soc: rockchip: add cpuinfo support
[firefly-linux-kernel-4.4.55.git] / drivers / md / raid5-cache.c
1 /*
2  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  */
14 #include <linux/kernel.h>
15 #include <linux/wait.h>
16 #include <linux/blkdev.h>
17 #include <linux/slab.h>
18 #include <linux/raid/md_p.h>
19 #include <linux/crc32c.h>
20 #include <linux/random.h>
21 #include "md.h"
22 #include "raid5.h"
23
24 /*
25  * metadata/data stored in disk with 4k size unit (a block) regardless
26  * underneath hardware sector size. only works with PAGE_SIZE == 4096
27  */
28 #define BLOCK_SECTORS (8)
29
30 /*
31  * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent
32  * recovery scans a very long log
33  */
34 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
35 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
36
37 struct r5l_log {
38         struct md_rdev *rdev;
39
40         u32 uuid_checksum;
41
42         sector_t device_size;           /* log device size, round to
43                                          * BLOCK_SECTORS */
44         sector_t max_free_space;        /* reclaim run if free space is at
45                                          * this size */
46
47         sector_t last_checkpoint;       /* log tail. where recovery scan
48                                          * starts from */
49         u64 last_cp_seq;                /* log tail sequence */
50
51         sector_t log_start;             /* log head. where new data appends */
52         u64 seq;                        /* log head sequence */
53
54         sector_t next_checkpoint;
55         u64 next_cp_seq;
56
57         struct mutex io_mutex;
58         struct r5l_io_unit *current_io; /* current io_unit accepting new data */
59
60         spinlock_t io_list_lock;
61         struct list_head running_ios;   /* io_units which are still running,
62                                          * and have not yet been completely
63                                          * written to the log */
64         struct list_head io_end_ios;    /* io_units which have been completely
65                                          * written to the log but not yet written
66                                          * to the RAID */
67         struct list_head flushing_ios;  /* io_units which are waiting for log
68                                          * cache flush */
69         struct list_head finished_ios;  /* io_units which settle down in log disk */
70         struct bio flush_bio;
71
72         struct kmem_cache *io_kc;
73
74         struct md_thread *reclaim_thread;
75         unsigned long reclaim_target;   /* number of space that need to be
76                                          * reclaimed.  if it's 0, reclaim spaces
77                                          * used by io_units which are in
78                                          * IO_UNIT_STRIPE_END state (eg, reclaim
79                                          * dones't wait for specific io_unit
80                                          * switching to IO_UNIT_STRIPE_END
81                                          * state) */
82         wait_queue_head_t iounit_wait;
83
84         struct list_head no_space_stripes; /* pending stripes, log has no space */
85         spinlock_t no_space_stripes_lock;
86
87         bool need_cache_flush;
88         bool in_teardown;
89 };
90
91 /*
92  * an IO range starts from a meta data block and end at the next meta data
93  * block. The io unit's the meta data block tracks data/parity followed it. io
94  * unit is written to log disk with normal write, as we always flush log disk
95  * first and then start move data to raid disks, there is no requirement to
96  * write io unit with FLUSH/FUA
97  */
98 struct r5l_io_unit {
99         struct r5l_log *log;
100
101         struct page *meta_page; /* store meta block */
102         int meta_offset;        /* current offset in meta_page */
103
104         struct bio *current_bio;/* current_bio accepting new data */
105
106         atomic_t pending_stripe;/* how many stripes not flushed to raid */
107         u64 seq;                /* seq number of the metablock */
108         sector_t log_start;     /* where the io_unit starts */
109         sector_t log_end;       /* where the io_unit ends */
110         struct list_head log_sibling; /* log->running_ios */
111         struct list_head stripe_list; /* stripes added to the io_unit */
112
113         int state;
114         bool need_split_bio;
115 };
116
117 /* r5l_io_unit state */
118 enum r5l_io_unit_state {
119         IO_UNIT_RUNNING = 0,    /* accepting new IO */
120         IO_UNIT_IO_START = 1,   /* io_unit bio start writing to log,
121                                  * don't accepting new bio */
122         IO_UNIT_IO_END = 2,     /* io_unit bio finish writing to log */
123         IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
124 };
125
126 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
127 {
128         start += inc;
129         if (start >= log->device_size)
130                 start = start - log->device_size;
131         return start;
132 }
133
134 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
135                                   sector_t end)
136 {
137         if (end >= start)
138                 return end - start;
139         else
140                 return end + log->device_size - start;
141 }
142
143 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
144 {
145         sector_t used_size;
146
147         used_size = r5l_ring_distance(log, log->last_checkpoint,
148                                         log->log_start);
149
150         return log->device_size > used_size + size;
151 }
152
153 static void r5l_free_io_unit(struct r5l_log *log, struct r5l_io_unit *io)
154 {
155         __free_page(io->meta_page);
156         kmem_cache_free(log->io_kc, io);
157 }
158
159 static void r5l_move_io_unit_list(struct list_head *from, struct list_head *to,
160                                   enum r5l_io_unit_state state)
161 {
162         struct r5l_io_unit *io;
163
164         while (!list_empty(from)) {
165                 io = list_first_entry(from, struct r5l_io_unit, log_sibling);
166                 /* don't change list order */
167                 if (io->state >= state)
168                         list_move_tail(&io->log_sibling, to);
169                 else
170                         break;
171         }
172 }
173
174 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
175                                     enum r5l_io_unit_state state)
176 {
177         if (WARN_ON(io->state >= state))
178                 return;
179         io->state = state;
180 }
181
182 static void r5l_io_run_stripes(struct r5l_io_unit *io)
183 {
184         struct stripe_head *sh, *next;
185
186         list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
187                 list_del_init(&sh->log_list);
188                 set_bit(STRIPE_HANDLE, &sh->state);
189                 raid5_release_stripe(sh);
190         }
191 }
192
193 static void r5l_log_run_stripes(struct r5l_log *log)
194 {
195         struct r5l_io_unit *io, *next;
196
197         assert_spin_locked(&log->io_list_lock);
198
199         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
200                 /* don't change list order */
201                 if (io->state < IO_UNIT_IO_END)
202                         break;
203
204                 list_move_tail(&io->log_sibling, &log->finished_ios);
205                 r5l_io_run_stripes(io);
206         }
207 }
208
209 static void r5l_log_endio(struct bio *bio)
210 {
211         struct r5l_io_unit *io = bio->bi_private;
212         struct r5l_log *log = io->log;
213         unsigned long flags;
214
215         if (bio->bi_error)
216                 md_error(log->rdev->mddev, log->rdev);
217
218         bio_put(bio);
219
220         spin_lock_irqsave(&log->io_list_lock, flags);
221         __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
222         if (log->need_cache_flush)
223                 r5l_move_io_unit_list(&log->running_ios, &log->io_end_ios,
224                                       IO_UNIT_IO_END);
225         else
226                 r5l_log_run_stripes(log);
227         spin_unlock_irqrestore(&log->io_list_lock, flags);
228
229         if (log->need_cache_flush)
230                 md_wakeup_thread(log->rdev->mddev->thread);
231 }
232
233 static void r5l_submit_current_io(struct r5l_log *log)
234 {
235         struct r5l_io_unit *io = log->current_io;
236         struct r5l_meta_block *block;
237         unsigned long flags;
238         u32 crc;
239
240         if (!io)
241                 return;
242
243         block = page_address(io->meta_page);
244         block->meta_size = cpu_to_le32(io->meta_offset);
245         crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
246         block->checksum = cpu_to_le32(crc);
247
248         log->current_io = NULL;
249         spin_lock_irqsave(&log->io_list_lock, flags);
250         __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
251         spin_unlock_irqrestore(&log->io_list_lock, flags);
252
253         submit_bio(WRITE, io->current_bio);
254 }
255
256 static struct bio *r5l_bio_alloc(struct r5l_log *log)
257 {
258         struct bio *bio = bio_kmalloc(GFP_NOIO | __GFP_NOFAIL, BIO_MAX_PAGES);
259
260         bio->bi_rw = WRITE;
261         bio->bi_bdev = log->rdev->bdev;
262         bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
263
264         return bio;
265 }
266
267 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
268 {
269         log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
270
271         /*
272          * If we filled up the log device start from the beginning again,
273          * which will require a new bio.
274          *
275          * Note: for this to work properly the log size needs to me a multiple
276          * of BLOCK_SECTORS.
277          */
278         if (log->log_start == 0)
279                 io->need_split_bio = true;
280
281         io->log_end = log->log_start;
282 }
283
284 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
285 {
286         struct r5l_io_unit *io;
287         struct r5l_meta_block *block;
288
289         /* We can't handle memory allocate failure so far */
290         io = kmem_cache_zalloc(log->io_kc, GFP_NOIO | __GFP_NOFAIL);
291         io->log = log;
292         INIT_LIST_HEAD(&io->log_sibling);
293         INIT_LIST_HEAD(&io->stripe_list);
294         io->state = IO_UNIT_RUNNING;
295
296         io->meta_page = alloc_page(GFP_NOIO | __GFP_NOFAIL | __GFP_ZERO);
297         block = page_address(io->meta_page);
298         block->magic = cpu_to_le32(R5LOG_MAGIC);
299         block->version = R5LOG_VERSION;
300         block->seq = cpu_to_le64(log->seq);
301         block->position = cpu_to_le64(log->log_start);
302
303         io->log_start = log->log_start;
304         io->meta_offset = sizeof(struct r5l_meta_block);
305         io->seq = log->seq++;
306
307         io->current_bio = r5l_bio_alloc(log);
308         io->current_bio->bi_end_io = r5l_log_endio;
309         io->current_bio->bi_private = io;
310         bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
311
312         r5_reserve_log_entry(log, io);
313
314         spin_lock_irq(&log->io_list_lock);
315         list_add_tail(&io->log_sibling, &log->running_ios);
316         spin_unlock_irq(&log->io_list_lock);
317
318         return io;
319 }
320
321 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
322 {
323         if (log->current_io &&
324             log->current_io->meta_offset + payload_size > PAGE_SIZE)
325                 r5l_submit_current_io(log);
326
327         if (!log->current_io)
328                 log->current_io = r5l_new_meta(log);
329         return 0;
330 }
331
332 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
333                                     sector_t location,
334                                     u32 checksum1, u32 checksum2,
335                                     bool checksum2_valid)
336 {
337         struct r5l_io_unit *io = log->current_io;
338         struct r5l_payload_data_parity *payload;
339
340         payload = page_address(io->meta_page) + io->meta_offset;
341         payload->header.type = cpu_to_le16(type);
342         payload->header.flags = cpu_to_le16(0);
343         payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
344                                     (PAGE_SHIFT - 9));
345         payload->location = cpu_to_le64(location);
346         payload->checksum[0] = cpu_to_le32(checksum1);
347         if (checksum2_valid)
348                 payload->checksum[1] = cpu_to_le32(checksum2);
349
350         io->meta_offset += sizeof(struct r5l_payload_data_parity) +
351                 sizeof(__le32) * (1 + !!checksum2_valid);
352 }
353
354 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
355 {
356         struct r5l_io_unit *io = log->current_io;
357
358         if (io->need_split_bio) {
359                 struct bio *prev = io->current_bio;
360
361                 io->current_bio = r5l_bio_alloc(log);
362                 bio_chain(io->current_bio, prev);
363
364                 submit_bio(WRITE, prev);
365         }
366
367         if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
368                 BUG();
369
370         r5_reserve_log_entry(log, io);
371 }
372
373 static void r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
374                            int data_pages, int parity_pages)
375 {
376         int i;
377         int meta_size;
378         struct r5l_io_unit *io;
379
380         meta_size =
381                 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
382                  * data_pages) +
383                 sizeof(struct r5l_payload_data_parity) +
384                 sizeof(__le32) * parity_pages;
385
386         r5l_get_meta(log, meta_size);
387         io = log->current_io;
388
389         for (i = 0; i < sh->disks; i++) {
390                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
391                         continue;
392                 if (i == sh->pd_idx || i == sh->qd_idx)
393                         continue;
394                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
395                                         raid5_compute_blocknr(sh, i, 0),
396                                         sh->dev[i].log_checksum, 0, false);
397                 r5l_append_payload_page(log, sh->dev[i].page);
398         }
399
400         if (sh->qd_idx >= 0) {
401                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
402                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
403                                         sh->dev[sh->qd_idx].log_checksum, true);
404                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
405                 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
406         } else {
407                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
408                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
409                                         0, false);
410                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
411         }
412
413         list_add_tail(&sh->log_list, &io->stripe_list);
414         atomic_inc(&io->pending_stripe);
415         sh->log_io = io;
416 }
417
418 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
419 /*
420  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
421  * data from log to raid disks), so we shouldn't wait for reclaim here
422  */
423 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
424 {
425         int write_disks = 0;
426         int data_pages, parity_pages;
427         int meta_size;
428         int reserve;
429         int i;
430
431         if (!log)
432                 return -EAGAIN;
433         /* Don't support stripe batch */
434         if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
435             test_bit(STRIPE_SYNCING, &sh->state)) {
436                 /* the stripe is written to log, we start writing it to raid */
437                 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
438                 return -EAGAIN;
439         }
440
441         for (i = 0; i < sh->disks; i++) {
442                 void *addr;
443
444                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
445                         continue;
446                 write_disks++;
447                 /* checksum is already calculated in last run */
448                 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
449                         continue;
450                 addr = kmap_atomic(sh->dev[i].page);
451                 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
452                                                     addr, PAGE_SIZE);
453                 kunmap_atomic(addr);
454         }
455         parity_pages = 1 + !!(sh->qd_idx >= 0);
456         data_pages = write_disks - parity_pages;
457
458         meta_size =
459                 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
460                  * data_pages) +
461                 sizeof(struct r5l_payload_data_parity) +
462                 sizeof(__le32) * parity_pages;
463         /* Doesn't work with very big raid array */
464         if (meta_size + sizeof(struct r5l_meta_block) > PAGE_SIZE)
465                 return -EINVAL;
466
467         set_bit(STRIPE_LOG_TRAPPED, &sh->state);
468         /*
469          * The stripe must enter state machine again to finish the write, so
470          * don't delay.
471          */
472         clear_bit(STRIPE_DELAYED, &sh->state);
473         atomic_inc(&sh->count);
474
475         mutex_lock(&log->io_mutex);
476         /* meta + data */
477         reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
478         if (r5l_has_free_space(log, reserve))
479                 r5l_log_stripe(log, sh, data_pages, parity_pages);
480         else {
481                 spin_lock(&log->no_space_stripes_lock);
482                 list_add_tail(&sh->log_list, &log->no_space_stripes);
483                 spin_unlock(&log->no_space_stripes_lock);
484
485                 r5l_wake_reclaim(log, reserve);
486         }
487         mutex_unlock(&log->io_mutex);
488
489         return 0;
490 }
491
492 void r5l_write_stripe_run(struct r5l_log *log)
493 {
494         if (!log)
495                 return;
496         mutex_lock(&log->io_mutex);
497         r5l_submit_current_io(log);
498         mutex_unlock(&log->io_mutex);
499 }
500
501 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
502 {
503         if (!log)
504                 return -ENODEV;
505         /*
506          * we flush log disk cache first, then write stripe data to raid disks.
507          * So if bio is finished, the log disk cache is flushed already. The
508          * recovery guarantees we can recovery the bio from log disk, so we
509          * don't need to flush again
510          */
511         if (bio->bi_iter.bi_size == 0) {
512                 bio_endio(bio);
513                 return 0;
514         }
515         bio->bi_rw &= ~REQ_FLUSH;
516         return -EAGAIN;
517 }
518
519 /* This will run after log space is reclaimed */
520 static void r5l_run_no_space_stripes(struct r5l_log *log)
521 {
522         struct stripe_head *sh;
523
524         spin_lock(&log->no_space_stripes_lock);
525         while (!list_empty(&log->no_space_stripes)) {
526                 sh = list_first_entry(&log->no_space_stripes,
527                                       struct stripe_head, log_list);
528                 list_del_init(&sh->log_list);
529                 set_bit(STRIPE_HANDLE, &sh->state);
530                 raid5_release_stripe(sh);
531         }
532         spin_unlock(&log->no_space_stripes_lock);
533 }
534
535 static sector_t r5l_reclaimable_space(struct r5l_log *log)
536 {
537         return r5l_ring_distance(log, log->last_checkpoint,
538                                  log->next_checkpoint);
539 }
540
541 static bool r5l_complete_finished_ios(struct r5l_log *log)
542 {
543         struct r5l_io_unit *io, *next;
544         bool found = false;
545
546         assert_spin_locked(&log->io_list_lock);
547
548         list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
549                 /* don't change list order */
550                 if (io->state < IO_UNIT_STRIPE_END)
551                         break;
552
553                 log->next_checkpoint = io->log_start;
554                 log->next_cp_seq = io->seq;
555
556                 list_del(&io->log_sibling);
557                 r5l_free_io_unit(log, io);
558
559                 found = true;
560         }
561
562         return found;
563 }
564
565 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
566 {
567         struct r5l_log *log = io->log;
568         unsigned long flags;
569
570         spin_lock_irqsave(&log->io_list_lock, flags);
571         __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
572
573         if (!r5l_complete_finished_ios(log)) {
574                 spin_unlock_irqrestore(&log->io_list_lock, flags);
575                 return;
576         }
577
578         if (r5l_reclaimable_space(log) > log->max_free_space)
579                 r5l_wake_reclaim(log, 0);
580
581         spin_unlock_irqrestore(&log->io_list_lock, flags);
582         wake_up(&log->iounit_wait);
583 }
584
585 void r5l_stripe_write_finished(struct stripe_head *sh)
586 {
587         struct r5l_io_unit *io;
588
589         io = sh->log_io;
590         sh->log_io = NULL;
591
592         if (io && atomic_dec_and_test(&io->pending_stripe))
593                 __r5l_stripe_write_finished(io);
594 }
595
596 static void r5l_log_flush_endio(struct bio *bio)
597 {
598         struct r5l_log *log = container_of(bio, struct r5l_log,
599                 flush_bio);
600         unsigned long flags;
601         struct r5l_io_unit *io;
602
603         if (bio->bi_error)
604                 md_error(log->rdev->mddev, log->rdev);
605
606         spin_lock_irqsave(&log->io_list_lock, flags);
607         list_for_each_entry(io, &log->flushing_ios, log_sibling)
608                 r5l_io_run_stripes(io);
609         list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
610         spin_unlock_irqrestore(&log->io_list_lock, flags);
611 }
612
613 /*
614  * Starting dispatch IO to raid.
615  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
616  * broken meta in the middle of a log causes recovery can't find meta at the
617  * head of log. If operations require meta at the head persistent in log, we
618  * must make sure meta before it persistent in log too. A case is:
619  *
620  * stripe data/parity is in log, we start write stripe to raid disks. stripe
621  * data/parity must be persistent in log before we do the write to raid disks.
622  *
623  * The solution is we restrictly maintain io_unit list order. In this case, we
624  * only write stripes of an io_unit to raid disks till the io_unit is the first
625  * one whose data/parity is in log.
626  */
627 void r5l_flush_stripe_to_raid(struct r5l_log *log)
628 {
629         bool do_flush;
630
631         if (!log || !log->need_cache_flush)
632                 return;
633
634         spin_lock_irq(&log->io_list_lock);
635         /* flush bio is running */
636         if (!list_empty(&log->flushing_ios)) {
637                 spin_unlock_irq(&log->io_list_lock);
638                 return;
639         }
640         list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
641         do_flush = !list_empty(&log->flushing_ios);
642         spin_unlock_irq(&log->io_list_lock);
643
644         if (!do_flush)
645                 return;
646         bio_reset(&log->flush_bio);
647         log->flush_bio.bi_bdev = log->rdev->bdev;
648         log->flush_bio.bi_end_io = r5l_log_flush_endio;
649         submit_bio(WRITE_FLUSH, &log->flush_bio);
650 }
651
652 static void r5l_write_super(struct r5l_log *log, sector_t cp);
653 static void r5l_write_super_and_discard_space(struct r5l_log *log,
654         sector_t end)
655 {
656         struct block_device *bdev = log->rdev->bdev;
657         struct mddev *mddev;
658
659         r5l_write_super(log, end);
660
661         if (!blk_queue_discard(bdev_get_queue(bdev)))
662                 return;
663
664         mddev = log->rdev->mddev;
665         /*
666          * This is to avoid a deadlock. r5l_quiesce holds reconfig_mutex and
667          * wait for this thread to finish. This thread waits for
668          * MD_CHANGE_PENDING clear, which is supposed to be done in
669          * md_check_recovery(). md_check_recovery() tries to get
670          * reconfig_mutex. Since r5l_quiesce already holds the mutex,
671          * md_check_recovery() fails, so the PENDING never get cleared. The
672          * in_teardown check workaround this issue.
673          */
674         if (!log->in_teardown) {
675                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
676                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
677                 md_wakeup_thread(mddev->thread);
678                 wait_event(mddev->sb_wait,
679                         !test_bit(MD_CHANGE_PENDING, &mddev->flags) ||
680                         log->in_teardown);
681                 /*
682                  * r5l_quiesce could run after in_teardown check and hold
683                  * mutex first. Superblock might get updated twice.
684                  */
685                 if (log->in_teardown)
686                         md_update_sb(mddev, 1);
687         } else {
688                 WARN_ON(!mddev_is_locked(mddev));
689                 md_update_sb(mddev, 1);
690         }
691
692         /* discard IO error really doesn't matter, ignore it */
693         if (log->last_checkpoint < end) {
694                 blkdev_issue_discard(bdev,
695                                 log->last_checkpoint + log->rdev->data_offset,
696                                 end - log->last_checkpoint, GFP_NOIO, 0);
697         } else {
698                 blkdev_issue_discard(bdev,
699                                 log->last_checkpoint + log->rdev->data_offset,
700                                 log->device_size - log->last_checkpoint,
701                                 GFP_NOIO, 0);
702                 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
703                                 GFP_NOIO, 0);
704         }
705 }
706
707
708 static void r5l_do_reclaim(struct r5l_log *log)
709 {
710         sector_t reclaim_target = xchg(&log->reclaim_target, 0);
711         sector_t reclaimable;
712         sector_t next_checkpoint;
713         u64 next_cp_seq;
714
715         spin_lock_irq(&log->io_list_lock);
716         /*
717          * move proper io_unit to reclaim list. We should not change the order.
718          * reclaimable/unreclaimable io_unit can be mixed in the list, we
719          * shouldn't reuse space of an unreclaimable io_unit
720          */
721         while (1) {
722                 reclaimable = r5l_reclaimable_space(log);
723                 if (reclaimable >= reclaim_target ||
724                     (list_empty(&log->running_ios) &&
725                      list_empty(&log->io_end_ios) &&
726                      list_empty(&log->flushing_ios) &&
727                      list_empty(&log->finished_ios)))
728                         break;
729
730                 md_wakeup_thread(log->rdev->mddev->thread);
731                 wait_event_lock_irq(log->iounit_wait,
732                                     r5l_reclaimable_space(log) > reclaimable,
733                                     log->io_list_lock);
734         }
735
736         next_checkpoint = log->next_checkpoint;
737         next_cp_seq = log->next_cp_seq;
738         spin_unlock_irq(&log->io_list_lock);
739
740         BUG_ON(reclaimable < 0);
741         if (reclaimable == 0)
742                 return;
743
744         /*
745          * write_super will flush cache of each raid disk. We must write super
746          * here, because the log area might be reused soon and we don't want to
747          * confuse recovery
748          */
749         r5l_write_super_and_discard_space(log, next_checkpoint);
750
751         mutex_lock(&log->io_mutex);
752         log->last_checkpoint = next_checkpoint;
753         log->last_cp_seq = next_cp_seq;
754         mutex_unlock(&log->io_mutex);
755
756         r5l_run_no_space_stripes(log);
757 }
758
759 static void r5l_reclaim_thread(struct md_thread *thread)
760 {
761         struct mddev *mddev = thread->mddev;
762         struct r5conf *conf = mddev->private;
763         struct r5l_log *log = conf->log;
764
765         if (!log)
766                 return;
767         r5l_do_reclaim(log);
768 }
769
770 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
771 {
772         unsigned long target;
773         unsigned long new = (unsigned long)space; /* overflow in theory */
774
775         do {
776                 target = log->reclaim_target;
777                 if (new < target)
778                         return;
779         } while (cmpxchg(&log->reclaim_target, target, new) != target);
780         md_wakeup_thread(log->reclaim_thread);
781 }
782
783 void r5l_quiesce(struct r5l_log *log, int state)
784 {
785         struct mddev *mddev;
786         if (!log || state == 2)
787                 return;
788         if (state == 0) {
789                 log->in_teardown = 0;
790                 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
791                                         log->rdev->mddev, "reclaim");
792         } else if (state == 1) {
793                 /*
794                  * at this point all stripes are finished, so io_unit is at
795                  * least in STRIPE_END state
796                  */
797                 log->in_teardown = 1;
798                 /* make sure r5l_write_super_and_discard_space exits */
799                 mddev = log->rdev->mddev;
800                 wake_up(&mddev->sb_wait);
801                 r5l_wake_reclaim(log, -1L);
802                 md_unregister_thread(&log->reclaim_thread);
803                 r5l_do_reclaim(log);
804         }
805 }
806
807 bool r5l_log_disk_error(struct r5conf *conf)
808 {
809         /* don't allow write if journal disk is missing */
810         if (!conf->log)
811                 return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
812         return test_bit(Faulty, &conf->log->rdev->flags);
813 }
814
815 struct r5l_recovery_ctx {
816         struct page *meta_page;         /* current meta */
817         sector_t meta_total_blocks;     /* total size of current meta and data */
818         sector_t pos;                   /* recovery position */
819         u64 seq;                        /* recovery position seq */
820 };
821
822 static int r5l_read_meta_block(struct r5l_log *log,
823                                struct r5l_recovery_ctx *ctx)
824 {
825         struct page *page = ctx->meta_page;
826         struct r5l_meta_block *mb;
827         u32 crc, stored_crc;
828
829         if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, READ, false))
830                 return -EIO;
831
832         mb = page_address(page);
833         stored_crc = le32_to_cpu(mb->checksum);
834         mb->checksum = 0;
835
836         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
837             le64_to_cpu(mb->seq) != ctx->seq ||
838             mb->version != R5LOG_VERSION ||
839             le64_to_cpu(mb->position) != ctx->pos)
840                 return -EINVAL;
841
842         crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
843         if (stored_crc != crc)
844                 return -EINVAL;
845
846         if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
847                 return -EINVAL;
848
849         ctx->meta_total_blocks = BLOCK_SECTORS;
850
851         return 0;
852 }
853
854 static int r5l_recovery_flush_one_stripe(struct r5l_log *log,
855                                          struct r5l_recovery_ctx *ctx,
856                                          sector_t stripe_sect,
857                                          int *offset, sector_t *log_offset)
858 {
859         struct r5conf *conf = log->rdev->mddev->private;
860         struct stripe_head *sh;
861         struct r5l_payload_data_parity *payload;
862         int disk_index;
863
864         sh = raid5_get_active_stripe(conf, stripe_sect, 0, 0, 0);
865         while (1) {
866                 payload = page_address(ctx->meta_page) + *offset;
867
868                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
869                         raid5_compute_sector(conf,
870                                              le64_to_cpu(payload->location), 0,
871                                              &disk_index, sh);
872
873                         sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
874                                      sh->dev[disk_index].page, READ, false);
875                         sh->dev[disk_index].log_checksum =
876                                 le32_to_cpu(payload->checksum[0]);
877                         set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
878                         ctx->meta_total_blocks += BLOCK_SECTORS;
879                 } else {
880                         disk_index = sh->pd_idx;
881                         sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
882                                      sh->dev[disk_index].page, READ, false);
883                         sh->dev[disk_index].log_checksum =
884                                 le32_to_cpu(payload->checksum[0]);
885                         set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
886
887                         if (sh->qd_idx >= 0) {
888                                 disk_index = sh->qd_idx;
889                                 sync_page_io(log->rdev,
890                                              r5l_ring_add(log, *log_offset, BLOCK_SECTORS),
891                                              PAGE_SIZE, sh->dev[disk_index].page,
892                                              READ, false);
893                                 sh->dev[disk_index].log_checksum =
894                                         le32_to_cpu(payload->checksum[1]);
895                                 set_bit(R5_Wantwrite,
896                                         &sh->dev[disk_index].flags);
897                         }
898                         ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
899                 }
900
901                 *log_offset = r5l_ring_add(log, *log_offset,
902                                            le32_to_cpu(payload->size));
903                 *offset += sizeof(struct r5l_payload_data_parity) +
904                         sizeof(__le32) *
905                         (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
906                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
907                         break;
908         }
909
910         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
911                 void *addr;
912                 u32 checksum;
913
914                 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
915                         continue;
916                 addr = kmap_atomic(sh->dev[disk_index].page);
917                 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
918                 kunmap_atomic(addr);
919                 if (checksum != sh->dev[disk_index].log_checksum)
920                         goto error;
921         }
922
923         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
924                 struct md_rdev *rdev, *rrdev;
925
926                 if (!test_and_clear_bit(R5_Wantwrite,
927                                         &sh->dev[disk_index].flags))
928                         continue;
929
930                 /* in case device is broken */
931                 rdev = rcu_dereference(conf->disks[disk_index].rdev);
932                 if (rdev)
933                         sync_page_io(rdev, stripe_sect, PAGE_SIZE,
934                                      sh->dev[disk_index].page, WRITE, false);
935                 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
936                 if (rrdev)
937                         sync_page_io(rrdev, stripe_sect, PAGE_SIZE,
938                                      sh->dev[disk_index].page, WRITE, false);
939         }
940         raid5_release_stripe(sh);
941         return 0;
942
943 error:
944         for (disk_index = 0; disk_index < sh->disks; disk_index++)
945                 sh->dev[disk_index].flags = 0;
946         raid5_release_stripe(sh);
947         return -EINVAL;
948 }
949
950 static int r5l_recovery_flush_one_meta(struct r5l_log *log,
951                                        struct r5l_recovery_ctx *ctx)
952 {
953         struct r5conf *conf = log->rdev->mddev->private;
954         struct r5l_payload_data_parity *payload;
955         struct r5l_meta_block *mb;
956         int offset;
957         sector_t log_offset;
958         sector_t stripe_sector;
959
960         mb = page_address(ctx->meta_page);
961         offset = sizeof(struct r5l_meta_block);
962         log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
963
964         while (offset < le32_to_cpu(mb->meta_size)) {
965                 int dd;
966
967                 payload = (void *)mb + offset;
968                 stripe_sector = raid5_compute_sector(conf,
969                                                      le64_to_cpu(payload->location), 0, &dd, NULL);
970                 if (r5l_recovery_flush_one_stripe(log, ctx, stripe_sector,
971                                                   &offset, &log_offset))
972                         return -EINVAL;
973         }
974         return 0;
975 }
976
977 /* copy data/parity from log to raid disks */
978 static void r5l_recovery_flush_log(struct r5l_log *log,
979                                    struct r5l_recovery_ctx *ctx)
980 {
981         while (1) {
982                 if (r5l_read_meta_block(log, ctx))
983                         return;
984                 if (r5l_recovery_flush_one_meta(log, ctx))
985                         return;
986                 ctx->seq++;
987                 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
988         }
989 }
990
991 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
992                                           u64 seq)
993 {
994         struct page *page;
995         struct r5l_meta_block *mb;
996         u32 crc;
997
998         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
999         if (!page)
1000                 return -ENOMEM;
1001         mb = page_address(page);
1002         mb->magic = cpu_to_le32(R5LOG_MAGIC);
1003         mb->version = R5LOG_VERSION;
1004         mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1005         mb->seq = cpu_to_le64(seq);
1006         mb->position = cpu_to_le64(pos);
1007         crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1008         mb->checksum = cpu_to_le32(crc);
1009
1010         if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, WRITE_FUA, false)) {
1011                 __free_page(page);
1012                 return -EIO;
1013         }
1014         __free_page(page);
1015         return 0;
1016 }
1017
1018 static int r5l_recovery_log(struct r5l_log *log)
1019 {
1020         struct r5l_recovery_ctx ctx;
1021
1022         ctx.pos = log->last_checkpoint;
1023         ctx.seq = log->last_cp_seq;
1024         ctx.meta_page = alloc_page(GFP_KERNEL);
1025         if (!ctx.meta_page)
1026                 return -ENOMEM;
1027
1028         r5l_recovery_flush_log(log, &ctx);
1029         __free_page(ctx.meta_page);
1030
1031         /*
1032          * we did a recovery. Now ctx.pos points to an invalid meta block. New
1033          * log will start here. but we can't let superblock point to last valid
1034          * meta block. The log might looks like:
1035          * | meta 1| meta 2| meta 3|
1036          * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
1037          * superblock points to meta 1, we write a new valid meta 2n.  if crash
1038          * happens again, new recovery will start from meta 1. Since meta 2n is
1039          * valid now, recovery will think meta 3 is valid, which is wrong.
1040          * The solution is we create a new meta in meta2 with its seq == meta
1041          * 1's seq + 10 and let superblock points to meta2. The same recovery will
1042          * not think meta 3 is a valid meta, because its seq doesn't match
1043          */
1044         if (ctx.seq > log->last_cp_seq + 1) {
1045                 int ret;
1046
1047                 ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10);
1048                 if (ret)
1049                         return ret;
1050                 log->seq = ctx.seq + 11;
1051                 log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
1052                 r5l_write_super(log, ctx.pos);
1053         } else {
1054                 log->log_start = ctx.pos;
1055                 log->seq = ctx.seq;
1056         }
1057         return 0;
1058 }
1059
1060 static void r5l_write_super(struct r5l_log *log, sector_t cp)
1061 {
1062         struct mddev *mddev = log->rdev->mddev;
1063
1064         log->rdev->journal_tail = cp;
1065         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1066 }
1067
1068 static int r5l_load_log(struct r5l_log *log)
1069 {
1070         struct md_rdev *rdev = log->rdev;
1071         struct page *page;
1072         struct r5l_meta_block *mb;
1073         sector_t cp = log->rdev->journal_tail;
1074         u32 stored_crc, expected_crc;
1075         bool create_super = false;
1076         int ret;
1077
1078         /* Make sure it's valid */
1079         if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
1080                 cp = 0;
1081         page = alloc_page(GFP_KERNEL);
1082         if (!page)
1083                 return -ENOMEM;
1084
1085         if (!sync_page_io(rdev, cp, PAGE_SIZE, page, READ, false)) {
1086                 ret = -EIO;
1087                 goto ioerr;
1088         }
1089         mb = page_address(page);
1090
1091         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1092             mb->version != R5LOG_VERSION) {
1093                 create_super = true;
1094                 goto create;
1095         }
1096         stored_crc = le32_to_cpu(mb->checksum);
1097         mb->checksum = 0;
1098         expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1099         if (stored_crc != expected_crc) {
1100                 create_super = true;
1101                 goto create;
1102         }
1103         if (le64_to_cpu(mb->position) != cp) {
1104                 create_super = true;
1105                 goto create;
1106         }
1107 create:
1108         if (create_super) {
1109                 log->last_cp_seq = prandom_u32();
1110                 cp = 0;
1111                 /*
1112                  * Make sure super points to correct address. Log might have
1113                  * data very soon. If super hasn't correct log tail address,
1114                  * recovery can't find the log
1115                  */
1116                 r5l_write_super(log, cp);
1117         } else
1118                 log->last_cp_seq = le64_to_cpu(mb->seq);
1119
1120         log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
1121         log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
1122         if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
1123                 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
1124         log->last_checkpoint = cp;
1125
1126         __free_page(page);
1127
1128         return r5l_recovery_log(log);
1129 ioerr:
1130         __free_page(page);
1131         return ret;
1132 }
1133
1134 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
1135 {
1136         struct r5l_log *log;
1137
1138         if (PAGE_SIZE != 4096)
1139                 return -EINVAL;
1140         log = kzalloc(sizeof(*log), GFP_KERNEL);
1141         if (!log)
1142                 return -ENOMEM;
1143         log->rdev = rdev;
1144
1145         log->need_cache_flush = (rdev->bdev->bd_disk->queue->flush_flags != 0);
1146
1147         log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
1148                                        sizeof(rdev->mddev->uuid));
1149
1150         mutex_init(&log->io_mutex);
1151
1152         spin_lock_init(&log->io_list_lock);
1153         INIT_LIST_HEAD(&log->running_ios);
1154         INIT_LIST_HEAD(&log->io_end_ios);
1155         INIT_LIST_HEAD(&log->flushing_ios);
1156         INIT_LIST_HEAD(&log->finished_ios);
1157         bio_init(&log->flush_bio);
1158
1159         log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
1160         if (!log->io_kc)
1161                 goto io_kc;
1162
1163         log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
1164                                                  log->rdev->mddev, "reclaim");
1165         if (!log->reclaim_thread)
1166                 goto reclaim_thread;
1167         init_waitqueue_head(&log->iounit_wait);
1168
1169         INIT_LIST_HEAD(&log->no_space_stripes);
1170         spin_lock_init(&log->no_space_stripes_lock);
1171
1172         if (r5l_load_log(log))
1173                 goto error;
1174
1175         conf->log = log;
1176         return 0;
1177 error:
1178         md_unregister_thread(&log->reclaim_thread);
1179 reclaim_thread:
1180         kmem_cache_destroy(log->io_kc);
1181 io_kc:
1182         kfree(log);
1183         return -EINVAL;
1184 }
1185
1186 void r5l_exit_log(struct r5l_log *log)
1187 {
1188         md_unregister_thread(&log->reclaim_thread);
1189         kmem_cache_destroy(log->io_kc);
1190         kfree(log);
1191 }