358                 if (!list_empty_careful(list)) {
359                         spin_lock_irqsave(conf->hash_locks + hash, flags);
360                         if (list_empty(conf->inactive_list + hash) &&
361                             !list_empty(list))
362                                 atomic_dec(&conf->empty_inactive_list_nr);
363                         list_splice_tail_init(list, conf->inactive_list + hash);
364                         do_wakeup = true;
365                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
366                 }
367                 size--;
368                 hash--;
369         }
370
371         if (do_wakeup) {
372                 wake_up(&conf->wait_for_stripe);
373                 if (atomic_read(&conf->active_stripes) == 0)
374                         wake_up(&conf->wait_for_quiescent);
375                 if (conf->retry_read_aligned)
376                         md_wakeup_thread(conf->mddev->thread);
377         }
378 }
379
380 /* should hold conf->device_lock already */
381 static int release_stripe_list(struct r5conf *conf,
382                                struct list_head *temp_inactive_list)
383 {
384         struct stripe_head *sh;
385         int count = 0;
386         struct llist_node *head;
387
388         head = llist_del_all(&conf->released_stripes);
389         head = llist_reverse_order(head);
390         while (head) {
391                 int hash;
392
393                 sh = llist_entry(head, struct stripe_head, release_list);
394                 head = llist_next(head);
395                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
396                 smp_mb();
397                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
398                 /*
399                  * Don't worry the bit is set here, because if the bit is set
400                  * again, the count is always > 1. This is true for
401                  * STRIPE_ON_UNPLUG_LIST bit too.
402                  */
403                 hash = sh->hash_lock_index;
404                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
405                 count++;
406         }
407
408         return count;
409 }
410
411 void raid5_release_stripe(struct stripe_head *sh)
412 {
413         struct r5conf *conf = sh->raid_conf;
414         unsigned long flags;
415         struct list_head list;
416         int hash;
417         bool wakeup;
418
419         /* Avoid release_list until the last reference.
420          */
421         if (atomic_add_unless(&sh->count, -1, 1))
422                 return;
423
424         if (unlikely(!conf->mddev->thread) ||
425                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
426                 goto slow_path;
427         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
428         if (wakeup)
429                 md_wakeup_thread(conf->mddev->thread);
430         return;
431 slow_path:
432         local_irq_save(flags);
433         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
434         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
435                 INIT_LIST_HEAD(&list);
436                 hash = sh->hash_lock_index;
437                 do_release_stripe(conf, sh, &list);
438                 spin_unlock(&conf->device_lock);
439                 release_inactive_stripe_list(conf, &list, hash);
440         }
441         local_irq_restore(flags);
442 }
443
444 static inline void remove_hash(struct stripe_head *sh)
445 {
446         pr_debug("remove_hash(), stripe %llu\n",
447                 (unsigned long long)sh->sector);
448
449         hlist_del_init(&sh->hash);
450 }
451
452 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
453 {
454         struct hlist_head *hp = stripe_hash(conf, sh->sector);
455
456         pr_debug("insert_hash(), stripe %llu\n",
457                 (unsigned long long)sh->sector);
458
459         hlist_add_head(&sh->hash, hp);
460 }
461
462 /* find an idle stripe, make sure it is unhashed, and return it. */
463 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
464 {
465         struct stripe_head *sh = NULL;
466         struct list_head *first;
467
468         if (list_empty(conf->inactive_list + hash))
469                 goto out;
470         first = (conf->inactive_list + hash)->next;
471         sh = list_entry(first, struct stripe_head, lru);
472         list_del_init(first);
473         remove_hash(sh);
474         atomic_inc(&conf->active_stripes);
475         BUG_ON(hash != sh->hash_lock_index);
476         if (list_empty(conf->inactive_list + hash))
477                 atomic_inc(&conf->empty_inactive_list_nr);
478 out:
479         return sh;
480 }
481
482 static void shrink_buffers(struct stripe_head *sh)
483 {
484         struct page *p;
485         int i;
486         int num = sh->raid_conf->pool_size;
487
488         for (i = 0; i < num ; i++) {
489                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
490                 p = sh->dev[i].page;
491                 if (!p)
492                         continue;
493                 sh->dev[i].page = NULL;
494                 put_page(p);
495         }
496 }
497
498 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
499 {
500         int i;
501         int num = sh->raid_conf->pool_size;
502
503         for (i = 0; i < num; i++) {
504                 struct page *page;
505
506                 if (!(page = alloc_page(gfp))) {
507                         return 1;
508                 }
509                 sh->dev[i].page = page;
510                 sh->dev[i].orig_page = page;
511         }
512         return 0;
513 }
514
515 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
516 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
517                             struct stripe_head *sh);
518
519 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
520 {
521         struct r5conf *conf = sh->raid_conf;
522         int i, seq;
523
524         BUG_ON(atomic_read(&sh->count) != 0);
525         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
526         BUG_ON(stripe_operations_active(sh));
527         BUG_ON(sh->batch_head);
528
529         pr_debug("init_stripe called, stripe %llu\n",
530                 (unsigned long long)sector);
531 retry:
532         seq = read_seqcount_begin(&conf->gen_lock);
533         sh->generation = conf->generation - previous;
534         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
535         sh->sector = sector;
536         stripe_set_idx(sector, conf, previous, sh);
537         sh->state = 0;
538
539         for (i = sh->disks; i--; ) {
540                 struct r5dev *dev = &sh->dev[i];
541
542                 if (dev->toread || dev->read || dev->towrite || dev->written ||
543                     test_bit(R5_LOCKED, &dev->flags)) {
544                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
545                                (unsigned long long)sh->sector, i, dev->toread,
546                                dev->read, dev->towrite, dev->written,
547                                test_bit(R5_LOCKED, &dev->flags));
548                         WARN_ON(1);
549                 }
550                 dev->flags = 0;
551                 raid5_build_block(sh, i, previous);
552         }
553         if (read_seqcount_retry(&conf->gen_lock, seq))
554                 goto retry;
555         sh->overwrite_disks = 0;
556         insert_hash(conf, sh);
557         sh->cpu = smp_processor_id();
558         set_bit(STRIPE_BATCH_READY, &sh->state);
559 }
560
561 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
562                                          short generation)
563 {
564         struct stripe_head *sh;
565
566         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
567         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
568                 if (sh->sector == sector && sh->generation == generation)
569                         return sh;
570         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
571         return NULL;
572 }
573
574 /*
575  * Need to check if array has failed when deciding whether to:
576  *  - start an array
577  *  - remove non-faulty devices
578  *  - add a spare
579  *  - allow a reshape
580  * This determination is simple when no reshape is happening.
581  * However if there is a reshape, we need to carefully check
582  * both the before and after sections.
583  * This is because some failed devices may only affect one
584  * of the two sections, and some non-in_sync devices may
585  * be insync in the section most affected by failed devices.
586  */
587 static int calc_degraded(struct r5conf *conf)
588 {
589         int degraded, degraded2;
590         int i;
591
592         rcu_read_lock();
593         degraded = 0;
594         for (i = 0; i < conf->previous_raid_disks; i++) {
595                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
596                 if (rdev && test_bit(Faulty, &rdev->flags))
597                         rdev = rcu_dereference(conf->disks[i].replacement);
598                 if (!rdev || test_bit(Faulty, &rdev->flags))
599                         degraded++;
600                 else if (test_bit(In_sync, &rdev->flags))
601                         ;
602                 else
603                         /* not in-sync or faulty.
604                          * If the reshape increases the number of devices,
605                          * this is being recovered by the reshape, so
606                          * this 'previous' section is not in_sync.
607                          * If the number of devices is being reduced however,
608                          * the device can only be part of the array if
609                          * we are reverting a reshape, so this section will
610                          * be in-sync.
611                          */
612                         if (conf->raid_disks >= conf->previous_raid_disks)
613                                 degraded++;
614         }
615         rcu_read_unlock();
616         if (conf->raid_disks == conf->previous_raid_disks)
617                 return degraded;
618         rcu_read_lock();
619         degraded2 = 0;
620         for (i = 0; i < conf->raid_disks; i++) {
621                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
622                 if (rdev && test_bit(Faulty, &rdev->flags))
623                         rdev = rcu_dereference(conf->disks[i].replacement);
624                 if (!rdev || test_bit(Faulty, &rdev->flags))
625                         degraded2++;
626                 else if (test_bit(In_sync, &rdev->flags))
627                         ;
628                 else
629                         /* not in-sync or faulty.
630                          * If reshape increases the number of devices, this
631                          * section has already been recovered, else it
632                          * almost certainly hasn't.
633                          */
634                         if (conf->raid_disks <= conf->previous_raid_disks)
635                                 degraded2++;
636         }
637         rcu_read_unlock();
638         if (degraded2 > degraded)
639                 return degraded2;
640         return degraded;
641 }
642
643 static int has_failed(struct r5conf *conf)
644 {
645         int degraded;
646
647         if (conf->mddev->reshape_position == MaxSector)
648                 return conf->mddev->degraded > conf->max_degraded;
649
650         degraded = calc_degraded(conf);
651         if (degraded > conf->max_degraded)
652                 return 1;
653         return 0;
654 }
655
656 struct stripe_head *
657 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
658                         int previous, int noblock, int noquiesce)
659 {
660         struct stripe_head *sh;
661         int hash = stripe_hash_locks_hash(sector);
662
663         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
664
665         spin_lock_irq(conf->hash_locks + hash);
666
667         do {
668                 wait_event_lock_irq(conf->wait_for_quiescent,
669                                     conf->quiesce == 0 || noquiesce,
670                                     *(conf->hash_locks + hash));
671                 sh = __find_stripe(conf, sector, conf->generation - previous);
672                 if (!sh) {
673                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
674                                 sh = get_free_stripe(conf, hash);
675                                 if (!sh && !test_bit(R5_DID_ALLOC,
676                                                      &conf->cache_state))
677                                         set_bit(R5_ALLOC_MORE,
678                                                 &conf->cache_state);
679                         }
680                         if (noblock && sh == NULL)
681                                 break;
682                         if (!sh) {
683                                 set_bit(R5_INACTIVE_BLOCKED,
684                                         &conf->cache_state);
685                                 wait_event_lock_irq(
686                                         conf->wait_for_stripe,
687                                         !list_empty(conf->inactive_list + hash) &&
688                                         (atomic_read(&conf->active_stripes)
689                                          < (conf->max_nr_stripes * 3 / 4)
690                                          || !test_bit(R5_INACTIVE_BLOCKED,
691                                                       &conf->cache_state)),
692                                         *(conf->hash_locks + hash));
693                                 clear_bit(R5_INACTIVE_BLOCKED,
694                                           &conf->cache_state);
695                         } else {
696                                 init_stripe(sh, sector, previous);
697                                 atomic_inc(&sh->count);
698                         }
699                 } else if (!atomic_inc_not_zero(&sh->count)) {
700                         spin_lock(&conf->device_lock);
701                         if (!atomic_read(&sh->count)) {
702                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
703                                         atomic_inc(&conf->active_stripes);
704                                 BUG_ON(list_empty(&sh->lru) &&
705                                        !test_bit(STRIPE_EXPANDING, &sh->state));
706                                 list_del_init(&sh->lru);
707                                 if (sh->group) {
708                                         sh->group->stripes_cnt--;
709                                         sh->group = NULL;
710                                 }
711                         }
712                         atomic_inc(&sh->count);
713                         spin_unlock(&conf->device_lock);
714                 }
715         } while (sh == NULL);
716
717         spin_unlock_irq(conf->hash_locks + hash);
718         return sh;
719 }
720
721 static bool is_full_stripe_write(struct stripe_head *sh)
722 {
723         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
724         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
725 }
726
727 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
728 {
729         local_irq_disable();
730         if (sh1 > sh2) {
731                 spin_lock(&sh2->stripe_lock);
732                 spin_lock_nested(&sh1->stripe_lock, 1);
733         } else {
734                 spin_lock(&sh1->stripe_lock);
735                 spin_lock_nested(&sh2->stripe_lock, 1);
736         }
737 }
738
739 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
740 {
741         spin_unlock(&sh1->stripe_lock);
742         spin_unlock(&sh2->stripe_lock);
743         local_irq_enable();
744 }
745
746 /* Only freshly new full stripe normal write stripe can be added to a batch list */
747 static bool stripe_can_batch(struct stripe_head *sh)
748 {
749         struct r5conf *conf = sh->raid_conf;
750
751         if (conf->log)
752                 return false;
753         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
754                 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
755                 is_full_stripe_write(sh);
756 }
757
758 /* we only do back search */
759 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
760 {
761         struct stripe_head *head;
762         sector_t head_sector, tmp_sec;
763         int hash;
764         int dd_idx;
765
766         if (!stripe_can_batch(sh))
767                 return;
768         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
769         tmp_sec = sh->sector;
770         if (!sector_div(tmp_sec, conf->chunk_sectors))
771                 return;
772         head_sector = sh->sector - STRIPE_SECTORS;
773
774         hash = stripe_hash_locks_hash(head_sector);
775         spin_lock_irq(conf->hash_locks + hash);
776         head = __find_stripe(conf, head_sector, conf->generation);
777         if (head && !atomic_inc_not_zero(&head->count)) {
778                 spin_lock(&conf->device_lock);
779                 if (!atomic_read(&head->count)) {
780                         if (!test_bit(STRIPE_HANDLE, &head->state))
781                                 atomic_inc(&conf->active_stripes);
782                         BUG_ON(list_empty(&head->lru) &&
783                                !test_bit(STRIPE_EXPANDING, &head->state));
784                         list_del_init(&head->lru);
785                         if (head->group) {
786                                 head->group->stripes_cnt--;
787                                 head->group = NULL;
788                         }
789                 }
790                 atomic_inc(&head->count);
791                 spin_unlock(&conf->device_lock);
792         }
793         spin_unlock_irq(conf->hash_locks + hash);
794
795         if (!head)
796                 return;
797         if (!stripe_can_batch(head))
798                 goto out;
799
800         lock_two_stripes(head, sh);
801         /* clear_batch_ready clear the flag */
802         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
803                 goto unlock_out;
804
805         if (sh->batch_head)
806                 goto unlock_out;
807
808         dd_idx = 0;
809         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
810                 dd_idx++;
811         if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
812                 goto unlock_out;
813
814         if (head->batch_head) {
815                 spin_lock(&head->batch_head->batch_lock);
816                 /* This batch list is already running */
817                 if (!stripe_can_batch(head)) {
818                         spin_unlock(&head->batch_head->batch_lock);
819                         goto unlock_out;
820                 }
821
822                 /*
823                  * at this point, head's BATCH_READY could be cleared, but we
824                  * can still add the stripe to batch list
825                  */
826                 list_add(&sh->batch_list, &head->batch_list);
827                 spin_unlock(&head->batch_head->batch_lock);
828
829                 sh->batch_head = head->batch_head;
830         } else {
831                 head->batch_head = head;
832                 sh->batch_head = head->batch_head;
833                 spin_lock(&head->batch_lock);
834                 list_add_tail(&sh->batch_list, &head->batch_list);
835                 spin_unlock(&head->batch_lock);
836         }
837
838         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
839                 if (atomic_dec_return(&conf->preread_active_stripes)
840                     < IO_THRESHOLD)
841                         md_wakeup_thread(conf->mddev->thread);
842
843         if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
844                 int seq = sh->bm_seq;
845                 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
846                     sh->batch_head->bm_seq > seq)
847                         seq = sh->batch_head->bm_seq;
848                 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
849                 sh->batch_head->bm_seq = seq;
850         }
851
852         atomic_inc(&sh->count);
853 unlock_out:
854         unlock_two_stripes(head, sh);
855 out:
856         raid5_release_stripe(head);
857 }
858
859 /* Determine if 'data_offset' or 'new_data_offset' should be used
860  * in this stripe_head.
861  */
862 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
863 {
864         sector_t progress = conf->reshape_progress;
865         /* Need a memory barrier to make sure we see the value
866          * of conf->generation, or ->data_offset that was set before
867          * reshape_progress was updated.
868          */
869         smp_rmb();
870         if (progress == MaxSector)
871                 return 0;
872         if (sh->generation == conf->generation - 1)
873                 return 0;
874         /* We are in a reshape, and this is a new-generation stripe,
875          * so use new_data_offset.
876          */
877         return 1;
878 }
879
880 static void
881 raid5_end_read_request(struct bio *bi);
882 static void
883 raid5_end_write_request(struct bio *bi);
884
885 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
886 {
887         struct r5conf *conf = sh->raid_conf;
888         int i, disks = sh->disks;
889         struct stripe_head *head_sh = sh;
890
891         might_sleep();
892
893         if (r5l_write_stripe(conf->log, sh) == 0)
894                 return;
895         for (i = disks; i--; ) {
896                 int rw;
897                 int replace_only = 0;
898                 struct bio *bi, *rbi;
899                 struct md_rdev *rdev, *rrdev = NULL;
900
901                 sh = head_sh;
902                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
903                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
904                                 rw = WRITE_FUA;
905                         else
906                                 rw = WRITE;
907                         if (test_bit(R5_Discard, &sh->dev[i].flags))
908                                 rw |= REQ_DISCARD;
909                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
910                         rw = READ;
911                 else if (test_and_clear_bit(R5_WantReplace,
912                                             &sh->dev[i].flags)) {
913                         rw = WRITE;
914                         replace_only = 1;
915                 } else
916                         continue;
917                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
918                         rw |= REQ_SYNC;
919
920 again:
921                 bi = &sh->dev[i].req;
922                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
923
924                 rcu_read_lock();
925                 rrdev = rcu_dereference(conf->disks[i].replacement);
926                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
927                 rdev = rcu_dereference(conf->disks[i].rdev);
928                 if (!rdev) {
929                         rdev = rrdev;
930                         rrdev = NULL;
931                 }
932                 if (rw & WRITE) {
933                         if (replace_only)
934                                 rdev = NULL;
935                         if (rdev == rrdev)
936                                 /* We raced and saw duplicates */
937                                 rrdev = NULL;
938                 } else {
939                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
940                                 rdev = rrdev;
941                         rrdev = NULL;
942                 }
943
944                 if (rdev && test_bit(Faulty, &rdev->flags))
945                         rdev = NULL;
946                 if (rdev)
947                         atomic_inc(&rdev->nr_pending);
948                 if (rrdev && test_bit(Faulty, &rrdev->flags))
949                         rrdev = NULL;
950                 if (rrdev)
951                         atomic_inc(&rrdev->nr_pending);
952                 rcu_read_unlock();
953
954                 /* We have already checked bad blocks for reads.  Now
955                  * need to check for writes.  We never accept write errors
956                  * on the replacement, so we don't to check rrdev.
957                  */
958                 while ((rw & WRITE) && rdev &&
959                        test_bit(WriteErrorSeen, &rdev->flags)) {
960                         sector_t first_bad;
961                         int bad_sectors;
962                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
963                                               &first_bad, &bad_sectors);
964                         if (!bad)
965                                 break;
966
967                         if (bad < 0) {
968                                 set_bit(BlockedBadBlocks, &rdev->flags);
969                                 if (!conf->mddev->external &&
970                                     conf->mddev->flags) {
971                                         /* It is very unlikely, but we might
972                                          * still need to write out the
973                                          * bad block log - better give it
974                                          * a chance*/
975                                         md_check_recovery(conf->mddev);
976                                 }
977                                 /*
978                                  * Because md_wait_for_blocked_rdev
979                                  * will dec nr_pending, we must
980                                  * increment it first.
981                                  */
982                                 atomic_inc(&rdev->nr_pending);
983                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
984                         } else {
985                                 /* Acknowledged bad block - skip the write */
986                                 rdev_dec_pending(rdev, conf->mddev);
987                                 rdev = NULL;
988                         }
989                 }
990
991                 if (rdev) {
992                         if (s->syncing || s->expanding || s->expanded
993                             || s->replacing)
994                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
995
996                         set_bit(STRIPE_IO_STARTED, &sh->state);
997
998                         bio_reset(bi);
999                         bi->bi_bdev = rdev->bdev;
1000                         bi->bi_rw = rw;
1001                         bi->bi_end_io = (rw & WRITE)
1002                                 ? raid5_end_write_request
1003                                 : raid5_end_read_request;
1004                         bi->bi_private = sh;
1005
1006                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1007                                 __func__, (unsigned long long)sh->sector,
1008                                 bi->bi_rw, i);
1009                         atomic_inc(&sh->count);
1010                         if (sh != head_sh)
1011                                 atomic_inc(&head_sh->count);
1012                         if (use_new_offset(conf, sh))
1013                                 bi->bi_iter.bi_sector = (sh->sector
1014                                                  + rdev->new_data_offset);
1015                         else
1016                                 bi->bi_iter.bi_sector = (sh->sector
1017                                                  + rdev->data_offset);
1018                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1019                                 bi->bi_rw |= REQ_NOMERGE;
1020
1021                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1022                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1023                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1024                         bi->bi_vcnt = 1;
1025                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1026                         bi->bi_io_vec[0].bv_offset = 0;
1027                         bi->bi_iter.bi_size = STRIPE_SIZE;
1028                         /*
1029                          * If this is discard request, set bi_vcnt 0. We don't
1030                          * want to confuse SCSI because SCSI will replace payload
1031                          */
1032                         if (rw & REQ_DISCARD)
1033                                 bi->bi_vcnt = 0;
1034                         if (rrdev)
1035                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1036
1037                         if (conf->mddev->gendisk)
1038                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1039                                                       bi, disk_devt(conf->mddev->gendisk),
1040                                                       sh->dev[i].sector);
1041                         generic_make_request(bi);
1042                 }
1043                 if (rrdev) {
1044                         if (s->syncing || s->expanding || s->expanded
1045                             || s->replacing)
1046                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1047
1048                         set_bit(STRIPE_IO_STARTED, &sh->state);
1049
1050                         bio_reset(rbi);
1051                         rbi->bi_bdev = rrdev->bdev;
1052                         rbi->bi_rw = rw;
1053                         BUG_ON(!(rw & WRITE));
1054                         rbi->bi_end_io = raid5_end_write_request;
1055                         rbi->bi_private = sh;
1056
1057                         pr_debug("%s: for %llu schedule op %ld on "
1058                                  "replacement disc %d\n",
1059                                 __func__, (unsigned long long)sh->sector,
1060                                 rbi->bi_rw, i);
1061                         atomic_inc(&sh->count);
1062                         if (sh != head_sh)
1063                                 atomic_inc(&head_sh->count);
1064                         if (use_new_offset(conf, sh))
1065                                 rbi->bi_iter.bi_sector = (sh->sector
1066                                                   + rrdev->new_data_offset);
1067                         else
1068                                 rbi->bi_iter.bi_sector = (sh->sector
1069                                                   + rrdev->data_offset);
1070                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1071                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1072                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1073                         rbi->bi_vcnt = 1;
1074                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1075                         rbi->bi_io_vec[0].bv_offset = 0;
1076                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1077                         /*
1078                          * If this is discard request, set bi_vcnt 0. We don't
1079                          * want to confuse SCSI because SCSI will replace payload
1080                          */
1081                         if (rw & REQ_DISCARD)
1082                                 rbi->bi_vcnt = 0;
1083                         if (conf->mddev->gendisk)
1084                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1085                                                       rbi, disk_devt(conf->mddev->gendisk),
1086                                                       sh->dev[i].sector);
1087                         generic_make_request(rbi);
1088                 }
1089                 if (!rdev && !rrdev) {
1090                         if (rw & WRITE)
1091                                 set_bit(STRIPE_DEGRADED, &sh->state);
1092                         pr_debug("skip op %ld on disc %d for sector %llu\n",
1093                                 bi->bi_rw, i, (unsigned long long)sh->sector);
1094                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1095                         set_bit(STRIPE_HANDLE, &sh->state);
1096                 }
1097
1098                 if (!head_sh->batch_head)
1099                         continue;
1100                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1101                                       batch_list);
1102                 if (sh != head_sh)
1103                         goto again;
1104         }
1105 }
1106
1107 static struct dma_async_tx_descriptor *
1108 async_copy_data(int frombio, struct bio *bio, struct page **page,
1109         sector_t sector, struct dma_async_tx_descriptor *tx,
1110         struct stripe_head *sh)
1111 {
1112         struct bio_vec bvl;
1113         struct bvec_iter iter;
1114         struct page *bio_page;
1115         int page_offset;
1116         struct async_submit_ctl submit;
1117         enum async_tx_flags flags = 0;
1118
1119         if (bio->bi_iter.bi_sector >= sector)
1120                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1121         else
1122                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1123
1124         if (frombio)
1125                 flags |= ASYNC_TX_FENCE;
1126         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1127
1128         bio_for_each_segment(bvl, bio, iter) {
1129                 int len = bvl.bv_len;
1130                 int clen;
1131                 int b_offset = 0;
1132
1133                 if (page_offset < 0) {
1134                         b_offset = -page_offset;
1135                         page_offset += b_offset;
1136                         len -= b_offset;
1137                 }
1138
1139                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1140                         clen = STRIPE_SIZE - page_offset;
1141                 else
1142                         clen = len;
1143
1144                 if (clen > 0) {
1145                         b_offset += bvl.bv_offset;
1146                         bio_page = bvl.bv_page;
1147                         if (frombio) {
1148                                 if (sh->raid_conf->skip_copy &&
1149                                     b_offset == 0 && page_offset == 0 &&
1150                                     clen == STRIPE_SIZE)
1151                                         *page = bio_page;
1152                                 else
1153                                         tx = async_memcpy(*page, bio_page, page_offset,
1154                                                   b_offset, clen, &submit);
1155                         } else
1156                                 tx = async_memcpy(bio_page, *page, b_offset,
1157                                                   page_offset, clen, &submit);
1158                 }
1159                 /* chain the operations */
1160                 submit.depend_tx = tx;
1161
1162                 if (clen < len) /* hit end of page */
1163                         break;
1164                 page_offset +=  len;
1165         }
1166
1167         return tx;
1168 }
1169
1170 static void ops_complete_biofill(void *stripe_head_ref)
1171 {
1172         struct stripe_head *sh = stripe_head_ref;
1173         struct bio_list return_bi = BIO_EMPTY_LIST;
1174         int i;
1175
1176         pr_debug("%s: stripe %llu\n", __func__,
1177                 (unsigned long long)sh->sector);
1178
1179         /* clear completed biofills */
1180         for (i = sh->disks; i--; ) {
1181                 struct r5dev *dev = &sh->dev[i];
1182
1183                 /* acknowledge completion of a biofill operation */
1184                 /* and check if we need to reply to a read request,
1185                  * new R5_Wantfill requests are held off until
1186                  * !STRIPE_BIOFILL_RUN
1187                  */
1188                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1189                         struct bio *rbi, *rbi2;
1190
1191                         BUG_ON(!dev->read);
1192                         rbi = dev->read;
1193                         dev->read = NULL;
1194                         while (rbi && rbi->bi_iter.bi_sector <
1195                                 dev->sector + STRIPE_SECTORS) {
1196                                 rbi2 = r5_next_bio(rbi, dev->sector);
1197                                 if (!raid5_dec_bi_active_stripes(rbi))
1198                                         bio_list_add(&return_bi, rbi);
1199                                 rbi = rbi2;
1200                         }
1201                 }
1202         }
1203         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1204
1205         return_io(&return_bi);
1206
1207         set_bit(STRIPE_HANDLE, &sh->state);
1208         raid5_release_stripe(sh);
1209 }
1210
1211 static void ops_run_biofill(struct stripe_head *sh)
1212 {
1213         struct dma_async_tx_descriptor *tx = NULL;
1214         struct async_submit_ctl submit;
1215         int i;
1216
1217         BUG_ON(sh->batch_head);
1218         pr_debug("%s: stripe %llu\n", __func__,
1219                 (unsigned long long)sh->sector);
1220
1221         for (i = sh->disks; i--; ) {
1222                 struct r5dev *dev = &sh->dev[i];
1223                 if (test_bit(R5_Wantfill, &dev->flags)) {
1224                         struct bio *rbi;
1225                         spin_lock_irq(&sh->stripe_lock);
1226                         dev->read = rbi = dev->toread;
1227                         dev->toread = NULL;
1228                         spin_unlock_irq(&sh->stripe_lock);
1229                         while (rbi && rbi->bi_iter.bi_sector <
1230                                 dev->sector + STRIPE_SECTORS) {
1231                                 tx = async_copy_data(0, rbi, &dev->page,
1232                                         dev->sector, tx, sh);
1233                                 rbi = r5_next_bio(rbi, dev->sector);
1234                         }
1235                 }
1236         }
1237
1238         atomic_inc(&sh->count);
1239         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1240         async_trigger_callback(&submit);
1241 }
1242
1243 static void mark_target_uptodate(struct stripe_head *sh, int target)
1244 {
1245         struct r5dev *tgt;
1246
1247         if (target < 0)
1248                 return;
1249
1250         tgt = &sh->dev[target];
1251         set_bit(R5_UPTODATE, &tgt->flags);
1252         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1253         clear_bit(R5_Wantcompute, &tgt->flags);
1254 }
1255
1256 static void ops_complete_compute(void *stripe_head_ref)
1257 {
1258         struct stripe_head *sh = stripe_head_ref;
1259
1260         pr_debug("%s: stripe %llu\n", __func__,
1261                 (unsigned long long)sh->sector);
1262
1263         /* mark the computed target(s) as uptodate */
1264         mark_target_uptodate(sh, sh->ops.target);
1265         mark_target_uptodate(sh, sh->ops.target2);
1266
1267         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1268         if (sh->check_state == check_state_compute_run)
1269                 sh->check_state = check_state_compute_result;
1270         set_bit(STRIPE_HANDLE, &sh->state);
1271         raid5_release_stripe(sh);
1272 }
1273
1274 /* return a pointer to the address conversion region of the scribble buffer */
1275 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1276                                  struct raid5_percpu *percpu, int i)
1277 {
1278         void *addr;
1279
1280         addr = flex_array_get(percpu->scribble, i);
1281         return addr + sizeof(struct page *) * (sh->disks + 2);
1282 }
1283
1284 /* return a pointer to the address conversion region of the scribble buffer */
1285 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1286 {
1287         void *addr;
1288
1289         addr = flex_array_get(percpu->scribble, i);
1290         return addr;
1291 }
1292
1293 static struct dma_async_tx_descriptor *
1294 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1295 {
1296         int disks = sh->disks;
1297         struct page **xor_srcs = to_addr_page(percpu, 0);
1298         int target = sh->ops.target;
1299         struct r5dev *tgt = &sh->dev[target];
1300         struct page *xor_dest = tgt->page;
1301         int count = 0;
1302         struct dma_async_tx_descriptor *tx;
1303         struct async_submit_ctl submit;
1304         int i;
1305
1306         BUG_ON(sh->batch_head);
1307
1308         pr_debug("%s: stripe %llu block: %d\n",
1309                 __func__, (unsigned long long)sh->sector, target);
1310         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1311
1312         for (i = disks; i--; )
1313                 if (i != target)
1314                         xor_srcs[count++] = sh->dev[i].page;
1315
1316         atomic_inc(&sh->count);
1317
1318         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1319                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1320         if (unlikely(count == 1))
1321                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1322         else
1323                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1324
1325         return tx;
1326 }
1327
1328 /* set_syndrome_sources - populate source buffers for gen_syndrome
1329  * @srcs - (struct page *) array of size sh->disks
1330  * @sh - stripe_head to parse
1331  *
1332  * Populates srcs in proper layout order for the stripe and returns the
1333  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1334  * destination buffer is recorded in srcs[count] and the Q destination
1335  * is recorded in srcs[count+1]].
1336  */
1337 static int set_syndrome_sources(struct page **srcs,
1338                                 struct stripe_head *sh,
1339                                 int srctype)
1340 {
1341         int disks = sh->disks;
1342         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1343         int d0_idx = raid6_d0(sh);
1344         int count;
1345         int i;
1346
1347         for (i = 0; i < disks; i++)
1348                 srcs[i] = NULL;
1349
1350         count = 0;
1351         i = d0_idx;
1352         do {
1353                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1354                 struct r5dev *dev = &sh->dev[i];
1355
1356                 if (i == sh->qd_idx || i == sh->pd_idx ||
1357                     (srctype == SYNDROME_SRC_ALL) ||
1358                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1359                      test_bit(R5_Wantdrain, &dev->flags)) ||
1360                     (srctype == SYNDROME_SRC_WRITTEN &&
1361                      dev->written))
1362                         srcs[slot] = sh->dev[i].page;
1363                 i = raid6_next_disk(i, disks);
1364         } while (i != d0_idx);
1365
1366         return syndrome_disks;
1367 }
1368
1369 static struct dma_async_tx_descriptor *
1370 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1371 {
1372         int disks = sh->disks;
1373         struct page **blocks = to_addr_page(percpu, 0);
1374         int target;
1375         int qd_idx = sh->qd_idx;
1376         struct dma_async_tx_descriptor *tx;
1377         struct async_submit_ctl submit;
1378         struct r5dev *tgt;
1379         struct page *dest;
1380         int i;
1381         int count;
1382
1383         BUG_ON(sh->batch_head);
1384         if (sh->ops.target < 0)
1385                 target = sh->ops.target2;
1386         else if (sh->ops.target2 < 0)
1387                 target = sh->ops.target;
1388         else
1389                 /* we should only have one valid target */
1390                 BUG();
1391         BUG_ON(target < 0);
1392         pr_debug("%s: stripe %llu block: %d\n",
1393                 __func__, (unsigned long long)sh->sector, target);
1394
1395         tgt = &sh->dev[target];
1396         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1397         dest = tgt->page;
1398
1399         atomic_inc(&sh->count);
1400
1401         if (target == qd_idx) {
1402                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1403                 blocks[count] = NULL; /* regenerating p is not necessary */
1404                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1405                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1406                                   ops_complete_compute, sh,
1407                                   to_addr_conv(sh, percpu, 0));
1408                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1409         } else {
1410                 /* Compute any data- or p-drive using XOR */
1411                 count = 0;
1412                 for (i = disks; i-- ; ) {
1413                         if (i == target || i == qd_idx)
1414                                 continue;
1415                         blocks[count++] = sh->dev[i].page;
1416                 }
1417
1418                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1419                                   NULL, ops_complete_compute, sh,
1420                                   to_addr_conv(sh, percpu, 0));
1421                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1422         }
1423
1424         return tx;
1425 }
1426
1427 static struct dma_async_tx_descriptor *
1428 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1429 {
1430         int i, count, disks = sh->disks;
1431         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1432         int d0_idx = raid6_d0(sh);
1433         int faila = -1, failb = -1;
1434         int target = sh->ops.target;
1435         int target2 = sh->ops.target2;
1436         struct r5dev *tgt = &sh->dev[target];
1437         struct r5dev *tgt2 = &sh->dev[target2];
1438         struct dma_async_tx_descriptor *tx;
1439         struct page **blocks = to_addr_page(percpu, 0);
1440         struct async_submit_ctl submit;
1441
1442         BUG_ON(sh->batch_head);
1443         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1444                  __func__, (unsigned long long)sh->sector, target, target2);
1445         BUG_ON(target < 0 || target2 < 0);
1446         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1447         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1448
1449         /* we need to open-code set_syndrome_sources to handle the
1450          * slot number conversion for 'faila' and 'failb'
1451          */
1452         for (i = 0; i < disks ; i++)
1453                 blocks[i] = NULL;
1454         count = 0;
1455         i = d0_idx;
1456         do {
1457                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1458
1459                 blocks[slot] = sh->dev[i].page;
1460
1461                 if (i == target)
1462                         faila = slot;
1463                 if (i == target2)
1464                         failb = slot;
1465                 i = raid6_next_disk(i, disks);
1466         } while (i != d0_idx);
1467
1468         BUG_ON(faila == failb);
1469         if (failb < faila)
1470                 swap(faila, failb);
1471         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1472                  __func__, (unsigned long long)sh->sector, faila, failb);
1473
1474         atomic_inc(&sh->count);
1475
1476         if (failb == syndrome_disks+1) {
1477                 /* Q disk is one of the missing disks */
1478                 if (faila == syndrome_disks) {
1479                         /* Missing P+Q, just recompute */
1480                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1481                                           ops_complete_compute, sh,
1482                                           to_addr_conv(sh, percpu, 0));
1483                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1484                                                   STRIPE_SIZE, &submit);
1485                 } else {
1486                         struct page *dest;
1487                         int data_target;
1488                         int qd_idx = sh->qd_idx;
1489
1490                         /* Missing D+Q: recompute D from P, then recompute Q */
1491                         if (target == qd_idx)
1492                                 data_target = target2;
1493                         else
1494                                 data_target = target;
1495
1496                         count = 0;
1497                         for (i = disks; i-- ; ) {
1498                                 if (i == data_target || i == qd_idx)
1499                                         continue;
1500                                 blocks[count++] = sh->dev[i].page;
1501                         }
1502                         dest = sh->dev[data_target].page;
1503                         init_async_submit(&submit,
1504                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1505                                           NULL, NULL, NULL,
1506                                           to_addr_conv(sh, percpu, 0));
1507                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1508                                        &submit);
1509
1510                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1511                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1512                                           ops_complete_compute, sh,
1513                                           to_addr_conv(sh, percpu, 0));
1514                         return async_gen_syndrome(blocks, 0, count+2,
1515                                                   STRIPE_SIZE, &submit);
1516                 }
1517         } else {
1518                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1519                                   ops_complete_compute, sh,
1520                                   to_addr_conv(sh, percpu, 0));
1521                 if (failb == syndrome_disks) {
1522                         /* We're missing D+P. */
1523                         return async_raid6_datap_recov(syndrome_disks+2,
1524                                                        STRIPE_SIZE, faila,
1525                                                        blocks, &submit);
1526                 } else {
1527                         /* We're missing D+D. */
1528                         return async_raid6_2data_recov(syndrome_disks+2,
1529                                                        STRIPE_SIZE, faila, failb,
1530                                                        blocks, &submit);
1531                 }
1532         }
1533 }
1534
1535 static void ops_complete_prexor(void *stripe_head_ref)
1536 {
1537         struct stripe_head *sh = stripe_head_ref;
1538
1539         pr_debug("%s: stripe %llu\n", __func__,
1540                 (unsigned long long)sh->sector);
1541 }
1542
1543 static struct dma_async_tx_descriptor *
1544 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1545                 struct dma_async_tx_descriptor *tx)
1546 {
1547         int disks = sh->disks;
1548         struct page **xor_srcs = to_addr_page(percpu, 0);
1549         int count = 0, pd_idx = sh->pd_idx, i;
1550         struct async_submit_ctl submit;
1551
1552         /* existing parity data subtracted */
1553         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1554
1555         BUG_ON(sh->batch_head);
1556         pr_debug("%s: stripe %llu\n", __func__,
1557                 (unsigned long long)sh->sector);
1558
1559         for (i = disks; i--; ) {
1560                 struct r5dev *dev = &sh->dev[i];
1561                 /* Only process blocks that are known to be uptodate */
1562                 if (test_bit(R5_Wantdrain, &dev->flags))
1563                         xor_srcs[count++] = dev->page;
1564         }
1565
1566         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1567                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1568         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1569
1570         return tx;
1571 }
1572
1573 static struct dma_async_tx_descriptor *
1574 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1575                 struct dma_async_tx_descriptor *tx)
1576 {
1577         struct page **blocks = to_addr_page(percpu, 0);
1578         int count;
1579         struct async_submit_ctl submit;
1580
1581         pr_debug("%s: stripe %llu\n", __func__,
1582                 (unsigned long long)sh->sector);
1583
1584         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1585
1586         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1587                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1588         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1589
1590         return tx;
1591 }
1592
1593 static struct dma_async_tx_descriptor *
1594 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1595 {
1596         int disks = sh->disks;
1597         int i;
1598         struct stripe_head *head_sh = sh;
1599
1600         pr_debug("%s: stripe %llu\n", __func__,
1601                 (unsigned long long)sh->sector);
1602
1603         for (i = disks; i--; ) {
1604                 struct r5dev *dev;
1605                 struct bio *chosen;
1606
1607                 sh = head_sh;
1608                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1609                         struct bio *wbi;
1610
1611 again:
1612                         dev = &sh->dev[i];
1613                         spin_lock_irq(&sh->stripe_lock);
1614                         chosen = dev->towrite;
1615                         dev->towrite = NULL;
1616                         sh->overwrite_disks = 0;
1617                         BUG_ON(dev->written);
1618                         wbi = dev->written = chosen;
1619                         spin_unlock_irq(&sh->stripe_lock);
1620                         WARN_ON(dev->page != dev->orig_page);
1621
1622                         while (wbi && wbi->bi_iter.bi_sector <
1623                                 dev->sector + STRIPE_SECTORS) {
1624                                 if (wbi->bi_rw & REQ_FUA)
1625                                         set_bit(R5_WantFUA, &dev->flags);
1626                                 if (wbi->bi_rw & REQ_SYNC)
1627                                         set_bit(R5_SyncIO, &dev->flags);
1628                                 if (wbi->bi_rw & REQ_DISCARD)
1629                                         set_bit(R5_Discard, &dev->flags);
1630                                 else {
1631                                         tx = async_copy_data(1, wbi, &dev->page,
1632                                                 dev->sector, tx, sh);
1633                                         if (dev->page != dev->orig_page) {
1634                                                 set_bit(R5_SkipCopy, &dev->flags);
1635                                                 clear_bit(R5_UPTODATE, &dev->flags);
1636                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1637                                         }
1638                                 }
1639                                 wbi = r5_next_bio(wbi, dev->sector);
1640                         }
1641
1642                         if (head_sh->batch_head) {
1643                                 sh = list_first_entry(&sh->batch_list,
1644                                                       struct stripe_head,
1645                                                       batch_list);
1646                                 if (sh == head_sh)
1647                                         continue;
1648                                 goto again;
1649                         }
1650                 }
1651         }
1652
1653         return tx;
1654 }
1655
1656 static void ops_complete_reconstruct(void *stripe_head_ref)
1657 {
1658         struct stripe_head *sh = stripe_head_ref;
1659         int disks = sh->disks;
1660         int pd_idx = sh->pd_idx;
1661         int qd_idx = sh->qd_idx;
1662         int i;
1663         bool fua = false, sync = false, discard = false;
1664
1665         pr_debug("%s: stripe %llu\n", __func__,
1666                 (unsigned long long)sh->sector);
1667
1668         for (i = disks; i--; ) {
1669                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1670                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1671                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1672         }
1673
1674         for (i = disks; i--; ) {
1675                 struct r5dev *dev = &sh->dev[i];
1676
1677                 if (dev->written || i == pd_idx || i == qd_idx) {
1678                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1679                                 set_bit(R5_UPTODATE, &dev->flags);
1680                         if (fua)
1681                                 set_bit(R5_WantFUA, &dev->flags);
1682                         if (sync)
1683                                 set_bit(R5_SyncIO, &dev->flags);
1684                 }
1685         }
1686
1687         if (sh->reconstruct_state == reconstruct_state_drain_run)
1688                 sh->reconstruct_state = reconstruct_state_drain_result;
1689         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1690                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1691         else {
1692                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1693                 sh->reconstruct_state = reconstruct_state_result;
1694         }
1695
1696         set_bit(STRIPE_HANDLE, &sh->state);
1697         raid5_release_stripe(sh);
1698 }
1699
1700 static void
1701 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1702                      struct dma_async_tx_descriptor *tx)
1703 {
1704         int disks = sh->disks;
1705         struct page **xor_srcs;
1706         struct async_submit_ctl submit;
1707         int count, pd_idx = sh->pd_idx, i;
1708         struct page *xor_dest;
1709         int prexor = 0;
1710         unsigned long flags;
1711         int j = 0;
1712         struct stripe_head *head_sh = sh;
1713         int last_stripe;
1714
1715         pr_debug("%s: stripe %llu\n", __func__,
1716                 (unsigned long long)sh->sector);
1717
1718         for (i = 0; i < sh->disks; i++) {
1719                 if (pd_idx == i)
1720                         continue;
1721                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1722                         break;
1723         }
1724         if (i >= sh->disks) {
1725                 atomic_inc(&sh->count);
1726                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1727                 ops_complete_reconstruct(sh);
1728                 return;
1729         }
1730 again:
1731         count = 0;
1732         xor_srcs = to_addr_page(percpu, j);
1733         /* check if prexor is active which means only process blocks
1734          * that are part of a read-modify-write (written)
1735          */
1736         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1737                 prexor = 1;
1738                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1739                 for (i = disks; i--; ) {
1740                         struct r5dev *dev = &sh->dev[i];
1741                         if (head_sh->dev[i].written)
1742                                 xor_srcs[count++] = dev->page;
1743                 }
1744         } else {
1745                 xor_dest = sh->dev[pd_idx].page;
1746                 for (i = disks; i--; ) {
1747                         struct r5dev *dev = &sh->dev[i];
1748                         if (i != pd_idx)
1749                                 xor_srcs[count++] = dev->page;
1750                 }
1751         }
1752
1753         /* 1/ if we prexor'd then the dest is reused as a source
1754          * 2/ if we did not prexor then we are redoing the parity
1755          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1756          * for the synchronous xor case
1757          */
1758         last_stripe = !head_sh->batch_head ||
1759                 list_first_entry(&sh->batch_list,
1760                                  struct stripe_head, batch_list) == head_sh;
1761         if (last_stripe) {
1762                 flags = ASYNC_TX_ACK |
1763                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1764
1765                 atomic_inc(&head_sh->count);
1766                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1767                                   to_addr_conv(sh, percpu, j));
1768         } else {
1769                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1770                 init_async_submit(&submit, flags, tx, NULL, NULL,
1771                                   to_addr_conv(sh, percpu, j));
1772         }
1773
1774         if (unlikely(count == 1))
1775                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1776         else
1777                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1778         if (!last_stripe) {
1779                 j++;
1780                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1781                                       batch_list);
1782                 goto again;
1783         }
1784 }
1785
1786 static void
1787 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1788                      struct dma_async_tx_descriptor *tx)
1789 {
1790         struct async_submit_ctl submit;
1791         struct page **blocks;
1792         int count, i, j = 0;
1793         struct stripe_head *head_sh = sh;
1794         int last_stripe;
1795         int synflags;
1796         unsigned long txflags;
1797
1798         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1799
1800         for (i = 0; i < sh->disks; i++) {
1801                 if (sh->pd_idx == i || sh->qd_idx == i)
1802                         continue;
1803                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1804                         break;
1805         }
1806         if (i >= sh->disks) {
1807                 atomic_inc(&sh->count);
1808                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1809                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1810                 ops_complete_reconstruct(sh);
1811                 return;
1812         }
1813
1814 again:
1815         blocks = to_addr_page(percpu, j);
1816
1817         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1818                 synflags = SYNDROME_SRC_WRITTEN;
1819                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1820         } else {
1821                 synflags = SYNDROME_SRC_ALL;
1822                 txflags = ASYNC_TX_ACK;
1823         }
1824
1825         count = set_syndrome_sources(blocks, sh, synflags);
1826         last_stripe = !head_sh->batch_head ||
1827                 list_first_entry(&sh->batch_list,
1828                                  struct stripe_head, batch_list) == head_sh;
1829
1830         if (last_stripe) {
1831                 atomic_inc(&head_sh->count);
1832                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1833                                   head_sh, to_addr_conv(sh, percpu, j));
1834         } else
1835                 init_async_submit(&submit, 0, tx, NULL, NULL,
1836                                   to_addr_conv(sh, percpu, j));
1837         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1838         if (!last_stripe) {
1839                 j++;
1840                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1841                                       batch_list);
1842                 goto again;
1843         }
1844 }
1845
1846 static void ops_complete_check(void *stripe_head_ref)
1847 {
1848         struct stripe_head *sh = stripe_head_ref;
1849
1850         pr_debug("%s: stripe %llu\n", __func__,
1851                 (unsigned long long)sh->sector);
1852
1853         sh->check_state = check_state_check_result;
1854         set_bit(STRIPE_HANDLE, &sh->state);
1855         raid5_release_stripe(sh);
1856 }
1857
1858 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1859 {
1860         int disks = sh->disks;
1861         int pd_idx = sh->pd_idx;
1862         int qd_idx = sh->qd_idx;
1863         struct page *xor_dest;
1864         struct page **xor_srcs = to_addr_page(percpu, 0);
1865         struct dma_async_tx_descriptor *tx;
1866         struct async_submit_ctl submit;
1867         int count;
1868         int i;
1869
1870         pr_debug("%s: stripe %llu\n", __func__,
1871                 (unsigned long long)sh->sector);
1872
1873         BUG_ON(sh->batch_head);
1874         count = 0;
1875         xor_dest = sh->dev[pd_idx].page;
1876         xor_srcs[count++] = xor_dest;
1877         for (i = disks; i--; ) {
1878                 if (i == pd_idx || i == qd_idx)
1879                         continue;
1880                 xor_srcs[count++] = sh->dev[i].page;
1881         }
1882
1883         init_async_submit(&submit, 0, NULL, NULL, NULL,
1884                           to_addr_conv(sh, percpu, 0));
1885         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1886                            &sh->ops.zero_sum_result, &submit);
1887
1888         atomic_inc(&sh->count);
1889         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1890         tx = async_trigger_callback(&submit);
1891 }
1892
1893 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1894 {
1895         struct page **srcs = to_addr_page(percpu, 0);
1896         struct async_submit_ctl submit;
1897         int count;
1898
1899         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1900                 (unsigned long long)sh->sector, checkp);
1901
1902         BUG_ON(sh->batch_head);
1903         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1904         if (!checkp)
1905                 srcs[count] = NULL;
1906
1907         atomic_inc(&sh->count);
1908         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1909                           sh, to_addr_conv(sh, percpu, 0));
1910         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1911                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1912 }
1913
1914 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1915 {
1916         int overlap_clear = 0, i, disks = sh->disks;
1917         struct dma_async_tx_descriptor *tx = NULL;
1918         struct r5conf *conf = sh->raid_conf;
1919         int level = conf->level;
1920         struct raid5_percpu *percpu;
1921         unsigned long cpu;
1922
1923         cpu = get_cpu();
1924         percpu = per_cpu_ptr(conf->percpu, cpu);
1925         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1926                 ops_run_biofill(sh);
1927                 overlap_clear++;
1928         }
1929
1930         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1931                 if (level < 6)
1932                         tx = ops_run_compute5(sh, percpu);
1933                 else {
1934                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1935                                 tx = ops_run_compute6_1(sh, percpu);
1936                         else
1937                                 tx = ops_run_compute6_2(sh, percpu);
1938                 }
1939                 /* terminate the chain if reconstruct is not set to be run */
1940                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1941                         async_tx_ack(tx);
1942         }
1943
1944         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1945                 if (level < 6)
1946                         tx = ops_run_prexor5(sh, percpu, tx);
1947                 else
1948                         tx = ops_run_prexor6(sh, percpu, tx);
1949         }
1950
1951         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1952                 tx = ops_run_biodrain(sh, tx);
1953                 overlap_clear++;
1954         }
1955
1956         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1957                 if (level < 6)
1958                         ops_run_reconstruct5(sh, percpu, tx);
1959                 else
1960                         ops_run_reconstruct6(sh, percpu, tx);
1961         }
1962
1963         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1964                 if (sh->check_state == check_state_run)
1965                         ops_run_check_p(sh, percpu);
1966                 else if (sh->check_state == check_state_run_q)
1967                         ops_run_check_pq(sh, percpu, 0);
1968                 else if (sh->check_state == check_state_run_pq)
1969                         ops_run_check_pq(sh, percpu, 1);
1970                 else
1971                         BUG();
1972         }
1973
1974         if (overlap_clear && !sh->batch_head)
1975                 for (i = disks; i--; ) {
1976                         struct r5dev *dev = &sh->dev[i];
1977                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1978                                 wake_up(&sh->raid_conf->wait_for_overlap);
1979                 }
1980         put_cpu();
1981 }
1982
1983 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1984 {
1985         struct stripe_head *sh;
1986
1987         sh = kmem_cache_zalloc(sc, gfp);
1988         if (sh) {
1989                 spin_lock_init(&sh->stripe_lock);
1990                 spin_lock_init(&sh->batch_lock);
1991                 INIT_LIST_HEAD(&sh->batch_list);
1992                 INIT_LIST_HEAD(&sh->lru);
1993                 atomic_set(&sh->count, 1);
1994         }
1995         return sh;
1996 }
1997 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1998 {
1999         struct stripe_head *sh;
2000
2001         sh = alloc_stripe(conf->slab_cache, gfp);
2002         if (!sh)
2003                 return 0;
2004
2005         sh->raid_conf = conf;
2006
2007         if (grow_buffers(sh, gfp)) {
2008                 shrink_buffers(sh);
2009                 kmem_cache_free(conf->slab_cache, sh);
2010                 return 0;
2011         }
2012         sh->hash_lock_index =
2013                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2014         /* we just created an active stripe so... */
2015         atomic_inc(&conf->active_stripes);
2016
2017         raid5_release_stripe(sh);
2018         conf->max_nr_stripes++;
2019         return 1;
2020 }
2021
2022 static int grow_stripes(struct r5conf *conf, int num)
2023 {
2024         struct kmem_cache *sc;
2025         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2026
2027         if (conf->mddev->gendisk)
2028                 sprintf(conf->cache_name[0],
2029                         "raid%d-%s", conf->level, mdname(conf->mddev));
2030         else
2031                 sprintf(conf->cache_name[0],
2032                         "raid%d-%p", conf->level, conf->mddev);
2033         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2034
2035         conf->active_name = 0;
2036         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2037                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2038                                0, 0, NULL);
2039         if (!sc)
2040                 return 1;
2041         conf->slab_cache = sc;
2042         conf->pool_size = devs;
2043         while (num--)
2044                 if (!grow_one_stripe(conf, GFP_KERNEL))
2045                         return 1;
2046
2047         return 0;
2048 }
2049
2050 /**
2051  * scribble_len - return the required size of the scribble region
2052  * @num - total number of disks in the array
2053  *
2054  * The size must be enough to contain:
2055  * 1/ a struct page pointer for each device in the array +2
2056  * 2/ room to convert each entry in (1) to its corresponding dma
2057  *    (dma_map_page()) or page (page_address()) address.
2058  *
2059  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2060  * calculate over all devices (not just the data blocks), using zeros in place
2061  * of the P and Q blocks.
2062  */
2063 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2064 {
2065         struct flex_array *ret;
2066         size_t len;
2067
2068         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2069         ret = flex_array_alloc(len, cnt, flags);
2070         if (!ret)
2071                 return NULL;
2072         /* always prealloc all elements, so no locking is required */
2073         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2074                 flex_array_free(ret);
2075                 return NULL;
2076         }
2077         return ret;
2078 }
2079
2080 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2081 {
2082         unsigned long cpu;
2083         int err = 0;
2084
2085         /*
2086          * Never shrink. And mddev_suspend() could deadlock if this is called
2087          * from raid5d. In that case, scribble_disks and scribble_sectors
2088          * should equal to new_disks and new_sectors
2089          */
2090         if (conf->scribble_disks >= new_disks &&
2091             conf->scribble_sectors >= new_sectors)
2092                 return 0;
2093         mddev_suspend(conf->mddev);
2094         get_online_cpus();
2095         for_each_present_cpu(cpu) {
2096                 struct raid5_percpu *percpu;
2097                 struct flex_array *scribble;
2098
2099                 percpu = per_cpu_ptr(conf->percpu, cpu);
2100                 scribble = scribble_alloc(new_disks,
2101                                           new_sectors / STRIPE_SECTORS,
2102                                           GFP_NOIO);
2103
2104                 if (scribble) {
2105                         flex_array_free(percpu->scribble);
2106                         percpu->scribble = scribble;
2107                 } else {
2108                         err = -ENOMEM;
2109                         break;
2110                 }
2111         }
2112         put_online_cpus();
2113         mddev_resume(conf->mddev);
2114         if (!err) {
2115                 conf->scribble_disks = new_disks;
2116                 conf->scribble_sectors = new_sectors;
2117         }
2118         return err;
2119 }
2120
2121 static int resize_stripes(struct r5conf *conf, int newsize)
2122 {
2123         /* Make all the stripes able to hold 'newsize' devices.
2124          * New slots in each stripe get 'page' set to a new page.
2125          *
2126          * This happens in stages:
2127          * 1/ create a new kmem_cache and allocate the required number of
2128          *    stripe_heads.
2129          * 2/ gather all the old stripe_heads and transfer the pages across
2130          *    to the new stripe_heads.  This will have the side effect of
2131          *    freezing the array as once all stripe_heads have been collected,
2132          *    no IO will be possible.  Old stripe heads are freed once their
2133          *    pages have been transferred over, and the old kmem_cache is
2134          *    freed when all stripes are done.
2135          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2136          *    we simple return a failre status - no need to clean anything up.
2137          * 4/ allocate new pages for the new slots in the new stripe_heads.
2138          *    If this fails, we don't bother trying the shrink the
2139          *    stripe_heads down again, we just leave them as they are.
2140          *    As each stripe_head is processed the new one is released into
2141          *    active service.
2142          *
2143          * Once step2 is started, we cannot afford to wait for a write,
2144          * so we use GFP_NOIO allocations.
2145          */
2146         struct stripe_head *osh, *nsh;
2147         LIST_HEAD(newstripes);
2148         struct disk_info *ndisks;
2149         int err;
2150         struct kmem_cache *sc;
2151         int i;
2152         int hash, cnt;
2153
2154         if (newsize <= conf->pool_size)
2155                 return 0; /* never bother to shrink */
2156
2157         err = md_allow_write(conf->mddev);
2158         if (err)
2159                 return err;
2160
2161         /* Step 1 */
2162         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2163                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2164                                0, 0, NULL);
2165         if (!sc)
2166                 return -ENOMEM;
2167
2168         /* Need to ensure auto-resizing doesn't interfere */
2169         mutex_lock(&conf->cache_size_mutex);
2170
2171         for (i = conf->max_nr_stripes; i; i--) {
2172                 nsh = alloc_stripe(sc, GFP_KERNEL);
2173                 if (!nsh)
2174                         break;
2175
2176                 nsh->raid_conf = conf;
2177                 list_add(&nsh->lru, &newstripes);
2178         }
2179         if (i) {
2180                 /* didn't get enough, give up */
2181                 while (!list_empty(&newstripes)) {
2182                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2183                         list_del(&nsh->lru);
2184                         kmem_cache_free(sc, nsh);
2185                 }
2186                 kmem_cache_destroy(sc);
2187                 mutex_unlock(&conf->cache_size_mutex);
2188                 return -ENOMEM;
2189         }
2190         /* Step 2 - Must use GFP_NOIO now.
2191          * OK, we have enough stripes, start collecting inactive
2192          * stripes and copying them over
2193          */
2194         hash = 0;
2195         cnt = 0;
2196         list_for_each_entry(nsh, &newstripes, lru) {
2197                 lock_device_hash_lock(conf, hash);
2198                 wait_event_cmd(conf->wait_for_stripe,
2199                                     !list_empty(conf->inactive_list + hash),
2200                                     unlock_device_hash_lock(conf, hash),
2201                                     lock_device_hash_lock(conf, hash));
2202                 osh = get_free_stripe(conf, hash);
2203                 unlock_device_hash_lock(conf, hash);
2204
2205                 for(i=0; i<conf->pool_size; i++) {
2206                         nsh->dev[i].page = osh->dev[i].page;
2207                         nsh->dev[i].orig_page = osh->dev[i].page;
2208                 }
2209                 nsh->hash_lock_index = hash;
2210                 kmem_cache_free(conf->slab_cache, osh);
2211                 cnt++;
2212                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2213                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2214                         hash++;
2215                         cnt = 0;
2216                 }
2217         }
2218         kmem_cache_destroy(conf->slab_cache);
2219
2220         /* Step 3.
2221          * At this point, we are holding all the stripes so the array
2222          * is completely stalled, so now is a good time to resize
2223          * conf->disks and the scribble region
2224          */
2225         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2226         if (ndisks) {
2227                 for (i=0; i<conf->raid_disks; i++)
2228                         ndisks[i] = conf->disks[i];
2229                 kfree(conf->disks);
2230                 conf->disks = ndisks;
2231         } else
2232                 err = -ENOMEM;
2233
2234         mutex_unlock(&conf->cache_size_mutex);
2235         /* Step 4, return new stripes to service */
2236         while(!list_empty(&newstripes)) {
2237                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2238                 list_del_init(&nsh->lru);
2239
2240                 for (i=conf->raid_disks; i < newsize; i++)
2241                         if (nsh->dev[i].page == NULL) {
2242                                 struct page *p = alloc_page(GFP_NOIO);
2243                                 nsh->dev[i].page = p;
2244                                 nsh->dev[i].orig_page = p;
2245                                 if (!p)
2246                                         err = -ENOMEM;
2247                         }
2248                 raid5_release_stripe(nsh);
2249         }
2250         /* critical section pass, GFP_NOIO no longer needed */
2251
2252         conf->slab_cache = sc;
2253         conf->active_name = 1-conf->active_name;
2254         if (!err)
2255                 conf->pool_size = newsize;
2256         return err;
2257 }
2258
2259 static int drop_one_stripe(struct r5conf *conf)
2260 {
2261         struct stripe_head *sh;
2262         int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2263
2264         spin_lock_irq(conf->hash_locks + hash);
2265         sh = get_free_stripe(conf, hash);
2266         spin_unlock_irq(conf->hash_locks + hash);
2267         if (!sh)
2268                 return 0;
2269         BUG_ON(atomic_read(&sh->count));
2270         shrink_buffers(sh);
2271         kmem_cache_free(conf->slab_cache, sh);
2272         atomic_dec(&conf->active_stripes);
2273         conf->max_nr_stripes--;
2274         return 1;
2275 }
2276
2277 static void shrink_stripes(struct r5conf *conf)
2278 {
2279         while (conf->max_nr_stripes &&
2280                drop_one_stripe(conf))
2281                 ;
2282
2283         kmem_cache_destroy(conf->slab_cache);
2284         conf->slab_cache = NULL;
2285 }
2286
2287 static void raid5_end_read_request(struct bio * bi)
2288 {
2289         struct stripe_head *sh = bi->bi_private;
2290         struct r5conf *conf = sh->raid_conf;
2291         int disks = sh->disks, i;
2292         char b[BDEVNAME_SIZE];
2293         struct md_rdev *rdev = NULL;
2294         sector_t s;
2295
2296         for (i=0 ; i<disks; i++)
2297                 if (bi == &sh->dev[i].req)
2298                         break;
2299
2300         pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2301                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2302                 bi->bi_error);
2303         if (i == disks) {
2304                 BUG();
2305                 return;
2306         }
2307         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2308                 /* If replacement finished while this request was outstanding,
2309                  * 'replacement' might be NULL already.
2310                  * In that case it moved down to 'rdev'.
2311                  * rdev is not removed until all requests are finished.
2312                  */
2313                 rdev = conf->disks[i].replacement;
2314         if (!rdev)
2315                 rdev = conf->disks[i].rdev;
2316
2317         if (use_new_offset(conf, sh))
2318                 s = sh->sector + rdev->new_data_offset;
2319         else
2320                 s = sh->sector + rdev->data_offset;
2321         if (!bi->bi_error) {
2322                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2323                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2324                         /* Note that this cannot happen on a
2325                          * replacement device.  We just fail those on
2326                          * any error
2327                          */
2328                         printk_ratelimited(
2329                                 KERN_INFO
2330                                 "md/raid:%s: read error corrected"
2331                                 " (%lu sectors at %llu on %s)\n",
2332                                 mdname(conf->mddev), STRIPE_SECTORS,
2333                                 (unsigned long long)s,
2334                                 bdevname(rdev->bdev, b));
2335                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2336                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2337                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2338                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2339                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2340
2341                 if (atomic_read(&rdev->read_errors))
2342                         atomic_set(&rdev->read_errors, 0);
2343         } else {
2344                 const char *bdn = bdevname(rdev->bdev, b);
2345                 int retry = 0;
2346                 int set_bad = 0;
2347
2348                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2349                 atomic_inc(&rdev->read_errors);
2350                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2351                         printk_ratelimited(
2352                                 KERN_WARNING
2353                                 "md/raid:%s: read error on replacement device "
2354                                 "(sector %llu on %s).\n",
2355                                 mdname(conf->mddev),
2356                                 (unsigned long long)s,
2357                                 bdn);
2358                 else if (conf->mddev->degraded >= conf->max_degraded) {
2359                         set_bad = 1;
2360                         printk_ratelimited(
2361                                 KERN_WARNING
2362                                 "md/raid:%s: read error not correctable "
2363                                 "(sector %llu on %s).\n",
2364                                 mdname(conf->mddev),
2365                                 (unsigned long long)s,
2366                                 bdn);
2367                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2368                         /* Oh, no!!! */
2369                         set_bad = 1;
2370                         printk_ratelimited(
2371                                 KERN_WARNING
2372                                 "md/raid:%s: read error NOT corrected!! "
2373                                 "(sector %llu on %s).\n",
2374                                 mdname(conf->mddev),
2375                                 (unsigned long long)s,
2376                                 bdn);
2377                 } else if (atomic_read(&rdev->read_errors)
2378                          > conf->max_nr_stripes)
2379                         printk(KERN_WARNING
2380                                "md/raid:%s: Too many read errors, failing device %s.\n",
2381                                mdname(conf->mddev), bdn);
2382                 else
2383                         retry = 1;
2384                 if (set_bad && test_bit(In_sync, &rdev->flags)
2385                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2386                         retry = 1;
2387                 if (retry)
2388                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2389                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2390                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2391                         } else
2392                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2393                 else {
2394                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2395                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2396                         if (!(set_bad
2397                               && test_bit(In_sync, &rdev->flags)
2398                               && rdev_set_badblocks(
2399                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2400                                 md_error(conf->mddev, rdev);
2401                 }
2402         }
2403         rdev_dec_pending(rdev, conf->mddev);
2404         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2405         set_bit(STRIPE_HANDLE, &sh->state);
2406         raid5_release_stripe(sh);
2407 }
2408
2409 static void raid5_end_write_request(struct bio *bi)
2410 {
2411         struct stripe_head *sh = bi->bi_private;
2412         struct r5conf *conf = sh->raid_conf;
2413         int disks = sh->disks, i;
2414         struct md_rdev *uninitialized_var(rdev);
2415         sector_t first_bad;
2416         int bad_sectors;
2417         int replacement = 0;
2418
2419         for (i = 0 ; i < disks; i++) {
2420                 if (bi == &sh->dev[i].req) {
2421                         rdev = conf->disks[i].rdev;
2422                         break;
2423                 }
2424                 if (bi == &sh->dev[i].rreq) {
2425                         rdev = conf->disks[i].replacement;
2426                         if (rdev)
2427                                 replacement = 1;
2428                         else
2429                                 /* rdev was removed and 'replacement'
2430                                  * replaced it.  rdev is not removed
2431                                  * until all requests are finished.
2432                                  */
2433                                 rdev = conf->disks[i].rdev;
2434                         break;
2435                 }
2436         }
2437         pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2438                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2439                 bi->bi_error);
2440         if (i == disks) {
2441                 BUG();
2442                 return;
2443         }
2444
2445         if (replacement) {
2446                 if (bi->bi_error)
2447                         md_error(conf->mddev, rdev);
2448                 else if (is_badblock(rdev, sh->sector,
2449                                      STRIPE_SECTORS,
2450                                      &first_bad, &bad_sectors))
2451                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2452         } else {
2453                 if (bi->bi_error) {
2454                         set_bit(STRIPE_DEGRADED, &sh->state);
2455                         set_bit(WriteErrorSeen, &rdev->flags);
2456                         set_bit(R5_WriteError, &sh->dev[i].flags);
2457                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2458                                 set_bit(MD_RECOVERY_NEEDED,
2459                                         &rdev->mddev->recovery);
2460                 } else if (is_badblock(rdev, sh->sector,
2461                                        STRIPE_SECTORS,
2462                                        &first_bad, &bad_sectors)) {
2463                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2464                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2465                                 /* That was a successful write so make
2466                                  * sure it looks like we already did
2467                                  * a re-write.
2468                                  */
2469                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2470                 }
2471         }
2472         rdev_dec_pending(rdev, conf->mddev);
2473
2474         if (sh->batch_head && bi->bi_error && !replacement)
2475                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2476
2477         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2478                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2479         set_bit(STRIPE_HANDLE, &sh->state);
2480         raid5_release_stripe(sh);
2481
2482         if (sh->batch_head && sh != sh->batch_head)
2483                 raid5_release_stripe(sh->batch_head);
2484 }
2485
2486 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2487 {
2488         struct r5dev *dev = &sh->dev[i];
2489
2490         bio_init(&dev->req);
2491         dev->req.bi_io_vec = &dev->vec;
2492         dev->req.bi_max_vecs = 1;
2493         dev->req.bi_private = sh;
2494
2495         bio_init(&dev->rreq);
2496         dev->rreq.bi_io_vec = &dev->rvec;
2497         dev->rreq.bi_max_vecs = 1;
2498         dev->rreq.bi_private = sh;
2499
2500         dev->flags = 0;
2501         dev->sector = raid5_compute_blocknr(sh, i, previous);
2502 }
2503
2504 static void error(struct mddev *mddev, struct md_rdev *rdev)
2505 {
2506         char b[BDEVNAME_SIZE];
2507         struct r5conf *conf = mddev->private;
2508         unsigned long flags;
2509         pr_debug("raid456: error called\n");
2510
2511         spin_lock_irqsave(&conf->device_lock, flags);
2512         clear_bit(In_sync, &rdev->flags);
2513         mddev->degraded = calc_degraded(conf);
2514         spin_unlock_irqrestore(&conf->device_lock, flags);
2515         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2516
2517         set_bit(Blocked, &rdev->flags);
2518         set_bit(Faulty, &rdev->flags);
2519         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2520         set_bit(MD_CHANGE_PENDING, &mddev->flags);
2521         printk(KERN_ALERT
2522                "md/raid:%s: Disk failure on %s, disabling device.\n"
2523                "md/raid:%s: Operation continuing on %d devices.\n",
2524                mdname(mddev),
2525                bdevname(rdev->bdev, b),
2526                mdname(mddev),
2527                conf->raid_disks - mddev->degraded);
2528 }
2529
2530 /*
2531  * Input: a 'big' sector number,
2532  * Output: index of the data and parity disk, and the sector # in them.
2533  */
2534 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2535                               int previous, int *dd_idx,
2536                               struct stripe_head *sh)
2537 {
2538         sector_t stripe, stripe2;
2539         sector_t chunk_number;
2540         unsigned int chunk_offset;
2541         int pd_idx, qd_idx;
2542         int ddf_layout = 0;
2543         sector_t new_sector;
2544         int algorithm = previous ? conf->prev_algo
2545                                  : conf->algorithm;
2546         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2547                                          : conf->chunk_sectors;
2548         int raid_disks = previous ? conf->previous_raid_disks
2549                                   : conf->raid_disks;
2550         int data_disks = raid_disks - conf->max_degraded;
2551
2552         /* First compute the information on this sector */
2553
2554         /*
2555          * Compute the chunk number and the sector offset inside the chunk
2556          */
2557         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2558         chunk_number = r_sector;
2559
2560         /*
2561          * Compute the stripe number
2562          */
2563         stripe = chunk_number;
2564         *dd_idx = sector_div(stripe, data_disks);
2565         stripe2 = stripe;
2566         /*
2567          * Select the parity disk based on the user selected algorithm.
2568          */
2569         pd_idx = qd_idx = -1;
2570         switch(conf->level) {
2571         case 4:
2572                 pd_idx = data_disks;
2573                 break;
2574         case 5:
2575                 switch (algorithm) {
2576                 case ALGORITHM_LEFT_ASYMMETRIC:
2577                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2578                         if (*dd_idx >= pd_idx)
2579                                 (*dd_idx)++;
2580                         break;
2581                 case ALGORITHM_RIGHT_ASYMMETRIC:
2582                         pd_idx = sector_div(stripe2, raid_disks);
2583                         if (*dd_idx >= pd_idx)
2584                                 (*dd_idx)++;
2585                         break;
2586                 case ALGORITHM_LEFT_SYMMETRIC:
2587                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2588                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2589                         break;
2590                 case ALGORITHM_RIGHT_SYMMETRIC:
2591                         pd_idx = sector_div(stripe2, raid_disks);
2592                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2593                         break;
2594                 case ALGORITHM_PARITY_0:
2595                         pd_idx = 0;
2596                         (*dd_idx)++;
2597                         break;
2598                 case ALGORITHM_PARITY_N:
2599                         pd_idx = data_disks;
2600                         break;
2601                 default:
2602                         BUG();
2603                 }
2604                 break;
2605         case 6:
2606
2607                 switch (algorithm) {
2608                 case ALGORITHM_LEFT_ASYMMETRIC:
2609                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2610                         qd_idx = pd_idx + 1;
2611                         if (pd_idx == raid_disks-1) {
2612                                 (*dd_idx)++;    /* Q D D D P */
2613                                 qd_idx = 0;
2614                         } else if (*dd_idx >= pd_idx)
2615                                 (*dd_idx) += 2; /* D D P Q D */
2616                         break;
2617                 case ALGORITHM_RIGHT_ASYMMETRIC:
2618                         pd_idx = sector_div(stripe2, raid_disks);
2619                         qd_idx = pd_idx + 1;
2620                         if (pd_idx == raid_disks-1) {
2621                                 (*dd_idx)++;    /* Q D D D P */
2622                                 qd_idx = 0;
2623                         } else if (*dd_idx >= pd_idx)
2624                                 (*dd_idx) += 2; /* D D P Q D */
2625                         break;
2626                 case ALGORITHM_LEFT_SYMMETRIC:
2627                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2628                         qd_idx = (pd_idx + 1) % raid_disks;
2629                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2630                         break;
2631                 case ALGORITHM_RIGHT_SYMMETRIC:
2632                         pd_idx = sector_div(stripe2, raid_disks);
2633                         qd_idx = (pd_idx + 1) % raid_disks;
2634                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2635                         break;
2636
2637                 case ALGORITHM_PARITY_0:
2638                         pd_idx = 0;
2639                         qd_idx = 1;
2640                         (*dd_idx) += 2;
2641                         break;
2642                 case ALGORITHM_PARITY_N:
2643                         pd_idx = data_disks;
2644                         qd_idx = data_disks + 1;
2645                         break;
2646
2647                 case ALGORITHM_ROTATING_ZERO_RESTART:
2648                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2649                          * of blocks for computing Q is different.
2650                          */
2651                         pd_idx = sector_div(stripe2, raid_disks);
2652                         qd_idx = pd_idx + 1;
2653                         if (pd_idx == raid_disks-1) {
2654                                 (*dd_idx)++;    /* Q D D D P */
2655                                 qd_idx = 0;
2656                         } else if (*dd_idx >= pd_idx)
2657                                 (*dd_idx) += 2; /* D D P Q D */
2658                         ddf_layout = 1;
2659                         break;
2660
2661                 case ALGORITHM_ROTATING_N_RESTART:
2662                         /* Same a left_asymmetric, by first stripe is
2663                          * D D D P Q  rather than
2664                          * Q D D D P
2665                          */
2666                         stripe2 += 1;
2667                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2668                         qd_idx = pd_idx + 1;
2669                         if (pd_idx == raid_disks-1) {
2670                                 (*dd_idx)++;    /* Q D D D P */
2671                                 qd_idx = 0;
2672                         } else if (*dd_idx >= pd_idx)
2673                                 (*dd_idx) += 2; /* D D P Q D */
2674                         ddf_layout = 1;
2675                         break;
2676
2677                 case ALGORITHM_ROTATING_N_CONTINUE:
2678                         /* Same as left_symmetric but Q is before P */
2679                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2680                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2681                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2682                         ddf_layout = 1;
2683                         break;
2684
2685                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2686                         /* RAID5 left_asymmetric, with Q on last device */
2687                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2688                         if (*dd_idx >= pd_idx)
2689                                 (*dd_idx)++;
2690                         qd_idx = raid_disks - 1;
2691                         break;
2692
2693                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2694                         pd_idx = sector_div(stripe2, raid_disks-1);
2695                         if (*dd_idx >= pd_idx)
2696                                 (*dd_idx)++;
2697                         qd_idx = raid_disks - 1;
2698                         break;
2699
2700                 case ALGORITHM_LEFT_SYMMETRIC_6:
2701                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2702                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2703                         qd_idx = raid_disks - 1;
2704                         break;
2705
2706                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2707                         pd_idx = sector_div(stripe2, raid_disks-1);
2708                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2709                         qd_idx = raid_disks - 1;
2710                         break;
2711
2712                 case ALGORITHM_PARITY_0_6:
2713                         pd_idx = 0;
2714                         (*dd_idx)++;
2715                         qd_idx = raid_disks - 1;
2716                         break;
2717
2718                 default:
2719                         BUG();
2720                 }
2721                 break;
2722         }
2723
2724         if (sh) {
2725                 sh->pd_idx = pd_idx;
2726                 sh->qd_idx = qd_idx;
2727                 sh->ddf_layout = ddf_layout;
2728         }
2729         /*
2730          * Finally, compute the new sector number
2731          */
2732         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2733         return new_sector;
2734 }
2735
2736 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2737 {
2738         struct r5conf *conf = sh->raid_conf;
2739         int raid_disks = sh->disks;
2740         int data_disks = raid_disks - conf->max_degraded;
2741         sector_t new_sector = sh->sector, check;
2742         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2743                                          : conf->chunk_sectors;
2744         int algorithm = previous ? conf->prev_algo
2745                                  : conf->algorithm;
2746         sector_t stripe;
2747         int chunk_offset;
2748         sector_t chunk_number;
2749         int dummy1, dd_idx = i;
2750         sector_t r_sector;
2751         struct stripe_head sh2;
2752
2753         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2754         stripe = new_sector;
2755
2756         if (i == sh->pd_idx)
2757                 return 0;
2758         switch(conf->level) {
2759         case 4: break;
2760         case 5:
2761                 switch (algorithm) {
2762                 case ALGORITHM_LEFT_ASYMMETRIC:
2763                 case ALGORITHM_RIGHT_ASYMMETRIC:
2764                         if (i > sh->pd_idx)
2765                                 i--;
2766                         break;
2767                 case ALGORITHM_LEFT_SYMMETRIC:
2768                 case ALGORITHM_RIGHT_SYMMETRIC:
2769                         if (i < sh->pd_idx)
2770                                 i += raid_disks;
2771                         i -= (sh->pd_idx + 1);
2772                         break;
2773                 case ALGORITHM_PARITY_0:
2774                         i -= 1;
2775                         break;
2776                 case ALGORITHM_PARITY_N:
2777                         break;
2778                 default:
2779                         BUG();
2780                 }
2781                 break;
2782         case 6:
2783                 if (i == sh->qd_idx)
2784                         return 0; /* It is the Q disk */
2785                 switch (algorithm) {
2786                 case ALGORITHM_LEFT_ASYMMETRIC:
2787                 case ALGORITHM_RIGHT_ASYMMETRIC:
2788                 case ALGORITHM_ROTATING_ZERO_RESTART:
2789                 case ALGORITHM_ROTATING_N_RESTART:
2790                         if (sh->pd_idx == raid_disks-1)
2791                                 i--;    /* Q D D D P */
2792                         else if (i > sh->pd_idx)
2793                                 i -= 2; /* D D P Q D */
2794                         break;
2795                 case ALGORITHM_LEFT_SYMMETRIC:
2796                 case ALGORITHM_RIGHT_SYMMETRIC:
2797                         if (sh->pd_idx == raid_disks-1)
2798                                 i--; /* Q D D D P */
2799                         else {
2800                                 /* D D P Q D */
2801                                 if (i < sh->pd_idx)
2802                                         i += raid_disks;
2803                                 i -= (sh->pd_idx + 2);
2804                         }
2805                         break;
2806                 case ALGORITHM_PARITY_0:
2807                         i -= 2;
2808                         break;
2809                 case ALGORITHM_PARITY_N:
2810                         break;
2811                 case ALGORITHM_ROTATING_N_CONTINUE:
2812                         /* Like left_symmetric, but P is before Q */
2813                         if (sh->pd_idx == 0)
2814                                 i--;    /* P D D D Q */
2815                         else {
2816                                 /* D D Q P D */
2817                                 if (i < sh->pd_idx)
2818                                         i += raid_disks;
2819                                 i -= (sh->pd_idx + 1);
2820                         }
2821                         break;
2822                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2823                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2824                         if (i > sh->pd_idx)
2825                                 i--;
2826                         break;
2827                 case ALGORITHM_LEFT_SYMMETRIC_6:
2828                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2829                         if (i < sh->pd_idx)
2830                                 i += data_disks + 1;
2831                         i -= (sh->pd_idx + 1);
2832                         break;
2833                 case ALGORITHM_PARITY_0_6:
2834                         i -= 1;
2835                         break;
2836                 default:
2837                         BUG();
2838                 }
2839                 break;
2840         }
2841
2842         chunk_number = stripe * data_disks + i;
2843         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2844
2845         check = raid5_compute_sector(conf, r_sector,
2846                                      previous, &dummy1, &sh2);
2847         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2848                 || sh2.qd_idx != sh->qd_idx) {
2849                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2850                        mdname(conf->mddev));
2851                 return 0;
2852         }
2853         return r_sector;
2854 }
2855
2856 static void
2857 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2858                          int rcw, int expand)
2859 {
2860         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2861         struct r5conf *conf = sh->raid_conf;
2862         int level = conf->level;
2863
2864         if (rcw) {
2865
2866                 for (i = disks; i--; ) {
2867                         struct r5dev *dev = &sh->dev[i];
2868
2869                         if (dev->towrite) {
2870                                 set_bit(R5_LOCKED, &dev->flags);
2871                                 set_bit(R5_Wantdrain, &dev->flags);
2872                                 if (!expand)
2873                                         clear_bit(R5_UPTODATE, &dev->flags);
2874                                 s->locked++;
2875                         }
2876                 }
2877                 /* if we are not expanding this is a proper write request, and
2878                  * there will be bios with new data to be drained into the
2879                  * stripe cache
2880                  */
2881                 if (!expand) {
2882                         if (!s->locked)
2883                                 /* False alarm, nothing to do */
2884                                 return;
2885                         sh->reconstruct_state = reconstruct_state_drain_run;
2886                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2887                 } else
2888                         sh->reconstruct_state = reconstruct_state_run;
2889
2890                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2891
2892                 if (s->locked + conf->max_degraded == disks)
2893                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2894                                 atomic_inc(&conf->pending_full_writes);
2895         } else {
2896                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2897                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2898                 BUG_ON(level == 6 &&
2899                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2900                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2901
2902                 for (i = disks; i--; ) {
2903                         struct r5dev *dev = &sh->dev[i];
2904                         if (i == pd_idx || i == qd_idx)
2905                                 continue;
2906
2907                         if (dev->towrite &&
2908                             (test_bit(R5_UPTODATE, &dev->flags) ||
2909                              test_bit(R5_Wantcompute, &dev->flags))) {
2910                                 set_bit(R5_Wantdrain, &dev->flags);
2911                                 set_bit(R5_LOCKED, &dev->flags);
2912                                 clear_bit(R5_UPTODATE, &dev->flags);
2913                                 s->locked++;
2914                         }
2915                 }
2916                 if (!s->locked)
2917                         /* False alarm - nothing to do */
2918                         return;
2919                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2920                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2921                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2922                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2923         }
2924
2925         /* keep the parity disk(s) locked while asynchronous operations
2926          * are in flight
2927          */
2928         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2929         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2930         s->locked++;
2931
2932         if (level == 6) {
2933                 int qd_idx = sh->qd_idx;
2934                 struct r5dev *dev = &sh->dev[qd_idx];
2935
2936                 set_bit(R5_LOCKED, &dev->flags);
2937                 clear_bit(R5_UPTODATE, &dev->flags);
2938                 s->locked++;
2939         }
2940
2941         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2942                 __func__, (unsigned long long)sh->sector,
2943                 s->locked, s->ops_request);
2944 }
2945
2946 /*
2947  * Each stripe/dev can have one or more bion attached.
2948  * toread/towrite point to the first in a chain.
2949  * The bi_next chain must be in order.
2950  */
2951 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2952                           int forwrite, int previous)
2953 {
2954         struct bio **bip;
2955         struct r5conf *conf = sh->raid_conf;
2956         int firstwrite=0;
2957
2958         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2959                 (unsigned long long)bi->bi_iter.bi_sector,
2960                 (unsigned long long)sh->sector);
2961
2962         /*
2963          * If several bio share a stripe. The bio bi_phys_segments acts as a
2964          * reference count to avoid race. The reference count should already be
2965          * increased before this function is called (for example, in
2966          * make_request()), so other bio sharing this stripe will not free the
2967          * stripe. If a stripe is owned by one stripe, the stripe lock will
2968          * protect it.
2969          */
2970         spin_lock_irq(&sh->stripe_lock);
2971         /* Don't allow new IO added to stripes in batch list */
2972         if (sh->batch_head)
2973                 goto overlap;
2974         if (forwrite) {
2975                 bip = &sh->dev[dd_idx].towrite;
2976                 if (*bip == NULL)
2977                         firstwrite = 1;
2978         } else
2979                 bip = &sh->dev[dd_idx].toread;
2980         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2981                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2982                         goto overlap;
2983                 bip = & (*bip)->bi_next;
2984         }
2985         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2986                 goto overlap;
2987
2988         if (!forwrite || previous)
2989                 clear_bit(STRIPE_BATCH_READY, &sh->state);
2990
2991         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2992         if (*bip)
2993                 bi->bi_next = *bip;
2994         *bip = bi;
2995         raid5_inc_bi_active_stripes(bi);
2996
2997         if (forwrite) {
2998                 /* check if page is covered */
2999                 sector_t sector = sh->dev[dd_idx].sector;
3000                 for (bi=sh->dev[dd_idx].towrite;
3001                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3002                              bi && bi->bi_iter.bi_sector <= sector;
3003                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3004                         if (bio_end_sector(bi) >= sector)
3005                                 sector = bio_end_sector(bi);
3006                 }
3007                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3008                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3009                                 sh->overwrite_disks++;
3010         }
3011
3012         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3013                 (unsigned long long)(*bip)->bi_iter.bi_sector,
3014                 (unsigned long long)sh->sector, dd_idx);
3015
3016         if (conf->mddev->bitmap && firstwrite) {
3017                 /* Cannot hold spinlock over bitmap_startwrite,
3018                  * but must ensure this isn't added to a batch until
3019                  * we have added to the bitmap and set bm_seq.
3020                  * So set STRIPE_BITMAP_PENDING to prevent
3021                  * batching.
3022                  * If multiple add_stripe_bio() calls race here they
3023                  * much all set STRIPE_BITMAP_PENDING.  So only the first one
3024                  * to complete "bitmap_startwrite" gets to set
3025                  * STRIPE_BIT_DELAY.  This is important as once a stripe
3026                  * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3027                  * any more.
3028                  */
3029                 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3030                 spin_unlock_irq(&sh->stripe_lock);
3031                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3032                                   STRIPE_SECTORS, 0);
3033                 spin_lock_irq(&sh->stripe_lock);
3034                 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3035                 if (!sh->batch_head) {
3036                         sh->bm_seq = conf->seq_flush+1;
3037                         set_bit(STRIPE_BIT_DELAY, &sh->state);
3038                 }
3039         }
3040         spin_unlock_irq(&sh->stripe_lock);
3041
3042         if (stripe_can_batch(sh))
3043                 stripe_add_to_batch_list(conf, sh);
3044         return 1;
3045
3046  overlap:
3047         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3048         spin_unlock_irq(&sh->stripe_lock);
3049         return 0;
3050 }
3051
3052 static void end_reshape(struct r5conf *conf);
3053
3054 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3055                             struct stripe_head *sh)
3056 {
3057         int sectors_per_chunk =
3058                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3059         int dd_idx;
3060         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3061         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3062
3063         raid5_compute_sector(conf,
3064                              stripe * (disks - conf->max_degraded)
3065                              *sectors_per_chunk + chunk_offset,
3066                              previous,
3067                              &dd_idx, sh);
3068 }
3069
3070 static void
3071 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3072                                 struct stripe_head_state *s, int disks,
3073                                 struct bio_list *return_bi)
3074 {
3075         int i;
3076         BUG_ON(sh->batch_head);
3077         for (i = disks; i--; ) {
3078                 struct bio *bi;
3079                 int bitmap_end = 0;
3080
3081                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3082                         struct md_rdev *rdev;
3083                         rcu_read_lock();
3084                         rdev = rcu_dereference(conf->disks[i].rdev);
3085                         if (rdev && test_bit(In_sync, &rdev->flags))
3086                                 atomic_inc(&rdev->nr_pending);
3087                         else
3088                                 rdev = NULL;
3089                         rcu_read_unlock();
3090                         if (rdev) {
3091                                 if (!rdev_set_badblocks(
3092                                             rdev,
3093                                             sh->sector,
3094                                             STRIPE_SECTORS, 0))
3095                                         md_error(conf->mddev, rdev);
3096                                 rdev_dec_pending(rdev, conf->mddev);
3097                         }
3098                 }
3099                 spin_lock_irq(&sh->stripe_lock);
3100                 /* fail all writes first */
3101                 bi = sh->dev[i].towrite;
3102                 sh->dev[i].towrite = NULL;
3103                 sh->overwrite_disks = 0;
3104                 spin_unlock_irq(&sh->stripe_lock);
3105                 if (bi)
3106                         bitmap_end = 1;
3107
3108                 r5l_stripe_write_finished(sh);
3109
3110                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3111                         wake_up(&conf->wait_for_overlap);
3112
3113                 while (bi && bi->bi_iter.bi_sector <
3114                         sh->dev[i].sector + STRIPE_SECTORS) {
3115                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3116
3117                         bi->bi_error = -EIO;
3118                         if (!raid5_dec_bi_active_stripes(bi)) {
3119                                 md_write_end(conf->mddev);
3120                                 bio_list_add(return_bi, bi);
3121                         }
3122                         bi = nextbi;
3123                 }
3124                 if (bitmap_end)
3125                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3126                                 STRIPE_SECTORS, 0, 0);
3127                 bitmap_end = 0;
3128                 /* and fail all 'written' */
3129                 bi = sh->dev[i].written;
3130                 sh->dev[i].written = NULL;
3131                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3132                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3133                         sh->dev[i].page = sh->dev[i].orig_page;
3134                 }
3135
3136                 if (bi) bitmap_end = 1;
3137                 while (bi && bi->bi_iter.bi_sector <
3138                        sh->dev[i].sector + STRIPE_SECTORS) {
3139                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3140
3141                         bi->bi_error = -EIO;
3142                         if (!raid5_dec_bi_active_stripes(bi)) {
3143                                 md_write_end(conf->mddev);
3144                                 bio_list_add(return_bi, bi);
3145                         }
3146                         bi = bi2;
3147                 }
3148
3149                 /* fail any reads if this device is non-operational and
3150                  * the data has not reached the cache yet.
3151                  */
3152                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3153                     s->failed > conf->max_degraded &&
3154                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3155                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3156                         spin_lock_irq(&sh->stripe_lock);
3157                         bi = sh->dev[i].toread;
3158                         sh->dev[i].toread = NULL;
3159                         spin_unlock_irq(&sh->stripe_lock);
3160                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3161                                 wake_up(&conf->wait_for_overlap);
3162                         if (bi)
3163                                 s->to_read--;
3164                         while (bi && bi->bi_iter.bi_sector <
3165                                sh->dev[i].sector + STRIPE_SECTORS) {
3166                                 struct bio *nextbi =
3167                                         r5_next_bio(bi, sh->dev[i].sector);
3168
3169                                 bi->bi_error = -EIO;
3170                                 if (!raid5_dec_bi_active_stripes(bi))
3171                                         bio_list_add(return_bi, bi);
3172                                 bi = nextbi;
3173                         }
3174                 }
3175                 if (bitmap_end)
3176                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3177                                         STRIPE_SECTORS, 0, 0);
3178                 /* If we were in the middle of a write the parity block might
3179                  * still be locked - so just clear all R5_LOCKED flags
3180                  */
3181                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3182         }
3183         s->to_write = 0;
3184         s->written = 0;
3185
3186         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3187                 if (atomic_dec_and_test(&conf->pending_full_writes))
3188                         md_wakeup_thread(conf->mddev->thread);
3189 }
3190
3191 static void
3192 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3193                    struct stripe_head_state *s)
3194 {
3195         int abort = 0;
3196         int i;
3197
3198         BUG_ON(sh->batch_head);
3199         clear_bit(STRIPE_SYNCING, &sh->state);
3200         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3201                 wake_up(&conf->wait_for_overlap);
3202         s->syncing = 0;
3203         s->replacing = 0;
3204         /* There is nothing more to do for sync/check/repair.
3205          * Don't even need to abort as that is handled elsewhere
3206          * if needed, and not always wanted e.g. if there is a known
3207          * bad block here.
3208          * For recover/replace we need to record a bad block on all
3209          * non-sync devices, or abort the recovery
3210          */
3211         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3212                 /* During recovery devices cannot be removed, so
3213                  * locking and refcounting of rdevs is not needed
3214                  */
3215                 for (i = 0; i < conf->raid_disks; i++) {
3216                         struct md_rdev *rdev = conf->disks[i].rdev;
3217                         if (rdev
3218                             && !test_bit(Faulty, &rdev->flags)
3219                             && !test_bit(In_sync, &rdev->flags)
3220                             && !rdev_set_badblocks(rdev, sh->sector,
3221                                                    STRIPE_SECTORS, 0))
3222                                 abort = 1;
3223                         rdev = conf->disks[i].replacement;
3224                         if (rdev
3225                             && !test_bit(Faulty, &rdev->flags)
3226                             && !test_bit(In_sync, &rdev->flags)
3227                             && !rdev_set_badblocks(rdev, sh->sector,
3228                                                    STRIPE_SECTORS, 0))
3229                                 abort = 1;
3230                 }
3231                 if (abort)
3232                         conf->recovery_disabled =
3233                                 conf->mddev->recovery_disabled;
3234         }
3235         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3236 }
3237
3238 static int want_replace(struct stripe_head *sh, int disk_idx)
3239 {
3240         struct md_rdev *rdev;
3241         int rv = 0;
3242         /* Doing recovery so rcu locking not required */
3243         rdev = sh->raid_conf->disks[disk_idx].replacement;
3244         if (rdev
3245             && !test_bit(Faulty, &rdev->flags)
3246             && !test_bit(In_sync, &rdev->flags)
3247             && (rdev->recovery_offset <= sh->sector
3248                 || rdev->mddev->recovery_cp <= sh->sector))
3249                 rv = 1;
3250
3251         return rv;
3252 }
3253
3254 /* fetch_block - checks the given member device to see if its data needs
3255  * to be read or computed to satisfy a request.
3256  *
3257  * Returns 1 when no more member devices need to be checked, otherwise returns
3258  * 0 to tell the loop in handle_stripe_fill to continue
3259  */
3260
3261 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3262                            int disk_idx, int disks)
3263 {
3264         struct r5dev *dev = &sh->dev[disk_idx];
3265         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3266                                   &sh->dev[s->failed_num[1]] };
3267         int i;
3268
3269
3270         if (test_bit(R5_LOCKED, &dev->flags) ||
3271             test_bit(R5_UPTODATE, &dev->flags))
3272                 /* No point reading this as we already have it or have
3273                  * decided to get it.
3274                  */
3275                 return 0;
3276
3277         if (dev->toread ||
3278             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3279                 /* We need this block to directly satisfy a request */
3280                 return 1;
3281
3282         if (s->syncing || s->expanding ||
3283             (s->replacing && want_replace(sh, disk_idx)))
3284                 /* When syncing, or expanding we read everything.
3285                  * When replacing, we need the replaced block.
3286                  */
3287                 return 1;
3288
3289         if ((s->failed >= 1 && fdev[0]->toread) ||
3290             (s->failed >= 2 && fdev[1]->toread))
3291                 /* If we want to read from a failed device, then
3292                  * we need to actually read every other device.
3293                  */
3294                 return 1;
3295
3296         /* Sometimes neither read-modify-write nor reconstruct-write
3297          * cycles can work.  In those cases we read every block we
3298          * can.  Then the parity-update is certain to have enough to
3299          * work with.
3300          * This can only be a problem when we need to write something,
3301          * and some device has failed.  If either of those tests
3302          * fail we need look no further.
3303          */
3304         if (!s->failed || !s->to_write)
3305                 return 0;
3306
3307         if (test_bit(R5_Insync, &dev->flags) &&
3308             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3309                 /* Pre-reads at not permitted until after short delay
3310                  * to gather multiple requests.  However if this
3311                  * device is no Insync, the block could only be be computed
3312                  * and there is no need to delay that.
3313                  */
3314                 return 0;
3315
3316         for (i = 0; i < s->failed && i < 2; i++) {
3317                 if (fdev[i]->towrite &&
3318                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3319                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3320                         /* If we have a partial write to a failed
3321                          * device, then we will need to reconstruct
3322                          * the content of that device, so all other
3323                          * devices must be read.
3324                          */
3325                         return 1;
3326         }
3327
3328         /* If we are forced to do a reconstruct-write, either because
3329          * the current RAID6 implementation only supports that, or
3330          * or because parity cannot be trusted and we are currently
3331          * recovering it, there is extra need to be careful.
3332          * If one of the devices that we would need to read, because
3333          * it is not being overwritten (and maybe not written at all)
3334          * is missing/faulty, then we need to read everything we can.
3335          */
3336         if (sh->raid_conf->level != 6 &&
3337             sh->sector < sh->raid_conf->mddev->recovery_cp)
3338                 /* reconstruct-write isn't being forced */
3339                 return 0;
3340         for (i = 0; i < s->failed && i < 2; i++) {
3341                 if (s->failed_num[i] != sh->pd_idx &&
3342                     s->failed_num[i] != sh->qd_idx &&
3343                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3344                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3345                         return 1;
3346         }
3347
3348         return 0;
3349 }
3350
3351 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3352                        int disk_idx, int disks)
3353 {
3354         struct r5dev *dev = &sh->dev[disk_idx];
3355
3356         /* is the data in this block needed, and can we get it? */
3357         if (need_this_block(sh, s, disk_idx, disks)) {
3358                 /* we would like to get this block, possibly by computing it,
3359                  * otherwise read it if the backing disk is insync
3360                  */
3361                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3362                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3363                 BUG_ON(sh->batch_head);
3364                 if ((s->uptodate == disks - 1) &&
3365                     (s->failed && (disk_idx == s->failed_num[0] ||
3366                                    disk_idx == s->failed_num[1]))) {
3367                         /* have disk failed, and we're requested to fetch it;
3368                          * do compute it
3369                          */
3370                         pr_debug("Computing stripe %llu block %d\n",
3371                                (unsigned long long)sh->sector, disk_idx);
3372                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3373                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3374                         set_bit(R5_Wantcompute, &dev->flags);
3375                         sh->ops.target = disk_idx;
3376                         sh->ops.target2 = -1; /* no 2nd target */
3377                         s->req_compute = 1;
3378                         /* Careful: from this point on 'uptodate' is in the eye
3379                          * of raid_run_ops which services 'compute' operations
3380                          * before writes. R5_Wantcompute flags a block that will
3381                          * be R5_UPTODATE by the time it is needed for a
3382                          * subsequent operation.
3383                          */
3384                         s->uptodate++;
3385                         return 1;
3386                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3387                         /* Computing 2-failure is *very* expensive; only
3388                          * do it if failed >= 2
3389                          */
3390                         int other;
3391                         for (other = disks; other--; ) {
3392                                 if (other == disk_idx)
3393                                         continue;
3394                                 if (!test_bit(R5_UPTODATE,
3395                                       &sh->dev[other].flags))
3396                                         break;
3397                         }
3398                         BUG_ON(other < 0);
3399                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3400                                (unsigned long long)sh->sector,
3401                                disk_idx, other);
3402                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3403                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3404                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3405                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3406                         sh->ops.target = disk_idx;
3407                         sh->ops.target2 = other;
3408                         s->uptodate += 2;
3409                         s->req_compute = 1;
3410                         return 1;
3411                 } else if (test_bit(R5_Insync, &dev->flags)) {
3412                         set_bit(R5_LOCKED, &dev->flags);
3413                         set_bit(R5_Wantread, &dev->flags);
3414                         s->locked++;
3415                         pr_debug("Reading block %d (sync=%d)\n",
3416                                 disk_idx, s->syncing);
3417                 }
3418         }
3419
3420         return 0;
3421 }
3422
3423 /**
3424  * handle_stripe_fill - read or compute data to satisfy pending requests.
3425  */
3426 static void handle_stripe_fill(struct stripe_head *sh,
3427                                struct stripe_head_state *s,
3428                                int disks)
3429 {
3430         int i;
3431
3432         /* look for blocks to read/compute, skip this if a compute
3433          * is already in flight, or if the stripe contents are in the
3434          * midst of changing due to a write
3435          */
3436         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3437             !sh->reconstruct_state)
3438                 for (i = disks; i--; )
3439                         if (fetch_block(sh, s, i, disks))
3440                                 break;
3441         set_bit(STRIPE_HANDLE, &sh->state);
3442 }
3443
3444 static void break_stripe_batch_list(struct stripe_head *head_sh,
3445                                     unsigned long handle_flags);
3446 /* handle_stripe_clean_event
3447  * any written block on an uptodate or failed drive can be returned.
3448  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3449  * never LOCKED, so we don't need to test 'failed' directly.
3450  */
3451 static void handle_stripe_clean_event(struct r5conf *conf,
3452         struct stripe_head *sh, int disks, struct bio_list *return_bi)
3453 {
3454         int i;
3455         struct r5dev *dev;
3456         int discard_pending = 0;
3457         struct stripe_head *head_sh = sh;
3458         bool do_endio = false;
3459
3460         for (i = disks; i--; )
3461                 if (sh->dev[i].written) {
3462                         dev = &sh->dev[i];
3463                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3464                             (test_bit(R5_UPTODATE, &dev->flags) ||
3465                              test_bit(R5_Discard, &dev->flags) ||
3466                              test_bit(R5_SkipCopy, &dev->flags))) {
3467                                 /* We can return any write requests */
3468                                 struct bio *wbi, *wbi2;
3469                                 pr_debug("Return write for disc %d\n", i);
3470                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3471                                         clear_bit(R5_UPTODATE, &dev->flags);
3472                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3473                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3474                                 }
3475                                 do_endio = true;
3476
3477 returnbi:
3478                                 dev->page = dev->orig_page;
3479                                 wbi = dev->written;
3480                                 dev->written = NULL;
3481                                 while (wbi && wbi->bi_iter.bi_sector <
3482                                         dev->sector + STRIPE_SECTORS) {
3483                                         wbi2 = r5_next_bio(wbi, dev->sector);
3484                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3485                                                 md_write_end(conf->mddev);
3486                                                 bio_list_add(return_bi, wbi);
3487                                         }
3488                                         wbi = wbi2;
3489                                 }
3490                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3491                                                 STRIPE_SECTORS,
3492                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3493                                                 0);
3494                                 if (head_sh->batch_head) {
3495                                         sh = list_first_entry(&sh->batch_list,
3496                                                               struct stripe_head,
3497                                                               batch_list);
3498                                         if (sh != head_sh) {
3499                                                 dev = &sh->dev[i];
3500                                                 goto returnbi;
3501                                         }
3502                                 }
3503                                 sh = head_sh;
3504                                 dev = &sh->dev[i];
3505                         } else if (test_bit(R5_Discard, &dev->flags))
3506                                 discard_pending = 1;
3507                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3508                         WARN_ON(dev->page != dev->orig_page);
3509                 }
3510
3511         r5l_stripe_write_finished(sh);
3512
3513         if (!discard_pending &&
3514             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3515                 int hash;
3516                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3517                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3518                 if (sh->qd_idx >= 0) {
3519                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3520                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3521                 }
3522                 /* now that discard is done we can proceed with any sync */
3523                 clear_bit(STRIPE_DISCARD, &sh->state);
3524                 /*
3525                  * SCSI discard will change some bio fields and the stripe has
3526                  * no updated data, so remove it from hash list and the stripe
3527                  * will be reinitialized
3528                  */
3529 unhash:
3530                 hash = sh->hash_lock_index;
3531                 spin_lock_irq(conf->hash_locks + hash);
3532                 remove_hash(sh);
3533                 spin_unlock_irq(conf->hash_locks + hash);
3534                 if (head_sh->batch_head) {
3535                         sh = list_first_entry(&sh->batch_list,
3536                                               struct stripe_head, batch_list);
3537                         if (sh != head_sh)
3538                                         goto unhash;
3539                 }
3540                 sh = head_sh;
3541
3542                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3543                         set_bit(STRIPE_HANDLE, &sh->state);
3544
3545         }
3546
3547         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3548                 if (atomic_dec_and_test(&conf->pending_full_writes))
3549                         md_wakeup_thread(conf->mddev->thread);
3550
3551         if (head_sh->batch_head && do_endio)
3552                 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3553 }
3554
3555 static void handle_stripe_dirtying(struct r5conf *conf,
3556                                    struct stripe_head *sh,
3557                                    struct stripe_head_state *s,
3558                                    int disks)
3559 {
3560         int rmw = 0, rcw = 0, i;
3561         sector_t recovery_cp = conf->mddev->recovery_cp;
3562
3563         /* Check whether resync is now happening or should start.
3564          * If yes, then the array is dirty (after unclean shutdown or
3565          * initial creation), so parity in some stripes might be inconsistent.
3566          * In this case, we need to always do reconstruct-write, to ensure
3567          * that in case of drive failure or read-error correction, we
3568          * generate correct data from the parity.
3569          */
3570         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3571             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3572              s->failed == 0)) {
3573                 /* Calculate the real rcw later - for now make it
3574                  * look like rcw is cheaper
3575                  */
3576                 rcw = 1; rmw = 2;
3577                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3578                          conf->rmw_level, (unsigned long long)recovery_cp,
3579                          (unsigned long long)sh->sector);
3580         } else for (i = disks; i--; ) {
3581                 /* would I have to read this buffer for read_modify_write */
3582                 struct r5dev *dev = &sh->dev[i];
3583                 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3584                     !test_bit(R5_LOCKED, &dev->flags) &&
3585                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3586                       test_bit(R5_Wantcompute, &dev->flags))) {
3587                         if (test_bit(R5_Insync, &dev->flags))
3588                                 rmw++;
3589                         else
3590                                 rmw += 2*disks;  /* cannot read it */
3591                 }
3592                 /* Would I have to read this buffer for reconstruct_write */
3593                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3594                     i != sh->pd_idx && i != sh->qd_idx &&
3595                     !test_bit(R5_LOCKED, &dev->flags) &&
3596                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3597                     test_bit(R5_Wantcompute, &dev->flags))) {
3598                         if (test_bit(R5_Insync, &dev->flags))
3599                                 rcw++;
3600                         else
3601                                 rcw += 2*disks;
3602                 }
3603         }
3604         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3605                 (unsigned long long)sh->sector, rmw, rcw);
3606         set_bit(STRIPE_HANDLE, &sh->state);
3607         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3608                 /* prefer read-modify-write, but need to get some data */
3609                 if (conf->mddev->queue)
3610                         blk_add_trace_msg(conf->mddev->queue,
3611                                           "raid5 rmw %llu %d",
3612                                           (unsigned long long)sh->sector, rmw);
3613                 for (i = disks; i--; ) {
3614                         struct r5dev *dev = &sh->dev[i];
3615                         if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3616                             !test_bit(R5_LOCKED, &dev->flags) &&
3617                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3618                             test_bit(R5_Wantcompute, &dev->flags)) &&
3619                             test_bit(R5_Insync, &dev->flags)) {
3620                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3621                                              &sh->state)) {
3622                                         pr_debug("Read_old block %d for r-m-w\n",
3623                                                  i);
3624                                         set_bit(R5_LOCKED, &dev->flags);
3625                                         set_bit(R5_Wantread, &dev->flags);
3626                                         s->locked++;
3627                                 } else {
3628                                         set_bit(STRIPE_DELAYED, &sh->state);
3629                                         set_bit(STRIPE_HANDLE, &sh->state);
3630                                 }
3631                         }
3632                 }
3633         }
3634         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3635                 /* want reconstruct write, but need to get some data */
3636                 int qread =0;
3637                 rcw = 0;
3638                 for (i = disks; i--; ) {
3639                         struct r5dev *dev = &sh->dev[i];
3640                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3641                             i != sh->pd_idx && i != sh->qd_idx &&
3642                             !test_bit(R5_LOCKED, &dev->flags) &&
3643                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3644                               test_bit(R5_Wantcompute, &dev->flags))) {
3645                                 rcw++;
3646                                 if (test_bit(R5_Insync, &dev->flags) &&
3647                                     test_bit(STRIPE_PREREAD_ACTIVE,
3648                                              &sh->state)) {
3649                                         pr_debug("Read_old block "
3650                                                 "%d for Reconstruct\n", i);
3651                                         set_bit(R5_LOCKED, &dev->flags);
3652                                         set_bit(R5_Wantread, &dev->flags);
3653                                         s->locked++;
3654                                         qread++;
3655                                 } else {
3656                                         set_bit(STRIPE_DELAYED, &sh->state);
3657                                         set_bit(STRIPE_HANDLE, &sh->state);
3658                                 }
3659                         }
3660                 }
3661                 if (rcw && conf->mddev->queue)
3662                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3663                                           (unsigned long long)sh->sector,
3664                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3665         }
3666
3667         if (rcw > disks && rmw > disks &&
3668             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3669                 set_bit(STRIPE_DELAYED, &sh->state);
3670
3671         /* now if nothing is locked, and if we have enough data,
3672          * we can start a write request
3673          */
3674         /* since handle_stripe can be called at any time we need to handle the
3675          * case where a compute block operation has been submitted and then a
3676          * subsequent call wants to start a write request.  raid_run_ops only
3677          * handles the case where compute block and reconstruct are requested
3678          * simultaneously.  If this is not the case then new writes need to be
3679          * held off until the compute completes.
3680          */
3681         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3682             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3683             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3684                 schedule_reconstruction(sh, s, rcw == 0, 0);
3685 }
3686
3687 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3688                                 struct stripe_head_state *s, int disks)
3689 {
3690         struct r5dev *dev = NULL;
3691
3692         BUG_ON(sh->batch_head);
3693         set_bit(STRIPE_HANDLE, &sh->state);
3694
3695         switch (sh->check_state) {
3696         case check_state_idle:
3697                 /* start a new check operation if there are no failures */
3698                 if (s->failed == 0) {
3699                         BUG_ON(s->uptodate != disks);
3700                         sh->check_state = check_state_run;
3701                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3702                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3703                         s->uptodate--;
3704                         break;
3705                 }
3706                 dev = &sh->dev[s->failed_num[0]];
3707                 /* fall through */
3708         case check_state_compute_result:
3709                 sh->check_state = check_state_idle;
3710                 if (!dev)
3711                         dev = &sh->dev[sh->pd_idx];
3712
3713                 /* check that a write has not made the stripe insync */
3714                 if (test_bit(STRIPE_INSYNC, &sh->state))
3715                         break;
3716
3717                 /* either failed parity check, or recovery is happening */
3718                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3719                 BUG_ON(s->uptodate != disks);
3720
3721                 set_bit(R5_LOCKED, &dev->flags);
3722                 s->locked++;
3723                 set_bit(R5_Wantwrite, &dev->flags);
3724
3725                 clear_bit(STRIPE_DEGRADED, &sh->state);
3726                 set_bit(STRIPE_INSYNC, &sh->state);
3727                 break;
3728         case check_state_run:
3729                 break; /* we will be called again upon completion */
3730         case check_state_check_result:
3731                 sh->check_state = check_state_idle;
3732
3733                 /* if a failure occurred during the check operation, leave
3734                  * STRIPE_INSYNC not set and let the stripe be handled again
3735                  */
3736                 if (s->failed)
3737                         break;
3738
3739                 /* handle a successful check operation, if parity is correct
3740                  * we are done.  Otherwise update the mismatch count and repair
3741                  * parity if !MD_RECOVERY_CHECK
3742                  */
3743                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3744                         /* parity is correct (on disc,
3745                          * not in buffer any more)
3746                          */
3747                         set_bit(STRIPE_INSYNC, &sh->state);
3748                 else {
3749                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3750                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3751                                 /* don't try to repair!! */
3752                                 set_bit(STRIPE_INSYNC, &sh->state);
3753                         else {
3754                                 sh->check_state = check_state_compute_run;
3755                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3756                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3757                                 set_bit(R5_Wantcompute,
3758                                         &sh->dev[sh->pd_idx].flags);
3759                                 sh->ops.target = sh->pd_idx;
3760                                 sh->ops.target2 = -1;
3761                                 s->uptodate++;
3762                         }
3763                 }
3764                 break;
3765         case check_state_compute_run:
3766                 break;
3767         default:
3768                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3769                        __func__, sh->check_state,
3770                        (unsigned long long) sh->sector);
3771                 BUG();
3772         }
3773 }
3774
3775 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3776                                   struct stripe_head_state *s,
3777                                   int disks)
3778 {
3779         int pd_idx = sh->pd_idx;
3780         int qd_idx = sh->qd_idx;
3781         struct r5dev *dev;
3782
3783         BUG_ON(sh->batch_head);
3784         set_bit(STRIPE_HANDLE, &sh->state);
3785
3786         BUG_ON(s->failed > 2);
3787
3788         /* Want to check and possibly repair P and Q.
3789          * However there could be one 'failed' device, in which
3790          * case we can only check one of them, possibly using the
3791          * other to generate missing data
3792          */
3793
3794         switch (sh->check_state) {
3795         case check_state_idle:
3796                 /* start a new check operation if there are < 2 failures */
3797                 if (s->failed == s->q_failed) {
3798                         /* The only possible failed device holds Q, so it
3799                          * makes sense to check P (If anything else were failed,
3800                          * we would have used P to recreate it).
3801                          */
3802                         sh->check_state = check_state_run;
3803                 }
3804                 if (!s->q_failed && s->failed < 2) {
3805                         /* Q is not failed, and we didn't use it to generate
3806                          * anything, so it makes sense to check it
3807                          */
3808                         if (sh->check_state == check_state_run)
3809                                 sh->check_state = check_state_run_pq;
3810                         else
3811                                 sh->check_state = check_state_run_q;
3812                 }
3813
3814                 /* discard potentially stale zero_sum_result */
3815                 sh->ops.zero_sum_result = 0;
3816
3817                 if (sh->check_state == check_state_run) {
3818                         /* async_xor_zero_sum destroys the contents of P */
3819                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3820                         s->uptodate--;
3821                 }
3822                 if (sh->check_state >= check_state_run &&
3823                     sh->check_state <= check_state_run_pq) {
3824                         /* async_syndrome_zero_sum preserves P and Q, so
3825                          * no need to mark them !uptodate here
3826                          */
3827                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3828                         break;
3829                 }
3830
3831                 /* we have 2-disk failure */
3832                 BUG_ON(s->failed != 2);
3833                 /* fall through */
3834         case check_state_compute_result:
3835                 sh->check_state = check_state_idle;
3836
3837                 /* check that a write has not made the stripe insync */
3838                 if (test_bit(STRIPE_INSYNC, &sh->state))
3839                         break;
3840
3841                 /* now write out any block on a failed drive,
3842                  * or P or Q if they were recomputed
3843                  */
3844                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3845                 if (s->failed == 2) {
3846                         dev = &sh->dev[s->failed_num[1]];
3847                         s->locked++;
3848                         set_bit(R5_LOCKED, &dev->flags);
3849                         set_bit(R5_Wantwrite, &dev->flags);
3850                 }
3851                 if (s->failed >= 1) {
3852                         dev = &sh->dev[s->failed_num[0]];
3853                         s->locked++;
3854                         set_bit(R5_LOCKED, &dev->flags);
3855                         set_bit(R5_Wantwrite, &dev->flags);
3856                 }
3857                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3858                         dev = &sh->dev[pd_idx];
3859                         s->locked++;
3860                         set_bit(R5_LOCKED, &dev->flags);
3861                         set_bit(R5_Wantwrite, &dev->flags);
3862                 }
3863                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3864                         dev = &sh->dev[qd_idx];
3865                         s->locked++;
3866                         set_bit(R5_LOCKED, &dev->flags);
3867                         set_bit(R5_Wantwrite, &dev->flags);
3868                 }
3869                 clear_bit(STRIPE_DEGRADED, &sh->state);
3870
3871                 set_bit(STRIPE_INSYNC, &sh->state);
3872                 break;
3873         case check_state_run:
3874         case check_state_run_q:
3875         case check_state_run_pq:
3876                 break; /* we will be called again upon completion */
3877         case check_state_check_result:
3878                 sh->check_state = check_state_idle;
3879
3880                 /* handle a successful check operation, if parity is correct
3881                  * we are done.  Otherwise update the mismatch count and repair
3882                  * parity if !MD_RECOVERY_CHECK
3883                  */
3884                 if (sh->ops.zero_sum_result == 0) {
3885                         /* both parities are correct */
3886                         if (!s->failed)
3887                                 set_bit(STRIPE_INSYNC, &sh->state);
3888                         else {
3889                                 /* in contrast to the raid5 case we can validate
3890                                  * parity, but still have a failure to write
3891                                  * back
3892                                  */
3893                                 sh->check_state = check_state_compute_result;
3894                                 /* Returning at this point means that we may go
3895                                  * off and bring p and/or q uptodate again so
3896                                  * we make sure to check zero_sum_result again
3897                                  * to verify if p or q need writeback
3898                                  */
3899                         }
3900                 } else {
3901                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3902                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3903                                 /* don't try to repair!! */
3904                                 set_bit(STRIPE_INSYNC, &sh->state);
3905                         else {
3906                                 int *target = &sh->ops.target;
3907
3908                                 sh->ops.target = -1;
3909                                 sh->ops.target2 = -1;
3910                                 sh->check_state = check_state_compute_run;
3911                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3912                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3913                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3914                                         set_bit(R5_Wantcompute,
3915                                                 &sh->dev[pd_idx].flags);
3916                                         *target = pd_idx;
3917                                         target = &sh->ops.target2;
3918                                         s->uptodate++;
3919                                 }
3920                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3921                                         set_bit(R5_Wantcompute,
3922                                                 &sh->dev[qd_idx].flags);
3923                                         *target = qd_idx;
3924                                         s->uptodate++;
3925                                 }
3926                         }
3927                 }
3928                 break;
3929         case check_state_compute_run:
3930                 break;
3931         default:
3932                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3933                        __func__, sh->check_state,
3934                        (unsigned long long) sh->sector);
3935                 BUG();
3936         }
3937 }
3938
3939 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3940 {
3941         int i;
3942
3943         /* We have read all the blocks in this stripe and now we need to
3944          * copy some of them into a target stripe for expand.
3945          */
3946         struct dma_async_tx_descriptor *tx = NULL;
3947         BUG_ON(sh->batch_head);
3948         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3949         for (i = 0; i < sh->disks; i++)
3950                 if (i != sh->pd_idx && i != sh->qd_idx) {
3951                         int dd_idx, j;
3952                         struct stripe_head *sh2;
3953                         struct async_submit_ctl submit;
3954
3955                         sector_t bn = raid5_compute_blocknr(sh, i, 1);
3956                         sector_t s = raid5_compute_sector(conf, bn, 0,
3957                                                           &dd_idx, NULL);
3958                         sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
3959                         if (sh2 == NULL)
3960                                 /* so far only the early blocks of this stripe
3961                                  * have been requested.  When later blocks
3962                                  * get requested, we will try again
3963                                  */
3964                                 continue;
3965                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3966                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3967                                 /* must have already done this block */
3968                                 raid5_release_stripe(sh2);
3969                                 continue;
3970                         }
3971
3972                         /* place all the copies on one channel */
3973                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3974                         tx = async_memcpy(sh2->dev[dd_idx].page,
3975                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3976                                           &submit);
3977
3978                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3979                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3980                         for (j = 0; j < conf->raid_disks; j++)
3981                                 if (j != sh2->pd_idx &&
3982                                     j != sh2->qd_idx &&
3983                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3984                                         break;
3985                         if (j == conf->raid_disks) {
3986                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3987                                 set_bit(STRIPE_HANDLE, &sh2->state);
3988                         }
3989                         raid5_release_stripe(sh2);
3990
3991                 }
3992         /* done submitting copies, wait for them to complete */
3993         async_tx_quiesce(&tx);
3994 }
3995
3996 /*
3997  * handle_stripe - do things to a stripe.
3998  *
3999  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4000  * state of various bits to see what needs to be done.
4001  * Possible results:
4002  *    return some read requests which now have data
4003  *    return some write requests which are safely on storage
4004  *    schedule a read on some buffers
4005  *    schedule a write of some buffers
4006  *    return confirmation of parity correctness
4007  *
4008  */
4009
4010 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4011 {
4012         struct r5conf *conf = sh->raid_conf;
4013         int disks = sh->disks;
4014         struct r5dev *dev;
4015         int i;
4016         int do_recovery = 0;
4017
4018         memset(s, 0, sizeof(*s));
4019
4020         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4021         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4022         s->failed_num[0] = -1;
4023         s->failed_num[1] = -1;
4024         s->log_failed = r5l_log_disk_error(conf);
4025
4026         /* Now to look around and see what can be done */
4027         rcu_read_lock();
4028         for (i=disks; i--; ) {
4029                 struct md_rdev *rdev;
4030                 sector_t first_bad;
4031                 int bad_sectors;
4032                 int is_bad = 0;
4033
4034                 dev = &sh->dev[i];
4035
4036                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4037                          i, dev->flags,
4038                          dev->toread, dev->towrite, dev->written);
4039                 /* maybe we can reply to a read
4040                  *
4041                  * new wantfill requests are only permitted while
4042                  * ops_complete_biofill is guaranteed to be inactive
4043                  */
4044                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4045                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4046                         set_bit(R5_Wantfill, &dev->flags);
4047
4048                 /* now count some things */
4049                 if (test_bit(R5_LOCKED, &dev->flags))
4050                         s->locked++;
4051                 if (test_bit(R5_UPTODATE, &dev->flags))
4052                         s->uptodate++;
4053                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4054                         s->compute++;
4055                         BUG_ON(s->compute > 2);
4056                 }
4057
4058                 if (test_bit(R5_Wantfill, &dev->flags))
4059                         s->to_fill++;
4060                 else if (dev->toread)
4061                         s->to_read++;
4062                 if (dev->towrite) {
4063                         s->to_write++;
4064                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4065                                 s->non_overwrite++;
4066                 }
4067                 if (dev->written)
4068                         s->written++;
4069                 /* Prefer to use the replacement for reads, but only
4070                  * if it is recovered enough and has no bad blocks.
4071                  */
4072                 rdev = rcu_dereference(conf->disks[i].replacement);
4073                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4074                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4075                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4076                                  &first_bad, &bad_sectors))
4077                         set_bit(R5_ReadRepl, &dev->flags);
4078                 else {
4079                         if (rdev && !test_bit(Faulty, &rdev->flags))
4080                                 set_bit(R5_NeedReplace, &dev->flags);
4081                         else
4082                                 clear_bit(R5_NeedReplace, &dev->flags);
4083                         rdev = rcu_dereference(conf->disks[i].rdev);
4084                         clear_bit(R5_ReadRepl, &dev->flags);
4085                 }
4086                 if (rdev && test_bit(Faulty, &rdev->flags))
4087                         rdev = NULL;
4088                 if (rdev) {
4089                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4090                                              &first_bad, &bad_sectors);
4091                         if (s->blocked_rdev == NULL
4092                             && (test_bit(Blocked, &rdev->flags)
4093                                 || is_bad < 0)) {
4094                                 if (is_bad < 0)
4095                                         set_bit(BlockedBadBlocks,
4096                                                 &rdev->flags);
4097                                 s->blocked_rdev = rdev;
4098                                 atomic_inc(&rdev->nr_pending);
4099                         }
4100                 }
4101                 clear_bit(R5_Insync, &dev->flags);
4102                 if (!rdev)
4103                         /* Not in-sync */;
4104                 else if (is_bad) {
4105                         /* also not in-sync */
4106                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4107                             test_bit(R5_UPTODATE, &dev->flags)) {
4108                                 /* treat as in-sync, but with a read error
4109                                  * which we can now try to correct
4110                                  */
4111                                 set_bit(R5_Insync, &dev->flags);
4112                                 set_bit(R5_ReadError, &dev->flags);
4113                         }
4114                 } else if (test_bit(In_sync, &rdev->flags))
4115                         set_bit(R5_Insync, &dev->flags);
4116                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4117                         /* in sync if before recovery_offset */
4118                         set_bit(R5_Insync, &dev->flags);
4119                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4120                          test_bit(R5_Expanded, &dev->flags))
4121                         /* If we've reshaped into here, we assume it is Insync.
4122                          * We will shortly update recovery_offset to make
4123                          * it official.
4124                          */
4125                         set_bit(R5_Insync, &dev->flags);
4126
4127                 if (test_bit(R5_WriteError, &dev->flags)) {
4128                         /* This flag does not apply to '.replacement'
4129                          * only to .rdev, so make sure to check that*/
4130                         struct md_rdev *rdev2 = rcu_dereference(
4131                                 conf->disks[i].rdev);
4132                         if (rdev2 == rdev)
4133                                 clear_bit(R5_Insync, &dev->flags);
4134                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4135                                 s->handle_bad_blocks = 1;
4136                                 atomic_inc(&rdev2->nr_pending);
4137                         } else
4138                                 clear_bit(R5_WriteError, &dev->flags);
4139                 }
4140                 if (test_bit(R5_MadeGood, &dev->flags)) {
4141                         /* This flag does not apply to '.replacement'
4142                          * only to .rdev, so make sure to check that*/
4143                         struct md_rdev *rdev2 = rcu_dereference(
4144                                 conf->disks[i].rdev);
4145                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4146                                 s->handle_bad_blocks = 1;
4147                                 atomic_inc(&rdev2->nr_pending);
4148                         } else
4149                                 clear_bit(R5_MadeGood, &dev->flags);
4150                 }
4151                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4152                         struct md_rdev *rdev2 = rcu_dereference(
4153                                 conf->disks[i].replacement);
4154                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4155                                 s->handle_bad_blocks = 1;
4156                                 atomic_inc(&rdev2->nr_pending);
4157                         } else
4158                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4159                 }
4160                 if (!test_bit(R5_Insync, &dev->flags)) {
4161                         /* The ReadError flag will just be confusing now */
4162                         clear_bit(R5_ReadError, &dev->flags);
4163                         clear_bit(R5_ReWrite, &dev->flags);
4164                 }
4165                 if (test_bit(R5_ReadError, &dev->flags))
4166                         clear_bit(R5_Insync, &dev->flags);
4167                 if (!test_bit(R5_Insync, &dev->flags)) {
4168                         if (s->failed < 2)
4169                                 s->failed_num[s->failed] = i;
4170                         s->failed++;
4171                         if (rdev && !test_bit(Faulty, &rdev->flags))
4172                                 do_recovery = 1;
4173                 }
4174         }
4175         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4176                 /* If there is a failed device being replaced,
4177                  *     we must be recovering.
4178                  * else if we are after recovery_cp, we must be syncing
4179                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4180                  * else we can only be replacing
4181                  * sync and recovery both need to read all devices, and so
4182                  * use the same flag.
4183                  */
4184                 if (do_recovery ||
4185                     sh->sector >= conf->mddev->recovery_cp ||
4186                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4187                         s->syncing = 1;
4188                 else
4189                         s->replacing = 1;
4190         }
4191         rcu_read_unlock();
4192 }
4193
4194 static int clear_batch_ready(struct stripe_head *sh)
4195 {
4196         /* Return '1' if this is a member of batch, or
4197          * '0' if it is a lone stripe or a head which can now be
4198          * handled.
4199          */
4200         struct stripe_head *tmp;
4201         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4202                 return (sh->batch_head && sh->batch_head != sh);
4203         spin_lock(&sh->stripe_lock);
4204         if (!sh->batch_head) {
4205                 spin_unlock(&sh->stripe_lock);
4206                 return 0;
4207         }
4208
4209         /*
4210          * this stripe could be added to a batch list before we check
4211          * BATCH_READY, skips it
4212          */
4213         if (sh->batch_head != sh) {
4214                 spin_unlock(&sh->stripe_lock);
4215                 return 1;
4216         }
4217         spin_lock(&sh->batch_lock);
4218         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4219                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4220         spin_unlock(&sh->batch_lock);
4221         spin_unlock(&sh->stripe_lock);
4222
4223         /*
4224          * BATCH_READY is cleared, no new stripes can be added.
4225          * batch_list can be accessed without lock
4226          */
4227         return 0;
4228 }
4229
4230 static void break_stripe_batch_list(struct stripe_head *head_sh,
4231                                     unsigned long handle_flags)
4232 {
4233         struct stripe_head *sh, *next;
4234         int i;
4235         int do_wakeup = 0;
4236
4237         list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4238
4239                 list_del_init(&sh->batch_list);
4240
4241                 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4242                                           (1 << STRIPE_SYNCING) |
4243                                           (1 << STRIPE_REPLACED) |
4244                                           (1 << STRIPE_DELAYED) |
4245                                           (1 << STRIPE_BIT_DELAY) |
4246                                           (1 << STRIPE_FULL_WRITE) |
4247                                           (1 << STRIPE_BIOFILL_RUN) |
4248                                           (1 << STRIPE_COMPUTE_RUN)  |
4249                                           (1 << STRIPE_OPS_REQ_PENDING) |
4250                                           (1 << STRIPE_DISCARD) |
4251                                           (1 << STRIPE_BATCH_READY) |
4252                                           (1 << STRIPE_BATCH_ERR) |
4253                                           (1 << STRIPE_BITMAP_PENDING)));
4254                 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4255                                               (1 << STRIPE_REPLACED)));
4256
4257                 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4258                                             (1 << STRIPE_PREREAD_ACTIVE) |
4259                                             (1 << STRIPE_DEGRADED)),
4260                               head_sh->state & (1 << STRIPE_INSYNC));
4261
4262                 sh->check_state = head_sh->check_state;
4263                 sh->reconstruct_state = head_sh->reconstruct_state;
4264                 for (i = 0; i < sh->disks; i++) {
4265                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4266                                 do_wakeup = 1;
4267                         sh->dev[i].flags = head_sh->dev[i].flags &
4268                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4269                 }
4270                 spin_lock_irq(&sh->stripe_lock);
4271                 sh->batch_head = NULL;
4272                 spin_unlock_irq(&sh->stripe_lock);
4273                 if (handle_flags == 0 ||
4274                     sh->state & handle_flags)
4275                         set_bit(STRIPE_HANDLE, &sh->state);
4276                 raid5_release_stripe(sh);
4277         }
4278         spin_lock_irq(&head_sh->stripe_lock);
4279         head_sh->batch_head = NULL;
4280         spin_unlock_irq(&head_sh->stripe_lock);
4281         for (i = 0; i < head_sh->disks; i++)
4282                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4283                         do_wakeup = 1;
4284         if (head_sh->state & handle_flags)
4285                 set_bit(STRIPE_HANDLE, &head_sh->state);
4286
4287         if (do_wakeup)
4288                 wake_up(&head_sh->raid_conf->wait_for_overlap);
4289 }
4290
4291 static void handle_stripe(struct stripe_head *sh)
4292 {
4293         struct stripe_head_state s;
4294         struct r5conf *conf = sh->raid_conf;
4295         int i;
4296         int prexor;
4297         int disks = sh->disks;
4298         struct r5dev *pdev, *qdev;
4299
4300         clear_bit(STRIPE_HANDLE, &sh->state);
4301         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4302                 /* already being handled, ensure it gets handled
4303                  * again when current action finishes */
4304                 set_bit(STRIPE_HANDLE, &sh->state);
4305                 return;
4306         }
4307
4308         if (clear_batch_ready(sh) ) {
4309                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4310                 return;
4311         }
4312
4313         if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4314                 break_stripe_batch_list(sh, 0);
4315
4316         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4317                 spin_lock(&sh->stripe_lock);
4318                 /* Cannot process 'sync' concurrently with 'discard' */
4319                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4320                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4321                         set_bit(STRIPE_SYNCING, &sh->state);
4322                         clear_bit(STRIPE_INSYNC, &sh->state);
4323                         clear_bit(STRIPE_REPLACED, &sh->state);
4324                 }
4325                 spin_unlock(&sh->stripe_lock);
4326         }
4327         clear_bit(STRIPE_DELAYED, &sh->state);
4328
4329         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4330                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4331                (unsigned long long)sh->sector, sh->state,
4332                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4333                sh->check_state, sh->reconstruct_state);
4334
4335         analyse_stripe(sh, &s);
4336
4337         if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4338                 goto finish;
4339
4340         if (s.handle_bad_blocks) {
4341                 set_bit(STRIPE_HANDLE, &sh->state);
4342                 goto finish;
4343         }
4344
4345         if (unlikely(s.blocked_rdev)) {
4346                 if (s.syncing || s.expanding || s.expanded ||
4347                     s.replacing || s.to_write || s.written) {
4348                         set_bit(STRIPE_HANDLE, &sh->state);
4349                         goto finish;
4350                 }
4351                 /* There is nothing for the blocked_rdev to block */
4352                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4353                 s.blocked_rdev = NULL;
4354         }
4355
4356         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4357                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4358                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4359         }
4360
4361         pr_debug("locked=%d uptodate=%d to_read=%d"
4362                " to_write=%d failed=%d failed_num=%d,%d\n",
4363                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4364                s.failed_num[0], s.failed_num[1]);
4365         /* check if the array has lost more than max_degraded devices and,
4366          * if so, some requests might need to be failed.
4367          */
4368         if (s.failed > conf->max_degraded || s.log_failed) {
4369                 sh->check_state = 0;
4370                 sh->reconstruct_state = 0;
4371                 break_stripe_batch_list(sh, 0);
4372                 if (s.to_read+s.to_write+s.written)
4373                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4374                 if (s.syncing + s.replacing)
4375                         handle_failed_sync(conf, sh, &s);
4376         }
4377
4378         /* Now we check to see if any write operations have recently
4379          * completed
4380          */
4381         prexor = 0;
4382         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4383                 prexor = 1;
4384         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4385             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4386                 sh->reconstruct_state = reconstruct_state_idle;
4387
4388                 /* All the 'written' buffers and the parity block are ready to
4389                  * be written back to disk
4390                  */
4391                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4392                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4393                 BUG_ON(sh->qd_idx >= 0 &&
4394                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4395                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4396                 for (i = disks; i--; ) {
4397                         struct r5dev *dev = &sh->dev[i];
4398                         if (test_bit(R5_LOCKED, &dev->flags) &&
4399                                 (i == sh->pd_idx || i == sh->qd_idx ||
4400                                  dev->written)) {
4401                                 pr_debug("Writing block %d\n", i);
4402                                 set_bit(R5_Wantwrite, &dev->flags);
4403                                 if (prexor)
4404                                         continue;
4405                                 if (s.failed > 1)
4406                                         continue;
4407                                 if (!test_bit(R5_Insync, &dev->flags) ||
4408                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4409                                      s.failed == 0))
4410                                         set_bit(STRIPE_INSYNC, &sh->state);
4411                         }
4412                 }
4413                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4414                         s.dec_preread_active = 1;
4415         }
4416
4417         /*
4418          * might be able to return some write requests if the parity blocks
4419          * are safe, or on a failed drive
4420          */
4421         pdev = &sh->dev[sh->pd_idx];
4422         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4423                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4424         qdev = &sh->dev[sh->qd_idx];
4425         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4426                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4427                 || conf->level < 6;
4428
4429         if (s.written &&
4430             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4431                              && !test_bit(R5_LOCKED, &pdev->flags)
4432                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4433                                  test_bit(R5_Discard, &pdev->flags))))) &&
4434             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4435                              && !test_bit(R5_LOCKED, &qdev->flags)
4436                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4437                                  test_bit(R5_Discard, &qdev->flags))))))
4438                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4439
4440         /* Now we might consider reading some blocks, either to check/generate
4441          * parity, or to satisfy requests
4442          * or to load a block that is being partially written.
4443          */
4444         if (s.to_read || s.non_overwrite
4445             || (conf->level == 6 && s.to_write && s.failed)
4446             || (s.syncing && (s.uptodate + s.compute < disks))
4447             || s.replacing
4448             || s.expanding)
4449                 handle_stripe_fill(sh, &s, disks);
4450
4451         /* Now to consider new write requests and what else, if anything
4452          * should be read.  We do not handle new writes when:
4453          * 1/ A 'write' operation (copy+xor) is already in flight.
4454          * 2/ A 'check' operation is in flight, as it may clobber the parity
4455          *    block.
4456          */
4457         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4458                 handle_stripe_dirtying(conf, sh, &s, disks);
4459
4460         /* maybe we need to check and possibly fix the parity for this stripe
4461          * Any reads will already have been scheduled, so we just see if enough
4462          * data is available.  The parity check is held off while parity
4463          * dependent operations are in flight.
4464          */
4465         if (sh->check_state ||
4466             (s.syncing && s.locked == 0 &&
4467              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4468              !test_bit(STRIPE_INSYNC, &sh->state))) {
4469                 if (conf->level == 6)
4470                         handle_parity_checks6(conf, sh, &s, disks);
4471                 else
4472                         handle_parity_checks5(conf, sh, &s, disks);
4473         }
4474
4475         if ((s.replacing || s.syncing) && s.locked == 0
4476             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4477             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4478                 /* Write out to replacement devices where possible */
4479                 for (i = 0; i < conf->raid_disks; i++)
4480                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4481                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4482                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4483                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4484                                 s.locked++;
4485                         }
4486                 if (s.replacing)
4487                         set_bit(STRIPE_INSYNC, &sh->state);
4488                 set_bit(STRIPE_REPLACED, &sh->state);
4489         }
4490         if ((s.syncing || s.replacing) && s.locked == 0 &&
4491             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4492             test_bit(STRIPE_INSYNC, &sh->state)) {
4493                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4494                 clear_bit(STRIPE_SYNCING, &sh->state);
4495                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4496                         wake_up(&conf->wait_for_overlap);
4497         }
4498
4499         /* If the failed drives are just a ReadError, then we might need
4500          * to progress the repair/check process
4501          */
4502         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4503                 for (i = 0; i < s.failed; i++) {
4504                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4505                         if (test_bit(R5_ReadError, &dev->flags)
4506                             && !test_bit(R5_LOCKED, &dev->flags)
4507                             && test_bit(R5_UPTODATE, &dev->flags)
4508                                 ) {
4509                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4510                                         set_bit(R5_Wantwrite, &dev->flags);
4511                                         set_bit(R5_ReWrite, &dev->flags);
4512                                         set_bit(R5_LOCKED, &dev->flags);
4513                                         s.locked++;
4514                                 } else {
4515                                         /* let's read it back */
4516                                         set_bit(R5_Wantread, &dev->flags);
4517                                         set_bit(R5_LOCKED, &dev->flags);
4518                                         s.locked++;
4519                                 }
4520                         }
4521                 }
4522
4523         /* Finish reconstruct operations initiated by the expansion process */
4524         if (sh->reconstruct_state == reconstruct_state_result) {
4525                 struct stripe_head *sh_src
4526                         = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4527                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4528                         /* sh cannot be written until sh_src has been read.
4529                          * so arrange for sh to be delayed a little
4530                          */
4531                         set_bit(STRIPE_DELAYED, &sh->state);
4532                         set_bit(STRIPE_HANDLE, &sh->state);
4533                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4534                                               &sh_src->state))
4535                                 atomic_inc(&conf->preread_active_stripes);
4536                         raid5_release_stripe(sh_src);
4537                         goto finish;
4538                 }
4539                 if (sh_src)
4540                         raid5_release_stripe(sh_src);
4541
4542                 sh->reconstruct_state = reconstruct_state_idle;
4543                 clear_bit(STRIPE_EXPANDING, &sh->state);
4544                 for (i = conf->raid_disks; i--; ) {
4545                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4546                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4547                         s.locked++;
4548                 }
4549         }
4550
4551         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4552             !sh->reconstruct_state) {
4553                 /* Need to write out all blocks after computing parity */
4554                 sh->disks = conf->raid_disks;
4555                 stripe_set_idx(sh->sector, conf, 0, sh);
4556                 schedule_reconstruction(sh, &s, 1, 1);
4557         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4558                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4559                 atomic_dec(&conf->reshape_stripes);
4560                 wake_up(&conf->wait_for_overlap);
4561                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4562         }
4563
4564         if (s.expanding && s.locked == 0 &&
4565             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4566                 handle_stripe_expansion(conf, sh);
4567
4568 finish:
4569         /* wait for this device to become unblocked */
4570         if (unlikely(s.blocked_rdev)) {
4571                 if (conf->mddev->external)
4572                         md_wait_for_blocked_rdev(s.blocked_rdev,
4573                                                  conf->mddev);
4574                 else
4575                         /* Internal metadata will immediately
4576                          * be written by raid5d, so we don't
4577                          * need to wait here.
4578                          */
4579                         rdev_dec_pending(s.blocked_rdev,
4580                                          conf->mddev);
4581         }
4582
4583         if (s.handle_bad_blocks)
4584                 for (i = disks; i--; ) {
4585                         struct md_rdev *rdev;
4586                         struct r5dev *dev = &sh->dev[i];
4587                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4588                                 /* We own a safe reference to the rdev */
4589                                 rdev = conf->disks[i].rdev;
4590                                 if (!rdev_set_badblocks(rdev, sh->sector,
4591                                                         STRIPE_SECTORS, 0))
4592                                         md_error(conf->mddev, rdev);
4593                                 rdev_dec_pending(rdev, conf->mddev);
4594                         }
4595                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4596                                 rdev = conf->disks[i].rdev;
4597                                 rdev_clear_badblocks(rdev, sh->sector,
4598                                                      STRIPE_SECTORS, 0);
4599                                 rdev_dec_pending(rdev, conf->mddev);
4600                         }
4601                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4602                                 rdev = conf->disks[i].replacement;
4603                                 if (!rdev)
4604                                         /* rdev have been moved down */
4605                                         rdev = conf->disks[i].rdev;
4606                                 rdev_clear_badblocks(rdev, sh->sector,
4607                                                      STRIPE_SECTORS, 0);
4608                                 rdev_dec_pending(rdev, conf->mddev);
4609                         }
4610                 }
4611
4612         if (s.ops_request)
4613                 raid_run_ops(sh, s.ops_request);
4614
4615         ops_run_io(sh, &s);
4616
4617         if (s.dec_preread_active) {
4618                 /* We delay this until after ops_run_io so that if make_request
4619                  * is waiting on a flush, it won't continue until the writes
4620                  * have actually been submitted.
4621                  */
4622                 atomic_dec(&conf->preread_active_stripes);
4623                 if (atomic_read(&conf->preread_active_stripes) <
4624                     IO_THRESHOLD)
4625                         md_wakeup_thread(conf->mddev->thread);
4626         }
4627
4628         if (!bio_list_empty(&s.return_bi)) {
4629                 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4630                         spin_lock_irq(&conf->device_lock);
4631                         bio_list_merge(&conf->return_bi, &s.return_bi);
4632                         spin_unlock_irq(&conf->device_lock);
4633                         md_wakeup_thread(conf->mddev->thread);
4634                 } else
4635                         return_io(&s.return_bi);
4636         }
4637
4638         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4639 }
4640
4641 static void raid5_activate_delayed(struct r5conf *conf)
4642 {
4643         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4644                 while (!list_empty(&conf->delayed_list)) {
4645                         struct list_head *l = conf->delayed_list.next;
4646                         struct stripe_head *sh;
4647                         sh = list_entry(l, struct stripe_head, lru);
4648                         list_del_init(l);
4649                         clear_bit(STRIPE_DELAYED, &sh->state);
4650                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4651                                 atomic_inc(&conf->preread_active_stripes);
4652                         list_add_tail(&sh->lru, &conf->hold_list);
4653                         raid5_wakeup_stripe_thread(sh);
4654                 }
4655         }
4656 }
4657
4658 static void activate_bit_delay(struct r5conf *conf,
4659         struct list_head *temp_inactive_list)
4660 {
4661         /* device_lock is held */
4662         struct list_head head;
4663         list_add(&head, &conf->bitmap_list);
4664         list_del_init(&conf->bitmap_list);
4665         while (!list_empty(&head)) {
4666                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4667                 int hash;
4668                 list_del_init(&sh->lru);
4669                 atomic_inc(&sh->count);
4670                 hash = sh->hash_lock_index;
4671                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4672         }
4673 }
4674
4675 static int raid5_congested(struct mddev *mddev, int bits)
4676 {
4677         struct r5conf *conf = mddev->private;
4678
4679         /* No difference between reads and writes.  Just check
4680          * how busy the stripe_cache is
4681          */
4682
4683         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4684                 return 1;
4685         if (conf->quiesce)
4686                 return 1;
4687         if (atomic_read(&conf->empty_inactive_list_nr))
4688                 return 1;
4689
4690         return 0;
4691 }
4692
4693 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4694 {
4695         struct r5conf *conf = mddev->private;
4696         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4697         unsigned int chunk_sectors;
4698         unsigned int bio_sectors = bio_sectors(bio);
4699
4700         chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4701         return  chunk_sectors >=
4702                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4703 }
4704
4705 /*
4706  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4707  *  later sampled by raid5d.
4708  */
4709 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4710 {
4711         unsigned long flags;
4712
4713         spin_lock_irqsave(&conf->device_lock, flags);
4714
4715         bi->bi_next = conf->retry_read_aligned_list;
4716         conf->retry_read_aligned_list = bi;
4717
4718         spin_unlock_irqrestore(&conf->device_lock, flags);
4719         md_wakeup_thread(conf->mddev->thread);
4720 }
4721
4722 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4723 {
4724         struct bio *bi;
4725
4726         bi = conf->retry_read_aligned;
4727         if (bi) {
4728                 conf->retry_read_aligned = NULL;
4729                 return bi;
4730         }
4731         bi = conf->retry_read_aligned_list;
4732         if(bi) {
4733                 conf->retry_read_aligned_list = bi->bi_next;
4734                 bi->bi_next = NULL;
4735                 /*
4736                  * this sets the active strip count to 1 and the processed
4737                  * strip count to zero (upper 8 bits)
4738                  */
4739                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4740         }
4741
4742         return bi;
4743 }
4744
4745 /*
4746  *  The "raid5_align_endio" should check if the read succeeded and if it
4747  *  did, call bio_endio on the original bio (having bio_put the new bio
4748  *  first).
4749  *  If the read failed..
4750  */
4751 static void raid5_align_endio(struct bio *bi)
4752 {
4753         struct bio* raid_bi  = bi->bi_private;
4754         struct mddev *mddev;
4755         struct r5conf *conf;
4756         struct md_rdev *rdev;
4757         int error = bi->bi_error;
4758
4759         bio_put(bi);
4760
4761         rdev = (void*)raid_bi->bi_next;
4762         raid_bi->bi_next = NULL;
4763         mddev = rdev->mddev;
4764         conf = mddev->private;
4765
4766         rdev_dec_pending(rdev, conf->mddev);
4767
4768         if (!error) {
4769                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4770                                          raid_bi, 0);
4771                 bio_endio(raid_bi);
4772                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4773                         wake_up(&conf->wait_for_quiescent);
4774                 return;
4775         }
4776
4777         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4778
4779         add_bio_to_retry(raid_bi, conf);
4780 }
4781
4782 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4783 {
4784         struct r5conf *conf = mddev->private;
4785         int dd_idx;
4786         struct bio* align_bi;
4787         struct md_rdev *rdev;
4788         sector_t end_sector;
4789
4790         if (!in_chunk_boundary(mddev, raid_bio)) {
4791                 pr_debug("%s: non aligned\n", __func__);
4792                 return 0;
4793         }
4794         /*
4795          * use bio_clone_mddev to make a copy of the bio
4796          */
4797         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4798         if (!align_bi)
4799                 return 0;
4800         /*
4801          *   set bi_end_io to a new function, and set bi_private to the
4802          *     original bio.
4803          */
4804         align_bi->bi_end_io  = raid5_align_endio;
4805         align_bi->bi_private = raid_bio;
4806         /*
4807          *      compute position
4808          */
4809         align_bi->bi_iter.bi_sector =
4810                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4811                                      0, &dd_idx, NULL);
4812
4813         end_sector = bio_end_sector(align_bi);
4814         rcu_read_lock();
4815         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4816         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4817             rdev->recovery_offset < end_sector) {
4818                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4819                 if (rdev &&
4820                     (test_bit(Faulty, &rdev->flags) ||
4821                     !(test_bit(In_sync, &rdev->flags) ||
4822                       rdev->recovery_offset >= end_sector)))
4823                         rdev = NULL;
4824         }
4825         if (rdev) {
4826                 sector_t first_bad;
4827                 int bad_sectors;
4828
4829                 atomic_inc(&rdev->nr_pending);
4830                 rcu_read_unlock();
4831                 raid_bio->bi_next = (void*)rdev;
4832                 align_bi->bi_bdev =  rdev->bdev;
4833                 bio_clear_flag(align_bi, BIO_SEG_VALID);
4834
4835                 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4836                                 bio_sectors(align_bi),
4837                                 &first_bad, &bad_sectors)) {
4838                         bio_put(align_bi);
4839                         rdev_dec_pending(rdev, mddev);
4840                         return 0;
4841                 }
4842
4843                 /* No reshape active, so we can trust rdev->data_offset */
4844                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4845
4846                 spin_lock_irq(&conf->device_lock);
4847                 wait_event_lock_irq(conf->wait_for_quiescent,
4848                                     conf->quiesce == 0,
4849                                     conf->device_lock);
4850                 atomic_inc(&conf->active_aligned_reads);
4851                 spin_unlock_irq(&conf->device_lock);
4852
4853                 if (mddev->gendisk)
4854                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4855                                               align_bi, disk_devt(mddev->gendisk),
4856                                               raid_bio->bi_iter.bi_sector);
4857                 generic_make_request(align_bi);
4858                 return 1;
4859         } else {
4860                 rcu_read_unlock();
4861                 bio_put(align_bi);
4862                 return 0;
4863         }
4864 }
4865
4866 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4867 {
4868         struct bio *split;
4869
4870         do {
4871                 sector_t sector = raid_bio->bi_iter.bi_sector;
4872                 unsigned chunk_sects = mddev->chunk_sectors;
4873                 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4874
4875                 if (sectors < bio_sectors(raid_bio)) {
4876                         split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4877                         bio_chain(split, raid_bio);
4878                 } else
4879                         split = raid_bio;
4880
4881                 if (!raid5_read_one_chunk(mddev, split)) {
4882                         if (split != raid_bio)
4883                                 generic_make_request(raid_bio);
4884                         return split;
4885                 }
4886         } while (split != raid_bio);
4887
4888         return NULL;
4889 }
4890
4891 /* __get_priority_stripe - get the next stripe to process
4892  *
4893  * Full stripe writes are allowed to pass preread active stripes up until
4894  * the bypass_threshold is exceeded.  In general the bypass_count
4895  * increments when the handle_list is handled before the hold_list; however, it
4896  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4897  * stripe with in flight i/o.  The bypass_count will be reset when the
4898  * head of the hold_list has changed, i.e. the head was promoted to the
4899  * handle_list.
4900  */
4901 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4902 {
4903         struct stripe_head *sh = NULL, *tmp;
4904         struct list_head *handle_list = NULL;
4905         struct r5worker_group *wg = NULL;
4906
4907         if (conf->worker_cnt_per_group == 0) {
4908                 handle_list = &conf->handle_list;
4909         } else if (group != ANY_GROUP) {
4910                 handle_list = &conf->worker_groups[group].handle_list;
4911                 wg = &conf->worker_groups[group];
4912         } else {
4913                 int i;
4914                 for (i = 0; i < conf->group_cnt; i++) {
4915                         handle_list = &conf->worker_groups[i].handle_list;
4916                         wg = &conf->worker_groups[i];
4917                         if (!list_empty(handle_list))
4918                                 break;
4919                 }
4920         }
4921
4922         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4923                   __func__,
4924                   list_empty(handle_list) ? "empty" : "busy",
4925                   list_empty(&conf->hold_list) ? "empty" : "busy",
4926                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4927
4928         if (!list_empty(handle_list)) {
4929                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4930
4931                 if (list_empty(&conf->hold_list))
4932                         conf->bypass_count = 0;
4933                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4934                         if (conf->hold_list.next == conf->last_hold)
4935                                 conf->bypass_count++;
4936                         else {
4937                                 conf->last_hold = conf->hold_list.next;
4938                                 conf->bypass_count -= conf->bypass_threshold;
4939                                 if (conf->bypass_count < 0)
4940                                         conf->bypass_count = 0;
4941                         }
4942                 }
4943         } else if (!list_empty(&conf->hold_list) &&
4944                    ((conf->bypass_threshold &&
4945                      conf->bypass_count > conf->bypass_threshold) ||
4946                     atomic_read(&conf->pending_full_writes) == 0)) {
4947
4948                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4949                         if (conf->worker_cnt_per_group == 0 ||
4950                             group == ANY_GROUP ||
4951                             !cpu_online(tmp->cpu) ||
4952                             cpu_to_group(tmp->cpu) == group) {
4953                                 sh = tmp;
4954                                 break;
4955                         }
4956                 }
4957
4958                 if (sh) {
4959                         conf->bypass_count -= conf->bypass_threshold;
4960                         if (conf->bypass_count < 0)
4961                                 conf->bypass_count = 0;
4962                 }
4963                 wg = NULL;
4964         }
4965
4966         if (!sh)
4967                 return NULL;
4968
4969         if (wg) {
4970                 wg->stripes_cnt--;
4971                 sh->group = NULL;
4972         }
4973         list_del_init(&sh->lru);
4974         BUG_ON(atomic_inc_return(&sh->count) != 1);
4975         return sh;
4976 }
4977
4978 struct raid5_plug_cb {
4979         struct blk_plug_cb      cb;
4980         struct list_head        list;
4981         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4982 };
4983
4984 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4985 {
4986         struct raid5_plug_cb *cb = container_of(
4987                 blk_cb, struct raid5_plug_cb, cb);
4988         struct stripe_head *sh;
4989         struct mddev *mddev = cb->cb.data;
4990         struct r5conf *conf = mddev->private;
4991         int cnt = 0;
4992         int hash;
4993
4994         if (cb->list.next && !list_empty(&cb->list)) {
4995                 spin_lock_irq(&conf->device_lock);
4996                 while (!list_empty(&cb->list)) {
4997                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4998                         list_del_init(&sh->lru);
4999                         /*
5000                          * avoid race release_stripe_plug() sees
5001                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
5002                          * is still in our list
5003                          */
5004                         smp_mb__before_atomic();
5005                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5006                         /*
5007                          * STRIPE_ON_RELEASE_LIST could be set here. In that
5008                          * case, the count is always > 1 here
5009                          */
5010                         hash = sh->hash_lock_index;
5011                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5012                         cnt++;
5013                 }
5014                 spin_unlock_irq(&conf->device_lock);
5015         }
5016         release_inactive_stripe_list(conf, cb->temp_inactive_list,
5017                                      NR_STRIPE_HASH_LOCKS);
5018         if (mddev->queue)
5019                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5020         kfree(cb);
5021 }
5022
5023 static void release_stripe_plug(struct mddev *mddev,
5024                                 struct stripe_head *sh)
5025 {
5026         struct blk_plug_cb *blk_cb = blk_check_plugged(
5027                 raid5_unplug, mddev,
5028                 sizeof(struct raid5_plug_cb));
5029         struct raid5_plug_cb *cb;
5030
5031         if (!blk_cb) {
5032                 raid5_release_stripe(sh);
5033                 return;
5034         }
5035
5036         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5037
5038         if (cb->list.next == NULL) {
5039                 int i;
5040                 INIT_LIST_HEAD(&cb->list);
5041                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5042                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5043         }
5044
5045         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5046                 list_add_tail(&sh->lru, &cb->list);
5047         else
5048                 raid5_release_stripe(sh);
5049 }
5050
5051 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5052 {
5053         struct r5conf *conf = mddev->private;
5054         sector_t logical_sector, last_sector;
5055         struct stripe_head *sh;
5056         int remaining;
5057         int stripe_sectors;
5058
5059         if (mddev->reshape_position != MaxSector)
5060                 /* Skip discard while reshape is happening */
5061                 return;
5062
5063         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5064         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5065
5066         bi->bi_next = NULL;
5067         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5068
5069         stripe_sectors = conf->chunk_sectors *
5070                 (conf->raid_disks - conf->max_degraded);
5071         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5072                                                stripe_sectors);
5073         sector_div(last_sector, stripe_sectors);
5074
5075         logical_sector *= conf->chunk_sectors;
5076         last_sector *= conf->chunk_sectors;
5077
5078         for (; logical_sector < last_sector;
5079              logical_sector += STRIPE_SECTORS) {
5080                 DEFINE_WAIT(w);
5081                 int d;
5082         again:
5083                 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5084                 prepare_to_wait(&conf->wait_for_overlap, &w,
5085                                 TASK_UNINTERRUPTIBLE);
5086                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5087                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5088                         raid5_release_stripe(sh);
5089                         schedule();
5090                         goto again;
5091                 }
5092                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5093                 spin_lock_irq(&sh->stripe_lock);
5094                 for (d = 0; d < conf->raid_disks; d++) {
5095                         if (d == sh->pd_idx || d == sh->qd_idx)
5096                                 continue;
5097                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5098                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5099                                 spin_unlock_irq(&sh->stripe_lock);
5100                                 raid5_release_stripe(sh);
5101                                 schedule();
5102                                 goto again;
5103                         }
5104                 }
5105                 set_bit(STRIPE_DISCARD, &sh->state);
5106                 finish_wait(&conf->wait_for_overlap, &w);
5107                 sh->overwrite_disks = 0;
5108                 for (d = 0; d < conf->raid_disks; d++) {
5109                         if (d == sh->pd_idx || d == sh->qd_idx)
5110                                 continue;
5111                         sh->dev[d].towrite = bi;
5112                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5113                         raid5_inc_bi_active_stripes(bi);
5114                         sh->overwrite_disks++;
5115                 }
5116                 spin_unlock_irq(&sh->stripe_lock);
5117                 if (conf->mddev->bitmap) {
5118                         for (d = 0;
5119                              d < conf->raid_disks - conf->max_degraded;
5120                              d++)
5121                                 bitmap_startwrite(mddev->bitmap,
5122                                                   sh->sector,
5123                                                   STRIPE_SECTORS,
5124                                                   0);
5125                         sh->bm_seq = conf->seq_flush + 1;
5126                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5127                 }
5128
5129                 set_bit(STRIPE_HANDLE, &sh->state);
5130                 clear_bit(STRIPE_DELAYED, &sh->state);
5131                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5132                         atomic_inc(&conf->preread_active_stripes);
5133                 release_stripe_plug(mddev, sh);
5134         }
5135
5136         remaining = raid5_dec_bi_active_stripes(bi);
5137         if (remaining == 0) {
5138                 md_write_end(mddev);
5139                 bio_endio(bi);
5140         }
5141 }
5142
5143 static void make_request(struct mddev *mddev, struct bio * bi)
5144 {
5145         struct r5conf *conf = mddev->private;
5146         int dd_idx;
5147         sector_t new_sector;
5148         sector_t logical_sector, last_sector;
5149         struct stripe_head *sh;
5150         const int rw = bio_data_dir(bi);
5151         int remaining;
5152         DEFINE_WAIT(w);
5153         bool do_prepare;
5154
5155         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5156                 int ret = r5l_handle_flush_request(conf->log, bi);
5157
5158                 if (ret == 0)
5159                         return;
5160                 if (ret == -ENODEV) {
5161                         md_flush_request(mddev, bi);
5162                         return;
5163                 }
5164                 /* ret == -EAGAIN, fallback */
5165         }
5166
5167         md_write_start(mddev, bi);
5168
5169         /*
5170          * If array is degraded, better not do chunk aligned read because
5171          * later we might have to read it again in order to reconstruct
5172          * data on failed drives.
5173          */
5174         if (rw == READ && mddev->degraded == 0 &&
5175             mddev->reshape_position == MaxSector) {
5176                 bi = chunk_aligned_read(mddev, bi);
5177                 if (!bi)
5178                         return;
5179         }
5180
5181         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5182                 make_discard_request(mddev, bi);
5183                 return;
5184         }
5185
5186         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5187         last_sector = bio_end_sector(bi);
5188         bi->bi_next = NULL;
5189         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5190
5191         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5192         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5193                 int previous;
5194                 int seq;
5195
5196                 do_prepare = false;
5197         retry:
5198                 seq = read_seqcount_begin(&conf->gen_lock);
5199                 previous = 0;
5200                 if (do_prepare)
5201                         prepare_to_wait(&conf->wait_for_overlap, &w,
5202                                 TASK_UNINTERRUPTIBLE);
5203                 if (unlikely(conf->reshape_progress != MaxSector)) {
5204                         /* spinlock is needed as reshape_progress may be
5205                          * 64bit on a 32bit platform, and so it might be
5206                          * possible to see a half-updated value
5207                          * Of course reshape_progress could change after
5208                          * the lock is dropped, so once we get a reference
5209                          * to the stripe that we think it is, we will have
5210                          * to check again.
5211                          */
5212                         spin_lock_irq(&conf->device_lock);
5213                         if (mddev->reshape_backwards
5214                             ? logical_sector < conf->reshape_progress
5215                             : logical_sector >= conf->reshape_progress) {
5216                                 previous = 1;
5217                         } else {
5218                                 if (mddev->reshape_backwards
5219                                     ? logical_sector < conf->reshape_safe
5220                                     : logical_sector >= conf->reshape_safe) {
5221                                         spin_unlock_irq(&conf->device_lock);
5222                                         schedule();
5223                                         do_prepare = true;
5224                                         goto retry;
5225                                 }
5226                         }
5227                         spin_unlock_irq(&conf->device_lock);
5228                 }
5229
5230                 new_sector = raid5_compute_sector(conf, logical_sector,
5231                                                   previous,
5232                                                   &dd_idx, NULL);
5233                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5234                         (unsigned long long)new_sector,
5235                         (unsigned long long)logical_sector);
5236
5237                 sh = raid5_get_active_stripe(conf, new_sector, previous,
5238                                        (bi->bi_rw&RWA_MASK), 0);
5239                 if (sh) {
5240                         if (unlikely(previous)) {
5241                                 /* expansion might have moved on while waiting for a
5242                                  * stripe, so we must do the range check again.
5243                                  * Expansion could still move past after this
5244                                  * test, but as we are holding a reference to
5245                                  * 'sh', we know that if that happens,
5246                                  *  STRIPE_EXPANDING will get set and the expansion
5247                                  * won't proceed until we finish with the stripe.
5248                                  */
5249                                 int must_retry = 0;
5250                                 spin_lock_irq(&conf->device_lock);
5251                                 if (mddev->reshape_backwards
5252                                     ? logical_sector >= conf->reshape_progress
5253                                     : logical_sector < conf->reshape_progress)
5254                                         /* mismatch, need to try again */
5255                                         must_retry = 1;
5256                                 spin_unlock_irq(&conf->device_lock);
5257                                 if (must_retry) {
5258                                         raid5_release_stripe(sh);
5259                                         schedule();
5260                                         do_prepare = true;
5261                                         goto retry;
5262                                 }
5263                         }
5264                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5265                                 /* Might have got the wrong stripe_head
5266                                  * by accident
5267                                  */
5268                                 raid5_release_stripe(sh);
5269                                 goto retry;
5270                         }
5271
5272                         if (rw == WRITE &&
5273                             logical_sector >= mddev->suspend_lo &&
5274                             logical_sector < mddev->suspend_hi) {
5275                                 raid5_release_stripe(sh);
5276                                 /* As the suspend_* range is controlled by
5277                                  * userspace, we want an interruptible
5278                                  * wait.
5279                                  */
5280                                 flush_signals(current);
5281                                 prepare_to_wait(&conf->wait_for_overlap,
5282                                                 &w, TASK_INTERRUPTIBLE);
5283                                 if (logical_sector >= mddev->suspend_lo &&
5284                                     logical_sector < mddev->suspend_hi) {
5285                                         schedule();
5286                                         do_prepare = true;
5287                                 }
5288                                 goto retry;
5289                         }
5290
5291                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5292                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5293                                 /* Stripe is busy expanding or
5294                                  * add failed due to overlap.  Flush everything
5295                                  * and wait a while
5296                                  */
5297                                 md_wakeup_thread(mddev->thread);
5298                                 raid5_release_stripe(sh);
5299                                 schedule();
5300                                 do_prepare = true;
5301                                 goto retry;
5302                         }
5303                         set_bit(STRIPE_HANDLE, &sh->state);
5304                         clear_bit(STRIPE_DELAYED, &sh->state);
5305                         if ((!sh->batch_head || sh == sh->batch_head) &&
5306                             (bi->bi_rw & REQ_SYNC) &&
5307                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5308                                 atomic_inc(&conf->preread_active_stripes);
5309                         release_stripe_plug(mddev, sh);
5310                 } else {
5311                         /* cannot get stripe for read-ahead, just give-up */
5312                         bi->bi_error = -EIO;
5313                         break;
5314                 }
5315         }
5316         finish_wait(&conf->wait_for_overlap, &w);
5317
5318         remaining = raid5_dec_bi_active_stripes(bi);
5319         if (remaining == 0) {
5320
5321                 if ( rw == WRITE )
5322                         md_write_end(mddev);
5323
5324                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5325                                          bi, 0);
5326                 bio_endio(bi);
5327         }
5328 }
5329
5330 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5331
5332 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5333 {
5334         /* reshaping is quite different to recovery/resync so it is
5335          * handled quite separately ... here.
5336          *
5337          * On each call to sync_request, we gather one chunk worth of
5338          * destination stripes and flag them as expanding.
5339          * Then we find all the source stripes and request reads.
5340          * As the reads complete, handle_stripe will copy the data
5341          * into the destination stripe and release that stripe.
5342          */
5343         struct r5conf *conf = mddev->private;
5344         struct stripe_head *sh;
5345         sector_t first_sector, last_sector;
5346         int raid_disks = conf->previous_raid_disks;
5347         int data_disks = raid_disks - conf->max_degraded;
5348         int new_data_disks = conf->raid_disks - conf->max_degraded;
5349         int i;
5350         int dd_idx;
5351         sector_t writepos, readpos, safepos;
5352         sector_t stripe_addr;
5353         int reshape_sectors;
5354         struct list_head stripes;
5355         sector_t retn;
5356
5357         if (sector_nr == 0) {
5358                 /* If restarting in the middle, skip the initial sectors */
5359                 if (mddev->reshape_backwards &&
5360                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5361                         sector_nr = raid5_size(mddev, 0, 0)
5362                                 - conf->reshape_progress;
5363                 } else if (mddev->reshape_backwards &&
5364                            conf->reshape_progress == MaxSector) {
5365                         /* shouldn't happen, but just in case, finish up.*/
5366                         sector_nr = MaxSector;
5367                 } else if (!mddev->reshape_backwards &&
5368                            conf->reshape_progress > 0)
5369                         sector_nr = conf->reshape_progress;
5370                 sector_div(sector_nr, new_data_disks);
5371                 if (sector_nr) {
5372                         mddev->curr_resync_completed = sector_nr;
5373                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5374                         *skipped = 1;
5375                         retn = sector_nr;
5376                         goto finish;
5377                 }
5378         }
5379
5380         /* We need to process a full chunk at a time.
5381          * If old and new chunk sizes differ, we need to process the
5382          * largest of these
5383          */
5384
5385         reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5386
5387         /* We update the metadata at least every 10 seconds, or when
5388          * the data about to be copied would over-write the source of
5389          * the data at the front of the range.  i.e. one new_stripe
5390          * along from reshape_progress new_maps to after where
5391          * reshape_safe old_maps to
5392          */
5393         writepos = conf->reshape_progress;
5394         sector_div(writepos, new_data_disks);
5395         readpos = conf->reshape_progress;
5396         sector_div(readpos, data_disks);
5397         safepos = conf->reshape_safe;
5398         sector_div(safepos, data_disks);
5399         if (mddev->reshape_backwards) {
5400                 BUG_ON(writepos < reshape_sectors);
5401                 writepos -= reshape_sectors;
5402                 readpos += reshape_sectors;
5403                 safepos += reshape_sectors;
5404         } else {
5405                 writepos += reshape_sectors;
5406                 /* readpos and safepos are worst-case calculations.
5407                  * A negative number is overly pessimistic, and causes
5408                  * obvious problems for unsigned storage.  So clip to 0.
5409                  */
5410                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5411                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5412         }
5413
5414         /* Having calculated the 'writepos' possibly use it
5415          * to set 'stripe_addr' which is where we will write to.
5416          */
5417         if (mddev->reshape_backwards) {
5418                 BUG_ON(conf->reshape_progress == 0);
5419                 stripe_addr = writepos;
5420                 BUG_ON((mddev->dev_sectors &
5421                         ~((sector_t)reshape_sectors - 1))
5422                        - reshape_sectors - stripe_addr
5423                        != sector_nr);
5424         } else {
5425                 BUG_ON(writepos != sector_nr + reshape_sectors);
5426                 stripe_addr = sector_nr;
5427         }
5428
5429         /* 'writepos' is the most advanced device address we might write.
5430          * 'readpos' is the least advanced device address we might read.
5431          * 'safepos' is the least address recorded in the metadata as having
5432          *     been reshaped.
5433          * If there is a min_offset_diff, these are adjusted either by
5434          * increasing the safepos/readpos if diff is negative, or
5435          * increasing writepos if diff is positive.
5436          * If 'readpos' is then behind 'writepos', there is no way that we can
5437          * ensure safety in the face of a crash - that must be done by userspace
5438          * making a backup of the data.  So in that case there is no particular
5439          * rush to update metadata.
5440          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5441          * update the metadata to advance 'safepos' to match 'readpos' so that
5442          * we can be safe in the event of a crash.
5443          * So we insist on updating metadata if safepos is behind writepos and
5444          * readpos is beyond writepos.
5445          * In any case, update the metadata every 10 seconds.
5446          * Maybe that number should be configurable, but I'm not sure it is
5447          * worth it.... maybe it could be a multiple of safemode_delay???
5448          */
5449         if (conf->min_offset_diff < 0) {
5450                 safepos += -conf->min_offset_diff;
5451                 readpos += -conf->min_offset_diff;
5452         } else
5453                 writepos += conf->min_offset_diff;
5454
5455         if ((mddev->reshape_backwards
5456              ? (safepos > writepos && readpos < writepos)
5457              : (safepos < writepos && readpos > writepos)) ||
5458             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5459                 /* Cannot proceed until we've updated the superblock... */
5460                 wait_event(conf->wait_for_overlap,
5461                            atomic_read(&conf->reshape_stripes)==0
5462                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5463                 if (atomic_read(&conf->reshape_stripes) != 0)
5464                         return 0;
5465                 mddev->reshape_position = conf->reshape_progress;
5466                 mddev->curr_resync_completed = sector_nr;
5467                 conf->reshape_checkpoint = jiffies;
5468                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5469                 md_wakeup_thread(mddev->thread);
5470                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5471                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5472                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5473                         return 0;
5474                 spin_lock_irq(&conf->device_lock);
5475                 conf->reshape_safe = mddev->reshape_position;
5476                 spin_unlock_irq(&conf->device_lock);
5477                 wake_up(&conf->wait_for_overlap);
5478                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5479         }
5480
5481         INIT_LIST_HEAD(&stripes);
5482         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5483                 int j;
5484                 int skipped_disk = 0;
5485                 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5486                 set_bit(STRIPE_EXPANDING, &sh->state);
5487                 atomic_inc(&conf->reshape_stripes);
5488                 /* If any of this stripe is beyond the end of the old
5489                  * array, then we need to zero those blocks
5490                  */
5491                 for (j=sh->disks; j--;) {
5492                         sector_t s;
5493                         if (j == sh->pd_idx)
5494                                 continue;
5495                         if (conf->level == 6 &&
5496                             j == sh->qd_idx)
5497                                 continue;
5498                         s = raid5_compute_blocknr(sh, j, 0);
5499                         if (s < raid5_size(mddev, 0, 0)) {
5500                                 skipped_disk = 1;
5501                                 continue;
5502                         }
5503                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5504                         set_bit(R5_Expanded, &sh->dev[j].flags);
5505                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5506                 }
5507                 if (!skipped_disk) {
5508                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5509                         set_bit(STRIPE_HANDLE, &sh->state);
5510                 }
5511                 list_add(&sh->lru, &stripes);
5512         }
5513         spin_lock_irq(&conf->device_lock);
5514         if (mddev->reshape_backwards)
5515                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5516         else
5517                 conf->reshape_progress += reshape_sectors * new_data_disks;
5518         spin_unlock_irq(&conf->device_lock);
5519         /* Ok, those stripe are ready. We can start scheduling
5520          * reads on the source stripes.
5521          * The source stripes are determined by mapping the first and last
5522          * block on the destination stripes.
5523          */
5524         first_sector =
5525                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5526                                      1, &dd_idx, NULL);
5527         last_sector =
5528                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5529                                             * new_data_disks - 1),
5530                                      1, &dd_idx, NULL);
5531         if (last_sector >= mddev->dev_sectors)
5532                 last_sector = mddev->dev_sectors - 1;
5533         while (first_sector <= last_sector) {
5534                 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5535                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5536                 set_bit(STRIPE_HANDLE, &sh->state);
5537                 raid5_release_stripe(sh);
5538                 first_sector += STRIPE_SECTORS;
5539         }
5540         /* Now that the sources are clearly marked, we can release
5541          * the destination stripes
5542          */
5543         while (!list_empty(&stripes)) {
5544                 sh = list_entry(stripes.next, struct stripe_head, lru);
5545                 list_del_init(&sh->lru);
5546                 raid5_release_stripe(sh);
5547         }
5548         /* If this takes us to the resync_max point where we have to pause,
5549          * then we need to write out the superblock.
5550          */
5551         sector_nr += reshape_sectors;
5552         retn = reshape_sectors;
5553 finish:
5554         if (mddev->curr_resync_completed > mddev->resync_max ||
5555             (sector_nr - mddev->curr_resync_completed) * 2
5556             >= mddev->resync_max - mddev->curr_resync_completed) {
5557                 /* Cannot proceed until we've updated the superblock... */
5558                 wait_event(conf->wait_for_overlap,
5559                            atomic_read(&conf->reshape_stripes) == 0
5560                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5561                 if (atomic_read(&conf->reshape_stripes) != 0)
5562                         goto ret;
5563                 mddev->reshape_position = conf->reshape_progress;
5564                 mddev->curr_resync_completed = sector_nr;
5565                 conf->reshape_checkpoint = jiffies;
5566                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5567                 md_wakeup_thread(mddev->thread);
5568                 wait_event(mddev->sb_wait,
5569                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5570                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5571                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5572                         goto ret;
5573                 spin_lock_irq(&conf->device_lock);
5574                 conf->reshape_safe = mddev->reshape_position;
5575                 spin_unlock_irq(&conf->device_lock);
5576                 wake_up(&conf->wait_for_overlap);
5577                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5578         }
5579 ret:
5580         return retn;
5581 }
5582
5583 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5584 {
5585         struct r5conf *conf = mddev->private;
5586         struct stripe_head *sh;
5587         sector_t max_sector = mddev->dev_sectors;
5588         sector_t sync_blocks;
5589         int still_degraded = 0;
5590         int i;
5591
5592         if (sector_nr >= max_sector) {
5593                 /* just being told to finish up .. nothing much to do */
5594
5595                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5596                         end_reshape(conf);
5597                         return 0;
5598                 }
5599
5600                 if (mddev->curr_resync < max_sector) /* aborted */
5601                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5602                                         &sync_blocks, 1);
5603                 else /* completed sync */
5604                         conf->fullsync = 0;
5605                 bitmap_close_sync(mddev->bitmap);
5606
5607                 return 0;
5608         }
5609
5610         /* Allow raid5_quiesce to complete */
5611         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5612
5613         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5614                 return reshape_request(mddev, sector_nr, skipped);
5615
5616         /* No need to check resync_max as we never do more than one
5617          * stripe, and as resync_max will always be on a chunk boundary,
5618          * if the check in md_do_sync didn't fire, there is no chance
5619          * of overstepping resync_max here
5620          */
5621
5622         /* if there is too many failed drives and we are trying
5623          * to resync, then assert that we are finished, because there is
5624          * nothing we can do.
5625          */
5626         if (mddev->degraded >= conf->max_degraded &&
5627             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5628                 sector_t rv = mddev->dev_sectors - sector_nr;
5629                 *skipped = 1;
5630                 return rv;
5631         }
5632         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5633             !conf->fullsync &&
5634             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5635             sync_blocks >= STRIPE_SECTORS) {
5636                 /* we can skip this block, and probably more */
5637                 sync_blocks /= STRIPE_SECTORS;
5638                 *skipped = 1;
5639                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5640         }
5641
5642         bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5643
5644         sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5645         if (sh == NULL) {
5646                 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5647                 /* make sure we don't swamp the stripe cache if someone else
5648                  * is trying to get access
5649                  */
5650                 schedule_timeout_uninterruptible(1);
5651         }
5652         /* Need to check if array will still be degraded after recovery/resync
5653          * Note in case of > 1 drive failures it's possible we're rebuilding
5654          * one drive while leaving another faulty drive in array.
5655          */
5656         rcu_read_lock();
5657         for (i = 0; i < conf->raid_disks; i++) {
5658                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5659
5660                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5661                         still_degraded = 1;
5662         }
5663         rcu_read_unlock();
5664
5665         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5666
5667         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5668         set_bit(STRIPE_HANDLE, &sh->state);
5669
5670         raid5_release_stripe(sh);
5671
5672         return STRIPE_SECTORS;
5673 }
5674
5675 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5676 {
5677         /* We may not be able to submit a whole bio at once as there
5678          * may not be enough stripe_heads available.
5679          * We cannot pre-allocate enough stripe_heads as we may need
5680          * more than exist in the cache (if we allow ever large chunks).
5681          * So we do one stripe head at a time and record in
5682          * ->bi_hw_segments how many have been done.
5683          *
5684          * We *know* that this entire raid_bio is in one chunk, so
5685          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5686          */
5687         struct stripe_head *sh;
5688         int dd_idx;
5689         sector_t sector, logical_sector, last_sector;
5690         int scnt = 0;
5691         int remaining;
5692         int handled = 0;
5693
5694         logical_sector = raid_bio->bi_iter.bi_sector &
5695                 ~((sector_t)STRIPE_SECTORS-1);
5696         sector = raid5_compute_sector(conf, logical_sector,
5697                                       0, &dd_idx, NULL);
5698         last_sector = bio_end_sector(raid_bio);
5699
5700         for (; logical_sector < last_sector;
5701              logical_sector += STRIPE_SECTORS,
5702                      sector += STRIPE_SECTORS,
5703                      scnt++) {
5704
5705                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5706                         /* already done this stripe */
5707                         continue;
5708
5709                 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5710
5711                 if (!sh) {
5712                         /* failed to get a stripe - must wait */
5713                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5714                         conf->retry_read_aligned = raid_bio;
5715                         return handled;
5716                 }
5717
5718                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5719                         raid5_release_stripe(sh);
5720                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5721                         conf->retry_read_aligned = raid_bio;
5722                         return handled;
5723                 }
5724
5725                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5726                 handle_stripe(sh);
5727                 raid5_release_stripe(sh);
5728                 handled++;
5729         }
5730         remaining = raid5_dec_bi_active_stripes(raid_bio);
5731         if (remaining == 0) {
5732                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5733                                          raid_bio, 0);
5734                 bio_endio(raid_bio);
5735         }
5736         if (atomic_dec_and_test(&conf->active_aligned_reads))
5737                 wake_up(&conf->wait_for_quiescent);
5738         return handled;
5739 }
5740
5741 static int handle_active_stripes(struct r5conf *conf, int group,
5742                                  struct r5worker *worker,
5743                                  struct list_head *temp_inactive_list)
5744 {
5745         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5746         int i, batch_size = 0, hash;
5747         bool release_inactive = false;
5748
5749         while (batch_size < MAX_STRIPE_BATCH &&
5750                         (sh = __get_priority_stripe(conf, group)) != NULL)
5751                 batch[batch_size++] = sh;
5752
5753         if (batch_size == 0) {
5754                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5755                         if (!list_empty(temp_inactive_list + i))
5756                                 break;
5757                 if (i == NR_STRIPE_HASH_LOCKS) {
5758                         spin_unlock_irq(&conf->device_lock);
5759                         r5l_flush_stripe_to_raid(conf->log);
5760                         spin_lock_irq(&conf->device_lock);
5761                         return batch_size;
5762                 }
5763                 release_inactive = true;
5764         }
5765         spin_unlock_irq(&conf->device_lock);
5766
5767         release_inactive_stripe_list(conf, temp_inactive_list,
5768                                      NR_STRIPE_HASH_LOCKS);
5769
5770         r5l_flush_stripe_to_raid(conf->log);
5771         if (release_inactive) {
5772                 spin_lock_irq(&conf->device_lock);
5773                 return 0;
5774         }
5775
5776         for (i = 0; i < batch_size; i++)
5777                 handle_stripe(batch[i]);
5778         r5l_write_stripe_run(conf->log);
5779
5780         cond_resched();
5781
5782         spin_lock_irq(&conf->device_lock);
5783         for (i = 0; i < batch_size; i++) {
5784                 hash = batch[i]->hash_lock_index;
5785                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5786         }
5787         return batch_size;
5788 }
5789
5790 static void raid5_do_work(struct work_struct *work)
5791 {
5792         struct r5worker *worker = container_of(work, struct r5worker, work);
5793         struct r5worker_group *group = worker->group;
5794         struct r5conf *conf = group->conf;
5795         int group_id = group - conf->worker_groups;
5796         int handled;
5797         struct blk_plug plug;
5798
5799         pr_debug("+++ raid5worker active\n");
5800
5801         blk_start_plug(&plug);
5802         handled = 0;
5803         spin_lock_irq(&conf->device_lock);
5804         while (1) {
5805                 int batch_size, released;
5806
5807                 released = release_stripe_list(conf, worker->temp_inactive_list);
5808
5809                 batch_size = handle_active_stripes(conf, group_id, worker,
5810                                                    worker->temp_inactive_list);
5811                 worker->working = false;
5812                 if (!batch_size && !released)
5813                         break;
5814                 handled += batch_size;
5815         }
5816         pr_debug("%d stripes handled\n", handled);
5817
5818         spin_unlock_irq(&conf->device_lock);
5819         blk_finish_plug(&plug);
5820
5821         pr_debug("--- raid5worker inactive\n");
5822 }
5823
5824 /*
5825  * This is our raid5 kernel thread.
5826  *
5827  * We scan the hash table for stripes which can be handled now.
5828  * During the scan, completed stripes are saved for us by the interrupt
5829  * handler, so that they will not have to wait for our next wakeup.
5830  */
5831 static void raid5d(struct md_thread *thread)
5832 {
5833         struct mddev *mddev = thread->mddev;
5834         struct r5conf *conf = mddev->private;
5835         int handled;
5836         struct blk_plug plug;
5837
5838         pr_debug("+++ raid5d active\n");
5839
5840         md_check_recovery(mddev);
5841
5842         if (!bio_list_empty(&conf->return_bi) &&
5843             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5844                 struct bio_list tmp = BIO_EMPTY_LIST;
5845                 spin_lock_irq(&conf->device_lock);
5846                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5847                         bio_list_merge(&tmp, &conf->return_bi);
5848                         bio_list_init(&conf->return_bi);
5849                 }
5850                 spin_unlock_irq(&conf->device_lock);
5851                 return_io(&tmp);
5852         }
5853
5854         blk_start_plug(&plug);
5855         handled = 0;
5856         spin_lock_irq(&conf->device_lock);
5857         while (1) {
5858                 struct bio *bio;
5859                 int batch_size, released;
5860
5861                 released = release_stripe_list(conf, conf->temp_inactive_list);
5862                 if (released)
5863                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
5864
5865                 if (
5866                     !list_empty(&conf->bitmap_list)) {
5867                         /* Now is a good time to flush some bitmap updates */
5868                         conf->seq_flush++;
5869                         spin_unlock_irq(&conf->device_lock);
5870                         bitmap_unplug(mddev->bitmap);
5871                         spin_lock_irq(&conf->device_lock);
5872                         conf->seq_write = conf->seq_flush;
5873                         activate_bit_delay(conf, conf->temp_inactive_list);
5874                 }
5875                 raid5_activate_delayed(conf);
5876
5877                 while ((bio = remove_bio_from_retry(conf))) {
5878                         int ok;
5879                         spin_unlock_irq(&conf->device_lock);
5880                         ok = retry_aligned_read(conf, bio);
5881                         spin_lock_irq(&conf->device_lock);
5882                         if (!ok)
5883                                 break;
5884                         handled++;
5885                 }
5886
5887                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5888                                                    conf->temp_inactive_list);
5889                 if (!batch_size && !released)
5890                         break;
5891                 handled += batch_size;
5892
5893                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5894                         spin_unlock_irq(&conf->device_lock);
5895                         md_check_recovery(mddev);
5896                         spin_lock_irq(&conf->device_lock);
5897                 }
5898         }
5899         pr_debug("%d stripes handled\n", handled);
5900
5901         spin_unlock_irq(&conf->device_lock);
5902         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5903             mutex_trylock(&conf->cache_size_mutex)) {
5904                 grow_one_stripe(conf, __GFP_NOWARN);
5905                 /* Set flag even if allocation failed.  This helps
5906                  * slow down allocation requests when mem is short
5907                  */
5908                 set_bit(R5_DID_ALLOC, &conf->cache_state);
5909                 mutex_unlock(&conf->cache_size_mutex);
5910         }
5911
5912         r5l_flush_stripe_to_raid(conf->log);
5913
5914         async_tx_issue_pending_all();
5915         blk_finish_plug(&plug);
5916
5917         pr_debug("--- raid5d inactive\n");
5918 }
5919
5920 static ssize_t
5921 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5922 {
5923         struct r5conf *conf;
5924         int ret = 0;
5925         spin_lock(&mddev->lock);
5926         conf = mddev->private;
5927         if (conf)
5928                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5929         spin_unlock(&mddev->lock);
5930         return ret;
5931 }
5932
5933 int
5934 raid5_set_cache_size(struct mddev *mddev, int size)
5935 {
5936         struct r5conf *conf = mddev->private;
5937         int err;
5938
5939         if (size <= 16 || size > 32768)
5940                 return -EINVAL;
5941
5942         conf->min_nr_stripes = size;
5943         mutex_lock(&conf->cache_size_mutex);
5944         while (size < conf->max_nr_stripes &&
5945                drop_one_stripe(conf))
5946                 ;
5947         mutex_unlock(&conf->cache_size_mutex);
5948
5949
5950         err = md_allow_write(mddev);
5951         if (err)
5952                 return err;
5953
5954         mutex_lock(&conf->cache_size_mutex);
5955         while (size > conf->max_nr_stripes)
5956                 if (!grow_one_stripe(conf, GFP_KERNEL))
5957                         break;
5958         mutex_unlock(&conf->cache_size_mutex);
5959
5960         return 0;
5961 }
5962 EXPORT_SYMBOL(raid5_set_cache_size);
5963
5964 static ssize_t
5965 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5966 {
5967         struct r5conf *conf;
5968         unsigned long new;
5969         int err;
5970
5971         if (len >= PAGE_SIZE)
5972                 return -EINVAL;
5973         if (kstrtoul(page, 10, &new))
5974                 return -EINVAL;
5975         err = mddev_lock(mddev);
5976         if (err)
5977                 return err;
5978         conf = mddev->private;
5979         if (!conf)
5980                 err = -ENODEV;
5981         else
5982                 err = raid5_set_cache_size(mddev, new);
5983         mddev_unlock(mddev);
5984
5985         return err ?: len;
5986 }
5987
5988 static struct md_sysfs_entry
5989 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5990                                 raid5_show_stripe_cache_size,
5991                                 raid5_store_stripe_cache_size);
5992
5993 static ssize_t
5994 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5995 {
5996         struct r5conf *conf = mddev->private;
5997         if (conf)
5998                 return sprintf(page, "%d\n", conf->rmw_level);
5999         else
6000                 return 0;
6001 }
6002
6003 static ssize_t
6004 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6005 {
6006         struct r5conf *conf = mddev->private;
6007         unsigned long new;
6008
6009         if (!conf)
6010                 return -ENODEV;
6011
6012         if (len >= PAGE_SIZE)
6013                 return -EINVAL;
6014
6015         if (kstrtoul(page, 10, &new))
6016                 return -EINVAL;
6017
6018         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6019                 return -EINVAL;
6020
6021         if (new != PARITY_DISABLE_RMW &&
6022             new != PARITY_ENABLE_RMW &&
6023             new != PARITY_PREFER_RMW)
6024                 return -EINVAL;
6025
6026         conf->rmw_level = new;
6027         return len;
6028 }
6029
6030 static struct md_sysfs_entry
6031 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6032                          raid5_show_rmw_level,
6033                          raid5_store_rmw_level);
6034
6035
6036 static ssize_t
6037 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6038 {
6039         struct r5conf *conf;
6040         int ret = 0;
6041         spin_lock(&mddev->lock);
6042         conf = mddev->private;
6043         if (conf)
6044                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6045         spin_unlock(&mddev->lock);
6046         return ret;
6047 }
6048
6049 static ssize_t
6050 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6051 {
6052         struct r5conf *conf;
6053         unsigned long new;
6054         int err;
6055
6056         if (len >= PAGE_SIZE)
6057                 return -EINVAL;
6058         if (kstrtoul(page, 10, &new))
6059                 return -EINVAL;
6060
6061         err = mddev_lock(mddev);
6062         if (err)
6063                 return err;
6064         conf = mddev->private;
6065         if (!conf)
6066                 err = -ENODEV;
6067         else if (new > conf->min_nr_stripes)
6068                 err = -EINVAL;
6069         else
6070                 conf->bypass_threshold = new;
6071         mddev_unlock(mddev);
6072         return err ?: len;
6073 }
6074
6075 static struct md_sysfs_entry
6076 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6077                                         S_IRUGO | S_IWUSR,
6078                                         raid5_show_preread_threshold,
6079                                         raid5_store_preread_threshold);
6080
6081 static ssize_t
6082 raid5_show_skip_copy(struct mddev *mddev, char *page)
6083 {
6084         struct r5conf *conf;
6085         int ret = 0;
6086         spin_lock(&mddev->lock);
6087         conf = mddev->private;
6088         if (conf)
6089                 ret = sprintf(page, "%d\n", conf->skip_copy);
6090         spin_unlock(&mddev->lock);
6091         return ret;
6092 }
6093
6094 static ssize_t
6095 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6096 {
6097         struct r5conf *conf;
6098         unsigned long new;
6099         int err;
6100
6101         if (len >= PAGE_SIZE)
6102                 return -EINVAL;
6103         if (kstrtoul(page, 10, &new))
6104                 return -EINVAL;
6105         new = !!new;
6106
6107         err = mddev_lock(mddev);
6108         if (err)
6109                 return err;
6110         conf = mddev->private;
6111         if (!conf)
6112                 err = -ENODEV;
6113         else if (new != conf->skip_copy) {
6114                 mddev_suspend(mddev);
6115                 conf->skip_copy = new;
6116                 if (new)
6117                         mddev->queue->backing_dev_info.capabilities |=
6118                                 BDI_CAP_STABLE_WRITES;
6119                 else
6120                         mddev->queue->backing_dev_info.capabilities &=
6121                                 ~BDI_CAP_STABLE_WRITES;
6122                 mddev_resume(mddev);
6123         }
6124         mddev_unlock(mddev);
6125         return err ?: len;
6126 }
6127
6128 static struct md_sysfs_entry
6129 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6130                                         raid5_show_skip_copy,
6131                                         raid5_store_skip_copy);
6132
6133 static ssize_t
6134 stripe_cache_active_show(struct mddev *mddev, char *page)
6135 {
6136         struct r5conf *conf = mddev->private;
6137         if (conf)
6138                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6139         else
6140                 return 0;
6141 }
6142
6143 static struct md_sysfs_entry
6144 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6145
6146 static ssize_t
6147 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6148 {
6149         struct r5conf *conf;
6150         int ret = 0;
6151         spin_lock(&mddev->lock);
6152         conf = mddev->private;
6153         if (conf)
6154                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6155         spin_unlock(&mddev->lock);
6156         return ret;
6157 }
6158
6159 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6160                                int *group_cnt,
6161                                int *worker_cnt_per_group,
6162                                struct r5worker_group **worker_groups);
6163 static ssize_t
6164 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6165 {
6166         struct r5conf *conf;
6167         unsigned long new;
6168         int err;
6169         struct r5worker_group *new_groups, *old_groups;
6170         int group_cnt, worker_cnt_per_group;
6171
6172         if (len >= PAGE_SIZE)
6173                 return -EINVAL;
6174         if (kstrtoul(page, 10, &new))
6175                 return -EINVAL;
6176
6177         err = mddev_lock(mddev);
6178         if (err)
6179                 return err;
6180         conf = mddev->private;
6181         if (!conf)
6182                 err = -ENODEV;
6183         else if (new != conf->worker_cnt_per_group) {
6184                 mddev_suspend(mddev);
6185
6186                 old_groups = conf->worker_groups;
6187                 if (old_groups)
6188                         flush_workqueue(raid5_wq);
6189
6190                 err = alloc_thread_groups(conf, new,
6191                                           &group_cnt, &worker_cnt_per_group,
6192                                           &new_groups);
6193                 if (!err) {
6194                         spin_lock_irq(&conf->device_lock);
6195                         conf->group_cnt = group_cnt;
6196                         conf->worker_cnt_per_group = worker_cnt_per_group;
6197                         conf->worker_groups = new_groups;
6198                         spin_unlock_irq(&conf->device_lock);
6199
6200                         if (old_groups)
6201                                 kfree(old_groups[0].workers);
6202                         kfree(old_groups);
6203                 }
6204                 mddev_resume(mddev);
6205         }
6206         mddev_unlock(mddev);
6207
6208         return err ?: len;
6209 }
6210
6211 static struct md_sysfs_entry
6212 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6213                                 raid5_show_group_thread_cnt,
6214                                 raid5_store_group_thread_cnt);
6215
6216 static struct attribute *raid5_attrs[] =  {
6217         &raid5_stripecache_size.attr,
6218         &raid5_stripecache_active.attr,
6219         &raid5_preread_bypass_threshold.attr,
6220         &raid5_group_thread_cnt.attr,
6221         &raid5_skip_copy.attr,
6222         &raid5_rmw_level.attr,
6223         NULL,
6224 };
6225 static struct attribute_group raid5_attrs_group = {
6226         .name = NULL,
6227         .attrs = raid5_attrs,
6228 };
6229
6230 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6231                                int *group_cnt,
6232                                int *worker_cnt_per_group,
6233                                struct r5worker_group **worker_groups)
6234 {
6235         int i, j, k;
6236         ssize_t size;
6237         struct r5worker *workers;
6238
6239         *worker_cnt_per_group = cnt;
6240         if (cnt == 0) {
6241                 *group_cnt = 0;
6242                 *worker_groups = NULL;
6243                 return 0;
6244         }
6245         *group_cnt = num_possible_nodes();
6246         size = sizeof(struct r5worker) * cnt;
6247         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6248         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6249                                 *group_cnt, GFP_NOIO);
6250         if (!*worker_groups || !workers) {
6251                 kfree(workers);
6252                 kfree(*worker_groups);
6253                 return -ENOMEM;
6254         }
6255
6256         for (i = 0; i < *group_cnt; i++) {
6257                 struct r5worker_group *group;
6258
6259                 group = &(*worker_groups)[i];
6260                 INIT_LIST_HEAD(&group->handle_list);
6261                 group->conf = conf;
6262                 group->workers = workers + i * cnt;
6263
6264                 for (j = 0; j < cnt; j++) {
6265                         struct r5worker *worker = group->workers + j;
6266                         worker->group = group;
6267                         INIT_WORK(&worker->work, raid5_do_work);
6268
6269                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6270                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6271                 }
6272         }
6273
6274         return 0;
6275 }
6276
6277 static void free_thread_groups(struct r5conf *conf)
6278 {
6279         if (conf->worker_groups)
6280                 kfree(conf->worker_groups[0].workers);
6281         kfree(conf->worker_groups);
6282         conf->worker_groups = NULL;
6283 }
6284
6285 static sector_t
6286 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6287 {
6288         struct r5conf *conf = mddev->private;
6289
6290         if (!sectors)
6291                 sectors = mddev->dev_sectors;
6292         if (!raid_disks)
6293                 /* size is defined by the smallest of previous and new size */
6294                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6295
6296         sectors &= ~((sector_t)conf->chunk_sectors - 1);
6297         sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6298         return sectors * (raid_disks - conf->max_degraded);
6299 }
6300
6301 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6302 {
6303         safe_put_page(percpu->spare_page);
6304         if (percpu->scribble)
6305                 flex_array_free(percpu->scribble);
6306         percpu->spare_page = NULL;
6307         percpu->scribble = NULL;
6308 }
6309
6310 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6311 {
6312         if (conf->level == 6 && !percpu->spare_page)
6313                 percpu->spare_page = alloc_page(GFP_KERNEL);
6314         if (!percpu->scribble)
6315                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6316                                                       conf->previous_raid_disks),
6317                                                   max(conf->chunk_sectors,
6318                                                       conf->prev_chunk_sectors)
6319                                                    / STRIPE_SECTORS,
6320                                                   GFP_KERNEL);
6321
6322         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6323                 free_scratch_buffer(conf, percpu);
6324                 return -ENOMEM;
6325         }
6326
6327         return 0;
6328 }
6329
6330 static void raid5_free_percpu(struct r5conf *conf)
6331 {
6332         unsigned long cpu;
6333
6334         if (!conf->percpu)
6335                 return;
6336
6337 #ifdef CONFIG_HOTPLUG_CPU
6338         unregister_cpu_notifier(&conf->cpu_notify);
6339 #endif
6340
6341         get_online_cpus();
6342         for_each_possible_cpu(cpu)
6343                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6344         put_online_cpus();
6345
6346         free_percpu(conf->percpu);
6347 }
6348
6349 static void free_conf(struct r5conf *conf)
6350 {
6351         if (conf->log)
6352                 r5l_exit_log(conf->log);
6353         if (conf->shrinker.seeks)
6354                 unregister_shrinker(&conf->shrinker);
6355
6356         free_thread_groups(conf);
6357         shrink_stripes(conf);
6358         raid5_free_percpu(conf);
6359         kfree(conf->disks);
6360         kfree(conf->stripe_hashtbl);
6361         kfree(conf);
6362 }
6363
6364 #ifdef CONFIG_HOTPLUG_CPU
6365 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6366                               void *hcpu)
6367 {
6368         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6369         long cpu = (long)hcpu;
6370         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6371
6372         switch (action) {
6373         case CPU_UP_PREPARE:
6374         case CPU_UP_PREPARE_FROZEN:
6375                 if (alloc_scratch_buffer(conf, percpu)) {
6376                         pr_err("%s: failed memory allocation for cpu%ld\n",
6377                                __func__, cpu);
6378                         return notifier_from_errno(-ENOMEM);
6379                 }
6380                 break;
6381         case CPU_DEAD:
6382         case CPU_DEAD_FROZEN:
6383                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6384                 break;
6385         default:
6386                 break;
6387         }
6388         return NOTIFY_OK;
6389 }
6390 #endif
6391
6392 static int raid5_alloc_percpu(struct r5conf *conf)
6393 {
6394         unsigned long cpu;
6395         int err = 0;
6396
6397         conf->percpu = alloc_percpu(struct raid5_percpu);
6398         if (!conf->percpu)
6399                 return -ENOMEM;
6400
6401 #ifdef CONFIG_HOTPLUG_CPU
6402         conf->cpu_notify.notifier_call = raid456_cpu_notify;
6403         conf->cpu_notify.priority = 0;
6404         err = register_cpu_notifier(&conf->cpu_notify);
6405         if (err)
6406                 return err;
6407 #endif
6408
6409         get_online_cpus();
6410         for_each_present_cpu(cpu) {
6411                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6412                 if (err) {
6413                         pr_err("%s: failed memory allocation for cpu%ld\n",
6414                                __func__, cpu);
6415                         break;
6416                 }
6417         }
6418         put_online_cpus();
6419
6420         if (!err) {
6421                 conf->scribble_disks = max(conf->raid_disks,
6422                         conf->previous_raid_disks);
6423                 conf->scribble_sectors = max(conf->chunk_sectors,
6424                         conf->prev_chunk_sectors);
6425         }
6426         return err;
6427 }
6428
6429 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6430                                       struct shrink_control *sc)
6431 {
6432         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6433         unsigned long ret = SHRINK_STOP;
6434
6435         if (mutex_trylock(&conf->cache_size_mutex)) {
6436                 ret= 0;
6437                 while (ret < sc->nr_to_scan &&
6438                        conf->max_nr_stripes > conf->min_nr_stripes) {
6439                         if (drop_one_stripe(conf) == 0) {
6440                                 ret = SHRINK_STOP;
6441                                 break;
6442                         }
6443                         ret++;
6444                 }
6445                 mutex_unlock(&conf->cache_size_mutex);
6446         }
6447         return ret;
6448 }
6449
6450 static unsigned long raid5_cache_count(struct shrinker *shrink,
6451                                        struct shrink_control *sc)
6452 {
6453         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6454
6455         if (conf->max_nr_stripes < conf->min_nr_stripes)
6456                 /* unlikely, but not impossible */
6457                 return 0;
6458         return conf->max_nr_stripes - conf->min_nr_stripes;
6459 }
6460
6461 static struct r5conf *setup_conf(struct mddev *mddev)
6462 {
6463         struct r5conf *conf;
6464         int raid_disk, memory, max_disks;
6465         struct md_rdev *rdev;
6466         struct disk_info *disk;
6467         char pers_name[6];
6468         int i;
6469         int group_cnt, worker_cnt_per_group;
6470         struct r5worker_group *new_group;
6471
6472         if (mddev->new_level != 5
6473             && mddev->new_level != 4
6474             && mddev->new_level != 6) {
6475                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6476                        mdname(mddev), mddev->new_level);
6477                 return ERR_PTR(-EIO);
6478         }
6479         if ((mddev->new_level == 5
6480              && !algorithm_valid_raid5(mddev->new_layout)) ||
6481             (mddev->new_level == 6
6482              && !algorithm_valid_raid6(mddev->new_layout))) {
6483                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6484                        mdname(mddev), mddev->new_layout);
6485                 return ERR_PTR(-EIO);
6486         }
6487         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6488                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6489                        mdname(mddev), mddev->raid_disks);
6490                 return ERR_PTR(-EINVAL);
6491         }
6492
6493         if (!mddev->new_chunk_sectors ||
6494             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6495             !is_power_of_2(mddev->new_chunk_sectors)) {
6496                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6497                        mdname(mddev), mddev->new_chunk_sectors << 9);
6498                 return ERR_PTR(-EINVAL);
6499         }
6500
6501         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6502         if (conf == NULL)
6503                 goto abort;
6504         /* Don't enable multi-threading by default*/
6505         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6506                                  &new_group)) {
6507                 conf->group_cnt = group_cnt;
6508                 conf->worker_cnt_per_group = worker_cnt_per_group;
6509                 conf->worker_groups = new_group;
6510         } else
6511                 goto abort;
6512         spin_lock_init(&conf->device_lock);
6513         seqcount_init(&conf->gen_lock);
6514         mutex_init(&conf->cache_size_mutex);
6515         init_waitqueue_head(&conf->wait_for_quiescent);
6516         init_waitqueue_head(&conf->wait_for_stripe);
6517         init_waitqueue_head(&conf->wait_for_overlap);
6518         INIT_LIST_HEAD(&conf->handle_list);
6519         INIT_LIST_HEAD(&conf->hold_list);
6520         INIT_LIST_HEAD(&conf->delayed_list);
6521         INIT_LIST_HEAD(&conf->bitmap_list);
6522         bio_list_init(&conf->return_bi);
6523         init_llist_head(&conf->released_stripes);
6524         atomic_set(&conf->active_stripes, 0);
6525         atomic_set(&conf->preread_active_stripes, 0);
6526         atomic_set(&conf->active_aligned_reads, 0);
6527         conf->bypass_threshold = BYPASS_THRESHOLD;
6528         conf->recovery_disabled = mddev->recovery_disabled - 1;
6529
6530         conf->raid_disks = mddev->raid_disks;
6531         if (mddev->reshape_position == MaxSector)
6532                 conf->previous_raid_disks = mddev->raid_disks;
6533         else
6534                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6535         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6536
6537         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6538                               GFP_KERNEL);
6539         if (!conf->disks)
6540                 goto abort;
6541
6542         conf->mddev = mddev;
6543
6544         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6545                 goto abort;
6546
6547         /* We init hash_locks[0] separately to that it can be used
6548          * as the reference lock in the spin_lock_nest_lock() call
6549          * in lock_all_device_hash_locks_irq in order to convince
6550          * lockdep that we know what we are doing.
6551          */
6552         spin_lock_init(conf->hash_locks);
6553         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6554                 spin_lock_init(conf->hash_locks + i);
6555
6556         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6557                 INIT_LIST_HEAD(conf->inactive_list + i);
6558
6559         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6560                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6561
6562         conf->level = mddev->new_level;
6563         conf->chunk_sectors = mddev->new_chunk_sectors;
6564         if (raid5_alloc_percpu(conf) != 0)
6565                 goto abort;
6566
6567         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6568
6569         rdev_for_each(rdev, mddev) {
6570                 raid_disk = rdev->raid_disk;
6571                 if (raid_disk >= max_disks
6572                     || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6573                         continue;
6574                 disk = conf->disks + raid_disk;
6575
6576                 if (test_bit(Replacement, &rdev->flags)) {
6577                         if (disk->replacement)
6578                                 goto abort;
6579                         disk->replacement = rdev;
6580                 } else {
6581                         if (disk->rdev)
6582                                 goto abort;
6583                         disk->rdev = rdev;
6584                 }
6585
6586                 if (test_bit(In_sync, &rdev->flags)) {
6587                         char b[BDEVNAME_SIZE];
6588                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6589                                " disk %d\n",
6590                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6591                 } else if (rdev->saved_raid_disk != raid_disk)
6592                         /* Cannot rely on bitmap to complete recovery */
6593                         conf->fullsync = 1;
6594         }
6595
6596         conf->level = mddev->new_level;
6597         if (conf->level == 6) {
6598                 conf->max_degraded = 2;
6599                 if (raid6_call.xor_syndrome)
6600                         conf->rmw_level = PARITY_ENABLE_RMW;
6601                 else
6602                         conf->rmw_level = PARITY_DISABLE_RMW;
6603         } else {
6604                 conf->max_degraded = 1;
6605                 conf->rmw_level = PARITY_ENABLE_RMW;
6606         }
6607         conf->algorithm = mddev->new_layout;
6608         conf->reshape_progress = mddev->reshape_position;
6609         if (conf->reshape_progress != MaxSector) {
6610                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6611                 conf->prev_algo = mddev->layout;
6612         } else {
6613                 conf->prev_chunk_sectors = conf->chunk_sectors;
6614                 conf->prev_algo = conf->algorithm;
6615         }
6616
6617         conf->min_nr_stripes = NR_STRIPES;
6618         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6619                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6620         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6621         if (grow_stripes(conf, conf->min_nr_stripes)) {
6622                 printk(KERN_ERR
6623                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6624                        mdname(mddev), memory);
6625                 goto abort;
6626         } else
6627                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6628                        mdname(mddev), memory);
6629         /*
6630          * Losing a stripe head costs more than the time to refill it,
6631          * it reduces the queue depth and so can hurt throughput.
6632          * So set it rather large, scaled by number of devices.
6633          */
6634         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6635         conf->shrinker.scan_objects = raid5_cache_scan;
6636         conf->shrinker.count_objects = raid5_cache_count;
6637         conf->shrinker.batch = 128;
6638         conf->shrinker.flags = 0;
6639         register_shrinker(&conf->shrinker);
6640
6641         sprintf(pers_name, "raid%d", mddev->new_level);
6642         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6643         if (!conf->thread) {
6644                 printk(KERN_ERR
6645                        "md/raid:%s: couldn't allocate thread.\n",
6646                        mdname(mddev));
6647                 goto abort;
6648         }
6649
6650         return conf;
6651
6652  abort:
6653         if (conf) {
6654                 free_conf(conf);
6655                 return ERR_PTR(-EIO);
6656         } else
6657                 return ERR_PTR(-ENOMEM);
6658 }
6659
6660 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6661 {
6662         switch (algo) {
6663         case ALGORITHM_PARITY_0:
6664                 if (raid_disk < max_degraded)
6665                         return 1;
6666                 break;
6667         case ALGORITHM_PARITY_N:
6668                 if (raid_disk >= raid_disks - max_degraded)
6669                         return 1;
6670                 break;
6671         case ALGORITHM_PARITY_0_6:
6672                 if (raid_disk == 0 ||
6673                     raid_disk == raid_disks - 1)
6674                         return 1;
6675                 break;
6676         case ALGORITHM_LEFT_ASYMMETRIC_6:
6677         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6678         case ALGORITHM_LEFT_SYMMETRIC_6:
6679         case ALGORITHM_RIGHT_SYMMETRIC_6:
6680                 if (raid_disk == raid_disks - 1)
6681                         return 1;
6682         }
6683         return 0;
6684 }
6685
6686 static int run(struct mddev *mddev)
6687 {
6688         struct r5conf *conf;
6689         int working_disks = 0;
6690         int dirty_parity_disks = 0;
6691         struct md_rdev *rdev;
6692         struct md_rdev *journal_dev = NULL;
6693         sector_t reshape_offset = 0;
6694         int i;
6695         long long min_offset_diff = 0;
6696         int first = 1;
6697
6698         if (mddev->recovery_cp != MaxSector)
6699                 printk(KERN_NOTICE "md/raid:%s: not clean"
6700                        " -- starting background reconstruction\n",
6701                        mdname(mddev));
6702
6703         rdev_for_each(rdev, mddev) {
6704                 long long diff;
6705
6706                 if (test_bit(Journal, &rdev->flags)) {
6707                         journal_dev = rdev;
6708                         continue;
6709                 }
6710                 if (rdev->raid_disk < 0)
6711                         continue;
6712                 diff = (rdev->new_data_offset - rdev->data_offset);
6713                 if (first) {
6714                         min_offset_diff = diff;
6715                         first = 0;
6716                 } else if (mddev->reshape_backwards &&
6717                          diff < min_offset_diff)
6718                         min_offset_diff = diff;
6719                 else if (!mddev->reshape_backwards &&
6720                          diff > min_offset_diff)
6721                         min_offset_diff = diff;
6722         }
6723
6724         if (mddev->reshape_position != MaxSector) {
6725                 /* Check that we can continue the reshape.
6726                  * Difficulties arise if the stripe we would write to
6727                  * next is at or after the stripe we would read from next.
6728                  * For a reshape that changes the number of devices, this
6729                  * is only possible for a very short time, and mdadm makes
6730                  * sure that time appears to have past before assembling
6731                  * the array.  So we fail if that time hasn't passed.
6732                  * For a reshape that keeps the number of devices the same
6733                  * mdadm must be monitoring the reshape can keeping the
6734                  * critical areas read-only and backed up.  It will start
6735                  * the array in read-only mode, so we check for that.
6736                  */
6737                 sector_t here_new, here_old;
6738                 int old_disks;
6739                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6740                 int chunk_sectors;
6741                 int new_data_disks;
6742
6743                 if (journal_dev) {
6744                         printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6745                                mdname(mddev));
6746                         return -EINVAL;
6747                 }
6748
6749                 if (mddev->new_level != mddev->level) {
6750                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6751                                "required - aborting.\n",
6752                                mdname(mddev));
6753                         return -EINVAL;
6754                 }
6755                 old_disks = mddev->raid_disks - mddev->delta_disks;
6756                 /* reshape_position must be on a new-stripe boundary, and one
6757                  * further up in new geometry must map after here in old
6758                  * geometry.
6759                  * If the chunk sizes are different, then as we perform reshape
6760                  * in units of the largest of the two, reshape_position needs
6761                  * be a multiple of the largest chunk size times new data disks.
6762                  */
6763                 here_new = mddev->reshape_position;
6764                 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6765                 new_data_disks = mddev->raid_disks - max_degraded;
6766                 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6767                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6768                                "on a stripe boundary\n", mdname(mddev));
6769                         return -EINVAL;
6770                 }
6771                 reshape_offset = here_new * chunk_sectors;
6772                 /* here_new is the stripe we will write to */
6773                 here_old = mddev->reshape_position;
6774                 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6775                 /* here_old is the first stripe that we might need to read
6776                  * from */
6777                 if (mddev->delta_disks == 0) {
6778                         /* We cannot be sure it is safe to start an in-place
6779                          * reshape.  It is only safe if user-space is monitoring
6780                          * and taking constant backups.
6781                          * mdadm always starts a situation like this in
6782                          * readonly mode so it can take control before
6783                          * allowing any writes.  So just check for that.
6784                          */
6785                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6786                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6787                                 /* not really in-place - so OK */;
6788                         else if (mddev->ro == 0) {
6789                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6790                                        "must be started in read-only mode "
6791                                        "- aborting\n",
6792                                        mdname(mddev));
6793                                 return -EINVAL;
6794                         }
6795                 } else if (mddev->reshape_backwards
6796                     ? (here_new * chunk_sectors + min_offset_diff <=
6797                        here_old * chunk_sectors)
6798                     : (here_new * chunk_sectors >=
6799                        here_old * chunk_sectors + (-min_offset_diff))) {
6800                         /* Reading from the same stripe as writing to - bad */
6801                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6802                                "auto-recovery - aborting.\n",
6803                                mdname(mddev));
6804                         return -EINVAL;
6805                 }
6806                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6807                        mdname(mddev));
6808                 /* OK, we should be able to continue; */
6809         } else {
6810                 BUG_ON(mddev->level != mddev->new_level);
6811                 BUG_ON(mddev->layout != mddev->new_layout);
6812                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6813                 BUG_ON(mddev->delta_disks != 0);
6814         }
6815
6816         if (mddev->private == NULL)
6817                 conf = setup_conf(mddev);
6818         else
6819                 conf = mddev->private;
6820
6821         if (IS_ERR(conf))
6822                 return PTR_ERR(conf);
6823
6824         if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !journal_dev) {
6825                 printk(KERN_ERR "md/raid:%s: journal disk is missing, force array readonly\n",
6826                        mdname(mddev));
6827                 mddev->ro = 1;
6828                 set_disk_ro(mddev->gendisk, 1);
6829         }
6830
6831         conf->min_offset_diff = min_offset_diff;
6832         mddev->thread = conf->thread;
6833         conf->thread = NULL;
6834         mddev->private = conf;
6835
6836         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6837              i++) {
6838                 rdev = conf->disks[i].rdev;
6839                 if (!rdev && conf->disks[i].replacement) {
6840                         /* The replacement is all we have yet */
6841                         rdev = conf->disks[i].replacement;
6842                         conf->disks[i].replacement = NULL;
6843                         clear_bit(Replacement, &rdev->flags);
6844                         conf->disks[i].rdev = rdev;
6845                 }
6846                 if (!rdev)
6847                         continue;
6848                 if (conf->disks[i].replacement &&
6849                     conf->reshape_progress != MaxSector) {
6850                         /* replacements and reshape simply do not mix. */
6851                         printk(KERN_ERR "md: cannot handle concurrent "
6852                                "replacement and reshape.\n");
6853                         goto abort;
6854                 }
6855                 if (test_bit(In_sync, &rdev->flags)) {
6856                         working_disks++;
6857                         continue;
6858                 }
6859                 /* This disc is not fully in-sync.  However if it
6860                  * just stored parity (beyond the recovery_offset),
6861                  * when we don't need to be concerned about the
6862                  * array being dirty.
6863                  * When reshape goes 'backwards', we never have
6864                  * partially completed devices, so we only need
6865                  * to worry about reshape going forwards.
6866                  */
6867                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6868                 if (mddev->major_version == 0 &&
6869                     mddev->minor_version > 90)
6870                         rdev->recovery_offset = reshape_offset;
6871
6872                 if (rdev->recovery_offset < reshape_offset) {
6873                         /* We need to check old and new layout */
6874                         if (!only_parity(rdev->raid_disk,
6875                                          conf->algorithm,
6876                                          conf->raid_disks,
6877                                          conf->max_degraded))
6878                                 continue;
6879                 }
6880                 if (!only_parity(rdev->raid_disk,
6881                                  conf->prev_algo,
6882                                  conf->previous_raid_disks,
6883                                  conf->max_degraded))
6884                         continue;
6885                 dirty_parity_disks++;
6886         }
6887
6888         /*
6889          * 0 for a fully functional array, 1 or 2 for a degraded array.
6890          */
6891         mddev->degraded = calc_degraded(conf);
6892
6893         if (has_failed(conf)) {
6894                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6895                         " (%d/%d failed)\n",
6896                         mdname(mddev), mddev->degraded, conf->raid_disks);
6897                 goto abort;
6898         }
6899
6900         /* device size must be a multiple of chunk size */
6901         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6902         mddev->resync_max_sectors = mddev->dev_sectors;
6903
6904         if (mddev->degraded > dirty_parity_disks &&
6905             mddev->recovery_cp != MaxSector) {
6906                 if (mddev->ok_start_degraded)
6907                         printk(KERN_WARNING
6908                                "md/raid:%s: starting dirty degraded array"
6909                                " - data corruption possible.\n",
6910                                mdname(mddev));
6911                 else {
6912                         printk(KERN_ERR
6913                                "md/raid:%s: cannot start dirty degraded array.\n",
6914                                mdname(mddev));
6915                         goto abort;
6916                 }
6917         }
6918
6919         if (mddev->degraded == 0)
6920                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6921                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6922                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6923                        mddev->new_layout);
6924         else
6925                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6926                        " out of %d devices, algorithm %d\n",
6927                        mdname(mddev), conf->level,
6928                        mddev->raid_disks - mddev->degraded,
6929                        mddev->raid_disks, mddev->new_layout);
6930
6931         print_raid5_conf(conf);
6932
6933         if (conf->reshape_progress != MaxSector) {
6934                 conf->reshape_safe = conf->reshape_progress;
6935                 atomic_set(&conf->reshape_stripes, 0);
6936                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6937                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6938                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6939                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6940                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6941                                                         "reshape");
6942         }
6943
6944         /* Ok, everything is just fine now */
6945         if (mddev->to_remove == &raid5_attrs_group)
6946                 mddev->to_remove = NULL;
6947         else if (mddev->kobj.sd &&
6948             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6949                 printk(KERN_WARNING
6950                        "raid5: failed to create sysfs attributes for %s\n",
6951                        mdname(mddev));
6952         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6953
6954         if (mddev->queue) {
6955                 int chunk_size;
6956                 bool discard_supported = true;
6957                 /* read-ahead size must cover two whole stripes, which
6958                  * is 2 * (datadisks) * chunksize where 'n' is the
6959                  * number of raid devices
6960                  */
6961                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6962                 int stripe = data_disks *
6963                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6964                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6965                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6966
6967                 chunk_size = mddev->chunk_sectors << 9;
6968                 blk_queue_io_min(mddev->queue, chunk_size);
6969                 blk_queue_io_opt(mddev->queue, chunk_size *
6970                                  (conf->raid_disks - conf->max_degraded));
6971                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6972                 /*
6973                  * We can only discard a whole stripe. It doesn't make sense to
6974                  * discard data disk but write parity disk
6975                  */
6976                 stripe = stripe * PAGE_SIZE;
6977                 /* Round up to power of 2, as discard handling
6978                  * currently assumes that */
6979                 while ((stripe-1) & stripe)
6980                         stripe = (stripe | (stripe-1)) + 1;
6981                 mddev->queue->limits.discard_alignment = stripe;
6982                 mddev->queue->limits.discard_granularity = stripe;
6983
6984                 /*
6985                  * We use 16-bit counter of active stripes in bi_phys_segments
6986                  * (minus one for over-loaded initialization)
6987                  */
6988                 blk_queue_max_hw_sectors(mddev->queue, 0xfffe * STRIPE_SECTORS);
6989                 blk_queue_max_discard_sectors(mddev->queue,
6990                                               0xfffe * STRIPE_SECTORS);
6991
6992                 /*
6993                  * unaligned part of discard request will be ignored, so can't
6994                  * guarantee discard_zeroes_data
6995                  */
6996                 mddev->queue->limits.discard_zeroes_data = 0;
6997
6998                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6999
7000                 rdev_for_each(rdev, mddev) {
7001                         disk_stack_limits(mddev->gendisk, rdev->bdev,
7002                                           rdev->data_offset << 9);
7003                         disk_stack_limits(mddev->gendisk, rdev->bdev,
7004                                           rdev->new_data_offset << 9);
7005                         /*
7006                          * discard_zeroes_data is required, otherwise data
7007                          * could be lost. Consider a scenario: discard a stripe
7008                          * (the stripe could be inconsistent if
7009                          * discard_zeroes_data is 0); write one disk of the
7010                          * stripe (the stripe could be inconsistent again
7011                          * depending on which disks are used to calculate
7012                          * parity); the disk is broken; The stripe data of this
7013                          * disk is lost.
7014                          */
7015                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7016                             !bdev_get_queue(rdev->bdev)->
7017                                                 limits.discard_zeroes_data)
7018                                 discard_supported = false;
7019                         /* Unfortunately, discard_zeroes_data is not currently
7020                          * a guarantee - just a hint.  So we only allow DISCARD
7021                          * if the sysadmin has confirmed that only safe devices
7022                          * are in use by setting a module parameter.
7023                          */
7024                         if (!devices_handle_discard_safely) {
7025                                 if (discard_supported) {
7026                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7027                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7028                                 }
7029                                 discard_supported = false;
7030                         }
7031                 }
7032
7033                 if (discard_supported &&
7034                     mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7035                     mddev->queue->limits.discard_granularity >= stripe)
7036                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7037                                                 mddev->queue);
7038                 else
7039                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7040                                                 mddev->queue);
7041         }
7042
7043         if (journal_dev) {
7044                 char b[BDEVNAME_SIZE];
7045
7046                 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7047                        mdname(mddev), bdevname(journal_dev->bdev, b));
7048                 r5l_init_log(conf, journal_dev);
7049         }
7050
7051         return 0;
7052 abort:
7053         md_unregister_thread(&mddev->thread);
7054         print_raid5_conf(conf);
7055         free_conf(conf);
7056         mddev->private = NULL;
7057         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7058         return -EIO;
7059 }
7060
7061 static void raid5_free(struct mddev *mddev, void *priv)
7062 {
7063         struct r5conf *conf = priv;
7064
7065         free_conf(conf);
7066         mddev->to_remove = &raid5_attrs_group;
7067 }
7068
7069 static void status(struct seq_file *seq, struct mddev *mddev)
7070 {
7071         struct r5conf *conf = mddev->private;
7072         int i;
7073
7074         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7075                 conf->chunk_sectors / 2, mddev->layout);
7076         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7077         for (i = 0; i < conf->raid_disks; i++)
7078                 seq_printf (seq, "%s",
7079                                conf->disks[i].rdev &&
7080                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7081         seq_printf (seq, "]");
7082 }
7083
7084 static void print_raid5_conf (struct r5conf *conf)
7085 {
7086         int i;
7087         struct disk_info *tmp;
7088
7089         printk(KERN_DEBUG "RAID conf printout:\n");
7090         if (!conf) {
7091                 printk("(conf==NULL)\n");
7092                 return;
7093         }
7094         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7095                conf->raid_disks,
7096                conf->raid_disks - conf->mddev->degraded);
7097
7098         for (i = 0; i < conf->raid_disks; i++) {
7099                 char b[BDEVNAME_SIZE];
7100                 tmp = conf->disks + i;
7101                 if (tmp->rdev)
7102                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7103                                i, !test_bit(Faulty, &tmp->rdev->flags),
7104                                bdevname(tmp->rdev->bdev, b));
7105         }
7106 }
7107
7108 static int raid5_spare_active(struct mddev *mddev)
7109 {
7110         int i;
7111         struct r5conf *conf = mddev->private;
7112         struct disk_info *tmp;
7113         int count = 0;
7114         unsigned long flags;
7115
7116         for (i = 0; i < conf->raid_disks; i++) {
7117                 tmp = conf->disks + i;
7118                 if (tmp->replacement
7119                     && tmp->replacement->recovery_offset == MaxSector
7120                     && !test_bit(Faulty, &tmp->replacement->flags)
7121                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7122                         /* Replacement has just become active. */
7123                         if (!tmp->rdev
7124                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7125                                 count++;
7126                         if (tmp->rdev) {
7127                                 /* Replaced device not technically faulty,
7128                                  * but we need to be sure it gets removed
7129                                  * and never re-added.
7130                                  */
7131                                 set_bit(Faulty, &tmp->rdev->flags);
7132                                 sysfs_notify_dirent_safe(
7133                                         tmp->rdev->sysfs_state);
7134                         }
7135                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7136                 } else if (tmp->rdev
7137                     && tmp->rdev->recovery_offset == MaxSector
7138                     && !test_bit(Faulty, &tmp->rdev->flags)
7139                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7140                         count++;
7141                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7142                 }
7143         }
7144         spin_lock_irqsave(&conf->device_lock, flags);
7145         mddev->degraded = calc_degraded(conf);
7146         spin_unlock_irqrestore(&conf->device_lock, flags);
7147         print_raid5_conf(conf);
7148         return count;
7149 }
7150
7151 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7152 {
7153         struct r5conf *conf = mddev->private;
7154         int err = 0;
7155         int number = rdev->raid_disk;
7156         struct md_rdev **rdevp;
7157         struct disk_info *p = conf->disks + number;
7158
7159         print_raid5_conf(conf);
7160         if (test_bit(Journal, &rdev->flags)) {
7161                 /*
7162                  * journal disk is not removable, but we need give a chance to
7163                  * update superblock of other disks. Otherwise journal disk
7164                  * will be considered as 'fresh'
7165                  */
7166                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7167                 return -EINVAL;
7168         }
7169         if (rdev == p->rdev)
7170                 rdevp = &p->rdev;
7171         else if (rdev == p->replacement)
7172                 rdevp = &p->replacement;
7173         else
7174                 return 0;
7175
7176         if (number >= conf->raid_disks &&
7177             conf->reshape_progress == MaxSector)
7178                 clear_bit(In_sync, &rdev->flags);
7179
7180         if (test_bit(In_sync, &rdev->flags) ||
7181             atomic_read(&rdev->nr_pending)) {
7182                 err = -EBUSY;
7183                 goto abort;
7184         }
7185         /* Only remove non-faulty devices if recovery
7186          * isn't possible.
7187          */
7188         if (!test_bit(Faulty, &rdev->flags) &&
7189             mddev->recovery_disabled != conf->recovery_disabled &&
7190             !has_failed(conf) &&
7191             (!p->replacement || p->replacement == rdev) &&
7192             number < conf->raid_disks) {
7193                 err = -EBUSY;
7194                 goto abort;
7195         }
7196         *rdevp = NULL;
7197         synchronize_rcu();
7198         if (atomic_read(&rdev->nr_pending)) {
7199                 /* lost the race, try later */
7200                 err = -EBUSY;
7201                 *rdevp = rdev;
7202         } else if (p->replacement) {
7203                 /* We must have just cleared 'rdev' */
7204                 p->rdev = p->replacement;
7205                 clear_bit(Replacement, &p->replacement->flags);
7206                 smp_mb(); /* Make sure other CPUs may see both as identical
7207                            * but will never see neither - if they are careful
7208                            */
7209                 p->replacement = NULL;
7210                 clear_bit(WantReplacement, &rdev->flags);
7211         } else
7212                 /* We might have just removed the Replacement as faulty-
7213                  * clear the bit just in case
7214                  */
7215                 clear_bit(WantReplacement, &rdev->flags);
7216 abort:
7217
7218         print_raid5_conf(conf);
7219         return err;
7220 }
7221
7222 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7223 {
7224         struct r5conf *conf = mddev->private;
7225         int err = -EEXIST;
7226         int disk;
7227         struct disk_info *p;
7228         int first = 0;
7229         int last = conf->raid_disks - 1;
7230
7231         if (test_bit(Journal, &rdev->flags))
7232                 return -EINVAL;
7233         if (mddev->recovery_disabled == conf->recovery_disabled)
7234                 return -EBUSY;
7235
7236         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7237                 /* no point adding a device */
7238                 return -EINVAL;
7239
7240         if (rdev->raid_disk >= 0)
7241                 first = last = rdev->raid_disk;
7242
7243         /*
7244          * find the disk ... but prefer rdev->saved_raid_disk
7245          * if possible.
7246          */
7247         if (rdev->saved_raid_disk >= 0 &&
7248             rdev->saved_raid_disk >= first &&
7249             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7250                 first = rdev->saved_raid_disk;
7251
7252         for (disk = first; disk <= last; disk++) {
7253                 p = conf->disks + disk;
7254                 if (p->rdev == NULL) {
7255                         clear_bit(In_sync, &rdev->flags);
7256                         rdev->raid_disk = disk;
7257                         err = 0;
7258                         if (rdev->saved_raid_disk != disk)
7259                                 conf->fullsync = 1;
7260                         rcu_assign_pointer(p->rdev, rdev);
7261                         goto out;
7262                 }
7263         }
7264         for (disk = first; disk <= last; disk++) {
7265                 p = conf->disks + disk;
7266                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7267                     p->replacement == NULL) {
7268                         clear_bit(In_sync, &rdev->flags);
7269                         set_bit(Replacement, &rdev->flags);
7270                         rdev->raid_disk = disk;
7271                         err = 0;
7272                         conf->fullsync = 1;
7273                         rcu_assign_pointer(p->replacement, rdev);
7274                         break;
7275                 }
7276         }
7277 out:
7278         print_raid5_conf(conf);
7279         return err;
7280 }
7281
7282 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7283 {
7284         /* no resync is happening, and there is enough space
7285          * on all devices, so we can resize.
7286          * We need to make sure resync covers any new space.
7287          * If the array is shrinking we should possibly wait until
7288          * any io in the removed space completes, but it hardly seems
7289          * worth it.
7290          */
7291         sector_t newsize;
7292         struct r5conf *conf = mddev->private;
7293
7294         if (conf->log)
7295                 return -EINVAL;
7296         sectors &= ~((sector_t)conf->chunk_sectors - 1);
7297         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7298         if (mddev->external_size &&
7299             mddev->array_sectors > newsize)
7300                 return -EINVAL;
7301         if (mddev->bitmap) {
7302                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7303                 if (ret)
7304                         return ret;
7305         }
7306         md_set_array_sectors(mddev, newsize);
7307         set_capacity(mddev->gendisk, mddev->array_sectors);
7308         revalidate_disk(mddev->gendisk);
7309         if (sectors > mddev->dev_sectors &&
7310             mddev->recovery_cp > mddev->dev_sectors) {
7311                 mddev->recovery_cp = mddev->dev_sectors;
7312                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7313         }
7314         mddev->dev_sectors = sectors;
7315         mddev->resync_max_sectors = sectors;
7316         return 0;
7317 }
7318
7319 static int check_stripe_cache(struct mddev *mddev)
7320 {
7321         /* Can only proceed if there are plenty of stripe_heads.
7322          * We need a minimum of one full stripe,, and for sensible progress
7323          * it is best to have about 4 times that.
7324          * If we require 4 times, then the default 256 4K stripe_heads will
7325          * allow for chunk sizes up to 256K, which is probably OK.
7326          * If the chunk size is greater, user-space should request more
7327          * stripe_heads first.
7328          */
7329         struct r5conf *conf = mddev->private;
7330         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7331             > conf->min_nr_stripes ||
7332             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7333             > conf->min_nr_stripes) {
7334                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7335                        mdname(mddev),
7336                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7337                         / STRIPE_SIZE)*4);
7338                 return 0;
7339         }
7340         return 1;
7341 }
7342
7343 static int check_reshape(struct mddev *mddev)
7344 {
7345         struct r5conf *conf = mddev->private;
7346
7347         if (conf->log)
7348                 return -EINVAL;
7349         if (mddev->delta_disks == 0 &&
7350             mddev->new_layout == mddev->layout &&
7351             mddev->new_chunk_sectors == mddev->chunk_sectors)
7352                 return 0; /* nothing to do */
7353         if (has_failed(conf))
7354                 return -EINVAL;
7355         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7356                 /* We might be able to shrink, but the devices must
7357                  * be made bigger first.
7358                  * For raid6, 4 is the minimum size.
7359                  * Otherwise 2 is the minimum
7360                  */
7361                 int min = 2;
7362                 if (mddev->level == 6)
7363                         min = 4;
7364                 if (mddev->raid_disks + mddev->delta_disks < min)
7365                         return -EINVAL;
7366         }
7367
7368         if (!check_stripe_cache(mddev))
7369                 return -ENOSPC;
7370
7371         if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7372             mddev->delta_disks > 0)
7373                 if (resize_chunks(conf,
7374                                   conf->previous_raid_disks
7375                                   + max(0, mddev->delta_disks),
7376                                   max(mddev->new_chunk_sectors,
7377                                       mddev->chunk_sectors)
7378                             ) < 0)
7379                         return -ENOMEM;
7380         return resize_stripes(conf, (conf->previous_raid_disks
7381                                      + mddev->delta_disks));
7382 }
7383
7384 static int raid5_start_reshape(struct mddev *mddev)
7385 {
7386         struct r5conf *conf = mddev->private;
7387         struct md_rdev *rdev;
7388         int spares = 0;
7389         unsigned long flags;
7390
7391         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7392                 return -EBUSY;
7393
7394         if (!check_stripe_cache(mddev))
7395                 return -ENOSPC;
7396
7397         if (has_failed(conf))
7398                 return -EINVAL;
7399
7400         rdev_for_each(rdev, mddev) {
7401                 if (!test_bit(In_sync, &rdev->flags)
7402                     && !test_bit(Faulty, &rdev->flags))
7403                         spares++;
7404         }
7405
7406         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7407                 /* Not enough devices even to make a degraded array
7408                  * of that size
7409                  */
7410                 return -EINVAL;
7411
7412         /* Refuse to reduce size of the array.  Any reductions in
7413          * array size must be through explicit setting of array_size
7414          * attribute.
7415          */
7416         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7417             < mddev->array_sectors) {
7418                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7419                        "before number of disks\n", mdname(mddev));
7420                 return -EINVAL;
7421         }
7422
7423         atomic_set(&conf->reshape_stripes, 0);
7424         spin_lock_irq(&conf->device_lock);
7425         write_seqcount_begin(&conf->gen_lock);
7426         conf->previous_raid_disks = conf->raid_disks;
7427         conf->raid_disks += mddev->delta_disks;
7428         conf->prev_chunk_sectors = conf->chunk_sectors;
7429         conf->chunk_sectors = mddev->new_chunk_sectors;
7430         conf->prev_algo = conf->algorithm;
7431         conf->algorithm = mddev->new_layout;
7432         conf->generation++;
7433         /* Code that selects data_offset needs to see the generation update
7434          * if reshape_progress has been set - so a memory barrier needed.
7435          */
7436         smp_mb();
7437         if (mddev->reshape_backwards)
7438                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7439         else
7440                 conf->reshape_progress = 0;
7441         conf->reshape_safe = conf->reshape_progress;
7442         write_seqcount_end(&conf->gen_lock);
7443         spin_unlock_irq(&conf->device_lock);
7444
7445         /* Now make sure any requests that proceeded on the assumption
7446          * the reshape wasn't running - like Discard or Read - have
7447          * completed.
7448          */
7449         mddev_suspend(mddev);
7450         mddev_resume(mddev);
7451
7452         /* Add some new drives, as many as will fit.
7453          * We know there are enough to make the newly sized array work.
7454          * Don't add devices if we are reducing the number of
7455          * devices in the array.  This is because it is not possible
7456          * to correctly record the "partially reconstructed" state of
7457          * such devices during the reshape and confusion could result.
7458          */
7459         if (mddev->delta_disks >= 0) {
7460                 rdev_for_each(rdev, mddev)
7461                         if (rdev->raid_disk < 0 &&
7462                             !test_bit(Faulty, &rdev->flags)) {
7463                                 if (raid5_add_disk(mddev, rdev) == 0) {
7464                                         if (rdev->raid_disk
7465                                             >= conf->previous_raid_disks)
7466                                                 set_bit(In_sync, &rdev->flags);
7467                                         else
7468                                                 rdev->recovery_offset = 0;
7469
7470                                         if (sysfs_link_rdev(mddev, rdev))
7471                                                 /* Failure here is OK */;
7472                                 }
7473                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7474                                    && !test_bit(Faulty, &rdev->flags)) {
7475                                 /* This is a spare that was manually added */
7476                                 set_bit(In_sync, &rdev->flags);
7477                         }
7478
7479                 /* When a reshape changes the number of devices,
7480                  * ->degraded is measured against the larger of the
7481                  * pre and post number of devices.
7482                  */
7483                 spin_lock_irqsave(&conf->device_lock, flags);
7484                 mddev->degraded = calc_degraded(conf);
7485                 spin_unlock_irqrestore(&conf->device_lock, flags);
7486         }
7487         mddev->raid_disks = conf->raid_disks;
7488         mddev->reshape_position = conf->reshape_progress;
7489         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7490
7491         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7492         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7493         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7494         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7495         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7496         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7497                                                 "reshape");
7498         if (!mddev->sync_thread) {
7499                 mddev->recovery = 0;
7500                 spin_lock_irq(&conf->device_lock);
7501                 write_seqcount_begin(&conf->gen_lock);
7502                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7503                 mddev->new_chunk_sectors =
7504                         conf->chunk_sectors = conf->prev_chunk_sectors;
7505                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7506                 rdev_for_each(rdev, mddev)
7507                         rdev->new_data_offset = rdev->data_offset;
7508                 smp_wmb();
7509                 conf->generation --;
7510                 conf->reshape_progress = MaxSector;
7511                 mddev->reshape_position = MaxSector;
7512                 write_seqcount_end(&conf->gen_lock);
7513                 spin_unlock_irq(&conf->device_lock);
7514                 return -EAGAIN;
7515         }
7516         conf->reshape_checkpoint = jiffies;
7517         md_wakeup_thread(mddev->sync_thread);
7518         md_new_event(mddev);
7519         return 0;
7520 }
7521
7522 /* This is called from the reshape thread and should make any
7523  * changes needed in 'conf'
7524  */
7525 static void end_reshape(struct r5conf *conf)
7526 {
7527
7528         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7529                 struct md_rdev *rdev;
7530
7531                 spin_lock_irq(&conf->device_lock);
7532                 conf->previous_raid_disks = conf->raid_disks;
7533                 rdev_for_each(rdev, conf->mddev)
7534                         rdev->data_offset = rdev->new_data_offset;
7535                 smp_wmb();
7536                 conf->reshape_progress = MaxSector;
7537                 conf->mddev->reshape_position = MaxSector;
7538                 spin_unlock_irq(&conf->device_lock);
7539                 wake_up(&conf->wait_for_overlap);
7540
7541                 /* read-ahead size must cover two whole stripes, which is
7542                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7543                  */
7544                 if (conf->mddev->queue) {
7545                         int data_disks = conf->raid_disks - conf->max_degraded;
7546                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7547                                                    / PAGE_SIZE);
7548                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7549                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7550                 }
7551         }
7552 }
7553
7554 /* This is called from the raid5d thread with mddev_lock held.
7555  * It makes config changes to the device.
7556  */
7557 static void raid5_finish_reshape(struct mddev *mddev)
7558 {
7559         struct r5conf *conf = mddev->private;
7560
7561         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7562
7563                 if (mddev->delta_disks > 0) {
7564                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7565                         set_capacity(mddev->gendisk, mddev->array_sectors);
7566                         revalidate_disk(mddev->gendisk);
7567                 } else {
7568                         int d;
7569                         spin_lock_irq(&conf->device_lock);
7570                         mddev->degraded = calc_degraded(conf);
7571                         spin_unlock_irq(&conf->device_lock);
7572                         for (d = conf->raid_disks ;
7573                              d < conf->raid_disks - mddev->delta_disks;
7574                              d++) {
7575                                 struct md_rdev *rdev = conf->disks[d].rdev;
7576                                 if (rdev)
7577                                         clear_bit(In_sync, &rdev->flags);
7578                                 rdev = conf->disks[d].replacement;
7579                                 if (rdev)
7580                                         clear_bit(In_sync, &rdev->flags);
7581                         }
7582                 }
7583                 mddev->layout = conf->algorithm;
7584                 mddev->chunk_sectors = conf->chunk_sectors;
7585                 mddev->reshape_position = MaxSector;
7586                 mddev->delta_disks = 0;
7587                 mddev->reshape_backwards = 0;
7588         }
7589 }
7590
7591 static void raid5_quiesce(struct mddev *mddev, int state)
7592 {
7593         struct r5conf *conf = mddev->private;
7594
7595         switch(state) {
7596         case 2: /* resume for a suspend */
7597                 wake_up(&conf->wait_for_overlap);
7598                 break;
7599
7600         case 1: /* stop all writes */
7601                 lock_all_device_hash_locks_irq(conf);
7602                 /* '2' tells resync/reshape to pause so that all
7603                  * active stripes can drain
7604                  */
7605                 conf->quiesce = 2;
7606                 wait_event_cmd(conf->wait_for_quiescent,
7607                                     atomic_read(&conf->active_stripes) == 0 &&
7608                                     atomic_read(&conf->active_aligned_reads) == 0,
7609                                     unlock_all_device_hash_locks_irq(conf),
7610                                     lock_all_device_hash_locks_irq(conf));
7611                 conf->quiesce = 1;
7612                 unlock_all_device_hash_locks_irq(conf);
7613                 /* allow reshape to continue */
7614                 wake_up(&conf->wait_for_overlap);
7615                 break;
7616
7617         case 0: /* re-enable writes */
7618                 lock_all_device_hash_locks_irq(conf);
7619                 conf->quiesce = 0;
7620                 wake_up(&conf->wait_for_quiescent);
7621                 wake_up(&conf->wait_for_overlap);
7622                 unlock_all_device_hash_locks_irq(conf);
7623                 break;
7624         }
7625         r5l_quiesce(conf->log, state);
7626 }
7627
7628 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7629 {
7630         struct r0conf *raid0_conf = mddev->private;
7631         sector_t sectors;
7632
7633         /* for raid0 takeover only one zone is supported */
7634         if (raid0_conf->nr_strip_zones > 1) {
7635                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7636                        mdname(mddev));
7637                 return ERR_PTR(-EINVAL);
7638         }
7639
7640         sectors = raid0_conf->strip_zone[0].zone_end;
7641         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7642         mddev->dev_sectors = sectors;
7643         mddev->new_level = level;
7644         mddev->new_layout = ALGORITHM_PARITY_N;
7645         mddev->new_chunk_sectors = mddev->chunk_sectors;
7646         mddev->raid_disks += 1;
7647         mddev->delta_disks = 1;
7648         /* make sure it will be not marked as dirty */
7649         mddev->recovery_cp = MaxSector;
7650
7651         return setup_conf(mddev);
7652 }
7653
7654 static void *raid5_takeover_raid1(struct mddev *mddev)
7655 {
7656         int chunksect;
7657
7658         if (mddev->raid_disks != 2 ||
7659             mddev->degraded > 1)
7660                 return ERR_PTR(-EINVAL);
7661
7662         /* Should check if there are write-behind devices? */
7663
7664         chunksect = 64*2; /* 64K by default */
7665
7666         /* The array must be an exact multiple of chunksize */
7667         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7668                 chunksect >>= 1;
7669
7670         if ((chunksect<<9) < STRIPE_SIZE)
7671                 /* array size does not allow a suitable chunk size */
7672                 return ERR_PTR(-EINVAL);
7673
7674         mddev->new_level = 5;
7675         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7676         mddev->new_chunk_sectors = chunksect;
7677
7678         return setup_conf(mddev);
7679 }
7680
7681 static void *raid5_takeover_raid6(struct mddev *mddev)
7682 {
7683         int new_layout;
7684
7685         switch (mddev->layout) {
7686         case ALGORITHM_LEFT_ASYMMETRIC_6:
7687                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7688                 break;
7689         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7690                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7691                 break;
7692         case ALGORITHM_LEFT_SYMMETRIC_6:
7693                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7694                 break;
7695         case ALGORITHM_RIGHT_SYMMETRIC_6:
7696                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7697                 break;
7698         case ALGORITHM_PARITY_0_6:
7699                 new_layout = ALGORITHM_PARITY_0;
7700                 break;
7701         case ALGORITHM_PARITY_N:
7702                 new_layout = ALGORITHM_PARITY_N;
7703                 break;
7704         default:
7705                 return ERR_PTR(-EINVAL);
7706         }
7707         mddev->new_level = 5;
7708         mddev->new_layout = new_layout;
7709         mddev->delta_disks = -1;
7710         mddev->raid_disks -= 1;
7711         return setup_conf(mddev);
7712 }
7713
7714 static int raid5_check_reshape(struct mddev *mddev)
7715 {
7716         /* For a 2-drive array, the layout and chunk size can be changed
7717          * immediately as not restriping is needed.
7718          * For larger arrays we record the new value - after validation
7719          * to be used by a reshape pass.
7720          */
7721         struct r5conf *conf = mddev->private;
7722         int new_chunk = mddev->new_chunk_sectors;
7723
7724         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7725                 return -EINVAL;
7726         if (new_chunk > 0) {
7727                 if (!is_power_of_2(new_chunk))
7728                         return -EINVAL;
7729                 if (new_chunk < (PAGE_SIZE>>9))
7730                         return -EINVAL;
7731                 if (mddev->array_sectors & (new_chunk-1))
7732                         /* not factor of array size */
7733                         return -EINVAL;
7734         }
7735
7736         /* They look valid */
7737
7738         if (mddev->raid_disks == 2) {
7739                 /* can make the change immediately */
7740                 if (mddev->new_layout >= 0) {
7741                         conf->algorithm = mddev->new_layout;
7742                         mddev->layout = mddev->new_layout;
7743                 }
7744                 if (new_chunk > 0) {
7745                         conf->chunk_sectors = new_chunk ;
7746                         mddev->chunk_sectors = new_chunk;
7747                 }
7748                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7749                 md_wakeup_thread(mddev->thread);
7750         }
7751         return check_reshape(mddev);
7752 }
7753
7754 static int raid6_check_reshape(struct mddev *mddev)
7755 {
7756         int new_chunk = mddev->new_chunk_sectors;
7757
7758         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7759                 return -EINVAL;
7760         if (new_chunk > 0) {
7761                 if (!is_power_of_2(new_chunk))
7762                         return -EINVAL;
7763                 if (new_chunk < (PAGE_SIZE >> 9))
7764                         return -EINVAL;
7765                 if (mddev->array_sectors & (new_chunk-1))
7766                         /* not factor of array size */
7767                         return -EINVAL;
7768         }
7769
7770         /* They look valid */
7771         return check_reshape(mddev);
7772 }
7773
7774 static void *raid5_takeover(struct mddev *mddev)
7775 {
7776         /* raid5 can take over:
7777          *  raid0 - if there is only one strip zone - make it a raid4 layout
7778          *  raid1 - if there are two drives.  We need to know the chunk size
7779          *  raid4 - trivial - just use a raid4 layout.
7780          *  raid6 - Providing it is a *_6 layout
7781          */
7782         if (mddev->level == 0)
7783                 return raid45_takeover_raid0(mddev, 5);
7784         if (mddev->level == 1)
7785                 return raid5_takeover_raid1(mddev);
7786         if (mddev->level == 4) {
7787                 mddev->new_layout = ALGORITHM_PARITY_N;
7788                 mddev->new_level = 5;
7789                 return setup_conf(mddev);
7790         }
7791         if (mddev->level == 6)
7792                 return raid5_takeover_raid6(mddev);
7793
7794         return ERR_PTR(-EINVAL);
7795 }
7796
7797 static void *raid4_takeover(struct mddev *mddev)
7798 {
7799         /* raid4 can take over:
7800          *  raid0 - if there is only one strip zone
7801          *  raid5 - if layout is right
7802          */
7803         if (mddev->level == 0)
7804                 return raid45_takeover_raid0(mddev, 4);
7805         if (mddev->level == 5 &&
7806             mddev->layout == ALGORITHM_PARITY_N) {
7807                 mddev->new_layout = 0;
7808                 mddev->new_level = 4;
7809                 return setup_conf(mddev);
7810         }
7811         return ERR_PTR(-EINVAL);
7812 }
7813
7814 static struct md_personality raid5_personality;
7815
7816 static void *raid6_takeover(struct mddev *mddev)
7817 {
7818         /* Currently can only take over a raid5.  We map the
7819          * personality to an equivalent raid6 personality
7820          * with the Q block at the end.
7821          */
7822         int new_layout;
7823
7824         if (mddev->pers != &raid5_personality)
7825                 return ERR_PTR(-EINVAL);
7826         if (mddev->degraded > 1)
7827                 return ERR_PTR(-EINVAL);
7828         if (mddev->raid_disks > 253)
7829                 return ERR_PTR(-EINVAL);
7830         if (mddev->raid_disks < 3)
7831                 return ERR_PTR(-EINVAL);
7832
7833         switch (mddev->layout) {
7834         case ALGORITHM_LEFT_ASYMMETRIC:
7835                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7836                 break;
7837         case ALGORITHM_RIGHT_ASYMMETRIC:
7838                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7839                 break;
7840         case ALGORITHM_LEFT_SYMMETRIC:
7841                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7842                 break;
7843         case ALGORITHM_RIGHT_SYMMETRIC:
7844                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7845                 break;
7846         case ALGORITHM_PARITY_0:
7847                 new_layout = ALGORITHM_PARITY_0_6;
7848                 break;
7849         case ALGORITHM_PARITY_N:
7850                 new_layout = ALGORITHM_PARITY_N;
7851                 break;
7852         default:
7853                 return ERR_PTR(-EINVAL);
7854         }
7855         mddev->new_level = 6;
7856         mddev->new_layout = new_layout;
7857         mddev->delta_disks = 1;
7858         mddev->raid_disks += 1;
7859         return setup_conf(mddev);
7860 }
7861
7862 static struct md_personality raid6_personality =
7863 {
7864         .name           = "raid6",
7865         .level          = 6,
7866         .owner          = THIS_MODULE,
7867         .make_request   = make_request,
7868         .run            = run,
7869         .free           = raid5_free,
7870         .status         = status,
7871         .error_handler  = error,
7872         .hot_add_disk   = raid5_add_disk,
7873         .hot_remove_disk= raid5_remove_disk,
7874         .spare_active   = raid5_spare_active,
7875         .sync_request   = sync_request,
7876         .resize         = raid5_resize,
7877         .size           = raid5_size,
7878         .check_reshape  = raid6_check_reshape,
7879         .start_reshape  = raid5_start_reshape,
7880         .finish_reshape = raid5_finish_reshape,
7881         .quiesce        = raid5_quiesce,
7882         .takeover       = raid6_takeover,
7883         .congested      = raid5_congested,
7884 };
7885 static struct md_personality raid5_personality =
7886 {
7887         .name           = "raid5",
7888         .level          = 5,
7889         .owner          = THIS_MODULE,
7890         .make_request   = make_request,
7891         .run            = run,
7892         .free           = raid5_free,
7893         .status         = status,
7894         .error_handler  = error,
7895         .hot_add_disk   = raid5_add_disk,
7896         .hot_remove_disk= raid5_remove_disk,
7897         .spare_active   = raid5_spare_active,
7898         .sync_request   = sync_request,
7899         .resize         = raid5_resize,
7900         .size           = raid5_size,
7901         .check_reshape  = raid5_check_reshape,
7902         .start_reshape  = raid5_start_reshape,
7903         .finish_reshape = raid5_finish_reshape,
7904         .quiesce        = raid5_quiesce,
7905         .takeover       = raid5_takeover,
7906         .congested      = raid5_congested,
7907 };
7908
7909 static struct md_personality raid4_personality =
7910 {
7911         .name           = "raid4",
7912         .level          = 4,
7913         .owner          = THIS_MODULE,
7914         .make_request   = make_request,
7915         .run            = run,
7916         .free           = raid5_free,
7917         .status         = status,
7918         .error_handler  = error,
7919         .hot_add_disk   = raid5_add_disk,
7920         .hot_remove_disk= raid5_remove_disk,
7921         .spare_active   = raid5_spare_active,
7922         .sync_request   = sync_request,
7923         .resize         = raid5_resize,
7924         .size           = raid5_size,
7925         .check_reshape  = raid5_check_reshape,
7926         .start_reshape  = raid5_start_reshape,
7927         .finish_reshape = raid5_finish_reshape,
7928         .quiesce        = raid5_quiesce,
7929         .takeover       = raid4_takeover,
7930         .congested      = raid5_congested,
7931 };
7932
7933 static int __init raid5_init(void)
7934 {
7935         raid5_wq = alloc_workqueue("raid5wq",
7936                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7937         if (!raid5_wq)
7938                 return -ENOMEM;
7939         register_md_personality(&raid6_personality);
7940         register_md_personality(&raid5_personality);
7941         register_md_personality(&raid4_personality);
7942         return 0;
7943 }
7944
7945 static void raid5_exit(void)
7946 {
7947         unregister_md_personality(&raid6_personality);
7948         unregister_md_personality(&raid5_personality);
7949         unregister_md_personality(&raid4_personality);
7950         destroy_workqueue(raid5_wq);
7951 }
7952
7953 module_init(raid5_init);
7954 module_exit(raid5_exit);
7955 MODULE_LICENSE("GPL");
7956 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7957 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7958 MODULE_ALIAS("md-raid5");
7959 MODULE_ALIAS("md-raid4");
7960 MODULE_ALIAS("md-level-5");
7961 MODULE_ALIAS("md-level-4");
7962 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7963 MODULE_ALIAS("md-raid6");
7964 MODULE_ALIAS("md-level-6");
7965
7966 /* This used to be two separate modules, they were: */
7967 MODULE_ALIAS("raid5");
7968 MODULE_ALIAS("raid6");