Merge commit 'ed30f24e8d07d30aa3e69d1f508f4d7bd2e8ea14' of git://git.linaro.org/landi...
[firefly-linux-kernel-4.4.55.git] / drivers / md / bcache / super.c
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13
14 #include <linux/buffer_head.h>
15 #include <linux/debugfs.h>
16 #include <linux/genhd.h>
17 #include <linux/module.h>
18 #include <linux/random.h>
19 #include <linux/reboot.h>
20 #include <linux/sysfs.h>
21
22 MODULE_LICENSE("GPL");
23 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
24
25 static const char bcache_magic[] = {
26         0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
27         0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
28 };
29
30 static const char invalid_uuid[] = {
31         0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
32         0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
33 };
34
35 /* Default is -1; we skip past it for struct cached_dev's cache mode */
36 const char * const bch_cache_modes[] = {
37         "default",
38         "writethrough",
39         "writeback",
40         "writearound",
41         "none",
42         NULL
43 };
44
45 struct uuid_entry_v0 {
46         uint8_t         uuid[16];
47         uint8_t         label[32];
48         uint32_t        first_reg;
49         uint32_t        last_reg;
50         uint32_t        invalidated;
51         uint32_t        pad;
52 };
53
54 static struct kobject *bcache_kobj;
55 struct mutex bch_register_lock;
56 LIST_HEAD(bch_cache_sets);
57 static LIST_HEAD(uncached_devices);
58
59 static int bcache_major, bcache_minor;
60 static wait_queue_head_t unregister_wait;
61 struct workqueue_struct *bcache_wq;
62
63 #define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
64
65 static void bio_split_pool_free(struct bio_split_pool *p)
66 {
67         if (p->bio_split_hook)
68                 mempool_destroy(p->bio_split_hook);
69
70         if (p->bio_split)
71                 bioset_free(p->bio_split);
72 }
73
74 static int bio_split_pool_init(struct bio_split_pool *p)
75 {
76         p->bio_split = bioset_create(4, 0);
77         if (!p->bio_split)
78                 return -ENOMEM;
79
80         p->bio_split_hook = mempool_create_kmalloc_pool(4,
81                                 sizeof(struct bio_split_hook));
82         if (!p->bio_split_hook)
83                 return -ENOMEM;
84
85         return 0;
86 }
87
88 /* Superblock */
89
90 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
91                               struct page **res)
92 {
93         const char *err;
94         struct cache_sb *s;
95         struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
96         unsigned i;
97
98         if (!bh)
99                 return "IO error";
100
101         s = (struct cache_sb *) bh->b_data;
102
103         sb->offset              = le64_to_cpu(s->offset);
104         sb->version             = le64_to_cpu(s->version);
105
106         memcpy(sb->magic,       s->magic, 16);
107         memcpy(sb->uuid,        s->uuid, 16);
108         memcpy(sb->set_uuid,    s->set_uuid, 16);
109         memcpy(sb->label,       s->label, SB_LABEL_SIZE);
110
111         sb->flags               = le64_to_cpu(s->flags);
112         sb->seq                 = le64_to_cpu(s->seq);
113         sb->last_mount          = le32_to_cpu(s->last_mount);
114         sb->first_bucket        = le16_to_cpu(s->first_bucket);
115         sb->keys                = le16_to_cpu(s->keys);
116
117         for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
118                 sb->d[i] = le64_to_cpu(s->d[i]);
119
120         pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
121                  sb->version, sb->flags, sb->seq, sb->keys);
122
123         err = "Not a bcache superblock";
124         if (sb->offset != SB_SECTOR)
125                 goto err;
126
127         if (memcmp(sb->magic, bcache_magic, 16))
128                 goto err;
129
130         err = "Too many journal buckets";
131         if (sb->keys > SB_JOURNAL_BUCKETS)
132                 goto err;
133
134         err = "Bad checksum";
135         if (s->csum != csum_set(s))
136                 goto err;
137
138         err = "Bad UUID";
139         if (bch_is_zero(sb->uuid, 16))
140                 goto err;
141
142         sb->block_size  = le16_to_cpu(s->block_size);
143
144         err = "Superblock block size smaller than device block size";
145         if (sb->block_size << 9 < bdev_logical_block_size(bdev))
146                 goto err;
147
148         switch (sb->version) {
149         case BCACHE_SB_VERSION_BDEV:
150                 sb->data_offset = BDEV_DATA_START_DEFAULT;
151                 break;
152         case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
153                 sb->data_offset = le64_to_cpu(s->data_offset);
154
155                 err = "Bad data offset";
156                 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
157                         goto err;
158
159                 break;
160         case BCACHE_SB_VERSION_CDEV:
161         case BCACHE_SB_VERSION_CDEV_WITH_UUID:
162                 sb->nbuckets    = le64_to_cpu(s->nbuckets);
163                 sb->block_size  = le16_to_cpu(s->block_size);
164                 sb->bucket_size = le16_to_cpu(s->bucket_size);
165
166                 sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
167                 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
168
169                 err = "Too many buckets";
170                 if (sb->nbuckets > LONG_MAX)
171                         goto err;
172
173                 err = "Not enough buckets";
174                 if (sb->nbuckets < 1 << 7)
175                         goto err;
176
177                 err = "Bad block/bucket size";
178                 if (!is_power_of_2(sb->block_size) ||
179                     sb->block_size > PAGE_SECTORS ||
180                     !is_power_of_2(sb->bucket_size) ||
181                     sb->bucket_size < PAGE_SECTORS)
182                         goto err;
183
184                 err = "Invalid superblock: device too small";
185                 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
186                         goto err;
187
188                 err = "Bad UUID";
189                 if (bch_is_zero(sb->set_uuid, 16))
190                         goto err;
191
192                 err = "Bad cache device number in set";
193                 if (!sb->nr_in_set ||
194                     sb->nr_in_set <= sb->nr_this_dev ||
195                     sb->nr_in_set > MAX_CACHES_PER_SET)
196                         goto err;
197
198                 err = "Journal buckets not sequential";
199                 for (i = 0; i < sb->keys; i++)
200                         if (sb->d[i] != sb->first_bucket + i)
201                                 goto err;
202
203                 err = "Too many journal buckets";
204                 if (sb->first_bucket + sb->keys > sb->nbuckets)
205                         goto err;
206
207                 err = "Invalid superblock: first bucket comes before end of super";
208                 if (sb->first_bucket * sb->bucket_size < 16)
209                         goto err;
210
211                 break;
212         default:
213                 err = "Unsupported superblock version";
214                 goto err;
215         }
216
217         sb->last_mount = get_seconds();
218         err = NULL;
219
220         get_page(bh->b_page);
221         *res = bh->b_page;
222 err:
223         put_bh(bh);
224         return err;
225 }
226
227 static void write_bdev_super_endio(struct bio *bio, int error)
228 {
229         struct cached_dev *dc = bio->bi_private;
230         /* XXX: error checking */
231
232         closure_put(&dc->sb_write.cl);
233 }
234
235 static void __write_super(struct cache_sb *sb, struct bio *bio)
236 {
237         struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
238         unsigned i;
239
240         bio->bi_sector  = SB_SECTOR;
241         bio->bi_rw      = REQ_SYNC|REQ_META;
242         bio->bi_size    = SB_SIZE;
243         bch_bio_map(bio, NULL);
244
245         out->offset             = cpu_to_le64(sb->offset);
246         out->version            = cpu_to_le64(sb->version);
247
248         memcpy(out->uuid,       sb->uuid, 16);
249         memcpy(out->set_uuid,   sb->set_uuid, 16);
250         memcpy(out->label,      sb->label, SB_LABEL_SIZE);
251
252         out->flags              = cpu_to_le64(sb->flags);
253         out->seq                = cpu_to_le64(sb->seq);
254
255         out->last_mount         = cpu_to_le32(sb->last_mount);
256         out->first_bucket       = cpu_to_le16(sb->first_bucket);
257         out->keys               = cpu_to_le16(sb->keys);
258
259         for (i = 0; i < sb->keys; i++)
260                 out->d[i] = cpu_to_le64(sb->d[i]);
261
262         out->csum = csum_set(out);
263
264         pr_debug("ver %llu, flags %llu, seq %llu",
265                  sb->version, sb->flags, sb->seq);
266
267         submit_bio(REQ_WRITE, bio);
268 }
269
270 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
271 {
272         struct closure *cl = &dc->sb_write.cl;
273         struct bio *bio = &dc->sb_bio;
274
275         closure_lock(&dc->sb_write, parent);
276
277         bio_reset(bio);
278         bio->bi_bdev    = dc->bdev;
279         bio->bi_end_io  = write_bdev_super_endio;
280         bio->bi_private = dc;
281
282         closure_get(cl);
283         __write_super(&dc->sb, bio);
284
285         closure_return(cl);
286 }
287
288 static void write_super_endio(struct bio *bio, int error)
289 {
290         struct cache *ca = bio->bi_private;
291
292         bch_count_io_errors(ca, error, "writing superblock");
293         closure_put(&ca->set->sb_write.cl);
294 }
295
296 void bcache_write_super(struct cache_set *c)
297 {
298         struct closure *cl = &c->sb_write.cl;
299         struct cache *ca;
300         unsigned i;
301
302         closure_lock(&c->sb_write, &c->cl);
303
304         c->sb.seq++;
305
306         for_each_cache(ca, c, i) {
307                 struct bio *bio = &ca->sb_bio;
308
309                 ca->sb.version          = BCACHE_SB_VERSION_CDEV_WITH_UUID;
310                 ca->sb.seq              = c->sb.seq;
311                 ca->sb.last_mount       = c->sb.last_mount;
312
313                 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
314
315                 bio_reset(bio);
316                 bio->bi_bdev    = ca->bdev;
317                 bio->bi_end_io  = write_super_endio;
318                 bio->bi_private = ca;
319
320                 closure_get(cl);
321                 __write_super(&ca->sb, bio);
322         }
323
324         closure_return(cl);
325 }
326
327 /* UUID io */
328
329 static void uuid_endio(struct bio *bio, int error)
330 {
331         struct closure *cl = bio->bi_private;
332         struct cache_set *c = container_of(cl, struct cache_set, uuid_write.cl);
333
334         cache_set_err_on(error, c, "accessing uuids");
335         bch_bbio_free(bio, c);
336         closure_put(cl);
337 }
338
339 static void uuid_io(struct cache_set *c, unsigned long rw,
340                     struct bkey *k, struct closure *parent)
341 {
342         struct closure *cl = &c->uuid_write.cl;
343         struct uuid_entry *u;
344         unsigned i;
345
346         BUG_ON(!parent);
347         closure_lock(&c->uuid_write, parent);
348
349         for (i = 0; i < KEY_PTRS(k); i++) {
350                 struct bio *bio = bch_bbio_alloc(c);
351
352                 bio->bi_rw      = REQ_SYNC|REQ_META|rw;
353                 bio->bi_size    = KEY_SIZE(k) << 9;
354
355                 bio->bi_end_io  = uuid_endio;
356                 bio->bi_private = cl;
357                 bch_bio_map(bio, c->uuids);
358
359                 bch_submit_bbio(bio, c, k, i);
360
361                 if (!(rw & WRITE))
362                         break;
363         }
364
365         pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read",
366                  pkey(&c->uuid_bucket));
367
368         for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
369                 if (!bch_is_zero(u->uuid, 16))
370                         pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
371                                  u - c->uuids, u->uuid, u->label,
372                                  u->first_reg, u->last_reg, u->invalidated);
373
374         closure_return(cl);
375 }
376
377 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
378 {
379         struct bkey *k = &j->uuid_bucket;
380
381         if (__bch_ptr_invalid(c, 1, k))
382                 return "bad uuid pointer";
383
384         bkey_copy(&c->uuid_bucket, k);
385         uuid_io(c, READ_SYNC, k, cl);
386
387         if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
388                 struct uuid_entry_v0    *u0 = (void *) c->uuids;
389                 struct uuid_entry       *u1 = (void *) c->uuids;
390                 int i;
391
392                 closure_sync(cl);
393
394                 /*
395                  * Since the new uuid entry is bigger than the old, we have to
396                  * convert starting at the highest memory address and work down
397                  * in order to do it in place
398                  */
399
400                 for (i = c->nr_uuids - 1;
401                      i >= 0;
402                      --i) {
403                         memcpy(u1[i].uuid,      u0[i].uuid, 16);
404                         memcpy(u1[i].label,     u0[i].label, 32);
405
406                         u1[i].first_reg         = u0[i].first_reg;
407                         u1[i].last_reg          = u0[i].last_reg;
408                         u1[i].invalidated       = u0[i].invalidated;
409
410                         u1[i].flags     = 0;
411                         u1[i].sectors   = 0;
412                 }
413         }
414
415         return NULL;
416 }
417
418 static int __uuid_write(struct cache_set *c)
419 {
420         BKEY_PADDED(key) k;
421         struct closure cl;
422         closure_init_stack(&cl);
423
424         lockdep_assert_held(&bch_register_lock);
425
426         if (bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, &cl))
427                 return 1;
428
429         SET_KEY_SIZE(&k.key, c->sb.bucket_size);
430         uuid_io(c, REQ_WRITE, &k.key, &cl);
431         closure_sync(&cl);
432
433         bkey_copy(&c->uuid_bucket, &k.key);
434         __bkey_put(c, &k.key);
435         return 0;
436 }
437
438 int bch_uuid_write(struct cache_set *c)
439 {
440         int ret = __uuid_write(c);
441
442         if (!ret)
443                 bch_journal_meta(c, NULL);
444
445         return ret;
446 }
447
448 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
449 {
450         struct uuid_entry *u;
451
452         for (u = c->uuids;
453              u < c->uuids + c->nr_uuids; u++)
454                 if (!memcmp(u->uuid, uuid, 16))
455                         return u;
456
457         return NULL;
458 }
459
460 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
461 {
462         static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
463         return uuid_find(c, zero_uuid);
464 }
465
466 /*
467  * Bucket priorities/gens:
468  *
469  * For each bucket, we store on disk its
470    * 8 bit gen
471    * 16 bit priority
472  *
473  * See alloc.c for an explanation of the gen. The priority is used to implement
474  * lru (and in the future other) cache replacement policies; for most purposes
475  * it's just an opaque integer.
476  *
477  * The gens and the priorities don't have a whole lot to do with each other, and
478  * it's actually the gens that must be written out at specific times - it's no
479  * big deal if the priorities don't get written, if we lose them we just reuse
480  * buckets in suboptimal order.
481  *
482  * On disk they're stored in a packed array, and in as many buckets are required
483  * to fit them all. The buckets we use to store them form a list; the journal
484  * header points to the first bucket, the first bucket points to the second
485  * bucket, et cetera.
486  *
487  * This code is used by the allocation code; periodically (whenever it runs out
488  * of buckets to allocate from) the allocation code will invalidate some
489  * buckets, but it can't use those buckets until their new gens are safely on
490  * disk.
491  */
492
493 static void prio_endio(struct bio *bio, int error)
494 {
495         struct cache *ca = bio->bi_private;
496
497         cache_set_err_on(error, ca->set, "accessing priorities");
498         bch_bbio_free(bio, ca->set);
499         closure_put(&ca->prio);
500 }
501
502 static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
503 {
504         struct closure *cl = &ca->prio;
505         struct bio *bio = bch_bbio_alloc(ca->set);
506
507         closure_init_stack(cl);
508
509         bio->bi_sector  = bucket * ca->sb.bucket_size;
510         bio->bi_bdev    = ca->bdev;
511         bio->bi_rw      = REQ_SYNC|REQ_META|rw;
512         bio->bi_size    = bucket_bytes(ca);
513
514         bio->bi_end_io  = prio_endio;
515         bio->bi_private = ca;
516         bch_bio_map(bio, ca->disk_buckets);
517
518         closure_bio_submit(bio, &ca->prio, ca);
519         closure_sync(cl);
520 }
521
522 #define buckets_free(c) "free %zu, free_inc %zu, unused %zu",           \
523         fifo_used(&c->free), fifo_used(&c->free_inc), fifo_used(&c->unused)
524
525 void bch_prio_write(struct cache *ca)
526 {
527         int i;
528         struct bucket *b;
529         struct closure cl;
530
531         closure_init_stack(&cl);
532
533         lockdep_assert_held(&ca->set->bucket_lock);
534
535         for (b = ca->buckets;
536              b < ca->buckets + ca->sb.nbuckets; b++)
537                 b->disk_gen = b->gen;
538
539         ca->disk_buckets->seq++;
540
541         atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
542                         &ca->meta_sectors_written);
543
544         pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
545                  fifo_used(&ca->free_inc), fifo_used(&ca->unused));
546         blktrace_msg(ca, "Starting priorities: " buckets_free(ca));
547
548         for (i = prio_buckets(ca) - 1; i >= 0; --i) {
549                 long bucket;
550                 struct prio_set *p = ca->disk_buckets;
551                 struct bucket_disk *d = p->data;
552                 struct bucket_disk *end = d + prios_per_bucket(ca);
553
554                 for (b = ca->buckets + i * prios_per_bucket(ca);
555                      b < ca->buckets + ca->sb.nbuckets && d < end;
556                      b++, d++) {
557                         d->prio = cpu_to_le16(b->prio);
558                         d->gen = b->gen;
559                 }
560
561                 p->next_bucket  = ca->prio_buckets[i + 1];
562                 p->magic        = pset_magic(ca);
563                 p->csum         = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
564
565                 bucket = bch_bucket_alloc(ca, WATERMARK_PRIO, &cl);
566                 BUG_ON(bucket == -1);
567
568                 mutex_unlock(&ca->set->bucket_lock);
569                 prio_io(ca, bucket, REQ_WRITE);
570                 mutex_lock(&ca->set->bucket_lock);
571
572                 ca->prio_buckets[i] = bucket;
573                 atomic_dec_bug(&ca->buckets[bucket].pin);
574         }
575
576         mutex_unlock(&ca->set->bucket_lock);
577
578         bch_journal_meta(ca->set, &cl);
579         closure_sync(&cl);
580
581         mutex_lock(&ca->set->bucket_lock);
582
583         ca->need_save_prio = 0;
584
585         /*
586          * Don't want the old priorities to get garbage collected until after we
587          * finish writing the new ones, and they're journalled
588          */
589         for (i = 0; i < prio_buckets(ca); i++)
590                 ca->prio_last_buckets[i] = ca->prio_buckets[i];
591 }
592
593 static void prio_read(struct cache *ca, uint64_t bucket)
594 {
595         struct prio_set *p = ca->disk_buckets;
596         struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
597         struct bucket *b;
598         unsigned bucket_nr = 0;
599
600         for (b = ca->buckets;
601              b < ca->buckets + ca->sb.nbuckets;
602              b++, d++) {
603                 if (d == end) {
604                         ca->prio_buckets[bucket_nr] = bucket;
605                         ca->prio_last_buckets[bucket_nr] = bucket;
606                         bucket_nr++;
607
608                         prio_io(ca, bucket, READ_SYNC);
609
610                         if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
611                                 pr_warn("bad csum reading priorities");
612
613                         if (p->magic != pset_magic(ca))
614                                 pr_warn("bad magic reading priorities");
615
616                         bucket = p->next_bucket;
617                         d = p->data;
618                 }
619
620                 b->prio = le16_to_cpu(d->prio);
621                 b->gen = b->disk_gen = b->last_gc = b->gc_gen = d->gen;
622         }
623 }
624
625 /* Bcache device */
626
627 static int open_dev(struct block_device *b, fmode_t mode)
628 {
629         struct bcache_device *d = b->bd_disk->private_data;
630         if (atomic_read(&d->closing))
631                 return -ENXIO;
632
633         closure_get(&d->cl);
634         return 0;
635 }
636
637 static void release_dev(struct gendisk *b, fmode_t mode)
638 {
639         struct bcache_device *d = b->private_data;
640         closure_put(&d->cl);
641 }
642
643 static int ioctl_dev(struct block_device *b, fmode_t mode,
644                      unsigned int cmd, unsigned long arg)
645 {
646         struct bcache_device *d = b->bd_disk->private_data;
647         return d->ioctl(d, mode, cmd, arg);
648 }
649
650 static const struct block_device_operations bcache_ops = {
651         .open           = open_dev,
652         .release        = release_dev,
653         .ioctl          = ioctl_dev,
654         .owner          = THIS_MODULE,
655 };
656
657 void bcache_device_stop(struct bcache_device *d)
658 {
659         if (!atomic_xchg(&d->closing, 1))
660                 closure_queue(&d->cl);
661 }
662
663 static void bcache_device_unlink(struct bcache_device *d)
664 {
665         unsigned i;
666         struct cache *ca;
667
668         sysfs_remove_link(&d->c->kobj, d->name);
669         sysfs_remove_link(&d->kobj, "cache");
670
671         for_each_cache(ca, d->c, i)
672                 bd_unlink_disk_holder(ca->bdev, d->disk);
673 }
674
675 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
676                                const char *name)
677 {
678         unsigned i;
679         struct cache *ca;
680
681         for_each_cache(ca, d->c, i)
682                 bd_link_disk_holder(ca->bdev, d->disk);
683
684         snprintf(d->name, BCACHEDEVNAME_SIZE,
685                  "%s%u", name, d->id);
686
687         WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
688              sysfs_create_link(&c->kobj, &d->kobj, d->name),
689              "Couldn't create device <-> cache set symlinks");
690 }
691
692 static void bcache_device_detach(struct bcache_device *d)
693 {
694         lockdep_assert_held(&bch_register_lock);
695
696         if (atomic_read(&d->detaching)) {
697                 struct uuid_entry *u = d->c->uuids + d->id;
698
699                 SET_UUID_FLASH_ONLY(u, 0);
700                 memcpy(u->uuid, invalid_uuid, 16);
701                 u->invalidated = cpu_to_le32(get_seconds());
702                 bch_uuid_write(d->c);
703
704                 atomic_set(&d->detaching, 0);
705         }
706
707         bcache_device_unlink(d);
708
709         d->c->devices[d->id] = NULL;
710         closure_put(&d->c->caching);
711         d->c = NULL;
712 }
713
714 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
715                                  unsigned id)
716 {
717         BUG_ON(test_bit(CACHE_SET_STOPPING, &c->flags));
718
719         d->id = id;
720         d->c = c;
721         c->devices[id] = d;
722
723         closure_get(&c->caching);
724 }
725
726 static void bcache_device_free(struct bcache_device *d)
727 {
728         lockdep_assert_held(&bch_register_lock);
729
730         pr_info("%s stopped", d->disk->disk_name);
731
732         if (d->c)
733                 bcache_device_detach(d);
734         if (d->disk && d->disk->flags & GENHD_FL_UP)
735                 del_gendisk(d->disk);
736         if (d->disk && d->disk->queue)
737                 blk_cleanup_queue(d->disk->queue);
738         if (d->disk)
739                 put_disk(d->disk);
740
741         bio_split_pool_free(&d->bio_split_hook);
742         if (d->unaligned_bvec)
743                 mempool_destroy(d->unaligned_bvec);
744         if (d->bio_split)
745                 bioset_free(d->bio_split);
746
747         closure_debug_destroy(&d->cl);
748 }
749
750 static int bcache_device_init(struct bcache_device *d, unsigned block_size)
751 {
752         struct request_queue *q;
753
754         if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
755             !(d->unaligned_bvec = mempool_create_kmalloc_pool(1,
756                                 sizeof(struct bio_vec) * BIO_MAX_PAGES)) ||
757             bio_split_pool_init(&d->bio_split_hook) ||
758             !(d->disk = alloc_disk(1)) ||
759             !(q = blk_alloc_queue(GFP_KERNEL)))
760                 return -ENOMEM;
761
762         snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", bcache_minor);
763
764         d->disk->major          = bcache_major;
765         d->disk->first_minor    = bcache_minor++;
766         d->disk->fops           = &bcache_ops;
767         d->disk->private_data   = d;
768
769         blk_queue_make_request(q, NULL);
770         d->disk->queue                  = q;
771         q->queuedata                    = d;
772         q->backing_dev_info.congested_data = d;
773         q->limits.max_hw_sectors        = UINT_MAX;
774         q->limits.max_sectors           = UINT_MAX;
775         q->limits.max_segment_size      = UINT_MAX;
776         q->limits.max_segments          = BIO_MAX_PAGES;
777         q->limits.max_discard_sectors   = UINT_MAX;
778         q->limits.io_min                = block_size;
779         q->limits.logical_block_size    = block_size;
780         q->limits.physical_block_size   = block_size;
781         set_bit(QUEUE_FLAG_NONROT,      &d->disk->queue->queue_flags);
782         set_bit(QUEUE_FLAG_DISCARD,     &d->disk->queue->queue_flags);
783
784         return 0;
785 }
786
787 /* Cached device */
788
789 static void calc_cached_dev_sectors(struct cache_set *c)
790 {
791         uint64_t sectors = 0;
792         struct cached_dev *dc;
793
794         list_for_each_entry(dc, &c->cached_devs, list)
795                 sectors += bdev_sectors(dc->bdev);
796
797         c->cached_dev_sectors = sectors;
798 }
799
800 void bch_cached_dev_run(struct cached_dev *dc)
801 {
802         struct bcache_device *d = &dc->disk;
803
804         if (atomic_xchg(&dc->running, 1))
805                 return;
806
807         if (!d->c &&
808             BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
809                 struct closure cl;
810                 closure_init_stack(&cl);
811
812                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
813                 bch_write_bdev_super(dc, &cl);
814                 closure_sync(&cl);
815         }
816
817         add_disk(d->disk);
818         bd_link_disk_holder(dc->bdev, dc->disk.disk);
819 #if 0
820         char *env[] = { "SYMLINK=label" , NULL };
821         kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
822 #endif
823         if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
824             sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
825                 pr_debug("error creating sysfs link");
826 }
827
828 static void cached_dev_detach_finish(struct work_struct *w)
829 {
830         struct cached_dev *dc = container_of(w, struct cached_dev, detach);
831         char buf[BDEVNAME_SIZE];
832         struct closure cl;
833         closure_init_stack(&cl);
834
835         BUG_ON(!atomic_read(&dc->disk.detaching));
836         BUG_ON(atomic_read(&dc->count));
837
838         mutex_lock(&bch_register_lock);
839
840         memset(&dc->sb.set_uuid, 0, 16);
841         SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
842
843         bch_write_bdev_super(dc, &cl);
844         closure_sync(&cl);
845
846         bcache_device_detach(&dc->disk);
847         list_move(&dc->list, &uncached_devices);
848
849         mutex_unlock(&bch_register_lock);
850
851         pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
852
853         /* Drop ref we took in cached_dev_detach() */
854         closure_put(&dc->disk.cl);
855 }
856
857 void bch_cached_dev_detach(struct cached_dev *dc)
858 {
859         lockdep_assert_held(&bch_register_lock);
860
861         if (atomic_read(&dc->disk.closing))
862                 return;
863
864         if (atomic_xchg(&dc->disk.detaching, 1))
865                 return;
866
867         /*
868          * Block the device from being closed and freed until we're finished
869          * detaching
870          */
871         closure_get(&dc->disk.cl);
872
873         bch_writeback_queue(dc);
874         cached_dev_put(dc);
875 }
876
877 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
878 {
879         uint32_t rtime = cpu_to_le32(get_seconds());
880         struct uuid_entry *u;
881         char buf[BDEVNAME_SIZE];
882
883         bdevname(dc->bdev, buf);
884
885         if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
886                 return -ENOENT;
887
888         if (dc->disk.c) {
889                 pr_err("Can't attach %s: already attached", buf);
890                 return -EINVAL;
891         }
892
893         if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
894                 pr_err("Can't attach %s: shutting down", buf);
895                 return -EINVAL;
896         }
897
898         if (dc->sb.block_size < c->sb.block_size) {
899                 /* Will die */
900                 pr_err("Couldn't attach %s: block size less than set's block size",
901                        buf);
902                 return -EINVAL;
903         }
904
905         u = uuid_find(c, dc->sb.uuid);
906
907         if (u &&
908             (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
909              BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
910                 memcpy(u->uuid, invalid_uuid, 16);
911                 u->invalidated = cpu_to_le32(get_seconds());
912                 u = NULL;
913         }
914
915         if (!u) {
916                 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
917                         pr_err("Couldn't find uuid for %s in set", buf);
918                         return -ENOENT;
919                 }
920
921                 u = uuid_find_empty(c);
922                 if (!u) {
923                         pr_err("Not caching %s, no room for UUID", buf);
924                         return -EINVAL;
925                 }
926         }
927
928         /* Deadlocks since we're called via sysfs...
929         sysfs_remove_file(&dc->kobj, &sysfs_attach);
930          */
931
932         if (bch_is_zero(u->uuid, 16)) {
933                 struct closure cl;
934                 closure_init_stack(&cl);
935
936                 memcpy(u->uuid, dc->sb.uuid, 16);
937                 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
938                 u->first_reg = u->last_reg = rtime;
939                 bch_uuid_write(c);
940
941                 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
942                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
943
944                 bch_write_bdev_super(dc, &cl);
945                 closure_sync(&cl);
946         } else {
947                 u->last_reg = rtime;
948                 bch_uuid_write(c);
949         }
950
951         bcache_device_attach(&dc->disk, c, u - c->uuids);
952         list_move(&dc->list, &c->cached_devs);
953         calc_cached_dev_sectors(c);
954
955         smp_wmb();
956         /*
957          * dc->c must be set before dc->count != 0 - paired with the mb in
958          * cached_dev_get()
959          */
960         atomic_set(&dc->count, 1);
961
962         if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
963                 atomic_set(&dc->has_dirty, 1);
964                 atomic_inc(&dc->count);
965                 bch_writeback_queue(dc);
966         }
967
968         bch_cached_dev_run(dc);
969         bcache_device_link(&dc->disk, c, "bdev");
970
971         pr_info("Caching %s as %s on set %pU",
972                 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
973                 dc->disk.c->sb.set_uuid);
974         return 0;
975 }
976
977 void bch_cached_dev_release(struct kobject *kobj)
978 {
979         struct cached_dev *dc = container_of(kobj, struct cached_dev,
980                                              disk.kobj);
981         kfree(dc);
982         module_put(THIS_MODULE);
983 }
984
985 static void cached_dev_free(struct closure *cl)
986 {
987         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
988
989         cancel_delayed_work_sync(&dc->writeback_rate_update);
990
991         mutex_lock(&bch_register_lock);
992
993         if (atomic_read(&dc->running))
994                 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
995         bcache_device_free(&dc->disk);
996         list_del(&dc->list);
997
998         mutex_unlock(&bch_register_lock);
999
1000         if (!IS_ERR_OR_NULL(dc->bdev)) {
1001                 if (dc->bdev->bd_disk)
1002                         blk_sync_queue(bdev_get_queue(dc->bdev));
1003
1004                 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1005         }
1006
1007         wake_up(&unregister_wait);
1008
1009         kobject_put(&dc->disk.kobj);
1010 }
1011
1012 static void cached_dev_flush(struct closure *cl)
1013 {
1014         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1015         struct bcache_device *d = &dc->disk;
1016
1017         bch_cache_accounting_destroy(&dc->accounting);
1018         kobject_del(&d->kobj);
1019
1020         continue_at(cl, cached_dev_free, system_wq);
1021 }
1022
1023 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1024 {
1025         int ret;
1026         struct io *io;
1027         struct request_queue *q = bdev_get_queue(dc->bdev);
1028
1029         __module_get(THIS_MODULE);
1030         INIT_LIST_HEAD(&dc->list);
1031         closure_init(&dc->disk.cl, NULL);
1032         set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1033         kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1034         INIT_WORK(&dc->detach, cached_dev_detach_finish);
1035         closure_init_unlocked(&dc->sb_write);
1036         INIT_LIST_HEAD(&dc->io_lru);
1037         spin_lock_init(&dc->io_lock);
1038         bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1039
1040         dc->sequential_merge            = true;
1041         dc->sequential_cutoff           = 4 << 20;
1042
1043         for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1044                 list_add(&io->lru, &dc->io_lru);
1045                 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1046         }
1047
1048         ret = bcache_device_init(&dc->disk, block_size);
1049         if (ret)
1050                 return ret;
1051
1052         set_capacity(dc->disk.disk,
1053                      dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1054
1055         dc->disk.disk->queue->backing_dev_info.ra_pages =
1056                 max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1057                     q->backing_dev_info.ra_pages);
1058
1059         bch_cached_dev_request_init(dc);
1060         bch_cached_dev_writeback_init(dc);
1061         return 0;
1062 }
1063
1064 /* Cached device - bcache superblock */
1065
1066 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1067                                  struct block_device *bdev,
1068                                  struct cached_dev *dc)
1069 {
1070         char name[BDEVNAME_SIZE];
1071         const char *err = "cannot allocate memory";
1072         struct cache_set *c;
1073
1074         memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1075         dc->bdev = bdev;
1076         dc->bdev->bd_holder = dc;
1077
1078         bio_init(&dc->sb_bio);
1079         dc->sb_bio.bi_max_vecs  = 1;
1080         dc->sb_bio.bi_io_vec    = dc->sb_bio.bi_inline_vecs;
1081         dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1082         get_page(sb_page);
1083
1084         if (cached_dev_init(dc, sb->block_size << 9))
1085                 goto err;
1086
1087         err = "error creating kobject";
1088         if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1089                         "bcache"))
1090                 goto err;
1091         if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1092                 goto err;
1093
1094         pr_info("registered backing device %s", bdevname(bdev, name));
1095
1096         list_add(&dc->list, &uncached_devices);
1097         list_for_each_entry(c, &bch_cache_sets, list)
1098                 bch_cached_dev_attach(dc, c);
1099
1100         if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1101             BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1102                 bch_cached_dev_run(dc);
1103
1104         return;
1105 err:
1106         pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1107         bcache_device_stop(&dc->disk);
1108 }
1109
1110 /* Flash only volumes */
1111
1112 void bch_flash_dev_release(struct kobject *kobj)
1113 {
1114         struct bcache_device *d = container_of(kobj, struct bcache_device,
1115                                                kobj);
1116         kfree(d);
1117 }
1118
1119 static void flash_dev_free(struct closure *cl)
1120 {
1121         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1122         bcache_device_free(d);
1123         kobject_put(&d->kobj);
1124 }
1125
1126 static void flash_dev_flush(struct closure *cl)
1127 {
1128         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1129
1130         bcache_device_unlink(d);
1131         kobject_del(&d->kobj);
1132         continue_at(cl, flash_dev_free, system_wq);
1133 }
1134
1135 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1136 {
1137         struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1138                                           GFP_KERNEL);
1139         if (!d)
1140                 return -ENOMEM;
1141
1142         closure_init(&d->cl, NULL);
1143         set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1144
1145         kobject_init(&d->kobj, &bch_flash_dev_ktype);
1146
1147         if (bcache_device_init(d, block_bytes(c)))
1148                 goto err;
1149
1150         bcache_device_attach(d, c, u - c->uuids);
1151         set_capacity(d->disk, u->sectors);
1152         bch_flash_dev_request_init(d);
1153         add_disk(d->disk);
1154
1155         if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1156                 goto err;
1157
1158         bcache_device_link(d, c, "volume");
1159
1160         return 0;
1161 err:
1162         kobject_put(&d->kobj);
1163         return -ENOMEM;
1164 }
1165
1166 static int flash_devs_run(struct cache_set *c)
1167 {
1168         int ret = 0;
1169         struct uuid_entry *u;
1170
1171         for (u = c->uuids;
1172              u < c->uuids + c->nr_uuids && !ret;
1173              u++)
1174                 if (UUID_FLASH_ONLY(u))
1175                         ret = flash_dev_run(c, u);
1176
1177         return ret;
1178 }
1179
1180 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1181 {
1182         struct uuid_entry *u;
1183
1184         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1185                 return -EINTR;
1186
1187         u = uuid_find_empty(c);
1188         if (!u) {
1189                 pr_err("Can't create volume, no room for UUID");
1190                 return -EINVAL;
1191         }
1192
1193         get_random_bytes(u->uuid, 16);
1194         memset(u->label, 0, 32);
1195         u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1196
1197         SET_UUID_FLASH_ONLY(u, 1);
1198         u->sectors = size >> 9;
1199
1200         bch_uuid_write(c);
1201
1202         return flash_dev_run(c, u);
1203 }
1204
1205 /* Cache set */
1206
1207 __printf(2, 3)
1208 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1209 {
1210         va_list args;
1211
1212         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1213                 return false;
1214
1215         /* XXX: we can be called from atomic context
1216         acquire_console_sem();
1217         */
1218
1219         printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1220
1221         va_start(args, fmt);
1222         vprintk(fmt, args);
1223         va_end(args);
1224
1225         printk(", disabling caching\n");
1226
1227         bch_cache_set_unregister(c);
1228         return true;
1229 }
1230
1231 void bch_cache_set_release(struct kobject *kobj)
1232 {
1233         struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1234         kfree(c);
1235         module_put(THIS_MODULE);
1236 }
1237
1238 static void cache_set_free(struct closure *cl)
1239 {
1240         struct cache_set *c = container_of(cl, struct cache_set, cl);
1241         struct cache *ca;
1242         unsigned i;
1243
1244         if (!IS_ERR_OR_NULL(c->debug))
1245                 debugfs_remove(c->debug);
1246
1247         bch_open_buckets_free(c);
1248         bch_btree_cache_free(c);
1249         bch_journal_free(c);
1250
1251         for_each_cache(ca, c, i)
1252                 if (ca)
1253                         kobject_put(&ca->kobj);
1254
1255         free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1256         free_pages((unsigned long) c->sort, ilog2(bucket_pages(c)));
1257
1258         kfree(c->fill_iter);
1259         if (c->bio_split)
1260                 bioset_free(c->bio_split);
1261         if (c->bio_meta)
1262                 mempool_destroy(c->bio_meta);
1263         if (c->search)
1264                 mempool_destroy(c->search);
1265         kfree(c->devices);
1266
1267         mutex_lock(&bch_register_lock);
1268         list_del(&c->list);
1269         mutex_unlock(&bch_register_lock);
1270
1271         pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1272         wake_up(&unregister_wait);
1273
1274         closure_debug_destroy(&c->cl);
1275         kobject_put(&c->kobj);
1276 }
1277
1278 static void cache_set_flush(struct closure *cl)
1279 {
1280         struct cache_set *c = container_of(cl, struct cache_set, caching);
1281         struct btree *b;
1282
1283         /* Shut down allocator threads */
1284         set_bit(CACHE_SET_STOPPING_2, &c->flags);
1285         wake_up(&c->alloc_wait);
1286
1287         bch_cache_accounting_destroy(&c->accounting);
1288
1289         kobject_put(&c->internal);
1290         kobject_del(&c->kobj);
1291
1292         if (!IS_ERR_OR_NULL(c->root))
1293                 list_add(&c->root->list, &c->btree_cache);
1294
1295         /* Should skip this if we're unregistering because of an error */
1296         list_for_each_entry(b, &c->btree_cache, list)
1297                 if (btree_node_dirty(b))
1298                         bch_btree_write(b, true, NULL);
1299
1300         closure_return(cl);
1301 }
1302
1303 static void __cache_set_unregister(struct closure *cl)
1304 {
1305         struct cache_set *c = container_of(cl, struct cache_set, caching);
1306         struct cached_dev *dc, *t;
1307         size_t i;
1308
1309         mutex_lock(&bch_register_lock);
1310
1311         if (test_bit(CACHE_SET_UNREGISTERING, &c->flags))
1312                 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1313                         bch_cached_dev_detach(dc);
1314
1315         for (i = 0; i < c->nr_uuids; i++)
1316                 if (c->devices[i] && UUID_FLASH_ONLY(&c->uuids[i]))
1317                         bcache_device_stop(c->devices[i]);
1318
1319         mutex_unlock(&bch_register_lock);
1320
1321         continue_at(cl, cache_set_flush, system_wq);
1322 }
1323
1324 void bch_cache_set_stop(struct cache_set *c)
1325 {
1326         if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1327                 closure_queue(&c->caching);
1328 }
1329
1330 void bch_cache_set_unregister(struct cache_set *c)
1331 {
1332         set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1333         bch_cache_set_stop(c);
1334 }
1335
1336 #define alloc_bucket_pages(gfp, c)                      \
1337         ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1338
1339 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1340 {
1341         int iter_size;
1342         struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1343         if (!c)
1344                 return NULL;
1345
1346         __module_get(THIS_MODULE);
1347         closure_init(&c->cl, NULL);
1348         set_closure_fn(&c->cl, cache_set_free, system_wq);
1349
1350         closure_init(&c->caching, &c->cl);
1351         set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1352
1353         /* Maybe create continue_at_noreturn() and use it here? */
1354         closure_set_stopped(&c->cl);
1355         closure_put(&c->cl);
1356
1357         kobject_init(&c->kobj, &bch_cache_set_ktype);
1358         kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1359
1360         bch_cache_accounting_init(&c->accounting, &c->cl);
1361
1362         memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1363         c->sb.block_size        = sb->block_size;
1364         c->sb.bucket_size       = sb->bucket_size;
1365         c->sb.nr_in_set         = sb->nr_in_set;
1366         c->sb.last_mount        = sb->last_mount;
1367         c->bucket_bits          = ilog2(sb->bucket_size);
1368         c->block_bits           = ilog2(sb->block_size);
1369         c->nr_uuids             = bucket_bytes(c) / sizeof(struct uuid_entry);
1370
1371         c->btree_pages          = c->sb.bucket_size / PAGE_SECTORS;
1372         if (c->btree_pages > BTREE_MAX_PAGES)
1373                 c->btree_pages = max_t(int, c->btree_pages / 4,
1374                                        BTREE_MAX_PAGES);
1375
1376         init_waitqueue_head(&c->alloc_wait);
1377         mutex_init(&c->bucket_lock);
1378         mutex_init(&c->fill_lock);
1379         mutex_init(&c->sort_lock);
1380         spin_lock_init(&c->sort_time_lock);
1381         closure_init_unlocked(&c->sb_write);
1382         closure_init_unlocked(&c->uuid_write);
1383         spin_lock_init(&c->btree_read_time_lock);
1384         bch_moving_init_cache_set(c);
1385
1386         INIT_LIST_HEAD(&c->list);
1387         INIT_LIST_HEAD(&c->cached_devs);
1388         INIT_LIST_HEAD(&c->btree_cache);
1389         INIT_LIST_HEAD(&c->btree_cache_freeable);
1390         INIT_LIST_HEAD(&c->btree_cache_freed);
1391         INIT_LIST_HEAD(&c->data_buckets);
1392
1393         c->search = mempool_create_slab_pool(32, bch_search_cache);
1394         if (!c->search)
1395                 goto err;
1396
1397         iter_size = (sb->bucket_size / sb->block_size + 1) *
1398                 sizeof(struct btree_iter_set);
1399
1400         if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1401             !(c->bio_meta = mempool_create_kmalloc_pool(2,
1402                                 sizeof(struct bbio) + sizeof(struct bio_vec) *
1403                                 bucket_pages(c))) ||
1404             !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1405             !(c->fill_iter = kmalloc(iter_size, GFP_KERNEL)) ||
1406             !(c->sort = alloc_bucket_pages(GFP_KERNEL, c)) ||
1407             !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1408             bch_journal_alloc(c) ||
1409             bch_btree_cache_alloc(c) ||
1410             bch_open_buckets_alloc(c))
1411                 goto err;
1412
1413         c->fill_iter->size = sb->bucket_size / sb->block_size;
1414
1415         c->congested_read_threshold_us  = 2000;
1416         c->congested_write_threshold_us = 20000;
1417         c->error_limit  = 8 << IO_ERROR_SHIFT;
1418
1419         return c;
1420 err:
1421         bch_cache_set_unregister(c);
1422         return NULL;
1423 }
1424
1425 static void run_cache_set(struct cache_set *c)
1426 {
1427         const char *err = "cannot allocate memory";
1428         struct cached_dev *dc, *t;
1429         struct cache *ca;
1430         unsigned i;
1431
1432         struct btree_op op;
1433         bch_btree_op_init_stack(&op);
1434         op.lock = SHRT_MAX;
1435
1436         for_each_cache(ca, c, i)
1437                 c->nbuckets += ca->sb.nbuckets;
1438
1439         if (CACHE_SYNC(&c->sb)) {
1440                 LIST_HEAD(journal);
1441                 struct bkey *k;
1442                 struct jset *j;
1443
1444                 err = "cannot allocate memory for journal";
1445                 if (bch_journal_read(c, &journal, &op))
1446                         goto err;
1447
1448                 pr_debug("btree_journal_read() done");
1449
1450                 err = "no journal entries found";
1451                 if (list_empty(&journal))
1452                         goto err;
1453
1454                 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1455
1456                 err = "IO error reading priorities";
1457                 for_each_cache(ca, c, i)
1458                         prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1459
1460                 /*
1461                  * If prio_read() fails it'll call cache_set_error and we'll
1462                  * tear everything down right away, but if we perhaps checked
1463                  * sooner we could avoid journal replay.
1464                  */
1465
1466                 k = &j->btree_root;
1467
1468                 err = "bad btree root";
1469                 if (__bch_ptr_invalid(c, j->btree_level + 1, k))
1470                         goto err;
1471
1472                 err = "error reading btree root";
1473                 c->root = bch_btree_node_get(c, k, j->btree_level, &op);
1474                 if (IS_ERR_OR_NULL(c->root))
1475                         goto err;
1476
1477                 list_del_init(&c->root->list);
1478                 rw_unlock(true, c->root);
1479
1480                 err = uuid_read(c, j, &op.cl);
1481                 if (err)
1482                         goto err;
1483
1484                 err = "error in recovery";
1485                 if (bch_btree_check(c, &op))
1486                         goto err;
1487
1488                 bch_journal_mark(c, &journal);
1489                 bch_btree_gc_finish(c);
1490                 pr_debug("btree_check() done");
1491
1492                 /*
1493                  * bcache_journal_next() can't happen sooner, or
1494                  * btree_gc_finish() will give spurious errors about last_gc >
1495                  * gc_gen - this is a hack but oh well.
1496                  */
1497                 bch_journal_next(&c->journal);
1498
1499                 for_each_cache(ca, c, i)
1500                         closure_call(&ca->alloc, bch_allocator_thread,
1501                                      system_wq, &c->cl);
1502
1503                 /*
1504                  * First place it's safe to allocate: btree_check() and
1505                  * btree_gc_finish() have to run before we have buckets to
1506                  * allocate, and bch_bucket_alloc_set() might cause a journal
1507                  * entry to be written so bcache_journal_next() has to be called
1508                  * first.
1509                  *
1510                  * If the uuids were in the old format we have to rewrite them
1511                  * before the next journal entry is written:
1512                  */
1513                 if (j->version < BCACHE_JSET_VERSION_UUID)
1514                         __uuid_write(c);
1515
1516                 bch_journal_replay(c, &journal, &op);
1517         } else {
1518                 pr_notice("invalidating existing data");
1519                 /* Don't want invalidate_buckets() to queue a gc yet */
1520                 closure_lock(&c->gc, NULL);
1521
1522                 for_each_cache(ca, c, i) {
1523                         unsigned j;
1524
1525                         ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1526                                               2, SB_JOURNAL_BUCKETS);
1527
1528                         for (j = 0; j < ca->sb.keys; j++)
1529                                 ca->sb.d[j] = ca->sb.first_bucket + j;
1530                 }
1531
1532                 bch_btree_gc_finish(c);
1533
1534                 for_each_cache(ca, c, i)
1535                         closure_call(&ca->alloc, bch_allocator_thread,
1536                                      ca->alloc_workqueue, &c->cl);
1537
1538                 mutex_lock(&c->bucket_lock);
1539                 for_each_cache(ca, c, i)
1540                         bch_prio_write(ca);
1541                 mutex_unlock(&c->bucket_lock);
1542
1543                 wake_up(&c->alloc_wait);
1544
1545                 err = "cannot allocate new UUID bucket";
1546                 if (__uuid_write(c))
1547                         goto err_unlock_gc;
1548
1549                 err = "cannot allocate new btree root";
1550                 c->root = bch_btree_node_alloc(c, 0, &op.cl);
1551                 if (IS_ERR_OR_NULL(c->root))
1552                         goto err_unlock_gc;
1553
1554                 bkey_copy_key(&c->root->key, &MAX_KEY);
1555                 bch_btree_write(c->root, true, &op);
1556
1557                 bch_btree_set_root(c->root);
1558                 rw_unlock(true, c->root);
1559
1560                 /*
1561                  * We don't want to write the first journal entry until
1562                  * everything is set up - fortunately journal entries won't be
1563                  * written until the SET_CACHE_SYNC() here:
1564                  */
1565                 SET_CACHE_SYNC(&c->sb, true);
1566
1567                 bch_journal_next(&c->journal);
1568                 bch_journal_meta(c, &op.cl);
1569
1570                 /* Unlock */
1571                 closure_set_stopped(&c->gc.cl);
1572                 closure_put(&c->gc.cl);
1573         }
1574
1575         closure_sync(&op.cl);
1576         c->sb.last_mount = get_seconds();
1577         bcache_write_super(c);
1578
1579         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1580                 bch_cached_dev_attach(dc, c);
1581
1582         flash_devs_run(c);
1583
1584         return;
1585 err_unlock_gc:
1586         closure_set_stopped(&c->gc.cl);
1587         closure_put(&c->gc.cl);
1588 err:
1589         closure_sync(&op.cl);
1590         /* XXX: test this, it's broken */
1591         bch_cache_set_error(c, err);
1592 }
1593
1594 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1595 {
1596         return ca->sb.block_size        == c->sb.block_size &&
1597                 ca->sb.bucket_size      == c->sb.block_size &&
1598                 ca->sb.nr_in_set        == c->sb.nr_in_set;
1599 }
1600
1601 static const char *register_cache_set(struct cache *ca)
1602 {
1603         char buf[12];
1604         const char *err = "cannot allocate memory";
1605         struct cache_set *c;
1606
1607         list_for_each_entry(c, &bch_cache_sets, list)
1608                 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1609                         if (c->cache[ca->sb.nr_this_dev])
1610                                 return "duplicate cache set member";
1611
1612                         if (!can_attach_cache(ca, c))
1613                                 return "cache sb does not match set";
1614
1615                         if (!CACHE_SYNC(&ca->sb))
1616                                 SET_CACHE_SYNC(&c->sb, false);
1617
1618                         goto found;
1619                 }
1620
1621         c = bch_cache_set_alloc(&ca->sb);
1622         if (!c)
1623                 return err;
1624
1625         err = "error creating kobject";
1626         if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1627             kobject_add(&c->internal, &c->kobj, "internal"))
1628                 goto err;
1629
1630         if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1631                 goto err;
1632
1633         bch_debug_init_cache_set(c);
1634
1635         list_add(&c->list, &bch_cache_sets);
1636 found:
1637         sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1638         if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1639             sysfs_create_link(&c->kobj, &ca->kobj, buf))
1640                 goto err;
1641
1642         if (ca->sb.seq > c->sb.seq) {
1643                 c->sb.version           = ca->sb.version;
1644                 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1645                 c->sb.flags             = ca->sb.flags;
1646                 c->sb.seq               = ca->sb.seq;
1647                 pr_debug("set version = %llu", c->sb.version);
1648         }
1649
1650         ca->set = c;
1651         ca->set->cache[ca->sb.nr_this_dev] = ca;
1652         c->cache_by_alloc[c->caches_loaded++] = ca;
1653
1654         if (c->caches_loaded == c->sb.nr_in_set)
1655                 run_cache_set(c);
1656
1657         return NULL;
1658 err:
1659         bch_cache_set_unregister(c);
1660         return err;
1661 }
1662
1663 /* Cache device */
1664
1665 void bch_cache_release(struct kobject *kobj)
1666 {
1667         struct cache *ca = container_of(kobj, struct cache, kobj);
1668
1669         if (ca->set)
1670                 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1671
1672         bch_cache_allocator_exit(ca);
1673
1674         bio_split_pool_free(&ca->bio_split_hook);
1675
1676         if (ca->alloc_workqueue)
1677                 destroy_workqueue(ca->alloc_workqueue);
1678
1679         free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1680         kfree(ca->prio_buckets);
1681         vfree(ca->buckets);
1682
1683         free_heap(&ca->heap);
1684         free_fifo(&ca->unused);
1685         free_fifo(&ca->free_inc);
1686         free_fifo(&ca->free);
1687
1688         if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1689                 put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1690
1691         if (!IS_ERR_OR_NULL(ca->bdev)) {
1692                 blk_sync_queue(bdev_get_queue(ca->bdev));
1693                 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1694         }
1695
1696         kfree(ca);
1697         module_put(THIS_MODULE);
1698 }
1699
1700 static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1701 {
1702         size_t free;
1703         struct bucket *b;
1704
1705         __module_get(THIS_MODULE);
1706         kobject_init(&ca->kobj, &bch_cache_ktype);
1707
1708         INIT_LIST_HEAD(&ca->discards);
1709
1710         bio_init(&ca->journal.bio);
1711         ca->journal.bio.bi_max_vecs = 8;
1712         ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1713
1714         free = roundup_pow_of_two(ca->sb.nbuckets) >> 9;
1715         free = max_t(size_t, free, (prio_buckets(ca) + 8) * 2);
1716
1717         if (!init_fifo(&ca->free,       free, GFP_KERNEL) ||
1718             !init_fifo(&ca->free_inc,   free << 2, GFP_KERNEL) ||
1719             !init_fifo(&ca->unused,     free << 2, GFP_KERNEL) ||
1720             !init_heap(&ca->heap,       free << 3, GFP_KERNEL) ||
1721             !(ca->buckets       = vzalloc(sizeof(struct bucket) *
1722                                           ca->sb.nbuckets)) ||
1723             !(ca->prio_buckets  = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1724                                           2, GFP_KERNEL)) ||
1725             !(ca->disk_buckets  = alloc_bucket_pages(GFP_KERNEL, ca)) ||
1726             !(ca->alloc_workqueue = alloc_workqueue("bch_allocator", 0, 1)) ||
1727             bio_split_pool_init(&ca->bio_split_hook))
1728                 return -ENOMEM;
1729
1730         ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1731
1732         for_each_bucket(b, ca)
1733                 atomic_set(&b->pin, 0);
1734
1735         if (bch_cache_allocator_init(ca))
1736                 goto err;
1737
1738         return 0;
1739 err:
1740         kobject_put(&ca->kobj);
1741         return -ENOMEM;
1742 }
1743
1744 static void register_cache(struct cache_sb *sb, struct page *sb_page,
1745                                   struct block_device *bdev, struct cache *ca)
1746 {
1747         char name[BDEVNAME_SIZE];
1748         const char *err = "cannot allocate memory";
1749
1750         memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1751         ca->bdev = bdev;
1752         ca->bdev->bd_holder = ca;
1753
1754         bio_init(&ca->sb_bio);
1755         ca->sb_bio.bi_max_vecs  = 1;
1756         ca->sb_bio.bi_io_vec    = ca->sb_bio.bi_inline_vecs;
1757         ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1758         get_page(sb_page);
1759
1760         if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1761                 ca->discard = CACHE_DISCARD(&ca->sb);
1762
1763         if (cache_alloc(sb, ca) != 0)
1764                 goto err;
1765
1766         err = "error creating kobject";
1767         if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
1768                 goto err;
1769
1770         err = register_cache_set(ca);
1771         if (err)
1772                 goto err;
1773
1774         pr_info("registered cache device %s", bdevname(bdev, name));
1775         return;
1776 err:
1777         pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1778         kobject_put(&ca->kobj);
1779 }
1780
1781 /* Global interfaces/init */
1782
1783 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1784                                const char *, size_t);
1785
1786 kobj_attribute_write(register,          register_bcache);
1787 kobj_attribute_write(register_quiet,    register_bcache);
1788
1789 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1790                                const char *buffer, size_t size)
1791 {
1792         ssize_t ret = size;
1793         const char *err = "cannot allocate memory";
1794         char *path = NULL;
1795         struct cache_sb *sb = NULL;
1796         struct block_device *bdev = NULL;
1797         struct page *sb_page = NULL;
1798
1799         if (!try_module_get(THIS_MODULE))
1800                 return -EBUSY;
1801
1802         mutex_lock(&bch_register_lock);
1803
1804         if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1805             !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1806                 goto err;
1807
1808         err = "failed to open device";
1809         bdev = blkdev_get_by_path(strim(path),
1810                                   FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1811                                   sb);
1812         if (IS_ERR(bdev)) {
1813                 if (bdev == ERR_PTR(-EBUSY))
1814                         err = "device busy";
1815                 goto err;
1816         }
1817
1818         err = "failed to set blocksize";
1819         if (set_blocksize(bdev, 4096))
1820                 goto err_close;
1821
1822         err = read_super(sb, bdev, &sb_page);
1823         if (err)
1824                 goto err_close;
1825
1826         if (SB_IS_BDEV(sb)) {
1827                 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1828                 if (!dc)
1829                         goto err_close;
1830
1831                 register_bdev(sb, sb_page, bdev, dc);
1832         } else {
1833                 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1834                 if (!ca)
1835                         goto err_close;
1836
1837                 register_cache(sb, sb_page, bdev, ca);
1838         }
1839 out:
1840         if (sb_page)
1841                 put_page(sb_page);
1842         kfree(sb);
1843         kfree(path);
1844         mutex_unlock(&bch_register_lock);
1845         module_put(THIS_MODULE);
1846         return ret;
1847
1848 err_close:
1849         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1850 err:
1851         if (attr != &ksysfs_register_quiet)
1852                 pr_info("error opening %s: %s", path, err);
1853         ret = -EINVAL;
1854         goto out;
1855 }
1856
1857 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
1858 {
1859         if (code == SYS_DOWN ||
1860             code == SYS_HALT ||
1861             code == SYS_POWER_OFF) {
1862                 DEFINE_WAIT(wait);
1863                 unsigned long start = jiffies;
1864                 bool stopped = false;
1865
1866                 struct cache_set *c, *tc;
1867                 struct cached_dev *dc, *tdc;
1868
1869                 mutex_lock(&bch_register_lock);
1870
1871                 if (list_empty(&bch_cache_sets) &&
1872                     list_empty(&uncached_devices))
1873                         goto out;
1874
1875                 pr_info("Stopping all devices:");
1876
1877                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1878                         bch_cache_set_stop(c);
1879
1880                 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
1881                         bcache_device_stop(&dc->disk);
1882
1883                 /* What's a condition variable? */
1884                 while (1) {
1885                         long timeout = start + 2 * HZ - jiffies;
1886
1887                         stopped = list_empty(&bch_cache_sets) &&
1888                                 list_empty(&uncached_devices);
1889
1890                         if (timeout < 0 || stopped)
1891                                 break;
1892
1893                         prepare_to_wait(&unregister_wait, &wait,
1894                                         TASK_UNINTERRUPTIBLE);
1895
1896                         mutex_unlock(&bch_register_lock);
1897                         schedule_timeout(timeout);
1898                         mutex_lock(&bch_register_lock);
1899                 }
1900
1901                 finish_wait(&unregister_wait, &wait);
1902
1903                 if (stopped)
1904                         pr_info("All devices stopped");
1905                 else
1906                         pr_notice("Timeout waiting for devices to be closed");
1907 out:
1908                 mutex_unlock(&bch_register_lock);
1909         }
1910
1911         return NOTIFY_DONE;
1912 }
1913
1914 static struct notifier_block reboot = {
1915         .notifier_call  = bcache_reboot,
1916         .priority       = INT_MAX, /* before any real devices */
1917 };
1918
1919 static void bcache_exit(void)
1920 {
1921         bch_debug_exit();
1922         bch_writeback_exit();
1923         bch_request_exit();
1924         bch_btree_exit();
1925         if (bcache_kobj)
1926                 kobject_put(bcache_kobj);
1927         if (bcache_wq)
1928                 destroy_workqueue(bcache_wq);
1929         unregister_blkdev(bcache_major, "bcache");
1930         unregister_reboot_notifier(&reboot);
1931 }
1932
1933 static int __init bcache_init(void)
1934 {
1935         static const struct attribute *files[] = {
1936                 &ksysfs_register.attr,
1937                 &ksysfs_register_quiet.attr,
1938                 NULL
1939         };
1940
1941         mutex_init(&bch_register_lock);
1942         init_waitqueue_head(&unregister_wait);
1943         register_reboot_notifier(&reboot);
1944         closure_debug_init();
1945
1946         bcache_major = register_blkdev(0, "bcache");
1947         if (bcache_major < 0)
1948                 return bcache_major;
1949
1950         if (!(bcache_wq = create_workqueue("bcache")) ||
1951             !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
1952             sysfs_create_files(bcache_kobj, files) ||
1953             bch_btree_init() ||
1954             bch_request_init() ||
1955             bch_writeback_init() ||
1956             bch_debug_init(bcache_kobj))
1957                 goto err;
1958
1959         return 0;
1960 err:
1961         bcache_exit();
1962         return -ENOMEM;
1963 }
1964
1965 module_exit(bcache_exit);
1966 module_init(bcache_init);